WO2018139286A1 - Fuel cell catalyst layer and electrolyte film–electrode assembly - Google Patents

Fuel cell catalyst layer and electrolyte film–electrode assembly Download PDF

Info

Publication number
WO2018139286A1
WO2018139286A1 PCT/JP2018/001100 JP2018001100W WO2018139286A1 WO 2018139286 A1 WO2018139286 A1 WO 2018139286A1 JP 2018001100 W JP2018001100 W JP 2018001100W WO 2018139286 A1 WO2018139286 A1 WO 2018139286A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
catalyst layer
ionomer
fine particles
electrolyte membrane
Prior art date
Application number
PCT/JP2018/001100
Other languages
French (fr)
Japanese (ja)
Inventor
小林 亨
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018139286A1 publication Critical patent/WO2018139286A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a fuel cell catalyst layer formed as electrodes on both surfaces of an electrolyte membrane having proton conductivity, and an electrolyte membrane-electrode assembly in which a fuel cell catalyst layer is bonded to the main surface of the electrolyte membrane as an electrode. And about.
  • a fuel cell generates electricity by an electrochemical reaction between a fuel (for example, hydrogen) and an oxidant (for example, oxygen).
  • a fuel for example, hydrogen
  • an oxidant for example, oxygen
  • an anode electrode is formed on one main surface and a cathode electrode is formed on the other main surface of both main surfaces of an electrolyte membrane (for example, a solid polymer membrane) having proton conductivity.
  • an electrolyte membrane for example, a solid polymer membrane having proton conductivity.
  • a fuel gas for example, hydrogen gas
  • an oxidizing gas for example, air
  • Electrodes are formed of a catalyst layer using carrier particles in which a catalyst is supported on a conductive carrier such as carbon particles.
  • the electrode undergoes an electrochemical reaction represented by the following formulas (1) and (2) via this catalyst.
  • Formula (1) is a hydrogen oxidation reaction at the anode
  • Formula (2) is an oxygen reduction reaction at the cathode.
  • Protons (H + ) generated at the anode move from the electrolyte membrane to the cathode electrolyte and reach the catalyst, and the reaction of the formula (2) occurs on the cathode catalyst.
  • Electrolyte proton conductivity is affected by the water content of the electrolyte.
  • the proton conductivity of the electrolyte decreases when the water content decreases and the electrolyte begins to dry. For this reason, a technique has been proposed in which the water-containing state of the electrolyte is increased by improving the catalyst layer of the anode or cathode to increase the power generation capacity (for example, Patent Document 1).
  • FIG. 7 is an enlarged schematic diagram of a conventional cathode catalyst layer described in Patent Document 1 with improved moisture retention.
  • catalyst-supported carrier particles 102 coated with the first electrolyte resin 101 are mixed so as to surround the catalyst-unsupported particles 104 coated with the second electrolyte resin 103. is doing.
  • the ion exchange group equivalent of the second electrolyte resin 103 is configured to be lower than the ion exchange group equivalent of the first electrolyte resin 101.
  • the catalyst unsupported particles 104 are mixed into the cathode catalyst layer 100 when the particle size of the catalyst-supported carrier particles 102 and the particle size of the catalyst unsupported particles 104 are equal. Even if it makes it, the density of a catalyst layer is the same before and after mixing.
  • the volume of the catalyst unsupported particles 104 in the catalyst layer increases, and the cathode catalyst layer 100 becomes thick.
  • the distance to the catalyst at the interface between the diffusion layer and the catalyst layer in the direction far from the electrolyte membrane is increased, and the proton resistance of the cathode catalyst layer 100 is increased.
  • the particle size of the catalyst-supported carrier particles 102 is equal to the particle size of the catalyst-unsupported particles 104, the first electrolyte resin 101 that covers the catalyst-supported carrier particles 102 and the second electrode that covers the catalyst-unsupported particles 104 are used.
  • the area in contact with the electrolyte resin 103 is limited.
  • the supply of protons to the catalyst supported on most of the catalyst-supporting carrier particles 102 that cannot be contacted with the second electrolyte resin 103 has a high ion exchange group equivalent amount, that is, the first electrolyte resin with low proton conductivity. 101.
  • the effect of increasing the proton conductivity by mixing the second electrolyte resin 103 having a low ion exchange group equivalent amount, that is, a high proton conductivity in the cathode catalyst layer 100 is limited.
  • the catalyst layer is thick, the distance from the electrolyte membrane to the catalyst at the interface between the diffusion layer and the catalyst layer is long, and supply of protons necessary for the oxygen reduction reaction is delayed.
  • the catalyst layer becomes thick, the resistance of the cathode catalyst layer 100 increases, and the cathode catalyst layer There is a problem that the proton conductivity of 100 deteriorates.
  • the present disclosure provides a fuel cell catalyst layer and an electrolyte membrane-electrode assembly that can increase the proton conductivity of the catalyst layer while suppressing an increase in the thickness of the catalyst layer and obtain high power generation efficiency. .
  • the catalyst layer for a fuel cell includes a metal catalyst, a catalyst-supporting carbon that supports the metal catalyst, and a catalyst member that includes a first ionomer that covers the catalyst-supporting carbon. Further, the fuel cell catalyst layer includes a proton conducting member composed of fine particles not supporting the metal catalyst and a second ionomer covering the fine particles. And a catalyst member and a proton-conducting member are mixed, and the average particle diameter of microparticles
  • fine-particles is smaller than the average particle diameter of carbon at the time of catalyst support.
  • the contact area between the first ionomer that coats the catalyst-carrying carbon and the second ionomer that coats the fine particles is larger than when the average particle size of the catalyst-carrying carbon and the average particle size of the fine particles are equal. Accordingly, protons can be quickly supplied to the catalyst by moving the second ionomer.
  • the average particle size of the fine particles of the proton conducting member is made smaller than the average particle size of the catalyst-supporting carbon.
  • an electrolyte membrane-electrode assembly using this catalyst layer can be obtained.
  • FIG. 1 is an enlarged schematic diagram of a cathode catalyst layer according to the first embodiment of the present disclosure.
  • FIG. 2 is an enlarged schematic diagram of the electrolyte membrane-electrode assembly according to the first embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view of the fuel cell single cell according to the first embodiment of the present disclosure.
  • FIG. 4 is an enlarged schematic view of the cathode catalyst layer in the second embodiment of the present disclosure.
  • FIG. 5 is an enlarged schematic view of an electrolyte membrane-electrode assembly according to the second embodiment of the present disclosure.
  • FIG. 6 is a schematic cross-sectional view of a fuel cell single cell according to the second embodiment of the present disclosure.
  • FIG. 7 is an enlarged schematic diagram of a conventional cathode catalyst layer with improved moisture retention.
  • the catalyst layer for a fuel cell according to the first aspect includes a catalyst member including a metal catalyst, a catalyst-supporting carbon that supports the metal catalyst, and a first ionomer that covers the catalyst-supporting carbon.
  • the battery catalyst layer includes a proton conducting member including fine particles not supporting the metal catalyst and a second ionomer that covers the fine particles.
  • a catalyst member and a proton conduction member are mixed, and the average particle diameter of microparticles
  • fine-particles is smaller than the average particle diameter of carbon at the time of catalyst support.
  • the density of the catalyst layer in which the catalyst-carrying carbon and the fine particles are mixed is higher than that in the case where the particle size of the catalyst-carrying carbon is the same as the particle size of the fine particles.
  • fine-particles in a catalyst layer is suppressed.
  • protons can be supplied without stagnation to the catalyst at the interface between the catalyst layer and the diffusion layer, which is far from the electrolyte membrane.
  • the contact area between the first ionomer covering the catalyst-supporting carbon and the second ionomer covering the fine particles increases. Accordingly, protons can be quickly supplied to the catalyst by moving the second ionomer, and the electrochemical reaction can be made smooth.
  • the second aspect is that in the first aspect, the proton conductivity of the proton conducting member is higher than the proton conductivity of the catalyst member.
  • Such a configuration makes it easy for protons to pass through the proton conducting member, so that the proton conductivity of the catalyst layer can be increased.
  • the third aspect is the same ionomer in which the first ionomer and the second ionomer are the same in the first aspect or the second aspect.
  • Such a configuration can reduce the number of ionomer materials constituting the cathode catalyst layer.
  • the proton conductivity of the cathode catalyst layer can be increased, which can contribute to cost reduction.
  • the fourth aspect is that in any one aspect from the first aspect to the third aspect, the fine particles are conductive fine particles.
  • the fine particles are metal oxides.
  • the metal oxide fine particles having high hydrophilicity are easily coated with the ionomer and easily dispersed. For this reason, fine particles can be uniformly dispersed in the catalyst layer.
  • the proton conducting member has a high water content.
  • excess moisture in the catalyst layer is absorbed, and reduction in the efficiency of the oxygen reduction reaction due to inhibition of oxygen gas diffusion due to excess moisture in the vicinity of the catalyst can be prevented.
  • the electrolyte membrane-electrode assembly of the sixth aspect is an electrolyte membrane-electrode assembly having an electrolyte membrane having proton conductivity and a catalyst layer disposed on both main surfaces of the electrolyte membrane. And as a catalyst layer arrange
  • FIG. 1 is an enlarged schematic diagram of a cathode catalyst layer (fuel cell catalyst layer) according to the first embodiment of the present disclosure.
  • FIG. 2 is an enlarged schematic diagram of the electrolyte membrane-electrode assembly according to the first embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view of the fuel cell single cell according to the first embodiment of the present disclosure.
  • a catalyst member 14 comprising a catalyst-carrying carbon 12 carrying a Pt catalyst 11 and a first ionomer 13, and a catalyst is carried.
  • Proton conducting members 17 composed of fine particles 15 and second ionomers 16 are mixed.
  • the average particle size of the fine particles 15 is smaller than the average particle size of the catalyst-supporting carbon 12.
  • the average particle size is a particle size at which the volume integrated value is 50% in the volume-based particle size distribution measured by a laser diffraction particle size distribution measuring device or the like.
  • the first ionomer 13 and the second ionomer 16 are both fluorine-based polymer ionomers having proton conductivity.
  • the ion exchange group equivalent of the second ionomer 16 is lower than the ion exchange group equivalent of the first ionomer 13. That is, the proton conductivity of the proton conduction member 17 is higher than the proton conductivity of the catalyst member 14.
  • the electrolyte membrane-electrode assembly 20 using the cathode catalyst layer 10 of the present embodiment includes the cathode catalyst layer 10 and the anode catalyst layer 22 formed on both surfaces of the electrolyte membrane 21, respectively.
  • the anode catalyst layer 22 is composed of the catalyst-supporting carbon 12 that supports the Pt catalyst 11 and the second ionomer 16.
  • the unit cell 23 using the electrolyte membrane-electrode assembly 20 of the present exemplary embodiment has an electrolyte membrane 21 and an anode catalyst layer 22 formed on both main surfaces of the electrolyte membrane 21, respectively. And a cathode catalyst layer 10.
  • the single cell 23 sandwiches the electrolyte membrane 21 on which the anode catalyst layer 22 and the cathode catalyst layer 10 are formed from both sides, and the anode gas diffusion layer 24 and the cathode gas diffusion layer 25, and the anode gas diffusion layer 24 and the cathode gas diffusion.
  • An anode gas separator 26 and a cathode gas separator 27 are provided on the outer side of the layer 25, respectively.
  • Each of the anode gas diffusion layer 24 and the cathode gas diffusion layer 25 is formed of carbon paper which is a conductive member having gas permeability.
  • the anode gas diffusion layer 24 and the cathode gas diffusion layer 25 as described above conduct the current collection while guiding the gas subjected to the electrochemical reaction to the anode catalyst layer 22 and the cathode catalyst layer 10, respectively.
  • Each of the anode gas separator 26 and the cathode gas separator 27 is formed of compressed carbon which is a conductive member having no gas permeability.
  • Each of the anode gas separator 26 and the cathode gas separator 27 has a predetermined uneven shape.
  • This uneven shape forms a fuel gas flow path 28 through which the fuel gas containing hydrogen flows between the anode gas separator 26 and the anode gas diffusion layer 24.
  • an oxidizing gas passage 29 through which an oxidizing gas containing oxygen flows is formed between the cathode gas separator 27 and the cathode gas diffusion layer 25.
  • protons mainly move through the second ionomer 16 of the proton conducting member 17 having a proton conductivity higher than that of the catalyst member 14.
  • the cathode catalyst layer 10 in which the catalyst-supporting carbon 12 and the fine particles 15 coexist has a higher density than the case where the average particle size of the fine particles 15 is equal to the average particle size of the catalyst-supporting carbon 12. Becomes higher. Thereby, the increase in the thickness of the catalyst layer due to mixing of fine particles in the catalyst layer is suppressed.
  • the contact area between the second ionomer 16 covering the fine particles 15 and the first ionomer 13 and the Pt catalyst 11 covering the catalyst-supporting carbon 12 is increased.
  • the catalyst member 14 including the catalyst-carrying carbon 12 carrying the Pt catalyst 11 and the first ionomer 13, and the fine particles 15 and the second ionomer.
  • Proton conducting member 17 composed of 16 is mixed. As a result, protons mainly move through the second ionomer 16 of the proton conducting member 17.
  • the thickness of the first ionomer 13 covering the catalyst-supporting carbon 12 of the catalyst member 14 can be reduced.
  • the oxygen gas easily passes through the first ionomer 13 and reaches the Pt catalyst 11.
  • the average particle diameter of the fine particles 15 is made smaller than the average particle diameter of the catalyst-supporting carbon 12.
  • the volume of the fine particles 15 becomes smaller than the volume of the catalyst-supporting carbon 12.
  • the cathode catalyst layer 10 in which the catalyst-supporting carbon 12 and the fine particles 15 coexist has a density of the cathode catalyst layer 10 as compared with the case where the particle size of the fine particles 15 and the particle size of the catalyst-supported carbon 12 are equal. Get higher. Thereby, the increase in the thickness of the catalyst layer due to mixing of fine particles in the catalyst layer is suppressed.
  • protons can be supplied to the Pt catalyst 11 in the vicinity of the interface between the cathode gas diffusion layer 25 and the cathode catalyst layer 10 far from the electrolyte membrane 21 without any delay.
  • the cathode catalyst layer 10 has a higher density of the cathode catalyst layer 10 than the case where the particle size of the fine particles 15 is equal to the particle size of the catalyst-supporting carbon 12. As a result, the contact area between the second ionomer 16 covering the fine particles 15, the first ionomer 13 covering the catalyst-supporting carbon 12, and the Pt catalyst 11 increases.
  • protons to the Pt catalyst 11 move mainly through the second ionomer 16, so that the distance passing through the first ionomer 13 is very small.
  • protons are supplied directly from the second ionomer 16 to the Pt catalyst 11. Therefore, the supply of protons to the Pt catalyst 11 becomes smooth, and the electrochemical reaction can proceed smoothly.
  • the fine particles 15 have conductivity, the electronic resistance does not increase.
  • the second ionomer 16 of the proton conducting member 17 is coated thicker than the first ionomer 13 of the catalyst member 14, and the EW (Equivalent Weight) is lowered. Thereby, the proton conductivity of the proton conducting member 17 becomes higher than the proton conductivity of the catalyst member 14, and the proton conductivity of the cathode catalyst layer 10 can be increased.
  • the electrolyte membrane-electrode assembly 20 having the cathode catalyst layer 10 of the present embodiment can supply oxygen and protons to the Pt catalyst 11 without stagnation while having high proton conductivity. it can.
  • high power generation efficiency can be obtained.
  • the first ionomer 13 and the second ionomer 16 of the present embodiment are not particularly limited as long as they are fluorine polymer ionomers.
  • the carrier carrying the Pt catalyst 11 of the catalyst-carrying carbon 12 of the present embodiment can also be a chemical-resistant conductive fiber such as carbon nanotube (CNT) or carbon nanofiber (CNF). .
  • CNT carbon nanotube
  • CNF carbon nanofiber
  • Pt alloys such as PtRu
  • PtCo a Pt alloy catalyst such as PtCo
  • the fine particles 15 in the present embodiment are excellent in chemical resistance and can be selected from various fine particles (for example, carbon black, nitride fine particles, and carbide fine particles) as long as the average particle shape is smaller than that of the catalyst-supporting carbon 12. It is.
  • At least one of the anode catalyst layer 22 and the anode gas diffusion layer 24 and the cathode catalyst layer 10 and the cathode gas diffusion layer 25 of the present embodiment has a water repellent material.
  • a water repellent layer may be provided.
  • FIG. 4 is an enlarged schematic diagram of a cathode catalyst layer (fuel cell catalyst layer) according to the second embodiment of the present disclosure.
  • FIG. 5 is an enlarged schematic view of an electrolyte membrane-electrode assembly according to the second embodiment of the present disclosure.
  • FIG. 6 is a schematic cross-sectional view of a fuel cell single cell according to the second embodiment of the present disclosure.
  • the cathode catalyst layer, the electrolyte membrane-electrode assembly, and the single unit fuel cell of the second embodiment shown in FIGS. 4 to 6 are the same as those in the first embodiment. Reference numerals are assigned and detailed description is omitted.
  • the cathode catalyst layer 30 of the present embodiment includes a catalyst-supporting carbon 12 supporting a Pt catalyst 11, a catalyst member 14 including a first ionomer 13, and fine particles that are metal oxides.
  • a proton conducting member 37 composed of 35 and the second ionomer 36 is mixed.
  • the fine particles 35 are the metal oxide as described above, and the average particle size is configured to be smaller than the average particle size of the catalyst-supporting carbon 12.
  • the first ionomer 13 and the second ionomer 36 are the same ionomer.
  • the thickness of the second ionomer 36 that covers the fine particles 35 is thicker than the thickness of the first ionomer 13 that covers the catalyst-supporting carbon 12. That is, the proton conductivity of the proton conducting member 37 is higher than the proton conductivity of the catalyst member 14.
  • the electrolyte membrane-electrode assembly 40 using the cathode catalyst layer 30 of the present embodiment is formed on both main surfaces of the electrolyte membrane 21, respectively. 22.
  • the single cell 43 using the electrolyte membrane-electrode assembly 40 of the present embodiment includes the electrolyte membrane 21 and the anode catalyst layer 22 formed on both membrane surfaces of the electrolyte membrane 21. And a cathode catalyst layer 30.
  • protons mainly move through the second ionomer 36 of the proton conducting member 37 having a proton conductivity higher than that of the catalyst member 14.
  • the fine particles 35 are metal oxides whose average particle size is smaller than the average particle size of the catalyst-supporting carbon 12. Metal oxides are highly hydrophilic. Therefore, the fine particles 35 are easily covered with the second ionomer 36, and the dispersibility is excellent. Therefore, the proton conducting member 37 composed of the fine particles 35 and the second ionomer 36 is easily and uniformly dispersed in the catalyst member 14 composed of the catalyst-supporting carbon 12 and the first ionomer 13.
  • first ionomer 13 and the second ionomer 36 are the same ionomer. Therefore, the kind of material constituting the cathode catalyst layer can be reduced as compared with the case of using different ionomers.
  • the catalyst member 14 and the proton conducting member 37 composed of the fine particles 35 and the second ionomer 36 are mixed.
  • the fine particles 35 of the catalyst layer are metal oxides whose average particle diameter is smaller than the average particle diameter of the catalyst-supporting carbon 12.
  • the highly hydrophilic metal oxide fine particles 35 can contain water such as generated water and water vapor together with the second ionomer 36 covering the fine particles 35. Therefore, it is possible to prevent a phenomenon in which oxygen gas is not supplied to the Pt catalyst 11 due to excessive moisture in the catalyst layer and the reaction is inhibited.
  • the thickness of the second ionomer 36 that covers the fine particles 35 is larger than the thickness of the first ionomer 13 that covers the catalyst-supporting carbon 12. Thereby, the first ionomer 13 covering the catalyst member 14 can cover the catalyst-supporting carbon 12 thinly. Thereby, the oxygen gas easily passes through the first ionomer 13 and reaches the Pt catalyst 11.
  • the first ionomer 13 and the second ionomer 36 are the same ionomer. Therefore, compared with the case where a different ionomer is used, the kind of material which comprises the cathode catalyst layer 30 can be reduced, and it can contribute to cost reduction.
  • the electrolyte membrane-electrode assembly 40 having the cathode catalyst layer 30 of the present embodiment has a high moisture content of the proton conducting member 37 in the cathode catalyst layer 30.
  • the oxygen gas is caused by fluctuations in proton conductivity due to fluctuations in the moisture content due to temperature changes, etc. that occur during operation of the fuel cell, and by water produced in the cathode reaction. Inhibition of the oxygen reduction reaction due to occlusion of water can be prevented, and high power generation efficiency can be stably obtained.
  • the fine particles 35 in the present embodiment are metal oxides, but as the fine particles 35, various metal oxide fine particles (for example, as long as they have excellent chemical resistance and an average particle size smaller than the catalyst-supporting carbon 12) Silicon oxide, tin oxide, titanium oxide, etc.).
  • the metal oxide is preferably conductive, but even a non-conductive metal oxide can be selected because it has a high effect as described above.
  • the present disclosure it is possible to suppress an increase in the thickness of the catalyst layer, and to obtain a catalyst layer with high proton conductivity and high power generation efficiency. Therefore, for example, it can be applied to applications such as a fuel cell using a solid polymer electrolyte, an electrode for water electrolysis, and a diffusion layer electrode for salt electrolysis, and is useful.

Abstract

Provided is a cathode catalyst layer (10) including a catalyst member (14) comprising a catalyst-supporting carbon (12) that supports a platinum catalyst (11) and a first ionomer (13) that coves this catalyst-supporting carbon (12). Moreover, the cathode catalyst layer (10) is provided with a proton-conducting member (17) that comprises fine particles (15) that do not support the catalyst and a second ionomer (16) that covers these fine particles (15). The catalyst member (14) and the proton-conducting member (17) are intermingled, and the average particle diameter of the fine particles (15) is less than the average particle diameter of the catalyst-supporting carbon (12).

Description

燃料電池用触媒層、および、電解質膜-電極接合体Catalyst layer for fuel cell and electrolyte membrane-electrode assembly
 本開示は、プロトン伝導性を有する電解質膜の両面に電極として形成される燃料電池用触媒層と、燃料電池用触媒層が、電極として電解質膜の主面に接合された電解質膜-電極接合体とに関する。 The present disclosure relates to a fuel cell catalyst layer formed as electrodes on both surfaces of an electrolyte membrane having proton conductivity, and an electrolyte membrane-electrode assembly in which a fuel cell catalyst layer is bonded to the main surface of the electrolyte membrane as an electrode. And about.
 燃料電池は、燃料(例えば、水素)と酸化剤(例えば、酸素)との電気化学反応によって発電する。燃料電池では、プロトン伝導性を有する電解質膜(例えば、固体高分子膜)の両主面のうち、一方の主面にアノード電極が、他方の主面にカソード電極が、それぞれ形成されている。そして、ガス拡散層を経て、アノード電極には燃料ガス(例えば、水素ガス)が、カソード電極には酸化ガス(例えば、空気)が、それぞれ供給される。 A fuel cell generates electricity by an electrochemical reaction between a fuel (for example, hydrogen) and an oxidant (for example, oxygen). In a fuel cell, an anode electrode is formed on one main surface and a cathode electrode is formed on the other main surface of both main surfaces of an electrolyte membrane (for example, a solid polymer membrane) having proton conductivity. Then, through the gas diffusion layer, a fuel gas (for example, hydrogen gas) is supplied to the anode electrode, and an oxidizing gas (for example, air) is supplied to the cathode electrode.
 これらの電極は、カーボン粒子等の導電性の担体に触媒を担持させた担体粒子を用いた触媒層から形成されている。電極は、この触媒を介して、以下の式(1)および式(2)に示される電気化学反応を起こしている。 These electrodes are formed of a catalyst layer using carrier particles in which a catalyst is supported on a conductive carrier such as carbon particles. The electrode undergoes an electrochemical reaction represented by the following formulas (1) and (2) via this catalyst.
 H→2H+2e         ・・・式(1)
 1/2O+2H+2e→HO  ・・・式(2)
 式(1)は、アノードでの水素酸化反応であり、式(2)は、カソードでの酸素還元反応である。アノードで生成されたプロトン(H)は、電解質膜からカソードの電解質を移動して触媒に到達し、カソード触媒上で、式(2)の反応が起こる。
H 2 → 2H + + 2e (1)
1 / 2O 2 + 2H + + 2e → H 2 O (2)
Formula (1) is a hydrogen oxidation reaction at the anode, and Formula (2) is an oxygen reduction reaction at the cathode. Protons (H + ) generated at the anode move from the electrolyte membrane to the cathode electrolyte and reach the catalyst, and the reaction of the formula (2) occurs on the cathode catalyst.
 式(2)の反応効率を高くするためには、電解質膜および触媒層のプロトン伝導性を高くすることが重要である。 In order to increase the reaction efficiency of the formula (2), it is important to increase the proton conductivity of the electrolyte membrane and the catalyst layer.
 電解質のプロトン伝導性は、電解質の含水状態の影響を受ける。電解質のプロトン伝導性は、含水率が低下して電解質が乾燥し始めると、低下する。このため、電解質の含水状態を、アノードまたはカソードの触媒層を改良することで高めて、発電能力を高める技術が提案されている(例えば、特許文献1)。 Electrolyte proton conductivity is affected by the water content of the electrolyte. The proton conductivity of the electrolyte decreases when the water content decreases and the electrolyte begins to dry. For this reason, a technique has been proposed in which the water-containing state of the electrolyte is increased by improving the catalyst layer of the anode or cathode to increase the power generation capacity (for example, Patent Document 1).
 図7は、特許文献1に記載された、従来の、保湿性を高めたカソード触媒層の拡大模式図である。 FIG. 7 is an enlarged schematic diagram of a conventional cathode catalyst layer described in Patent Document 1 with improved moisture retention.
 図7に示されるように、カソード触媒層100においては、第1電解質樹脂101で被覆された触媒担持担体粒子102が、第2電解質樹脂103で被覆された触媒未担持粒子104を取り囲むように混在している。そして、第2電解質樹脂103のイオン交換基等量が、第1電解質樹脂101のイオン交換基等量よりも低くなる構成になっている。 As shown in FIG. 7, in the cathode catalyst layer 100, catalyst-supported carrier particles 102 coated with the first electrolyte resin 101 are mixed so as to surround the catalyst-unsupported particles 104 coated with the second electrolyte resin 103. is doing. In addition, the ion exchange group equivalent of the second electrolyte resin 103 is configured to be lower than the ion exchange group equivalent of the first electrolyte resin 101.
 しかしながら、特許文献1で提案された構成では、触媒担持担体粒子102の粒径と、触媒未担持粒子104の粒径とが同等の場合には、触媒未担持粒子104をカソード触媒層100に混入させても、触媒層の密度は、混入する前後で同等である。 However, in the configuration proposed in Patent Document 1, the catalyst unsupported particles 104 are mixed into the cathode catalyst layer 100 when the particle size of the catalyst-supported carrier particles 102 and the particle size of the catalyst unsupported particles 104 are equal. Even if it makes it, the density of a catalyst layer is the same before and after mixing.
 よって、触媒未担持微粒子104を混入すると、触媒層中に占める触媒未担持粒子104の体積が増加することになり、カソード触媒層100が厚くなる。これにより、電解質膜から遠い方向にある、拡散層と触媒層との界面にある触媒までの距離が長くなり、カソード触媒層100のプロトン抵抗が大きくなる。 Therefore, when the catalyst unsupported fine particles 104 are mixed, the volume of the catalyst unsupported particles 104 in the catalyst layer increases, and the cathode catalyst layer 100 becomes thick. Thereby, the distance to the catalyst at the interface between the diffusion layer and the catalyst layer in the direction far from the electrolyte membrane is increased, and the proton resistance of the cathode catalyst layer 100 is increased.
 また、触媒担持担体粒子102の粒径と触媒未担持粒子104の粒径とが同等のため、触媒担持担体粒子102を被覆する第1電解質樹脂101と、触媒未担持粒子104を被覆する第2電解質樹脂103とが接触する面積が、限定的になってしまう。 In addition, since the particle size of the catalyst-supported carrier particles 102 is equal to the particle size of the catalyst-unsupported particles 104, the first electrolyte resin 101 that covers the catalyst-supported carrier particles 102 and the second electrode that covers the catalyst-unsupported particles 104 are used. The area in contact with the electrolyte resin 103 is limited.
 そのため、第2電解質樹脂103が接触できない、大部分の触媒担持担体粒子102に担持される触媒へのプロトンの供給は、イオン交換基等量が高い、つまり、プロトン伝導度の低い第1電解質樹脂101を経由することになる。 Therefore, the supply of protons to the catalyst supported on most of the catalyst-supporting carrier particles 102 that cannot be contacted with the second electrolyte resin 103 has a high ion exchange group equivalent amount, that is, the first electrolyte resin with low proton conductivity. 101.
 そうすると、イオン交換基等量が低い、つまりプロトン伝導度の高い第2電解質樹脂103をカソード触媒層100に混在させることによる、プロトン伝導性を高くする効果が限定的になる。 Then, the effect of increasing the proton conductivity by mixing the second electrolyte resin 103 having a low ion exchange group equivalent amount, that is, a high proton conductivity in the cathode catalyst layer 100 is limited.
 また、触媒層が厚いので、電解質膜から遠い方向にある、拡散層と触媒層との界面にある触媒までの距離が長く、酸素還元反応に必要なプロトンの供給が滞ることになる。 Also, since the catalyst layer is thick, the distance from the electrolyte membrane to the catalyst at the interface between the diffusion layer and the catalyst layer is long, and supply of protons necessary for the oxygen reduction reaction is delayed.
 以上のように、触媒担持担体粒子102の粒径と触媒未担持粒子104の粒径とが同等の場合には、触媒層が厚くなり、カソード触媒層100の抵抗が大きくなるとともに、カソード触媒層100のプロトン伝導性が悪くなるという課題がある。 As described above, when the particle size of the catalyst-supported carrier particles 102 and the particle size of the non-catalyst particles 104 are equal, the catalyst layer becomes thick, the resistance of the cathode catalyst layer 100 increases, and the cathode catalyst layer There is a problem that the proton conductivity of 100 deteriorates.
特許第5596522号公報Japanese Patent No. 5596522
 本開示は、触媒層の厚みの増加を抑えつつ、触媒層のプロトン伝導性を高くし、高い発電効率を得られる燃料電池用触媒層、および、電解質膜-電極接合体を提供するものである。 The present disclosure provides a fuel cell catalyst layer and an electrolyte membrane-electrode assembly that can increase the proton conductivity of the catalyst layer while suppressing an increase in the thickness of the catalyst layer and obtain high power generation efficiency. .
 本開示の燃料電池用触媒層は、金属触媒と、金属触媒を担持した触媒担持カーボンと、触媒担持カーボンを被覆する第1のアイオノマーとからなる触媒部材とを備えている。また、燃料電池用触媒層は、金属触媒を担持していない微粒子と、微粒子を被覆する第2のアイオノマーとからなるプロトン伝導部材を備えている。そして、触媒部材とプロトン伝導部材とが混在し、微粒子の平均粒径が、触媒担時カーボンの平均粒径よりも小さい。 The catalyst layer for a fuel cell according to the present disclosure includes a metal catalyst, a catalyst-supporting carbon that supports the metal catalyst, and a catalyst member that includes a first ionomer that covers the catalyst-supporting carbon. Further, the fuel cell catalyst layer includes a proton conducting member composed of fine particles not supporting the metal catalyst and a second ionomer covering the fine particles. And a catalyst member and a proton-conducting member are mixed, and the average particle diameter of microparticles | fine-particles is smaller than the average particle diameter of carbon at the time of catalyst support.
 これによって、触媒担持カーボンに混入する微粒子の体積が小さくなり、触媒層の密度が高くなるので、触媒層の厚み増加が抑制される。 This reduces the volume of the fine particles mixed in the catalyst-supporting carbon and increases the density of the catalyst layer, thereby suppressing an increase in the thickness of the catalyst layer.
 さらに、触媒担持カーボンを被覆する第1のアイオノマーと、微粒子を被覆する第2のアイオノマーとの接触面積が、触媒担持カーボンの平均粒径と微粒子の平均粒径とが同等の場合よりも増加する。これにより、プロトンを、第2のアイオノマーを移動して、触媒に、速やかに供給できるようになる。 Furthermore, the contact area between the first ionomer that coats the catalyst-carrying carbon and the second ionomer that coats the fine particles is larger than when the average particle size of the catalyst-carrying carbon and the average particle size of the fine particles are equal. . Accordingly, protons can be quickly supplied to the catalyst by moving the second ionomer.
 このように、本開示の燃料電池用触媒層は、プロトン伝導部材の微粒子の平均粒径を、触媒担持カーボンの平均粒径よりも小さくする。これによって、触媒層の厚みの増加を抑制しつつ、プロトン伝導性を高くして、高い発電効率を得ることができる。また、この触媒層を用いた電解質膜-電極接合体を得ることができる。 Thus, in the fuel cell catalyst layer of the present disclosure, the average particle size of the fine particles of the proton conducting member is made smaller than the average particle size of the catalyst-supporting carbon. As a result, it is possible to increase proton conductivity while suppressing an increase in the thickness of the catalyst layer and obtain high power generation efficiency. In addition, an electrolyte membrane-electrode assembly using this catalyst layer can be obtained.
図1は、本開示の第1の実施の形態におけるカソード触媒層の拡大模式図である。FIG. 1 is an enlarged schematic diagram of a cathode catalyst layer according to the first embodiment of the present disclosure. 図2は、本開示の第1の実施の形態における電解質膜-電極接合体の拡大模式図である。FIG. 2 is an enlarged schematic diagram of the electrolyte membrane-electrode assembly according to the first embodiment of the present disclosure. 図3は、本開示の第1の実施の形態における燃料電池単セルの断面模式図である。FIG. 3 is a schematic cross-sectional view of the fuel cell single cell according to the first embodiment of the present disclosure. 図4は、本開示の第2の実施の形態におけるカソード触媒層の拡大模式図である。FIG. 4 is an enlarged schematic view of the cathode catalyst layer in the second embodiment of the present disclosure. 図5は、本開示の第2の実施の形態における電解質膜-電極接合体の拡大模式図である。FIG. 5 is an enlarged schematic view of an electrolyte membrane-electrode assembly according to the second embodiment of the present disclosure. 図6は、本開示の第2の実施の形態における燃料電池単セルの断面模式図である。FIG. 6 is a schematic cross-sectional view of a fuel cell single cell according to the second embodiment of the present disclosure. 図7は、従来の保湿性を高めたカソード触媒層の拡大模式図である。FIG. 7 is an enlarged schematic diagram of a conventional cathode catalyst layer with improved moisture retention.
 (本開示が取り得る態様)
 第1の態様の燃料電池用触媒層は、金属触媒と、金属触媒を担持した触媒担持カーボンと、触媒担持カーボンを被覆する第1のアイオノマーとからなる触媒部材を備えている。また、電池用触媒層は、金属触媒を担持していない微粒子と、微粒子を被覆する第2のアイオノマーとからなるプロトン伝導部材とを備えている。そして、触媒部材と、プロトン伝導部材とが混在し、微粒子の平均粒径が、触媒担時カーボンの平均粒径よりも小さい。
(Aspects that the present disclosure can take)
The catalyst layer for a fuel cell according to the first aspect includes a catalyst member including a metal catalyst, a catalyst-supporting carbon that supports the metal catalyst, and a first ionomer that covers the catalyst-supporting carbon. In addition, the battery catalyst layer includes a proton conducting member including fine particles not supporting the metal catalyst and a second ionomer that covers the fine particles. And a catalyst member and a proton conduction member are mixed, and the average particle diameter of microparticles | fine-particles is smaller than the average particle diameter of carbon at the time of catalyst support.
 このような構成により、触媒担持カーボンと微粒子とが混在する触媒層は、触媒担持カーボンの粒径と微粒子の粒径とが同等の場合と比較して、その密度が高くなる。そして、微粒子を触媒層に混在することによる、触媒層の厚み増加が抑制される。これにより、電解質膜から遠い、触媒層と拡散層との界面にある触媒へも、プロトンを滞りなく供給できる。 With such a configuration, the density of the catalyst layer in which the catalyst-carrying carbon and the fine particles are mixed is higher than that in the case where the particle size of the catalyst-carrying carbon is the same as the particle size of the fine particles. And the increase in the thickness of a catalyst layer by mixing microparticles | fine-particles in a catalyst layer is suppressed. As a result, protons can be supplied without stagnation to the catalyst at the interface between the catalyst layer and the diffusion layer, which is far from the electrolyte membrane.
 さらに、触媒担持カーボンを被覆する第1のアイオノマーと、微粒子を被覆する第2のアイオノマーとの接触面積が増加する。これにより、プロトンを、第2のアイオノマーを移動させて、触媒へ速やかに供給でき、電気化学反応を円滑にできる。 Furthermore, the contact area between the first ionomer covering the catalyst-supporting carbon and the second ionomer covering the fine particles increases. Accordingly, protons can be quickly supplied to the catalyst by moving the second ionomer, and the electrochemical reaction can be made smooth.
 第2の態様は、第1の態様において、プロトン伝導部材のプロトン伝導度が、触媒部材のプロトン伝導度より高いものである。 The second aspect is that in the first aspect, the proton conductivity of the proton conducting member is higher than the proton conductivity of the catalyst member.
 このような構成により、プロトン伝導部材をプロトンが通り易くなるので、触媒層のプロトン伝導性を高くすることができる。 Such a configuration makes it easy for protons to pass through the proton conducting member, so that the proton conductivity of the catalyst layer can be increased.
 第3の態様は、第1の態様または第2の態様において、第1のアイオノマーと、第2のアイオノマーとが同一のアイオノマーである。 The third aspect is the same ionomer in which the first ionomer and the second ionomer are the same in the first aspect or the second aspect.
 このような構成により、カソード触媒層を構成するアイオノマーの材料種を減らすことができる。また、同一種のアイオノマーを用いて、カソード触媒層のプロトン伝導性を高くすることができ、コスト削減に寄与できる。 Such a configuration can reduce the number of ionomer materials constituting the cathode catalyst layer. In addition, using the same kind of ionomer, the proton conductivity of the cathode catalyst layer can be increased, which can contribute to cost reduction.
 第4の態様は、第1の態様から第3の態様までのいずれか1つの態様において、微粒子を、導電性を有する微粒子とするものである。 The fourth aspect is that in any one aspect from the first aspect to the third aspect, the fine particles are conductive fine particles.
 このような構成により、プロトン伝導部材を混在させても、電子の移動を妨げることがなくなり、電子抵抗増大による発電効率の低下を防ぐことができる。 With such a configuration, even when proton conducting members are mixed, the movement of electrons is not hindered, and a decrease in power generation efficiency due to an increase in electronic resistance can be prevented.
 第5の態様は、第1の態様から第4の態様までのいずれか1つの態様において、微粒子を、金属酸化物とするものである。 In the fifth aspect, in any one aspect from the first aspect to the fourth aspect, the fine particles are metal oxides.
 これにより、親水性の高い金属酸化物の微粒子は、アイオノマーを被覆し易く、容易に分散する。このため、触媒層中に、均一に微粒子を分散させることができる。 Thereby, the metal oxide fine particles having high hydrophilicity are easily coated with the ionomer and easily dispersed. For this reason, fine particles can be uniformly dispersed in the catalyst layer.
 さらに、微粒子とアイオノマーとが親水性であることから、プロトン伝導部材は高い含水率を有する。これにより、触媒層内の余剰な水分を吸収し、触媒近傍での過剰な水分による、酸素ガスの拡散阻害による酸素還元反応の効率低下を防止できる。 Furthermore, since the fine particles and the ionomer are hydrophilic, the proton conducting member has a high water content. As a result, excess moisture in the catalyst layer is absorbed, and reduction in the efficiency of the oxygen reduction reaction due to inhibition of oxygen gas diffusion due to excess moisture in the vicinity of the catalyst can be prevented.
 また、温度上昇等によって、アイオノマーの含水率が低下したときには、触媒部材のアイオノマーへ水分が供給されるので、プロトン伝導性を高く保持することができる。 In addition, when the water content of the ionomer decreases due to a temperature rise or the like, water is supplied to the ionomer of the catalyst member, so that proton conductivity can be kept high.
 第6の態様の電解質膜-電極接合体は、プロトン伝導性を有する電解質膜と、電解質膜の両主面に配置される触媒層と、を有する電解質膜-電極接合体である。そして、電解質膜の少なくとも一方の主面に配置される触媒層として、第1の態様から第5の態様までのいずれか1つの態様の燃料電池用触媒層が用いられるものである。 The electrolyte membrane-electrode assembly of the sixth aspect is an electrolyte membrane-electrode assembly having an electrolyte membrane having proton conductivity and a catalyst layer disposed on both main surfaces of the electrolyte membrane. And as a catalyst layer arrange | positioned at at least one main surface of an electrolyte membrane, the catalyst layer for fuel cells of any one aspect from a 1st aspect to a 5th aspect is used.
 これにより、電解質膜-電極接合体の電極を構成する触媒層のプロトン伝導性が高くなる。この電解質膜-電極接合体を燃料電池に用いると、高い発電効率を実現できる。 Thereby, the proton conductivity of the catalyst layer constituting the electrode of the electrolyte membrane-electrode assembly is increased. When this electrolyte membrane-electrode assembly is used in a fuel cell, high power generation efficiency can be realized.
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、これらの実施の形態によって、本開示が限定されるものではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that the present disclosure is not limited by these embodiments.
 (第1の実施の形態)
 図1は、本開示の第1の実施の形態におけるカソード触媒層(燃料電池用触媒層)の拡大模式図である。図2は、本開示の第1の実施の形態における電解質膜-電極接合体の拡大模式図である。図3は、本開示の第1の実施の形態における燃料電池単セルの断面模式図である。
(First embodiment)
FIG. 1 is an enlarged schematic diagram of a cathode catalyst layer (fuel cell catalyst layer) according to the first embodiment of the present disclosure. FIG. 2 is an enlarged schematic diagram of the electrolyte membrane-electrode assembly according to the first embodiment of the present disclosure. FIG. 3 is a schematic cross-sectional view of the fuel cell single cell according to the first embodiment of the present disclosure.
 図1に示されるように、本実施の形態のカソード触媒層10においては、Pt触媒11を担持した触媒担持カーボン12と、第1のアイオノマー13とからなる触媒部材14、および、触媒を担持していない微粒子15と第2のアイオノマー16とからなるプロトン伝導部材17が混在している。そして、微粒子15の平均粒径は、触媒担持カーボン12の平均粒径よりも小さくなっている。なお、ここで、平均粒径とは、レーザ回折式粒度分布測定装置などにより測定される体積基準の粒度分布において、体積積算値が50%となる粒径である。 As shown in FIG. 1, in the cathode catalyst layer 10 of the present embodiment, a catalyst member 14 comprising a catalyst-carrying carbon 12 carrying a Pt catalyst 11 and a first ionomer 13, and a catalyst is carried. Proton conducting members 17 composed of fine particles 15 and second ionomers 16 are mixed. The average particle size of the fine particles 15 is smaller than the average particle size of the catalyst-supporting carbon 12. Here, the average particle size is a particle size at which the volume integrated value is 50% in the volume-based particle size distribution measured by a laser diffraction particle size distribution measuring device or the like.
 ここで、第1のアイオノマー13と第2のアイオノマー16は、いずれも、プロトン伝導性を有するフッ素系の高分子アイオノマーである。第1のアイオノマー13のイオン交換基等量よりも、第2のアイオノマー16のイオン交換基等量が低くなっている。つまり、触媒部材14のプロトン伝導度よりも、プロトン伝導部材17のプロトン伝導度の方が高くなっている。 Here, the first ionomer 13 and the second ionomer 16 are both fluorine-based polymer ionomers having proton conductivity. The ion exchange group equivalent of the second ionomer 16 is lower than the ion exchange group equivalent of the first ionomer 13. That is, the proton conductivity of the proton conduction member 17 is higher than the proton conductivity of the catalyst member 14.
 図2に示されるように、本実施の形態のカソード触媒層10を用いた電解質膜-電極接合体20は、電解質膜21の両面にそれぞれ形成される、カソード触媒層10およびアノード触媒層22を備える。アノード触媒層22は、Pt触媒11を担持した触媒担持カーボン12、および、第2のアイオノマー16からなる。 As shown in FIG. 2, the electrolyte membrane-electrode assembly 20 using the cathode catalyst layer 10 of the present embodiment includes the cathode catalyst layer 10 and the anode catalyst layer 22 formed on both surfaces of the electrolyte membrane 21, respectively. Prepare. The anode catalyst layer 22 is composed of the catalyst-supporting carbon 12 that supports the Pt catalyst 11 and the second ionomer 16.
 図3に示されるように、本実施の形態の電解質膜-電極接合体20を用いた単セル23は、電解質膜21と、電解質膜21の両主面にそれぞれ形成された、アノード触媒層22およびカソード触媒層10とを備えている。また単セル23は、アノード触媒層22およびカソード触媒層10が形成された電解質膜21を両側から挟持する、アノードガス拡散層24およびカソードガス拡散層25と、アノードガス拡散層24およびカソードガス拡散層25のさらに外側に、それぞれ配設された、アノードガスセパレータ26およびカソードガスセパレータ27とを備えている。 As shown in FIG. 3, the unit cell 23 using the electrolyte membrane-electrode assembly 20 of the present exemplary embodiment has an electrolyte membrane 21 and an anode catalyst layer 22 formed on both main surfaces of the electrolyte membrane 21, respectively. And a cathode catalyst layer 10. In addition, the single cell 23 sandwiches the electrolyte membrane 21 on which the anode catalyst layer 22 and the cathode catalyst layer 10 are formed from both sides, and the anode gas diffusion layer 24 and the cathode gas diffusion layer 25, and the anode gas diffusion layer 24 and the cathode gas diffusion. An anode gas separator 26 and a cathode gas separator 27 are provided on the outer side of the layer 25, respectively.
 アノードガス拡散層24およびカソードガス拡散層25それぞれは、ガス透過性を有する導電性部材であるカーボンペーパーによって形成されている。このようなアノードガス拡散層24およびカソードガス拡散層25は、電気化学反応に供されるガスを、それぞれ、アノード触媒層22およびカソード触媒層10に導くとともに、集電を行う。 Each of the anode gas diffusion layer 24 and the cathode gas diffusion layer 25 is formed of carbon paper which is a conductive member having gas permeability. The anode gas diffusion layer 24 and the cathode gas diffusion layer 25 as described above conduct the current collection while guiding the gas subjected to the electrochemical reaction to the anode catalyst layer 22 and the cathode catalyst layer 10, respectively.
 アノードガスセパレータ26およびカソードガスセパレータ27それぞれは、ガス透過性のない導電性部材である圧縮カーボンによって形成される。アノードガスセパレータ26およびカソードガスセパレータ27それぞれは、所定の凹凸形状を有している。 Each of the anode gas separator 26 and the cathode gas separator 27 is formed of compressed carbon which is a conductive member having no gas permeability. Each of the anode gas separator 26 and the cathode gas separator 27 has a predetermined uneven shape.
 この凹凸形状によって、アノードガスセパレータ26とアノードガス拡散層24との間には、水素を含有する燃料ガスが流れる燃料ガス流路28が形成される。また、上述した凹凸形状によって、カソードガスセパレータ27とカソードガス拡散層25との間には、酸素を含有する酸化ガスが流れる酸化ガス流路29が形成される。 This uneven shape forms a fuel gas flow path 28 through which the fuel gas containing hydrogen flows between the anode gas separator 26 and the anode gas diffusion layer 24. In addition, due to the uneven shape described above, an oxidizing gas passage 29 through which an oxidizing gas containing oxygen flows is formed between the cathode gas separator 27 and the cathode gas diffusion layer 25.
 以上のように構成された、本実施の形態のカソード触媒層10および電解質膜-電極接合体20について、以下その作用について説明する。 The operation of the cathode catalyst layer 10 and the electrolyte membrane-electrode assembly 20 of the present embodiment configured as described above will be described below.
 まず、触媒部材14とプロトン伝導部材17とを混在させることにより、プロトンは、触媒部材14よりもプロトン伝導度が高い、プロトン伝導部材17の第2のアイオノマー16を主に移動する。 First, by mixing the catalyst member 14 and the proton conducting member 17, protons mainly move through the second ionomer 16 of the proton conducting member 17 having a proton conductivity higher than that of the catalyst member 14.
 そして、微粒子15の平均粒径が、触媒担持カーボン12の平均粒形よりも小さいことによって、微粒子15の体積は、触媒担持カーボン12の体積よりも小さくなる。これにより、触媒担持カーボン12と微粒子15とが混在するカソード触媒層10は、微粒子15の平均粒径が触媒担持カーボン12の平均粒径と同等である場合に比べて、カソード触媒層10の密度が高くなる。これにより、微粒子を触媒層に混在させることによる、触媒層の厚み増加が抑制される。 And, since the average particle size of the fine particles 15 is smaller than the average particle shape of the catalyst-supporting carbon 12, the volume of the fine particles 15 becomes smaller than the volume of the catalyst-supporting carbon 12. As a result, the cathode catalyst layer 10 in which the catalyst-supporting carbon 12 and the fine particles 15 coexist has a higher density than the case where the average particle size of the fine particles 15 is equal to the average particle size of the catalyst-supporting carbon 12. Becomes higher. Thereby, the increase in the thickness of the catalyst layer due to mixing of fine particles in the catalyst layer is suppressed.
 さらに、微粒子15を被覆する第2のアイオノマー16と、触媒担持カーボン12を被覆する、第1のアイオノマー13およびPt触媒11とが接触する面積が大きくなる。 Furthermore, the contact area between the second ionomer 16 covering the fine particles 15 and the first ionomer 13 and the Pt catalyst 11 covering the catalyst-supporting carbon 12 is increased.
 以上のように、本実施の形態においては、カソード触媒層10において、Pt触媒11を担持した触媒担持カーボン12と第1のアイオノマー13とからなる触媒部材14、および、微粒子15と第2のアイオノマー16とからなるプロトン伝導部材17が混在する。これにより、プロトンは、プロトン伝導部材17の第2のアイオノマー16を主に移動する。 As described above, in the present embodiment, in the cathode catalyst layer 10, the catalyst member 14 including the catalyst-carrying carbon 12 carrying the Pt catalyst 11 and the first ionomer 13, and the fine particles 15 and the second ionomer. Proton conducting member 17 composed of 16 is mixed. As a result, protons mainly move through the second ionomer 16 of the proton conducting member 17.
 これにより、触媒部材14の、触媒担持カーボン12を被覆する第1のアイオノマー13の厚みを薄くすることができる。これにより、酸素ガスが、第1のアイオノマー13を透過して、Pt触媒11に届き易くなる。 Thereby, the thickness of the first ionomer 13 covering the catalyst-supporting carbon 12 of the catalyst member 14 can be reduced. As a result, the oxygen gas easily passes through the first ionomer 13 and reaches the Pt catalyst 11.
 さらに、微粒子15の平均粒径を、触媒担持カーボン12の平均粒径よりも小さくする。これにより、微粒子15の体積は、触媒担持カーボン12の体積よりも小さくなる。これにより、触媒担持カーボン12と微粒子15とが混在するカソード触媒層10は、微粒子15の粒径と触媒担持カーボン12の粒径とが同等である場合に比べて、カソード触媒層10の密度が高くなる。これにより、微粒子を触媒層に混在させることによる、触媒層の厚み増加が抑制される。 Furthermore, the average particle diameter of the fine particles 15 is made smaller than the average particle diameter of the catalyst-supporting carbon 12. Thereby, the volume of the fine particles 15 becomes smaller than the volume of the catalyst-supporting carbon 12. As a result, the cathode catalyst layer 10 in which the catalyst-supporting carbon 12 and the fine particles 15 coexist has a density of the cathode catalyst layer 10 as compared with the case where the particle size of the fine particles 15 and the particle size of the catalyst-supported carbon 12 are equal. Get higher. Thereby, the increase in the thickness of the catalyst layer due to mixing of fine particles in the catalyst layer is suppressed.
 よって、電解質膜21から遠い、カソードガス拡散層25とカソード触媒層10との界面近傍のPt触媒11に、プロトンを滞りなく供給できる。 Therefore, protons can be supplied to the Pt catalyst 11 in the vicinity of the interface between the cathode gas diffusion layer 25 and the cathode catalyst layer 10 far from the electrolyte membrane 21 without any delay.
 また、カソード触媒層10は、微粒子15の粒径が触媒担持カーボン12の粒径と同等である場合に比べて、カソード触媒層10の密度が高くなる。これにより、微粒子15を被覆する第2のアイオノマー16と、触媒担持カーボン12を被覆する第1のアイオノマー13およびPt触媒11とが接触する面積が大きくなる。 Further, the cathode catalyst layer 10 has a higher density of the cathode catalyst layer 10 than the case where the particle size of the fine particles 15 is equal to the particle size of the catalyst-supporting carbon 12. As a result, the contact area between the second ionomer 16 covering the fine particles 15, the first ionomer 13 covering the catalyst-supporting carbon 12, and the Pt catalyst 11 increases.
 それによって、Pt触媒11へのプロトンは、第2のアイオノマー16を主に通って移動するので、第1のアイオノマー13を通過する距離は、ごく僅かで済む。または、プロトンは、第2のアイオノマー16から直接、Pt触媒11へ供給される。よって、Pt触媒11へのプロトンの供給が円滑になり、電気化学反応を円滑に進行させることができる。 Thereby, the protons to the Pt catalyst 11 move mainly through the second ionomer 16, so that the distance passing through the first ionomer 13 is very small. Alternatively, protons are supplied directly from the second ionomer 16 to the Pt catalyst 11. Therefore, the supply of protons to the Pt catalyst 11 becomes smooth, and the electrochemical reaction can proceed smoothly.
 さらに、微粒子15は導電性を有するので、電子抵抗が増大することもない。 Furthermore, since the fine particles 15 have conductivity, the electronic resistance does not increase.
 さらに、プロトン伝導部材17の第2のアイオノマー16を、触媒部材14の第1のアイオノマー13よりも厚く被覆し、EW(Equivalent Weight)を低くしている。これにより、プロトン伝導部材17のプロトン伝導度は、触媒部材14のプロトン伝導度よりも高くなり、カソード触媒層10のプロトン伝導性を高くすることができる。 Furthermore, the second ionomer 16 of the proton conducting member 17 is coated thicker than the first ionomer 13 of the catalyst member 14, and the EW (Equivalent Weight) is lowered. Thereby, the proton conductivity of the proton conducting member 17 becomes higher than the proton conductivity of the catalyst member 14, and the proton conductivity of the cathode catalyst layer 10 can be increased.
 以上、説明したように、本実施の形態のカソード触媒層10を有する電解質膜-電極接合体20は、高いプロトン伝導性を有しつつ、Pt触媒11に酸素およびプロトンを滞りなく供給することができる。この電解質膜-電極接合体20を燃料電池に用いることにより、高い発電効率を得ることができる。 As described above, the electrolyte membrane-electrode assembly 20 having the cathode catalyst layer 10 of the present embodiment can supply oxygen and protons to the Pt catalyst 11 without stagnation while having high proton conductivity. it can. By using the electrolyte membrane-electrode assembly 20 in a fuel cell, high power generation efficiency can be obtained.
 なお、本実施の形態の第1のアイオノマー13および第2のアイオノマー16は、フッ素系の高分子アイオノマーであれば、特に限定されない。 The first ionomer 13 and the second ionomer 16 of the present embodiment are not particularly limited as long as they are fluorine polymer ionomers.
 なお、本実施の形態の触媒担持カーボン12の、Pt触媒11を担持する担体を、カーボンナノチューブ(CNT)またはカーボンナノファイバー(CNF)等の、耐薬品性のある導電性繊維とすることもできる。 The carrier carrying the Pt catalyst 11 of the catalyst-carrying carbon 12 of the present embodiment can also be a chemical-resistant conductive fiber such as carbon nanotube (CNT) or carbon nanofiber (CNF). .
 なお、本実施の形態におけるアノード触媒としては、Pt以外にも、PtRu等のPt合金を用いることができる。また、カソード触媒としては、Pt以外にも、PtCo等のPt合金触媒を用いることができる。 In addition, as an anode catalyst in this Embodiment, Pt alloys, such as PtRu, can be used besides Pt. In addition to Pt, a Pt alloy catalyst such as PtCo can be used as the cathode catalyst.
 なお、本実施の形態における微粒子15は、耐薬品性に優れ、触媒担持カーボン12よりも平均粒形が小さければ、種々の微粒子(例えばカーボンブラック、窒化物微粒子、および、炭化物微粒子)から選択可能である。 The fine particles 15 in the present embodiment are excellent in chemical resistance and can be selected from various fine particles (for example, carbon black, nitride fine particles, and carbide fine particles) as long as the average particle shape is smaller than that of the catalyst-supporting carbon 12. It is.
 なお、本実施の形態の、アノード触媒層22とアノードガス拡散層24との間、および、カソード触媒層10とカソードガス拡散層25との間のうち、少なくともいずれかに、撥水性物質を有する撥水層が設けられてもよい。 In addition, at least one of the anode catalyst layer 22 and the anode gas diffusion layer 24 and the cathode catalyst layer 10 and the cathode gas diffusion layer 25 of the present embodiment has a water repellent material. A water repellent layer may be provided.
 (第2の実施の形態)
 図4は、本開示の第2の実施の形態におけるカソード触媒層(燃料電池用触媒層)の拡大模式図である。図5は、本開示の第2の実施の形態における電解質膜-電極接合体の拡大模式図である。図6は、本開示の第2の実施の形態における燃料電池単セルの断面模式図である。
(Second Embodiment)
FIG. 4 is an enlarged schematic diagram of a cathode catalyst layer (fuel cell catalyst layer) according to the second embodiment of the present disclosure. FIG. 5 is an enlarged schematic view of an electrolyte membrane-electrode assembly according to the second embodiment of the present disclosure. FIG. 6 is a schematic cross-sectional view of a fuel cell single cell according to the second embodiment of the present disclosure.
 図4から図6に示された、第2の実施の形態の、カソード触媒層、電解質膜-電極接合体、および、燃料電池単セルについて、第1の実施の形態と同じ構成部材には同じ符号を付与して、詳細な説明は省略する。 The cathode catalyst layer, the electrolyte membrane-electrode assembly, and the single unit fuel cell of the second embodiment shown in FIGS. 4 to 6 are the same as those in the first embodiment. Reference numerals are assigned and detailed description is omitted.
 図4に示されるように、本実施の形態のカソード触媒層30は、Pt触媒11を担持した触媒担持カーボン12、および、第1のアイオノマー13からなる触媒部材14と、金属酸化物である微粒子35と第2のアイオノマー36とからなるプロトン伝導部材37とが混在している。微粒子35は、上述した通りの金属酸化物であり、その平均粒径は、触媒担持カーボン12の平均粒径よりも小さく構成されている。 As shown in FIG. 4, the cathode catalyst layer 30 of the present embodiment includes a catalyst-supporting carbon 12 supporting a Pt catalyst 11, a catalyst member 14 including a first ionomer 13, and fine particles that are metal oxides. A proton conducting member 37 composed of 35 and the second ionomer 36 is mixed. The fine particles 35 are the metal oxide as described above, and the average particle size is configured to be smaller than the average particle size of the catalyst-supporting carbon 12.
 ここで、第1のアイオノマー13と第2のアイオノマー36とは、同じアイオノマーである。微粒子35を被覆する第2のアイオノマー36の厚みは、触媒担持カーボン12を被覆する第1のアイオノマー13の厚みよりも厚い。つまり、触媒部材14のプロトン伝導度よりも、プロトン伝導部材37のプロトン伝導度が高くなっている。 Here, the first ionomer 13 and the second ionomer 36 are the same ionomer. The thickness of the second ionomer 36 that covers the fine particles 35 is thicker than the thickness of the first ionomer 13 that covers the catalyst-supporting carbon 12. That is, the proton conductivity of the proton conducting member 37 is higher than the proton conductivity of the catalyst member 14.
 図5に示されるように、本実施の形態のカソード触媒層30を用いた電解質膜-電極接合体40は、電解質膜21の両主面にそれぞれ形成される、カソード触媒層30およびアノード触媒層22を備える。 As shown in FIG. 5, the electrolyte membrane-electrode assembly 40 using the cathode catalyst layer 30 of the present embodiment is formed on both main surfaces of the electrolyte membrane 21, respectively. 22.
 図6に示されるように、本実施の形態の電解質膜-電極接合体40を用いた単セル43は、電解質膜21と、電解質膜21の両膜面にそれぞれ形成された、アノード触媒層22およびカソード触媒層30とを備えている。 As shown in FIG. 6, the single cell 43 using the electrolyte membrane-electrode assembly 40 of the present embodiment includes the electrolyte membrane 21 and the anode catalyst layer 22 formed on both membrane surfaces of the electrolyte membrane 21. And a cathode catalyst layer 30.
 以上のように構成された、本実施の形態のカソード触媒層30および電解質膜-電極接合体40の作用について説明する。 The operation of the cathode catalyst layer 30 and the electrolyte membrane-electrode assembly 40 of the present embodiment configured as described above will be described.
 まず、触媒部材14とプロトン伝導部材37とを混在させることにより、プロトンは、触媒部材14よりもプロトン伝導度が高い、プロトン伝導部材37の第2のアイオノマー36を主に移動する。 First, by mixing the catalyst member 14 and the proton conducting member 37, protons mainly move through the second ionomer 36 of the proton conducting member 37 having a proton conductivity higher than that of the catalyst member 14.
 微粒子35は、その平均粒径が、触媒担持カーボン12の平均粒径よりも小さい金属酸化物である。金属酸化物は親水性が高い。よって、微粒子35を、第2のアイオノマー36が被覆しやすく、分散性に優れる。よって、微粒子35と第2のアイオノマー36とからなるプロトン伝導部材37は、触媒担持カーボン12と第1のアイオノマー13とからなる触媒部材14に、容易に、かつ、均一に分散する。 The fine particles 35 are metal oxides whose average particle size is smaller than the average particle size of the catalyst-supporting carbon 12. Metal oxides are highly hydrophilic. Therefore, the fine particles 35 are easily covered with the second ionomer 36, and the dispersibility is excellent. Therefore, the proton conducting member 37 composed of the fine particles 35 and the second ionomer 36 is easily and uniformly dispersed in the catalyst member 14 composed of the catalyst-supporting carbon 12 and the first ionomer 13.
 また、第1のアイオノマー13と第2のアイオノマー36とは、同一のアイオノマーである。よって、異なるアイオノマーを使う場合よりも、カソード触媒層を構成する材料種を減らすことができる。 Further, the first ionomer 13 and the second ionomer 36 are the same ionomer. Therefore, the kind of material constituting the cathode catalyst layer can be reduced as compared with the case of using different ionomers.
 以上のように、本実施の形態においては、カソード触媒層30において、触媒部材14と、微粒子35および第2のアイオノマー36からなるプロトン伝導部材37とが混在している。そして、触媒層の微粒子35を、その平均粒径が、触媒担持カーボン12の平均粒径よりも小さい金属酸化物とする。これにより、親水性の高い金属酸化物の微粒子35は、微粒子35を被覆する第2のアイオノマー36とともに、生成水および水蒸気等の水分を含水することができる。よって、触媒層内の過剰な水分により、酸素ガスがPt触媒11に供給されなくなって反応が阻害されるという現象を防止できる。 As described above, in the present embodiment, in the cathode catalyst layer 30, the catalyst member 14 and the proton conducting member 37 composed of the fine particles 35 and the second ionomer 36 are mixed. The fine particles 35 of the catalyst layer are metal oxides whose average particle diameter is smaller than the average particle diameter of the catalyst-supporting carbon 12. Thereby, the highly hydrophilic metal oxide fine particles 35 can contain water such as generated water and water vapor together with the second ionomer 36 covering the fine particles 35. Therefore, it is possible to prevent a phenomenon in which oxygen gas is not supplied to the Pt catalyst 11 due to excessive moisture in the catalyst layer and the reaction is inhibited.
 また、微粒子35を被覆する第2のアイオノマー36の厚みは、触媒担持カーボン12を被覆する第1のアイオノマー13の厚みよりも厚くなっている。これにより、触媒部材14を被覆する第1のアイオノマー13は、触媒担持カーボン12を薄く被覆できる。これにより、酸素ガスが、第1のアイオノマー13を透過してPt触媒11に届き易くなる。 The thickness of the second ionomer 36 that covers the fine particles 35 is larger than the thickness of the first ionomer 13 that covers the catalyst-supporting carbon 12. Thereby, the first ionomer 13 covering the catalyst member 14 can cover the catalyst-supporting carbon 12 thinly. Thereby, the oxygen gas easily passes through the first ionomer 13 and reaches the Pt catalyst 11.
 さらに、第1のアイオノマー13と第2のアイオノマー36とは、同一のアイオノマーである。これにより、異なるアイオノマーを使う場合よりも、カソード触媒層30を構成する材料種を減らすことができ、コスト削減に寄与できる。 Furthermore, the first ionomer 13 and the second ionomer 36 are the same ionomer. Thereby, compared with the case where a different ionomer is used, the kind of material which comprises the cathode catalyst layer 30 can be reduced, and it can contribute to cost reduction.
 以上、説明したように、本実施の形態のカソード触媒層30を有する電解質膜-電極接合体40は、カソード触媒層30におけるプロトン伝導部材37の含水率が高い。この電解質膜-電極接合体40を燃料電池に用いると、燃料電池の運転中に生じる温度変化等による、含水率の変動によるプロトン伝導性の変動、および、カソード反応で生じる生成水による、酸素ガスの閉塞による酸素還元反応の阻害を防止し、高い発電効率を、安定して得ることができる。 As described above, the electrolyte membrane-electrode assembly 40 having the cathode catalyst layer 30 of the present embodiment has a high moisture content of the proton conducting member 37 in the cathode catalyst layer 30. When this electrolyte membrane-electrode assembly 40 is used in a fuel cell, the oxygen gas is caused by fluctuations in proton conductivity due to fluctuations in the moisture content due to temperature changes, etc. that occur during operation of the fuel cell, and by water produced in the cathode reaction. Inhibition of the oxygen reduction reaction due to occlusion of water can be prevented, and high power generation efficiency can be stably obtained.
 また、本実施の形態における微粒子35は金属酸化物であるが、微粒子35としては、耐薬品性に優れ、触媒担持カーボン12よりも平均粒径が小さければ、種々の金属酸化物微粒子(例えば、酸化ケイ素、酸化スズ、および酸化チタン等)から選択可能である。金属酸化物は導電性のあることが好ましいが、導電性のない金属酸化物であっても、上述の通り高い効果を有するので選択可能である。 Further, the fine particles 35 in the present embodiment are metal oxides, but as the fine particles 35, various metal oxide fine particles (for example, as long as they have excellent chemical resistance and an average particle size smaller than the catalyst-supporting carbon 12) Silicon oxide, tin oxide, titanium oxide, etc.). The metal oxide is preferably conductive, but even a non-conductive metal oxide can be selected because it has a high effect as described above.
 以上のように、本開示によれば、触媒層の厚み増加を抑制でき、プロトン伝導性が高く、発電効率のよい触媒層を得ることができるという各別な効果を奏する。よって、例えば、固体高分子形電解質を用いた燃料電池および水電解の電極、ならびに、食塩電解の拡散層電極等の用途にも適用でき、有用である。 As described above, according to the present disclosure, it is possible to suppress an increase in the thickness of the catalyst layer, and to obtain a catalyst layer with high proton conductivity and high power generation efficiency. Therefore, for example, it can be applied to applications such as a fuel cell using a solid polymer electrolyte, an electrode for water electrolysis, and a diffusion layer electrode for salt electrolysis, and is useful.
 10,30  カソード触媒層
 11  Pt触媒
 12  触媒担持カーボン
 13  第1のアイオノマー
 14  触媒部材
 15,35  微粒子
 16,36  第2のアイオノマー
 17,37  プロトン伝導部材
 20,40  電解質膜-電極接合体
 21  電解質膜
 22  アノード触媒層
 23,43  単セル
 24  アノードガス拡散層
 25  カソードガス拡散層
 26  アノードガスセパレータ
 27  カソードガスセパレータ
 28  燃料ガス流路
 29  酸化ガス流路
DESCRIPTION OF SYMBOLS 10,30 Cathode catalyst layer 11 Pt catalyst 12 Catalyst supported carbon 13 1st ionomer 14 Catalyst member 15,35 Fine particle 16,36 2nd ionomer 17,37 Proton conduction member 20,40 Electrolyte membrane-electrode assembly 21 Electrolyte membrane 22 Anode catalyst layer 23, 43 Single cell 24 Anode gas diffusion layer 25 Cathode gas diffusion layer 26 Anode gas separator 27 Cathode gas separator 28 Fuel gas channel 29 Oxidation gas channel

Claims (6)

  1. 金属触媒と、前記金属触媒を担持した触媒担持カーボンと、前記触媒担持カーボンを被覆する第1のアイオノマーとからなる触媒部材と、
    前記金属触媒を担持していない微粒子と、前記微粒子を被覆する第2のアイオノマーとからなるプロトン伝導部材と、を備え、
    前記触媒部材と前記プロトン伝導部材とが混在し、
    前記微粒子の平均粒径が、前記触媒担時カーボンの平均粒径よりも小さい、
    燃料電池用触媒層。
    A catalyst member comprising a metal catalyst, a catalyst-carrying carbon carrying the metal catalyst, and a first ionomer that coats the catalyst-carrying carbon;
    A proton conducting member comprising fine particles not supporting the metal catalyst and a second ionomer that coats the fine particles,
    The catalyst member and the proton conducting member are mixed,
    The average particle size of the fine particles is smaller than the average particle size of the catalyst-supported carbon,
    Fuel cell catalyst layer.
  2. 前記プロトン伝導部材のプロトン伝導度が、前記触媒部材のプロトン伝導度よりも高い、
    請求項1に記載の燃料電池用触媒層。
    The proton conductivity of the proton conducting member is higher than the proton conductivity of the catalyst member,
    The fuel cell catalyst layer according to claim 1.
  3. 前記第1のアイオノマーと、前記第2のアイオノマーとが同一のアイオノマーである、
    請求項1または請求項2に記載の燃料電池用触媒層。
    The first ionomer and the second ionomer are the same ionomer.
    The catalyst layer for a fuel cell according to claim 1 or 2.
  4. 前記微粒子が、導電性微粒子である、
    請求項1から請求項3までのいずれか1項に記載の燃料電池用触媒層。
    The fine particles are conductive fine particles,
    The fuel cell catalyst layer according to any one of claims 1 to 3.
  5. 前記微粒子が金属酸化物である、
    請求項1から請求項4までのいずれか1項に記載の燃料電池用触媒層。
    The fine particles are metal oxides;
    The fuel cell catalyst layer according to any one of claims 1 to 4.
  6. プロトン伝導性を有する電解質膜と、前記電解質膜の両主面に配置される触媒層と、を有する電解質膜-電極接合体であって、
    前記電解質膜の少なくとも一方の主面に配置される前記触媒層が、
    請求項1から請求項5までのいずれか1項に記載の燃料電池用触媒層である、
    電解質膜-電極接合体。
    An electrolyte membrane-electrode assembly having an electrolyte membrane having proton conductivity and a catalyst layer disposed on both main surfaces of the electrolyte membrane,
    The catalyst layer disposed on at least one main surface of the electrolyte membrane,
    It is a catalyst layer for fuel cells given in any 1 paragraph of Claims 1-5.
    Electrolyte membrane-electrode assembly.
PCT/JP2018/001100 2017-01-25 2018-01-17 Fuel cell catalyst layer and electrolyte film–electrode assembly WO2018139286A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017010906 2017-01-25
JP2017-010906 2017-01-25

Publications (1)

Publication Number Publication Date
WO2018139286A1 true WO2018139286A1 (en) 2018-08-02

Family

ID=62979249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001100 WO2018139286A1 (en) 2017-01-25 2018-01-17 Fuel cell catalyst layer and electrolyte film–electrode assembly

Country Status (1)

Country Link
WO (1) WO2018139286A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220181646A1 (en) * 2020-02-28 2022-06-09 Korea Institute Of Science And Technology Catalyst electrode for fuel cell, manufacturing method thereof and a fuel cell comprising the catalyst electrode for fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195761A (en) * 2010-03-23 2011-10-06 Mitsubishi Chemicals Corp Flame-retardant polyolefin resin composition
JP2013073860A (en) * 2011-09-29 2013-04-22 Equos Research Co Ltd Catalyst layer for fuel cell and production method therefor
JP2013073852A (en) * 2011-09-28 2013-04-22 Equos Research Co Ltd Catalyst layer for fuel cell and production method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195761A (en) * 2010-03-23 2011-10-06 Mitsubishi Chemicals Corp Flame-retardant polyolefin resin composition
JP2013073852A (en) * 2011-09-28 2013-04-22 Equos Research Co Ltd Catalyst layer for fuel cell and production method therefor
JP2013073860A (en) * 2011-09-29 2013-04-22 Equos Research Co Ltd Catalyst layer for fuel cell and production method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220181646A1 (en) * 2020-02-28 2022-06-09 Korea Institute Of Science And Technology Catalyst electrode for fuel cell, manufacturing method thereof and a fuel cell comprising the catalyst electrode for fuel cell
US11799093B2 (en) * 2020-02-28 2023-10-24 Korea Institute Of Science And Technology Catalyst electrode for fuel cell, manufacturing method thereof and a fuel cell comprising the catalyst electrode for fuel cell

Similar Documents

Publication Publication Date Title
JP2017525103A (en) Cathode design for electrochemical cells
JP2019530961A (en) Cathode electrode design for electrochemical fuel cells
JP4133654B2 (en) Polymer electrolyte fuel cell
JP2012133917A (en) Cathode side catalyst layer, membrane electrode assembly, and solid polymer fuel cell and method for manufacturing the same
WO2010070994A1 (en) Anode catalyst layer for solid polymer fuel cell
JP2020047432A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
JP2007080694A (en) Electrocatalyst layer for fuel cell, and fuel cell using this
JP2011159517A (en) Method for manufacturing fuel cell catalyst layer
JP5994729B2 (en) A fuel cell catalyst electrode layer, a membrane electrode assembly, a fuel cell, and a method for producing a fuel cell catalyst electrode layer.
JP2008171647A (en) Catalyst for fuel cell, cathode for fuel cell, and solid polymer fuel cell equipped with the same
JP2020047429A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
JP2007026783A (en) Solid polymer fuel cell
JP5470996B2 (en) Fuel cell
WO2018139286A1 (en) Fuel cell catalyst layer and electrolyte film–electrode assembly
JP2008027847A (en) Solid polymer fuel cell, and electronic equipment using it
JP2005174835A (en) Electrode
WO2022124407A1 (en) Electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell
JP2006085984A (en) Mea for fuel cell and fuel cell using this
JP2020077581A (en) Catalyst layer
JP2020057516A (en) Electrode layer, membrane electrode assembly including the electrode layer, and fuel cell
JP2021163699A (en) Catalyst layer for polymer electrolyte fuel cell, membrane electrode assembly, and polymer electrolyte fuel cell
JP2006012449A (en) Membrane electrode junction body and solid polymer fuel cell using above
JP2006079917A (en) Mea for fuel cell, and fuel cell using this
JP2006339125A (en) Solid polymer fuel cell
JP2006079840A (en) Electrode catalyst for fuel cell, and mea for fuel cell using this

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP