WO2018139314A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2018139314A1
WO2018139314A1 PCT/JP2018/001218 JP2018001218W WO2018139314A1 WO 2018139314 A1 WO2018139314 A1 WO 2018139314A1 JP 2018001218 W JP2018001218 W JP 2018001218W WO 2018139314 A1 WO2018139314 A1 WO 2018139314A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
piston
cylinder
blade
pressure chamber
Prior art date
Application number
PCT/JP2018/001218
Other languages
English (en)
French (fr)
Inventor
熊倉 英二
古庄 和宏
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2018139314A1 publication Critical patent/WO2018139314A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C21/00Oscillating-piston pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type

Definitions

  • the present invention relates to a refrigeration apparatus including a compressor.
  • a refrigeration apparatus having a refrigerant circuit connected to a compressor and performing a refrigeration cycle is known and widely used in air conditioners and the like.
  • Patent Document 1 discloses a rotary compressor.
  • an annular piston 103 is arranged in a cylinder chamber 102 inside a cylinder 101.
  • the piston 103 is fitted in a crankshaft 104 that is rotationally driven by an electric motor.
  • the cylinder 101 is formed with a vane groove 106 that accommodates the vertically long vane 105.
  • the vane 105 is urged toward the piston 103 by a spring (not shown), for example, and the tip of the vane 105 is always in sliding contact with the outer peripheral surface of the piston 103.
  • the vane 105 divides the cylinder chamber 102 into a low pressure chamber 108 that communicates with the suction port 107 and a high pressure chamber 109 that communicates with a discharge port (not shown).
  • a discharge port not shown.
  • the disproportionation reaction is a chemical reaction in which the same kind of molecules react with each other to give different products.
  • the tip of the vane is always pressed against the outer peripheral surface of the piston so as to partition the low pressure chamber and the high pressure chamber. For this reason, the temperature of the sliding portion at the tip of the vane (for example, the portion indicated by point a in FIG. 13) may increase, and the temperature of the refrigerant in the vicinity may increase.
  • the vane is pressed in the direction of the white arrow in FIG. 13 due to the differential pressure between the low pressure chamber and the high pressure chamber. For this reason, since the vane is inclined with respect to the advancing / retreating direction, a contact portion (for example, a portion indicated by point b in FIG. 13) between the side surface of the vane and the edge of the insertion opening of the vane groove, or the rear end of the vane. One-side contact occurs at the contact portion between the corner portion and the inner wall of the vane groove (the portion indicated by point c in FIG. 13). As a result, there is a possibility that the temperature of these contact portions increases and the temperature of the refrigerant in the vicinity thereof increases.
  • the present invention has been made paying attention to such a problem, and its purpose is to prevent the refrigerant from causing a disproportionation reaction inside the compression mechanism.
  • the 1st invention is a refrigeration apparatus provided with the refrigerant circuit (11) to which the compressor (30) which compresses a refrigerant
  • coolant has the property which raise
  • the compressor (30) includes an electric motor (32) and a compression mechanism (40) driven by the electric motor (32), and the compression mechanism (40) includes a cylinder chamber (45 , 45a, 45b, 81, 82) formed with a cylinder (42, 42a, 42b, 75) and a piston (44, 44a, 44b) accommodated in the cylinder chamber (45, 45a, 45b, 81, 82) , 77) and the piston (44, 44a, 44b, 77) are integrally connected, and the cylinder chamber (45, 45a, 45b, 81, 82) is connected to the low pressure chamber (L) and the high pressure chamber (H).
  • the piston (44, 44a, 44b, 77) and the cylinder (42, 42a, 42b, 75) are configured to be relatively eccentrically rotated.
  • the blade (51) that divides the cylinder chamber (45, 45a, 45b, 81, 82) into the low pressure chamber (L) and the high pressure chamber (H) includes the piston (44, 44a, 44b, 77). It is connected integrally with. For this reason, there is no sliding contact portion between the tip of the vane and the piston as in the rotary compressor. Therefore, it is possible to reliably avoid an increase in the temperature of the refrigerant at the tip of the blade (51).
  • the blade (51) tends to tilt with respect to the advancing / retreating direction of the blade (51).
  • the pair of bushes (52) holding the blade (51) swings inside the bush groove (53). That is, the pair of bushes (52) tilts integrally with the blade (51).
  • blade (51) and a bush (52) contact locally. Accordingly, unlike the rotary compressor, the temperature of the refrigerant does not increase due to the contact of the vanes.
  • the temperature of the refrigerant may be extremely high in the portions corresponding to the points a, b, and c in FIG. Then, the temperature of the refrigerant does not become extremely high. Therefore, even when a fluorinated hydrocarbon having the property of causing a disproportionation reaction is used as the refrigerant of the refrigeration apparatus, the disproportionation reaction can be prevented from occurring inside the compression mechanism.
  • the compression mechanism (40) includes the cylinder (42a, 42b), the piston (44a, 44b), the blade (51), and the bush (52), respectively. It has a plurality of compression sections (61, 62), and is configured to compress the refrigerant in parallel by the plurality of compression sections (61, 62).
  • the rotational speed of the drive shaft can be reduced as compared with the case where the refrigerant is compressed by only one compression section.
  • the compression mechanism heat generation at the sliding part between the piston and cylinder and the sliding part between the bush and blade can be reduced, and the temperature rise of the refrigerant at each compression part (61, 62) is suppressed. it can.
  • the compression mechanism (40) includes the cylinder (42a, 42b), the piston (44a, 44b), the blade (51), and the bush (52), respectively.
  • a plurality of compression sections (61, 62), and the plurality of compression sections (61, 62) are connected in series.
  • the refrigerant is compressed in multiple stages in the plurality of compression sections (61, 62). For this reason, compared with the case where a refrigerant
  • the compression mechanism (40) includes the cylinder (42) having a non-circular inner peripheral surface and a non-circular outer peripheral surface. And a non-circular piston type in which the piston (44) rotates eccentrically.
  • the compression mechanism (40) is configured as a so-called non-circular piston type.
  • the volume change rate during one rotation of the compression chamber (high pressure chamber (H)) can be optimized according to the outer peripheral surface shape of the piston (44).
  • the timing of the discharge stroke can be advanced, and the period of the discharge stroke can be lengthened.
  • the high-low differential pressure pressure difference between the high-pressure chamber (H) and the low-pressure chamber (L)
  • the sliding resistance in the compression mechanism (40) due to the pressure can be further reduced. As a result, a local temperature rise at the sliding portion due to overcompression can be avoided, and the refrigerant can be more effectively suppressed from causing a disproportionation reaction.
  • the fifth invention is characterized in that, in any one of the first to fourth inventions, the refrigerant is a refrigerant containing HFO-1123.
  • a refrigerant containing HFO-1123 is used as the refrigerant. Since HFO-1123 is easily decomposed by OH radicals in the atmosphere, it has little influence on the ozone layer or global warming. Further, by using a refrigerant containing HFO-1123, the performance of the refrigeration cycle of the refrigeration apparatus is also improved.
  • a local temperature rise inside the compression mechanism can be suppressed as in a rotary compressor, so that a refrigeration cycle can be performed while preventing a disproportionation reaction of the refrigerant.
  • FIG. 1 is a schematic configuration diagram of a refrigeration apparatus according to an embodiment.
  • FIG. 2 is a longitudinal sectional view of the compressor according to the embodiment.
  • FIG. 3 is a cross-sectional view showing the inside of the compression mechanism according to the embodiment.
  • 4A and 4B are cross-sectional views showing the inside of the compression mechanism according to the embodiment.
  • FIG. 4A shows a state where the rotation angle is 0 ° (360 °)
  • FIG. 4B shows a rotation angle of 90 °
  • 4C shows a state where the rotation angle is 180 °
  • FIG. 4D shows a state where the rotation angle is 270 °.
  • FIG. 5 is an enlarged longitudinal sectional view of a main part of the compressor according to the first modification.
  • FIG. 1 is a schematic configuration diagram of a refrigeration apparatus according to an embodiment.
  • FIG. 2 is a longitudinal sectional view of the compressor according to the embodiment.
  • FIG. 3 is a cross-sectional view showing the inside of the compression mechanism according to
  • FIG. 6 is an enlarged longitudinal sectional view of a main part of the compressor according to the second modification.
  • FIG. 7 is a cross-sectional view showing the inside of the compression mechanism according to the third modification.
  • FIG. 8 is a graph showing the relationship between the compression chamber volume and the rotation angle in the compression mechanism (non-circular piston type) according to Modification 3 and the comparative example (circular piston type).
  • FIG. 9 is an enlarged longitudinal sectional view of a main part of a compressor according to the fourth modification.
  • FIG. 10 is a cross-sectional view showing the inside of the compression mechanism according to the fourth modification.
  • FIG. 11 is an enlarged vertical cross-sectional view of a main part of a compressor according to the fifth modification.
  • FIG. 12 is a cross-sectional view showing the inside of the compression mechanism according to the fifth modification.
  • FIG. 13 is a cross-sectional view showing the inside of a conventional compression mechanism.
  • the refrigeration apparatus is an air conditioner (10) that performs indoor cooling and heating.
  • the air conditioner (10) includes a refrigerant circuit (11) filled with a refrigerant.
  • the refrigerant circulates to perform a vapor compression refrigeration cycle.
  • a refrigerant containing a fluorinated hydrocarbon having a property of causing a disproportionation reaction is used (details will be described later).
  • the air conditioner (10) includes an outdoor unit (12) and an indoor unit (13). There may be two or more indoor units (13) instead of one.
  • the refrigerant circuit (11) includes a compressor (30), an outdoor heat exchanger (16) (heat source heat exchanger), an expansion valve (17), and an indoor heat exchanger (18) (utilizing heat exchanger). And a four-way selector valve (19).
  • the compressor (30), the outdoor heat exchanger (16), and the four-way switching valve (19) are accommodated in the outdoor unit (12).
  • the indoor heat exchanger (18) and the expansion valve (17) are accommodated in the indoor unit (13).
  • an outdoor fan (20) is installed in the vicinity of the outdoor heat exchanger (16). In the outdoor heat exchanger (16), the outdoor air conveyed by the outdoor fan (20) and the refrigerant exchange heat.
  • an indoor fan (21) is installed in the vicinity of the indoor heat exchanger (18). In the indoor heat exchanger (18), the indoor air conveyed by the indoor fan (21) and the refrigerant exchange heat.
  • the four-way selector valve (19) has first to fourth ports (P1 to P4).
  • the first port (P1) is connected to the discharge pipe (22) of the compressor (30)
  • the second port (P2) is connected to the suction pipe (23) of the compressor (30)
  • the third port (P3) is outdoor. It connects with the gas end of the heat exchanger (16)
  • the fourth port (P4) connects with the gas end of the indoor heat exchanger (18).
  • the four-way selector valve (19) switches between a first state (state indicated by a solid line in FIG. 1) and a second state (state indicated by a broken line in FIG. 1). In the first state, the first port (P1) and the fourth port (P4) communicate with each other, and the second port (P2) and the third port (P3) communicate with each other.
  • the indoor heat exchanger (18) becomes a condenser (heat radiator), and the outdoor heat exchanger (16) A refrigeration cycle (heating cycle) serving as an evaporator is performed.
  • the first port (P1) and the third port (P3) communicate with each other
  • the second port (P2) and the fourth port (P4) communicate with each other. Therefore, when the compressor (30) is operated when the four-way switching valve (19) is in the second state, the outdoor heat exchanger (16) becomes a condenser (radiator) and the indoor heat exchanger (18) A refrigeration cycle (cooling cycle) serving as an evaporator is performed.
  • the compressor (30) includes a vertically long cylindrical sealed casing (31).
  • a suction pipe (23) is fixed through the lower portion of the casing (31).
  • a discharge pipe (22) passes through and is fixed to the top (upper end plate) of the casing (31).
  • Oil (refrigeration machine oil) for lubricating each sliding part of the compressor (30) is stored at the bottom of the casing (31).
  • an internal space (S) filled with the refrigerant (discharged refrigerant or high-pressure refrigerant) discharged from the compression mechanism (40) is formed inside the casing (31). That is, the compressor (30) of the present embodiment is configured as a so-called high-pressure dome type in which the internal pressure of the internal space (S) of the casing (31) is substantially equal to the pressure of the high-pressure refrigerant.
  • an electric motor (32), a drive shaft (35), and a compression mechanism (40) are provided in order from top to bottom.
  • the electric motor (32) has a stator (33) and a rotor (34).
  • the stator (33) is fixed to the inner peripheral surface of the body portion of the casing (31).
  • the rotor (34) penetrates the interior of the stator (33) in the vertical direction.
  • a drive shaft (35) is fixed inside the shaft center of the rotor (34). When the electric motor (32) is energized, the drive shaft (35) is rotationally driven together with the rotor (34).
  • the drive shaft (35) is located on the axial center of the trunk of the casing (31).
  • the drive shaft (35) is rotatably supported by each bearing of the compression mechanism (40).
  • the drive shaft (35) has a main shaft (36) coaxial with the electric motor (32), and a crank shaft (37) eccentric from the main shaft (36).
  • the outer diameter of the crankshaft (37) is larger than the outer diameter of the main shaft (36).
  • An oil pump (38) that pumps up oil accumulated at the bottom of the casing (31) is provided below the drive shaft (35). The oil pumped up by the oil pump (38) is supplied to each sliding portion of the bearing and the compression mechanism (40) through a flow path (not shown) inside the drive shaft (35).
  • the compression mechanism (40) is arranged below the electric motor (32).
  • the compression mechanism (40) has a front head (41), a cylinder (42), a rear head (43), and a piston (44).
  • the cylinder (42) is formed in a flat cylindrical shape. The opening at the upper end of the cylinder (42) is closed by the front head (41), and the opening at the lower end of the cylinder (42) is closed by the rear head (43). Thereby, a cylindrical cylinder chamber (45) is defined inside the cylinder (42).
  • An annular piston (44) is accommodated in the cylinder chamber (45).
  • the piston (44) is fitted into the crankshaft (37). Therefore, when the drive shaft (35) is rotationally driven by the electric motor (32), the piston (44) rotates eccentrically in the cylinder chamber (45).
  • a suction pipe (23) is connected to the suction port (46).
  • the front head (41) is formed with a discharge port (47) communicating with the cylinder chamber (strictly speaking, the high pressure chamber (H)).
  • the discharge port (47) is provided with a discharge valve (not shown) such as a reed valve.
  • a muffler (48) covering the front head (41) is attached to the upper part of the compression mechanism (40).
  • a muffler space (49) communicating with the discharge port (47) is formed inside the muffler (48). In the muffler space (49), noise caused by refrigerant discharge pulsation is reduced.
  • the compression mechanism (40) is configured as a swinging piston type having a blade (51) and a bush (52).
  • the cylinder (42) is formed with a bush groove (53) and a back pressure chamber (54).
  • the bush groove (53) is formed at a position adjacent to the cylinder chamber (45) and communicates with the cylinder chamber (45).
  • the bush groove (53) forms a cylindrical space having a substantially circular cross section.
  • the back pressure chamber (54) is located radially outward of the bush groove (53) in the cylinder (42).
  • the back pressure chamber (54) forms a columnar space having a substantially circular cross section.
  • the back pressure chamber (54) has an end on the cylinder chamber (45) side communicating with the bush groove (53).
  • the back pressure chamber (54) is an atmosphere of a high pressure corresponding to the pressure of the internal space (S) of the casing (31) (that is, the pressure of the refrigerant discharged from the compression mechanism (40)).
  • the oil pumped up by the oil pump (38) is supplied to the back pressure chamber (54).
  • the oil in the back pressure chamber (54) is used to lubricate the sliding part between the inner peripheral surface of the bush groove (53) and the bush (52) and the sliding part of the bush (52) and blade (51). Is done.
  • the pair of bushes (52) has a substantially cross-sectional or semicircular cross section.
  • the pair of bushes (52) is swingably held inside the bush groove (53).
  • the pair of bushes (52) includes an arc portion (52a) facing the bush groove (53) and a flat portion (52b) facing the blade (51).
  • the pair of bushes (52) swings so that the arc portion (52a) is in sliding contact with the bush groove (53) with the center of the bush groove (53) as an axis.
  • the pair of bushes (52) are arranged in the bush grooves (53) so that the flat portions (52b) face each other. Thereby, a blade groove (55) is formed between the flat portions (52b) of the pair of bushes (52).
  • the blade groove (55) has a substantially rectangular cross section, and the blade (51) is held therein so as to be able to advance and retreat in the radial direction.
  • the blade (51) is formed in a rectangular parallelepiped shape or a plate shape extending radially outward.
  • the base end (radially inner end) of the blade (51) is integrally connected to the outer peripheral surface of the piston (44).
  • the piston (44) and the blade (51) may be integrally molded with the same member, or another member may be fixed integrally.
  • the tip (radially outer end) of the blade (51) is located in the back pressure chamber (54).
  • the blade (51) partitions the cylinder chamber (45) into a low pressure chamber (L) and a high pressure chamber (H).
  • the low pressure chamber (L) is a space on the right side of the blade (51) in FIG. 2 and communicates with the suction port (46).
  • the high pressure chamber (H) is a space on the left side of the blade (51) in FIG. 2 and communicates with the discharge port (47).
  • the outer peripheral surface of the piston (44) is in line contact with the inner peripheral surface of the cylinder chamber (45) through the oil film to form a seal portion.
  • the seal portion between the piston (44) and the cylinder (42) is displaced along the inner peripheral surface of the cylinder chamber (45), and the low pressure chamber (L)
  • the volume of the high pressure chamber (H) changes.
  • the blade (51) advances and retreats in the blade groove (55) according to the rotation angle of the piston (44).
  • the pair of bushes (52) swings with the blade (51) about the axis of the bush groove (53).
  • rotation angle here refers to the position where the piston (44) is closest to the bush groove (53) (so-called top dead center) as a reference 0 °, and the direction of rotation of the drive shaft (35) (the timepiece of FIG. 4). The angle is expressed in the direction of rotation).
  • the low pressure refrigerant is sucked into the low pressure chamber (L) through the suction pipe (23) and the suction port (46). .
  • the blocked space constitutes the high pressure chamber (H).
  • the internal pressure of the high pressure chamber (H) increases.
  • the discharge stroke is performed.
  • the discharge valve of the discharge port (47) is opened, and the refrigerant in the high pressure chamber (H) flows out of the compression mechanism (40) through the discharge port (47).
  • the refrigerant discharged from the discharge port (47) flows out to the internal space (S) through the muffler space (49).
  • the refrigerant in the internal space (S) flows around the electric motor (32), then flows out of the discharge pipe (22), and is sent to the refrigerant circuit (11).
  • the refrigerant charged in the refrigerant circuit (11) includes a single refrigerant composed of a fluorinated hydrocarbon having the property of causing a disproportionation reaction, or a fluorinated hydrocarbon having a property of causing a disproportionation reaction, and the others.
  • a mixed refrigerant comprising at least one kind of refrigerant can be used.
  • Fluorohydrocarbons having the property of causing a disproportionation reaction include hydrofluoroolefins that have a carbon-carbon double bond that has little impact on the ozone layer and global warming and is easily decomposed by OH radicals ( HFO) can be used.
  • HFO OH radicals
  • HFO refrigerants other than HFO-1123 3,3,3-trifluoropropene (HFO-1243zf), 1,3,3,3-tetrafluoro described in JP-A No.
  • HFO-1234ze Propene (HFO-1234ze), 2-fluoropropene (HFO-1261yf), 2,3,3,3-tetrafluoropropene (HFO-1234yf), 1,1,2-trifluoropropene (HFO-1243yc), special 1,2,3,3,3-pentafluoropropene (HFO-1225ye), trans-1,3,3,3-tetrafluoropropene (HFO-1234ze (E) described in Table 2006-512426 )), Cis-1,3,3,3-tetrafluoropropene (HFO-1234ze (Z)), As long as it has a property of causing disproportionation reaction it is applicable to the present invention. Further, as the fluorinated hydrocarbon having the property of causing a disproportionation reaction, an acetylene-based fluorinated hydrocarbon having a carbon-carbon triple bond may be used.
  • HFO-1123 is included.
  • a mixed refrigerant composed of HFO-1123 and HFC-32 can be used.
  • a mixed refrigerant composed of HFO-1123, HFC-32, and HFO-1234yf can also be used.
  • AMOLEA X series registered trademark: manufactured by Asahi Glass Co., Ltd.
  • AMOLEA Y series registered trademark: manufactured by Asahi Glass Co., Ltd.
  • HFO-1123 hydrocarbon (HC), hydrofluorocarbon (HFC), hydrochlorofluoroolefin (HCFO), chlorofluoroolefin (CFO), etc.
  • HFO-1123 hydrocarbon
  • HFC hydrofluorocarbon
  • HCFO hydrochlorofluoroolefin
  • CFO chlorofluoroolefin
  • HFC is a component that improves performance and has little impact on the ozone layer and global warming. It is preferable to use HFC having 5 or less carbon atoms.
  • difluoromethane HFC-32
  • difluoroethane HFC-152a
  • trifluoroethane HFC-143
  • tetrafluoroethane HFC-134
  • pentafluoroethane HFC-125
  • Pentafluoropropane HFC-245ca
  • HFC-236fa heptafluoropropane
  • HFC-227ea pentafluorobutane
  • HFCP heptafluorocyclopentane
  • HFC-32 difluoromethane
  • HFC-152a 1,1-difluoroethane
  • 1,1,2,2-tetrafluoroethane are less affected by both the ozone layer and global warming.
  • HFC-134 1,1,1,2-tetrafluoroethane
  • HFC-125 pentafluoroethane
  • HCFO is a compound that has a carbon-carbon double bond, has a high proportion of halogen in the molecule, and has reduced combustibility.
  • HCFO includes 1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd), 1-chloro-2,2-difluoroethylene (HCFO-1122), 1,2-dichlorofluoroethylene (HCFO). -1121), 1-chloro-2-fluoroethylene (HCFO-1131), 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) and 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) can be used.
  • HCFO-1224yd having particularly excellent performance is preferable, and HCFO-1233zd is preferable because it has excellent high critical temperature, durability, and coefficient of performance.
  • HCFOs other than HCFO-1224yd may be used alone or in combination of two or more.
  • the blade (51) that partitions the cylinder chamber (45) into the low pressure chamber (L) and the high pressure chamber (H) is integrally connected to the piston (44). For this reason, there is no sliding contact portion between the tip of the vane and the piston as in the rotary compressor. Therefore, it is possible to reliably avoid an increase in the temperature of the refrigerant at the tip of the blade (51).
  • the blade (51) tends to tilt with respect to the advancing / retreating direction of the blade (51).
  • the pair of bushes (52) holding the blade (51) swings inside the bush groove (53). That is, the pair of bushes (52) tilts integrally with the blade (51).
  • blade (51) and a bush (52) contact locally. Accordingly, unlike the rotary compressor, the temperature of the refrigerant does not increase due to the contact of the vanes.
  • the compression mechanism (40) of the present embodiment does not cause a local temperature increase at each sliding portion, unlike the portions of points a, b, and c of the conventional example. As a result, even when a refrigerant containing fluorocarbon hydrogen having the property of causing a disproportionation reaction is used, it is possible to prevent the disproportionation reaction from being caused inside the compression mechanism (40).
  • the compressor (30) of the above embodiment may be configured as the following modifications.
  • the compression mechanism (40) of the first modification includes a plurality of compression units (61, 62).
  • the first compression part (61) is provided near the lower part of the compression mechanism (40), and the second compression part (62) is provided near the upper part.
  • a compression mechanism (40) is comprised so that a refrigerant
  • coolant may be compressed by each compression part (61, 62), respectively.
  • the refrigerant is compressed in parallel by the compression units (61, 62).
  • the compression mechanism (40) has a first cylinder (42a), a middle plate (50), a second cylinder (42b), a first piston (44a), and a second piston (44b).
  • the drive shaft (35) of the compressor (30) is provided with a first crankshaft (37a) and a second crankshaft (37b).
  • a first cylinder chamber (45a) is formed inside the first cylinder (42a), and a second cylinder chamber (45b) is formed inside the second cylinder (42b).
  • a first crankshaft (37a) is fitted into the first piston (44a), and a second crankshaft (37b) is fitted into the second piston (44b).
  • the first compression part (61) corresponds to the first cylinder (42a) and the first piston (44a)
  • the second compression part (62) corresponds to the second cylinder (42b) and the second piston (44b).
  • Each compression section (61, 62) is provided with a back pressure chamber (54), a bush groove (53), a pair of bushes (52), and a blade (51), respectively, in the same manner as in the above embodiment (FIG. 4). It is done.
  • the first cylinder (42a) is formed with a first suction port (46a) communicating with the low pressure chamber (L) of the first cylinder chamber (45a).
  • a first suction pipe (23a) is connected to the first suction port (46a).
  • the second cylinder (42b) is formed with a second suction port (46b) communicating with the low pressure chamber (L) of the second cylinder chamber (45b).
  • a second suction pipe (23b) is connected to the second suction port (46b).
  • the first discharge port (47a) communicating with the high pressure chamber (H) of the first cylinder chamber (45a) is formed in the rear head (43).
  • the first discharge port (47a) communicates with the first muffler space (49a) of the first muffler (48a) that covers the rear head (43).
  • the second discharge port (47b) communicating with the high pressure chamber (H) of the second cylinder chamber (45b) is formed in the front head (41).
  • the second discharge port (47b) communicates with the second muffler space (49b) of the second muffler (48b) that covers the front head (41).
  • the first piston (44a) and the second piston (44b) rotate eccentrically.
  • the first compression section (61) the low-pressure refrigerant sucked into the first cylinder chamber (45a) through the first suction pipe (23a) and the first suction port (46a) is compressed to a high pressure.
  • the compressed refrigerant flows out into the internal space (S) through the first discharge port (47a) and the first muffler space (49a).
  • the second compression section (62) the refrigerant sucked into the second cylinder chamber (45b) through the second suction pipe (23b) and the second suction port (46b) is compressed to a high pressure.
  • the compressed refrigerant flows out to the internal space (S) through the second discharge port (47).
  • the refrigerant joined in the internal space (S) flows around the electric motor (32), then flows out of the discharge pipe (22), and is sent to the refrigerant circuit (11).
  • the blades (51) of the compression portions (61, 62) are integrally connected to the pistons (44a, 44b), and the blades (51) are respectively connected to the pair of bushes (52). It is held so that it can move forward and backward. Thereby, like a prior art example, it can avoid that a local temperature rise is caused by a sliding part, and it can prevent that a refrigerant causes disproportionation reaction.
  • the refrigerant is compressed in parallel by the plurality of compression units (61, 62), so that the rotational speed of the drive shaft (35) can be reduced. Therefore, in each compression part (61,62), the temperature rise in each sliding part accompanying rotation of a drive shaft (35) can be suppressed, and the disproportionation reaction of a refrigerant
  • coolant can be prevented more reliably.
  • the compression mechanism (40) of the second modification has a plurality of compression sections (61, 62).
  • a plurality of compression units (61, 62) are connected in series.
  • the compression mechanism (40) includes a low-stage-side first compression section (61) and a high-stage-side second compression section (62), and is configured to perform two-stage compression.
  • a first relay pipe (63) communicating with the high pressure chamber (H) of the first cylinder chamber (45a) is connected to the first cylinder (42a).
  • a second relay pipe (64) communicating with the low pressure chamber (L) of the first cylinder chamber (45a) is connected to the second cylinder (42b).
  • the first relay pipe (63) and the second relay pipe (64) communicate with each other.
  • the first piston (44a) and the second piston (44b) rotate eccentrically.
  • the low-pressure refrigerant sucked into the first cylinder chamber (45a) via the suction pipe (23) and the suction port (46) is compressed to an intermediate pressure between the low pressure and the high pressure.
  • the refrigerant compressed to the intermediate pressure is sucked into the second cylinder chamber (45b) through the first relay pipe (63) and the second relay pipe (64).
  • the refrigerant compressed to a high pressure in the second cylinder chamber (45b) flows out into the internal space (S) through the discharge port (47) and the muffler space (49).
  • the refrigerant joined in the internal space (S) flows around the electric motor (32), then flows out of the discharge pipe (22), and is sent to the refrigerant circuit (11).
  • the blades (51) of the compression portions (61, 62) are integrally connected to the pistons (44a, 44b), respectively, and the blades (51) are respectively connected to the pair of bushes (52). It is held so that it can move forward and backward. Thereby, like a prior art example, it can avoid that a local temperature rise is caused by a sliding part, and it can prevent that a refrigerant causes disproportionation reaction.
  • the refrigerant is compressed in two stages in the two compression sections (61, 62). For this reason, compared with the case where a refrigerant
  • the compressor (30) of Modification 3 is different from the compression mechanism (40) of Modification 1 in the shapes of the piston (44) and the cylinder (42).
  • the compression mechanism (40) of the third modification is configured as a so-called non-circular piston type. That is, in the compression mechanism (40) of the above-described embodiment, the cross-sectional shape of the inner peripheral surface of the cylinder (42) and the outer peripheral surface of the piston (44) is configured to be a perfect circle. On the other hand, in the modification 3, the cross-sectional shape of the inner peripheral surface of a cylinder (42) and the outer peripheral surface of a piston (44) is formed in non-circular shape (substantially egg shape).
  • the inner peripheral surface shape of the cylinder (42) is formed in a non-circular shape corresponding to the outer peripheral surface shape of the piston (44). That is, the inner peripheral surface shape of the cylinder (42) is formed in a non-circular shape based on an envelope outside the outer peripheral surface of the piston (44) that performs the swinging motion.
  • the shape of the inner peripheral surface of the cylinder (42) is such that the right portion in FIG. 7 bulges radially outward and the left portion in FIG. 7 is formed in a true arc shape.
  • the blade (51) is integrally connected to the piston (44), and the blade (51) is held between the pair of bushes (52) so as to advance and retreat.
  • the blade (51) can avoid that a local temperature rise is caused by a sliding part, and it can prevent that a refrigerant causes disproportionation reaction.
  • the volume change rate during one rotation of the compression chamber is optimized according to the outer peripheral surface shape of the piston (44). it can. Due to the outer peripheral surface shape of the piston (44) shown in FIG. 7, the volume of the compression chamber can be quickly reduced as compared with a method in which the outer peripheral surface shape of the piston is a perfect circle (circular piston type) (see FIG. 8). Thereby, in the modification 3, the rotation angle near the discharge stroke becomes smaller than that of the circular piston type. As a result, in the modified example 3, compared with the circular piston type, the start timing of the discharge stroke becomes earlier, and the period of the discharge stroke can be lengthened.
  • the outer peripheral surface shape of the piston (44) may be an elliptical shape in which both the discharge side and the suction side are bulged.
  • the compressor (30) of Modification 4 differs from the above embodiment in the configuration of the compression mechanism (40).
  • the compression mechanism (40) includes a fixed member (71) fixed to the casing (31) and a movable member (72) connected to the crankshaft (37) of the drive shaft (35). ).
  • the fixing member (71) has a fixed side end plate portion (73), an outer edge portion (74), and an intermediate cylinder (75) (cylinder).
  • the fixed side end plate portion (73) is formed in a flat disk shape.
  • the outer edge portion (74) is formed in a substantially cylindrical shape that protrudes downward in the axial direction from the outer peripheral edge portion of the fixed-side end plate portion (73).
  • the intermediate cylinder (75) protrudes downward in the axial direction from between the axial center portion and the outer peripheral end portion of the fixed-side end plate portion (73).
  • the intermediate cylinder (75) is formed in an annular shape (shaped in a cross section C) that is coaxial with the axis of the drive shaft (35) and is partially cut away.
  • a bush groove (53) similar to that of the embodiment is formed in the cut portion of the intermediate cylinder (75).
  • a pair of bushes (52) is held in the bush groove (53) so as to be swingable.
  • a blade groove (55) for holding the blade (51) is formed between the pair of bushes (52).
  • the movable member (72) has a movable side end plate portion (76), an inner piston (77) (piston), and an outer piston (78).
  • the movable side end plate portion (76) is formed in a disc shape into which the crankshaft (37) is fitted.
  • the inner piston (77) projects upward in the axial direction from the inner peripheral edge of the movable side end plate (76).
  • the inner piston (77) is formed in a cylindrical shape into which the crankshaft (37) is fitted.
  • the outer piston (78) protrudes upward in the axial direction from the outer peripheral edge portion of the movable side end plate portion (76).
  • an inner cylinder chamber (81) is formed between the inner piston (77) and the intermediate cylinder (75), and an outer cylinder chamber (81) is formed between the intermediate cylinder (75) and the outer piston (78). 82) is formed.
  • the blade (51) of Modification 4 is provided on the movable member (72).
  • the blade (51) is integrally connected to the outer peripheral surface of the inner piston (77) and the inner peripheral surface of the outer piston (78).
  • the blade (51) is held in the bush groove (53) so as to be able to advance and retreat.
  • the inner cylinder chamber (81) and the outer cylinder chamber (82) are partitioned into a high pressure chamber (H) and a low pressure chamber (L) by a blade (51), respectively.
  • the fixing member (71) is formed with a suction port (46) communicating with the low pressure chamber (L) of each cylinder chamber (45).
  • the fixing member (71) is formed with two discharge ports (47) communicating with the high pressure chambers (H) of the cylinder chambers (45).
  • the inner piston (77) and the outer piston (78) rotate eccentrically with the rotation of the drive shaft (35).
  • the volume of the low pressure chamber (L) of the inner cylinder chamber (81) gradually increases with the eccentric rotation of the inner piston (77)
  • the low pressure refrigerant flows through the suction port (46) into the low pressure chamber (81) of the inner cylinder chamber (81). Inhaled to L).
  • the inner piston (77) further eccentrically rotates, the low pressure chamber (L) of the inner cylinder chamber (81) becomes the high pressure chamber (H), and the refrigerant in the high pressure chamber (H) is discharged from the discharge port (47).
  • the low pressure refrigerant passes through the suction port (46) and the low pressure of the outer cylinder chamber (82). It is inhaled into the room (L).
  • the outer piston (78) further eccentrically rotates, the low pressure chamber (L) of the outer cylinder chamber (82) becomes the high pressure chamber (H), and the refrigerant in the high pressure chamber (H) is discharged from the discharge port (47).
  • the blade (51) is integrally connected to the inner piston (77) and the outer piston (78), and the blade (51) can be moved back and forth between the pair of bushes (52). Retained.
  • the blade (51) can avoid that a local temperature rise is caused by a sliding part, and it can prevent that a refrigerant causes disproportionation reaction.
  • Modification 5 The compressor (30) of Modification 5 has a compression mechanism (40) similar to that of Modification 4.
  • the fixing member (71) of Modification 5 has a fixed side end plate portion (73), an inner piston (77) (piston), and an outer piston (78).
  • the outer piston (78) is formed in an annular shape that protrudes downward in the axial direction from the outer peripheral edge portion of the fixed-side end plate portion (73).
  • the inner piston (77) is formed in an annular shape that protrudes downward in the axial direction from between the shaft center portion and the outer peripheral end portion of the fixed-side end plate portion (73).
  • the outer piston (78) and the inner piston (77) are coaxial with the axis of the drive shaft (35).
  • the movable member (72) of the modified example 5 has a movable side end plate portion (76), a boss portion (79), and an intermediate cylinder (75) (cylinder).
  • the boss portion (79) protrudes upward in the axial direction from the inner peripheral edge portion of the movable side end plate portion (76).
  • the boss portion (79) is formed in a cylindrical shape into which the crankshaft (37) is fitted.
  • the intermediate cylinder (75) protrudes upward in the axial direction from the outer peripheral portion of the movable side end plate portion (76).
  • an inner cylinder chamber (81) is formed between the inner piston (77) and the intermediate cylinder (75)
  • an outer cylinder chamber (81) is formed between the intermediate cylinder (75) and the outer piston (78). 82) is formed.
  • the blade (51) of the modified example 5 is provided on the fixing member (71).
  • the blade (51) is integrally connected to the outer peripheral surface of the inner piston (77) and the inner peripheral surface of the outer piston (78).
  • the blade (51) is held in the bush groove (53) so as to be able to advance and retreat.
  • the inner cylinder chamber (81) and the outer cylinder chamber (82) are partitioned into a high pressure chamber (H) and a low pressure chamber (L) by a blade (51), respectively.
  • the fixing member (71) is formed with a suction port (46) communicating with the low pressure chamber (L) of each cylinder chamber (45).
  • the fixing member (71) is formed with two discharge ports (47) communicating with the high pressure chambers (H) of the cylinder chambers (45).
  • the intermediate cylinder (75) rotates eccentrically with the rotation of the drive shaft (35).
  • the volume of the low pressure chamber (L) of the inner cylinder chamber (81) gradually increases with the eccentric rotation of the intermediate cylinder (75)
  • the low pressure refrigerant passes through the suction port (46) to the low pressure chamber (81) of the inner cylinder chamber (81). Inhaled to L).
  • the intermediate cylinder (75) further rotates eccentrically, the low pressure chamber (L) of the inner cylinder chamber (81) becomes the high pressure chamber (H), and the refrigerant in the high pressure chamber (H) is discharged from the discharge port (47).
  • the low pressure refrigerant passes through the suction port (46) and the low pressure of the outer cylinder chamber (82). It is inhaled into the room (L).
  • the intermediate cylinder (75) further rotates eccentrically, the low pressure chamber (L) of the outer cylinder chamber (82) becomes the high pressure chamber (H), and the refrigerant in the high pressure chamber (H) is discharged from the discharge port (47).
  • the blade (51) is integrally connected to the inner piston (77) and the outer piston (78), and the blade (51) can be moved back and forth between the pair of bushes (52). Retained.
  • the blade (51) can avoid that a local temperature rise is caused by a sliding part, and it can prevent that a refrigerant causes disproportionation reaction.
  • the refrigeration apparatus of the above embodiment is an air conditioner (10) that performs indoor cooling and heating.
  • the refrigeration apparatus may be any apparatus as long as it has a refrigerant circuit and performs a refrigeration cycle.
  • the present invention is useful for a refrigeration apparatus.
  • Air conditioning equipment (refrigeration equipment) 11 Refrigerant circuit 30 Compressor 32 Electric motor 40 Compression mechanism 42 Cylinder 42a First cylinder (cylinder) 42b Second cylinder (cylinder) 44 piston 44a first piston (piston) 44b Second piston (piston) 45 Cylinder chamber 45a First cylinder chamber (cylinder chamber) 45b Second cylinder chamber (cylinder chamber) 51 Blade 52 Bush 53 Bush Groove 61 First Compression Section (Compression Section) 62 2nd compression part (compression part) 75 Intermediate cylinder (cylinder) 77 Inner piston (piston) H High pressure chamber L Low pressure chamber

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

冷媒回路(11)の冷媒は、不均化反応を起こす性質を有するフッ化炭化水素を含む冷媒である。圧縮機構(40)には、ピストン(44,44a,44b,77)と一体に連結され、シリンダ室(45,45a,45b,81,82)を低圧室(L)と高圧室(H)とに仕切るブレード(51)と、シリンダ(2,42a,42b,75)に形成される一対のブッシュ溝(53)に揺動可能に保持されるとともにブレード(51)を進退可能に保持する一対のブッシュ(52)とが設けられる。

Description

冷凍装置
  本発明は、圧縮機を備えた冷凍装置に関する。
  従来より、圧縮機が接続され、冷凍サイクルを行う冷媒回路を備えた冷凍装置が知られており、空気調和装置等に広く利用されている。
  冷凍回路に接続される圧縮機として、特許文献1には、ロータリ式の圧縮機が開示されている。この圧縮機は、図13に示すように、シリンダ101の内部のシリンダ室102に環状のピストン103が配置される。ピストン103は、電動機によって回転駆動されるクランク軸104に内嵌している。シリンダ101には、縦長のベーン105を収容するベーン溝106が形成される。ベーン105は、例えばスプリング(図示省略)によってピストン103に向かって付勢され、ベーン105の先端がピストン103の外周面と常に摺接する。このベーン105により、シリンダ室102は、吸込ポート107と連通する低圧室108と、吐出ポート(図示省略)と連通する高圧室109とに区画される。ピストン103がシリンダ室102で偏心回転すると、低圧室108に吸い込まれた冷媒が、高圧室109において圧縮され、吐出ポートより吐出される。
特開2015-169089号公報
  ところで、上述した圧縮機に適用される冷媒が、不均化反応を起こす性質を有する
場合、圧縮機構の内部において、この冷媒が不均化反応を起こすおそれがあった。ここで、不均化反応とは、同一種類の分子が互いに反応し、異なる生成物を与える化学反応である。
  具体的には、上述したロータリ式の圧縮機では、図13に示すように、ベーンの先端がピストンの外周面に常に押し付けられ、低圧室と高圧室とを仕切るようにしている。このため、ベーンの先端の摺動部分(例えば図13のa点の部分)の温度が上昇し、その付近の冷媒の温度が高くなる可能性があった。
  また、ベーンは、低圧室と高圧室とに差圧により、図13の白抜きの矢印方向に押し付けられる。このため、ベーンは、その進退方向に対して傾いてしまうため、ベーンの側面とベーン溝の挿入口の縁部との接触部(例えば図13のb点の部分)や、ベーンの後端の角部とベーン溝の内壁との接触部(図13のc点の部分)で片当たりが生じる。この結果、これらの接触部の温度が上昇し、その付近の冷媒の温度が高くなる可能性があった。
  このような局所的な温度上昇に起因して、冷媒の温度が所定温度(不均化反応が発生してしまう温度)よりも高くなると、この冷媒が不均化反応を起こしてしまうおそれがあった。
  本発明は、このような課題に着目してなされたものであり、その目的は、圧縮機構の内部で冷媒が不均化反応を起こしてしまうことを防止することである。
  第1の発明は、冷媒を圧縮する圧縮機(30)が接続される冷媒回路(11)を備えた冷凍装置であって、上記冷媒は、不均化反応を起こす性質を有するフッ化炭化水素を含む冷媒であり、上記圧縮機(30)は、電動機(32)と、該電動機(32)に駆動される圧縮機構(40)とを備え、上記圧縮機構(40)は、シリンダ室(45,45a,45b,81,82)が形成されるシリンダ(42,42a,42b,75)と、該シリンダ室(45,45a,45b,81,82)に収容されるピストン(44,44a,44b,77)と、該ピストン(44,44a,44b,77)と一体に連結され、上記シリンダ室(45,45a,45b,81,82)を低圧室(L)と高圧室(H)とに仕切るブレード(51)と、上記シリンダ(42,42a,42b,75)に形成される一対のブッシュ溝(53)に揺動可能に保持されるとともに上記ブレード(51)を進退可能に保持する一対のブッシュ(52)とを有し、上記ピストン(44,44a,44b,77)と上記シリンダ(42,42a,42b,75)とが相対的に偏心回転するように構成されることを特徴とする。
  第1の発明では、シリンダ室(45,45a,45b,81,82)を低圧室(L)と高圧室(H)とに仕切るブレード(51)が、ピストン(44,44a,44b,77)と一体的に連結される。このため、ロータリ式の圧縮機のように、ベーンの先端部とピストンとの間の摺接部分は存在しない。よって、ブレード(51)の先端部での冷媒の温度上昇を確実に回避できる。
  ブレード(51)には、低圧室(L)と高圧室(H)との差圧が作用するため、ブレード(51)は、ブレード(51)の進退方向に対して傾こうとする。しかし、ブレード(51)が傾いたとしても、ブレード(51)を保持する一対のブッシュ(52)がブッシュ溝(53)の内部で揺動する。つまり、一対のブッシュ(52)は、ブレード(51)と一体的に傾く。このため、ブレード(51)とブッシュ(52)とが局所的に接触することも回避できる。従って、ロータリ式の圧縮機のように、ベーンの片当たりに起因して冷媒の温度上昇を招くこともない。
  以上のように、従来例の圧縮機であれば、図13のa点、b点、及びc点に相当する部分において冷媒の温度が極端に高くなる可能性があったのに対し、本発明では、冷媒の温度が極端に高くなることがない。従って、冷凍装置の冷媒として不均化反応を起こす性質を有するフッ化炭化水素を用いても、圧縮機構の内部で不均化反応を起こすことを防止できる。
  第2の発明は、第1の発明において、上記圧縮機構(40)は、上記シリンダ(42a,42b)、上記ピストン(44a,44b)、上記ブレード(51)、及び上記ブッシュ(52)をそれぞれ有する複数の圧縮部(61,62)を有し、該複数の圧縮部(61,62)で並列的に冷媒を圧縮するように構成されることを特徴とする。
  第2の発明では、複数の圧縮部(61.62)で冷媒を並列で圧縮するため、1つの圧縮部のみで冷媒を圧縮する場合と比較して、駆動軸の回転数を低減できる。これにより、圧縮機構では、ピストンとシリンダの間の摺動部や、ブッシュとブレードの間の摺動部での発熱を低減でき、各圧縮部(61,62)での冷媒の温度上昇を抑制できる。
  第3の発明は、第1の発明において、上記圧縮機構(40)は、上記シリンダ(42a,42b)、上記ピストン(44a,44b)、上記ブレード(51)、及び上記ブッシュ(52)をそれぞれ有する複数の圧縮部(61,62)を有し、該複数の圧縮部(61,62)が直列に接続されて構成されることを特徴とする。
  第3の発明では、複数の圧縮部(61,62)において冷媒が多段階に圧縮される。このため、1つの圧縮部で冷媒を圧縮する場合と比較すると、各圧縮部(61,62)での冷媒の差圧(吸入圧と吐出圧の差)が小さくなる。このようにすると、各圧縮部(61,62)では、低圧室(L)と高圧室(H)との差圧が小さくなるため、差圧に起因する摺動抵抗を低減できる。この結果、各圧縮部(61,62)での冷媒の温度上昇を抑制できる。
  第4の発明は、第1乃至3の発明のいずれか1つにおいて、上記圧縮機構(40)は、非円形状の内周面を有する上記シリンダ(42)と、非円形状の外周面を有する上記ピストン(44)とを有し、該ピストン(44)が偏心回転する非円形ピストン式で構成されることを特徴とする冷凍装置である。
  第4の発明では、圧縮機構(40)が、いわゆる非円形ピストン式に構成される。非円形ピストン式では、圧縮室(高圧室(H))の一回転中の容積変化率をピストン(44)の外周面形状に応じて最適化できる。これにより、非円形ピストン式の圧縮機構(40)では、吐出行程のタイミングを早めることができ、ひいては吐出行程の期間を長くすることができる。このようにすると、吐出行程での過圧縮を抑制できるため、過圧縮に伴う高低差圧(高圧室(H)と低圧室(L)のとの圧力の差)が小さくなり、このような差圧に起因する圧縮機構(40)での摺動抵抗を更に低減できる。この結果、過圧縮に起因する摺動部での局所的な温度上昇を回避でき、冷媒が不均化反応を起こすことを一層効果的に抑制できる。
  第5の発明は、第1乃至4の発明のいずれか1つにおいて、上記冷媒は、HFO-1123を含む冷媒であることを特徴とする。
  第5の発明では、冷媒として、HFO-1123を含む冷媒が用いられる。HFO-1123は、大気中のOHラジカルによって分解され易いため、オゾン層への影響や地球温暖化の影響も小さい。また、HFO-1123を含む冷媒を用いることで、冷凍装置の冷凍サイクルの性能も向上する。
  本発明によれば、ロータリ式の圧縮機のように、圧縮機構の内部での局所的な温度上昇を抑制できるため、冷媒の不均化反応を防止しつつ、冷凍サイクルを行うことができる。
図1は、実施形態に係る冷凍装置の概略の構成図である。 図2は、実施形態に係る圧縮機の縦断面図である。 図3は、実施形態に係る圧縮機構の内部を表す横断面図である。 図4は、実施形態に係る圧縮機構の内部を表す横断面図であり、図4(A)は回転角が0°(360°)の状態を、図4(B)は回転角が90°の状態を、図4(C)は回転角が180°の状態を、図4(D)は回転角が270°の状態をそれぞれ表している。 図5は、変形例1に係る圧縮機の要部を拡大した縦断面図である。 図6は、変形例2に係る圧縮機の要部を拡大した縦断面図である。 図7は、変形例3に係る圧縮機構の内部を表す横断面図である。 図8は、変形例3に係る圧縮機構(非円形ピストン式)と、比較例(円形ピストン式)における、圧縮室の容積と回転角の関係を表したグラフである。 図9は、変形例4に係る圧縮機の要部を拡大した縦断面図である。 図10は、変形例4に係る圧縮機構の内部を表す横断面図である。 図11は、変形例5に係る圧縮機の要部を拡大した縦断面図である。 図12は、変形例5に係る圧縮機構の内部を表す横断面図である。 図13は、従来例の圧縮機構の内部を表す横断面図である。
  以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 〈冷凍装置の全体構成〉
  実施形態に係る冷凍装置は、室内の冷房と暖房とを行う空気調和装置(10)である。図1に示すように、空気調和装置(10)は、冷媒が充填される冷媒回路(11)を備える。冷媒回路(11)では、冷媒が循環して蒸気圧縮式の冷凍サイクルが行われる。この冷媒としては、不均化反応を起こす性質を有するフッ化炭化水素を含む冷媒が用いられる(詳細は後述する)。
  空気調和装置(10)は、室外ユニット(12)と室内ユニット(13)とを備える。室内ユニット(13)は1台でなく、2台以上であってもよい。
  冷媒回路(11)には、圧縮機(30)と、室外熱交換器(16)(熱源熱交換器)と、膨張弁(17)と、室内熱交換器(18)(利用熱交換器)と、四方切換弁(19)とが接続される。圧縮機(30)、室外熱交換器(16)、四方切換弁(19)は、室外ユニット(12)に収容される。室内熱交換器(18)及び膨張弁(17)は、室内ユニット(13)に収容される。
  室外ユニット(12)では、室外熱交換器(16)の近傍に室外ファン(20)が設置される。室外熱交換器(16)では、室外ファン(20)が搬送する室外空気と冷媒とが熱交換する。室内ユニット(13)では、室内熱交換器(18)の近傍に室内ファン(21)が設置される。室内熱交換器(18)では、室内ファン(21)が搬送する室内空気と冷媒とが熱交換する。
  四方切換弁(19)は、第1~第4までのポート(P1~P4)を有している。第1ポート(P1)は圧縮機(30)の吐出管(22)と繋がり、第2ポート(P2)は圧縮機(30)の吸入管(23)と繋がり、第3ポート(P3)は室外熱交換器(16)のガス端部と繋がり、第4ポート(P4)は室内熱交換器(18)のガス端部と繋がる。四方切換弁(19)は、第1状態(図1の実線で示す状態)と第2状態(図1の破線で示す状態)とに切り換わる。第1状態では、第1ポート(P1)と第4ポート(P4)が連通し、第2ポート(P2)と第3ポート(P3)が連通する。従って、四方切換弁(19)が第1状態のときに圧縮機(30)が運転されると、室内熱交換器(18)が凝縮器(放熱器)となり、室外熱交換器(16)が蒸発器となる冷凍サイクル(暖房サイクル)が行われる。第2状態では、第1ポート(P1)と第3ポート(P3)が連通し、第2ポート(P2)と第4ポート(P4)とが連通する。従って、四方切換弁(19)が第2状態のときに圧縮機(30)が運転されると、室外熱交換器(16)が凝縮器(放熱器)となり、室内熱交換器(18)が蒸発器となる冷凍サイクル(冷房サイクル)が行われる。
 〈圧縮機の全体構成〉
  図2に示すように、圧縮機(30)は、縦長の円筒密閉型のケーシング(31)を備えている。ケーシング(31)の下部には、吸入管(23)が貫通して固定されている。ケーシング(31)の頂部(上部鏡板)には、吐出管(22)が貫通して固定されている。ケーシング(31)の底部には、圧縮機(30)の各摺動部を潤滑するための油(冷凍機油)が貯留される。ケーシング(31)の内部には、圧縮機構(40)から吐出された冷媒(吐出冷媒ないし高圧冷媒)で満たされる内部空間(S)が形成される。つまり、本実施形態の圧縮機(30)は、ケーシング(31)の内部空間(S)の内圧が高圧冷媒の圧力と実質的に等しい、いわゆる高圧ドーム型に構成されている。
  ケーシング(31)の内部空間(S)には、上から下に向かって順に、電動機(32)、駆動軸(35)、及び圧縮機構(40)が設けられる。
  電動機(32)は、固定子(33)と回転子(34)とを有している。固定子(33)は、ケーシング(31)の胴部の内周面に固定されている。回転子(34)は、固定子(33)の内部を上下方向に貫通している。回転子(34)の軸心内部には、駆動軸(35)が固定される。電動機(32)が通電されると、回転子(34)とともに駆動軸(35)が回転駆動される。
  駆動軸(35)は、ケーシング(31)の胴部の軸心上に位置している。駆動軸(35)は、圧縮機構(40)の各軸受に回転可能に支持されている。駆動軸(35)は、電動機(32)と同軸の主軸(36)と、主軸(36)から偏心したクランク軸(37)とを有している。クランク軸(37)の外径は主軸(36)の外径よりも大きい。駆動軸(35)の下部には、ケーシング(31)の底部に溜まった油を汲み上げる油ポンプ(38)が設けられる。油ポンプ(38)で汲み上げた油は、駆動軸(35)の内部の流路(図示省略)を通じて、軸受けや圧縮機構(40)の各摺動部へ供給される。
  圧縮機構(40)は、電動機(32)の下側に配置されている。圧縮機構(40)は、フロントヘッド(41)、シリンダ(42)、リアヘッド(43)、及びピストン(44)を有している。シリンダ(42)は、扁平な筒状に形成される。シリンダ(42)の上端の開口はフロントヘッド(41)に閉塞され、シリンダ(42)の下端の開口はリアヘッド(43)に閉塞される。これにより、シリンダ(42)の内部には、円柱状のシリンダ室(45)が区画される。
  シリンダ室(45)には、円環状のピストン(44)が収容される。ピストン(44)は、クランク軸(37)に内嵌する。従って、電動機(32)によって駆動軸(35)が回転駆動されると、シリンダ室(45)内をピストン(44)が偏心回転する。
  シリンダ(42)には、シリンダ室(45)(厳密には低圧室(L))と連通する吸入ポート(46)が径方向に貫通している。吸入ポート(46)には、吸入管(23)が接続される。フロントヘッド(41)には、シリンダ室(厳密には、高圧室(H))と連通する吐出ポート(47)が形成される。吐出ポート(47)には、リード弁等の吐出弁(図示省略)が設けられる。
  圧縮機構(40)の上部には、フロントヘッド(41)を覆うマフラ(48)が取り付けられる。マフラ(48)の内部には、吐出ポート(47)と連通するマフラ空間(49)が形成される。マフラ空間(49)では、冷媒の吐出脈動に起因する騒音が低減される。
 〈圧縮機構の内部構造〉
  圧縮機構(40)は、ブレード(51)及びブッシュ(52)を有する揺動ピストン型に構成される。図2及び図3に示すように、シリンダ(42)には、ブッシュ溝(53)と背圧室(54)とが形成される。ブッシュ溝(53)は、シリンダ室(45)と隣接する位置に形成され、シリンダ室(45)と連通している。ブッシュ溝(53)は、横断面が略円形の円柱状の空間を構成している。背圧室(54)は、シリンダ(42)において、ブッシュ溝(53)よりも径方向外方に位置している。背圧室(54)は、横断面が略円形の円柱状の空間を構成している。
  背圧室(54)は、シリンダ室(45)側の端部がブッシュ溝(53)と連通している。背圧室(54)は、ケーシング(31)の内部空間(S)の圧力(即ち、圧縮機構(40)の吐出冷媒の圧力)に相当する高圧圧力の雰囲気となっている。背圧室(54)には、油ポンプ(38)によって汲み上げられた油が供給される。背圧室(54)の油は、ブッシュ溝(53)の内周面とブッシュ(52)との間の摺動部、及びブッシュ(52)とブレード(51)の摺動部の潤滑に利用される。
  一対のブッシュ(52)は、横断面が略弓形状ないし半円形状に形成されている。一対のブッシュ(52)は、ブッシュ溝(53)の内部に揺動可能に保持される。一対のブッシュ(52)は、ブッシュ溝(53)に対向する円弧部(52a)と、ブレード(51)に対向する平坦部(52b)とを有している。一対のブッシュ(52)は、ブッシュ溝(53)の中心を軸心として円弧部(52a)がブッシュ溝(53)と摺接するように揺動運動を行う。
  一対のブッシュ(52)は、各平坦部(52b)が互いに対向するようにブッシュ溝(53)に配置される。これにより、一対のブッシュ(52)の各平坦部(52b)の間には、ブレード溝(55)が形成される。ブレード溝(55)は、横断面が略矩形状に形成され、その内部にブレード(51)が径方向に進退可能に保持される。
  ブレード(51)は、径方向外方に延びる直方体状ないし板状に形成される。ブレード(51)の基端(径方向内方端部)は、ピストン(44)の外周面に一体に連結している。ここで、ピストン(44)とブレード(51)とは同じ部材で一体成型されていてもよいし、別部材を一体的に固定してもよい。ブレード(51)の先端(径方向外方端部)は、背圧室(54)に位置している。ブレード(51)は、シリンダ室(45)を低圧室(L)と高圧室(H)とに仕切っている。低圧室(L)は、図2におけるブレード(51)の右側の空間であり、吸入ポート(46)と連通している。高圧室(H)は、図2におけるブレード(51)の左側の空間であり、吐出ポート(47)と連通している。
  -圧縮機の運転動作-
  電動機(32)が通電状態となり、駆動軸(35)が回転駆動されると、ピストン(44)がシリンダ室(45)で偏心運動(厳密には、揺動運動)を行う。
  図4に示すように、圧縮機構(40)では、ピストン(44)の外周面が、シリンダ室(45)の内周面と油膜を介して線接触し、シール部を形成する。ピストン(44)が揺動運動を行うと、ピストン(44)とシリンダ(42)との間のシール部が、シリンダ室(45)の内周面に沿って変位し、低圧室(L)と高圧室(H)の容積が変化する。この際、ブレード(51)は、ピストン(44)の回転角に応じてブレード溝(55)の内部を進退する。同時に、一対のブッシュ(52)は、ブッシュ溝(53)の軸心を中心としてブレード(51)とともに揺動する。なお、ここでいう「回転角」は、ピストン(44)がブッシュ溝(53)に最も近づく位置(いわゆる上死点)を基準0°とし、駆動軸(35)の回転方向(図4の時計回り方向)に角度を表したものである。
  ピストン(44)の揺動運動に伴い低圧室(L)の容積が徐々に大きくなると、低圧の冷媒が、吸入管(23)及び吸入ポート(46)を通じて低圧室(L)へ吸入されていく。次いで、この低圧室(L)が吸入ポート(46)から遮断されると、遮断された空間が高圧室(H)を構成する。次いで、この高圧室(H)の容積が徐々に小さくなると、高圧室(H)の内圧が上昇していく。高圧室(H)の内圧が内部空間(S)の圧力より大きくなると、吐出行程が行われる。つまり、吐出行程では、吐出ポート(47)の吐出弁が開放され、高圧室(H)の冷媒が吐出ポート(47)を通じて、圧縮機構(40)の外部へ流出する。吐出ポート(47)から吐出された冷媒は、マフラ空間(49)を介して内部空間(S)へ流出する。内部空間(S)の冷媒は、電動機(32)の周囲を流れた後、吐出管(22)を流出し、冷媒回路(11)へ送られる。
 -冷媒について-
  冷媒回路(11)に充填される冷媒としては、不均化反応を起こす性質を有するフッ化炭化水素から成る単一冷媒、または不均化反応を起こす性質を有するフッ化炭化水素と、これ以外の少なくとも1種の冷媒から成る混合冷媒を用いることができる。
  不均化反応を起こす性質を有するフッ化炭化水素としては、オゾン層への影響、地球温暖化への影響がともに少なく、OHラジカルによって分解されやすい炭素-炭素二重結合を有するヒドロフルオロオレフィン(HFO)を用いることができる。具体的に、このようなHFO冷媒としては、特開2015-7257号公報および特開2016-28119号公報に記載された、優れた性能を有するトリフルオロエチレン(HFO-1123)を用いるのが好ましい。また、HFO-1123以外のHFO冷媒としては、特開平04-110388号公報に記載されている、3,3,3-トリフルオロプロペン(HFO-1243zf)、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)、2-フルオロプロペン(HFO-1261yf)、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、1,1,2-トリフルオロプロペン(HFO-1243yc)、特表2006-512426号公報に記載されている、1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye)、トランス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))、シス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))のうち、不均化反応を起こす性質を有するものであれば本発明に適用可能である。また、不均化反応を起こす性質を有するフッ化炭化水素として、炭素-炭素三重結合を有するアセチレン系フッ化炭化水素を用いてもよい。
  また、不均化反応を起こす性質を有するフッ化炭化水素を含む混合冷媒を用いる場合、上述したHFO-1123を含んでいるのが好ましい。例えば、HFO-1123とHFC-32とから成る混合冷媒を用いることができる。この混合冷媒の組成比は、例えば、HFO-1123:HFC-32=40:60(単位:重量%)であるのが好ましい。また、HFO-1123とHFC-32とHFO-1234yfとから成る混合冷媒を用いることもできる。この混合冷媒の組成比は、例えば、HFO-1123:HFC-32:HFO-1234yf=40:44:16(単位:重量%)であるのが好ましい。さらに、混合冷媒として、AMOLEA Xシリーズ(登録商標:旭硝子社製)やAMOLEA Yシリーズ(登録商標:旭硝子社製)を用いることもできる。
  また、混合冷媒に含まれる他の冷媒として、適宜、炭化水素(HC)、ハイドロフルオロカーボン(HFC)、ヒドロクロロフルオロオレフィン(HCFO)、クロロフルオロオレフィン(CFO)などの、HFO-1123とともに気化、液化する他の物質を用いてもよい。
  HFCは、性能を向上させる成分であり、オゾン層への影響、地球温暖化への影響がともに少ない。HFCは、炭素数が5以下であるものを用いるのが好ましい。具体的に、HFCとしては、ジフルオロメタン(HFC-32)、ジフルオロエタン(HFC-152a)、トリフルオロエタン(HFC-143)、テトラフルオロエタン(HFC-134)、ペンタフルオロエタン(HFC-125)、ペンタフルオロプロパン(HFC-245ca)、ヘキサフルオロプロパン(HFC-236fa)、ヘプタフルオロプロパン(HFC-227ea)、ペンタフルオロブタン(HFC-365)、ヘプタフルオロシクロペンタン(HFCP)などを用いることができる。中でも、オゾン層への影響、地球温暖化への影響がともに少ない点から、ジフルオロメタン(HFC-32)、1,1-ジフルオロエタン(HFC-152a)、1,1,2,2-テトラフルオロエタン(HFC-134)、1,1,1,2-テトラフルオロエタン(HFC-134a)およびペンタフルオロエタン(HFC-125)を用いるのが特に好ましい。これらのHFCを単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
  HCFOは、炭素-炭素二重結合を有し、分子中のハロゲンの割合が多く、燃焼性が抑えられた化合物である。HCFOとしては、1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd)、1-クロロ-2,2-ジフルオロエチレン(HCFO-1122)、1,2-ジクロロフルオロエチレン(HCFO-1121)、1-クロロ-2-フルオロエチレン(HCFO-1131)、2-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233xf)および1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd)を用いることができる。中でも、特に優れた性能を有するHCFO-1224ydが好ましく、他には、高い臨界温度、耐久性、成績係数が優れることから、HCFO-1233zdが好ましい。HCFO-1224yd以外のHCFOは、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 -実施形態の効果-
  上記実施形態では、HFO-1123等の冷媒を用いることで、オゾン層への影響や地球温暖化の影響を抑制できる。一方、このような不均化反応を起こす性質を有するフッ化炭化水素を含む冷媒を、従来例の圧縮機(図12を参照)に適用した場合、a点、b点、及びc点に相当する部分で局所的な温度上昇を招き、この冷媒が不均化反応を起こす可能性があった。
  これに対し、本実施形態では、シリンダ室(45)を低圧室(L)と高圧室(H)とに仕切るブレード(51)が、ピストン(44)と一体的に連結される。このため、ロータリ式の圧縮機のように、ベーンの先端部とピストンとの間の摺接部分は存在しない。よって、ブレード(51)の先端部での冷媒の温度上昇を確実に回避できる。
  ブレード(51)には、低圧室(L)と高圧室(H)との差圧が作用するため、ブレード(51)は、ブレード(51)の進退方向に対して傾こうとする。しかし、ブレード(51)が傾いたとしても、ブレード(51)を保持する一対のブッシュ(52)がブッシュ溝(53)の内部で揺動する。つまり、一対のブッシュ(52)は、ブレード(51)と一体的に傾く。このため、ブレード(51)とブッシュ(52)とが局所的に接触することも回避できる。従って、ロータリ式の圧縮機のように、ベーンの片当たりに起因して冷媒の温度上昇を招くこともない。
  以上により、本実施形態の圧縮機構(40)では、従来例のa点、b点、及びc点の部分のように、各摺動部で局所的な温度上昇を招くことがない。この結果、不均化反応を起こす性質を有するフッ化炭素水素を含む冷媒を用いても、圧縮機構(40)の内部で不均化反応を招くことを防止できる。
 -実施形態の変形例-
  上記実施形態の圧縮機(30)を以下の変形例の構成としてもよい。
 〈変形例1〉
  図5に示すように、変形例1の圧縮機構(40)は、複数の圧縮部(61,62)を有する。本例では、圧縮機構(40)の下部寄りに第1圧縮部(61)が設けられ、上部寄りに第2圧縮部(62)が設けられる。圧縮機構(40)は、各圧縮部(61,62)でそれぞれ冷媒を圧縮するように構成される。変形例1の圧縮機構(40)では、各圧縮部(61,62)で冷媒がそれぞれ並列的に圧縮される。
  圧縮機構(40)は、第1シリンダ(42a)、ミドルプレート(50)、第2シリンダ(42b)、第1ピストン(44a)、及び第2ピストン(44b)を有している。圧縮機(30)の駆動軸(35)には、第1クランク軸(37a)と第2クランク軸(37b)とが設けられる。第1シリンダ(42a)の内部には、第1シリンダ室(45a)が形成され、第2シリンダ(42b)の内部には、第2シリンダ室(45b)が形成される。第1ピストン(44a)には、第1クランク軸(37a)が内嵌し、第2ピストン(44b)には、第2クランク軸(37b)に内嵌する。
  第1圧縮部(61)は、第1シリンダ(42a)及び第1ピストン(44a)に対応し、第2圧縮部(62)は、第2シリンダ(42b)及び第2ピストン(44b)に対応する。各圧縮部(61,62)には、上記実施形態(図4)と同様にして、背圧室(54)、ブッシュ溝(53)、一対のブッシュ(52)、ブレード(51)がそれぞれ設けられる。
  第1シリンダ(42a)には、第1シリンダ室(45a)の低圧室(L)と連通する第1吸入ポート(46a)が形成される。第1吸入ポート(46a)には、第1吸入管(23a)が接続される。第2シリンダ(42b)には、第2シリンダ室(45b)の低圧室(L)と連通する第2吸入ポート(46b)が形成される。第2吸入ポート(46b)には、第2吸入管(23b)が接続される。
  リアヘッド(43)には、第1シリンダ室(45a)の高圧室(H)と連通する第1吐出ポート(47a)が形成される。第1吐出ポート(47a)は、リアヘッド(43)を覆う第1マフラ(48a)の第1マフラ空間(49a)と連通する。
  フロントヘッド(41)には、第2シリンダ室(45b)の高圧室(H)と連通する第2吐出ポート(47b)が形成される。第2吐出ポート(47b)は、フロントヘッド(41)を覆う第2マフラ(48b)の第2マフラ空間(49b)と連通する。
  駆動軸(35)が回転駆動されると、第1ピストン(44a)と第2ピストン(44b)とがそれぞれ偏心回転する。第1圧縮部(61)では、第1吸入管(23a)、第1吸入ポート(46a)を介して第1シリンダ室(45a)に吸入された低圧冷媒が、高圧にまで圧縮される。圧縮された冷媒は、第1吐出ポート(47a)、第1マフラ空間(49a)を介して内部空間(S)へ流出する。同時に、第2圧縮部(62)では、第2吸入管(23b)、第2吸入ポート(46b)を介して第2シリンダ室(45b)に吸入された冷媒が、高圧にまで圧縮される。圧縮された冷媒は、第2吐出ポート(47)を介して内部空間(S)へ流出する。内部空間(S)で合流した冷媒は、電動機(32)の周囲を流れた後、吐出管(22)を流出し、冷媒回路(11)へ送られる。
  変形例1においても、各圧縮部(61,62)のブレード(51)がそれぞれピストン(44a,44b)に一体的に連結されるとともに、各ブレード(51)がそれぞれ一対のブッシュ(52)の間に進退可能に保持される。これにより、従来例のように、摺動部で局所的な温度上昇を招くことを回避でき、冷媒が不均化反応を起こすことを防止できる。
  また、変形例1では、複数の圧縮部(61,62)で冷媒を並列的に圧縮するため、駆動軸(35)の回転数を低減できる。従って、各圧縮部(61,62)では、駆動軸(35)の回転に伴う各摺動部での昇温を抑制でき、冷媒の不均化反応を一層確実に防止できる。
 〈変形例2〉
  変形例2の圧縮機構(40)は、変形例1と同様、複数の圧縮部(61,62)を有する。変形例2では、複数の圧縮部(61,62)が直列に接続される。具体的には、圧縮機構(40)は、低段側の第1圧縮部(61)と、高段側の第2圧縮部(62)とを有し、二段圧縮を行うように構成される。
  図6に示すように、第1シリンダ(42a)には、第1シリンダ室(45a)の高圧室(H)と連通する第1中継管(63)が接続される。第2シリンダ(42b)には、第1シリンダ室(45a)の低圧室(L)と連通する第2中継管(64)が接続される。第1中継管(63)と第2中継管(64)とは互いに連通している。
  駆動軸(35)が回転駆動されると、第1ピストン(44a)と第2ピストン(44b)とがそれぞれ偏心回転する。第1圧縮部(61)では、吸入管(23)、吸入ポート(46)を介して第1シリンダ室(45a)に吸入された低圧冷媒が、低圧と高圧の間の中間圧にまで圧縮される。中間圧にまで圧縮された冷媒は、第1中継管(63)及び第2中継管(64)を介して、第2シリンダ室(45b)に吸入される。第2シリンダ室(45b)で高圧にまで圧縮された冷媒は、吐出ポート(47)、マフラ空間(49)を介して内部空間(S)へ流出する。内部空間(S)で合流した冷媒は、電動機(32)の周囲を流れた後、吐出管(22)を流出し、冷媒回路(11)へ送られる。
  変形例2においても、各圧縮部(61,62)のブレード(51)がそれぞれピストン(44a,44b)に一体的に連結されるとともに、各ブレード(51)がそれぞれ一対のブッシュ(52)の間に進退可能に保持される。これにより、従来例のように、摺動部で局所的な温度上昇を招くことを回避でき、冷媒が不均化反応を起こすことを防止できる。
  また、変形例2では、2つの圧縮部(61,62)において冷媒が2段階に圧縮される。このため、1つの圧縮部で冷媒を圧縮する場合と比較すると、各圧縮部(61,62)での冷媒の差圧(吸入圧と吐出圧の差)が小さくなる。このようにすると、各圧縮部(61,62)では、低圧室(L)と高圧室(H)との差圧が小さくなるため、差圧に起因する摺動抵抗を低減できる。この結果、各圧縮部(61,62)での冷媒の温度上昇を抑制できる。
 〈変形例3〉
  変形例3の圧縮機(30)は、変形例1の圧縮機構(40)において、ピストン(44)及びシリンダ(42)の形状が異なるものである。図7に示すように、変形例3の圧縮機構(40)は、いわゆる非円形ピストン式に構成される。即ち、上述した実施形態の圧縮機構(40)は、シリンダ(42)の内周面、及びピストン(44)の外周面の横断面形状が、真円形に構成される。これに対し、変形例3では、シリンダ(42)の内周面、及びピストン(44)の外周面の横断面形状が非円形状(略卵形状)に形成される。
  具体的には、本実施形態のピストン(44)の外周面では、ブレード(51)を挟んで吸入側(図7の右側)の略半分が径方向外方へ膨出する膨出面(56)を構成し、ブレード(51)を挟んで吐出側(図7の左側)の略半分が真円弧状の真円孤面(57)を構成している。一方、シリンダ(42)の内周面形状は、ピストン(44)の外周面形状に対応するような非円形状に形成されている。つまり、シリンダ(42)の内周面形状は、揺動運動を行うピストン(44)の外周面の外側の包絡線に基づいた非円形状に形成されている。具体的には、シリンダ(42)の内周面形状は、図7の右側部位が径方向外方へ膨出し、図7の左側の部位が真円弧状に形成されている。
  変形例3においても、ブレード(51)がそれぞれピストン(44)に一体的に連結されるとともに、このブレード(51)が一対のブッシュ(52)の間に進退可能に保持される。これにより、従来例のように、摺動部で局所的な温度上昇を招くことを回避でき、冷媒が不均化反応を起こすことを防止できる。
  また、変形例3に係る非円形ピストン式の圧縮機構(40)では、圧縮室(高圧室(H))の一回転中の容積変化率をピストン(44)の外周面形状に応じて最適化できる。図7に示すピストン(44)の外周面形状により、ピストンの外周面形状が真円形の方式(円形ピストン式)と比較すると、圧縮室の容積を速やかに小さくできる(図8を参照)。これにより、変形例3では、吐出行程付近の回転角が、円形ピストン式と比べて小さくなる。この結果、変形例3では、円形ピストン式と比べると、吐出行程の開始のタイミングが早くなり、吐出行程の期間を長くすることができる。このようにすると、吐出行程での過圧縮を抑制できるため、過圧縮に伴う高低差圧(高圧室(H)と低圧室(L)のとの圧力の差)が小さくなり、このような差圧に起因する摺動抵抗を更に低減できる。以上により、変形例3では、過圧縮に起因する摺動部での局所的な温度上昇を回避でき、冷媒が不均化反応を起こすことを一層効果的に抑制できる。
  なお、非円形ピストン式の圧縮機構(40)において、例えばピストン(44)の外周面形状は、その吐出側と吸入側との双方を膨出させた楕円形状としてもよい。
 〈変形例4〉
  変形例4の圧縮機(30)は、上記実施形態と圧縮機構(40)の構成が異なる。図9及び図10に示すように、圧縮機構(40)は、ケーシング(31)に固定される固定部材(71)と、駆動軸(35)のクランク軸(37)に連結する可動部材(72)とを備えている。
  固定部材(71)は、固定側鏡板部(73)と、外縁部(74)と、中間シリンダ(75)(シリンダ)とを有する。固定側鏡板部(73)は、扁平な円板状に形成される。外縁部(74)は、固定側鏡板部(73)の外周縁部から軸方向下側に突出する略筒状に形成される。中間シリンダ(75)は、固定側鏡板部(73)の軸心部と外周端部の間から軸方向下側に突出している。中間シリンダ(75)は、駆動軸(35)の軸心と同軸で一部が切除された円環状(横断面Cの字状)に形成される。
  中間シリンダ(75)の切除部には、実施形態と同様のブッシュ溝(53)が形成される。ブッシュ溝(53)には、一対のブッシュ(52)が揺動可能に保持される。一対のブッシュ(52)の間には、ブレード(51)が保持されるブレード溝(55)が形成される。
  可動部材(72)は、可動側鏡板部(76)と、内ピストン(77)(ピストン)と、外ピストン(78)とを有する。可動側鏡板部(76)は、クランク軸(37)が内嵌する円板状に形成される。内ピストン(77)は、可動側鏡板部(76)の内周縁部から軸方向上側に突出している。内ピストン(77)は、クランク軸(37)が内嵌する円筒状に形成される。外ピストン(78)は、可動側鏡板部(76)の外周縁部から軸方向上側に突出している。圧縮機構(40)では、内ピストン(77)と中間シリンダ(75)の間に内側シリンダ室(81)が形成され、中間シリンダ(75)と外ピストン(78)との間に外側シリンダ室(82)が形成される。
  変形例4のブレード(51)は、可動部材(72)に設けられている。ブレード(51)は、内ピストン(77)の外周面と外ピストン(78)の内周面とに一体に連結している。ブレード(51)は、ブッシュ溝(53)に進退可能に保持される。内側シリンダ室(81)及び外側シリンダ室(82)は、それぞれブレード(51)によって高圧室(H)と低圧室(L)とに仕切られる。
  図10に示すように、固定部材(71)には、各シリンダ室(45)の低圧室(L)と連通する吸入ポート(46)が形成される。また、固定部材(71)には、各シリンダ室(45)の高圧室(H)とそれぞれ連通する2つの吐出ポート(47)が形成される。
  変形例4の圧縮機構(40)では、駆動軸(35)の回転に伴い内ピストン(77)及び外ピストン(78)が偏心回転する。内ピストン(77)の偏心回転に伴い内側シリンダ室(81)の低圧室(L)の容積が徐々に大きくなると、低圧の冷媒が吸入ポート(46)を通じて内側シリンダ室(81)の低圧室(L)へ吸入されていく。内ピストン(77)が更に偏心回転すると、内側シリンダ室(81)の低圧室(L)が高圧室(H)となり、高圧室(H)の冷媒が吐出ポート(47)より吐出される。同時に、外ピストン(78)の偏心回転に伴い外側シリンダ室(82)の低圧室(L)の容積が徐々に大きくなると、低圧の冷媒が吸入ポート(46)を通じて外側シリンダ室(82)の低圧室(L)へ吸入されていく。外ピストン(78)が更に偏心回転すると、外側シリンダ室(82)の低圧室(L)が高圧室(H)となり、高圧室(H)の冷媒が吐出ポート(47)より吐出される。
  変形例4においても、ブレード(51)が内ピストン(77)及び外ピストン(78)に一体的に連結されるとともに、このブレード(51)がそれぞれ一対のブッシュ(52)の間に進退可能に保持される。これにより、従来例のように、摺動部で局所的な温度上昇を招くことを回避でき、冷媒が不均化反応を起こすことを防止できる。
 〈変形例5〉
   変形例5の圧縮機(30)は、変形例4と類似した圧縮機構(40)を有する。
  図11及び図12に示すように、変形例5の固定部材(71)は、固定側鏡板部(73)と、内ピストン(77)(ピストン)と、外ピストン(78)とを有する。外ピストン(78)は、固定側鏡板部(73)の外周縁部から軸方向下側に突出する円環状に形成される。内ピストン(77)は、固定側鏡板部(73)の軸心部と外周端部の間から軸方向下側に突出する円環状に形成される。外ピストン(78)及び内ピストン(77)は、駆動軸(35)の軸心と同軸である。
  変形例5の可動部材(72)は、可動側鏡板部(76)と、ボス部(79)と、中間シリンダ(75)(シリンダ)とを有する。ボス部(79)は、可動側鏡板部(76)の内周縁部から軸方向上側に突出している。ボス部(79)は、クランク軸(37)が内嵌する円筒状に形成される。中間シリンダ(75)は、可動側鏡板部(76)の外周寄り部分から軸方向上側に突出している。圧縮機構(40)では、内ピストン(77)と中間シリンダ(75)の間に内側シリンダ室(81)が形成され、中間シリンダ(75)と外ピストン(78)との間に外側シリンダ室(82)が形成される。
  変形例5のブレード(51)は、固定部材(71)に設けられている。ブレード(51)は、内ピストン(77)の外周面と外ピストン(78)の内周面とに一体に連結している。ブレード(51)は、ブッシュ溝(53)に進退可能に保持される。内側シリンダ室(81)及び外側シリンダ室(82)は、それぞれブレード(51)によって高圧室(H)と低圧室(L)とに仕切られる。
  図12に示すように、固定部材(71)には、各シリンダ室(45)の低圧室(L)と連通する吸入ポート(46)が形成される。また、固定部材(71)には、各シリンダ室(45)の高圧室(H)とそれぞれ連通する2つの吐出ポート(47)が形成される。
  変形例5の圧縮機構(40)では、駆動軸(35)の回転に伴い中間シリンダ(75)が偏心回転する。中間シリンダ(75)の偏心回転に伴い内側シリンダ室(81)の低圧室(L)の容積が徐々に大きくなると、低圧の冷媒が吸入ポート(46)を通じて内側シリンダ室(81)の低圧室(L)へ吸入されていく。中間シリンダ(75)が更に偏心回転すると、内側シリンダ室(81)の低圧室(L)が高圧室(H)となり、高圧室(H)の冷媒が吐出ポート(47)より吐出される。同時に、中間シリンダ(75)の偏心回転に伴い外側シリンダ室(82)の低圧室(L)の容積が徐々に大きくなると、低圧の冷媒が吸入ポート(46)を通じて外側シリンダ室(82)の低圧室(L)へ吸入されていく。中間シリンダ(75)が更に偏心回転すると、外側シリンダ室(82)の低圧室(L)が高圧室(H)となり、高圧室(H)の冷媒が吐出ポート(47)より吐出される。
  変形例5においても、ブレード(51)が内ピストン(77)及び外ピストン(78)に一体的に連結されるとともに、このブレード(51)がそれぞれ一対のブッシュ(52)の間に進退可能に保持される。これにより、従来例のように、摺動部で局所的な温度上昇を招くことを回避でき、冷媒が不均化反応を起こすことを防止できる。
 《その他の実施形態》
  上記実施形態や各変形例については、以下のような構成としてもよい。
  上記実施形態の冷凍装置は、室内の冷房や暖房を行う空気調和装置(10)である。しかし、冷凍装置は、冷媒回路を備え冷凍サイクルを行うものであれば、如何なるものであってもよい。例えば、庫内を冷却する冷蔵・冷凍庫用の冷凍装置や、チラーユニット、給湯器等に本発明の冷凍装置を採用してもよい。
  上記実施形態、及び各変形例に係る圧縮機構の構成を適宜組み合わせるようにしてもよい。
  以上説明したように、本発明は冷凍装置について有用である。
    10   空気調和装置(冷凍装置)
    11   冷媒回路
    30   圧縮機
    32   電動機
    40   圧縮機構
    42   シリンダ
    42a  第1シリンダ(シリンダ)
    42b  第2シリンダ(シリンダ)
    44   ピストン
    44a  第1ピストン(ピストン)
    44b  第2ピストン(ピストン)
    45   シリンダ室
    45a  第1シリンダ室(シリンダ室)
    45b  第2シリンダ室(シリンダ室)
    51   ブレード
    52   ブッシュ
     53   ブッシュ溝
    61   第1圧縮部(圧縮部)
    62   第2圧縮部(圧縮部)
    75   中間シリンダ(シリンダ)
    77   内ピストン(ピストン)
    H    高圧室
    L    低圧室

Claims (5)

  1.  冷媒を圧縮する圧縮機(30)が接続される冷媒回路(11)を備えた冷凍装置であって、
     上記冷媒は、不均化反応を起こす性質を有するフッ化炭化水素を含む冷媒であり、
      上記圧縮機(30)は、電動機(32)と、該電動機(32)に駆動される圧縮機構(40)とを備え、
     上記圧縮機構(40)は、
      シリンダ室(45,45a,45b,81,82)が形成されるシリンダ(42,42a,42b,75)と、該シリンダ室(45,45a,45b,81,82)に収容されるピストン(44,44a,44b,77)と、
      上記ピストン(44,44a,44b,77)と一体に連結され、上記シリンダ室(45,45a,45b,81,82)を低圧室(L)と高圧室(H)とに仕切るブレード(51)と、
      上記シリンダ(42,42a,42b,75)に形成される一対のブッシュ溝(53)に揺動可能に保持されるとともに上記ブレード(51)を進退可能に保持する一対のブッシュ(52)とを有し、
      上記ピストン(44,44a,44b,77)と上記シリンダ(42,42a,42b,75)とが相対的に偏心回転するように構成されることを特徴とする冷凍装置。
  2.  請求項1において、
     上記圧縮機構(40)は、上記シリンダ(42a,42b)、上記ピストン(44a,44b)、上記ブレード(51)、及び上記ブッシュ(52)をそれぞれ有する複数の圧縮部(61,62)を有し、該複数の圧縮部(61,62)で並列的に冷媒を圧縮するように構成されることを特徴とする冷凍装置。
  3.  請求項1において、
     上記圧縮機構(40)は、上記シリンダ(42a,42b)、上記ピストン(44a,44b)、上記ブレード(51)、及び上記ブッシュ(52)をそれぞれ有する複数の圧縮部(61,62)を有し、該複数の圧縮部(61,62)が直列に接続されて構成されることを特徴とする冷凍装置。
  4.  請求項1乃至3のいずれか1つにおいて、
     上記圧縮機構(40)は、非円形状の内周面を有する上記シリンダ(42)と、非円形状の外周面を有する上記ピストン(44)とを有し、該ピストン(44)が偏心回転する非円形ピストン式で構成されることを特徴とする冷凍装置。
  5.  請求項1乃至4のいずれか1つにおいて、
     上記冷媒は、HFO-1123を含む冷媒であることを特徴とする冷凍装置。
PCT/JP2018/001218 2017-01-30 2018-01-17 冷凍装置 WO2018139314A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017014110A JP2018123974A (ja) 2017-01-30 2017-01-30 冷凍装置
JP2017-014110 2017-01-30

Publications (1)

Publication Number Publication Date
WO2018139314A1 true WO2018139314A1 (ja) 2018-08-02

Family

ID=62979281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001218 WO2018139314A1 (ja) 2017-01-30 2018-01-17 冷凍装置

Country Status (2)

Country Link
JP (1) JP2018123974A (ja)
WO (1) WO2018139314A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222329A (ja) * 2008-03-18 2009-10-01 Daikin Ind Ltd 冷凍装置
JP2009222006A (ja) * 2008-03-18 2009-10-01 Daikin Ind Ltd 冷凍装置
JP2015214928A (ja) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 圧縮機およびそれを用いた冷凍サイクル装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222329A (ja) * 2008-03-18 2009-10-01 Daikin Ind Ltd 冷凍装置
JP2009222006A (ja) * 2008-03-18 2009-10-01 Daikin Ind Ltd 冷凍装置
JP2015214928A (ja) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 圧縮機およびそれを用いた冷凍サイクル装置

Also Published As

Publication number Publication date
JP2018123974A (ja) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2009116237A1 (ja) 冷凍装置
JP6922885B2 (ja) 圧縮機及び熱サイクルシステム
US11971037B2 (en) Drive shaft of compressor having oil groove portion and oil sump
JP2010243148A (ja) 冷凍サイクル装置
US20200124326A1 (en) Refrigeration device
US11143446B2 (en) Refrigeration device controlling a temperature of compressor-discharged refrigerant
JPWO2020049844A1 (ja) 圧縮機、及び、これを備える冷凍サイクル装置
WO2011155176A1 (ja) 圧縮機
WO2018139594A1 (ja) 冷凍装置
JP2009222006A (ja) 冷凍装置
WO2018139314A1 (ja) 冷凍装置
JP2010024984A (ja) スクリュー圧縮機
JP6675477B2 (ja) 圧縮機及び冷凍サイクル装置
WO2018139316A1 (ja) 冷凍装置
JP6899360B2 (ja) 冷凍サイクル装置
WO2011135816A1 (ja) 回転式圧縮機
JP5925136B2 (ja) 冷媒圧縮機及びヒートポンプ機器
JP7377838B2 (ja) 圧縮機における冷媒としての使用、圧縮機、および、冷凍サイクル装置
JP2010024983A (ja) スクリュー圧縮機
JP2009228473A (ja) スクロール圧縮機
JP2010024988A (ja) スクリュー圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18745053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18745053

Country of ref document: EP

Kind code of ref document: A1