WO2018139426A1 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
WO2018139426A1
WO2018139426A1 PCT/JP2018/001896 JP2018001896W WO2018139426A1 WO 2018139426 A1 WO2018139426 A1 WO 2018139426A1 JP 2018001896 W JP2018001896 W JP 2018001896W WO 2018139426 A1 WO2018139426 A1 WO 2018139426A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
electrode
conductive layer
light
emitting device
Prior art date
Application number
PCT/JP2018/001896
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 綾子
健見 岡田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Publication of WO2018139426A1 publication Critical patent/WO2018139426A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/06Electrode terminals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode

Definitions

  • the present invention relates to a light emitting device.
  • Patent Document 1 describes an example of a translucent OLED.
  • the OLED includes a first electrode, an organic layer, and a plurality of second electrodes.
  • the first electrode and the organic layer are sequentially stacked on the substrate.
  • the plurality of second electrodes are arranged in stripes on the organic layer. Light from the outside of the OLED can pass through the region between the adjacent second electrodes. Thereby, OLED has translucency.
  • the translucent OLED has two surfaces facing away from each other.
  • the light emitting region of the OLED is located on one of these two surfaces, and the light output from the light emitting region is mainly output from the other surface (light emitting surface) of these two surfaces. It has become so.
  • the present inventor has found that a part of the light output from the light emitting region may leak to the opposite side of the light emitting surface. Based on this finding, the present inventor has studied to suppress the amount of light leaking along the longitudinal direction of the light emitting region.
  • An example of a problem to be solved by the present invention is to suppress the amount of light leaking along the longitudinal direction of the light emitting region to the opposite side of the light emitting surface of the light emitting device.
  • the first light emitting unit and the second light emitting unit extend in a second direction intersecting the first direction between the first light emitting unit and the second light emitting unit arranged along the first direction among the plurality of light emitting units.
  • a first conductive layer having the same potential as the first electrode of each of the light emitting units; It is a light-emitting device provided with.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 1 is a plan view showing a light emitting device according to Example 1.
  • FIG. 8 is a sectional view taken along the line PP in FIG. 7. It is QQ sectional drawing of FIG.
  • FIG. 6 is a plan view showing a light emitting device according to Example 2.
  • FIG. FIG. 12 is a sectional view taken along the line PP in FIG. 11.
  • 6 is a plan view showing a light emitting device according to Example 3.
  • FIG. It is the figure which removed the 2nd electrode and the insulating layer from FIG. It is QQ sectional drawing of FIG.
  • FIG. 1 is a plan view showing a light emitting device 10 according to the embodiment.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. 3 is a cross-sectional view taken along the line BB of FIG. 1 to 3, the X direction is defined as the longitudinal direction of the light emitting unit 152, and the Y direction is defined as the direction intersecting the X direction, specifically, the direction orthogonal to the X direction.
  • the X direction is defined as the longitudinal direction of the light emitting unit 152
  • the Y direction is defined as the direction intersecting the X direction, specifically, the direction orthogonal to the X direction.
  • the light emitting device 10 includes a substrate 100 and a light emitting region 150. As shown in FIGS. 2 and 3, the substrate 100 has a first surface 102 and a second surface 104. As shown in FIG. 1, the light emitting region 150 includes a plurality of light emitting units 152. In the example illustrated in FIG. 1, the plurality of light emitting units 152 are arranged in a matrix along the X direction and the Y direction. As shown in FIGS. 2 and 3, each light emitting unit 152 is located on the first surface 102 side of the substrate 100 and has a laminated structure including the first electrode 110, the organic layer 120, and the second electrode 130. Yes.
  • each light emitting unit 152 has a longitudinal direction in the first direction (X direction) and a short direction in the second direction (Y direction).
  • each light emitting unit 152 has a rectangular shape having a long side along the X direction and a short side along the Y direction.
  • the shape of the light emitting unit 152 may be a shape other than a rectangle.
  • the light emitting unit 152 has a longitudinal direction in the X direction.
  • the light emitted from the light emitting unit 152 is reflected by the second surface 104 of the substrate 100 and extends along the longitudinal direction (X direction) of the light emitting unit 152.
  • Even from the second surface 104 toward the first surface 102, much of this light can be blocked by the second electrode 130. For this reason, the amount of light leaking along the longitudinal direction (X direction) of the light emitting unit 152 to the opposite side of the light emitting surface (second surface 104) of the light emitting device 10 can be suppressed.
  • the light emitting region 150 includes a plurality of light emitting units 152 arranged in the X direction (for example, the first light emitting unit 152 (1), the second light emitting unit 152 (2), and the third light emitting unit in the drawing. Part 152 (3)).
  • the light emitting units 152 adjacent along the X direction are supplied with a potential from a common conductive layer extending between the light emitting units 152 along the Y direction.
  • the first electrode 110 of the first light emitting unit 152 (1) and the first electrode 110 of the second light emitting unit 152 (2) are located between the first light emitting unit 152 (1) and the second light emitting unit 152 (2).
  • the first electrode 110 of the first light emitting unit 152 (1) and the first electrode 110 of the second light emitting unit 152 (2) are at the same potential as the first conductive layer (conductive layer 212).
  • the second electrode 130 of the second light emitting unit 152 (2) and the second electrode 130 of the third light emitting unit 152 (3) are disposed between the second light emitting unit 152 (2) and the third light emitting unit 152 (3).
  • the second electrode 130 of the second light emitting unit 152 (2) and the second electrode 130 of the third light emitting unit 152 (3) are at the same potential as the second conductive layer (conductive layer 222).
  • the luminance distribution of the light emitting region 150 has high uniformity along the longitudinal direction (X) direction of the light emitting region 150.
  • the light emitting region 150 includes a plurality of light emitting units 152 arranged along the X direction, and the light emitting units 152 adjacent along the X direction extend along the Y direction between the light emitting units 152.
  • a potential is supplied from a common conductive layer that extends.
  • it is possible to suppress a voltage drop that may occur due to the light emitting unit 152 being too long along the X direction, and thereby it is possible to suppress nonuniform brightness in the X direction of the light emitting region 150. It becomes. For this reason, the luminance distribution of the light emitting region 150 has high uniformity along the longitudinal direction (X) direction of the light emitting region 150.
  • the pitch of the plurality of light emitting units 152 arranged along the longitudinal direction (X direction) of the light emitting region 150 it is possible to reduce the pitch of the plurality of light emitting units 152 arranged along the longitudinal direction (X direction) of the light emitting region 150.
  • the light emitting units 152 adjacent along the X direction are supplied with a potential from a common conductive layer extending along the Y direction between the light emitting units 152. Therefore, the space for providing this conductive layer can be reduced. For this reason, it is possible to narrow the pitch of the plurality of light emitting units 152 arranged along the longitudinal direction (X direction) of the light emitting region 150.
  • the light emitting device 10 includes a substrate 100, a light emitting region 150, a first tab line 210, a plurality of conductive layers 212, a second tab line 220, and a plurality of conductive layers 222.
  • the shape of the substrate 100 is a rectangle having a pair of long sides and a pair of short sides.
  • the long side of the substrate 100 is along the X direction
  • the short side of the substrate 100 is along the Y direction.
  • the shape of the substrate 100 is not limited to a rectangle.
  • the shape of the substrate 100 may be, for example, a circle or a polygon other than a rectangle.
  • the first tab line 210 and the second tab line 220 extend in the X direction, and particularly in the example shown in FIG. 1, extend along one and the other of the pair of long sides of the substrate 100. .
  • the first tab line 210 and the second tab line 220 are TAB (Tape Automated Bonding) tape containing copper.
  • the first tab line 210 and the second tab line 220 may be silver paste.
  • the first tab wire 210 and the second tab wire 220 may be MAM (Mo / Al / Mo), Al, Ag, TiAl, Al alloy, or Ag alloy.
  • the plurality of conductive layers 212 and the plurality of conductive layers 222 are connected to the first tab line 210 and the second tab line 220, respectively.
  • the plurality of conductive layers 212 and the plurality of conductive layers 222 extend in the Y direction. More specifically, the plurality of conductive layers 212 extend from the first tab line 210 toward the second tab line 220, and the conductive layer 222 extends from the second tab line 220 to the first tab line 210. It extends towards.
  • the plurality of conductive layers 212 and the plurality of conductive layers 222 are alternately arranged along the X direction.
  • the light emitting region 150 includes a plurality of light emitting units 152 arranged in a matrix along the X direction and the Y direction.
  • the plurality of light emitting units 152 can be classified into a plurality of groups G, and each group G includes a plurality of light emitting units 152 arranged in the Y direction.
  • the plurality of light emitting portions 152 in each group G are located between the adjacent conductive layers 212 and 222, and are electrically connected in parallel between the adjacent conductive layers 212 and 222.
  • the first electrode 110 and the second electrode 130 of each light emitting unit 152 in each group G are electrically connected to the conductive layer 212 and the conductive layer 222, respectively.
  • the first light emitting unit 152 (1) and the fourth light emitting unit 152 (4) are arranged along the Y direction, and each of the first light emitting unit 152 (1) and the fourth light emitting unit 152 (4) is arranged.
  • the first electrode 110 and the second electrode 130 are electrically connected to the conductive layer 212 and the conductive layer 222. Therefore, the first electrode 110 of each light emitting unit 152 in each group G can be supplied with a potential via the first tab wire 210 and the conductive layer 212, and the first electrode of each light emitting unit 152 in each group G can be supplied.
  • the two electrodes 130 can be supplied with a potential through the second tab wire 220 and the conductive layer 222.
  • the light emitting device 10 includes a substrate 100 and a plurality of light emitting elements 140.
  • the substrate 100 has a first surface 102 and a second surface 104.
  • the plurality of light emitting elements 140 are located on the first surface 102 of the substrate 100.
  • Each light emitting element 140 includes a first electrode 110, an organic layer 120, and a second electrode 130 in order from the first surface 102 of the substrate 100.
  • the second surface 104 is on the opposite side of the first surface 102.
  • the substrate 100 has translucency.
  • the substrate 100 includes glass.
  • the substrate 100 may include a resin.
  • the first electrode 110 has translucency and conductivity.
  • the first electrode 110 includes a material having translucency and conductivity, and an inorganic material, for example, a metal oxide, specifically, for example, ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide). At least one selected from the group consisting of: For this reason, the light from the organic layer 120 can pass through the first electrode 110.
  • the organic layer 120 includes a hole injection layer (HIL), a hole transport layer (HTL), a light emitting layer (EML), an electron transport layer (ETL), and an electron injection layer (EIL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EML light emitting layer
  • ETL electron transport layer
  • EIL electron injection layer
  • the EML can emit light by organic electroluminescence.
  • holes injected from the first electrode 110 via the HIL and HTL and injected from the second electrode 130 via the EIL and ETL. Light can be emitted by recombination of electrons.
  • the second electrode 130 has a light shielding property, more specifically, a light reflecting property, and further has conductivity.
  • the second electrode 130 includes a material having light reflectivity and conductivity, and includes, for example, a metal, specifically, for example, at least one of Al, Ag, and MgAg. For this reason, the light from the organic layer 120 is reflected by the second electrode 130 with hardly passing through the second electrode 130.
  • the light emitting device 10 includes a plurality of light emitting units 152 and a plurality of light transmitting units 154.
  • each of the plurality of light emitting elements 140 functions as each of the plurality of light emitting units 152.
  • Each of the plurality of light transmitting portions 154 is located between the adjacent light emitting portions 152 and does not overlap the light shielding member, specifically, the second electrode 130.
  • the plurality of light emitting units 152 and the plurality of light transmitting units 154 are alternately arranged along the Y direction.
  • the light emitting device 10 functions as a semi-transmissive OLED by a plurality of light emitting units 152 and a plurality of light transmitting units 154.
  • a semi-transmissive OLED by a plurality of light emitting units 152 and a plurality of light transmitting units 154.
  • an object on the first surface 102 side can be seen through the second surface 104 side by the plurality of light transmitting units 154 and the second surface 104 side. Can be seen through from the first surface 102 side.
  • light from the plurality of light emitting units 152 is mainly output from the second surface 104 side, and is hardly output from the first surface 102 side.
  • an object on the second surface 104 side can be seen through the first surface 102 side by the plurality of light transmitting units 154 in human vision.
  • FIG. 4 is a diagram for explaining an example of the operation of the light emitting device 10 shown in FIGS. 1 to 3, and corresponds to FIG.
  • the light emitted from the light emitting unit 152 is incident on the first surface 102 of the substrate 100 and passes through the substrate 100.
  • the light passes through the substrate 100 along the longitudinal direction (X direction) of the light emitting unit 152. Due to Fresnel reflection, a part of this light is reflected by the second surface 104 of the substrate 100, and another part of this light is emitted from the second surface 104 of the substrate 100.
  • the light reflected by the second surface 104 of the substrate 100 can be light that leaks to the opposite side of the light emitting surface (second surface 104) of the light emitting device 10.
  • second surface 104 the opposite side of the light emitting surface
  • the second electrode 130 extends along the longitudinal direction (X) direction of the light emitting unit 152, and the light reflected by the second surface 104 of the substrate 100 is reflected by the second electrode 130. Can be blocked. For this reason, the amount of light leaking along the longitudinal direction (X direction) of the light emitting unit 152 to the opposite side of the light emitting surface (second surface 104) of the light emitting device 10 can be suppressed.
  • FIG. 5 is a diagram showing the light emitting system 20 according to the present embodiment.
  • the light emitting system 20 includes the light emitting device 10 and the first position P1.
  • the light emitting device 10 shown in FIG. 5 is the same as the light emitting device 10 shown in FIGS. 1 to 3.
  • the first position P1 is located on the first surface 102 side of the substrate 100.
  • the first position P1 is shifted from the straight line L1 (that is, a straight line passing through the center C in the longitudinal direction (X direction) of the light emitting region 150 and orthogonal to the first surface 102 of the substrate 100). is doing.
  • the amount of light leaking along the longitudinal direction (X direction) of the light emitting unit 152 to the opposite side of the light emitting surface (second surface 104) of the light emitting device 10. Can be suppressed. Therefore, in the example illustrated in FIG. 5, the amount of light leaking from the plurality of light emitting units 152 toward the first position P1 can be suppressed.
  • the light emitting system 20 can be used in an automobile.
  • the light-emitting device 10 is a sign lamp (for example, a high-mount stop lamp) attached to the rear part of an automobile, specifically, a rear window, and the first position P1 is a driver's seat of the automobile.
  • the X direction is along the width direction of the automobile
  • the first surface 102 of the substrate 100 faces the inside of the automobile
  • the second surface 104 of the substrate 100 faces the outside of the automobile.
  • the amount of light leaking from the plurality of light emitting units 152 toward the first position P1 that is, the driver's seat
  • the first position P1 that is, the driver's seat
  • the amount of light from the plurality of light emitting units 152 in the X direction can be suppressed. .
  • the present embodiment it is possible to suppress the amount of light leaking along the longitudinal direction (X direction) of the light emitting unit 152 to the side opposite to the light emitting surface (second surface 104) of the light emitting device 10.
  • FIG. 6 is a diagram showing a modification of FIG.
  • both the first tab line 210 and the second tab line 220 may be located on one side of the light emitting region 150.
  • the second tab line 220 is located outside the first tab line 210, and the plurality of conductive layers 222 intersect the first tab line 210.
  • Each conductive layer 222 is covered with an insulating layer 226 in a region where the conductive layer 222 and the first tab line 210 intersect, and the first tab line 210 passes through a region above the insulating layer 226. It extends in the X direction. That is, the insulating layer 226 prevents direct contact between the conductive layer 222 and the first tab wire 210, that is, short circuit between the conductive layer 222 and the first tab wire 210.
  • FIG. 7 is a plan view illustrating the light emitting device 10 according to the first embodiment.
  • FIG. 8 is a view in which the second electrode 130 and the insulating layer 160 are removed from FIG. 7.
  • 9 is a cross-sectional view taken along the line PP in FIG. 10 is a cross-sectional view taken along the line QQ in FIG.
  • the organic layer 120 shown in FIG. 10 is removed from FIGS.
  • FIG. 7 shows details of a part of FIG. 1, that is, details of a plurality of light emitting elements 140 arranged in the Y direction.
  • the light-emitting device 10 shown in FIGS. 7 to 9 has the same configuration as the light-emitting device 10 shown in FIGS. That is, the light emitting unit 152 has a longitudinal direction in the X direction. In such a configuration, it is possible to suppress the amount of light that leaks along the longitudinal direction (X direction) of the light emitting unit 152 to the side opposite to the light emitting surface (second surface 104) of the light emitting device 10.
  • the light emitting device 10 includes a plurality of first electrodes 110, a plurality of second electrodes 130, a plurality of insulating layers 160, a conductive layer 212, a plurality of conductive layers 214, a conductive layer 222, and a plurality of conductive layers 224.
  • the conductive layer 212 and the conductive layer 214 are arranged along the X direction and extend in the Y direction. As described with reference to FIG. 1, the conductive layer 212 and the conductive layer 214 are electrically connected to the first tab line 210 and the second tab line 220, respectively. Accordingly, the potential of the first tab line 210 can be supplied to the plurality of first electrodes 110 through the conductive layer 212, and the potential of the second tab line 220 can be supplied to the plurality of second electrodes 130 through the conductive layer 222. Can be supplied.
  • the plurality of first electrodes 110 are arranged along the Y direction. Each first electrode 110 extends in the X direction, in other words, has a longitudinal direction in the X direction. Each of the plurality of first electrodes 110 is connected to the conductive layer 212 via each of the plurality of conductive layers 214. In particular, in the example illustrated in FIG. 8, the plurality of first electrodes 110, the plurality of conductive layers 214, and the conductive layer 212 are integrated. That is, the plurality of first electrodes 110, the plurality of conductive layers 214, and the conductive layers 212 are formed in the same process, and thus include the same material and have substantially the same film thickness. Yes.
  • the plurality of second electrodes 130 are arranged along the Y direction. Each second electrode 130 extends in the X direction, in other words, has a longitudinal direction in the X direction. Each of the plurality of second electrodes 130 overlaps each of the plurality of first electrodes 110. Further, each of the plurality of second electrodes 130 is connected to the conductive layer 222 through the plurality of conductive layers 224. In particular, in the example illustrated in FIG. 8, the plurality of conductive layers 224 and the conductive layers 222 are integrated. In other words, the plurality of conductive layers 224 and the conductive layers 222 are formed in the same process, and thus include the same material and have substantially the same thickness.
  • the plurality of first electrodes 110, the plurality of conductive layers 214, the conductive layer 212, the plurality of conductive layers 224, and the conductive layer 222 may be formed in the same process.
  • the plurality of first electrodes 110, the plurality of conductive layers 214, the conductive layer 212, the plurality of conductive layers 224, and the conductive layer 222 include the same material and have substantially the same film thickness. become. Furthermore, in this example, the number of manufacturing process steps of the light emitting device 10 can be reduced.
  • Each of the plurality of insulating layers 160 overlaps each of the plurality of first electrodes 110.
  • Each insulating layer 160 has an opening 162.
  • the opening 162 extends in the X direction, in other words, has a longitudinal direction in the X direction.
  • the light emitting portion 152 is defined by the opening 162. That is, the shape of the light emitting portion 152 is determined by the shape of the insulating layer 160. Therefore, when the opening 162 has the longitudinal direction in the X direction, the light emitting unit 152 also has the longitudinal direction in the X direction.
  • the light emitting device 10 includes a substrate 100 and a light emitting element 140.
  • the light emitting element 140 includes a first electrode 110, an organic layer 120, and a second electrode 130.
  • the light emitting element 140 has a light emitting portion 152 in the opening 162 of the insulating layer 160.
  • the light emitting unit 152 has a stacked structure including the first electrode 110, the organic layer 120, and the second electrode 130.
  • the first electrode 110 (conductive layer 212) extends to the outside of the insulating layer 160 via a region below the insulating layer 160. In this way, the first electrode 110 is connected to the conductive layer 214.
  • the second electrode 130 extends to the outside of the insulating layer 160 via a region above the insulating layer 160. In this way, the insulating layer 160 is connected to the conductive layer 224 and the conductive layer 222.
  • the light emitting device 10 includes a plurality of light emitting units 152 and a plurality of light transmitting units 154.
  • the light emitting unit 152 has a stacked structure including the first electrode 110, the organic layer 120, and the second electrode 130.
  • the light emitting device 10 includes a plurality of light emitting elements 140.
  • Each light emitting element 140 includes a first electrode 110, an organic layer 120, and a second electrode 130.
  • the first electrode 110, the organic layer 120, and the second electrode 130 are stacked in the opening 162 of the insulating layer 160 and function as the light emitting unit 152.
  • Each of the plurality of light transmitting portions 154 is located between the adjacent light emitting portions 152 and does not overlap the light shielding member, specifically, the second electrode 130.
  • the plurality of light emitting units 152 and the plurality of light transmitting units 154 are alternately arranged along the Y direction.
  • the first electrode 110 has translucency and conductivity.
  • the first electrode 110 includes a material having translucency and conductivity, and an inorganic material, for example, a metal oxide, specifically, for example, ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide). At least one selected from the group consisting of: For this reason, the light from the organic layer 120 can pass through the first electrode 110.
  • the organic layer 120 includes a hole injection layer (HIL), a hole transport layer (HTL), a light emitting layer (EML), an electron transport layer (ETL), and an electron injection layer (EIL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EML light emitting layer
  • ETL electron transport layer
  • EIL electron injection layer
  • the EML can emit light by organic electroluminescence.
  • holes injected from the first electrode 110 via the HIL and HTL and injected from the second electrode 130 via the EIL and ETL. Light can be emitted by recombination of electrons.
  • the organic layer 120 extends over the plurality of light emitting units 152 and the plurality of light transmitting units 154, and in particular, the first surface 102 of the substrate 100 is disposed between the adjacent light emitting units 152. Covering.
  • each of the plurality of organic layers 120 may be provided in each of the plurality of light emitting elements 140.
  • the second electrode 130 has a light shielding property, more specifically, a light reflecting property, and further has conductivity.
  • the second electrode 130 includes a material having light reflectivity and conductivity, and includes, for example, a metal, specifically, for example, at least one of Al, Ag, and MgAg. For this reason, the light from the organic layer 120 is reflected by the second electrode 130 with hardly passing through the second electrode 130.
  • the insulating layer 160 includes an organic insulating material, specifically, for example, polyimide in one example, and in another example, an inorganic insulating material, specifically, for example, silicon oxide (SiO x ), silicon oxynitride. (SiON) or silicon nitride (SiN x ).
  • an organic insulating material specifically, for example, polyimide in one example
  • an inorganic insulating material specifically, for example, silicon oxide (SiO x ), silicon oxynitride. (SiON) or silicon nitride (SiN x ).
  • the insulating layer 160 has a light-transmitting property. Therefore, light from the outside of the light emitting device 10 can pass through the insulating layer 160.
  • the insulating layer 160 may have a light shielding property.
  • the second electrode 130 has an end portion 130a and an end portion 130b
  • the insulating layer 160 has an end portion 160a and an end portion 160b.
  • the end portion 130a and the end portion 160a face the same direction.
  • the end portion 130b and the end portion 160b face the same direction, and are on opposite sides of the end portion 130a and the end portion 160a, respectively.
  • the first surface 102 of the substrate 100 has a plurality of regions 102a, a plurality of regions 102b, and a plurality of regions 102c.
  • Each of the plurality of regions 102a extends from a position overlapping the end portion 130a of the second electrode 130 to a position overlapping the end portion 130b.
  • Each of the plurality of regions 102b extends from a position overlapping the end portion 130a of the second electrode 130 to a position overlapping the end portion 160a of the insulating layer 160 (or from a position overlapping the end portion 130b of the second electrode 130 to the end of the insulating layer 160. (Up to a position overlapping the portion 160b).
  • Each of the plurality of regions 102c extends from a position overlapping one end 160a of one insulating layer 160 of two adjacent insulating layers 160 to a position overlapping the end 160b of the other insulating layer 160.
  • the region 102a overlaps with the second electrode 130. Therefore, the light emitting device 10 has the lowest light transmittance in the region overlapping with the region 102a among the regions overlapping with the region 102a, the region 102b, and the region 102c. Yes.
  • the region 102c does not overlap with any of the second electrode 130 and the insulating layer 160; for this reason, the light-emitting device 10 has the highest region overlapping with the region 102c among regions overlapping with the regions 102a, 102b, and 102c. It has light transmittance.
  • the region 102b does not overlap the second electrode 130 but overlaps the insulating layer 160. Therefore, in the region overlapping the region 102b, the light emitting device 10 has higher light transmittance in the region overlapping the region 102a, and The light transmittance is lower than the light transmittance in a region overlapping with the region 102c.
  • the light transmittance of the light emitting device 10 as a whole is high.
  • the width of the region having a high light transmittance that is, the width d3 of the region 102c is widened.
  • the width d3 of the region 102c is wider than the width d2 of the region 102b ( d3> d2). In this way, the light transmittance of the light emitting device 10 as a whole is high.
  • the light emitting device 10 is prevented from absorbing much light of a specific wavelength.
  • the width of the region where light is transmitted through the insulating layer 160 that is, the width d2 of the region 102b is narrower.
  • the width d2 of the region 102b is narrower than the width d3 of the region 102c. (D2 ⁇ d3).
  • the insulating layer 160 may absorb light having a specific wavelength. Even in such a case, the amount of light transmitted through the insulating layer 160 can be reduced in the above-described configuration. In this way, the light emitting device 10 is prevented from absorbing much light of a specific wavelength.
  • the ratio d2 / d1 of the width d2 of the region 102b to the width d1 of the region 102a is 0 or more and 0.2 or less (0 ⁇ d2 / d1 ⁇ 0.2), and the ratio of the region 102c to the width d1 of the region 102a is
  • the ratio d3 / d1 of the width d3 is not less than 0.3 and not more than 2 (0.3 ⁇ d3 / d1 ⁇ 2).
  • the width d1 of the region 102a is 50 ⁇ m or more and 500 ⁇ m or less
  • the width d2 of the region 102b is 0 ⁇ m or more and 100 ⁇ m or less
  • the width d3 of the region 102c is 15 ⁇ m or more and 1000 ⁇ m or less.
  • the first electrode 110, the conductive layer 212, the conductive layer 214, the conductive layer 222, and the conductive layer 224 are formed on the first surface 102 of the substrate 100.
  • the first electrode 110, the conductive layer 212, the conductive layer 214, the conductive layer 222, and the conductive layer 224 are formed by patterning a common conductive layer. That is, the first electrode 110, the conductive layer 212, the conductive layer 214, the conductive layer 222, and the conductive layer 224 are formed in the same step.
  • the conductive layer 212, the conductive layer 214, the conductive layer 222, and the conductive layer 224 include the same material and have substantially the same thickness. Furthermore, in this method, the number of steps in the manufacturing process of the light emitting device 10 can be reduced.
  • the insulating layer 160 is formed.
  • the insulating layer 160 is formed by patterning a photosensitive resin applied on the first surface 102 of the substrate 100.
  • the organic layer 120 is formed.
  • the organic layer 120 is formed by vapor deposition.
  • the organic layer 120 may be formed by application. In this case, the material of the organic layer 120 is applied in the opening 162 of the insulating layer 160.
  • the second electrode 130 is formed.
  • the second electrode 130 is formed by vapor deposition using a mask.
  • the light emitting device 10 shown in FIGS. 7 to 10 is manufactured.
  • FIG. 11 is a plan view showing the light emitting device 10 according to the second embodiment, and corresponds to FIG. 7 of the first embodiment.
  • 12 is a cross-sectional view taken along the line PP of FIG. 11 and corresponds to FIG. 9 of the first embodiment.
  • the light emitting device 10 according to the present embodiment is the same as the light emitting device 10 according to the first embodiment except for the following points.
  • the light emitting device 10 includes a plurality of first electrodes 110, a conductive layer 212, a plurality of conductive layers 214, a plurality of second electrodes 130, a conductive layer 222, and a plurality of conductive layers 224.
  • Each of the plurality of first electrodes 110 is electrically connected to the conductive layer 212 through each of the plurality of conductive layers 214.
  • Each of the plurality of second electrodes 130 is electrically connected to the conductive layer 222 via each of the plurality of conductive layers 224.
  • the plurality of second electrodes 130, the plurality of conductive layers 224, and the conductive layer 222 are integrated. That is, the plurality of second electrodes 130, the plurality of conductive layers 224, and the conductive layer 222 are formed in the same process, and thus include the same material and have substantially the same film thickness. Yes.
  • the conductive layer 212 is formed in the same step as the plurality of second electrodes 130, the plurality of conductive layers 224, and the plurality of conductive layers 222. Therefore, the conductive layer 212, the plurality of second electrodes 130, and the plurality of conductive layers are formed.
  • the 224 and the plurality of conductive layers 222 include the same material and have substantially the same thickness.
  • the conductive layer 212 includes a material different from that of the plurality of first electrodes 110 and the plurality of conductive layers 214, and each conductive layer 212 passes through a region above each conductive layer 214. Crosses layer 214.
  • the first electrode 110 and the conductive layer 214 are formed on the first surface 102 of the substrate 100.
  • the first electrode 110 and the conductive layer 214 are formed by patterning a common conductive layer.
  • the insulating layer 160 and the organic layer 120 are formed in the same manner as in Example 1.
  • the second electrode 130, the conductive layer 212, the conductive layer 222, and the conductive layer 224 are formed.
  • the second electrode 130, the conductive layer 212, the conductive layer 222, and the conductive layer 224 are simultaneously formed by vapor deposition using a mask. That is, the second electrode 130, the conductive layer 212, the conductive layer 222, and the conductive layer 224 are formed in the same process.
  • the second electrode 130, the conductive layer 212, the conductive layer 222, and the conductive layer 224 include the same material and have substantially the same thickness. Furthermore, in this method, the number of steps in the manufacturing process of the light emitting device 10 can be reduced.
  • the light emitting device 10 shown in FIGS. 11 and 12 is manufactured.
  • FIG. 13 is a plan view illustrating the light emitting device 10 according to the third embodiment, and corresponds to FIG. 7 of the first embodiment.
  • FIG. 14 is a diagram in which the second electrode 130 and the insulating layer 160 are removed from FIG. 13, and corresponds to FIG. 8 of the first embodiment.
  • 15 is a cross-sectional view taken along the line QQ of FIG. 13 and corresponds to FIG. 10 of the first embodiment.
  • the light emitting device 10 according to the present embodiment is the same as the light emitting device 10 according to the first embodiment except for the following points.
  • the light emitting device 10 includes a plurality of conductive portions 170.
  • Each of the plurality of conductive portions 170 functions as an auxiliary electrode of each of the plurality of first electrodes 110.
  • the conductive portion 170 includes a material having a conductivity higher than that of the material included in the first electrode 110.
  • the conductive portion 170 is a metal, more specifically, MAM (Mo / Al / Mo) is included.
  • the conductive part 170 may be Al, Ag, TiAl, an Al alloy, or an Ag alloy. In the example illustrated in FIG.
  • the conductive portion 170 is located on the first electrode 110, is covered with the insulating layer 160, and does not overlap the light emitting portion 152. As shown in FIG. 14, the conductive portion 170 extends in the X direction, that is, the longitudinal direction of the first electrode 110. Therefore, even if the resistance of the first electrode 110 is high to some extent, a voltage drop in the longitudinal direction (X direction) of the first electrode 110 can be suppressed.
  • the light emitting device 10 includes a conductive portion 172.
  • the conductive portion 172 extends in the Y direction and is connected to the conductive layer 212.
  • the conductive portion 172 functions as an auxiliary electrode for the conductive layer 212.
  • the conductive portion 172 includes a material having a conductivity higher than that of the material included in the conductive layer 212.
  • the conductive portion 172 is a metal, more specifically, MAM (Mo / Al / Mo ) Is included.
  • the conductive portion 172 may be Al, Ag, TiAl, an Al alloy, or an Ag alloy. Therefore, even if the resistance of the conductive layer 212 is high to some extent, a voltage drop in the longitudinal direction (Y direction) of the conductive layer 212 can be suppressed.
  • the light emitting device 10 includes a conductive portion 174.
  • the conductive portion 174 extends in the Y direction and is connected to the conductive layer 222.
  • the conductive portion 174 functions as an auxiliary electrode for the conductive layer 222.
  • the conductive portion 174 includes a material having a conductivity higher than that of the material included in the conductive layer 222.
  • the conductive portion 174 is a metal, more specifically, MAM (Mo / Al / Mo ) Is included.
  • the conductive portion 174 may be Al, Ag, TiAl, an Al alloy, or an Ag alloy. Therefore, even if the resistance of the conductive layer 222 is high to some extent, a voltage drop in the longitudinal direction (Y direction) of the conductive layer 222 can be suppressed.
  • the conductive portion 172 is connected to the plurality of conductive portions 170, and more specifically, is integrated with the plurality of conductive portions 170.
  • the plurality of conductive portions 170, the conductive portions 172, and the conductive portions 174 can be formed in the same process.
  • the plurality of conductive portions 170, the conductive portions 172, and the conductive portions 174 include the same material as each other and have substantially the same film thickness.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

A light emitting device (10) comprises a substrate (100) and a light emitting region (150). The light emitting region (150) includes a plurality of light emitting units (152). The plurality of light emitting units (152) are arranged in a matrix along an X direction and a Y direction. Each light emitting unit (152) comprises a layered structure including a first electrode (110), an organic layer (120), and a second electrode (130). Each light emitting unit (152) has a long direction in a first direction (X direction) and a short direction in a second direction (Y direction). In particular, each light emitting unit (152) has a rectangular shape with long sides along the X direction and short sides along the Y direction.

Description

発光装置Light emitting device
 本発明は、発光装置に関する。 The present invention relates to a light emitting device.
 近年、透光性を有する有機発光ダイオード(OLED)が開発されている。特許文献1には、透光性OLEDの一例について記載されている。このOLEDは、第1電極、有機層及び複数の第2電極を備えている。第1電極及び有機層は、基板上で順に積層されている。複数の第2電極は、有機層上でストライプ状に配置されている。OLEDの外部からの光は、隣り合う第2電極の間の領域を透過することができる。これにより、OLEDは、透光性を有している。 Recently, an organic light emitting diode (OLED) having translucency has been developed. Patent Document 1 describes an example of a translucent OLED. The OLED includes a first electrode, an organic layer, and a plurality of second electrodes. The first electrode and the organic layer are sequentially stacked on the substrate. The plurality of second electrodes are arranged in stripes on the organic layer. Light from the outside of the OLED can pass through the region between the adjacent second electrodes. Thereby, OLED has translucency.
特開2015-195173号公報Japanese Patent Laying-Open No. 2015-195173
 透光性OLEDは、互いに反対側を向いた2つの面を有している。OLEDの発光領域は、これら2つの面のうちの一方の面側に位置し、発光領域から出力された光は、これら2つの面のうちのもう一方の面(発光面)から主に出力されるようになっている。しかしながら、本発明者は、発光領域から出力された光の一部が発光面の反対側へ漏れる場合があることを見出した。この知見に基づいて、本発明者は、発光領域の長手方向に沿って漏れる光の量を抑えることについて検討した。 The translucent OLED has two surfaces facing away from each other. The light emitting region of the OLED is located on one of these two surfaces, and the light output from the light emitting region is mainly output from the other surface (light emitting surface) of these two surfaces. It has become so. However, the present inventor has found that a part of the light output from the light emitting region may leak to the opposite side of the light emitting surface. Based on this finding, the present inventor has studied to suppress the amount of light leaking along the longitudinal direction of the light emitting region.
 本発明が解決しようとする課題としては、発光装置の発光面の反対側へ発光領域の長手方向に沿って漏れる光の量を抑えることが一例として挙げられる。 An example of a problem to be solved by the present invention is to suppress the amount of light leaking along the longitudinal direction of the light emitting region to the opposite side of the light emitting surface of the light emitting device.
 請求項1に記載の発明は、
 基板の第1面側に位置し、第1電極、有機層及び第2電極を含む積層構造からそれぞれがなり、第1方向に長手方向を有する複数の発光部と、
 前記複数の発光部のうち前記第1方向に沿って並ぶ第1発光部及び第2発光部の間で前記第1方向に交わる第2方向に延在し、前記第1発光部及び前記第2発光部の各々の前記第1電極と同電位である第1導電層と、
を備える発光装置である。
The invention described in claim 1
A plurality of light emitting units located on the first surface side of the substrate, each of which has a laminated structure including a first electrode, an organic layer, and a second electrode, and has a longitudinal direction in the first direction;
The first light emitting unit and the second light emitting unit extend in a second direction intersecting the first direction between the first light emitting unit and the second light emitting unit arranged along the first direction among the plurality of light emitting units. A first conductive layer having the same potential as the first electrode of each of the light emitting units;
It is a light-emitting device provided with.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
実施形態に係る発光装置を示す平面図である。It is a top view which shows the light-emitting device which concerns on embodiment. 図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 図1のB-B断面図である。FIG. 3 is a cross-sectional view taken along the line BB in FIG. 図1から図3に示した発光装置の動作の一例を説明するための図である。It is a figure for demonstrating an example of operation | movement of the light-emitting device shown in FIGS. 実施形態に係る発光システムを示す図である。It is a figure which shows the light emission system which concerns on embodiment. 図1の変形例を示す図である。It is a figure which shows the modification of FIG. 実施例1に係る発光装置を示す平面図である。1 is a plan view showing a light emitting device according to Example 1. FIG. 図7から第2電極及び絶縁層を取り除いた図である。It is the figure which removed the 2nd electrode and the insulating layer from FIG. 図7のP-P断面図である。FIG. 8 is a sectional view taken along the line PP in FIG. 7. 図7のQ-Q断面図である。It is QQ sectional drawing of FIG. 実施例2に係る発光装置を示す平面図である。6 is a plan view showing a light emitting device according to Example 2. FIG. 図11のP-P断面図である。FIG. 12 is a sectional view taken along the line PP in FIG. 11. 実施例3に係る発光装置を示す平面図である。6 is a plan view showing a light emitting device according to Example 3. FIG. 図13から第2電極及び絶縁層を取り除いた図である。It is the figure which removed the 2nd electrode and the insulating layer from FIG. 図13のQ-Q断面図である。It is QQ sectional drawing of FIG.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 図1は、実施形態に係る発光装置10を示す平面図である。図2は、図1のA-A断面図である。図3は、図1のB-B断面図である。なお、図1から図3において、X方向は、発光部152の長手方向として規定されており、Y方向は、X方向に交わる方向、具体的には、X方向に直交する方向として規定されており、特に図1に示す例では、発光部152の短手方向に沿っている。 FIG. 1 is a plan view showing a light emitting device 10 according to the embodiment. FIG. 2 is a cross-sectional view taken along the line AA in FIG. 3 is a cross-sectional view taken along the line BB of FIG. 1 to 3, the X direction is defined as the longitudinal direction of the light emitting unit 152, and the Y direction is defined as the direction intersecting the X direction, specifically, the direction orthogonal to the X direction. In particular, in the example shown in FIG.
 図1から図3を用いて、発光装置10の概要について、説明する。発光装置10は、基板100及び発光領域150を備えている。図2及び図3に示すように、基板100は、第1面102及び第2面104を有している。図1に示すように、発光領域150は、複数の発光部152を含んでいる。図1に示す例では、複数の発光部152は、X方向及びY方向に沿ってマトリクス状に並んでいる。図2及び図3に示すように、各発光部152は、基板100の第1面102側に位置しており、第1電極110、有機層120及び第2電極130を含む積層構造からなっている。発光部152から発せられた光は、基板100の第1面102に入射し、基板100の第2面104から主に出力される。このようにして、基板100の第2面104は、発光装置10の発光面として機能している。図1に示すように、各発光部152は、第1方向(X方向)に長手方向を有しており、第2方向(Y方向)に短手方向を有している。特に図1に示す例では、各発光部152は、X方向に沿った長辺及びY方向に沿った短辺を有する矩形の形状を有している。ただし、他の例において、発光部152の形状は、矩形以外の形状であってもよい。 The outline of the light emitting device 10 will be described with reference to FIGS. The light emitting device 10 includes a substrate 100 and a light emitting region 150. As shown in FIGS. 2 and 3, the substrate 100 has a first surface 102 and a second surface 104. As shown in FIG. 1, the light emitting region 150 includes a plurality of light emitting units 152. In the example illustrated in FIG. 1, the plurality of light emitting units 152 are arranged in a matrix along the X direction and the Y direction. As shown in FIGS. 2 and 3, each light emitting unit 152 is located on the first surface 102 side of the substrate 100 and has a laminated structure including the first electrode 110, the organic layer 120, and the second electrode 130. Yes. The light emitted from the light emitting unit 152 enters the first surface 102 of the substrate 100 and is mainly output from the second surface 104 of the substrate 100. In this way, the second surface 104 of the substrate 100 functions as the light emitting surface of the light emitting device 10. As shown in FIG. 1, each light emitting unit 152 has a longitudinal direction in the first direction (X direction) and a short direction in the second direction (Y direction). In particular, in the example illustrated in FIG. 1, each light emitting unit 152 has a rectangular shape having a long side along the X direction and a short side along the Y direction. However, in another example, the shape of the light emitting unit 152 may be a shape other than a rectangle.
 上述した構成においては、発光装置10の発光面(第2面104)の反対側へ発光部152の長手方向(X方向)に沿って漏れる光の量を抑えることが可能となる。具体的には、発光部152は、X方向に長手方向を有している。このような構成においては、図4を用いて後述するように、発光部152から発せられた光が基板100の第2面104で反射されて発光部152の長手方向(X方向)に沿って第2面104から第1面102に向かっても、第2電極130によってこの光の多くを遮ることができる。このため、発光装置10の発光面(第2面104)の反対側へ発光部152の長手方向(X方向)に沿って漏れる光の量を抑えることができる。 In the configuration described above, it is possible to suppress the amount of light leaking along the longitudinal direction (X direction) of the light emitting unit 152 to the side opposite to the light emitting surface (second surface 104) of the light emitting device 10. Specifically, the light emitting unit 152 has a longitudinal direction in the X direction. In such a configuration, as will be described later with reference to FIG. 4, the light emitted from the light emitting unit 152 is reflected by the second surface 104 of the substrate 100 and extends along the longitudinal direction (X direction) of the light emitting unit 152. Even from the second surface 104 toward the first surface 102, much of this light can be blocked by the second electrode 130. For this reason, the amount of light leaking along the longitudinal direction (X direction) of the light emitting unit 152 to the opposite side of the light emitting surface (second surface 104) of the light emitting device 10 can be suppressed.
 図1に示す例では、発光領域150は、X方向に沿って並ぶ複数の発光部152(例えば、図中の第1発光部152(1)、第2発光部152(2)及び第3発光部152(3))を含んでいる。X方向に沿って隣り合う発光部152は、これらの発光部152の間でY方向に沿って延在する共通の導電層から電位の供給を受けている。特に、第1発光部152(1)の第1電極110及び第2発光部152(2)の第1電極110は、第1発光部152(1)と第2発光部152(2)の間でY方向に沿って延在する第1導電層(導電層212)に電気的に接続している。このため、第1発光部152(1)の第1電極110及び第2発光部152(2)の第1電極110は、第1導電層(導電層212)と同電位となっている。さらに、第2発光部152(2)の第2電極130及び第3発光部152(3)の第2電極130は、第2発光部152(2)と第3発光部152(3)の間でY方向に沿って延伸する第2導電層(導電層222)に電気的に接続している。このため、第2発光部152(2)の第2電極130及び第3発光部152(3)の第2電極130は、第2導電層(導電層222)と同電位となっている。 In the example illustrated in FIG. 1, the light emitting region 150 includes a plurality of light emitting units 152 arranged in the X direction (for example, the first light emitting unit 152 (1), the second light emitting unit 152 (2), and the third light emitting unit in the drawing. Part 152 (3)). The light emitting units 152 adjacent along the X direction are supplied with a potential from a common conductive layer extending between the light emitting units 152 along the Y direction. In particular, the first electrode 110 of the first light emitting unit 152 (1) and the first electrode 110 of the second light emitting unit 152 (2) are located between the first light emitting unit 152 (1) and the second light emitting unit 152 (2). And electrically connected to the first conductive layer (conductive layer 212) extending along the Y direction. Therefore, the first electrode 110 of the first light emitting unit 152 (1) and the first electrode 110 of the second light emitting unit 152 (2) are at the same potential as the first conductive layer (conductive layer 212). Further, the second electrode 130 of the second light emitting unit 152 (2) and the second electrode 130 of the third light emitting unit 152 (3) are disposed between the second light emitting unit 152 (2) and the third light emitting unit 152 (3). And electrically connected to the second conductive layer (conductive layer 222) extending along the Y direction. For this reason, the second electrode 130 of the second light emitting unit 152 (2) and the second electrode 130 of the third light emitting unit 152 (3) are at the same potential as the second conductive layer (conductive layer 222).
 上述した構成においては、発光領域150の輝度分布が発光領域150の長手方向(X)方向に沿って高い均一性を有するようになる。具体的には、発光領域150は、X方向に沿って並ぶ複数の発光部152を含んでおり、X方向に沿って隣り合う発光部152は、これらの発光部152の間でY方向に沿って延在する共通の導電層から電位の供給を受けている。このような構成においては、発光部152がX方向に沿って長すぎることで生じ得る電圧降下を抑えることができ、これによって、発光領域150のX方向における輝度の不均一性を抑えることが可能となる。このため、発光領域150の輝度分布は、発光領域150の輝度分布が発光領域150の長手方向(X)方向に沿って高い均一性を有するようになる。 In the above-described configuration, the luminance distribution of the light emitting region 150 has high uniformity along the longitudinal direction (X) direction of the light emitting region 150. Specifically, the light emitting region 150 includes a plurality of light emitting units 152 arranged along the X direction, and the light emitting units 152 adjacent along the X direction extend along the Y direction between the light emitting units 152. A potential is supplied from a common conductive layer that extends. In such a configuration, it is possible to suppress a voltage drop that may occur due to the light emitting unit 152 being too long along the X direction, and thereby it is possible to suppress nonuniform brightness in the X direction of the light emitting region 150. It becomes. For this reason, the luminance distribution of the light emitting region 150 has high uniformity along the longitudinal direction (X) direction of the light emitting region 150.
 さらに、上述した構成においては、発光領域150の長手方向(X方向)に沿って並ぶ複数の発光部152のピッチを狭くすることが可能である。具体的には、X方向に沿って隣り合う発光部152は、これらの発光部152の間でY方向に沿って延在する共通の導電層から電位の供給を受けている。したがって、この導電層を設けるためのスペースを狭くすることができる。このため、発光領域150の長手方向(X方向)に沿って並ぶ複数の発光部152のピッチを狭くすることが可能である。 Furthermore, in the configuration described above, it is possible to reduce the pitch of the plurality of light emitting units 152 arranged along the longitudinal direction (X direction) of the light emitting region 150. Specifically, the light emitting units 152 adjacent along the X direction are supplied with a potential from a common conductive layer extending along the Y direction between the light emitting units 152. Therefore, the space for providing this conductive layer can be reduced. For this reason, it is possible to narrow the pitch of the plurality of light emitting units 152 arranged along the longitudinal direction (X direction) of the light emitting region 150.
 次に、図1を用いて、発光装置10の平面レイアウトの詳細について説明する。発光装置10は、基板100、発光領域150、第1タブ線210、複数の導電層212、第2タブ線220及び複数の導電層222を備えている。 Next, the details of the planar layout of the light emitting device 10 will be described with reference to FIG. The light emitting device 10 includes a substrate 100, a light emitting region 150, a first tab line 210, a plurality of conductive layers 212, a second tab line 220, and a plurality of conductive layers 222.
 基板100の形状は、一対の長辺及び一対の短辺を有する矩形である。特に、図1に示す例では、基板100の長辺はX方向に沿っており、基板100の短辺はY方向に沿っている。ただし、基板100の形状は、矩形に限定されるものではない。基板100の形状は、例えば円でもよいし、又は矩形以外の多角形であってもよい。 The shape of the substrate 100 is a rectangle having a pair of long sides and a pair of short sides. In particular, in the example shown in FIG. 1, the long side of the substrate 100 is along the X direction, and the short side of the substrate 100 is along the Y direction. However, the shape of the substrate 100 is not limited to a rectangle. The shape of the substrate 100 may be, for example, a circle or a polygon other than a rectangle.
 第1タブ線210及び第2タブ線220は、X方向に延在しており、特に図1に示す例では、基板100の一対の長辺の一方及び他方に沿ってそれぞれ延在している。一例において、第1タブ線210及び第2タブ線220は、銅を含むTAB(Tape Automated Bonding)テープである。他の例において、第1タブ線210及び第2タブ線220は、銀ペーストであってもよい。さらに他の例において、第1タブ線210及び第2タブ線220は、MAM(Mo/Al/Mo)、Al、Ag、TiAl、Al合金又はAg合金であってもよい。 The first tab line 210 and the second tab line 220 extend in the X direction, and particularly in the example shown in FIG. 1, extend along one and the other of the pair of long sides of the substrate 100. . In one example, the first tab line 210 and the second tab line 220 are TAB (Tape Automated Bonding) tape containing copper. In another example, the first tab line 210 and the second tab line 220 may be silver paste. In still another example, the first tab wire 210 and the second tab wire 220 may be MAM (Mo / Al / Mo), Al, Ag, TiAl, Al alloy, or Ag alloy.
 複数の導電層212及び複数の導電層222は、それぞれ、第1タブ線210及び第2タブ線220に接続している。複数の導電層212及び複数の導電層222は、Y方向に延在している。より具体的には、複数の導電層212は、第1タブ線210から第2タブ線220に向かって延在しており、導電層222は、第2タブ線220から第1タブ線210に向かって延在している。複数の導電層212及び複数の導電層222は、X方向に沿って交互に並んでいる。 The plurality of conductive layers 212 and the plurality of conductive layers 222 are connected to the first tab line 210 and the second tab line 220, respectively. The plurality of conductive layers 212 and the plurality of conductive layers 222 extend in the Y direction. More specifically, the plurality of conductive layers 212 extend from the first tab line 210 toward the second tab line 220, and the conductive layer 222 extends from the second tab line 220 to the first tab line 210. It extends towards. The plurality of conductive layers 212 and the plurality of conductive layers 222 are alternately arranged along the X direction.
 発光領域150は、X方向及びY方向に沿ってマトリクス状に並ぶ複数の発光部152を含んでいる。特に図1に示す例では、複数の発光部152は、複数の群Gに分類することができ、各郡Gは、Y方向に沿って並ぶ複数の発光部152を含んでいる。各郡G内の複数の発光部152は、隣り合う導電層212と導電層222の間に位置しており、隣り合う導電層212と導電層222の間で電気的に並列に接続している。より具体的には、各郡G内の各発光部152の第1電極110及び第2電極130は、それぞれ、導電層212及び導電層222に電気的に接続している。例えば図1では、第1発光部152(1)及び第4発光部152(4)がY方向に沿って並び、第1発光部152(1)及び第4発光部152(4)の各々の第1電極110及び第2電極130が導電層212及び導電層222に電気的に接続している。したがって、各郡G内の各発光部152の第1電極110は、第1タブ線210及び導電層212を介して電位の供給を受けることができ、各郡G内の各発光部152の第2電極130は、第2タブ線220及び導電層222を介して電位の供給を受けることができる。 The light emitting region 150 includes a plurality of light emitting units 152 arranged in a matrix along the X direction and the Y direction. In particular, in the example illustrated in FIG. 1, the plurality of light emitting units 152 can be classified into a plurality of groups G, and each group G includes a plurality of light emitting units 152 arranged in the Y direction. The plurality of light emitting portions 152 in each group G are located between the adjacent conductive layers 212 and 222, and are electrically connected in parallel between the adjacent conductive layers 212 and 222. . More specifically, the first electrode 110 and the second electrode 130 of each light emitting unit 152 in each group G are electrically connected to the conductive layer 212 and the conductive layer 222, respectively. For example, in FIG. 1, the first light emitting unit 152 (1) and the fourth light emitting unit 152 (4) are arranged along the Y direction, and each of the first light emitting unit 152 (1) and the fourth light emitting unit 152 (4) is arranged. The first electrode 110 and the second electrode 130 are electrically connected to the conductive layer 212 and the conductive layer 222. Therefore, the first electrode 110 of each light emitting unit 152 in each group G can be supplied with a potential via the first tab wire 210 and the conductive layer 212, and the first electrode of each light emitting unit 152 in each group G can be supplied. The two electrodes 130 can be supplied with a potential through the second tab wire 220 and the conductive layer 222.
 次に、図2及び図3を用いて、発光装置10の断面構造について説明する。発光装置10は、基板100及び複数の発光素子140を備えている。基板100は、第1面102及び第2面104を有している。複数の発光素子140は、基板100の第1面102上に位置している。各発光素子140は、基板100の第1面102から第1電極110、有機層120及び第2電極130を順に有している。第2面104は、第1面102の反対側にある。 Next, a cross-sectional structure of the light emitting device 10 will be described with reference to FIGS. The light emitting device 10 includes a substrate 100 and a plurality of light emitting elements 140. The substrate 100 has a first surface 102 and a second surface 104. The plurality of light emitting elements 140 are located on the first surface 102 of the substrate 100. Each light emitting element 140 includes a first electrode 110, an organic layer 120, and a second electrode 130 in order from the first surface 102 of the substrate 100. The second surface 104 is on the opposite side of the first surface 102.
 基板100は、透光性を有している。一例において、基板100は、ガラスを含んでいる。他の例において、基板100は、樹脂を含んでいてもよい。 The substrate 100 has translucency. In one example, the substrate 100 includes glass. In another example, the substrate 100 may include a resin.
 第1電極110は、透光性及び導電性を有している。具体的には、第1電極110は透光性及び導電性を有する材料を含んでおり、無機材料、例えば金属酸化物、具体的には例えば、ITO(Indium Tin Oxide)及びIZO(Indium Zinc Oxide)からなる群から選択される少なくとも1つを含んでいる。このため、有機層120からの光は、第1電極110を透過することができる。 The first electrode 110 has translucency and conductivity. Specifically, the first electrode 110 includes a material having translucency and conductivity, and an inorganic material, for example, a metal oxide, specifically, for example, ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide). At least one selected from the group consisting of: For this reason, the light from the organic layer 120 can pass through the first electrode 110.
 有機層120は、一例において、正孔注入層(HIL)、正孔輸送層(HTL)、発光層(EML)、電子輸送層(ETL)及び電子注入層(EIL)を含んでいる。EMLは、有機エレクトロルミネッセンスにより光を発することができ、特に上述した例では、HIL及びHTLを介して第1電極110から注入された正孔とEIL及びETLを介して第2電極130から注入された電子の再結合によって光を発することができる。 In one example, the organic layer 120 includes a hole injection layer (HIL), a hole transport layer (HTL), a light emitting layer (EML), an electron transport layer (ETL), and an electron injection layer (EIL). The EML can emit light by organic electroluminescence. In particular, in the above-described example, holes injected from the first electrode 110 via the HIL and HTL and injected from the second electrode 130 via the EIL and ETL. Light can be emitted by recombination of electrons.
 第2電極130は、遮光性、より具体的には光反射性を有し、さらに、導電性を有している。具体的には、第2電極130は、光反射性及び導電性を有する材料を含んでおり、例えば金属、具体的には例えば、Al、Ag及びMgAgの少なくとも1つを含んでいる。このため、有機層120からの光は、第2電極130をほとんど透過することなく、第2電極130で反射される。 The second electrode 130 has a light shielding property, more specifically, a light reflecting property, and further has conductivity. Specifically, the second electrode 130 includes a material having light reflectivity and conductivity, and includes, for example, a metal, specifically, for example, at least one of Al, Ag, and MgAg. For this reason, the light from the organic layer 120 is reflected by the second electrode 130 with hardly passing through the second electrode 130.
 発光装置10は、複数の発光部152及び複数の透光部154を備えている。図2に示す例では、複数の発光素子140のそれぞれが複数の発光部152のそれぞれとして機能している。複数の透光部154のそれぞれは、隣り合う発光部152の間にそれぞれ位置しており、遮光部材、具体的には第2電極130と重なっていない。特に図2に示す例では、複数の発光部152及び複数の透光部154がY方向に沿って交互に並んでいる。 The light emitting device 10 includes a plurality of light emitting units 152 and a plurality of light transmitting units 154. In the example illustrated in FIG. 2, each of the plurality of light emitting elements 140 functions as each of the plurality of light emitting units 152. Each of the plurality of light transmitting portions 154 is located between the adjacent light emitting portions 152 and does not overlap the light shielding member, specifically, the second electrode 130. In particular, in the example illustrated in FIG. 2, the plurality of light emitting units 152 and the plurality of light transmitting units 154 are alternately arranged along the Y direction.
 発光装置10は、複数の発光部152及び複数の透光部154によって、半透過OLEDとして機能している。複数の発光部152から光が発せられていない場合、人間の視覚では、複数の透光部154によって、第1面102側の物体が第2面104側から透けて見え、第2面104側の物体が第1面102側から透けて見える。さらに、複数の発光部152からの光は、第2面104側から主に出力され、第1面102側からはほとんど出力されない。複数の発光部152から光が発せられている場合、人間の視覚では、複数の透光部154によって、第2面104側の物体が第1面102側から透けて見える。 The light emitting device 10 functions as a semi-transmissive OLED by a plurality of light emitting units 152 and a plurality of light transmitting units 154. When light is not emitted from the plurality of light emitting units 152, an object on the first surface 102 side can be seen through the second surface 104 side by the plurality of light transmitting units 154 and the second surface 104 side. Can be seen through from the first surface 102 side. Furthermore, light from the plurality of light emitting units 152 is mainly output from the second surface 104 side, and is hardly output from the first surface 102 side. When light is emitted from the plurality of light emitting units 152, an object on the second surface 104 side can be seen through the first surface 102 side by the plurality of light transmitting units 154 in human vision.
 図4は、図1から図3に示した発光装置10の動作の一例を説明するための図であり、図2に対応する。 FIG. 4 is a diagram for explaining an example of the operation of the light emitting device 10 shown in FIGS. 1 to 3, and corresponds to FIG.
 図4に示すように、発光部152から発せられた光は、基板100の第1面102に入射し、基板100を透過する。図4に示す例では、発光部152の長手方向(X方向)に沿って、この光は、基板100を透過している。フレネル反射によって、この光の一部は、基板100の第2面104で反射し、この光の他の一部は、基板100の第2面104から出射される。基板100の第2面104で反射した光は、発光装置10の発光面(第2面104)の反対側に漏れる光となり得る。しかしながら、図4に示す例では、発光部152の長手方向(X)方向に沿って第2電極130が延在しており、基板100の第2面104で反射した光を第2電極130によって遮ることができる。このため、発光装置10の発光面(第2面104)の反対側へ発光部152の長手方向(X方向)に沿って漏れる光の量を抑えることができる。 As shown in FIG. 4, the light emitted from the light emitting unit 152 is incident on the first surface 102 of the substrate 100 and passes through the substrate 100. In the example shown in FIG. 4, the light passes through the substrate 100 along the longitudinal direction (X direction) of the light emitting unit 152. Due to Fresnel reflection, a part of this light is reflected by the second surface 104 of the substrate 100, and another part of this light is emitted from the second surface 104 of the substrate 100. The light reflected by the second surface 104 of the substrate 100 can be light that leaks to the opposite side of the light emitting surface (second surface 104) of the light emitting device 10. However, in the example shown in FIG. 4, the second electrode 130 extends along the longitudinal direction (X) direction of the light emitting unit 152, and the light reflected by the second surface 104 of the substrate 100 is reflected by the second electrode 130. Can be blocked. For this reason, the amount of light leaking along the longitudinal direction (X direction) of the light emitting unit 152 to the opposite side of the light emitting surface (second surface 104) of the light emitting device 10 can be suppressed.
 図5は、本実施形態に係る発光システム20を示す図である。発光システム20は、発光装置10及び第1位置P1を備えている。図5に示す発光装置10は、図1から図3に示した発光装置10と同様である。 FIG. 5 is a diagram showing the light emitting system 20 according to the present embodiment. The light emitting system 20 includes the light emitting device 10 and the first position P1. The light emitting device 10 shown in FIG. 5 is the same as the light emitting device 10 shown in FIGS. 1 to 3.
 第1位置P1は、基板100の第1面102側に位置している。特に図5に示す例では、第1位置P1は、直線L1(すなわち、発光領域150の長手方向(X方向)における中心Cを通り基板100の第1面102に直交する直線)からずれて位置している。 The first position P1 is located on the first surface 102 side of the substrate 100. In particular, in the example illustrated in FIG. 5, the first position P1 is shifted from the straight line L1 (that is, a straight line passing through the center C in the longitudinal direction (X direction) of the light emitting region 150 and orthogonal to the first surface 102 of the substrate 100). is doing.
 上述したように、図1から図3に示した構成においては、発光装置10の発光面(第2面104)の反対側へ発光部152の長手方向(X方向)に沿って漏れる光の量を抑えることが可能となる。したがって、図5に示す例では、複数の発光部152から第1位置P1に向けて漏れる光の量を抑えることができる。 As described above, in the configuration shown in FIGS. 1 to 3, the amount of light leaking along the longitudinal direction (X direction) of the light emitting unit 152 to the opposite side of the light emitting surface (second surface 104) of the light emitting device 10. Can be suppressed. Therefore, in the example illustrated in FIG. 5, the amount of light leaking from the plurality of light emitting units 152 toward the first position P1 can be suppressed.
 一例において、発光システム20は、自動車に用いることができる。この例において、発光装置10は、自動車の後部、具体的には、リアウインドウに取り付けられる標識灯(例えば、ハイマウントストップランプ)であり、第1位置P1は、自動車の運転席である。この例においては、X方向は、自動車の幅方向に沿い、基板100の第1面102は、自動車の内側を向き、基板100の第2面104は、自動車の外側を向く。この例においては、複数の発光部152から第1位置P1(つまり、運転席)に向けて漏れる光の量を抑えることができる。この例においては、第1位置P1(つまり、運転席)に運転手がいるとき、複数の発光部152から運転手の目の動線方向であるX方向への光の量を抑えることができる。 In one example, the light emitting system 20 can be used in an automobile. In this example, the light-emitting device 10 is a sign lamp (for example, a high-mount stop lamp) attached to the rear part of an automobile, specifically, a rear window, and the first position P1 is a driver's seat of the automobile. In this example, the X direction is along the width direction of the automobile, the first surface 102 of the substrate 100 faces the inside of the automobile, and the second surface 104 of the substrate 100 faces the outside of the automobile. In this example, the amount of light leaking from the plurality of light emitting units 152 toward the first position P1 (that is, the driver's seat) can be suppressed. In this example, when the driver is in the first position P1 (that is, the driver's seat), the amount of light from the plurality of light emitting units 152 in the X direction, which is the direction of the driver's eyes, can be suppressed. .
 以上、本実施形態によれば、発光装置10の発光面(第2面104)の反対側へ発光部152の長手方向(X方向)に沿って漏れる光の量を抑えることが可能となる。 As described above, according to the present embodiment, it is possible to suppress the amount of light leaking along the longitudinal direction (X direction) of the light emitting unit 152 to the side opposite to the light emitting surface (second surface 104) of the light emitting device 10.
 図6は、図1の変形例を示す図である。図6に示すように、第1タブ線210及び第2タブ線220の双方が発光領域150の片側に位置していてもよい。特に図6に示す例では、第2タブ線220は、第1タブ線210より外側に位置しており、複数の導電層222は、第1タブ線210と交差している。各導電層222は、導電層222と第1タブ線210が交差している領域において、絶縁層226によって覆われており、第1タブ線210は、絶縁層226の上方の領域を経由してX方向に延在している。すなわち、絶縁層226によって、導電層222と第1タブ線210の直接接触、すなわち導電層222と第1タブ線210の短絡が防止されている。 FIG. 6 is a diagram showing a modification of FIG. As shown in FIG. 6, both the first tab line 210 and the second tab line 220 may be located on one side of the light emitting region 150. In particular, in the example illustrated in FIG. 6, the second tab line 220 is located outside the first tab line 210, and the plurality of conductive layers 222 intersect the first tab line 210. Each conductive layer 222 is covered with an insulating layer 226 in a region where the conductive layer 222 and the first tab line 210 intersect, and the first tab line 210 passes through a region above the insulating layer 226. It extends in the X direction. That is, the insulating layer 226 prevents direct contact between the conductive layer 222 and the first tab wire 210, that is, short circuit between the conductive layer 222 and the first tab wire 210.
(実施例1)
 図7は、実施例1に係る発光装置10を示す平面図である。図8は、図7から第2電極130及び絶縁層160を取り除いた図である。図9は、図7のP-P断面図である。図10は、図7のQ-Q断面図である。説明のため、図7及び図8からは、図10に示した有機層120を取り除いている。図7は、図1の一部の詳細、すなわち、Y方向に沿って並ぶ複数の発光素子140の詳細を示している。
Example 1
FIG. 7 is a plan view illustrating the light emitting device 10 according to the first embodiment. FIG. 8 is a view in which the second electrode 130 and the insulating layer 160 are removed from FIG. 7. 9 is a cross-sectional view taken along the line PP in FIG. 10 is a cross-sectional view taken along the line QQ in FIG. For the sake of explanation, the organic layer 120 shown in FIG. 10 is removed from FIGS. FIG. 7 shows details of a part of FIG. 1, that is, details of a plurality of light emitting elements 140 arranged in the Y direction.
 図7から図9に示す発光装置10は、図1から図3に示した発光装置10と同様の構成を有している。つまり、発光部152は、X方向に長手方向を有している。このような構成においては、発光装置10の発光面(第2面104)の反対側へ発光部152の長手方向(X方向)に沿って漏れる光の量を抑えることが可能となる。 The light-emitting device 10 shown in FIGS. 7 to 9 has the same configuration as the light-emitting device 10 shown in FIGS. That is, the light emitting unit 152 has a longitudinal direction in the X direction. In such a configuration, it is possible to suppress the amount of light that leaks along the longitudinal direction (X direction) of the light emitting unit 152 to the side opposite to the light emitting surface (second surface 104) of the light emitting device 10.
 図7及び図8を用いて、発光装置10の平面レイアウトの詳細について説明する。発光装置10は、複数の第1電極110、複数の第2電極130、複数の絶縁層160、導電層212、複数の導電層214、導電層222及び複数の導電層224を備えている。 The details of the planar layout of the light emitting device 10 will be described with reference to FIGS. The light emitting device 10 includes a plurality of first electrodes 110, a plurality of second electrodes 130, a plurality of insulating layers 160, a conductive layer 212, a plurality of conductive layers 214, a conductive layer 222, and a plurality of conductive layers 224.
 導電層212及び導電層214は、X方向に沿って並んでおり、Y方向に延在している。図1を用いて説明したように、導電層212及び導電層214は、それぞれ、第1タブ線210及び第2タブ線220に電気的に接続している。したがって、導電層212を介して第1タブ線210の電位を複数の第1電極110に供給することができ、導電層222を介して第2タブ線220の電位を複数の第2電極130に供給することができる。 The conductive layer 212 and the conductive layer 214 are arranged along the X direction and extend in the Y direction. As described with reference to FIG. 1, the conductive layer 212 and the conductive layer 214 are electrically connected to the first tab line 210 and the second tab line 220, respectively. Accordingly, the potential of the first tab line 210 can be supplied to the plurality of first electrodes 110 through the conductive layer 212, and the potential of the second tab line 220 can be supplied to the plurality of second electrodes 130 through the conductive layer 222. Can be supplied.
 複数の第1電極110は、Y方向に沿って並んでいる。各第1電極110は、X方向に延在しており、言い換えると、X方向に長手方向を有している。複数の第1電極110のそれぞれは、複数の導電層214のそれぞれを介して導電層212に接続している。特に図8に示す例では、複数の第1電極110、複数の導電層214及び導電層212は、一体となっている。つまり、複数の第1電極110、複数の導電層214及び導電層212は、同一工程で形成されており、このため、互いに同一の材料を含み、かつ互いに実質的に等しい膜厚を有している。 The plurality of first electrodes 110 are arranged along the Y direction. Each first electrode 110 extends in the X direction, in other words, has a longitudinal direction in the X direction. Each of the plurality of first electrodes 110 is connected to the conductive layer 212 via each of the plurality of conductive layers 214. In particular, in the example illustrated in FIG. 8, the plurality of first electrodes 110, the plurality of conductive layers 214, and the conductive layer 212 are integrated. That is, the plurality of first electrodes 110, the plurality of conductive layers 214, and the conductive layers 212 are formed in the same process, and thus include the same material and have substantially the same film thickness. Yes.
 複数の第2電極130は、Y方向に沿って並んでいる。各第2電極130は、X方向に延在しており、言い換えると、X方向に長手方向を有している。複数の第2電極130のそれぞれは、複数の第1電極110のそれぞれと重なっている。さらに、複数の第2電極130のそれぞれは、複数の導電層224を介して導電層222に接続している。特に図8に示す例では、複数の導電層224及び導電層222は、一体となっている。つまり、複数の導電層224及び導電層222は、同一工程で形成されており、このため、互いに同一の材料を含み、かつ互いに実質的に等しい膜厚を有している。 The plurality of second electrodes 130 are arranged along the Y direction. Each second electrode 130 extends in the X direction, in other words, has a longitudinal direction in the X direction. Each of the plurality of second electrodes 130 overlaps each of the plurality of first electrodes 110. Further, each of the plurality of second electrodes 130 is connected to the conductive layer 222 through the plurality of conductive layers 224. In particular, in the example illustrated in FIG. 8, the plurality of conductive layers 224 and the conductive layers 222 are integrated. In other words, the plurality of conductive layers 224 and the conductive layers 222 are formed in the same process, and thus include the same material and have substantially the same thickness.
 一例において、複数の第1電極110、複数の導電層214、導電層212、複数の導電層224及び導電層222は、同一工程で形成されていてもよい。この例において、複数の第1電極110、複数の導電層214、導電層212、複数の導電層224及び導電層222は、互いに同一の材料を含み、かつ互いに実質的に等しい膜厚を有するようになる。さらに、この例においては、発光装置10の製造プロセスの工程の数を少なくすることができる。 In one example, the plurality of first electrodes 110, the plurality of conductive layers 214, the conductive layer 212, the plurality of conductive layers 224, and the conductive layer 222 may be formed in the same process. In this example, the plurality of first electrodes 110, the plurality of conductive layers 214, the conductive layer 212, the plurality of conductive layers 224, and the conductive layer 222 include the same material and have substantially the same film thickness. become. Furthermore, in this example, the number of manufacturing process steps of the light emitting device 10 can be reduced.
 複数の絶縁層160のそれぞれは、複数の第1電極110のそれぞれと重なっている。各絶縁層160は、開口162を有している。開口162は、X方向に延在しており、言い換えると、X方向に長手方向を有している。図9及び図10を用いて後述するように、開口162によって発光部152が画定される。つまり、発光部152の形状は、絶縁層160の形状によって決定されている。したがって、開口162がX方向に長手方向を有することによって、発光部152もX方向に長手方向を有するようになる。 Each of the plurality of insulating layers 160 overlaps each of the plurality of first electrodes 110. Each insulating layer 160 has an opening 162. The opening 162 extends in the X direction, in other words, has a longitudinal direction in the X direction. As will be described later with reference to FIGS. 9 and 10, the light emitting portion 152 is defined by the opening 162. That is, the shape of the light emitting portion 152 is determined by the shape of the insulating layer 160. Therefore, when the opening 162 has the longitudinal direction in the X direction, the light emitting unit 152 also has the longitudinal direction in the X direction.
 次に、図9を用いて、発光装置10の長手方向(X方向)に沿った断面構造の詳細について説明する。発光装置10は、基板100及び発光素子140を備えている。 Next, the details of the cross-sectional structure along the longitudinal direction (X direction) of the light emitting device 10 will be described with reference to FIG. The light emitting device 10 includes a substrate 100 and a light emitting element 140.
 発光素子140は、第1電極110、有機層120及び第2電極130を有している。発光素子140は、発光部152を絶縁層160の開口162内に有している。発光部152は、第1電極110、有機層120及び第2電極130を含む積層構造からなっている。 The light emitting element 140 includes a first electrode 110, an organic layer 120, and a second electrode 130. The light emitting element 140 has a light emitting portion 152 in the opening 162 of the insulating layer 160. The light emitting unit 152 has a stacked structure including the first electrode 110, the organic layer 120, and the second electrode 130.
 第1電極110(導電層212)は、絶縁層160の下方の領域を経由して、絶縁層160の外側に延在している。このようにして、第1電極110は、導電層214に接続している。 The first electrode 110 (conductive layer 212) extends to the outside of the insulating layer 160 via a region below the insulating layer 160. In this way, the first electrode 110 is connected to the conductive layer 214.
 第2電極130は、絶縁層160の上方の領域を経由して、絶縁層160の外側に延在している。このようにして、絶縁層160は、導電層224及び導電層222に接続している。 The second electrode 130 extends to the outside of the insulating layer 160 via a region above the insulating layer 160. In this way, the insulating layer 160 is connected to the conductive layer 224 and the conductive layer 222.
 次に、図10を用いて、発光装置10の短手方向(Y方向)に沿った断面構造の詳細について説明する。 Next, the details of the cross-sectional structure along the short direction (Y direction) of the light emitting device 10 will be described with reference to FIG.
 発光装置10は、複数の発光部152及び複数の透光部154を備えている。図10に示す例では、発光部152は、第1電極110、有機層120及び第2電極130を含む積層構造からなっている。具体的には、発光装置10は、複数の発光素子140を備えている。各発光素子140は、第1電極110、有機層120及び第2電極130を有している。第1電極110、有機層120及び第2電極130は、絶縁層160の開口162内で積層されており、発光部152として機能している。複数の透光部154のそれぞれは、隣り合う発光部152の間にそれぞれ位置しており、遮光部材、具体的には第2電極130と重なっていない。特に図10に示す例では、複数の発光部152及び複数の透光部154がY方向に沿って交互に並んでいる。 The light emitting device 10 includes a plurality of light emitting units 152 and a plurality of light transmitting units 154. In the example illustrated in FIG. 10, the light emitting unit 152 has a stacked structure including the first electrode 110, the organic layer 120, and the second electrode 130. Specifically, the light emitting device 10 includes a plurality of light emitting elements 140. Each light emitting element 140 includes a first electrode 110, an organic layer 120, and a second electrode 130. The first electrode 110, the organic layer 120, and the second electrode 130 are stacked in the opening 162 of the insulating layer 160 and function as the light emitting unit 152. Each of the plurality of light transmitting portions 154 is located between the adjacent light emitting portions 152 and does not overlap the light shielding member, specifically, the second electrode 130. In particular, in the example illustrated in FIG. 10, the plurality of light emitting units 152 and the plurality of light transmitting units 154 are alternately arranged along the Y direction.
 第1電極110は、透光性及び導電性を有している。具体的には、第1電極110は透光性及び導電性を有する材料を含んでおり、無機材料、例えば金属酸化物、具体的には例えば、ITO(Indium Tin Oxide)及びIZO(Indium Zinc Oxide)からなる群から選択される少なくとも1つを含んでいる。このため、有機層120からの光は、第1電極110を透過することができる。 The first electrode 110 has translucency and conductivity. Specifically, the first electrode 110 includes a material having translucency and conductivity, and an inorganic material, for example, a metal oxide, specifically, for example, ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide). At least one selected from the group consisting of: For this reason, the light from the organic layer 120 can pass through the first electrode 110.
 有機層120は、一例において、正孔注入層(HIL)、正孔輸送層(HTL)、発光層(EML)、電子輸送層(ETL)及び電子注入層(EIL)を含んでいる。EMLは、有機エレクトロルミネッセンスにより光を発することができ、特に上述した例では、HIL及びHTLを介して第1電極110から注入された正孔とEIL及びETLを介して第2電極130から注入された電子の再結合によって光を発することができる。 In one example, the organic layer 120 includes a hole injection layer (HIL), a hole transport layer (HTL), a light emitting layer (EML), an electron transport layer (ETL), and an electron injection layer (EIL). The EML can emit light by organic electroluminescence. In particular, in the above-described example, holes injected from the first electrode 110 via the HIL and HTL and injected from the second electrode 130 via the EIL and ETL. Light can be emitted by recombination of electrons.
 図10に示す例では、有機層120は、複数の発光部152及び複数の透光部154に亘って広がっており、特に、隣り合う発光部152の間で、基板100の第1面102を覆っている。ただし、他の例では、複数の発光素子140のそれぞれに複数の有機層120のそれぞれが設けられていてもよい。 In the example illustrated in FIG. 10, the organic layer 120 extends over the plurality of light emitting units 152 and the plurality of light transmitting units 154, and in particular, the first surface 102 of the substrate 100 is disposed between the adjacent light emitting units 152. Covering. However, in another example, each of the plurality of organic layers 120 may be provided in each of the plurality of light emitting elements 140.
 第2電極130は、遮光性、より具体的には光反射性を有し、さらに、導電性を有している。具体的には、第2電極130は、光反射性及び導電性を有する材料を含んでおり、例えば金属、具体的には例えば、Al、Ag及びMgAgの少なくとも1つを含んでいる。このため、有機層120からの光は、第2電極130をほとんど透過することなく、第2電極130で反射される。 The second electrode 130 has a light shielding property, more specifically, a light reflecting property, and further has conductivity. Specifically, the second electrode 130 includes a material having light reflectivity and conductivity, and includes, for example, a metal, specifically, for example, at least one of Al, Ag, and MgAg. For this reason, the light from the organic layer 120 is reflected by the second electrode 130 with hardly passing through the second electrode 130.
 絶縁層160は、一例において、有機絶縁材料、具体的には例えばポリイミドを含んでおり、他の例において、無機絶縁材料、具体的には例えば、シリコン酸化物(SiO)、シリコン酸窒化物(SiON)又はシリコン窒化物(SiN)を含んでいる。特に図10に示す例では、絶縁層160は、透光性を有している。したがって、発光装置10の外部からの光は、絶縁層160を透過することができる。ただし、他の例において、絶縁層160は、遮光性を有していてもよい。 The insulating layer 160 includes an organic insulating material, specifically, for example, polyimide in one example, and in another example, an inorganic insulating material, specifically, for example, silicon oxide (SiO x ), silicon oxynitride. (SiON) or silicon nitride (SiN x ). In particular, in the example illustrated in FIG. 10, the insulating layer 160 has a light-transmitting property. Therefore, light from the outside of the light emitting device 10 can pass through the insulating layer 160. However, in another example, the insulating layer 160 may have a light shielding property.
 第2電極130は端部130a及び端部130bを有し、絶縁層160は端部160a及び端部160bを有している。端部130a及び端部160aは、互いに同じ方向を向いている。端部130b及び端部160bは、互いに同じ方向を向いており、それぞれ、端部130a及び端部160aの反対側にある。 The second electrode 130 has an end portion 130a and an end portion 130b, and the insulating layer 160 has an end portion 160a and an end portion 160b. The end portion 130a and the end portion 160a face the same direction. The end portion 130b and the end portion 160b face the same direction, and are on opposite sides of the end portion 130a and the end portion 160a, respectively.
 第1面102に垂直な方向から見た場合、基板100の第1面102は、複数の領域102a、複数の領域102b複数の領域102cを有している。複数の領域102aのそれぞれは、第2電極130の端部130aと重なる位置から端部130bと重なる位置まで広がっている。複数の領域102bのそれぞれは、第2電極130の端部130aと重なる位置から絶縁層160の端部160aと重なる位置まで(又は第2電極130の端部130bと重なる位置から絶縁層160の端部160bと重なる位置まで)広がっている。複数の領域102cのそれぞれは、互いに隣接する2つの絶縁層160のうちの一方の絶縁層160の端部160aと重なる位置から他方の絶縁層160の端部160bと重なる位置まで広がっている。 When viewed from a direction perpendicular to the first surface 102, the first surface 102 of the substrate 100 has a plurality of regions 102a, a plurality of regions 102b, and a plurality of regions 102c. Each of the plurality of regions 102a extends from a position overlapping the end portion 130a of the second electrode 130 to a position overlapping the end portion 130b. Each of the plurality of regions 102b extends from a position overlapping the end portion 130a of the second electrode 130 to a position overlapping the end portion 160a of the insulating layer 160 (or from a position overlapping the end portion 130b of the second electrode 130 to the end of the insulating layer 160. (Up to a position overlapping the portion 160b). Each of the plurality of regions 102c extends from a position overlapping one end 160a of one insulating layer 160 of two adjacent insulating layers 160 to a position overlapping the end 160b of the other insulating layer 160.
 領域102aは、第2電極130と重なっており、このため、発光装置10は、領域102a、領域102b及び領域102cと重なる領域のうち、領域102aと重なる領域で最も低い光線透過率を有している。領域102cは、第2電極130及び絶縁層160のいずれとも重なっておらず、このため、発光装置10は、領域102a、領域102b及び領域102cと重なる領域のうち、領域102cと重なる領域で最も高い光線透過率を有している。領域102bは、第2電極130と重ならず絶縁層160と重なっており、このため、発光装置10は、領域102bと重なる領域においては、領域102aと重なる領域における光線透過率よりも高く、かつ領域102cと重なる領域における光線透過率よりも低い光線透過率を有している。 The region 102a overlaps with the second electrode 130. Therefore, the light emitting device 10 has the lowest light transmittance in the region overlapping with the region 102a among the regions overlapping with the region 102a, the region 102b, and the region 102c. Yes. The region 102c does not overlap with any of the second electrode 130 and the insulating layer 160; for this reason, the light-emitting device 10 has the highest region overlapping with the region 102c among regions overlapping with the regions 102a, 102b, and 102c. It has light transmittance. The region 102b does not overlap the second electrode 130 but overlaps the insulating layer 160. Therefore, in the region overlapping the region 102b, the light emitting device 10 has higher light transmittance in the region overlapping the region 102a, and The light transmittance is lower than the light transmittance in a region overlapping with the region 102c.
 上述した構成においては、発光装置10の全体としての光線透過率が高いものとなっている。詳細には、光線透過率の高い領域の幅、すなわち、領域102cの幅d3が広くなっており、具体的には、領域102cの幅d3は、領域102bの幅d2よりも広くなっている(d3>d2)。このようにして、発光装置10の全体としての光線透過率は、高いものとなっている。 In the configuration described above, the light transmittance of the light emitting device 10 as a whole is high. Specifically, the width of the region having a high light transmittance, that is, the width d3 of the region 102c is widened. Specifically, the width d3 of the region 102c is wider than the width d2 of the region 102b ( d3> d2). In this way, the light transmittance of the light emitting device 10 as a whole is high.
 上述した構成においては、発光装置10が特定の波長の光を多く吸収することが防止されている。詳細には、光が絶縁層160を透過する領域の幅、すなわち、領域102bの幅d2が狭くなっており、具体的には、領域102bの幅d2は、領域102cの幅d3よりも狭くなっている(d2<d3)。絶縁層160は、特定の波長の光を吸収することがある。このような場合においても、上述した構成においては、絶縁層160を透過する光の量を少なくすることができる。このようにして、発光装置10が特定の波長の光を多く吸収することが防止されている。 In the configuration described above, the light emitting device 10 is prevented from absorbing much light of a specific wavelength. Specifically, the width of the region where light is transmitted through the insulating layer 160, that is, the width d2 of the region 102b is narrower. Specifically, the width d2 of the region 102b is narrower than the width d3 of the region 102c. (D2 <d3). The insulating layer 160 may absorb light having a specific wavelength. Even in such a case, the amount of light transmitted through the insulating layer 160 can be reduced in the above-described configuration. In this way, the light emitting device 10 is prevented from absorbing much light of a specific wavelength.
 なお、領域102cの幅d3は、領域102aの幅d1よりも広くてもよいし(d3>d1)、領域102aの幅d1よりも狭くてもよいし(d3<d1)、又は領域102aの幅d1と等しくてもよい(d3=d1)。 Note that the width d3 of the region 102c may be wider than the width d1 of the region 102a (d3> d1), may be narrower than the width d1 of the region 102a (d3 <d1), or the width of the region 102a. It may be equal to d1 (d3 = d1).
 一例において、領域102aの幅d1に対する領域102bの幅d2の比d2/d1は、0以上0.2以下であり(0≦d2/d1≦0.2)、領域102aの幅d1に対する領域102cの幅d3の比d3/d1は、0.3以上2以下である(0.3≦d3/d1≦2)。より具体的には、一例において、領域102aの幅d1は、50μm以上500μm以下であり、領域102bの幅d2は、0μm以上100μm以下であり、領域102cの幅d3は、15μm以上1000μm以下である。 In one example, the ratio d2 / d1 of the width d2 of the region 102b to the width d1 of the region 102a is 0 or more and 0.2 or less (0 ≦ d2 / d1 ≦ 0.2), and the ratio of the region 102c to the width d1 of the region 102a is The ratio d3 / d1 of the width d3 is not less than 0.3 and not more than 2 (0.3 ≦ d3 / d1 ≦ 2). More specifically, in one example, the width d1 of the region 102a is 50 μm or more and 500 μm or less, the width d2 of the region 102b is 0 μm or more and 100 μm or less, and the width d3 of the region 102c is 15 μm or more and 1000 μm or less. .
 次に、図7から図10に示した発光装置10の製造方法の一例について説明する。 Next, an example of a method for manufacturing the light emitting device 10 shown in FIGS. 7 to 10 will be described.
 まず、基板100の第1面102上に、第1電極110、導電層212、導電層214、導電層222及び導電層224を形成する。第1電極110、導電層212、導電層214、導電層222及び導電層224は、共通の導電層をパターニングすることによって形成される。つまり、第1電極110、導電層212、導電層214、導電層222及び導電層224は、同一工程で形成される。この方法において、導電層212、導電層214、導電層222及び導電層224は、互いに同一の材料を含み、かつ互いに実質的に等しい膜厚を有するようになる。さらに、この方法においては、発光装置10の製造プロセスの工程の数を少なくすることができる。 First, the first electrode 110, the conductive layer 212, the conductive layer 214, the conductive layer 222, and the conductive layer 224 are formed on the first surface 102 of the substrate 100. The first electrode 110, the conductive layer 212, the conductive layer 214, the conductive layer 222, and the conductive layer 224 are formed by patterning a common conductive layer. That is, the first electrode 110, the conductive layer 212, the conductive layer 214, the conductive layer 222, and the conductive layer 224 are formed in the same step. In this method, the conductive layer 212, the conductive layer 214, the conductive layer 222, and the conductive layer 224 include the same material and have substantially the same thickness. Furthermore, in this method, the number of steps in the manufacturing process of the light emitting device 10 can be reduced.
 次いで、絶縁層160を形成する。一例において、絶縁層160は、基板100の第1面102上に塗布された感光性樹脂をパターニングすることにより形成される。 Next, the insulating layer 160 is formed. In one example, the insulating layer 160 is formed by patterning a photosensitive resin applied on the first surface 102 of the substrate 100.
 次いで、有機層120を形成する。一例において、有機層120は、蒸着により形成される。他の例において、有機層120は、塗布により形成されてもよい。この場合、絶縁層160の開口162内に有機層120の材料を塗布する。 Next, the organic layer 120 is formed. In one example, the organic layer 120 is formed by vapor deposition. In another example, the organic layer 120 may be formed by application. In this case, the material of the organic layer 120 is applied in the opening 162 of the insulating layer 160.
 次いで、第2電極130を形成する。一例において、第2電極130は、マスクを用いた蒸着により形成される。 Next, the second electrode 130 is formed. In one example, the second electrode 130 is formed by vapor deposition using a mask.
 このようにして、図7から図10に示した発光装置10が製造される。 In this way, the light emitting device 10 shown in FIGS. 7 to 10 is manufactured.
 本実施例においても、発光装置10の発光面(第2面104)の反対側へ発光部152の長手方向(X方向)に沿って漏れる光の量を抑えることが可能となる。 Also in the present embodiment, it is possible to suppress the amount of light leaking along the longitudinal direction (X direction) of the light emitting unit 152 to the side opposite to the light emitting surface (second surface 104) of the light emitting device 10.
(実施例2)
 図11は、実施例2に係る発光装置10を示す平面図であり、実施例1の図7に対応する。図12は、図11のP-P断面図であり、実施例1の図9に対応する。本実施例に係る発光装置10は、以下の点を除いて、実施例1に係る発光装置10と同様である。
(Example 2)
FIG. 11 is a plan view showing the light emitting device 10 according to the second embodiment, and corresponds to FIG. 7 of the first embodiment. 12 is a cross-sectional view taken along the line PP of FIG. 11 and corresponds to FIG. 9 of the first embodiment. The light emitting device 10 according to the present embodiment is the same as the light emitting device 10 according to the first embodiment except for the following points.
 発光装置10は、複数の第1電極110、導電層212、複数の導電層214、複数の第2電極130、導電層222及び複数の導電層224を備えている。複数の第1電極110のそれぞれは、複数の導電層214のそれぞれを介して導電層212に電気的に接続している。複数の第2電極130のそれぞれは、複数の導電層224のそれぞれを介して導電層222に電気的に接続している。 The light emitting device 10 includes a plurality of first electrodes 110, a conductive layer 212, a plurality of conductive layers 214, a plurality of second electrodes 130, a conductive layer 222, and a plurality of conductive layers 224. Each of the plurality of first electrodes 110 is electrically connected to the conductive layer 212 through each of the plurality of conductive layers 214. Each of the plurality of second electrodes 130 is electrically connected to the conductive layer 222 via each of the plurality of conductive layers 224.
 複数の第2電極130、複数の導電層224及び導電層222は、一体となっている。つまり、複数の第2電極130、複数の導電層224及び導電層222は、同一工程で形成されており、このため、互いに同一の材料を含み、かつ互いに実質的に等しい膜厚を有している。 The plurality of second electrodes 130, the plurality of conductive layers 224, and the conductive layer 222 are integrated. That is, the plurality of second electrodes 130, the plurality of conductive layers 224, and the conductive layer 222 are formed in the same process, and thus include the same material and have substantially the same film thickness. Yes.
 導電層212は、複数の第2電極130、複数の導電層224及び複数の導電層222と同一工程で形成されており、このため、導電層212、複数の第2電極130、複数の導電層224及び複数の導電層222は、互いに同一の材料を含み、かつ互いに実質的に等しい膜厚を有している。特に図11及び図12に示す例では、導電層212は、複数の第1電極110及び複数の導電層214と異なる材料を含んでおり、各導電層214の上方の領域を経由して各導電層214と交差している。 The conductive layer 212 is formed in the same step as the plurality of second electrodes 130, the plurality of conductive layers 224, and the plurality of conductive layers 222. Therefore, the conductive layer 212, the plurality of second electrodes 130, and the plurality of conductive layers are formed. The 224 and the plurality of conductive layers 222 include the same material and have substantially the same thickness. In particular, in the example illustrated in FIGS. 11 and 12, the conductive layer 212 includes a material different from that of the plurality of first electrodes 110 and the plurality of conductive layers 214, and each conductive layer 212 passes through a region above each conductive layer 214. Crosses layer 214.
 次に、図11及び図12に示した発光装置10の製造方法の一例について説明する。 Next, an example of a method for manufacturing the light emitting device 10 shown in FIGS. 11 and 12 will be described.
 まず、基板100の第1面102上に、第1電極110及び導電層214を形成する。第1電極110及び導電層214、共通の導電層をパターニングすることによって形成される。 First, the first electrode 110 and the conductive layer 214 are formed on the first surface 102 of the substrate 100. The first electrode 110 and the conductive layer 214 are formed by patterning a common conductive layer.
 次いで、実施例1と同様にして、絶縁層160及び有機層120を形成する。 Next, the insulating layer 160 and the organic layer 120 are formed in the same manner as in Example 1.
 次いで、第2電極130、導電層212、導電層222及び導電層224を形成する。第2電極130、導電層212、導電層222及び導電層224は、マスクを用いた蒸着によって同時に形成される。つまり、第2電極130、導電層212、導電層222及び導電層224は、同一工程で形成される。この方法において、第2電極130、導電層212、導電層222及び導電層224は、互いに同一の材料を含み、かつ互いに実質的に等しい膜厚を有するようになる。さらに、この方法においては、発光装置10の製造プロセスの工程の数を少なくすることができる。 Next, the second electrode 130, the conductive layer 212, the conductive layer 222, and the conductive layer 224 are formed. The second electrode 130, the conductive layer 212, the conductive layer 222, and the conductive layer 224 are simultaneously formed by vapor deposition using a mask. That is, the second electrode 130, the conductive layer 212, the conductive layer 222, and the conductive layer 224 are formed in the same process. In this method, the second electrode 130, the conductive layer 212, the conductive layer 222, and the conductive layer 224 include the same material and have substantially the same thickness. Furthermore, in this method, the number of steps in the manufacturing process of the light emitting device 10 can be reduced.
 このようにして、図11及び図12に示した発光装置10が製造される。 In this way, the light emitting device 10 shown in FIGS. 11 and 12 is manufactured.
 本実施例においても、発光装置10の発光面(第2面104)の反対側へ発光部152の長手方向(X方向)に沿って漏れる光の量を抑えることが可能となる。 Also in the present embodiment, it is possible to suppress the amount of light leaking along the longitudinal direction (X direction) of the light emitting unit 152 to the side opposite to the light emitting surface (second surface 104) of the light emitting device 10.
(実施例3)
 図13は、実施例3に係る発光装置10を示す平面図であり、実施例1の図7に対応する。図14は、図13から第2電極130及び絶縁層160を取り除いた図であり、実施例1の図8に対応する。図15は、図13のQ-Q断面図であり、実施例1の図10に対応する。本実施例に係る発光装置10は、以下の点を除いて、実施例1に係る発光装置10と同様である。
(Example 3)
FIG. 13 is a plan view illustrating the light emitting device 10 according to the third embodiment, and corresponds to FIG. 7 of the first embodiment. FIG. 14 is a diagram in which the second electrode 130 and the insulating layer 160 are removed from FIG. 13, and corresponds to FIG. 8 of the first embodiment. 15 is a cross-sectional view taken along the line QQ of FIG. 13 and corresponds to FIG. 10 of the first embodiment. The light emitting device 10 according to the present embodiment is the same as the light emitting device 10 according to the first embodiment except for the following points.
 図14及び図15に示すように、発光装置10は、複数の導電部170を備えている。複数の導電部170のそれぞれは、複数の第1電極110のそれぞれの補助電極として機能している。具体的には、導電部170は、第1電極110に含まれる材料の導電率より高い導電率を有する材料を含んでおり、一例において、金属、より具体的には、MAM(Mo/Al/Mo)を含んでいる。他の例において、導電部170は、Al、Ag、TiAl、Al合金又はAg合金であってもよい。図15に示す例では、導電部170は、第1電極110上に位置し、絶縁層160によって覆われ、発光部152と重なっていない。図14に示すように、導電部170は、X方向、つまり、第1電極110の長手方向に延在している。したがって、第1電極110の抵抗がある程度高くても、第1電極110の長手方向(X方向)における電圧降下を抑えることができる。 As shown in FIGS. 14 and 15, the light emitting device 10 includes a plurality of conductive portions 170. Each of the plurality of conductive portions 170 functions as an auxiliary electrode of each of the plurality of first electrodes 110. Specifically, the conductive portion 170 includes a material having a conductivity higher than that of the material included in the first electrode 110. In one example, the conductive portion 170 is a metal, more specifically, MAM (Mo / Al / Mo) is included. In another example, the conductive part 170 may be Al, Ag, TiAl, an Al alloy, or an Ag alloy. In the example illustrated in FIG. 15, the conductive portion 170 is located on the first electrode 110, is covered with the insulating layer 160, and does not overlap the light emitting portion 152. As shown in FIG. 14, the conductive portion 170 extends in the X direction, that is, the longitudinal direction of the first electrode 110. Therefore, even if the resistance of the first electrode 110 is high to some extent, a voltage drop in the longitudinal direction (X direction) of the first electrode 110 can be suppressed.
 図13及び図14に示す例では、発光装置10は、導電部172を備えている。導電部172は、Y方向に延伸しており、導電層212に接続している。導電部172は、導電層212の補助電極として機能している。具体的には、導電部172は、導電層212に含まれる材料の導電率より高い導電率を有する材料を含んでおり、一例において、金属、より具体的には、MAM(Mo/Al/Mo)を含んでいる。他の例において、導電部172は、Al、Ag、TiAl、Al合金又はAg合金であってもよい。したがって、導電層212の抵抗がある程度高くても、導電層212の長手方向(Y方向)における電圧降下を抑えることができる。 In the example shown in FIGS. 13 and 14, the light emitting device 10 includes a conductive portion 172. The conductive portion 172 extends in the Y direction and is connected to the conductive layer 212. The conductive portion 172 functions as an auxiliary electrode for the conductive layer 212. Specifically, the conductive portion 172 includes a material having a conductivity higher than that of the material included in the conductive layer 212. In one example, the conductive portion 172 is a metal, more specifically, MAM (Mo / Al / Mo ) Is included. In another example, the conductive portion 172 may be Al, Ag, TiAl, an Al alloy, or an Ag alloy. Therefore, even if the resistance of the conductive layer 212 is high to some extent, a voltage drop in the longitudinal direction (Y direction) of the conductive layer 212 can be suppressed.
 図13及び図14に示す例では、発光装置10は、導電部174を備えている。導電部174は、Y方向に延伸しており、導電層222に接続している。導電部174は、導電層222の補助電極として機能している。具体的には、導電部174は、導電層222に含まれる材料の導電率より高い導電率を有する材料を含んでおり、一例において、金属、より具体的には、MAM(Mo/Al/Mo)を含んでいる。他の例において、導電部174は、Al、Ag、TiAl、Al合金又はAg合金であってもよい。したがって、導電層222の抵抗がある程度高くても、導電層222の長手方向(Y方向)における電圧降下を抑えることができる。 In the example shown in FIGS. 13 and 14, the light emitting device 10 includes a conductive portion 174. The conductive portion 174 extends in the Y direction and is connected to the conductive layer 222. The conductive portion 174 functions as an auxiliary electrode for the conductive layer 222. Specifically, the conductive portion 174 includes a material having a conductivity higher than that of the material included in the conductive layer 222. In one example, the conductive portion 174 is a metal, more specifically, MAM (Mo / Al / Mo ) Is included. In another example, the conductive portion 174 may be Al, Ag, TiAl, an Al alloy, or an Ag alloy. Therefore, even if the resistance of the conductive layer 222 is high to some extent, a voltage drop in the longitudinal direction (Y direction) of the conductive layer 222 can be suppressed.
 特に図14に示す例では、導電部172は、複数の導電部170に接続しており、より具体的には、複数の導電部170と一体となっている。 In particular, in the example shown in FIG. 14, the conductive portion 172 is connected to the plurality of conductive portions 170, and more specifically, is integrated with the plurality of conductive portions 170.
 複数の導電部170、導電部172及び導電部174は、同一工程で形成することができる。この場合、複数の導電部170、導電部172及び導電部174は、互いに同一の材料を含み、かつ互いに実質的に等しい膜厚を有するようになる。 The plurality of conductive portions 170, the conductive portions 172, and the conductive portions 174 can be formed in the same process. In this case, the plurality of conductive portions 170, the conductive portions 172, and the conductive portions 174 include the same material as each other and have substantially the same film thickness.
 本実施例においても、発光装置10の発光面(第2面104)の反対側へ発光部152の長手方向(X方向)に沿って漏れる光の量を抑えることが可能となる。 Also in the present embodiment, it is possible to suppress the amount of light leaking along the longitudinal direction (X direction) of the light emitting unit 152 to the side opposite to the light emitting surface (second surface 104) of the light emitting device 10.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.
 この出願は、2017年1月30日に出願された日本出願特願2017-014040号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2017-014040 filed on Jan. 30, 2017, the entire disclosure of which is incorporated herein.

Claims (7)

  1.  基板の第1面側に位置し、第1電極、有機層及び第2電極を含む積層構造からそれぞれがなり、第1方向に長手方向を有する複数の発光部と、
     前記複数の発光部のうち前記第1方向に沿って並ぶ第1発光部及び第2発光部の間で前記第1方向に交わる第2方向に延在し、前記第1発光部及び前記第2発光部の各々の前記第1電極と同電位である第1導電層と、
    を備える発光装置。
    A plurality of light emitting units located on the first surface side of the substrate, each of which has a laminated structure including a first electrode, an organic layer, and a second electrode, and has a longitudinal direction in the first direction;
    The first light emitting unit and the second light emitting unit extend in a second direction intersecting the first direction between the first light emitting unit and the second light emitting unit arranged along the first direction among the plurality of light emitting units. A first conductive layer having the same potential as the first electrode of each of the light emitting units;
    A light emitting device comprising:
  2.  請求項1に記載の発光装置において、
     前記第1発光部に対して前記第1導電層と反対側で前記第2方向に延在し、前記第1発光部の前記第2電極と同電位である第2導電層を備える発光装置。
    The light-emitting device according to claim 1.
    A light emitting device comprising: a second conductive layer extending in the second direction on the opposite side of the first light emitting unit from the first light emitting unit and having the same potential as the second electrode of the first light emitting unit.
  3.  請求項2に記載の発光装置において、
     前記複数の発光部は、前記第1発光部に対して前記第2導電層と反対側に位置する第3発光部を含み、
     前記第2導電層は、前記第3発光部の前記第2電極と同電位である発光装置。
    The light-emitting device according to claim 2.
    The plurality of light emitting units includes a third light emitting unit positioned on the opposite side of the second conductive layer with respect to the first light emitting unit,
    The second conductive layer is a light emitting device having the same potential as the second electrode of the third light emitting unit.
  4.  請求項2又は3に記載の発光装置において、
     前記複数の発光部は、前記第2方向に沿って前記第1発光部と並ぶ第4発光部を含み、
     前記第4発光部の前記第1電極は、前記第1導電層と同電位であり、
     前記第4発光部の前記第2電極は、前記第2導電層と同電位である発光装置。
    The light emitting device according to claim 2 or 3,
    The plurality of light emitting units includes a fourth light emitting unit aligned with the first light emitting unit along the second direction,
    The first electrode of the fourth light emitting unit is at the same potential as the first conductive layer,
    The light emitting device, wherein the second electrode of the fourth light emitting unit has the same potential as the second conductive layer.
  5.  請求項2から4までのいずれか一項に記載の発光装置において、
     前記第1導電層に電気的に接続された第1タブ線と、
     前記第2導電層に電気的に接続された第2タブ線と、
    を備える発光装置。
    The light emitting device according to any one of claims 2 to 4,
    A first tab wire electrically connected to the first conductive layer;
    A second tab wire electrically connected to the second conductive layer;
    A light emitting device comprising:
  6.  請求項5に記載の発光装置において、
     前記第1タブ線及び前記第2タブ線は、前記第1方向に延在している発光装置。
    The light emitting device according to claim 5.
    The light emitting device, wherein the first tab line and the second tab line extend in the first direction.
  7.  請求項1から6までのいずれか一項に記載の発光装置において、
     隣り合う発光部の間に位置する透光部を備える発光装置。
    The light emitting device according to any one of claims 1 to 6,
    A light-emitting device provided with a translucent part located between adjacent light-emitting parts.
PCT/JP2018/001896 2017-01-30 2018-01-23 Light emitting device WO2018139426A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017014040 2017-01-30
JP2017-014040 2017-01-30

Publications (1)

Publication Number Publication Date
WO2018139426A1 true WO2018139426A1 (en) 2018-08-02

Family

ID=62978860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001896 WO2018139426A1 (en) 2017-01-30 2018-01-23 Light emitting device

Country Status (1)

Country Link
WO (1) WO2018139426A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012045857A1 (en) * 2010-10-07 2012-04-12 Ledon Oled Lighting Gmbh & Co. Kg Lighting element having oled modules
JP2012146642A (en) * 2010-12-24 2012-08-02 Semiconductor Energy Lab Co Ltd Lighting system
JP2012182128A (en) * 2011-02-11 2012-09-20 Semiconductor Energy Lab Co Ltd Light-emitting unit, light-emitting device, and illuminating device
JP2012190785A (en) * 2011-02-21 2012-10-04 Semiconductor Energy Lab Co Ltd Illumination device
JP2013125690A (en) * 2011-12-15 2013-06-24 Panasonic Idemitsu Oled Lighting Co Ltd Light emitting device
US20130313533A1 (en) * 2012-05-28 2013-11-28 Ultimate Image Corporation Organic Light Emitting Diode Illuminating Device
JP2014002960A (en) * 2012-06-20 2014-01-09 Mitsubishi Chemicals Corp Surface emitting panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012045857A1 (en) * 2010-10-07 2012-04-12 Ledon Oled Lighting Gmbh & Co. Kg Lighting element having oled modules
JP2012146642A (en) * 2010-12-24 2012-08-02 Semiconductor Energy Lab Co Ltd Lighting system
JP2012182128A (en) * 2011-02-11 2012-09-20 Semiconductor Energy Lab Co Ltd Light-emitting unit, light-emitting device, and illuminating device
JP2012190785A (en) * 2011-02-21 2012-10-04 Semiconductor Energy Lab Co Ltd Illumination device
JP2013125690A (en) * 2011-12-15 2013-06-24 Panasonic Idemitsu Oled Lighting Co Ltd Light emitting device
US20130313533A1 (en) * 2012-05-28 2013-11-28 Ultimate Image Corporation Organic Light Emitting Diode Illuminating Device
JP2014002960A (en) * 2012-06-20 2014-01-09 Mitsubishi Chemicals Corp Surface emitting panel

Similar Documents

Publication Publication Date Title
US8283858B2 (en) Illumination device and method for manufacturing same
KR20170057336A (en) Light emitting device
JP2012204250A (en) Organic el element
WO2018139426A1 (en) Light emitting device
JP2018120691A (en) Light-emitting device
JP7434511B2 (en) light emitting device
JP7232876B2 (en) light emitting device
JP6801004B2 (en) Light emitting device and light emitting system
JP7392076B2 (en) light emitting device
JP6991709B2 (en) Light emitting device
JP7198882B2 (en) light emitting device
JP2018037202A (en) Light-emitting device
JP2018101504A (en) Light emitting device
JP6644486B2 (en) Light emitting device
JP2018101505A (en) Light emitting device
JP2018098024A (en) Light-emitting device
JP6924023B2 (en) Light emitting device
WO2017183118A1 (en) Light-emitting device
WO2019230652A1 (en) Light-emitting module
WO2018061236A1 (en) Light-emitting device
WO2018062272A1 (en) Light-emitting device
WO2018151026A1 (en) Light emission device
WO2018151027A1 (en) Light emission device
JP2018129247A (en) Light-emitting device
JP2018098089A (en) Light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP