WO2018139043A1 - Distribution control system, distribution control method, power-system distribution control system, and power resource control method - Google Patents

Distribution control system, distribution control method, power-system distribution control system, and power resource control method Download PDF

Info

Publication number
WO2018139043A1
WO2018139043A1 PCT/JP2017/042841 JP2017042841W WO2018139043A1 WO 2018139043 A1 WO2018139043 A1 WO 2018139043A1 JP 2017042841 W JP2017042841 W JP 2017042841W WO 2018139043 A1 WO2018139043 A1 WO 2018139043A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power resource
information
control
command
Prior art date
Application number
PCT/JP2017/042841
Other languages
French (fr)
Japanese (ja)
Inventor
丸山 龍也
相川 慎
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018139043A1 publication Critical patent/WO2018139043A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • H02J3/472For selectively connecting the AC sources in a particular order, e.g. sequential, alternating or subsets of sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • the present invention relates to a distributed control system in which control devices are arranged in a distributed manner on a control network, and in particular, a distributed control system, a distributed control method, and a power system that are configured in consideration of uncertainties in communication and device operation.
  • the present invention relates to a distributed control system and a power resource control method.
  • a distributed control system configured by distributing control devices on a control network
  • the operation of each control device constituting the distributed control system is determined by communication of packets storing control commands.
  • the distributed control system can function when each device driven and controlled by each control device operates as instructed. Therefore, the performance of the distributed control system depends on the communication and the availability of equipment.
  • the availability specifically refers to real-time performance related to the communication band and communication delay, reliability of communication transmission, device abnormality or failure, and device service refusal for some reason.
  • each element control device or device constituting the distributed control system has a purpose as a single operation. That is, it is assumed that each element can prioritize the purpose of the latter single operation in selecting whether to give priority to the purpose as the element of the distributed control system or the purpose of the single operation. In such a case, even if each element receives a command as a distributed control system, each element may reject the command from the distributed control system as a result of giving priority to the function as a single operation.
  • Patent Document 1 and Patent Document 2 are known as distributed control system configuration examples in the power system.
  • Patent Document 1 relates to a load reduction plan formulation system, “from a demand prediction unit that predicts a power demand of a power receiver who can receive power supply from an electric power company, and a power demand predicted by the demand prediction unit.
  • Demand prediction means for predicting demand which is the amount of power required to be supplied from the electric utility
  • Load reduction provided with plan formulation means for formulating a load reduction plan which is a sequential plan of load reduction among a plurality of loads, based on the demand predicted by the demand prediction means for a plurality of loads provided to a power receiver
  • a planning system Having a load reduction classification index defining a load reduction order between the plurality of loads under different weather conditions, and having a weather prediction means for predicting the weather on the planned date, In the load reduction classification index, a plurality of loads are classified according to the degree of influence by weather, the higher the degree, the load reduction order is defined in the front order
  • the plan formulation unit is configured as “a load reduction plan formulation system that formulates a load reduction plan on the planned date
  • Patent document 2 relates to a demand control device, “in a demand control device that performs demand control on the equipment based on the power consumption of many equipment related to the building to be monitored, A past data storage unit that stores an operation status of the facility device when a past demand value related to power consumption of the facility device exceeds contract power; An event information storage unit for storing event information in the tenant of the building; A demand prediction calculation unit that calculates demand prediction information based on the event information stored in the event information storage unit and the past data stored in the past data storage unit; Equipment that determines equipment equipment that is subject to demand control from the large number of equipment equipment based on the demand prediction information calculated by the demand prediction calculation section, and generates information related to the control content of the equipment equipment that is provided with information
  • a demand control device comprising: a device control information generation unit. It is constituted as follows.
  • Communication and device operation include various uncertainties, which are factors that degrade the performance of the distributed control system.
  • uncertainties which are factors that degrade the performance of the distributed control system.
  • the component devices of the distributed control system do not operate as instructed and do not function as a distributed control system. Can occur.
  • control packet is transmitted to the destination and processed
  • ack an acknowledgment from the destination
  • Patent Documents 1 and 2 correct the predicted value of demand using weather and event information.
  • demand forecasting is an object and command distribution to individual elements of the distributed control system cannot be planned.
  • the present invention is applied to a control target system including a plurality of control devices, and a plurality of control devices that control the control devices are combined from a central device via communication means.
  • a distributed control system The central device collects and stores control device information and uncertainty information for each control device, and an operation command for controlling the control device from the central device based on at least uncertainty information.
  • a distributed control system comprising communication means for transmitting a control command that has been transmitted.
  • the present invention “collects control device information and uncertainty information as appropriate and classifies the control device into an operation command target group that is controlled from the central device and a spare group that is not controlled, and controls from the outside.
  • the distributed control method is characterized in that when a command is given, the requested control command is distributed and given to control devices classified into the operation command target group.
  • the present invention is a distributed control system for a power system that is applied to a power system including a plurality of power resources and in which a plurality of control devices that control the power resources are coupled from a central device via communication means.
  • the central device collects and stores power resource information and uncertainty information for each power resource, and an operation command for controlling power resources from the central device based on at least uncertainty information.
  • the allocation planning unit allocates control commands requested from the outside to the power resources specified in the operation command target group, and allocates to the power resources determined in the allocation planning unit
  • a distributed control system for an electric power system comprising: communication means for transmitting a control command that has been transmitted. ".
  • the present invention also states that “command distribution to power resources is planned based on the uncertainty related to controllability of power resources and information on power resources, and an instruction to increase or decrease output to power resources is given.
  • the characteristic power resource control method "
  • FIG. 1 The figure which shows the system structural example of the virtual power plant to which this invention is applied.
  • FIG. 1 The figure which shows the example of the packet format communicated between the virtual power generation central apparatus 103 and the terminal device 102.
  • FIG. The figure which shows the time chart which shows the process in the virtual electric power generation central apparatus 103.
  • FIG. The figure which shows the alternative example of the system configuration
  • VPP virtual power plant
  • VPP virtual power plant
  • VPP is a system that controls a small number of small-scale renewable energy generators, storage batteries, fuel cells, etc., and a network system that manages power demand. It is called a “virtual power plant” because its scale power generation facilities and systems function together as if they were one power plant.
  • a distributed control system is applied to control a system such as a power system as a control target system.
  • the system to be controlled includes a control device, while the distributed control system side is configured by connecting a control device for controlling and operating the control device on the network. Thereby, control is performed so that various control amounts of the control target system are led to a predetermined amount via the distributed control system.
  • FIG. 1 is a configuration example of a virtual power plant VPP to which the present invention is applied.
  • the power system 100 is an arbitrary system to which the power resource 101 is connected, and a power transmission system and a power distribution system are illustrated here. In this case, the power system 100 itself is a controlled system. In addition, since the power resource 101 is configured to include a plurality of control devices in many cases, the power resource 101 itself may be positioned as a control device.
  • the power resource 101 is composed of a power generation resource capable of providing a power generation increase / decrease output to the power system 100 or a power load resource capable of providing a load increase / decrease.
  • a power generation resource capable of providing a power generation increase / decrease output to the power system 100 or a power load resource capable of providing a load increase / decrease.
  • the electric power resource 101 hydroelectric power generation, thermal power generation, storage battery, solar power generation, wind power generation, geothermal power generation, biomass power generation, biogas power generation, wave power generation, nuclear power generation, house, building, factory Examples of such power loads and prosumers (power resources having both power and load properties) are illustrated.
  • the generator include a diesel engine, a gas turbine, a gas engine, and a cogeneration system including these.
  • EMS Electronicgy Management System
  • HEMS Home Energy Management System
  • BEMS Building Energy Management System
  • FEMS Emergency Management System
  • FEMS Emergency Management System
  • FEMS Emergency Management System
  • FEMS Emergency Management System
  • FEMS Emergency Management System
  • FEMS Emergency Management System
  • FEMS Emergency Management System
  • FEMS Emergency Management System
  • FEMS Emergency Management System
  • a certain virtual power generation company may be regarded as one power resource 101.
  • the distributed control system side includes a communication network 104, a terminal device 102, and a virtual power generation central device 103.
  • the terminal device 102 is connected to the virtual power generation central device 103 via the communication network 104, transmits information acquired by monitoring the power resource 101 to the virtual power generation central device 103, and the control received from the virtual power generation central device 103.
  • the power resource 101 is set and controlled based on the command.
  • the terminal device 102 corresponds to a control device in the distributed control system.
  • one or more power resources 101 may be connected to the terminal device 102.
  • the terminal device 102 may be incorporated in the power resource 101.
  • the virtual power generation central device 103 is a device that is connected to a group of power resources 101 (terminal devices 102) via the communication network 104, and acquires information about the power resources 101 and controls operations.
  • the virtual power generation central device 103 may be one or plural. In the case of a plurality of configurations, one gateway device or computer may be connected to the communication network 104 as a connection to another computer in a closed network, or each computer may be connected to the communication network 104. Also good.
  • virtual power generation central device 103 includes computers such as a personal computer (PC), a workstation, a server, a control personal computer, and cloud computing.
  • PC personal computer
  • workstation a workstation
  • server a server
  • control personal computer a control personal computer
  • cloud computing cloud computing
  • the communication network 104 is a communication network that connects the virtual power generation central device 103 and the power resource 101 (terminal device 102).
  • the communication network 104 may be either a public network or a dedicated network, and may be either wired or wireless communication.
  • IEEE 802.3 various industrial networks, IEC 61784, IEC 61158, IEC 61850, IEC 62439, IEC 61850-7-420, IEC 60870-5-104, DNP (Distributed Network Protocol) 3, IEC 61970, IEEE 802.1 AVB, CAN (Controller Area Network: registered trademark), DeviceNet, RS-232C, RS-422, RS-485, ZigBee (registered trademark), Bluetooth (registered trademark), IEEE 802.15, IEEE 802.1, mobile communication, OpenADR, ECHONET Lite (registered trademark), OpenFlow (registered trademark), etc. It is exemplified.
  • FIG. 2 is a diagram showing a hardware configuration of the virtual power generation central device 103 to which the present invention is applied.
  • the virtual power generation central device 103 has a CPU 111, a communication control unit 112, a memory 114, and a nonvolatile storage medium 115 connected by a bus 116, and is connected to the communication network 104 from the communication control unit through a PHY (physical layer) 113. Yes.
  • the CPU 111 transfers the program from the nonvolatile storage medium 115 to the memory 114 and executes it.
  • Examples of the execution processing program include an operating system (hereinafter referred to as OS) and an application program operating on the OS.
  • the communication control unit 112 receives a transmission request and transmission data from software operating on the CPU 111, and transmits it to the communication network 104 using the PHY 113. Further, data received from the communication network 104 is transferred to the CPU 111, the memory 114, and the nonvolatile storage medium 115 via the bus 116. Examples of the implementation of the communication control unit 112 include ICs such as FPGA, CPLD, ASIC, and gate array. Alternatively, the CPU 111 may be integrated.
  • the communication control unit 112 may be an IEEE 802.3 communication device including the MAC layer and the PHY layer, or may be included in the communication control unit 112 including the PHY function.
  • implementation examples of the communication control unit 112 include an IEEE 802.3 standard MAC (Media Access Control) chip, a PHY (physical layer) chip, and a combined MAC and PHY chip.
  • the communication control unit 112 may be included in the CPU 111 or a chip set that controls an information path inside the computer.
  • the PHY 113 is a transceiver IC that implements a communication function with the communication network 104.
  • a communication standard provided by the PHY 113 an IEEE 802.3 PHY (physical layer) chip is exemplified.
  • the processing of the IEEE 802.3 MAC (Media Access Control) layer is included in the communication control unit 112.
  • the present invention also applies to a configuration in which an IC that provides a MAC function is disposed between the communication control unit 112 and the PHY 113, or a configuration in which a communication IC that combines the IC that provides the MAC function and the PHY 113 is connected to the communication control unit 112. The effect of is not lost.
  • the memory 114 is a temporary storage area for the CPU 111 to operate, and stores an OS, application programs, and the like transferred from the nonvolatile storage medium 115.
  • Examples of the memory 114 include static RAM, DRAM, NVRAM, and the like.
  • the non-volatile storage medium 115 is an information storage medium, and is used to store an OS, an application, a device driver, and the like, a program for operating the CPU 111, and a program execution result.
  • Examples of the nonvolatile storage medium 115 include a hard disk drive (HDD), a solid state drive (SSD), and a flash memory.
  • Examples of the external storage medium that can be easily removed include use of a floppy disk (FD), CD, DVD, Blu-ray (registered trademark), USB memory, compact flash (registered trademark), and the like.
  • the bus 116 connects the CPU 111, the communication control unit 112, the memory 114, and the nonvolatile storage medium 115, respectively.
  • Examples of the bus 116 include a PCI bus, an ISA bus, a PCI express bus, a system bus, a memory bus, and an on-chip bus.
  • CPU 2 includes a CPU 111, a communication control unit 112, a PHY 113, a memory 114, a nonvolatile storage medium 115, or an integrated IC, CPU, SoC (System on Chip), FPGA may be used.
  • SoC System on Chip
  • FIG. 2 is a hardware configuration
  • FIG. 3 shows a software configuration divided for each function.
  • FIG. 3 shows a software functional configuration diagram of the virtual power generation central device 103 to which the present invention is applied.
  • the communication unit 120 is a functional unit that transmits a command packet to the terminal device 102 and receives a packet from the terminal device 102 via the communication network 104.
  • the command identifier and output command transmitted from the distribution planning unit 124 and the power resource control unit 127 and the communication with the information collecting unit 121 are shaped according to the protocol format of the communication network 104. Then send.
  • the information collection unit 121 collects power resources to be controlled and information related to control of the power resources via the communication unit 120. These pieces of information include uncertainties related to whether or not power resources can be controlled (communication or power resource equipment abnormality, operation policy by the power resource owner, etc.). Further, for collecting these pieces of information, a packet for delay measurement may be periodically transmitted to determine communication uncertainty.
  • the information collecting unit 121 is exemplified by being configured using software operating on the CPU 111, or one or more of the communication control unit 112 and the PHY 113.
  • the power resource information storage unit 122 is a storage unit for information D1 of the power resource 101 and information D2 of uncertainty related to whether the power resource 101 can be controlled.
  • the type of information D1 of the power resource 101 stored in the power resource information storage unit 122 is the economics related to the output (specifically, the power generation cost, including the fuel cost and market information of the fuel trading market), the output change Response speed (specifically follow-up performance), impact on user comfort due to power load reduction (for example, impact due to air conditioner temperature change), rated power output, maximum capacity, type of power, power resources Examples include the owner's operation policy, information on the electric power market (contract price / quantity, transaction volume trend, number of participating companies, etc.), operation history, and the like.
  • an operation policy there is an allocation between profit preference of power resource utilization in a virtual power plant and usage priority of power resource owners themselves.
  • a policy is exemplified in which priority is given to making a profit through utilization in the electric power market rather than utilizing the electric power resource 101 for the demand of the electric power resource owner.
  • a policy that gives priority to the demand of the power resource owner itself over the improvement of operational profits by utilizing the power resource 101 in the power market.
  • This policy may be set and stored in advance, or is notified to the power resource owner via e-mail, SNS (Social Networking Service), or web service for each use, and the power resource owner is notified by a predetermined means (virtual power generation central You may make it reply by the input means provided in the apparatus 103, an e-mail, or web access by a web browser.
  • SNS Social Networking Service
  • Examples of the uncertainty information D2 related to whether the power resource 101 can be controlled include information on the power resource 101 and communication.
  • information D21 on uncertainty related to power resources information indicating the possibility of equipment failure or abnormality, information indicating the priority of the power resource owner's own use, information on the output of the natural variable power source (weather, weather information, etc.) Is exemplified.
  • the device information manufactured by the manufacturer, manufacture of the power resource 101 and the terminal device 102
  • the probability of occurrence of abnormality, abnormality, track record and occurrence interval of the same type device etc.
  • Information is exemplified. Or the results of cyber security attacks and software vulnerabilities are included.
  • the operation policy of the power resource owner, the presence / absence of the case where priority is given to temporary use of the power resource 101 temporarily, the frequency of occurrence, the power resource owner of the virtual power generation aggregator having the virtual power generation central unit 103 and the power resource 101 The contract contents are illustrated.
  • the predicted amount of solar radiation when the power resource 101 is solar power generation, and the prediction information of wind direction and wind speed in wind power generation are exemplified.
  • the uncertainty information D22 related to communication is the uncertainty of command transmission related to communication between the virtual power generation central device 103, the power resource 101, and the terminal device 102.
  • This is exemplified by information related to communication performance such as the communication amount of the communication network 104 and the maximum value, average value, minimum value, and variation (standard deviation) of communication delay with the terminal device 102.
  • evaluation information of the communication network 104 in various communication protocols executed on the communication network 104 may be used. Examples include cost information of routes exchanged by RSTP (Rapid Spanning Tree Protocol), OPSF (Open Shortest Path First), and information on the number of hops exchanged by route control protocols such as RIP (Routing Information Protocol). .
  • the uncertainty information D21 related to the power resource and the uncertainty information D22 related to the communication have been described as the uncertainty information D2 related to whether or not the power resource 101 can be controlled.
  • the following information should be considered as the information D23.
  • Event information that may affect the traffic may be used as the uncertainty information D23.
  • seasonal information that is expected to increase the number of communications having the meaning of greetings or conversation, such as the New Year or local holidays, is exemplified.
  • it may be information such as a day when the communication amount decreases (for example, the number of residents decreases due to travel).
  • the information which estimated the schedule with a change in communication volume based on the past performance value may be sufficient.
  • a weather abnormality such as heavy snow, heat wave, cold wave, typhoon, hurricane, earthquake, tsunami, thunderstorm, strong wind, etc.
  • these events mean that the probability of power system accidents and abnormalities in the area increases.
  • the amount of communication may change due to the confirmation of people's safety, the search for alternative means associated with the stoppage of traffic infrastructure functions, and the like.
  • Events are not limited to the real world, and may include events on the communication network 104 or the Internet. For example, it is expected to send a large amount of information on popular web site events, music or event live via the web, application start date and time, application period on the web for sports events and music events, etc., or SNS Information such as date and time. For example, there is a possibility that a large amount of information is transmitted through SNS during the start time, end time, event, or event or movie on television or web. Such information may be stored. Or you may estimate using such past information. For example, if the same sports tournament and movie are held and broadcast again, it is expected that the traffic will increase.
  • a DDoS attack in cyber security increases the amount of traffic on the web, so it is predicted that an attack will be announced (when a notice is given) or an attack will occur Examples include schedule and DDoS attack detection information.
  • information relating to power market transactions is exemplified as the uncertainty information D23.
  • the uncertainty information D23 For example, past contract prices, contract quantifications, respective forecast values, buy bids, sell bids, and the number of participants.
  • the information stored in the power resource information storage unit 122 may be acquired by being transmitted from the terminal device 102 via the communication network 104, or may be information that is statically determined according to the type of the power resource 101. , May be stored in advance. Alternatively, it may be separately collected and stored by the information collecting unit 121.
  • Information stored in the power resource information storage unit 122 is provided to the uncertainty determination unit 123 and the distribution plan unit 124.
  • the power resource information storage unit 122 is mounted on the memory 114 and the nonvolatile storage medium 115 shown in FIG. Or you may memorize
  • the power resource information storage unit 122 does not need to store the above information in one place, but is distributed and stored in a plurality of locations on the network as appropriate according to the type of information. There may be.
  • FIG. 12 shows an example of the data configuration formed by the process illustrated in FIG.
  • 200 on the left side individually describes control devices (power resources 101) in the power system, which is a control target system as a virtual power plant.
  • the gas engine 1, the gas engine 2, the storage battery, the solar power generation device PV, and the power load are illustrated.
  • a cost index value for each control device is stored as information D1 of the power resource 101 stored in the power resource information storage unit 122.
  • the power index of the power resource 101 stored in the power resource information storage unit 122 is stored.
  • a tracking performance index for each control device is expressed as a numerical value.
  • the information D1 of the power resource 101 stored in the power resource information storage unit 122 is notified to the distribution plan unit 124.
  • the uncertainty determination unit 123 of FIG. 3 is based on the uncertainty information D2 (D21, D22) related to the controllability of the power resource 101 stored in the power resource information storage unit 122 via the information collection unit 121.
  • the uncertainty of each power resource 101 is determined as a numerical value.
  • the distribution plan unit 124 is notified of the determined result.
  • the determined result may be a predetermined index value or a probability that the power resource 101 can be controlled. Alternatively, it may be an index value with a constraint condition, but it should be understood as a specific numerical value. Note that various methods can be applied to numerically evaluate the uncertainty, and any specific method may be used here.
  • the constraint condition a time limit with a strong determination result is exemplified.
  • the uncertainty determination unit 123 is exemplified as being implemented as software that operates on the CPU 111.
  • the uncertainty determination unit 123 uses the same method to create data obtained by numerically evaluating uncertainty for other uncertainty information D23 relating to separately stored communication.
  • 203 indicates an uncertainty index created by the uncertainty determination unit 123.
  • the uncertainty index the device failure probability index 203a, the communication uncertainty index 203b, and the self-use index value 203c are exemplified for each control device as the uncertainty indexes related to control availability.
  • the evaluation values 204 for evaluating individual control devices collectively include the cost index value 201, the following performance index 202, the device failure probability index 203a, the communication uncertainty index 203b, and the private use index value 203c. For example, a numerical value between 0 and 100 is calculated based on the converted index.
  • the evaluation value 204 is obtained by the distribution plan unit 124 described later.
  • the evaluation index value is calculated by the following equation (1), and is set in increments of 10 from the evaluation value 100 in accordance with the order of the evaluation index value.
  • P is an evaluation index value
  • C is a cost index value 201
  • S is a tracking performance index 202
  • F is an equipment failure probability index value 203a
  • M is a communication uncertainty index value 203b
  • D is a self-use index value 203c. is there.
  • 100, 0.1, 1, 1000, and 200 are constants used for calculating each index value.
  • An item having a reciprocal format indicates that the smaller the value, the more desirable (for example, the smaller the value, the lower the power generation cost).
  • the evaluation index values are 85, 83, 77, 47, and 44 (rounded off after the decimal point), and the evaluation values are assigned in increments of 100 to 10 in that order. Yes.
  • the selection criterion determination unit 125 determines the selection criterion for the power resource 101 based on the information stored in the power resource information storage unit 122 and notifies the distribution planning unit 124 of the selection criterion.
  • the selection criterion is to create and give a reference value for the evaluation value 204 obtained from various numerical information such as uncertainty. For example, when the evaluation value 204 is defined as a numerical value between 0 and 100, 75 is given as the selection reference value.
  • the selection criterion determination unit 125 determines the reference value based on, for example, an allowable value defined by the contract conditions of the power transaction (for example, an error of ⁇ 20% with respect to the contract reference value of 10 MW). Is done.
  • the determination of the selection criterion by the selection criterion determination unit 125 may be included in the distribution planning unit 124 because it relates to the classification of the power resources 101 that are operation command targets and the power resources 101 of the standby group. It is exemplified that the selection criterion determination unit 125 is implemented as software that operates on the CPU 111.
  • the allocation planning unit 124 determines the control device based on the determination result of the uncertainty related to the controllability of the power resource 101 acquired from the uncertainty determination unit 123 and the information stored in the power resource information storage unit 122. Is obtained as a single numerical value. For example, the evaluation value 204 for the gas engine 1 is “14” for the cost index value 201, “50” for the following performance index 202, “18” for the equipment failure probability index 203a, “20” for the communication uncertainty index 203b, “100” is obtained from each digitized index of “40” of the private use index value 203c.
  • the evaluation value of the gas engine 2 is set to “90”
  • the evaluation value of the storage battery is set to “80”
  • the evaluation value of the photovoltaic power generation device PV is set to “70”
  • the evaluation value of the power load is set to “60”.
  • a plurality of summary tables as shown in FIG. 12 are preferably prepared in order to cope with different conditions of the power system. This is because the required index may differ depending on the control purpose. For example, when the purpose is to output predetermined power at a specific date and time, it is indicated that the tracking performance is not evaluated and a summary table that does not include the tracking performance is used.
  • These evaluation values 204 are compared with the selection reference value 75 notified from the selection reference determination unit 125, position the power resource 101 (control device) having the selection reference value 75 or higher as an operation command target group, and the selection reference value 75 or lower.
  • Power resources 101 (control equipment) are classified into a reserve group. This is to calculate the evaluation value of each power resource 101, with the selection reference value notified from the selection reference determination unit 125 as a boundary, the power resource 101 group having a value greater than or equal to the selection reference value, the operation command target group, otherwise May be classified into a reserve group.
  • the distribution planning unit 124 is exemplified as being implemented as software that operates on the CPU 111.
  • the distribution planning unit 124 determines the optimal combination and distribution of the control devices for providing the requested power, but is basically determined from the control devices positioned as the operation command target group. When the generated power cannot be supplied, the control device positioned as the reserve group is selected.
  • the distribution plan storage unit 126 stores the distribution plan determined by the distribution plan unit 124 and is referred to by the power resource control unit 127 as necessary. Even if the distribution plan storage unit 126 is included in the distribution plan unit 124, the distribution plan storage unit 126 may notify the power resource control unit 127 of the distribution plan in response to an inquiry from the power resource control unit 127. Alternatively, the power resource control unit 127 may include the distribution plan storage unit 126 inside.
  • the distribution plan storage unit 126 is exemplified to be built on the memory 114 or the nonvolatile storage medium 115.
  • the power resource control unit 127 refers to the distribution plan stored in the distribution plan storage unit 126 and controls the power resource 101 of the operation command target group via the communication unit 120. In addition, the reserve group power resource 101 is controlled as necessary. It is exemplified that the power resource control unit 127 is implemented by one or a plurality of software operating on the CPU 111 and the communication control unit 112.
  • the correction control unit 128 executes correction control performed when the control on the power resource 101 instructed by the power resource control unit 127 cannot obtain a desired result. For example, when the power resource 101 subject to the operation command does not operate according to the control command, the shortage output is commanded to the power resource 101 of the standby group. It is exemplified that the correction control unit 128 is implemented by any one or a plurality of software operating on the CPU 111 and the communication control unit 112.
  • FIG. 4 is a diagram illustrating a hardware configuration of the terminal device 102.
  • the hardware configuration of the terminal device 102 illustrated in FIG. 4 is basically the same as the hardware configuration of the virtual power generation central device 103 of FIG. 2, but controls the power resource 101 or acquires information on the power resource 101. Is different in that it has an input / output unit 150.
  • Examples of the input / output unit 150 include various digital input / outputs and analog input / output ICs. Although one signal line from the input / output 150 is shown, a plurality of signal lines may be used depending on the configuration of the power resource 101 side. Further, a plurality of power resources 101 may be controlled for one terminal apparatus 102. Specific examples of the terminal device 102 include PLC (Programmable Logic Controller), IED (Intelligent Electronic device), MU (Meraging Unit), protection relay, and the like.
  • PLC Programmable Logic Controller
  • IED Intelligent Electronic device
  • MU Management Unit
  • protection relay and the like.
  • FIG. 4 is the hardware configuration of the terminal apparatus 102
  • FIG. 5 is a software configuration of the terminal apparatus 102 that is divided into functions.
  • the power resource input / output control unit 160 receives a control command from the virtual power generation central device 103 via the communication unit 120, and generates power based on the control command and setting information stored in the setting storage unit 161. Control the resource 101. Alternatively, the state of the power resource 101 is monitored and transmitted to the virtual power generation central device 103. The timing of transmission may be a predetermined regular interval, or a case where the state of the power resource 101 changes or a case where there is a request from the virtual power generation central device 103 is exemplified.
  • the power resource input / output control unit 160 is exemplified by a configuration using software operating on the CPU 111 having the hardware configuration shown in FIG. 4 and the input / output unit 150.
  • the setting storage unit 161 stores setting information necessary for controlling and monitoring the power resource 101.
  • the setting information includes a method for obtaining command information from the command identifier 142, power transaction information (transaction partner, generated power, generated power amount, reduced load power, minimum required value of reduced load power amount, maximum required value, average required value) , Response time constraints, penalty conditions), operation results, determination criteria for notifying the virtual power generation central device 103 of the state change of the power resource 101 (for example, a threshold value of the change speed of the generated power), and the like.
  • the setting storage unit 161 is implemented in the memory 114 and the nonvolatile storage medium 115 illustrated in FIG.
  • the virtual power generation central device 103 contracts a transaction related to power generation or load reduction in the processing step S001. This may be a transaction through the power market (the previous day market, the current day market, the adjustment market, the real time market, the capacity market, etc.) or a relative transaction.
  • the virtual power generation central device 103 collects information on the power resource 101 in processing step S002. This is done by the information collecting unit 121 and may collect information dynamically, or information on the power resource 101 may be registered in the virtual power generation central device 103 as information determined from the type of the power resource 101.
  • the virtual power generation central device 103 waits until the planned timing in the processing step S003.
  • the timing to be planned for example, when planning should be performed immediately after the contract is established (in this case, the information collection of the power resource 101 in the processing step S002 is exemplified to be executed before the processing step S001).
  • the information collection of the power resource 101 in the processing step S002 is exemplified to be executed before the processing step S001.
  • an activation command is received from a market or a trading partner, information is notified from the power resource 101 or the terminal device 102.
  • the information notified from the power resource 101 and the terminal device 102 satisfies a predetermined condition, it is determined as a planned timing. For example, when information is notified from a predetermined number of power resources 101 and terminal device 102, or when the sum of changes in measured values notified from power resource 101 and terminal device 102 exceeds a predetermined threshold, or predetermined It is determined that it is a planned timing by notification of the information (when the change of the predetermined power resource 101 is indicated, when the state of the power resource 101 changes abruptly, or when the power resource 101 becomes abnormal).
  • the process branches to “Y” in the processing step S003, and the distribution command for the group of the power resources 101 to be controlled is planned in the processing step S004.
  • This selects the operation command target group from the group of the power resources 101 based on a predetermined evaluation standard while satisfying the contract contents in the processing step S001.
  • This may be a single power resource 101.
  • the evaluation criteria include economics (for example, power generation cost in the power resource 101) and the degree of influence on consumers in reducing the power load (if the load is an air conditioner, the change in temperature setting is determined by the user of the load).
  • the selection criterion notified from the uncertainty and selection criterion determination unit 125 is exemplified. One or a combination of the above exemplified criteria may be used.
  • the number of distribution plans determined by the virtual power generation central device 103 and the distribution plan unit 124 is not limited to one, but may be plural. This may be based on a plurality of patterns (for example, differences in output command values, differences in command issuance timing, and time zones) for commands notified from trading partners, and an allocation plan may be made for each pattern. .
  • the operation in the case where the actual situation is different from the assumption at the time of distribution planning by the distribution planning unit 124 for example, a certain output command value is assumed, but the actual output command value is different from the assumption
  • the shortage of output is compensated by the power resource 101 based on the distribution plan having the smallest difference from the assumption among a plurality of distribution plans prepared in advance.
  • the power resource 101 having the highest evaluation value may be selected from the operation command target group, or the lowest power resource 101 may be selected.
  • the surplus power may be evaluated, and the surplus resources 101 until the shortage is satisfied in order from the power resources 101 having the large surplus power may be selected.
  • the shortage may be distributed by the ratio of the evaluation values in the power resource 101 of the operation command target group. Or you may distribute by the ratio of remaining power.
  • the power resource 101 may be selected from the reserve group until the shortage is satisfied in the order of evaluation values.
  • process step S005 After execution of the distribution plan in process step S004, it is determined in process step S005 whether or not the contract has ended. If not, the process branches to the “N” side of process step S005, and the procedure from process step S002 is repeated. If the contract period is fixed, the contract end determination is made with the passage of the end of the period, or if it is activated a predetermined number of times (for example, executed once), the contract is ended with the execution of the number of times, An example is that the contract is terminated upon receipt of a termination notice from a trading partner, market, or other operating organization.
  • the procedure of FIG. 6 is shown as an example, different procedures are also exemplified.
  • the information collection in the processing step S002 may be performed before the transaction contract in the processing step S001, or the state of the power resource 101 is changed periodically or in parallel with the processing steps S001 and S003 to the processing step S005. Sometimes it can be done.
  • step S004 it may be executed before the standby processing for command reception in processing step S003. Alternatively, it may be executed not only once but also in parallel with the standby for command reception in process step S003, and may be executed again after receiving the command in process step S003. At this time, if there is no change in the evaluation index in the plan, such as the state of the power resource 101, a command can be transmitted immediately. Alternatively, even if there is a change in the evaluation criteria, if only the difference is recalculated, the time until planning and command transmission can be shortened.
  • the virtual power generation central device 103 waits until the timing of issuing the control command in the processing step S010 after the contract in the processing step S001. This timing depends on the content of the contract in process step S001. For example, when the command is to be issued immediately after the contract is established, the command timing is reached at a predetermined time, and the activation command is notified from the electric power market operator or trading partner.
  • the virtual power generation central device 103 When Y of the processing step S010 is established and the virtual power generation central device 103 issues a control command to the terminal device 102, in the processing step S011, according to the allocation plan established in the processing step S004 of FIG.
  • the virtual power generation central device 103 transmits the control command planned in the processing step S004 to the power resource 101 via the operation command target terminal device 102 via the communication network 104 of FIG.
  • processing step S012 it is determined whether or not the power resource 101 can be controlled as planned. For example, this is to determine whether the power resource 101 subject to the operation command has operated according to the command. Alternatively, the determination may be made based on responses from the power resource 101 and the terminal device 102. For example, the power resource 101 may notify that it has been operated according to the command or that it has not been operated. Alternatively, when there is no operation completion response within a predetermined time, it may be determined that the power resource 101 could not operate as instructed.
  • the process branches to Y in process step S012, and the process proceeds to the end determination process in process step S005. If the power resource 101 cannot be controlled as planned, the process branches to N in process step S012, and correction control is executed in process step S013. The correction control is to command the power resource 101 in the standby group for the shortage output or the shortage power load that the power resource 101 subject to the operation command cannot operate as commanded. Thereafter, the procedure returns to the procedure of the processing step S012, and it is determined whether the power resource 101 can be controlled by the planned value.
  • the correction control in the processing step S013 of FIG. 7 may be executed a plurality of times according to the response results of the power resources 101 of the operation command target group and the standby group.
  • the number of executions or execution processing time depends on the response time determined by the contract, the follow-up speed (output change speed) of the power resource 101, the time required to start and stop, and the communication delay between the virtual power generation central device 103 and the terminal device 102. It depends on your needs. Therefore, when multiple executions are possible from these conditions, priority is given to power resource 101 (power resource 101 with low power generation cost) that is excellent in economic efficiency even if uncertainty is high. . This is because correction control can be performed a plurality of times, so that even if control of the power resource 101 with high uncertainty fails, subsequent correction control is possible.
  • the terminal device 102 waits for reception of a control command from the virtual power generation central device 103.
  • a control command is received, the process branches to Y in process step S020, and the command content on the control packet is extracted in process step S021.
  • the power resource 101 is controlled according to the contents of the command. Examples of the control command include an output increase / decrease command in the case of power generation and a power consumption increase / decrease command in the case of a power load.
  • the power resource 101 is controlled with respect to increase / decrease in output change speed, response time, output, and power consumption.
  • the control result of the power resource 101 is notified to the virtual power generation central device 103.
  • the notification contents in the processing step S023 include the control result (success or failure or partial success) of the power resource 101, the output value after the control result, the amount of change, the reason for the failure (for example, abnormality of the power resource 101, The elapse time in the case of the elapse of the activation deadline is exemplified.
  • the virtual power generation central device 103 can grasp how much the power resource 101 has been operated and how much is insufficient, and substitute commands for other power resources 101
  • the performance data of the power resource 101 in the distribution plan can be accumulated, and the reliability and certainty of execution of the control operation can be improved, and the optimality of the plan can be improved.
  • the power resource 101 may be controlled immediately after receiving the command in the processing step S020, or may be executed after waiting for a predetermined period.
  • the standby period may be included in the command of the virtual power generation central device 103.
  • the virtual power generation central device 103 may be notified immediately of information regarding the abnormality.
  • the owner of the power resource 101 uses it for his / her demand and cannot respond to the command of the virtual power generation central device 103, he / she immediately notifies the virtual power generation central device 103 of the command rejection due to the priority of private use. Good.
  • the notification of the result of the processing step S023 may be notified to another communication device, database, or storage device in order to record the system operation of the virtual power plant.
  • FIG. 8 shows the control procedure of the power resource 101 of the terminal device 102.
  • the state of the power resource 101 may be acquired and notified to the virtual power generation central device 103.
  • FIG. 10 is a diagram showing a flow of a series of processing and confirmation operations performed between a trading partner (system operator, partner of a relative contract, etc.), virtual power generation aggregator, and power resources.
  • This relationship refers to the function of the virtual power generation central unit 103 in the virtual power plant as a virtual power generation aggregator.
  • the power supply request here, the power resource 101
  • a series of processes and confirmations showing what the virtual power generation aggregator is doing and confirming what the power resources 101 in the same virtual power plant do It is a flow of operation.
  • the adjustment power command 133 issued to the virtual power plant from a trading partner (system operator, partner of a relative contract, etc.) which is an external institution is irregular and it is not known when it will be issued. For this reason, the virtual power generation aggregator gives a state collection request signal 130 to the power resource 101 in advance, and makes a distribution plan 131 using the state signal 132 as a response.
  • the virtual power generation aggregator classifies the power resources 101 into an operation command target group and a standby group for each allocation plan.
  • the status signal 132 includes a signal indicating a status in the power resource 101.
  • the virtual power generation aggregator always prepares and holds the distribution plan 131 in the latest state by giving the state collection request signal 130 again at an appropriate timing, confirming the state signal 132, and recreating the distribution plan 131. Yes.
  • the virtual power generation aggregator issues a control command 134 to the power resource 101 classified into the operation command target group (for example, the power resource 101a in FIG. 10), and the control command
  • a load fluctuation fixing command and a remaining capacity securing command 135 are transmitted to the power resource 101 (for example, the power resource 101b in FIG. 10) appropriately classified into the reserve group.
  • Each power resource 101 returns a response signal 138 including a result to the command to the virtual power generation aggregator.
  • the response signal 138 is not only whether or not the operation can be performed according to the command (including fixing the load fluctuation and securing the remaining capacity), but for example, output has been made.
  • the response signal 138 may include a state in which the output specified by the command cannot be secured (for example, when the output of 1 MW is instructed but the output of only 500 kW is successful).
  • the power resource 101 to which the load fluctuation fixing command and the remaining capacity securing command 135 are transmitted basically performs control to maintain the current state.
  • the virtual power generation aggregator confirms the response signal 138 from the operation command target group, and if the power resource 101 of the operation command target group cannot operate according to the control command 134, the virtual power generation aggregator sends the insufficient correction control command 136 to the standby group.
  • the power resource 101 is notified and an output signal 137 is output to provide necessary adjustment power as a whole.
  • the state collection from the power resource 101 may be notified to the virtual power generation aggregator in response to a state change in the power resource 101 instead of a request from the virtual power generation aggregator.
  • wait for a response to the control command 134 may be determined.
  • the information collection unit 121 in FIG. 3 collects information about the power resource 101 and information about the uncertainty of control of the power resource 101. This may be collected statically or dynamically. This includes the power resource 101, device information of the terminal device 102 (manufacturer, model number, price, type of fuel used, etc.), and control system information (control software name, version information, etc.).
  • the dynamic information includes the usage history of the power resource 101, the operation results, the number of operations (starting and stopping), the total operating time, the fuel cost, the contract information (contract price, contract quantitative, market type) of the power market, or Examples include statistical values (minimum value, maximum value, average value, standard deviation, etc.) of continuous operation time when viewed in one operation.
  • collecting information on the uncertainty of communication used for the operation and control of the power resource 101 and the terminal device 102 is exemplified.
  • the operation of the power resource 101 and the terminal device 102 collecting measurement information and collecting an abnormality history of the same type of device are exemplified. For example, information such as the relationship between the total operating time and the failure rate. Or the operation policy of the owner of the electric power resource 101 is illustrated. This is determined based on a contract made in advance between the owner of the power resource 101 and the virtual power generation aggregator. Examples include a prior notification time until the time when the virtual power generation aggregator starts control of the power resource 101 (may be instantaneous) and an upper limit of an output value (including increase / decrease in power load).
  • the owner of the power resource 101 may reject the command from the virtual power generation aggregator in preference to private use.
  • information such as a command rejection result in the power resource 101 or the owner and a past demand pattern is exemplified.
  • the virtual power generation central device 103 may be notified by, for example, registering in advance. Thereby, the virtual power generation central device 103 can improve the reliability as a control system by making a distribution plan in consideration of the use schedule of the power resource 101.
  • the types of contracts between the virtual power generation aggregator and the owner of the power resource 101 include the setting of the prior notification time, the setting of the output upper limit, the rejection of the command due to private use, and the predetermined time period. It is good also as a contract which switches the contract content. As a result, it is possible to define whether or not control is possible such that the virtual power generation aggregator can use the power resource 101 preferentially or cannot be used in a specific time zone.
  • the virtual power generation central device 103 periodically transmits a communication status measurement packet to the terminal device 102 to notify the communication delay time and the communication arrival status.
  • the time synchronization is exemplified using the time synchronization function between the virtual power generation central device 103 and the terminal device 102. Examples of such a time synchronization function include IEEE 1588, NTP, and SNTP. Alternatively, methods such as GPS and IRIG-B are exemplified.
  • the time to synchronize may be an absolute time common to the world as in the coordinated universal time, or may be a common time in the control system.
  • the transmission time for example, every 15 minutes such as 12:00, 12:15, 12:30, 12:45
  • the communication interval is determined after synchronizing the time, it is assumed from those times and intervals. If the packet cannot be received by the terminal device 102 at the scheduled reception time, it can be determined that the packet is lost. This may be determined by including the sequence number in the communication status measurement packet and determining whether the sequence numbers of the packets received by the terminal device 102 on the receiving side are consecutive. If there is a missing number, it can be determined that there is a packet loss. These communication states may be used as information.
  • the measured communication delay minimum value, maximum value, average value, standard deviation (if variation is large, it is considered an unstable communication network), transmission time of the packet, packet arrival rate, and communication cycle are exemplified.
  • the transmission time By storing the transmission time together, it is possible to obtain statistical values and measurement values limited to a specific time zone.
  • information on the uncertainty of the Internet or public network is exemplified. Examples are the dates, periods, and regions of New Year, Halloween, New Year's Eve, consecutive holidays, seasonal events depending on the region. Or an event with high social interest, a sporting event, a music event, etc. are illustrated. Alternatively, it may be information that does not depend on the region, such as international competitions such as the Olympics.
  • Pieces of information may be input manually, or may be automatically determined from web information such as a portal site or trend information of a search word. Or you may use information, such as SNS and a blog. Alternatively, an emergency notification service may be used.
  • the collected information is exemplified by storing it together with the time when the information was collected, the time when it was measured, and the time when it was issued. Thereby, it is possible to take a method of not using information after a predetermined time has elapsed. For example, it is assumed that the communication path control information and device operation information are currently in a different state and the communication path and device cannot be used. Considering these events, the reliability of the control system is improved. be able to.
  • the uncertainty determination unit 123 determines the uncertainty of the power resource 101 using the above information. This uses the total number of measured values collected, changes over time, the number of points measured, etc., the value applied with a predetermined calculation process such as multiplication by a coefficient, or the result of comparison with a threshold value. Illustrated.
  • past measurement information and results may be used as a result of learning a causal relationship by a technique such as machine learning, deep learning, or clustering.
  • a technique such as machine learning, deep learning, or clustering.
  • the order relation of each event and the time series of occurrence may be evaluated to determine the uncertainty.
  • the allocation to the power resource 101 is planned in consideration of the uncertainty of whether or not the power resource 101 can be controlled.
  • the priority and distribution ratio of the power resource 101 are determined based on the uncertainty of the controllability of the power resource 101 in addition to the economic performance and the actual performance of the power resource.
  • Uncertainty may be indexed and weighted sums may be compared and prioritized.
  • prioritization may be performed between the indicators, and when the same index value is obtained by comparing a certain index, comparison may be performed using the next priority index. For example, the power generation cost is prioritized, and the comparison between the power resources 101 having the same power generation cost is ranked in the order of operation success probability.
  • the prioritization may be performed not only on the operation command target group but also on the power resource 101 of the standby group.
  • the calculation method of the index values of these power resources 101 may be changed according to the command value from the trading partner, or may be changed according to the time condition when the command is issued.
  • the command value is divided into stages in a plurality of ranges, and the weighting coefficient is changed in each stage.
  • the contract value of 10 MW is divided every 2 MW, and if the command value is in the range of 8 MW to 10 MW, the weight coefficient of the certainty index value is made larger than the economy.
  • the economic weighting factor may be increased.
  • a histogram indicating the frequency when the group of the power resources 101 is divided by output may be used (using an output range in which the frequency changes rapidly).
  • an operation command target may be selected according to the range of command values. For example, when the output command value is a large value, it is necessary to select a certain number of groups of power resources 101.
  • the weight coefficient for the uncertainty indicator may be increased because the uncertainty of the load fluctuation in the private use of the prosumer increases.
  • the weighting factor may be changed based on the predicted uncertainty. For example, for seasonal events such as the New Year, increasing the evaluation (weighting factor) for communication uncertainty is exemplified.
  • the information on uncertainty has regionality (for example, traffic congestion), it may be reflected in the calculation of the evaluation index value of the power resource 101 in that region.
  • the power market information may be evaluated and an allocation plan may be made. For example, if the contract price is high and the owner of the power resource 101 is contracted with another power resource operation service, it is expected that the service resource will be used in that service.
  • the lowering is exemplified.
  • grasping the contract status of the owner of the electric power resource 101 is exemplified.
  • the allocation is determined based on the required conditions. Examples of such conditions include output values, response times, output durations, and the like. The allocation is planned to satisfy these conditions. The index value may be reflected in the distribution ratio. At this time, the uncertainty of whether the power resource 101 can be controlled is taken into consideration. It is exemplified that the operation probability of each power resource 101 is calculated, the power resource 101 having a predetermined threshold value or more is selected, and the optimum combination is determined based on the economic efficiency. Examples of optimization methods for determining combinations include methods such as full search, steepest descent method, genetic algorithm, tabu research, particle swarm optimization, ant colony optimization, rule-based control, and application of artificial intelligence.
  • the criteria for selecting the power resource 101 may be changed according to the contract conditions. For example, when only the lower limit value of the output is set by the contract, excessive output may be performed, and therefore, the power resource 101 having a low operation success probability but low power generation cost is included in the options. Alternatively, if the allowable deviation range above and below the contract output value is defined and the range is narrower, the condition becomes severe, so that the power resource 101 having a high operation success probability and high certainty may be selected. Illustrated.
  • the selection criteria for the power resource 101 may be changed according to the penalty allowance when the contract condition is violated.
  • the penalty is low for the owner of the virtual power generation aggregator and power resource 101, it is exemplified that the power resource 101 having a low operation success probability but low power generation cost is included in the options.
  • each power resource 101 may be assumed as a probability distribution such as a normal distribution, and distribution may be planned based on the distribution. For example, selecting a combination that satisfies the required output based on the expected value and that optimizes the economy and the follow-up performance as constraints is exemplified.
  • a predetermined ratio may be given to the standard deviation, and the combination optimization may be applied using a value including the data of the ratio. For example, assuming a normal distribution, 95% of the data is included in the range of twice the standard deviation from the average value. The upper and lower limits of the range at this time are used. Further, assuming that the control of the power resource 101 fails, the power resource 101 having a high tracking speed may be controlled as a standby group.
  • the operation destination of the power resource 101 may be a plurality of power markets and services.
  • the allocation planning unit 124 makes an allocation plan so as to maximize a predetermined standard (for example, economic profit) under the given market and service contract conditions.
  • the operation of the power resource 101 of the operation command target group and the power resource 101 of the standby group is automatically executed using a predetermined communication protocol (IEC 61850, IEC 61850-7-420, OpenADR, ECHONET Lite (registered trademark)).
  • a predetermined communication protocol IEC 61850, IEC 61850-7-420, OpenADR, ECHONET Lite (registered trademark)
  • the owner of the power resource 101 may be notified using communication means such as e-mail, and the owner may control it manually.
  • the response to the virtual power generation central device 103 is the same.
  • FIG. 1 An example of a packet format for communication between the virtual power generation central device 103 and the terminal device 102 is shown in FIG.
  • the upper part of FIG. 9 shows a format for transmission from the virtual power generation central device 103 to the terminal device 102.
  • the configuration of the packet 140 includes a header 141, an output command 142, supplementary information 143, and a test mode 144.
  • the header 141 is destination information necessary for the packet 140 to be transmitted to the terminal device 102 that is the transmission destination or a program that operates on the terminal device 102. It includes at least the identifier and data type of the transmission destination terminal apparatus 102 or a program operating on the terminal apparatus 102.
  • the data type includes an identifier of a lower protocol.
  • the data type indicates an output command from the virtual power generation central device 103 to the power resource 101.
  • a header of a communication protocol used in the communication network 104 is illustrated.
  • the output command 142 is a power generation command calculated by the distribution planning unit 124 and the power resource control unit 127 of the virtual power generation central device 103, or a power load increase / decrease command.
  • Supplementary information 143 is supplementary information related to the output command 142.
  • information output command value, output amount, response time, duration
  • the terminal device 102 can receive these pieces of information and execute a response process at the time of abnormality. If the terminal device 102 determines that it is difficult to output the distribution command value within the response time described in the supplementary information 143 due to some abnormality or the like, a response of insufficient output can be returned quickly. Alternatively, as much as possible, the shortage when output can be responded.
  • the information indicated by the supplementary information 143 may be information regarding the state of the power resource 101 and the terminal device 102 at the time of allocation planning in the virtual power generation central device 103. If the terminal device 102 receives this information, a large deviation can be obtained by grasping the difference between the power resource 101 at the time of receiving the command, the state of the terminal device 102, and the state at the time of allocation planning in the virtual power generation central device 103. In some cases, the terminal device 102 can notify the virtual power generation central device 103 that the output is insufficient or that additional correction control is necessary. In this way, the virtual power generation central device 103 can perform necessary correction control quickly and can improve the reliability of the system. Alternatively, the calculation load on the virtual power generation central device 103 side can be reduced by executing the determination process on whether correction control is necessary on the terminal device 102 side.
  • the test mode 144 is, for example, truth value (binary) information indicating whether or not the command notified in the output command 142 of the packet 140 is the test mode, and related information. If this value is true (1), the terminal device 102 does not actually output to the power resource 101, but returns a response according to the original procedure to the virtual power generation central device 103. Alternatively, if the power resource 101 and the terminal device 102 have a dummy output and a test mode, the dummy output and the test mode may be executed and the result may be notified to the virtual power generation central device 103. Examples of the relevant information of the test mode 144 include information regarding test mode specification (if there are a plurality of test modes) and setting thereof.
  • the virtual power generation central device 103 can check the communication status (communication reachability, delay measurement, etc.) to the power resource 101 and the terminal device 102, and the soundness of the power resource 101. Can improve the reliability.
  • the communication status communication reachability, delay measurement, etc.
  • the causal relationship of each information can be verified, learned, and evaluated.
  • the packet format in the middle of FIG. 9 is an example of a communication command from the virtual power generation central device 103 to the power resource 101 classified into the reserve group by the distribution planning unit 124 and its terminal device 102.
  • the packet 145 may include a header 141, a load fluctuation fixing command 146, a remaining capacity securing command 147, supplementary information 143, and a test mode 144.
  • the load fluctuation fixing command 146 instructs the power resource 101 and the terminal device 102 to fix the load fluctuation pattern.
  • This may be a constant value, a sine wave, a rectangular wave having a predetermined duty ratio, or a stepped output. Even if it fluctuates, an operation pattern in which the load can be calculated after a certain time or at a predetermined time is indicated. This may be specified by a variable range (upper limit and lower limit). If the fluctuation range is small compared to the output plan value, it can be regarded as a constant value in the allocation plan.
  • the content of the load fluctuation fixing command 146 includes a constant value for the load, a characteristic amount of the sine wave, rectangular wave, stepped output (frequency, amplitude, phase, duty ratio, upper limit value, lower limit value, start time, etc.) Is included.
  • stepped output frequency, amplitude, phase, duty ratio, upper limit value, lower limit value, start time, etc.
  • the load variation pattern is designated here, an output variation pattern may be designated.
  • the remaining capacity securing command 147 instructs the power resource 101 to secure the remaining capacity.
  • This may be a predetermined value or a truth value (binary value) indicating a request for securing the surplus power, and includes information such as a required secure amount, a period in which the surplus power should be secured, and a duration.
  • the packet format in the lower part of FIG. 9 is a cancel instruction for the contents instructed by the packets 140 and 145 in the upper part and the middle part of FIG.
  • the supplement information 143 is supplement information necessary for the cancel command. For example, it is information for specifying and identifying the output command 142, the load fluctuation fixing command 146, and the remaining power securing command 147 to be canceled.
  • the command value of each command and an identifier uniquely given to each command (this is stored in the packets 140 and 145 or shared between the virtual power generation central device 103 and the terminal device 102 in advance) ) Or identifiers of the packets 140 and 145 (for example, information based on the header 141).
  • the virtual power generation central device 103 controls the power resource 101 based on the uncertainty of the power resource 101, some of the power resources 101 operate as expected, and as a whole When sufficient output is obtained, more economical output is possible by canceling the output of the surplus power resource 101.
  • the power resource 101 of the backup group from the beginning. The output may be canceled by the packet 148 when an excessive output is obtained. In this way, the reliability of the entire system can be improved.
  • the terminal device 102 notifies a response to each of the packets 140, 145, and 148.
  • This response is exemplified to include the result (success or failure) for the command and the cause in case of failure.
  • the cause of the failure is that the fluctuation of the generator or the power load is irregular, the remaining capacity, the output could not be secured, or the secured amount or the insufficient amount is answered.
  • the information at the time of distribution plan is received in supplementary information 143, you may respond with the difference with the present state.
  • These parameters of the packets 140, 145, and 148 may be transmitted as separate packets.
  • a plurality of commands (command identifier 142, output command 142, supplementary information 143, test mode 144, load fluctuation fixing command 146, remaining capacity securing command 147) may be transmitted together in one packet.
  • commands for a plurality of terminal devices 102 may be combined into one packet. If the command values of the output command 142 are the same, the fields of the output command 142 can be combined into one field on the packet.
  • the output command 142, supplementary information 143, test mode 144, load fluctuation fixing command 146, and reserve capacity securing command 147 can be combined into one field. In this way, the communication band can be effectively utilized.
  • some of these parameters of the packets 140, 145, and 148 may not be transmitted.
  • the test mode 144 may not be transmitted.
  • the power resource 101 when controlling the power resource 101 that is a naturally variable power source (solar power generation, wind power generation, etc.) as an operation command target group, the power resource 101 is expected to be uniformed and stabilized by the leveling effect.
  • the power resource 101 that is a naturally varying power source under different conditions may also be selected as the operation command target group. Examples of such conditions include geographical conditions (each power resource 101 is far away, etc.). From the past output history, select a naturally varying power supply group that is expected to have a smoothing effect. Also good.
  • the virtual power generation aggregator has a storage battery, gas engine generator, or gas turbine generator and the contract output cannot be executed even if correction control is executed and the penalty is large, operate those generators. Satisfying the contract output is exemplified.
  • the above description has focused on virtual power plants, but includes aggregation services and demand response services.
  • the power resource 101 can be controlled based on the uncertainty of the power resource 101. Thereby, it is possible to control the power resource 101 more reliably while considering the economy. Furthermore, it is possible to plan command distribution under a constraint condition such as response time, and it is possible to provide an adjustment capability for a sharp fluctuation of the power system. That is, a high-speed response using the power resource 101 is possible. In addition, by allowing the consumer's own priority use as an uncertainty, the quantity and type of power resources 101 for integrated control can be increased. Such integrated control of the power resource 101 can contribute to stable operation of the power system through effective use of the power resource 101 and utilization in the power market.
  • Example 2 has a configuration in which an intermediate device is provided as compared with Example 1.
  • the reference numerals used in the embodiments mean the same functions and elements as those described in the first embodiment unless otherwise specified.
  • the system configuration is shown in FIG.
  • the intermediate device 210 may convert the packet output command 142, the supplemental information 143, the test mode 144, the load fluctuation fixing command 146, and the remaining power securing command 147 shown in FIG.
  • the intermediate device 210 aggregates the measured values of the individual terminal devices 102 and the distribution planning index values in the distribution planning unit 124 and transmits them to the virtual power generation central device 103.
  • the intermediate device 210 is configured to determine whether or not to execute the correction control, the communication delay of the alternative command to the lower-level terminal device 102 can be shortened, and the execution time limit of the control can be delayed. It is possible to increase the number of trials of communication with the terminal 101 and to further increase the reliability of the virtual power generation system execution. Furthermore, since the processing load of the virtual power generation central device 103 can be reduced, the virtual power generation central device 103 can be constructed at low cost.
  • the intermediate device 210 can constantly monitor the state of the terminal device 102 and calculate a more realistic output command. For example, when the virtual power generation central device 103 transmits a command, the state of the power resource 101 changes and the remaining power increases, or the response speed and the power generation cost change. Or it is a case where the power resource 101 and the terminal device 102 are added, removed, or temporarily stopped on the way. This includes both changes in the state of the physical connection to the communication network 104 as well as contract changes that the owner of the power resource 101 implements for the aggregation service in the virtual power plant. When the state changes frequently and the communication delay between the terminal device 102 and the virtual power generation central device 103 is large, the virtual power generation system can be constructed with higher reliability by using the intermediate device 210.
  • the output value may be changed by the intermediate device 210.
  • the processing load of the virtual power generation central device 103 is reduced, the communication amount is changed to a communication amount suitable for the lower communication network 104, the delay for the alternative output is shortened, and the activation deadline is delayed, Due to the advantage that the number of trials of correction control can be increased, effects such as flexible configuration of the control system of the virtual power plant, low-cost system construction, and improved reliability can be obtained.
  • the power system is the control target system, and the case where the virtual power plant is configured by applying the distributed control system has been described.
  • the distributed control system of the present invention can be applied to various control target systems. it can.
  • 100 Power system, 101: Power resource, 102: Terminal device, 103: Virtual power generation central device, 104: Communication network, 111: CPU, 112: Communication control unit, 113: PHY, 114: Memory, 115: Nonvolatile memory Medium: 116: bus, 120: communication unit, 121: information collection unit, 122: power resource information storage unit, 123: uncertainty determination unit communication unit, 124: allocation planning unit, 125: selection criterion determination unit, 126: Allocation plan storage unit, 127: power resource control unit, 128: correction control unit, 130: status collection request signal, 131: allocation plan, 132: status signal, 133: adjustment force command, 134: control command, 135: load fluctuation Fixed / reserved power securing command, 136: correction control command, 137: output, 138: response signal, 140, 145, 148: packet, 141: header, 142 Output command, 143: supplementary information, 144: test mode, 146: load fluctuation fixing command, 147: remaining capacity

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

The purpose of the present invention is to provide a distribution control system, a distribution control method, a power-system distribution control system, and a power resource control method that can improve the reliability and control performance of the control system while being low in cost and permitting independent operation of individual elements by taking into consideration uncertainty of communication and device operation. Provided is a distribution control system which is applied to a system to be controlled including a plurality of control devices and in which a plurality of control apparatuses for controlling the control devices are coupled with each other via communication means from a central apparatus. The distribution control system is characterized by the central apparatus including: an information storage unit that collects and stores control device information and uncertainty information for each control device; a distribution planning unit that, on the basis of at least the uncertainty information, divides the control devices into an operation-instructed group in which the control devices are controlled from the central apparatus and a reserve group in which the control devices are not controlled, and that distributes control instructions requested from the outside to control devices determined to be in the operation-instructed group; and a communication means that transmits control instructions distributed to control devices determined by the distribution planning unit.

Description

分散制御システム、分散制御方法、電力系統の分散制御システムおよび電力資源の制御方法Distributed control system, distributed control method, distributed control system for power system, and control method for power resource
 本発明は、制御ネットワーク上に制御装置が分散配置されて構成される分散制御システムに係り、特に通信や機器動作の不確実性を考慮して構成される分散制御システム、分散制御方法、電力系統の分散制御システムおよび電力資源の制御方法に関する。 The present invention relates to a distributed control system in which control devices are arranged in a distributed manner on a control network, and in particular, a distributed control system, a distributed control method, and a power system that are configured in consideration of uncertainties in communication and device operation. The present invention relates to a distributed control system and a power resource control method.
 制御ネットワーク上に制御装置が分散配置されて構成される分散制御システムにおいては、制御指令を格納したパケットの通信により、分散制御システムを構成する各制御装置の動作が決定される。加えて、各制御装置により駆動、制御される各機器が指示通りに動作することによって分散制御システムは機能することができる。したがって、分散制御システムの性能は、通信及び機器の可用性に依存することとなる。ここで可用性とは、具体的には、通信帯域や通信遅延にかかわるリアルタイム性能、通信伝達の確実性及び機器の異常や故障、何らかの理由による機器のサービス拒否等である。 In a distributed control system configured by distributing control devices on a control network, the operation of each control device constituting the distributed control system is determined by communication of packets storing control commands. In addition, the distributed control system can function when each device driven and controlled by each control device operates as instructed. Therefore, the performance of the distributed control system depends on the communication and the availability of equipment. Here, the availability specifically refers to real-time performance related to the communication band and communication delay, reliability of communication transmission, device abnormality or failure, and device service refusal for some reason.
 一方で、低コストで分散制御システムを構成することが求められてきており、汎用的なIT技術の活用や、ネットワーク資源の共有(具体的には公衆網の利用)がなされている。 On the other hand, it has been demanded to construct a distributed control system at a low cost, and general-purpose IT technology is utilized and network resources are shared (specifically, the public network is used).
 なお、可用性におけるサービス拒否の例として、分散制御システムを構成する各要素(制御装置や機器)が単独動作としての目的を有する場合が挙げられる。すなわち、分散制御システムの要素としての目的と、単独動作としての目的のどちらを優先するかの選択において、各要素は後者の単独動作としての目的を優先し得る場合が想定される。このような場合、各要素は分散制御システムとして指令を受けたとしても、単独動作としての機能を優先する結果として各要素が分散制御システムからの指令を拒否し得る場合がある。 Note that, as an example of service denial in availability, there is a case where each element (control device or device) constituting the distributed control system has a purpose as a single operation. That is, it is assumed that each element can prioritize the purpose of the latter single operation in selecting whether to give priority to the purpose as the element of the distributed control system or the purpose of the single operation. In such a case, even if each element receives a command as a distributed control system, each element may reject the command from the distributed control system as a result of giving priority to the function as a single operation.
 然るに、一般に、通信性能と経済的なシステム構築の要求の両面は相反し、例えば、公衆網の利用は経済的に有利であるが、リアルタイム性能(通信性能)を低下させる。このような経済性と通信性能の両立が求められる分散制御システムとしては、自動車、建設機械、ドローン、航空機等のモビリティの自動走行もしくは群制御や、電力システムにおける仮想発電所(Virtual Power Plant。以下、VPPと称する。)、工場の生産ラインや製造装置、工作機械、プラントにおける制御装置(コントローラ)、PLC(Programmable Logic Controller)等といったFA(Factory Automation)システム等が挙げられる。特に、IoT(Internet of Things)のコンセプトに則り、分散制御システムのさらなる効率化を目指す取り組みとして、Industrie 4.0、Industrial Internet、IVI(Industrial Value Chain Initiative)等がなされている。 However, in general, both communication performance and economical system construction requirements are contradictory. For example, use of a public network is economically advantageous, but it reduces real-time performance (communication performance). Such distributed control systems that require both economic efficiency and communication performance include automatic driving or group control of mobility for automobiles, construction machines, drones, aircraft, etc., and virtual power plants in the power system (Virtual Power Plant). , VPP)), factory production lines and manufacturing devices, machine tools, plant control devices (controllers), and FA (Factory Automation) systems such as PLC (Programmable Logic Controller). In particular, in accordance with the concept of IoT (Internet of Things), efforts to further improve the efficiency of distributed control systems include Industry 4.0, Industrial Internet, IVI (Industrial Value Chain Initiative), and the like.
 上記例示の各種分散制御システムのうち、電力系統における分散制御システム構成事例として特許文献1、特許文献2が知られている。 Among the various distributed control systems illustrated above, Patent Document 1 and Patent Document 2 are known as distributed control system configuration examples in the power system.
 特許文献1は負荷低減計画策定システムに係り、「電気事業者から電力の供給を受けることが可能な受電者の電力需要を予測する需要予測手段と、前記需要予測手段により予測される電力需要から、前記電気事業者から供給を受けることが必要となる電力量であるデマンドを予測するデマンド予測手段とを備え、
 受電者に備えられる複数の負荷に関して、前記デマンド予測手段により予測されたデマンドに基づいて、複数の負荷間での負荷低減の順序計画である負荷低減計画を策定する計画策定手段を備えた負荷低減計画策定システムであって、
 異なった気象条件下における、前記複数の負荷間での負荷低減順序を規定した負荷低減分類指標を有するとともに、計画日の気象を予測する気象予測手段を備え、
 前記負荷低減分類指標において、複数の負荷が、気象に影響される度合いに従って分類され、前記度合いが高い負荷程、前記負荷低減順序が前側の順序に規定され、
 前記計画策定手段が、前記気象予測手段により予測される計画日の気象と前記負荷低減分類指標とに基づいて、当該計画日の負荷低減計画を策定する負荷低減計画策定システム」のように構成したものである。
Patent Document 1 relates to a load reduction plan formulation system, “from a demand prediction unit that predicts a power demand of a power receiver who can receive power supply from an electric power company, and a power demand predicted by the demand prediction unit. Demand prediction means for predicting demand, which is the amount of power required to be supplied from the electric utility,
Load reduction provided with plan formulation means for formulating a load reduction plan, which is a sequential plan of load reduction among a plurality of loads, based on the demand predicted by the demand prediction means for a plurality of loads provided to a power receiver A planning system,
Having a load reduction classification index defining a load reduction order between the plurality of loads under different weather conditions, and having a weather prediction means for predicting the weather on the planned date,
In the load reduction classification index, a plurality of loads are classified according to the degree of influence by weather, the higher the degree, the load reduction order is defined in the front order,
The plan formulation unit is configured as “a load reduction plan formulation system that formulates a load reduction plan on the planned date based on the weather on the planned date predicted by the weather prediction unit and the load reduction classification index”. Is.
 特許文献2はデマンド制御装置に係り、「監視対象の建物に係る多数の設備機器の消費電力に基づき、前記設備機器に対しデマンド制御を行うデマンド制御装置において、
 前記設備機器の消費電力に係る過去のデマンド値が契約電力を超過したときの、前記設備機器の運用状況を記憶する過去データ記憶部と、
 前記建物のテナントにおけるイベント情報を記憶するイベント情報記憶部と、
 前記イベント情報記憶部で記憶されたイベント情報及び前記過去データ記憶部で記憶された過去データとに基づいて、デマンド予測情報を算出するデマンド予測算出部と、
 前記デマンド予測算出部で算出したデマンド予測情報に基づいて、前記多数の設備機器よりデマンド制御の対象となる設備機器を判定し、情報提供される当該設備機器の制御内容に係る情報を生成する設備機器制御情報生成部と
を備えることを特徴とするデマンド制御装置。」のように構成したものである。
Patent document 2 relates to a demand control device, “in a demand control device that performs demand control on the equipment based on the power consumption of many equipment related to the building to be monitored,
A past data storage unit that stores an operation status of the facility device when a past demand value related to power consumption of the facility device exceeds contract power;
An event information storage unit for storing event information in the tenant of the building;
A demand prediction calculation unit that calculates demand prediction information based on the event information stored in the event information storage unit and the past data stored in the past data storage unit;
Equipment that determines equipment equipment that is subject to demand control from the large number of equipment equipment based on the demand prediction information calculated by the demand prediction calculation section, and generates information related to the control content of the equipment equipment that is provided with information A demand control device comprising: a device control information generation unit. It is constituted as follows.
特許5276294号Japanese Patent No. 5276294 特許5450184号Japanese Patent No. 5450184
 通信及び機器動作には、種々の不確実性が含まれており、これは分散制御システムの性能を低下させる要因となる。特に、経済性を求めてネットワークを共有する場合や、個別要素が各要素単独の目的を優先する場合には、分散制御システムの要素機器が指示通りに動作せず、分散制御システムとして機能しない場合が発生し得る。 Communication and device operation include various uncertainties, which are factors that degrade the performance of the distributed control system. In particular, when sharing a network for economic reasons, or when individual elements give priority to the purpose of each element, the component devices of the distributed control system do not operate as instructed and do not function as a distributed control system. Can occur.
 制御パケットの送信元が確実に、通信の成立(送信先に制御パケットが伝達され、処理されること)を確認する手段は、送信先からの確認応答(一般にackと呼称される)の受信である。しかしながら、このackパケット自体においても、通信遅延の増大、パケットロスの可能性がある。 The means for confirming the establishment of communication (control packet is transmitted to the destination and processed) is assured by the source of the control packet by receiving an acknowledgment from the destination (generally called ack). is there. However, this ack packet itself may increase communication delay and packet loss.
 また、通信異常以外にも、対象制御機器自体の異常の可能性もあり、制御指令に対して、全く応答できない場合や、部分的な対応のみ可能といった場合も生じ得る。 In addition to the communication abnormality, there is a possibility that the target control device itself may be abnormal, and there may be cases where it is impossible to respond to the control command at all or only a partial response is possible.
 したがって、分散制御システムの運用において、経済性のための公衆網活用や構成機器の指示及び動作における不確実性を考慮して制御指令の配分を計画しなければならない。
特に、公衆網(共有ネットワーク)の利用や、構成機器単独での動作を許容する場合に、不確実性の課題は顕著となる。分散制御システムが応答時間の制約を有しており、高速応答が要求される場合、これらの課題は一層困難となる。
Therefore, in the operation of the distributed control system, it is necessary to plan the allocation of control commands in consideration of the uncertainties in the use of the public network for economic efficiency and the instructions and operations of component devices.
In particular, when using a public network (shared network) or allowing operation of a component device alone, the problem of uncertainty becomes significant. These problems become more difficult when the distributed control system has a response time constraint and a high-speed response is required.
 特許文献1、2は、天候やイベント情報を用いて、需要の予測値を補正する。しかしながら、需要予測が目的であり、分散制御システムの個別要素への指令配分を計画することができないという課題を有している。 Patent Documents 1 and 2 correct the predicted value of demand using weather and event information. However, there is a problem that demand forecasting is an object and command distribution to individual elements of the distributed control system cannot be planned.
 以上のことから本発明においては、通信や機器動作の不確実性を考慮し、低コストかつ個別要素の単独動作を許容しながら、制御システムの信頼性、制御性能を向上することができる分散制御システム、分散制御方法、電力系統の分散制御システムおよび電力資源の制御方法を提供することを目的としている。 From the above, in the present invention, in consideration of the uncertainties of communication and device operation, distributed control that can improve the reliability and control performance of the control system at a low cost while allowing individual operations of individual elements. It is an object of the present invention to provide a system, a distributed control method, a power system distributed control system, and a power resource control method.
 本発明は、上記課題を解決するために、「複数の制御機器を含む制御対象システムに対して適用され、制御機器を制御する複数の制御装置が中央装置から通信手段を介して結合されている分散制御システムであって、
 中央装置は、制御機器ごとに、制御機器の情報と不確実性の情報を収集して記憶する情報記憶部と、少なくとも不確実性の情報に基づいて、制御機器を中央装置から制御する動作指令対象群と制御しない予備群とに分け、動作指令対象群に定めた制御機器に対して外部から要求された制御指令を配分する配分計画部と、配分計画部で定めた制御機器に対して配分された制御指令を送信する通信手段を含むことを特徴とする分散制御システム。」としたものである。
In order to solve the above-described problems, the present invention is applied to a control target system including a plurality of control devices, and a plurality of control devices that control the control devices are combined from a central device via communication means. A distributed control system,
The central device collects and stores control device information and uncertainty information for each control device, and an operation command for controlling the control device from the central device based on at least uncertainty information. Divided into target group and spare group not to be controlled, allocation plan section that distributes control command requested from outside to control equipment defined in operation command target group, and allocation to control equipment defined in distribution plan section A distributed control system comprising communication means for transmitting a control command that has been transmitted. ".
 また本発明は、「適宜、制御機器の情報と不確実性の情報を収集して、制御機器を中央装置から制御する動作指令対象群と制御しない予備群とに分類しておき、外部から制御指令が与えられたときに、動作指令対象群に分類されている制御機器に対して要求された制御指令を配分して与えることを特徴とする分散制御方法。」としたものである。 In addition, the present invention “collects control device information and uncertainty information as appropriate and classifies the control device into an operation command target group that is controlled from the central device and a spare group that is not controlled, and controls from the outside. The distributed control method is characterized in that when a command is given, the requested control command is distributed and given to control devices classified into the operation command target group.
 また本発明は、「複数の電力資源を含む電力系統に対して適用され、電力資源を制御する複数の制御装置が中央装置から通信手段を介して結合されている電力系統の分散制御システムであって、
 中央装置は、電力資源ごとに、電力資源の情報と不確実性の情報を収集して記憶する情報記憶部と、少なくとも不確実性の情報に基づいて、電力資源を中央装置から制御する動作指令対象群と制御しない予備群とに分け、動作指令対象群に定めた電力資源に対して外部から要求された制御指令を配分する配分計画部と、配分計画部で定めた電力資源に対して配分された制御指令を送信する通信手段を含むことを特徴とする電力系統の分散制御システム。」としたものである。
Further, the present invention is a distributed control system for a power system that is applied to a power system including a plurality of power resources and in which a plurality of control devices that control the power resources are coupled from a central device via communication means. And
The central device collects and stores power resource information and uncertainty information for each power resource, and an operation command for controlling power resources from the central device based on at least uncertainty information. Divided into target groups and spare groups that are not controlled, the allocation planning unit allocates control commands requested from the outside to the power resources specified in the operation command target group, and allocates to the power resources determined in the allocation planning unit A distributed control system for an electric power system, comprising: communication means for transmitting a control command that has been transmitted. ".
 また本発明は、「電力資源の制御可否にかかわる不確実性と、電力資源の情報と、をもとに電力資源への指令配分を計画し、電力資源への出力の増減を指示することを特徴とする電力資源の制御方法。」としたものである。 The present invention also states that “command distribution to power resources is planned based on the uncertainty related to controllability of power resources and information on power resources, and an instruction to increase or decrease output to power resources is given. The characteristic power resource control method. "
 分散制御システムにおいて、通信や機器動作の不確実性を考慮し、低コストかつ個別要素の単独動作を許容しながら、制御システムの信頼性、制御性能を向上することができる。 In the distributed control system, it is possible to improve the reliability and control performance of the control system while considering the uncertainties of communication and device operation, and allowing the individual operation of individual elements at low cost.
本発明を適用した仮想発電所のシステム構成例を示す図。The figure which shows the system structural example of the virtual power plant to which this invention is applied. 本発明を適用した仮想発電中央装置103のハードウェア構成を示す図。The figure which shows the hardware constitutions of the virtual electric power generation central apparatus 103 to which this invention is applied. 本発明を適用した仮想発電中央装置103のソフトウェア機能構成を示す図。The figure which shows the software function structure of the virtual power generation central apparatus 103 to which this invention is applied. 端末装置102のハードウェア構成を示す図。The figure which shows the hardware constitutions of the terminal device 102. 端末装置102のソフトウェア機能構成を示す図。The figure which shows the software function structure of the terminal device 102. 仮想発電中央装置103の情報収集、配分計画の動作について示す図。The figure shown about the operation | movement of information collection of the virtual power generation central apparatus 103, and an allocation plan. 仮想発電中央装置103における制御指令の送信動作について示す図。The figure shown about the transmission operation | movement of the control command in the virtual power generation central apparatus 103. FIG. 仮想発電中央装置103からの制御指令を受ける端末装置102の動作を示す図。The figure which shows operation | movement of the terminal device 102 which receives the control command from the virtual power generation central apparatus 103. FIG. 仮想発電中央装置103と端末装置102間で通信するパケットフォーマットの例を示す図。The figure which shows the example of the packet format communicated between the virtual power generation central apparatus 103 and the terminal device 102. FIG. 仮想発電中央装置103における処理を示すタイムチャートを示す図。The figure which shows the time chart which shows the process in the virtual electric power generation central apparatus 103. FIG. 本発明を適用した仮想発電所のシステム構成の代案例を示す図。The figure which shows the alternative example of the system configuration | structure of the virtual power plant to which this invention is applied. 図3に例示する処理により形成されているデータ構成例を示す図。The figure which shows the data structural example formed by the process illustrated in FIG.
 以下本発明の実施例について図面を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 なお以下に示す実施例においては、電力系統を制御対象システムとして、電力系統の制御に分散制御システムを導入して、仮想発電所VPPを構成する事例について説明するが、電力系統以外の各種制御対象システムに本発明の実施例に係る分散制御システムを適用することは言うまでもなく容易である。 In the following embodiment, an example in which a power system is a control target system and a distributed control system is introduced to control the power system to configure a virtual power plant VPP will be described. However, various control targets other than the power system are described. Needless to say, it is easy to apply the distributed control system according to the embodiment of the present invention to the system.
 なおVPP(virtual power plant)とは、点在する小規模な再エネ発電や蓄電池、燃料電池等の設備と、電力の需要を管理するネットワーク・システムをまとめて制御することであり、複数の小規模発電設備やシステム等を、あたかも1つの発電所のようにまとめて機能させることから「仮想発電所」と呼ばれている。 VPP (virtual power plant) is a system that controls a small number of small-scale renewable energy generators, storage batteries, fuel cells, etc., and a network system that manages power demand. It is called a “virtual power plant” because its scale power generation facilities and systems function together as if they were one power plant.
 例えば電力系統のようなシステムを制御対象システムとして、その制御のために分散制御システムを適用している。この場合に、制御対象システムは制御機器を備え、一方分散制御システム側は制御機器を制御、操作する制御装置がネットワーク上に接続されて、構成されている。これにより、分散制御システムを介して制御対象システムの各種制御量が所定量に導かれるように制御が行われる。 For example, a distributed control system is applied to control a system such as a power system as a control target system. In this case, the system to be controlled includes a control device, while the distributed control system side is configured by connecting a control device for controlling and operating the control device on the network. Thereby, control is performed so that various control amounts of the control target system are led to a predetermined amount via the distributed control system.
 ここでは、電力系統に分散制御システムを適用することにより、仮想発電所VPPを構成する事例について、本発明の実施例を説明する。図1は、本発明を適用した仮想発電所VPPの構成例である。 Here, an embodiment of the present invention will be described for a case where a virtual power plant VPP is configured by applying a distributed control system to a power system. FIG. 1 is a configuration example of a virtual power plant VPP to which the present invention is applied.
 電力系統100は、電力資源101が接続された任意の系統であり、ここには送電系統、配電系統が例示されている。この場合に電力系統100自体が制御対象システムである。また電力資源101は、多くの場合に複数の制御機器を含んで構成されているので、電力資源101自体を制御機器と位置付けてもよい。 The power system 100 is an arbitrary system to which the power resource 101 is connected, and a power transmission system and a power distribution system are illustrated here. In this case, the power system 100 itself is a controlled system. In addition, since the power resource 101 is configured to include a plurality of control devices in many cases, the power resource 101 itself may be positioned as a control device.
 電力資源101は、電力系統100に対して、発電増減出力の提供が可能な発電資源、または負荷の増減の提供が可能な電力負荷資源で構成されている。図1には電力資源101の具体例として、水力発電、火力発電、蓄電池、太陽光発電、風力発電、地熱発電、バイオマス発電、バイオガス発電、波力発電、原子力発電や、家、ビル、工場等の電力負荷や、プロシューマ(電源と負荷の両方の性質を有する電力資源)が例示されている。発電機の例として、ディーゼルエンジン、ガスタービン、ガスエンジンや、これらを含むコジェネレーションシステムが例示される。あるいは、これらの電力資源を複合的にまとめたEMS(Energy Management System)、HEMS(Home Energy Management System)、BEMS(Building Energy Management System)、FEMS(Factory Energy Management System)、CEMS(Community Energy Management System)、AEMS(Area Energy Management System)、マイクログリッド等を一つの電力資源と見なしてもよい。 The power resource 101 is composed of a power generation resource capable of providing a power generation increase / decrease output to the power system 100 or a power load resource capable of providing a load increase / decrease. In FIG. 1, as examples of the electric power resource 101, hydroelectric power generation, thermal power generation, storage battery, solar power generation, wind power generation, geothermal power generation, biomass power generation, biogas power generation, wave power generation, nuclear power generation, house, building, factory Examples of such power loads and prosumers (power resources having both power and load properties) are illustrated. Examples of the generator include a diesel engine, a gas turbine, a gas engine, and a cogeneration system including these. Alternatively, EMS (Energy Management System), HEMS (Home Energy Management System), BEMS (Building Energy Management System), FEMS (Emergency Management System), FEMS (Emergency Management System), and FEMS (Emergency Management System). AEMS (Area Energy Management System), microgrid, etc. may be regarded as one power resource.
 電力資源101は、1つであってもよいし、複数であってもよい。また、ある仮想発電事業者を一つの電力資源101と見立ててもよい。 There may be one power resource 101 or a plurality of power resources 101. A certain virtual power generation company may be regarded as one power resource 101.
 分散制御システム側は、通信ネットワーク104と、端末装置102と、仮想発電中央装置103により構成されている。端末装置102は、通信ネットワーク104を介して仮想発電中央装置103と接続し、電力資源101を監視して取得した情報を仮想発電中央装置103に送信し、また仮想発電中央装置103から受信した制御指令をもとに電力資源101を設定、制御する。この場合に、端末装置102が分散制御システムにおける制御装置に対応している。 The distributed control system side includes a communication network 104, a terminal device 102, and a virtual power generation central device 103. The terminal device 102 is connected to the virtual power generation central device 103 via the communication network 104, transmits information acquired by monitoring the power resource 101 to the virtual power generation central device 103, and the control received from the virtual power generation central device 103. The power resource 101 is set and controlled based on the command. In this case, the terminal device 102 corresponds to a control device in the distributed control system.
 なお、端末装置102に接続する電力資源101は一つでも複数でもよい。また、端末装置102は、電力資源101内に組み込まれてもよい。 Note that one or more power resources 101 may be connected to the terminal device 102. The terminal device 102 may be incorporated in the power resource 101.
 仮想発電中央装置103は、通信ネットワーク104を介して、電力資源101(端末装置102)の群と接続し、電力資源101の情報の取得や、動作を制御する装置である。 The virtual power generation central device 103 is a device that is connected to a group of power resources 101 (terminal devices 102) via the communication network 104, and acquires information about the power resources 101 and controls operations.
 仮想発電中央装置103は、一つであってもよいし、複数であっても構わない。また、複数で構成される場合、一つのゲートウェイ装置または計算機を通信ネットワーク104への接続として、閉じたネットワーク内で他の計算機と接続してもよいし、各計算機が通信ネットワーク104に接続してもよい。 The virtual power generation central device 103 may be one or plural. In the case of a plurality of configurations, one gateway device or computer may be connected to the communication network 104 as a connection to another computer in a closed network, or each computer may be connected to the communication network 104. Also good.
 仮想発電中央装置103の具体例としては、パーソナルコンピュータ(PC)、ワークステーション、サーバ、制御用パーソナルコンピュータ、クラウドコンピューティング等の計算機が例示される。 Specific examples of the virtual power generation central device 103 include computers such as a personal computer (PC), a workstation, a server, a control personal computer, and cloud computing.
 通信ネットワーク104は、仮想発電中央装置103と電力資源101(端末装置102)を接続する通信ネットワークである。 The communication network 104 is a communication network that connects the virtual power generation central device 103 and the power resource 101 (terminal device 102).
 通信ネットワーク104は、公衆網、専用網のいずれでも構わないし、有線、無線通信のいずれでもよい。 The communication network 104 may be either a public network or a dedicated network, and may be either wired or wireless communication.
 通信方式においても、IEEE 802.3、各種産業用ネットワーク、IEC 61784、IEC 61158、IEC 61850、IEC 62439、IEC 61850-7-420、IEC 60870-5-104、DNP(Distributed Network Protocol)3、IEC 61970、IEEE 802.1 AVB、CAN(Controller Area Network:登録商標)、DeviceNet、RS-232C、RS-422、RS-485、ZigBee(登録商標)、Bluetooth(登録商標)、IEEE 802.15、IEEE 802.1、モバイル通信、OpenADR、ECHONET Lite(登録商標)、OpenFlow(登録商標)等が例示される。 Also in the communication system, IEEE 802.3, various industrial networks, IEC 61784, IEC 61158, IEC 61850, IEC 62439, IEC 61850-7-420, IEC 60870-5-104, DNP (Distributed Network Protocol) 3, IEC 61970, IEEE 802.1 AVB, CAN (Controller Area Network: registered trademark), DeviceNet, RS-232C, RS-422, RS-485, ZigBee (registered trademark), Bluetooth (registered trademark), IEEE 802.15, IEEE 802.1, mobile communication, OpenADR, ECHONET Lite (registered trademark), OpenFlow (registered trademark), etc. It is exemplified.
 次に本発明を適用した仮想発電中央装置103のハードウェア構成について説明する。 Next, the hardware configuration of the virtual power generation central device 103 to which the present invention is applied will be described.
 図2は、本発明を適用した仮想発電中央装置103のハードウェア構成を示す図である。仮想発電中央装置103は、CPU111、通信制御部112、メモリ114、不揮発性記憶媒体115をバス116で接続し、かつ通信制御部からPHY(物理層)113を介して通信ネットワーク104に接続されている。 FIG. 2 is a diagram showing a hardware configuration of the virtual power generation central device 103 to which the present invention is applied. The virtual power generation central device 103 has a CPU 111, a communication control unit 112, a memory 114, and a nonvolatile storage medium 115 connected by a bus 116, and is connected to the communication network 104 from the communication control unit through a PHY (physical layer) 113. Yes.
 仮想発電中央装置103の上記構成において、CPU111は、不揮発性記憶媒体115からプログラムをメモリ114に転送して実行する。実行処理プログラムとしては、オペレーティングシステム(以下、OSと称す)やOS上で動作するアプリケーションプログラムが例示される。 In the above configuration of the virtual power generation central device 103, the CPU 111 transfers the program from the nonvolatile storage medium 115 to the memory 114 and executes it. Examples of the execution processing program include an operating system (hereinafter referred to as OS) and an application program operating on the OS.
 通信制御部112は、CPU111上で動作するソフトウェアから送信要求、送信データを受け取り、PHY113を用いて通信ネットワーク104に対して送信する。また、通信ネットワーク104から受信したデータを、バス116を介してCPU111、メモリ114、不揮発性記憶媒体115へ転送する。通信制御部112の実装例としては、FPGA、CPLD、ASIC、ゲートアレイ等のICが例示される。あるいは、CPU111と一体化して構成されてもよい。 The communication control unit 112 receives a transmission request and transmission data from software operating on the CPU 111, and transmits it to the communication network 104 using the PHY 113. Further, data received from the communication network 104 is transferred to the CPU 111, the memory 114, and the nonvolatile storage medium 115 via the bus 116. Examples of the implementation of the communication control unit 112 include ICs such as FPGA, CPLD, ASIC, and gate array. Alternatively, the CPU 111 may be integrated.
 通信制御部112は、これをMAC層、PHY層を含めたIEEE 802.3通信デバイスとしてもよいし、また、PHY機能まで含めて通信制御部112に包含してもよい。この場合、通信制御部112の実装例としては、IEEE 802.3規格のMAC(Media Access Control)チップ、PHY(物理層)チップ、MACとPHYの複合チップを含む。なお、通信制御部112は、CPU111や、コンピュータ内部の情報経路を制御するチップセットに含まれていてもよい。 The communication control unit 112 may be an IEEE 802.3 communication device including the MAC layer and the PHY layer, or may be included in the communication control unit 112 including the PHY function. In this case, implementation examples of the communication control unit 112 include an IEEE 802.3 standard MAC (Media Access Control) chip, a PHY (physical layer) chip, and a combined MAC and PHY chip. Note that the communication control unit 112 may be included in the CPU 111 or a chip set that controls an information path inside the computer.
 PHY113は、通信ネットワーク104との通信機能を実装した送受信機ICである。PHY113の提供する通信規格としてIEEE 802.3のPHY(物理層)チップが例示される。 The PHY 113 is a transceiver IC that implements a communication function with the communication network 104. As a communication standard provided by the PHY 113, an IEEE 802.3 PHY (physical layer) chip is exemplified.
 なお、図2の構成では、PHY113と通信制御部112が接続しているので、IEEE 802.3のMAC(Media Access Control)層の処理は通信制御部112に含まれる。ただし、MAC機能を提供するICを通信制御部112とPHY113間に配置する構成や、MAC機能を提供するICとPHY113を組み合わせた通信用ICと通信制御部112を接続する構成においても、本発明の効果は失われるものではない。 In the configuration of FIG. 2, since the PHY 113 and the communication control unit 112 are connected, the processing of the IEEE 802.3 MAC (Media Access Control) layer is included in the communication control unit 112. However, the present invention also applies to a configuration in which an IC that provides a MAC function is disposed between the communication control unit 112 and the PHY 113, or a configuration in which a communication IC that combines the IC that provides the MAC function and the PHY 113 is connected to the communication control unit 112. The effect of is not lost.
 メモリ114は、CPU111が動作するための一時的な記憶領域であり、不揮発性記憶媒体115から転送したOS、アプリケーションプログラム等が格納される。メモリ114として、スタティックRAM、DRAM、NVRAM等が挙げられる。 The memory 114 is a temporary storage area for the CPU 111 to operate, and stores an OS, application programs, and the like transferred from the nonvolatile storage medium 115. Examples of the memory 114 include static RAM, DRAM, NVRAM, and the like.
 不揮発性記憶媒体115は、情報の記憶媒体で、OS、アプリケーション、デバイスドライバ等や、CPU111を動作させるためのプログラムの保存、プログラムの実行結果の保存に利用される。不揮発性記憶媒体115として、ハードディスクドライブ(HDD)やソリッドステートドライブ(SSD)、フラッシュメモリが例示される。また、取り外しが容易な外部記憶媒体として、フロッピーディスク(FD)、CD、DVD、ブルーレイ(登録商標)、USBメモリ、コンパクトフラッシュ(登録商標)等の利用が例示される。 The non-volatile storage medium 115 is an information storage medium, and is used to store an OS, an application, a device driver, and the like, a program for operating the CPU 111, and a program execution result. Examples of the nonvolatile storage medium 115 include a hard disk drive (HDD), a solid state drive (SSD), and a flash memory. Examples of the external storage medium that can be easily removed include use of a floppy disk (FD), CD, DVD, Blu-ray (registered trademark), USB memory, compact flash (registered trademark), and the like.
 バス116は、CPU111、通信制御部112、メモリ114、不揮発性記憶媒体115をそれぞれ接続する。バス116としては、PCIバス、ISAバス、PCI Expressバス、システムバス、メモリバス、オンチップバス等が例示される。 The bus 116 connects the CPU 111, the communication control unit 112, the memory 114, and the nonvolatile storage medium 115, respectively. Examples of the bus 116 include a PCI bus, an ISA bus, a PCI express bus, a system bus, a memory bus, and an on-chip bus.
 なお、図2に例示するハードウェア構成は、CPU111、通信制御部112、PHY113、メモリ114、不揮発性記憶媒体115のいずれか、または複数を一体化したIC、CPU、SoC(System on Chip)、FPGAを用いてもよい。 2 includes a CPU 111, a communication control unit 112, a PHY 113, a memory 114, a nonvolatile storage medium 115, or an integrated IC, CPU, SoC (System on Chip), FPGA may be used.
 次に本発明を適用した仮想発電中央装置103の各機能部について説明する。図2の構成がハードウェア構成であったのに対し、図3はソフトウェア構成として機能ごとに分けて表記したものである。 Next, each functional unit of the virtual power generation central device 103 to which the present invention is applied will be described. While the configuration of FIG. 2 is a hardware configuration, FIG. 3 shows a software configuration divided for each function.
 本発明を適用した仮想発電中央装置103のソフトウェア機能構成図を図3に示す。 FIG. 3 shows a software functional configuration diagram of the virtual power generation central device 103 to which the present invention is applied.
 図3において、通信部120は、通信ネットワーク104を介して、端末装置102への指令パケットの送信や、端末装置102からパケットを受信する機能部である。端末装置102へ送信する際は、配分計画部124、電力資源制御部127から伝送された指令識別子と出力指令、及び、情報収集部121との通信を、通信ネットワーク104のプロトコルフォーマットに従うように整形して送信する。 In FIG. 3, the communication unit 120 is a functional unit that transmits a command packet to the terminal device 102 and receives a packet from the terminal device 102 via the communication network 104. When transmitting to the terminal device 102, the command identifier and output command transmitted from the distribution planning unit 124 and the power resource control unit 127 and the communication with the information collecting unit 121 are shaped according to the protocol format of the communication network 104. Then send.
 情報収集部121は、通信部120を介して、制御対象となる電力資源及び電力資源の制御にかかわる情報を収集する。これらの情報には、電力資源の制御可否に関わる不確実性を含む(通信や電力資源の機器異常、あるいは電力資源所有者による運用ポリシーなど)。また、これらの情報の収集には、通信不確実性判定のために遅延計測用のパケットを定期的に送信してもよい。情報収集部121は、CPU111上で動作するソフトウェア、または通信制御部112、PHY113のいずれか、または複数を用いて構成することが例示される。 The information collection unit 121 collects power resources to be controlled and information related to control of the power resources via the communication unit 120. These pieces of information include uncertainties related to whether or not power resources can be controlled (communication or power resource equipment abnormality, operation policy by the power resource owner, etc.). Further, for collecting these pieces of information, a packet for delay measurement may be periodically transmitted to determine communication uncertainty. The information collecting unit 121 is exemplified by being configured using software operating on the CPU 111, or one or more of the communication control unit 112 and the PHY 113.
 電力資源情報記憶部122は、電力資源101の情報D1、及び電力資源101の制御可否に関わる不確実性の情報D2の記憶部である。電力資源情報記憶部122が記憶する電力資源101の情報D1の種類は、出力に関する経済性(具体的には発電コストであり、燃料費や燃料取引市場の相場情報を含む)や、出力変化の応答速度(具体的には追従性能)、電力負荷低減による利用者への快適度の影響(例えば、空調機の温度変化による影響)や、電源の定格出力、最大容量、電源の種類、電力資源所有者の運用ポリシー、電力市場の情報(約定値や約定量、取引量のトレンド、参加企業数等)や、運転履歴等が例示される。 The power resource information storage unit 122 is a storage unit for information D1 of the power resource 101 and information D2 of uncertainty related to whether the power resource 101 can be controlled. The type of information D1 of the power resource 101 stored in the power resource information storage unit 122 is the economics related to the output (specifically, the power generation cost, including the fuel cost and market information of the fuel trading market), the output change Response speed (specifically follow-up performance), impact on user comfort due to power load reduction (for example, impact due to air conditioner temperature change), rated power output, maximum capacity, type of power, power resources Examples include the owner's operation policy, information on the electric power market (contract price / quantity, transaction volume trend, number of participating companies, etc.), operation history, and the like.
 例えば、運用ポリシーとして、仮想発電所における電力資源活用の利益選好性と電力資源所有者自身の利用優先度間の配分が挙げられる。例えば、電力資源所有者自身の需要のために電力資源101を活用するよりは、電力市場での活用を通して利益を上げることを優先するといったポリシーが例示される。その逆に電力市場での電力資源101活用による運用益の向上よりも、電力資源所有者自身による需要を優先するポリシーが挙げられる。このポリシーは事前に設定、記憶してもよいし、利用毎に電力資源所有者へ電子メールやSNS(Social Networking Service)、webサービスを通じて通知し、電力資源所有者に所定の手段(仮想発電中央装置103に具えられた入力手段あるいは電子メール、webブラウザによるwebアクセス)で回答させてもよい。 For example, as an operation policy, there is an allocation between profit preference of power resource utilization in a virtual power plant and usage priority of power resource owners themselves. For example, a policy is exemplified in which priority is given to making a profit through utilization in the electric power market rather than utilizing the electric power resource 101 for the demand of the electric power resource owner. Conversely, there is a policy that gives priority to the demand of the power resource owner itself over the improvement of operational profits by utilizing the power resource 101 in the power market. This policy may be set and stored in advance, or is notified to the power resource owner via e-mail, SNS (Social Networking Service), or web service for each use, and the power resource owner is notified by a predetermined means (virtual power generation central You may make it reply by the input means provided in the apparatus 103, an e-mail, or web access by a web browser.
 ここで、電力資源情報記憶部122に記憶された、制御可否に関わる不確実性の情報D2について、さらに明確に説明する。 Here, the uncertainty information D2 related to control availability stored in the power resource information storage unit 122 will be described more clearly.
 電力資源101の制御可否にかかわる不確実性の情報D2としては、電力資源101及び通信に関する情報が例示される。例えば、電力資源にかかわる不確実性の情報D21として、機器故障や異常の可能性、電力資源所有者の自家利用の優先度を示す情報、自然変動電源の出力に関する情報(天候、気象情報等)が例示される。また、電力資源101や端末装置102の機器情報(メーカや型番、生産工場、シリアル番号、生産年月日など)をもとに、同型機器の異常発生確率、異常、故障の実績や発生間隔といった情報が例示される。あるいはサイバーセキュリティに関する攻撃対象となった実績やソフトウェアの脆弱性が含まれる。あるいは電力資源所有者の運用ポリシーや、一時的に電力資源101の自家利用を優先したい場合の有無や、その発生頻度、仮想発電中央装置103を有する仮想発電アグリゲータと電力資源101の電力資源所有者間の契約内容が例示される。あるいは電力資源101が太陽光発電だった場合の日射予測量、風力発電における風向や風速の予測情報を用いることが例示される。 Examples of the uncertainty information D2 related to whether the power resource 101 can be controlled include information on the power resource 101 and communication. For example, as information D21 on uncertainty related to power resources, information indicating the possibility of equipment failure or abnormality, information indicating the priority of the power resource owner's own use, information on the output of the natural variable power source (weather, weather information, etc.) Is exemplified. Also, based on the device information (manufacturer, model number, production factory, serial number, production date, etc.) of the power resource 101 and the terminal device 102, the probability of occurrence of abnormality, abnormality, track record and occurrence interval of the same type device, etc. Information is exemplified. Or the results of cyber security attacks and software vulnerabilities are included. Alternatively, the operation policy of the power resource owner, the presence / absence of the case where priority is given to temporary use of the power resource 101 temporarily, the frequency of occurrence, the power resource owner of the virtual power generation aggregator having the virtual power generation central unit 103 and the power resource 101 The contract contents are illustrated. Alternatively, the predicted amount of solar radiation when the power resource 101 is solar power generation, and the prediction information of wind direction and wind speed in wind power generation are exemplified.
 また通信にかかわる不確実性の情報D22は、仮想発電中央装置103と電力資源101、端末装置102間の通信にかかわる指令伝達の不確実性である。これは通信ネットワーク104の通信量や端末装置102との通信遅延の最大値、平均値、最小値、ばらつき(標準偏差)等といった通信性能にかかわる情報が例示される。あるいは通信ネットワーク104上で実行される種々の通信プロトコルにおける通信ネットワーク104の評価情報を用いてもよい。例えば、RSTP(Rapid Spanning Tree Protocol)、OPSF(Open Shortest Path First)でやりとりされる経路のコスト情報や、RIP(Routing Information Protocol)等の経路制御プロトコルでやりとりされるホップ数の情報が例示される。 Further, the uncertainty information D22 related to communication is the uncertainty of command transmission related to communication between the virtual power generation central device 103, the power resource 101, and the terminal device 102. This is exemplified by information related to communication performance such as the communication amount of the communication network 104 and the maximum value, average value, minimum value, and variation (standard deviation) of communication delay with the terminal device 102. Alternatively, evaluation information of the communication network 104 in various communication protocols executed on the communication network 104 may be used. Examples include cost information of routes exchanged by RSTP (Rapid Spanning Tree Protocol), OPSF (Open Shortest Path First), and information on the number of hops exchanged by route control protocols such as RIP (Routing Information Protocol). .
 以上、電力資源101の制御可否にかかわる不確実性の情報D2として、電力資源にかかわる不確実性の情報D21と、通信にかかわる不確実性の情報D22について説明したが、これ以外の不確実性の情報D23として以下の情報を考慮するのがよい。 As described above, the uncertainty information D21 related to the power resource and the uncertainty information D22 related to the communication have been described as the uncertainty information D2 related to whether or not the power resource 101 can be controlled. The following information should be considered as the information D23.
 不確実性の情報D23として、通信量に影響を与え得るイベント情報を用いてもよい。
例えば、新年やその地域の祭日など、挨拶や会話の意味合いを有する通信が増えると予想される季節性の情報が例示される。あるいは、通信量が少なくなる日(旅行等の理由で住民が減る等)といった情報でもよい。あるいは、過去の実績値を踏まえ、通信量に変化がある日程を推定した情報でもよい。
Event information that may affect the traffic may be used as the uncertainty information D23.
For example, seasonal information that is expected to increase the number of communications having the meaning of greetings or conversation, such as the New Year or local holidays, is exemplified. Alternatively, it may be information such as a day when the communication amount decreases (for example, the number of residents decreases due to travel). Or the information which estimated the schedule with a change in communication volume based on the past performance value may be sufficient.
 あるいは不確実性の情報D23として、気象異常(大雪、熱波、寒波、台風、ハリケーン、地震、津波、雷雨、強風等)が例示される。これらの事象は該当地域における電力系統の事故や異常の確率が増すことを意味する。あるいは、人々の安否確認や、交通インフラの機能停止に伴う代替手段の探索等により、通信量が変化し得る。 Or, as the uncertainty information D23, a weather abnormality (such as heavy snow, heat wave, cold wave, typhoon, hurricane, earthquake, tsunami, thunderstorm, strong wind, etc.) is exemplified. These events mean that the probability of power system accidents and abnormalities in the area increases. Alternatively, the amount of communication may change due to the confirmation of people's safety, the search for alternative means associated with the stoppage of traffic infrastructure functions, and the like.
 また不確実性の情報D23として、イベントを考慮するのがよい。イベントは現実世界に留まらず、通信ネットワーク104やインターネット上のイベントを含めてもよい。例えば、人気webサイトのイベントや、webを介した音楽またはイベントのライブ、スポーツイベントや音楽イベント等のチケットのwebでの申込み開始日時、申込み期間、あるいはSNSでの大量の情報の発信が予想される日時といった情報が例示される。例えば、スポーツの国際大会の開始時刻、終了時刻、イベント中、あるいはテレビやweb放映でのイベントや映画の中で、SNSでの大量の情報発信の可能性がある。これらの情報を記憶してもよい。あるいは、これらの過去の情報を用いて推定してもよい。例えば、同じスポーツ大会、映画が再び開催、放映される場合は、通信量が増加することが予想される。 Also, the event should be considered as the uncertainty information D23. Events are not limited to the real world, and may include events on the communication network 104 or the Internet. For example, it is expected to send a large amount of information on popular web site events, music or event live via the web, application start date and time, application period on the web for sports events and music events, etc., or SNS Information such as date and time. For example, there is a possibility that a large amount of information is transmitted through SNS during the start time, end time, event, or event or movie on television or web. Such information may be stored. Or you may estimate using such past information. For example, if the same sports tournament and movie are held and broadcast again, it is expected that the traffic will increase.
 あるいは不確実性の情報D23として、サイバーセキュリティにおけるDDoS攻撃(Distributed Denial of Service)は、web上の通信量が増えるため、攻撃予告日(予告がなされた場合)や、攻撃が発生すると予測される日程や、DDoS攻撃の検知情報が例示される。 Alternatively, as the uncertainty information D23, a DDoS attack in cyber security (Distributed Denial of Service) increases the amount of traffic on the web, so it is predicted that an attack will be announced (when a notice is given) or an attack will occur Examples include schedule and DDoS attack detection information.
 あるいは不確実性の情報D23として、電力市場の取引に関する情報が例示される。例えば、過去の約定価格、約定量、それぞれの予測値、買い入札量、売り入札量、参加者数が挙げられる。 Or, information relating to power market transactions is exemplified as the uncertainty information D23. For example, past contract prices, contract quantifications, respective forecast values, buy bids, sell bids, and the number of participants.
 電力資源情報記憶部122に記憶される情報の入手は、通信ネットワーク104を介して、端末装置102より送信されて取得してもよいし、電力資源101の種類によって静的に定まる情報であれば、予め記憶させてもよい。あるいは情報収集部121によって別途収集して記憶してもよい。 The information stored in the power resource information storage unit 122 may be acquired by being transmitted from the terminal device 102 via the communication network 104, or may be information that is statically determined according to the type of the power resource 101. , May be stored in advance. Alternatively, it may be separately collected and stored by the information collecting unit 121.
 電力資源情報記憶部122に記憶された情報は、不確実性判定部123、配分計画部124へ提供される。 Information stored in the power resource information storage unit 122 is provided to the uncertainty determination unit 123 and the distribution plan unit 124.
 電力資源情報記憶部122は、図2に示すメモリ114や不揮発性記憶媒体115に実装されることが例示される。あるいはネットワークを介した別のサーバ(ファイルサーバやストレージサーバ)に記憶してもよい。つまり、電力資源情報記憶部122は、上記の情報を1か所に纏めて記憶するものである必要はなく、適宜情報の種別に応じてネットワーク上の複数個所に分散して記憶されたものであってもよい。 It is exemplified that the power resource information storage unit 122 is mounted on the memory 114 and the nonvolatile storage medium 115 shown in FIG. Or you may memorize | store in another server (a file server or a storage server) via a network. In other words, the power resource information storage unit 122 does not need to store the above information in one place, but is distributed and stored in a plurality of locations on the network as appropriate according to the type of information. There may be.
 図12は、図3に例示する処理により形成されているデータ構成例を示している。この図において左側の200には、仮想発電所としての制御対象システムである電力系統内の制御機器(電力資源101)が個別に記述されている。ここではガスエンジン1、ガスエンジン2、蓄電池、太陽光発電装置PV、電力負荷を例示している。また201には、電力資源情報記憶部122に記憶された電力資源101の情報D1として制御機器ごとのコスト指標値が、また202には、電力資源情報記憶部122に記憶された電力資源101の情報D1として制御機器ごとの追従性能指標が数値として表されている。電力資源情報記憶部122に記憶された電力資源101の情報D1は、配分計画部124に通知される。 FIG. 12 shows an example of the data configuration formed by the process illustrated in FIG. In the figure, 200 on the left side individually describes control devices (power resources 101) in the power system, which is a control target system as a virtual power plant. Here, the gas engine 1, the gas engine 2, the storage battery, the solar power generation device PV, and the power load are illustrated. In 201, a cost index value for each control device is stored as information D1 of the power resource 101 stored in the power resource information storage unit 122. In 202, the power index of the power resource 101 stored in the power resource information storage unit 122 is stored. As the information D1, a tracking performance index for each control device is expressed as a numerical value. The information D1 of the power resource 101 stored in the power resource information storage unit 122 is notified to the distribution plan unit 124.
 図3の不確実性判定部123は、情報収集部121を介して電力資源情報記憶部122に記憶した、電力資源101の制御可否にかかわる不確実性の情報D2(D21,D22)をもとに、個々の電力資源101の不確実性を数値として判定する。また判定した結果を配分計画部124に通知する。判定した結果は、所定の指標値であってもよいし、電力資源101を制御可能な確率としてもよい。あるいは制約条件付きの指標値でもよいが、具体的な数値の大きさとして把握されるのがよい。なお不確実性を数値評価するための手法は、種々のものを適用可能であり、ここではその具体的な手法を問わない。制約条件の例としては、判定結果が有力な期限が例示される。不確実性判定部123は、CPU111上で動作するソフトウェアとして実装されることが例示される。また不確実性判定部123は、同様手法を用いて、別途記憶した通信にかかわる他の不確実性の情報D23に対しても、不確実性を数値評価したデータを作成している。 The uncertainty determination unit 123 of FIG. 3 is based on the uncertainty information D2 (D21, D22) related to the controllability of the power resource 101 stored in the power resource information storage unit 122 via the information collection unit 121. In addition, the uncertainty of each power resource 101 is determined as a numerical value. Further, the distribution plan unit 124 is notified of the determined result. The determined result may be a predetermined index value or a probability that the power resource 101 can be controlled. Alternatively, it may be an index value with a constraint condition, but it should be understood as a specific numerical value. Note that various methods can be applied to numerically evaluate the uncertainty, and any specific method may be used here. As an example of the constraint condition, a time limit with a strong determination result is exemplified. The uncertainty determination unit 123 is exemplified as being implemented as software that operates on the CPU 111. In addition, the uncertainty determination unit 123 uses the same method to create data obtained by numerically evaluating uncertainty for other uncertainty information D23 relating to separately stored communication.
 図12の203には、不確実性判定部123で作成された不確実性指標が示されている。ここでは、不確実性指標は、制御可否にかかわる不確実性指標として機器故障確率指標203a、通信不確実性指標203b、自家利用指標値203cが、制御機器ごとに例示されている。なお個別の制御機器を一括りにして評価するための評価値204は、コスト指標値201、追従性能指標202、機器故障確率指標203a、通信不確実性指標203b、自家利用指標値203cの各数値化された指標を基に、例えば0から100の間の数値として算出される。この評価値204は、後述する配分計画部124にて求められる。 In FIG. 12, 203 indicates an uncertainty index created by the uncertainty determination unit 123. Here, as the uncertainty index, the device failure probability index 203a, the communication uncertainty index 203b, and the self-use index value 203c are exemplified for each control device as the uncertainty indexes related to control availability. Note that the evaluation values 204 for evaluating individual control devices collectively include the cost index value 201, the following performance index 202, the device failure probability index 203a, the communication uncertainty index 203b, and the private use index value 203c. For example, a numerical value between 0 and 100 is calculated based on the converted index. The evaluation value 204 is obtained by the distribution plan unit 124 described later.
 例えば、図12の場合、次の(1)式で評価指標値を計算し、その評価指標値の順序に応じて、評価値100から順に10刻みで設定することが例示される。
[数1]
 P = 100/C+0.1×S+1×F+1000/M+200/D (1)
 ここで、Pは評価指標値、Cはコスト指標値201、Sは追従性能指標202、Fは機器故障確率指標値203a、Mは通信不確実性指標値203b、Dは自家利用指標値203cである。式1の100、0.1、1、1000、200は各指標値の演算に用いる定数である。逆数の形式となっている項目(例えば、コスト指標値201)は、値が小さいほど望ましいことを示す(例えば、コスト指標値201は、値が小さいほど発電コストが低い)。図12の値について、式1で算出すると、評価指標値はそれぞれ85、83、77、47、44(小数点以下は四捨五入している)となり、その順番に100から10刻みで評価値を割り当てている。
For example, in the case of FIG. 12, the evaluation index value is calculated by the following equation (1), and is set in increments of 10 from the evaluation value 100 in accordance with the order of the evaluation index value.
[Equation 1]
P = 100 / C + 0.1 × S + 1 × F + 1000 / M + 200 / D (1)
Here, P is an evaluation index value, C is a cost index value 201, S is a tracking performance index 202, F is an equipment failure probability index value 203a, M is a communication uncertainty index value 203b, and D is a self-use index value 203c. is there. In Equation 1, 100, 0.1, 1, 1000, and 200 are constants used for calculating each index value. An item having a reciprocal format (for example, the cost index value 201) indicates that the smaller the value, the more desirable (for example, the smaller the value, the lower the power generation cost). When the values in FIG. 12 are calculated by Expression 1, the evaluation index values are 85, 83, 77, 47, and 44 (rounded off after the decimal point), and the evaluation values are assigned in increments of 100 to 10 in that order. Yes.
 選択基準決定部125は、電力資源情報記憶部122に記憶された情報などをもとに、電力資源101の選択基準を決定し、配分計画部124へ通知する。ここで選択基準とは、不確実性等の各種数値化情報から求めた評価値204についての基準値を作成して与えるものである。例えば、評価値204が0から100の間の数値として定義される場合に、選択基準値として75を与えるものである。 The selection criterion determination unit 125 determines the selection criterion for the power resource 101 based on the information stored in the power resource information storage unit 122 and notifies the distribution planning unit 124 of the selection criterion. Here, the selection criterion is to create and give a reference value for the evaluation value 204 obtained from various numerical information such as uncertainty. For example, when the evaluation value 204 is defined as a numerical value between 0 and 100, 75 is given as the selection reference value.
 選択基準決定部125は、基準値を例えば、電力取引の契約条件で規定される許容値(例えば、契約基準値10MWに対して、±20%の誤差の許容)に基づいて決定することが例示される。なお、選択基準決定部125の選択基準の決定は、動作指令対象の電力資源101と、予備群の電力資源101の分類にかかわるため、配分計画部124内に含まれていてもよい。選択基準決定部125は、CPU111上で動作するソフトウェアとして実装されることが例示される。 For example, the selection criterion determination unit 125 determines the reference value based on, for example, an allowable value defined by the contract conditions of the power transaction (for example, an error of ± 20% with respect to the contract reference value of 10 MW). Is done. The determination of the selection criterion by the selection criterion determination unit 125 may be included in the distribution planning unit 124 because it relates to the classification of the power resources 101 that are operation command targets and the power resources 101 of the standby group. It is exemplified that the selection criterion determination unit 125 is implemented as software that operates on the CPU 111.
 配分計画部124は、不確実性判定部123から取得した電力資源101の制御可否にかかわる不確実性の判定結果、電力資源情報記憶部122に記憶された情報をもとにして、当該制御機器を1つの数値として表した評価値204を得る。例えばガスエンジン1についての評価値204は、コスト指標値201の「14」、追従性能指標202の「50」、機器故障確率指標203aの「18」、通信不確実性指標203bの「20」、自家利用指標値203cの「40」各数値化された指標から、「100」を得る。同様に、ガスエンジン2の評価値を「90」、蓄電池の評価値を「80」、太陽光発電装置PVの評価値を「70」、電力負荷の評価値を「60」に定める。なお電力負荷は、コスト、追従性において優れていても、不確実性の観点から制御対象とならない場合があり得る。また図12のような纏め表は、電力系統の異なる条件に対応するために、複数のものが準備されるのがよい。これは、制御目的に応じて要求される指標が異なる場合があり得るためである。例えば、特定日時に所定の電力を出力することを目的とする場合は、追従性能を評価せず、追従性能を含まない纏め表を用いることが示される。 The allocation planning unit 124 determines the control device based on the determination result of the uncertainty related to the controllability of the power resource 101 acquired from the uncertainty determination unit 123 and the information stored in the power resource information storage unit 122. Is obtained as a single numerical value. For example, the evaluation value 204 for the gas engine 1 is “14” for the cost index value 201, “50” for the following performance index 202, “18” for the equipment failure probability index 203a, “20” for the communication uncertainty index 203b, “100” is obtained from each digitized index of “40” of the private use index value 203c. Similarly, the evaluation value of the gas engine 2 is set to “90”, the evaluation value of the storage battery is set to “80”, the evaluation value of the photovoltaic power generation device PV is set to “70”, and the evaluation value of the power load is set to “60”. Even if the power load is excellent in cost and followability, it may not be a control target from the viewpoint of uncertainty. Also, a plurality of summary tables as shown in FIG. 12 are preferably prepared in order to cope with different conditions of the power system. This is because the required index may differ depending on the control purpose. For example, when the purpose is to output predetermined power at a specific date and time, it is indicated that the tracking performance is not evaluated and a summary table that does not include the tracking performance is used.
 これらの評価値204は、選択基準決定部125から通知される選択基準値75と対比され、選択基準値75以上の電力資源101(制御機器)を動作指令対象群として位置づけ、選択基準値75以下の電力資源101(制御機器)を予備群に分類する。これは、各電力資源101の評価値を算出し、選択基準決定部125から通知される選択基準値を境界として、選択基準値以上の値を有する電力資源101群を動作指令対象群、それ以外を予備群に分類してもよい。配分計画部124は、CPU111上で動作するソフトウェアとして実装されることが例示される。 These evaluation values 204 are compared with the selection reference value 75 notified from the selection reference determination unit 125, position the power resource 101 (control device) having the selection reference value 75 or higher as an operation command target group, and the selection reference value 75 or lower. Power resources 101 (control equipment) are classified into a reserve group. This is to calculate the evaluation value of each power resource 101, with the selection reference value notified from the selection reference determination unit 125 as a boundary, the power resource 101 group having a value greater than or equal to the selection reference value, the operation command target group, otherwise May be classified into a reserve group. The distribution planning unit 124 is exemplified as being implemented as software that operates on the CPU 111.
 配分計画部124は、要求された電力を提供するための制御機器の最適な組み合わせ、配分を決定しているが、基本的には動作指令対象群として位置づけられた制御機器から定め、それでは要求された電力を供給できない場合に、予備群として位置づけられた制御機器を選択する。 The distribution planning unit 124 determines the optimal combination and distribution of the control devices for providing the requested power, but is basically determined from the control devices positioned as the operation command target group. When the generated power cannot be supplied, the control device positioned as the reserve group is selected.
 配分計画記憶部126は、配分計画部124の決定した配分計画を記憶し、必要に応じて、電力資源制御部127から参照される。配分計画記憶部126は、配分計画部124内に含まれていても、電力資源制御部127からの問い合わせに対して、配分計画を電力資源制御部127に通知してもよい。あるいは、電力資源制御部127が配分計画記憶部126を内部に含んでいてもよい。配分計画記憶部126は、メモリ114、または不揮発性記憶媒体115上に構築されることが例示される。 The distribution plan storage unit 126 stores the distribution plan determined by the distribution plan unit 124 and is referred to by the power resource control unit 127 as necessary. Even if the distribution plan storage unit 126 is included in the distribution plan unit 124, the distribution plan storage unit 126 may notify the power resource control unit 127 of the distribution plan in response to an inquiry from the power resource control unit 127. Alternatively, the power resource control unit 127 may include the distribution plan storage unit 126 inside. The distribution plan storage unit 126 is exemplified to be built on the memory 114 or the nonvolatile storage medium 115.
 電力資源制御部127は、配分計画記憶部126に記憶される配分計画を参照して、通信部120を介して、動作指令対象群の電力資源101を制御する。加えて、必要に応じて、予備群の電力資源101を制御する。電力資源制御部127は、CPU111上で動作するソフトウェア、通信制御部112のいずれか、または複数で実装されることが例示される。 The power resource control unit 127 refers to the distribution plan stored in the distribution plan storage unit 126 and controls the power resource 101 of the operation command target group via the communication unit 120. In addition, the reserve group power resource 101 is controlled as necessary. It is exemplified that the power resource control unit 127 is implemented by one or a plurality of software operating on the CPU 111 and the communication control unit 112.
 補正制御部128は、電力資源制御部127が指令した電力資源101に対する制御が所望の結果を得られなかった場合になされる補正の制御を実行する。例えば、動作指令対象の電力資源101が制御指令通りに動作しなかった場合に、不足分の出力を予備群の電力資源101に対して指令することが例示される。補正制御部128は、CPU111上で動作するソフトウェア、通信制御部112のいずれか、または複数で実装されることが例示される。 The correction control unit 128 executes correction control performed when the control on the power resource 101 instructed by the power resource control unit 127 cannot obtain a desired result. For example, when the power resource 101 subject to the operation command does not operate according to the control command, the shortage output is commanded to the power resource 101 of the standby group. It is exemplified that the correction control unit 128 is implemented by any one or a plurality of software operating on the CPU 111 and the communication control unit 112.
 次に図2の端末装置102のハードウェア構成について説明する。 Next, the hardware configuration of the terminal device 102 in FIG. 2 will be described.
 図4は、端末装置102のハードウェア構成を示す図である。図4に示す端末装置102のハードウェア構成は、基本的に、図2の仮想発電中央装置103のハードウェア構成と同様であるが、電力資源101を制御、あるいは電力資源101の情報を取得するための入出力部150を有する点で相違している。 FIG. 4 is a diagram illustrating a hardware configuration of the terminal device 102. The hardware configuration of the terminal device 102 illustrated in FIG. 4 is basically the same as the hardware configuration of the virtual power generation central device 103 of FIG. 2, but controls the power resource 101 or acquires information on the power resource 101. Is different in that it has an input / output unit 150.
 入出力部150として、各種のデジタル入出力やアナログ入出力ICが例示される。なお、入出力150からの信号線を1本で示しているが、電力資源101側の構成により、複数でもよい。また、一つの端末装置102につき、複数の電力資源101を制御してもよい。端末装置102の具体例としては、PLC(Programmable Logic Controller)、IED(Intelligent Electronic device)、MU(Merging Unit)、保護リレー等が挙げられる。 Examples of the input / output unit 150 include various digital input / outputs and analog input / output ICs. Although one signal line from the input / output 150 is shown, a plurality of signal lines may be used depending on the configuration of the power resource 101 side. Further, a plurality of power resources 101 may be controlled for one terminal apparatus 102. Specific examples of the terminal device 102 include PLC (Programmable Logic Controller), IED (Intelligent Electronic device), MU (Meraging Unit), protection relay, and the like.
 次に端末装置102の各機能部について説明する。図4の構成が端末装置102のハードウェア構成であったに対し、図5は端末装置102のソフトウェア構成として機能ごとに分けて表記したものである。 Next, each functional unit of the terminal device 102 will be described. 4 is the hardware configuration of the terminal apparatus 102, FIG. 5 is a software configuration of the terminal apparatus 102 that is divided into functions.
 図5において電力資源入出力制御部160は、通信部120を介して、仮想発電中央装置103からの制御指令を受信し、制御指令と、設定記憶部161に記憶される設定情報に基づいて電力資源101を制御する。あるいは、電力資源101の状態を監視し、仮想発電中央装置103へ伝送する。伝送のタイミングは、所定の定期間隔でもよいし、電力資源101の状態が変化した場合や、仮想発電中央装置103から要求があった場合が例示される。 In FIG. 5, the power resource input / output control unit 160 receives a control command from the virtual power generation central device 103 via the communication unit 120, and generates power based on the control command and setting information stored in the setting storage unit 161. Control the resource 101. Alternatively, the state of the power resource 101 is monitored and transmitted to the virtual power generation central device 103. The timing of transmission may be a predetermined regular interval, or a case where the state of the power resource 101 changes or a case where there is a request from the virtual power generation central device 103 is exemplified.
 電力資源入出力制御部160は、図4に示すハードウェア構成のCPU111上で動作するソフトウェア、ならびに入出力部150を用いた構成が例示される。 The power resource input / output control unit 160 is exemplified by a configuration using software operating on the CPU 111 having the hardware configuration shown in FIG. 4 and the input / output unit 150.
 設定記憶部161は、電力資源101を制御、監視するために必要な設定情報を記憶する。該設定情報としては、指令識別子142から指令情報を求める方法、電力取引情報(取引相手、発電電力、発電電力量、低減負荷電力、低減負荷電力量の最小要求値、最大要求値、平均要求値、応答時間の制約、ペナルティ条件)や稼働実績、電力資源101の状態変化を仮想発電中央装置103へ通知する判定基準(例えば、発電電力の変化速度のしきい値など)等が含まれる。設定記憶部161は、図4に示すメモリ114や不揮発性記憶媒体115に実装されることが例示される。 The setting storage unit 161 stores setting information necessary for controlling and monitoring the power resource 101. The setting information includes a method for obtaining command information from the command identifier 142, power transaction information (transaction partner, generated power, generated power amount, reduced load power, minimum required value of reduced load power amount, maximum required value, average required value) , Response time constraints, penalty conditions), operation results, determination criteria for notifying the virtual power generation central device 103 of the state change of the power resource 101 (for example, a threshold value of the change speed of the generated power), and the like. The setting storage unit 161 is implemented in the memory 114 and the nonvolatile storage medium 115 illustrated in FIG.
 次に本発明にかかわる仮想発電中央装置103の情報収集、配分計画の動作について図6を参照して説明する。 Next, information collection and distribution plan operations of the virtual power generation central device 103 according to the present invention will be described with reference to FIG.
 はじめに、仮想発電中央装置103は、処理ステップS001において、発電または負荷低減に関する取引を契約する。これは、電力市場を介した取引(前日市場、当日市場、調整力市場、リアルタイム市場、容量市場等)でもよいし、相対取引でもよい。 First, the virtual power generation central device 103 contracts a transaction related to power generation or load reduction in the processing step S001. This may be a transaction through the power market (the previous day market, the current day market, the adjustment market, the real time market, the capacity market, etc.) or a relative transaction.
 取引締結により、発電電力または負荷電力、電力量に関する規定(最小要求値、平均要求値、最大要求値等)、応答時間、取引相手から指令が通知されるタイミング、ペナルティ条件(所定期間内で規定回数不稼働だった場合に契約破棄することや、指定出力値のプラスマイナス20%を超えて発電してはいけないなど)、報酬形態(出力要求値を段階別にわけ、各段階に対する報酬割合など。例えば、出力要求値の90%以上を出力できれば、基準報酬の100%が支払われる等。)等が定まる。 Regulations regarding generated power or load power, power consumption (minimum required value, average required value, maximum required value, etc.), response time, timing when command is notified from trading partner, penalty condition (specified within a predetermined period) If the number of times of inactivity does not work, the contract will be abandoned, and the specified output value must not exceed 20% of the specified output value.) Remuneration type (output request value is divided by stage, remuneration ratio for each stage, etc.). For example, if 90% or more of the output request value can be output, 100% of the standard reward is paid, etc.).
 次に、仮想発電中央装置103は、処理ステップS002において、電力資源101の情報を収集する。これは、情報収集部121によってなされ、動的に情報を収集してもよいし、電力資源101の種類から定まる情報は仮想発電中央装置103にて電力資源101の情報を登録してもよい。 Next, the virtual power generation central device 103 collects information on the power resource 101 in processing step S002. This is done by the information collecting unit 121 and may collect information dynamically, or information on the power resource 101 may be registered in the virtual power generation central device 103 as information determined from the type of the power resource 101.
 次に、仮想発電中央装置103は、処理ステップS003において、計画するタイミングまで待機する。ここで計画するタイミングとしては、例えば、契約成立後、ただちに計画すべき場合(この場合、処理ステップS002の電力資源101の情報収集は、処理ステップS001前に実行することが例示される)、定期的に実行する場合、所定の時刻になって有効となる場合、市場や取引相手から発動指令を受信した場合、電力資源101、端末装置102から情報を通知された場合が例示される。 Next, the virtual power generation central device 103 waits until the planned timing in the processing step S003. As the timing to be planned here, for example, when planning should be performed immediately after the contract is established (in this case, the information collection of the power resource 101 in the processing step S002 is exemplified to be executed before the processing step S001). For example, when it becomes effective at a predetermined time, when an activation command is received from a market or a trading partner, information is notified from the power resource 101 or the terminal device 102.
 あるいは、電力資源101、端末装置102から通知される情報が所定の条件を満足した場合に、計画するタイミングと判定する。例えば、所定数の電力資源101、端末装置102から情報を通知された場合、あるいは電力資源101、端末装置102から通知された計測値の変化の総和が所定しきい値を超えた場合、あるいは所定の情報(所定の電力資源101の変化を示す場合、あるいは電力資源101において状態が急激に変化した場合、あるいは電力資源101が異常状態になった場合)の通知をもって、計画するタイミングと判定する。 Alternatively, when the information notified from the power resource 101 and the terminal device 102 satisfies a predetermined condition, it is determined as a planned timing. For example, when information is notified from a predetermined number of power resources 101 and terminal device 102, or when the sum of changes in measured values notified from power resource 101 and terminal device 102 exceeds a predetermined threshold, or predetermined It is determined that it is a planned timing by notification of the information (when the change of the predetermined power resource 101 is indicated, when the state of the power resource 101 changes abruptly, or when the power resource 101 becomes abnormal).
 仮想発電中央装置103が計画するタイミングになると、処理ステップS003の「Y」に分岐し、処理ステップS004において制御対象となる電力資源101の群に対する配分指令を計画する。これは、処理ステップS001での契約内容を満足しながら、所定の評価基準に基づいて、電力資源101の群から動作指令対象群を選択する。これは、単独の電力資源101でもよい。該評価基準としては、経済性(例えば、電力資源101における発電コスト)や、電力負荷低減における需要家への影響度(負荷が空調機の場合、温度設定の変更は、該負荷の利用者の快適度を変化させる)、電力資源101の発動における信頼性(例えば、過去の稼働実績)、電力資源101の故障可能性や稼働寿命の長期化(機器の故障予知に基づく計画や、頻繁に起動、停止を繰り返さないといった寿命を長期化する運用)、制御指令に対する電力資源101の追従速度、対象の電力資源101と接続する電力資源101の通信性能、ならびに不確実性判定部123から通知される不確実性、選択基準決定部125から通知される選択基準が例示される。上記例示した基準のうち、ひとつ、または複数の組合せでもよい。 When the virtual power generation central device 103 schedules, the process branches to “Y” in the processing step S003, and the distribution command for the group of the power resources 101 to be controlled is planned in the processing step S004. This selects the operation command target group from the group of the power resources 101 based on a predetermined evaluation standard while satisfying the contract contents in the processing step S001. This may be a single power resource 101. The evaluation criteria include economics (for example, power generation cost in the power resource 101) and the degree of influence on consumers in reducing the power load (if the load is an air conditioner, the change in temperature setting is determined by the user of the load). Change the comfort level), reliability in the activation of the power resource 101 (for example, past operation results), possibility of failure of the power resource 101 and prolongation of the service life (plan based on failure prediction of the device, and frequent start-up) , Operation for prolonging the life such as not repeating the stop), the follow-up speed of the power resource 101 with respect to the control command, the communication performance of the power resource 101 connected to the target power resource 101, and the uncertainty determination unit 123 The selection criterion notified from the uncertainty and selection criterion determination unit 125 is exemplified. One or a combination of the above exemplified criteria may be used.
 なお、仮想発電中央装置103及び配分計画部124が決定する配分計画は、一つではなく、複数であってもよい。これは、取引相手から通知される指令について、複数のパターン(例えば、出力指令値の違いや、指令発行のタイミングや時間帯の違い)を想定し、それぞれのパターンについて配分計画を立ててもよい。この時、配分計画部124の配分計画時の想定と実際の状況が異なる場合(例えば、ある出力指令値を想定したが、実際の出力指令値が想定と異なる場合)の動作を説明する。このような場合、事前に立案した複数の配分計画の中から、想定と最も差分が小さい配分計画を基準に、出力不足分を電力資源101で補填することが例示される。これは、動作指令対象群の中から、評価値が最高である電力資源101を選択してもよいし、あるいは最低の電力資源101を選択してもよい。あるいは、余力を評価し、余力の大きい電力資源101から順に不足分を満足するまでの余力資源101を選択してもよい。あるいは、動作指令対象群の電力資源101で、不足分を評価値の比率で配分してもよい。あるいは、余力の比率で配分してもよい。あるいは、予備群の中から、評価値の順番に不足分を満足するまで電力資源101を選択してもよい。 Note that the number of distribution plans determined by the virtual power generation central device 103 and the distribution plan unit 124 is not limited to one, but may be plural. This may be based on a plurality of patterns (for example, differences in output command values, differences in command issuance timing, and time zones) for commands notified from trading partners, and an allocation plan may be made for each pattern. . At this time, the operation in the case where the actual situation is different from the assumption at the time of distribution planning by the distribution planning unit 124 (for example, a certain output command value is assumed, but the actual output command value is different from the assumption) will be described. In such a case, the shortage of output is compensated by the power resource 101 based on the distribution plan having the smallest difference from the assumption among a plurality of distribution plans prepared in advance. In this case, the power resource 101 having the highest evaluation value may be selected from the operation command target group, or the lowest power resource 101 may be selected. Alternatively, the surplus power may be evaluated, and the surplus resources 101 until the shortage is satisfied in order from the power resources 101 having the large surplus power may be selected. Alternatively, the shortage may be distributed by the ratio of the evaluation values in the power resource 101 of the operation command target group. Or you may distribute by the ratio of remaining power. Alternatively, the power resource 101 may be selected from the reserve group until the shortage is satisfied in the order of evaluation values.
 処理ステップS004の配分計画の実行後、処理ステップS005において契約終了か否かを判定し、契約終了でなければ処理ステップS005の「N」側に分岐し、処理ステップS002からの手順を繰り返す。契約終了の判定は、契約期間が定まっていれば、期間の終了時の経過をもって判断し、あるいは所定回数の発動(例えば、1回だけ実行)であれば、該回数の実行をもって契約終了とし、取引相手や市場、その他の運用機関からの終了通知の受信をもって契約終了とすることが例示される。 After execution of the distribution plan in process step S004, it is determined in process step S005 whether or not the contract has ended. If not, the process branches to the “N” side of process step S005, and the procedure from process step S002 is repeated. If the contract period is fixed, the contract end determination is made with the passage of the end of the period, or if it is activated a predetermined number of times (for example, executed once), the contract is ended with the execution of the number of times, An example is that the contract is terminated upon receipt of a termination notice from a trading partner, market, or other operating organization.
 なお、図6の手順を一例として示したが、異なる手順についても例示される。例えば、処理ステップS002の情報収集は、処理ステップS001の取引契約の前でもよいし、あるいは処理ステップS001、処理ステップS003から処理ステップS005の手順と並行して、定期的または電力資源101の状態変化時に実行してもよい。 Although the procedure of FIG. 6 is shown as an example, different procedures are also exemplified. For example, the information collection in the processing step S002 may be performed before the transaction contract in the processing step S001, or the state of the power resource 101 is changed periodically or in parallel with the processing steps S001 and S003 to the processing step S005. Sometimes it can be done.
 処理ステップS004の計画においても、処理ステップS003の指令受信の待機処理の前に実行してもよい。あるいは1回のみならず、処理ステップS003の指令受信の待機と並行して実行し、処理ステップS003の指令受信後に再度実行してもよい。このとき、電力資源101の状態等、計画における評価指標に変化がなければ、ただちに指令を送信することができる。あるいは評価基準に変化があったとしても、その差分だけを再計算すれば、計画、指令送信までの時間を短縮できる。 Also in the plan of processing step S004, it may be executed before the standby processing for command reception in processing step S003. Alternatively, it may be executed not only once but also in parallel with the standby for command reception in process step S003, and may be executed again after receiving the command in process step S003. At this time, if there is no change in the evaluation index in the plan, such as the state of the power resource 101, a command can be transmitted immediately. Alternatively, even if there is a change in the evaluation criteria, if only the difference is recalculated, the time until planning and command transmission can be shortened.
 次に、仮想発電中央装置103における制御指令の送信動作について、図7を参照して説明する。 Next, the control command transmission operation in the virtual power generation central device 103 will be described with reference to FIG.
 仮想発電中央装置103は、処理ステップS001の契約後、処理ステップS010において制御指令を出すタイミングまで待機する。このタイミングは、処理ステップS001での契約内容に依存する。例えば、契約成立後、ただちに指令すべき場合、所定の時刻になって指令タイミングとなる場合、電力市場運営者や取引相手から発動指令を通知される場合が例示される。 The virtual power generation central device 103 waits until the timing of issuing the control command in the processing step S010 after the contract in the processing step S001. This timing depends on the content of the contract in process step S001. For example, when the command is to be issued immediately after the contract is established, the command timing is reached at a predetermined time, and the activation command is notified from the electric power market operator or trading partner.
 処理ステップS010のYが成立して、仮想発電中央装置103が端末装置102に対して制御指令を指令するタイミングになると、処理ステップS011において、図6の処理ステップS004で立てた配分計画にしたがって、仮想発電中央装置103は、図1の通信ネットワーク104を介して、処理ステップS004で計画した制御指令を動作指令対象の端末装置102を介して電力資源101に対して送信する。 When Y of the processing step S010 is established and the virtual power generation central device 103 issues a control command to the terminal device 102, in the processing step S011, according to the allocation plan established in the processing step S004 of FIG. The virtual power generation central device 103 transmits the control command planned in the processing step S004 to the power resource 101 via the operation command target terminal device 102 via the communication network 104 of FIG.
 その後、処理ステップS012において、計画値どおりに電力資源101を制御できたかを判定する。これは、例えば動作指令対象の電力資源101が指令どおり、動作したかを判定するものである。あるいは電力資源101、端末装置102からの応答をもとに判断してもよい。例えば、電力資源101から、指令どおりに動作したことの通知、あるいは動作しなかったことを通知してもよい。あるいは所定時間内に動作完了の応答がなかった場合に、電力資源101は指令どおりに動作できなかったと判定してもよい。 Thereafter, in processing step S012, it is determined whether or not the power resource 101 can be controlled as planned. For example, this is to determine whether the power resource 101 subject to the operation command has operated according to the command. Alternatively, the determination may be made based on responses from the power resource 101 and the terminal device 102. For example, the power resource 101 may notify that it has been operated according to the command or that it has not been operated. Alternatively, when there is no operation completion response within a predetermined time, it may be determined that the power resource 101 could not operate as instructed.
 計画値どおりに電力資源101を制御できた場合は処理ステップS012のYに分岐し、そのまま処理ステップS005の終了判定処理に進む。もし計画値どおりに電力資源101を制御できなかった場合は処理ステップS012のNに分岐し、処理ステップS013において補正制御を実行する。補正制御は、動作指令対象の電力資源101が指令どおりに動作できなかった不足出力分、ありは不足電力負荷分を予備群の電力資源101に対して指令するものである。その後、再び、処理ステップS012の手順に戻り、計画値分、電力資源101を制御できたかを判定する。 If the power resource 101 can be controlled as planned, the process branches to Y in process step S012, and the process proceeds to the end determination process in process step S005. If the power resource 101 cannot be controlled as planned, the process branches to N in process step S012, and correction control is executed in process step S013. The correction control is to command the power resource 101 in the standby group for the shortage output or the shortage power load that the power resource 101 subject to the operation command cannot operate as commanded. Thereafter, the procedure returns to the procedure of the processing step S012, and it is determined whether the power resource 101 can be controlled by the planned value.
 なお、図7の処理ステップS013の補正制御は、動作指令対象群、予備群の電力資源101の応答結果に応じて、複数回実行してもよい。この実行回数、あるいは実行の処理時間は、契約で定まる応答時間、電力資源101の追従速度(出力変化速度)、起動、停止に要する時間、仮想発電中央装置103と端末装置102間の通信遅延に応じて定まる。したがって、これらの条件から、複数回の実行が可能である場合は、不確実性が高くても、経済性に優れる電力資源101(発電コストの低い電力資源101)を優先することが例示される。複数回の補正制御が実行可能なため、不確実性の高い電力資源101の制御が失敗したとしても、その後の補正制御が可能なためである。 Note that the correction control in the processing step S013 of FIG. 7 may be executed a plurality of times according to the response results of the power resources 101 of the operation command target group and the standby group. The number of executions or execution processing time depends on the response time determined by the contract, the follow-up speed (output change speed) of the power resource 101, the time required to start and stop, and the communication delay between the virtual power generation central device 103 and the terminal device 102. It depends on your needs. Therefore, when multiple executions are possible from these conditions, priority is given to power resource 101 (power resource 101 with low power generation cost) that is excellent in economic efficiency even if uncertainty is high. . This is because correction control can be performed a plurality of times, so that even if control of the power resource 101 with high uncertainty fails, subsequent correction control is possible.
 なお、図6、図7において、処理ステップS001、処理ステップS005の重複する処理を記載したが、いずれかの手順で実行してもよい。 In FIG. 6 and FIG. 7, the overlapping processing of the processing step S001 and the processing step S005 is described, but it may be executed by any procedure.
 次に、仮想発電中央装置103からの制御指令を受ける端末装置102の動作を図8に示す。 Next, the operation of the terminal device 102 that receives a control command from the virtual power generation central device 103 is shown in FIG.
 端末装置102の処理ステップS020においては、はじめに、仮想発電中央装置103からの制御指令の受信を待機する。制御指令を受信すると処理ステップS020のYに分岐し、処理ステップS021において制御パケット上の指令内容を抽出する。次に処理ステップS022において、指令内容にしたがって電力資源101を制御する。制御指令としては、発電の場合には、出力増減指令、電力負荷の場合には、消費電力の増減指令が例示される。また制御指令によっては、出力変化速度、応答時間、出力、消費電力の増減について、電力資源101を制御する。その後、処理ステップS023では電力資源101の制御結果を仮想発電中央装置103へ通知する。 In the processing step S020 of the terminal device 102, first, the terminal device 102 waits for reception of a control command from the virtual power generation central device 103. When a control command is received, the process branches to Y in process step S020, and the command content on the control packet is extracted in process step S021. Next, in processing step S022, the power resource 101 is controlled according to the contents of the command. Examples of the control command include an output increase / decrease command in the case of power generation and a power consumption increase / decrease command in the case of a power load. Further, depending on the control command, the power resource 101 is controlled with respect to increase / decrease in output change speed, response time, output, and power consumption. Thereafter, in the processing step S023, the control result of the power resource 101 is notified to the virtual power generation central device 103.
 処理ステップS023における通知内容は、電力資源101の制御結果(成功か失敗か部分的成功か)や、制御結果後の出力値、変化量、失敗した場合の理由(例えば、電力資源101の異常、起動期限の経過など)、起動期限経過の場合の経過時間が例示される。
制御後の電力または電力量を通知することで、仮想発電中央装置103は、電力資源101がどの程度稼働できたか、不足分がどれくらいかを把握することができ、他の電力資源101に対する代替指令や、配分計画における電力資源101の実績データを蓄積することができ、制御動作実行の信頼性、確実性向上や、計画の最適性を向上することができる。
The notification contents in the processing step S023 include the control result (success or failure or partial success) of the power resource 101, the output value after the control result, the amount of change, the reason for the failure (for example, abnormality of the power resource 101, The elapse time in the case of the elapse of the activation deadline is exemplified.
By notifying the post-control power or the amount of power, the virtual power generation central device 103 can grasp how much the power resource 101 has been operated and how much is insufficient, and substitute commands for other power resources 101 In addition, the performance data of the power resource 101 in the distribution plan can be accumulated, and the reliability and certainty of execution of the control operation can be improved, and the optimality of the plan can be improved.
 なお、電力資源101は、処理ステップS020の指令受信後、ただちに制御してもよいし、所定期間待機してから実行してもよい。待機期間を仮想発電中央装置103の指令に含めてもよい。あるいは処理ステップS020の指令受信時に、電力資源101に異常が発生していれば、ただちに該異常に関する情報を仮想発電中央装置103へ通知してもよい。あるいは、電力資源101の所有者が、自身の需要のために利用し、仮想発電中央装置103の指令に対応できなければ、ただちに自家利用優先による指令拒否を仮想発電中央装置103へ通知してもよい。 Note that the power resource 101 may be controlled immediately after receiving the command in the processing step S020, or may be executed after waiting for a predetermined period. The standby period may be included in the command of the virtual power generation central device 103. Alternatively, if an abnormality has occurred in the power resource 101 at the time of receiving the command in the processing step S020, the virtual power generation central device 103 may be notified immediately of information regarding the abnormality. Alternatively, if the owner of the power resource 101 uses it for his / her demand and cannot respond to the command of the virtual power generation central device 103, he / she immediately notifies the virtual power generation central device 103 of the command rejection due to the priority of private use. Good.
 また、処理ステップS023の結果の通知は、仮想発電所のシステム動作を記録するために、別の通信装置、データベース、ストレージ機器に通知してもよい。 Further, the notification of the result of the processing step S023 may be notified to another communication device, database, or storage device in order to record the system operation of the virtual power plant.
 図8は、端末装置102の電力資源101の制御手順であるが、これと並行して電力資源101の状態を取得して仮想発電中央装置103に通知してもよい。あるいは、図8に示す各手順の前後に、電力資源101の状態の取得と仮想発電中央装置103への通知の各処理を実行してもよい。 FIG. 8 shows the control procedure of the power resource 101 of the terminal device 102. In parallel with this, the state of the power resource 101 may be acquired and notified to the virtual power generation central device 103. Or you may perform each process of the acquisition of the state of the electric power resource 101, and the notification to the virtual power generation central apparatus 103 before and after each procedure shown in FIG.
 以上の全体動作を図10に示す。図10は、取引相手(系統運用者や相対契約の相手等)、仮想発電アグリゲータ、電力資源の間で行われる一連の処理、確認動作の流れを示した図である。この関係は、仮想発電所における仮想発電中央装置103の機能を仮想発電アグリゲータと称しており、外部の取引相手である系統運用者や相対契約の相手等からの電力供給要求(ここでは、電力資源101を調整力として活用する場合を想定する。)に対して、仮想発電アグリゲータが同じ仮想発電所内の電力資源101に対して何を行い、何を確認しているのかを示す一連の処理、確認動作の流れである。 The overall operation described above is shown in FIG. FIG. 10 is a diagram showing a flow of a series of processing and confirmation operations performed between a trading partner (system operator, partner of a relative contract, etc.), virtual power generation aggregator, and power resources. This relationship refers to the function of the virtual power generation central unit 103 in the virtual power plant as a virtual power generation aggregator. The power supply request (here, the power resource) 101), a series of processes and confirmations showing what the virtual power generation aggregator is doing and confirming what the power resources 101 in the same virtual power plant do It is a flow of operation.
 外部の機関である取引相手(系統運用者や相対契約の相手等)から仮想発電所に対して発行される調整力指令133は、不定期であり、いつ発行されるかわからない。このため、仮想発電アグリゲータは、事前に電力資源101に対して、状態収集要求信号130を与え、その応答である状態信号132を用いて、配分計画131を立てている。仮想発電アグリゲータは、配分計画ごとに電力資源101を動作指令対象群と予備群に分類する。
状態信号132は、電力資源101における状態を示す信号を含んでいる。仮想発電アグリゲータは、適宜のタイミングで状態収集要求信号130を再度与え、状態信号132を確認し、配分計画131を再作成することで、常に最新の状態における配分計画131を準備して保持している。
The adjustment power command 133 issued to the virtual power plant from a trading partner (system operator, partner of a relative contract, etc.) which is an external institution is irregular and it is not known when it will be issued. For this reason, the virtual power generation aggregator gives a state collection request signal 130 to the power resource 101 in advance, and makes a distribution plan 131 using the state signal 132 as a response. The virtual power generation aggregator classifies the power resources 101 into an operation command target group and a standby group for each allocation plan.
The status signal 132 includes a signal indicating a status in the power resource 101. The virtual power generation aggregator always prepares and holds the distribution plan 131 in the latest state by giving the state collection request signal 130 again at an appropriate timing, confirming the state signal 132, and recreating the distribution plan 131. Yes.
 仮想発電アグリゲータは、取引相手から調整力指令133が発行されると、動作指令対象群に分類した電力資源101(例えば、図10の電力資源101a)に対して制御指令134を発行し、制御指令134に応じた出力増減制御の実行を指示するとともに、適宜予備群に分類した電力資源101(例えば、図10の電力資源101b)に対して負荷変動固定指令、余力確保指令135を送信する。各電力資源101は、指令に対する結果を含む応答信号138を仮想発電アグリゲータに対して返送する。なお、図10では応答信号138として、OK、NGと示しているが、これは指令通りに動作(負荷変動の固定、余力確保含む)できたか否かのみならず、例えば、出力はできたが、指令で指定された出力を確保できなかった状態を応答信号138に含めてもよい(例えば、1MWの出力を指令されたが500kWのみの出力に成功した場合)。また、負荷変動固定指令、余力確保指令135を送信された電力資源101は、基本的に現状を維持する制御を行っている。 When the coordinating power command 133 is issued from the trading partner, the virtual power generation aggregator issues a control command 134 to the power resource 101 classified into the operation command target group (for example, the power resource 101a in FIG. 10), and the control command In addition to instructing execution of output increase / decrease control in accordance with 134, a load fluctuation fixing command and a remaining capacity securing command 135 are transmitted to the power resource 101 (for example, the power resource 101b in FIG. 10) appropriately classified into the reserve group. Each power resource 101 returns a response signal 138 including a result to the command to the virtual power generation aggregator. In FIG. 10, OK and NG are shown as the response signal 138, but this is not only whether or not the operation can be performed according to the command (including fixing the load fluctuation and securing the remaining capacity), but for example, output has been made. The response signal 138 may include a state in which the output specified by the command cannot be secured (for example, when the output of 1 MW is instructed but the output of only 500 kW is successful). The power resource 101 to which the load fluctuation fixing command and the remaining capacity securing command 135 are transmitted basically performs control to maintain the current state.
 仮想発電アグリゲータは、動作指令対象群からの応答信号138を確認して、動作指令対象群の電力資源101が制御指令134どおりに動作できなかった場合に、不足分の補正制御指令136を予備群の電力資源101に通知し、出力信号137を出力することで全体として必要な調整力を提供する。 The virtual power generation aggregator confirms the response signal 138 from the operation command target group, and if the power resource 101 of the operation command target group cannot operate according to the control command 134, the virtual power generation aggregator sends the insufficient correction control command 136 to the standby group. The power resource 101 is notified and an output signal 137 is output to provide necessary adjustment power as a whole.
 このように動作することで、電力資源101内に十分な予備群が確保されていれば、制御指令134、補正制御指令136の2回の通信で要求出力を満足することができる。 By operating in this way, if a sufficient reserve group is secured in the power resource 101, the required output can be satisfied by two communications of the control command 134 and the correction control command 136.
 なお、電力資源101からの状態収集は、仮想発電アグリゲータからの要求ではなく、電力資源101での状態変化を契機に仮想発電アグリゲータに通知してもよい。また高速応答が要求される場合は、制御指令134と補正制御指令136を同時に電力資源101に対して送信することが望ましいが、高速性を必要としない場合は、制御指令134の応答を待って、補正制御指令136の送信を判断してもよい。 It should be noted that the state collection from the power resource 101 may be notified to the virtual power generation aggregator in response to a state change in the power resource 101 instead of a request from the virtual power generation aggregator. When a high-speed response is required, it is desirable to transmit the control command 134 and the correction control command 136 to the power resource 101 at the same time. However, when high-speed performance is not required, wait for a response to the control command 134. The transmission of the correction control command 136 may be determined.
 次に、電力資源101に対する配分計画131を立てるための情報収集手段について述べる。図3の情報収集部121は、電力資源101に関する情報及び電力資源101の制御の不確実性に関する情報を収集する。これは静的に収集してもよいし、動的に収集してもよい。これは電力資源101、端末装置102の装置情報(メーカ、型番、価格、使用燃料の種類等)、制御システムの情報(制御ソフトウェア名、バージョン情報等)が挙げられる。 Next, information collection means for making an allocation plan 131 for the power resource 101 will be described. The information collection unit 121 in FIG. 3 collects information about the power resource 101 and information about the uncertainty of control of the power resource 101. This may be collected statically or dynamically. This includes the power resource 101, device information of the terminal device 102 (manufacturer, model number, price, type of fuel used, etc.), and control system information (control software name, version information, etc.).
 動的な情報としては、電力資源101の使用履歴、稼働実績、稼働回数(起動、停止)、総稼働時間、燃料費、電力市場の約定情報(約定価格、約定量、市場の種類)、あるいは1回の稼働で見た場合の連続稼働時間の統計値(最小値、最大値、平均値、標準偏差等)等が例示される。あるいは、電力資源101、端末装置102の動作、制御に利用する通信の不確実性の情報を収集することが例示される。 The dynamic information includes the usage history of the power resource 101, the operation results, the number of operations (starting and stopping), the total operating time, the fuel cost, the contract information (contract price, contract quantitative, market type) of the power market, or Examples include statistical values (minimum value, maximum value, average value, standard deviation, etc.) of continuous operation time when viewed in one operation. Alternatively, collecting information on the uncertainty of communication used for the operation and control of the power resource 101 and the terminal device 102 is exemplified.
 電力資源101、端末装置102の動作に関しては、計測情報を収集することや、同型の機器の異常履歴を収集することが例示される。例えば、総稼働時間と故障率の関係といった情報である。あるいは、電力資源101の所有者の運用ポリシーが例示される。これは予め電力資源101の所有者と、仮想発電アグリゲータ間で交わした契約に基づいて決定される。仮想発電アグリゲータが電力資源101の制御を開始する時刻までの事前通知時間(瞬時でもよい)や、出力値(電力負荷の上げ下げを含む)の上限が例示される。 Regarding the operation of the power resource 101 and the terminal device 102, collecting measurement information and collecting an abnormality history of the same type of device are exemplified. For example, information such as the relationship between the total operating time and the failure rate. Or the operation policy of the owner of the electric power resource 101 is illustrated. This is determined based on a contract made in advance between the owner of the power resource 101 and the virtual power generation aggregator. Examples include a prior notification time until the time when the virtual power generation aggregator starts control of the power resource 101 (may be instantaneous) and an upper limit of an output value (including increase / decrease in power load).
 あるいは、電力資源101の所有者が自家利用を優先して、仮想発電アグリゲータからの指令を拒否してもよいとする。このような契約の場合、電力資源101または所有者における指令拒否実績や、過去の需要パターンといった情報が例示される。あるいは、事前に電力資源101の所有者が電力資源101を利用する予定が既知である場合、事前登録する等して、仮想発電中央装置103へ通知してもよい。これにより、仮想発電中央装置103は電力資源101の利用予定を考慮して配分計画をすることにより、制御システムとしての信頼性を向上することができる。 Alternatively, it is assumed that the owner of the power resource 101 may reject the command from the virtual power generation aggregator in preference to private use. In the case of such a contract, information such as a command rejection result in the power resource 101 or the owner and a past demand pattern is exemplified. Alternatively, when the owner of the power resource 101 knows in advance that the power resource 101 is to be used, the virtual power generation central device 103 may be notified by, for example, registering in advance. Thereby, the virtual power generation central device 103 can improve the reliability as a control system by making a distribution plan in consideration of the use schedule of the power resource 101.
 なお、仮想発電アグリゲータと電力資源101の所有者間の契約の種類としては、前記の事前通知時間の設定と、出力上限の設定や、自家利用による指令拒否の他に、所定の時間帯毎に契約内容を切り替えるといった契約としてもよい。これにより、特定の時間帯は、仮想発電アグリゲータが電力資源101を優先的に利用できる、あるいは利用できないといった制御可否を規定することができる。 The types of contracts between the virtual power generation aggregator and the owner of the power resource 101 include the setting of the prior notification time, the setting of the output upper limit, the rejection of the command due to private use, and the predetermined time period. It is good also as a contract which switches the contract content. As a result, it is possible to define whether or not control is possible such that the virtual power generation aggregator can use the power resource 101 preferentially or cannot be used in a specific time zone.
 通信の不確実性に関しては、仮想発電中央装置103から端末装置102に定期的に通信状況計測パケットを送信して、通信遅延時間や通信到達状況を通知することが例示される。通信遅延を計測する場合は、仮想発電中央装置103と端末装置102間で時刻同期機能を利用して時刻同期することが例示される。このような時刻同期機能としては、IEEE 1588やNTP、SNTPが挙げられる。あるいは、GPS、IRIG-B等の方法が例示される。同期する時刻は、協定世界時のように世界共通の絶対時刻でも構わないし、制御システム内で共通の時刻でもよい。時刻同期した上で、送信時刻(例えば、12時、12時15分、12時30分、12時45分といった15分毎)や通信間隔を決めておけば、それらの時刻、間隔から想定される受信予定時刻にパケットが端末装置102側で受信できていなければ、パケットロスと判定することができる。これは、通信状況計測パケットにシーケンス番号を含め、受信側の端末装置102で受信したパケットのシーケンス番号が連続になっているかどうかで判定してもよい。欠番があれば、パケットロスと判定することができる。これらの通信状況を情報としてもよい。例えば、計測した通信遅延の最小値、最大値、平均値、標準偏差(ばらつきが大きければ、不安定な通信網と考えられる)、該パケットの送信時刻、パケット到達率、通信周期が例示される。送信時刻をあわせて記憶することで、特定の時間帯に限定した統計値、計測値とすることができる。取引相手からの指令を受信した時刻の情報を用いることで、より正確に通信の不確実性を判定することができる。 Regarding communication uncertainty, the virtual power generation central device 103 periodically transmits a communication status measurement packet to the terminal device 102 to notify the communication delay time and the communication arrival status. When measuring the communication delay, the time synchronization is exemplified using the time synchronization function between the virtual power generation central device 103 and the terminal device 102. Examples of such a time synchronization function include IEEE 1588, NTP, and SNTP. Alternatively, methods such as GPS and IRIG-B are exemplified. The time to synchronize may be an absolute time common to the world as in the coordinated universal time, or may be a common time in the control system. If the transmission time (for example, every 15 minutes such as 12:00, 12:15, 12:30, 12:45) and the communication interval are determined after synchronizing the time, it is assumed from those times and intervals. If the packet cannot be received by the terminal device 102 at the scheduled reception time, it can be determined that the packet is lost. This may be determined by including the sequence number in the communication status measurement packet and determining whether the sequence numbers of the packets received by the terminal device 102 on the receiving side are consecutive. If there is a missing number, it can be determined that there is a packet loss. These communication states may be used as information. For example, the measured communication delay minimum value, maximum value, average value, standard deviation (if variation is large, it is considered an unstable communication network), transmission time of the packet, packet arrival rate, and communication cycle are exemplified. . By storing the transmission time together, it is possible to obtain statistical values and measurement values limited to a specific time zone. By using the information on the time when the command from the trading partner is received, it is possible to determine the uncertainty of communication more accurately.
 あるいは、インターネットや公衆網の不確実性に関する情報が例示される。新年、ハロウィン、大晦日、連休、地域に依存する季節性のあるイベントの開催日の日程や期間、地域が例示される。あるいは、社会的に関心の高いイベントやスポーツイベント、音楽イベント等が例示される。あるいはオリンピック等の国際大会といった、地域に依存しない情報でもよい。 Or, information on the uncertainty of the Internet or public network is exemplified. Examples are the dates, periods, and regions of New Year, Halloween, New Year's Eve, consecutive holidays, seasonal events depending on the region. Or an event with high social interest, a sporting event, a music event, etc. are illustrated. Alternatively, it may be information that does not depend on the region, such as international competitions such as the Olympics.
 あるいは、突発的な事象の情報を収集することが例示される。例えば、大雪、台風、ハリケーン、地震、寒波、熱波といった異常気象が挙げられる。あるいは、交通渋滞、鉄道、飛行機、船舶の運行休止やダイヤ変更などの事象が挙げられる。 Or, collecting information on sudden events is an example. Examples include abnormal weather such as heavy snow, typhoons, hurricanes, earthquakes, cold waves, and heat waves. Or, there are events such as traffic jams, suspension of trains, airplanes, ships, and timetable changes.
 これらの情報は手動で入力してもよいし、ポータルサイト等のweb情報や検索ワードのトレンド情報から自動的に判定してもよい。あるいはSNS、ブログ等の情報を用いてもよい。あるいは、緊急の通知サービスを用いてもよい。 These pieces of information may be input manually, or may be automatically determined from web information such as a portal site or trend information of a search word. Or you may use information, such as SNS and a blog. Alternatively, an emergency notification service may be used.
 また、収集した情報は、その情報を収集した時刻、あるいは計測した時刻、発行した時刻とあわせて記憶することが例示される。これにより、所定時間経過した情報を利用しないという方法を取ることができる。例えば、通信経路の制御情報や機器の稼働情報は、現在では状態が代わり、該通信路、機器が利用できない場合が想定され、これらの事象を考慮することで、制御システムの信頼性を向上することができる。 Also, the collected information is exemplified by storing it together with the time when the information was collected, the time when it was measured, and the time when it was issued. Thereby, it is possible to take a method of not using information after a predetermined time has elapsed. For example, it is assumed that the communication path control information and device operation information are currently in a different state and the communication path and device cannot be used. Considering these events, the reliability of the control system is improved. be able to.
 不確実性判定部123は、以上の情報を用いて、電力資源101の不確実性を判定する。これは、収集した計測値の総数や、時間的変化、計測した点数等を用いることや、係数を乗じる等の所定の計算処理を適用した値や、しきい値との比較結果を用いることが例示される。 The uncertainty determination unit 123 determines the uncertainty of the power resource 101 using the above information. This uses the total number of measured values collected, changes over time, the number of points measured, etc., the value applied with a predetermined calculation process such as multiplication by a coefficient, or the result of comparison with a threshold value. Illustrated.
 あるいは、過去の計測情報と結果(制御失敗や機器故障等)を機械学習やディープラーニング、クラスタリング等の技術によって因果関係を学習した結果を用いてもよい。あるいは、各事象の順序関係や発生の時系列を評価し、不確実性を判定してもよい。 Alternatively, past measurement information and results (control failure, equipment failure, etc.) may be used as a result of learning a causal relationship by a technique such as machine learning, deep learning, or clustering. Alternatively, the order relation of each event and the time series of occurrence may be evaluated to determine the uncertainty.
 電力資源101に対する配分は、電力資源101の制御可否の不確実性を考慮して計画する。経済性や電力資源の稼働実績等に加えて、電力資源101の制御可否の不確実性に基づいて、電力資源101の優先度ならびに配分割合を決定する。 The allocation to the power resource 101 is planned in consideration of the uncertainty of whether or not the power resource 101 can be controlled. The priority and distribution ratio of the power resource 101 are determined based on the uncertainty of the controllability of the power resource 101 in addition to the economic performance and the actual performance of the power resource.
 これは、各電力資源101の経済性(起動コスト、停止コスト、出力変化コスト等)、追従性能(出力の変化速度)、通信の不確実性、電力資源101、端末装置102といった機器装置自身の不確実性を指標化し、重み付けした加重和を比較して、優先順位付けしてもよい。あるいは、指標間で優先順位付けし、ある指標の比較で同じ指標値になった場合に、次の優先度の指標で比較してもよい。例えば、発電コストで優先付けし、同じ発電コストであった電力資源101間の比較を動作成功確率順に順位付けする。なお、優先順位付けは、動作指令対象群のみならず、予備群の電力資源101に対して実施してもよい。 This is because of the economics of each power resource 101 (startup cost, stop cost, output change cost, etc.), follow-up performance (output change speed), communication uncertainty, power resource 101, terminal device 102, etc. Uncertainty may be indexed and weighted sums may be compared and prioritized. Alternatively, prioritization may be performed between the indicators, and when the same index value is obtained by comparing a certain index, comparison may be performed using the next priority index. For example, the power generation cost is prioritized, and the comparison between the power resources 101 having the same power generation cost is ranked in the order of operation success probability. The prioritization may be performed not only on the operation command target group but also on the power resource 101 of the standby group.
 これらの電力資源101の指標値の算出方法は、取引相手からの指令値に応じて変更してもよいし、指令が発行された時間的な条件によって変更してもよい。例えば、指令値を複数の範囲で段階分けし、各段階に重み係数を変えることが例示される。10MWの契約値を2MW毎に区分し、指令値が8MWから10MWの範囲であれば経済性よりも確実性の指標値の重み係数を大きくすることが例示される。あるいは、指令値が0から2MWの範囲であれば、経済性の重み係数を大きくしてもよい。これらの範囲分けは、制御対象の電力資源101の統計情報を用いてもよい。例えば、電力資源101の群を出力別にわけた場合の度数を示すヒストグラムを用いてもよい(度数が急激に変化する出力範囲を用いる)。同様に、指令値の範囲に応じて、動作指令対象を選択してもよい。例えば、出力指令値が大きい値の場合、一定数の電力資源101の群を選択することが必要となる。あるいは、指令値が日中に発行される場合、プロシューマの自家利用における負荷変動の不確実性が高まるため、不確実性の指標に対する重み係数を大きくしてもよい。 The calculation method of the index values of these power resources 101 may be changed according to the command value from the trading partner, or may be changed according to the time condition when the command is issued. For example, the command value is divided into stages in a plurality of ranges, and the weighting coefficient is changed in each stage. For example, the contract value of 10 MW is divided every 2 MW, and if the command value is in the range of 8 MW to 10 MW, the weight coefficient of the certainty index value is made larger than the economy. Alternatively, if the command value is in the range of 0 to 2 MW, the economic weighting factor may be increased. These range divisions may use statistical information of the power resource 101 to be controlled. For example, a histogram indicating the frequency when the group of the power resources 101 is divided by output may be used (using an output range in which the frequency changes rapidly). Similarly, an operation command target may be selected according to the range of command values. For example, when the output command value is a large value, it is necessary to select a certain number of groups of power resources 101. Alternatively, when the command value is issued during the day, the weight coefficient for the uncertainty indicator may be increased because the uncertainty of the load fluctuation in the private use of the prosumer increases.
 あるいは、予測される不確実性に基づいて、重み係数を変更してもよい。例えば、新年といった季節性のイベントに関しては、通信の不確実に対する評価(重み係数)を大きくすることが例示される。 Alternatively, the weighting factor may be changed based on the predicted uncertainty. For example, for seasonal events such as the New Year, increasing the evaluation (weighting factor) for communication uncertainty is exemplified.
 または、不確実性に関する情報が地域性を有する場合(例えば、交通渋滞)は、その地域の電力資源101の評価指標値の算出に反映してもよい。 Alternatively, when the information on uncertainty has regionality (for example, traffic congestion), it may be reflected in the calculation of the evaluation index value of the power resource 101 in that region.
 また、電力市場の情報を評価して配分計画をしてもよい。例えば、約定価格が高く、電力資源101の所有者が、他の電力資源運用サービスと契約している場合、そちらのサービスで活用することが予想されるため、該当する電力資源101の評価値を下げることが例示される。このとき、電力市場の情報に加えて、電力資源101の所有者の契約状況を把握することが例示される。あるいは、電気代や燃料費を評価してもよい。電気代が高い場合や、燃料費が低い場合、電力資源101の所有者は自家利用を優先する可能性が高くなる。そのため、該当する電力資源101の評価指標を下げることが例示される。電気代が低い場合や、燃料費が高い場合は、その逆に該当する電力資源101の評価指標を上げることが例示される。 In addition, the power market information may be evaluated and an allocation plan may be made. For example, if the contract price is high and the owner of the power resource 101 is contracted with another power resource operation service, it is expected that the service resource will be used in that service. The lowering is exemplified. At this time, in addition to the information on the electric power market, grasping the contract status of the owner of the electric power resource 101 is exemplified. Or you may evaluate an electricity bill and fuel cost. When the electricity bill is high or the fuel cost is low, there is a high possibility that the owner of the power resource 101 gives priority to private use. Therefore, lowering the evaluation index of the corresponding power resource 101 is exemplified. In the case where the electricity bill is low or the fuel cost is high, increasing the evaluation index of the corresponding power resource 101 is exemplified.
 配分は、要求される条件に基づいて決定する。そのような条件として、出力値、応答時間、出力継続時間等が例示される。これらの条件を満足するように配分を計画する。配分比率に指標値を反映してもよい。この時、電力資源101の制御可否の不確実性を考慮する。各電力資源101の動作確率を算出し、所定しきい値以上の電力資源101を選択し、その中から経済性の基準で最適な組み合わせを決定することが例示される。組み合わせを決定する最適化方式は、全探索、最急降下法、遺伝的アルゴリズム、タブーリサーチ、粒子群最適化、蟻コロニー最適化、ルールベース制御、人工知能の適用といった方法が例示される。 The allocation is determined based on the required conditions. Examples of such conditions include output values, response times, output durations, and the like. The allocation is planned to satisfy these conditions. The index value may be reflected in the distribution ratio. At this time, the uncertainty of whether the power resource 101 can be controlled is taken into consideration. It is exemplified that the operation probability of each power resource 101 is calculated, the power resource 101 having a predetermined threshold value or more is selected, and the optimum combination is determined based on the economic efficiency. Examples of optimization methods for determining combinations include methods such as full search, steepest descent method, genetic algorithm, tabu research, particle swarm optimization, ant colony optimization, rule-based control, and application of artificial intelligence.
 この時、契約条件によって電力資源101を選択する基準を変更してもよい。例えば、契約によって出力の下限値だけが設定されている場合、過剰に出力してもよいため、動作成功確率が低いが発電コストについても低い電力資源101を選択肢に含めることが例示される。あるいは、契約出力値の上下の逸脱許容範囲が規定されていて、さらにその範囲が狭い場合、条件が厳しくなるため、動作成功確率の高い、確実性の高い電力資源101を選択対象とすることが例示される。 At this time, the criteria for selecting the power resource 101 may be changed according to the contract conditions. For example, when only the lower limit value of the output is set by the contract, excessive output may be performed, and therefore, the power resource 101 having a low operation success probability but low power generation cost is included in the options. Alternatively, if the allowable deviation range above and below the contract output value is defined and the range is narrower, the condition becomes severe, so that the power resource 101 having a high operation success probability and high certainty may be selected. Illustrated.
 同様に、契約条件に違反した場合のペナルティの許容度に応じて、電力資源101の選択基準を変更してもよい。仮想発電アグリゲータ、電力資源101の所有者にとってペナルティが低い場合は、動作成功確率が低いが発電コストについても低い電力資源101を選択肢に含めることが例示される。 Similarly, the selection criteria for the power resource 101 may be changed according to the penalty allowance when the contract condition is violated. When the penalty is low for the owner of the virtual power generation aggregator and power resource 101, it is exemplified that the power resource 101 having a low operation success probability but low power generation cost is included in the options.
 あるいは、各電力資源101の出力を、正規分布等の確率分布で仮定し、その分布に基づいて配分を計画してもよい。例えば、期待値をもとに必要な出力を満足し、かつ、経済性や追従性能を制約条件として、最適化する組み合わせを選択することが例示される。あるいは標準偏差に対して所定の割合を与え、その割合のデータが含まれる値を用いて組み合わせ最適化を適用してもよい。例えば、正規分布を仮定した場合、平均値から標準偏差の2倍の範囲に全体の95%のデータが含まれる。このときの範囲の上限、下限を用いる。また、電力資源101の制御が失敗することを想定し、高速な追従速度を有する電力資源101を予備群として制御してもよい。 Alternatively, the output of each power resource 101 may be assumed as a probability distribution such as a normal distribution, and distribution may be planned based on the distribution. For example, selecting a combination that satisfies the required output based on the expected value and that optimizes the economy and the follow-up performance as constraints is exemplified. Alternatively, a predetermined ratio may be given to the standard deviation, and the combination optimization may be applied using a value including the data of the ratio. For example, assuming a normal distribution, 95% of the data is included in the range of twice the standard deviation from the average value. The upper and lower limits of the range at this time are used. Further, assuming that the control of the power resource 101 fails, the power resource 101 having a high tracking speed may be controlled as a standby group.
 電力資源101の運用先は、複数の電力市場、サービスでも構わない。配分計画部124は、与えられた市場、サービスの契約条件下で、所定の基準(例えば、経済的利益)を最大化するように配分計画を立てる。 The operation destination of the power resource 101 may be a plurality of power markets and services. The allocation planning unit 124 makes an allocation plan so as to maximize a predetermined standard (for example, economic profit) under the given market and service contract conditions.
 動作指令対象群の電力資源101及び予備群の電力資源101の動作は、所定の通信プロトコル(IEC 61850、IEC 61850-7-420、OpenADR、ECHONET Lite(登録商標))を用いて自動実行してもよいし、電子メール等の通信手段を用いて電力資源101の所有者に通知し、所有者が手動で制御しても構わない。仮想発電中央装置103への応答も同様である。 The operation of the power resource 101 of the operation command target group and the power resource 101 of the standby group is automatically executed using a predetermined communication protocol (IEC 61850, IEC 61850-7-420, OpenADR, ECHONET Lite (registered trademark)). Alternatively, the owner of the power resource 101 may be notified using communication means such as e-mail, and the owner may control it manually. The response to the virtual power generation central device 103 is the same.
 仮想発電中央装置103と端末装置102間で通信するパケットフォーマットの例を図9に示す。 An example of a packet format for communication between the virtual power generation central device 103 and the terminal device 102 is shown in FIG.
 図9上段は、仮想発電中央装置103から端末装置102に対して送信する際のフォーマットである。パケット140の構成として、ヘッダ141、出力指令142、補足情報143、テストモード144を含む。 The upper part of FIG. 9 shows a format for transmission from the virtual power generation central device 103 to the terminal device 102. The configuration of the packet 140 includes a header 141, an output command 142, supplementary information 143, and a test mode 144.
 ヘッダ141は、送信先である端末装置102、あるいは端末装置102上で動作するプログラムへパケット140が伝送するために必要な宛先情報である。少なくとも送信先端末装置102あるいは端末装置102上で動作するプログラムの識別子、データ種別を含む。通信プロトコルを階層的に構成する場合、データ種別は、下位プロトコルの識別子を含む。また、データ種別は仮想発電中央装置103から電力資源101に対する出力指令であることを示す。ヘッダ141の例として、通信ネットワーク104で用いられる通信プロトコルのヘッダが例示される。 The header 141 is destination information necessary for the packet 140 to be transmitted to the terminal device 102 that is the transmission destination or a program that operates on the terminal device 102. It includes at least the identifier and data type of the transmission destination terminal apparatus 102 or a program operating on the terminal apparatus 102. When the communication protocol is hierarchically configured, the data type includes an identifier of a lower protocol. The data type indicates an output command from the virtual power generation central device 103 to the power resource 101. As an example of the header 141, a header of a communication protocol used in the communication network 104 is illustrated.
 出力指令142は、仮想発電中央装置103の配分計画部124、電力資源制御部127で算出された発電指令、または電力負荷の増加、低減指令である。 The output command 142 is a power generation command calculated by the distribution planning unit 124 and the power resource control unit 127 of the virtual power generation central device 103, or a power load increase / decrease command.
 補足情報143は、出力指令142にかかわる補足情報である。例えば、取引相手から通知された出力指令にかかわる情報(出力指令値、出力量、応答時間、継続時間)が例示される。端末装置102は、これらの情報を受信して異常時の対応処理を実行することができる。もし端末装置102において、何らかの異常等により、補足情報143に記載された応答時間内に配分指令値を出力することが困難であると判断した場合、迅速に出力不足の応答を返すことができる。あるいは可能な限り、出力した場合の不足分を応答することができる。 Supplementary information 143 is supplementary information related to the output command 142. For example, information (output command value, output amount, response time, duration) related to the output command notified from the trading partner is exemplified. The terminal device 102 can receive these pieces of information and execute a response process at the time of abnormality. If the terminal device 102 determines that it is difficult to output the distribution command value within the response time described in the supplementary information 143 due to some abnormality or the like, a response of insufficient output can be returned quickly. Alternatively, as much as possible, the shortage when output can be responded.
 補足情報143の示す情報としては、仮想発電中央装置103における配分計画時の電力資源101、端末装置102の状態に関する情報でもよい。端末装置102が、この情報を受信すれば、指令受信時の電力資源101、端末装置102の状態と、仮想発電中央装置103における配分計画時の状態との差を把握することで、大きなずれがある場合は、端末装置102から仮想発電中央装置103に対して、出力不足や、追加の補正制御が必要であることを通知することができる。このようにすれば、仮想発電中央装置103において迅速に、かつ、必要な補正制御を実施することができ、システムの信頼性を高めることができる。あるいは、端末装置102側で補正制御の要否の判定処理を実行することで、仮想発電中央装置103側の演算負荷を低減することができる。 The information indicated by the supplementary information 143 may be information regarding the state of the power resource 101 and the terminal device 102 at the time of allocation planning in the virtual power generation central device 103. If the terminal device 102 receives this information, a large deviation can be obtained by grasping the difference between the power resource 101 at the time of receiving the command, the state of the terminal device 102, and the state at the time of allocation planning in the virtual power generation central device 103. In some cases, the terminal device 102 can notify the virtual power generation central device 103 that the output is insufficient or that additional correction control is necessary. In this way, the virtual power generation central device 103 can perform necessary correction control quickly and can improve the reliability of the system. Alternatively, the calculation load on the virtual power generation central device 103 side can be reduced by executing the determination process on whether correction control is necessary on the terminal device 102 side.
 テストモード144は、例えば、パケット140の出力指令142において通知された指令がテストモードであるか否かを示す真理値(二値)情報と、関連する情報である。この値が真(1)であれば、端末装置102は電力資源101に対して実際の出力をせず、本来の手順にしたがった応答を仮想発電中央装置103に返信することが例示される。あるいは電力資源101、端末装置102がダミー出力やテストモードを具えていれば、該ダミー出力、テストモードで実行し、その結果を仮想発電中央装置103に通知してもよい。テストモード144の関連情報としては、テストモードの指定(複数あれば)や、その設定にかかわる情報が例示される。このようにすれば、仮想発電中央装置103は、電力資源101、端末装置102までの通信状況(通信到達性、遅延計測等)や、電力資源101の健全性をチェックすることができ、システム全体の信頼性を高めることができる。あるいは、パケット140を送信した際の不確実性を判定する各種の情報と、テストモード144のテスト結果を対応付けることで、各情報の因果関係を検証、学習、評価することができる。 The test mode 144 is, for example, truth value (binary) information indicating whether or not the command notified in the output command 142 of the packet 140 is the test mode, and related information. If this value is true (1), the terminal device 102 does not actually output to the power resource 101, but returns a response according to the original procedure to the virtual power generation central device 103. Alternatively, if the power resource 101 and the terminal device 102 have a dummy output and a test mode, the dummy output and the test mode may be executed and the result may be notified to the virtual power generation central device 103. Examples of the relevant information of the test mode 144 include information regarding test mode specification (if there are a plurality of test modes) and setting thereof. In this way, the virtual power generation central device 103 can check the communication status (communication reachability, delay measurement, etc.) to the power resource 101 and the terminal device 102, and the soundness of the power resource 101. Can improve the reliability. Alternatively, by associating various types of information for determining the uncertainty when transmitting the packet 140 with the test result of the test mode 144, the causal relationship of each information can be verified, learned, and evaluated.
 図9中段のパケットフォーマットは、仮想発電中央装置103から、配分計画部124が予備群に分類した電力資源101と、その端末装置102に対する通信指令の例である。パケット145は、ヘッダ141、負荷変動固定指令146、余力確保指令147、補足情報143、テストモード144で構成され得る。 The packet format in the middle of FIG. 9 is an example of a communication command from the virtual power generation central device 103 to the power resource 101 classified into the reserve group by the distribution planning unit 124 and its terminal device 102. The packet 145 may include a header 141, a load fluctuation fixing command 146, a remaining capacity securing command 147, supplementary information 143, and a test mode 144.
 負荷変動固定指令146は、電力資源101、端末装置102に対して、負荷の変動パターンの固定化を指令する。これは、一定値でも構わないし、正弦波や所定のデューティー比を持った矩形波や、階段状の出力でも構わない。変動していたとしても、一定時間後、あるいは所定時刻での負荷が算出できる運転パターンを指示する。これは変動範囲(上限値と下限値)の指定でも構わない。出力計画値に比較して、変動範囲が小さければ、配分計画上、一定値と見なすことができる。したがって、負荷変動固定指令146の内容は、負荷に対する一定値や、前記正弦波や矩形波、階段状出力の特徴量(周波数、振幅、位相、デューティー比、上限値、下限値、起点時刻等)を含むことが例示される。その他、変動固定パターンを特定できる情報を含めることが例示される。なお、ここでは負荷の変動パターンの指定としたが、出力の変動パターンの指定でもよい。 The load fluctuation fixing command 146 instructs the power resource 101 and the terminal device 102 to fix the load fluctuation pattern. This may be a constant value, a sine wave, a rectangular wave having a predetermined duty ratio, or a stepped output. Even if it fluctuates, an operation pattern in which the load can be calculated after a certain time or at a predetermined time is indicated. This may be specified by a variable range (upper limit and lower limit). If the fluctuation range is small compared to the output plan value, it can be regarded as a constant value in the allocation plan. Therefore, the content of the load fluctuation fixing command 146 includes a constant value for the load, a characteristic amount of the sine wave, rectangular wave, stepped output (frequency, amplitude, phase, duty ratio, upper limit value, lower limit value, start time, etc.) Is included. In addition, including information that can specify the variation fixed pattern is exemplified. Although the load variation pattern is designated here, an output variation pattern may be designated.
 余力確保指令147は、電力資源101に対して、余力の確保を指令する。これは余力確保の要求を示す所定値、あるいは真理値(二値)でもよいし、要求する確保量や、余力を確保しておくべき期間、継続時間等の情報を含むことが例示される。 The remaining capacity securing command 147 instructs the power resource 101 to secure the remaining capacity. This may be a predetermined value or a truth value (binary value) indicating a request for securing the surplus power, and includes information such as a required secure amount, a period in which the surplus power should be secured, and a duration.
 図9下段のパケットフォーマットは、図9上段、中段のパケット140、145等で指令した内容に対するキャンセル指令である。これにより、仮想発電中央装置103は、事前に送信していた出力指令や負荷変動の固定化、余力確保を解除することができる。補足情報143は、キャンセル指令に必要な補足情報である。例えば、キャンセル対象となる出力指令142や負荷変動固定指令146、余力確保指令147を特定、識別するための情報である。そのような情報として、各指令の指令値や、各指令に対して、一意に与える識別子(これはパケット140、145に格納するか、事前に仮想発電中央装置103、端末装置102間で共有する)、あるいはパケット140、145の識別子(例えば、ヘッダ141に基づく情報)が例示される。 The packet format in the lower part of FIG. 9 is a cancel instruction for the contents instructed by the packets 140 and 145 in the upper part and the middle part of FIG. As a result, the virtual power generation central device 103 can cancel the output command and the load fluctuation that have been transmitted in advance and the remaining capacity securing. The supplement information 143 is supplement information necessary for the cancel command. For example, it is information for specifying and identifying the output command 142, the load fluctuation fixing command 146, and the remaining power securing command 147 to be canceled. As such information, the command value of each command and an identifier uniquely given to each command (this is stored in the packets 140 and 145 or shared between the virtual power generation central device 103 and the terminal device 102 in advance) ) Or identifiers of the packets 140 and 145 (for example, information based on the header 141).
 このように構成すれば、例えば、仮想発電中央装置103が電力資源101の不確実性に基づいて、電力資源101を制御する際に、一部の電力資源101が期待どおりに動作し、全体として充分な出力が揃った場合に、余剰な電力資源101の出力をキャンセルすることで、より経済的な出力が可能となる。あるいは、各端末装置102との通信の不確実性を考慮し、予備群への補足制御のための出力指令が端末装置102へ通知されない可能性がある場合は、最初から予備群の電力資源101へ出力指令し、過剰な出力を得た場合に、パケット148によって出力をキャンセルしてもよい。このようにすれば、システム全体の信頼性を高めることができる。 With this configuration, for example, when the virtual power generation central device 103 controls the power resource 101 based on the uncertainty of the power resource 101, some of the power resources 101 operate as expected, and as a whole When sufficient output is obtained, more economical output is possible by canceling the output of the surplus power resource 101. Alternatively, in consideration of the uncertainty of communication with each terminal device 102, if there is a possibility that an output command for supplementary control to the backup group may not be notified to the terminal device 102, the power resource 101 of the backup group from the beginning. The output may be canceled by the packet 148 when an excessive output is obtained. In this way, the reliability of the entire system can be improved.
 なお、パケット140、145、148に対し、いずれも端末装置102は応答を通知することが例示される。この応答は、指令に対する結果(成功または失敗)や、失敗の場合の原因を含めることが例示される。負荷変動固定指令146の場合は、失敗の原因として、発電機や電力負荷の変動が不規則であること、充分に余力、出力を確保できなかったこと、あるいは確保量や不足分の量を応答に含めることが例示される。あるいは補足情報143にて、配分計画時の情報を受信した場合には、現在の状態との差異を応答してもよい。 In addition, it is exemplified that the terminal device 102 notifies a response to each of the packets 140, 145, and 148. This response is exemplified to include the result (success or failure) for the command and the cause in case of failure. In the case of the load fluctuation fixing command 146, the cause of the failure is that the fluctuation of the generator or the power load is irregular, the remaining capacity, the output could not be secured, or the secured amount or the insufficient amount is answered. Are included in the examples. Or when the information at the time of distribution plan is received in supplementary information 143, you may respond with the difference with the present state.
 パケット140、145、148のこれらのパラメータは、別のパケットとして送信してもよい。あるいは、複数の指令(指令識別子142、出力指令142、補足情報143、テストモード144、負荷変動固定指令146、余力確保指令147)を一つのパケットにまとめて送信してもよい。このとき、複数の端末装置102に対する指令を一つのパケットにまとめてもよい。仮に、出力指令142の指令値が同じであれば、出力指令142のフィールドをパケット上の1つのフィールドにまとめることができる。これは、出力指令142、補足情報143、テストモード144、負荷変動固定指令146、余力確保指令147についても同様に一つのフィールドにまとめることができる。このようにすれば、通信帯域を有効活用することができる。 These parameters of the packets 140, 145, and 148 may be transmitted as separate packets. Alternatively, a plurality of commands (command identifier 142, output command 142, supplementary information 143, test mode 144, load fluctuation fixing command 146, remaining capacity securing command 147) may be transmitted together in one packet. At this time, commands for a plurality of terminal devices 102 may be combined into one packet. If the command values of the output command 142 are the same, the fields of the output command 142 can be combined into one field on the packet. Similarly, the output command 142, supplementary information 143, test mode 144, load fluctuation fixing command 146, and reserve capacity securing command 147 can be combined into one field. In this way, the communication band can be effectively utilized.
 あるいは、パケット140、145、148のこれらのパラメータの一部を送信しなくてもよい。例えば、テストモードを実行しない場合は、テストモード144を送信しなくてもよい。 Alternatively, some of these parameters of the packets 140, 145, and 148 may not be transmitted. For example, when the test mode is not executed, the test mode 144 may not be transmitted.
 また、自然変動電源(太陽光発電や風力発電等)である電力資源101を動作指令対象群として制御する場合に、ならし効果による出力の均一化、安定化を期待し、該電力資源101と異なる条件の自然変動電源である電力資源101を、同じく動作指令対象群として選択してもよい。このような条件としては地理的条件(それぞれの電力資源101が遠方に離れている等)が例示されるが、過去の出力履歴から、ならし効果が期待される自然変動電源群を選択してもよい。これは自然変動電源に限定されず、変動する出力、負荷パターンから、ならし効果を期待できる電力資源101同士、あるいは自然変動電源と、非自然変動電源である電力資源101同士の組み合わせを動作指令対象群として選択してもよい。 In addition, when controlling the power resource 101 that is a naturally variable power source (solar power generation, wind power generation, etc.) as an operation command target group, the power resource 101 is expected to be uniformed and stabilized by the leveling effect. The power resource 101 that is a naturally varying power source under different conditions may also be selected as the operation command target group. Examples of such conditions include geographical conditions (each power resource 101 is far away, etc.). From the past output history, select a naturally varying power supply group that is expected to have a smoothing effect. Also good. This is not limited to a natural power supply, and it is an operation command to specify a combination of power resources 101 that can be expected to have a smoothing effect or a combination of a natural power supply and a non-natural power supply 101 based on fluctuating output and load patterns. You may select as an object group.
 また、自然変動電源である電力資源101が指令どおりに制御できなかった場合は、仮想発電中央装置103に対して、そのことを返信する。 In addition, when the power resource 101 that is a naturally variable power source cannot be controlled as instructed, the fact is returned to the virtual power generation central device 103.
 なお、仮想発電アグリゲータが蓄電池やガスエンジン発電機やガスタービン発電機を有して、補正制御を実行しても契約出力を実行できず、ペナルティが大きい場合は、それらの発電機を運用して、契約出力を満足することが例示される。 If the virtual power generation aggregator has a storage battery, gas engine generator, or gas turbine generator and the contract output cannot be executed even if correction control is executed and the penalty is large, operate those generators. Satisfying the contract output is exemplified.
 以上は、仮想発電所を中心に説明したがアグリゲーションサービス、デマンドレスポンスサービスを含む。 The above description has focused on virtual power plants, but includes aggregation services and demand response services.
 以上詳細に説明した本発明により、電力資源101の不確実性に基づいて、電力資源101を制御することができる。これにより、経済性を考慮しながら、より確実に電力資源101を制御することができる。さらに、応答時間といった制約条件下で、指令配分を計画することができ、電力系統の急峻な変動に対する調整力とすることができる。すなわち、電力資源101を活用した高速応答が可能である。また、需要者の自家優先利用を不確実性として許容することで、統合制御するための電力資源101の数量、種類を増やすことができる。このような電力資源101の統合制御により、電力資源101の有効利用や、電力市場での活用により、電力系統の安定運用に資することができる。 According to the present invention described above in detail, the power resource 101 can be controlled based on the uncertainty of the power resource 101. Thereby, it is possible to control the power resource 101 more reliably while considering the economy. Furthermore, it is possible to plan command distribution under a constraint condition such as response time, and it is possible to provide an adjustment capability for a sharp fluctuation of the power system. That is, a high-speed response using the power resource 101 is possible. In addition, by allowing the consumer's own priority use as an uncertainty, the quantity and type of power resources 101 for integrated control can be increased. Such integrated control of the power resource 101 can contribute to stable operation of the power system through effective use of the power resource 101 and utilization in the power market.
 実施例2は、実施例1と比較して、中間装置を設けた構成である。実施例に使用する符号は、特に断りのない限り、実施例1で説明した機能や要素等と同一であることを意味する。 Example 2 has a configuration in which an intermediate device is provided as compared with Example 1. The reference numerals used in the embodiments mean the same functions and elements as those described in the first embodiment unless otherwise specified.
 システム構成を図11に示す。 The system configuration is shown in FIG.
 中間装置210は、図9に示すパケットの出力指令142、補足情報143、テストモード144、負荷変動固定指令146、余力確保指令147を変換して、下位の端末装置102に送信してもよい。 The intermediate device 210 may convert the packet output command 142, the supplemental information 143, the test mode 144, the load fluctuation fixing command 146, and the remaining power securing command 147 shown in FIG.
 中間装置210は、個々の端末装置102の計測値、配分計画部124における配分計画用の指標値を集約して、仮想発電中央装置103に送信することが例示される。例えば中間装置210で補正制御を実行するかどうかを判定するように構成すれば、下位の端末装置102への代替指令の通信遅延が短縮し、制御の実行期限を遅らせることができるため、電力資源101との通信の試行回数を増やすことができ、仮想発電システム実行の信頼性を、より高めることができる。さらに、仮想発電中央装置103の処理負荷を低減できるため、仮想発電中央装置103を低コストに構築することができる。 It is exemplified that the intermediate device 210 aggregates the measured values of the individual terminal devices 102 and the distribution planning index values in the distribution planning unit 124 and transmits them to the virtual power generation central device 103. For example, if the intermediate device 210 is configured to determine whether or not to execute the correction control, the communication delay of the alternative command to the lower-level terminal device 102 can be shortened, and the execution time limit of the control can be delayed. It is possible to increase the number of trials of communication with the terminal 101 and to further increase the reliability of the virtual power generation system execution. Furthermore, since the processing load of the virtual power generation central device 103 can be reduced, the virtual power generation central device 103 can be constructed at low cost.
 これにより、通信ネットワーク104に応じた通信量の適正化が(例えば、通信量削減)が可能となる。あるいは、中間装置210で、端末装置102の状態を常時監視し、より実状にあった出力指令を算出することができる。例えば、仮想発電中央装置103が指令を送信後に、電力資源101の状態が変化し、余力が増加した場合や、応答速度や、発電コストが変化した場合である。あるいは、途中で電力資源101、端末装置102が追加、または離脱、一時的な停止の場合である。これは通信ネットワーク104に対する物理的な接続の状態変化だけでなく、電力資源101の所有者が仮想発電所中のアグリゲーションサービスに対して実施する契約変更の両方を含む。状態が頻繁に変化し、端末装置102と仮想発電中央装置103間の通信遅延が大きい場合は、中間装置210を用いることで、より高信頼に仮想発電システムを構築することができる。 This makes it possible to optimize the amount of communication according to the communication network 104 (for example, reduce the amount of communication). Alternatively, the intermediate device 210 can constantly monitor the state of the terminal device 102 and calculate a more realistic output command. For example, when the virtual power generation central device 103 transmits a command, the state of the power resource 101 changes and the remaining power increases, or the response speed and the power generation cost change. Or it is a case where the power resource 101 and the terminal device 102 are added, removed, or temporarily stopped on the way. This includes both changes in the state of the physical connection to the communication network 104 as well as contract changes that the owner of the power resource 101 implements for the aggregation service in the virtual power plant. When the state changes frequently and the communication delay between the terminal device 102 and the virtual power generation central device 103 is large, the virtual power generation system can be constructed with higher reliability by using the intermediate device 210.
 あるいは、中間装置210で出力値を変更してもよい。 Alternatively, the output value may be changed by the intermediate device 210.
 以上により、中間装置をもうけることで、仮想発電中央装置103の処理負荷を低減する、下位の通信ネットワーク104に適した通信量に変更する、代替出力にかかる遅延を短縮して起動期限を遅らせ、補正制御の試行回数を増やすことができる等の利点により、仮想発電所の制御システムの柔軟な構成、低コストなシステム構築、信頼性を向上させるといった効果を得ることができる。 As described above, by providing an intermediate device, the processing load of the virtual power generation central device 103 is reduced, the communication amount is changed to a communication amount suitable for the lower communication network 104, the delay for the alternative output is shortened, and the activation deadline is delayed, Due to the advantage that the number of trials of correction control can be increased, effects such as flexible configuration of the control system of the virtual power plant, low-cost system construction, and improved reliability can be obtained.
 以上の説明においては、電力系統を制御対象システムとし、分散制御システムの適用により仮想発電所を構成する事例で説明をしたが、本発明の分散制御システムは種々の制御対象システムに適用することができる。 In the above description, the power system is the control target system, and the case where the virtual power plant is configured by applying the distributed control system has been described. However, the distributed control system of the present invention can be applied to various control target systems. it can.
100:電力系統,101:電力資源,102:端末装置,103:仮想発電中央装置,104:通信ネットワーク,111:CPU,112:通信制御部,113:PHY,114:メモリ,115:不揮発性記憶媒体,116:バス,120:通信部,121:情報収集部,122:電力資源情報記憶部,123:不確実性判定部通信部,124:配分計画部,125:選択基準決定部,126:配分計画記憶部,127:電力資源制御部,128:補正制御部,130:状態収集要求信号,131:配分計画,132:状態信号,133:調整力指令,134:制御指令,135:負荷変動固定・余力確保指令,136:補正制御指令,137:出力,138:応答信号,140、145、148:パケット,141:ヘッダ,142:出力指令,143:補足情報,144:テストモード,146:負荷変動固定指令,147:余力確保指令,149:キャンセル指令,150:入出力部,160:電力資源入出力制御部,161:設定記憶部,210:中間装置 100: Power system, 101: Power resource, 102: Terminal device, 103: Virtual power generation central device, 104: Communication network, 111: CPU, 112: Communication control unit, 113: PHY, 114: Memory, 115: Nonvolatile memory Medium: 116: bus, 120: communication unit, 121: information collection unit, 122: power resource information storage unit, 123: uncertainty determination unit communication unit, 124: allocation planning unit, 125: selection criterion determination unit, 126: Allocation plan storage unit, 127: power resource control unit, 128: correction control unit, 130: status collection request signal, 131: allocation plan, 132: status signal, 133: adjustment force command, 134: control command, 135: load fluctuation Fixed / reserved power securing command, 136: correction control command, 137: output, 138: response signal, 140, 145, 148: packet, 141: header, 142 Output command, 143: supplementary information, 144: test mode, 146: load fluctuation fixing command, 147: remaining capacity securing command, 149: cancel command, 150: input / output unit, 160: power resource input / output control unit, 161: setting storage Part, 210: Intermediate device

Claims (23)

  1.  複数の制御機器を含む制御対象システムに対して適用され、前記制御機器を制御する複数の制御装置が中央装置から通信手段を介して結合されている分散制御システムであって、
     前記中央装置は、前記制御機器ごとに、制御機器の情報と不確実性の情報を収集して記憶する情報記憶部と、少なくとも前記不確実性の情報に基づいて、前記制御機器を前記中央装置から制御する動作指令対象群と制御しない予備群とに分け、動作指令対象群に定めた前記制御機器に対して外部から要求された制御指令を配分する配分計画部と、該配分計画部で定めた前記制御機器に対して配分された制御指令を送信する前記通信手段を含むことを特徴とする分散制御システム。
    A distributed control system that is applied to a control target system including a plurality of control devices, and in which a plurality of control devices that control the control devices are coupled from a central device via communication means,
    The central device collects the control device information and uncertainty information for each control device and stores the control device based on at least the uncertainty information. A distribution planning unit that distributes control commands requested from the outside to the control devices defined in the operation command target group, and is determined by the distribution planning unit. A distributed control system comprising the communication means for transmitting a control command allocated to the control device.
  2.  請求項1に記載の分散制御システムであって、
     前記中央装置は、少なくとも前記不確実性の情報についてこれを指標化する不確実性判定部と、前記制御機器の情報から選択基準値を定める選択基準決定部を備え、前記指標化した不確実性の情報と前記選択基準値を比較することで前記制御機器を前記中央装置から制御する動作指令対象群と制御しない予備群とに分けることを特徴とする分散制御システム。
    The distributed control system according to claim 1,
    The central device includes an uncertainty determination unit that indexes at least the uncertainty information, and a selection criterion determination unit that determines a selection criterion value from the information of the control device, and the indexed uncertainty The distributed control system is characterized in that the control device is divided into an operation command target group controlled from the central device and a spare group not controlled by comparing the information and the selection reference value.
  3.  請求項2に記載の分散制御システムであって、
     異なる観点での前記不確実性の情報について、夫々を指標化し、指標化した複数の前記不確実性の情報から一の評価値を定めて前記選択基準値と比較することを特徴とする分散制御システム。
    The distributed control system according to claim 2,
    Distributed control characterized by indexing each of the uncertainty information from different viewpoints, and determining one evaluation value from the plurality of the indexed uncertainty information and comparing it with the selection reference value system.
  4.  請求項1から請求項3のいずれか1項に記載の分散制御システムであって、
     前記不確実性の情報は、前記制御機器または前記制御装置の故障についての不確実性の情報、または中央装置から制御装置に至る通信部分の通信不確実性の情報、および前記制御機器が前記中央装置からの指令以外の信号により作動している状態を示す自家利用についての不確実性の情報のうち、少なくとも1つ以上について指標化されていることを特徴とする分散制御システム。
    The distributed control system according to any one of claims 1 to 3,
    The information on the uncertainty includes information on uncertainty about a failure of the control device or the control device, information on communication uncertainty of a communication part from a central device to the control device, and the control device A distributed control system, characterized in that at least one or more of the uncertainties about self-use indicating a state of being operated by a signal other than a command from the apparatus is indexed.
  5.  請求項2または請求項3のいずれか1項に記載の分散制御システムであって、
     前記制御機器の情報について指標化し、指標化した前記制御機器の情報と、指標化した複数の前記不確実性の情報から一の評価値を定めて前記選択基準値と比較することを特徴とする分散制御システム。
    The distributed control system according to any one of claims 2 and 3,
    The control device information is indexed, and one evaluation value is determined from the indexed control device information and the plurality of indexed uncertainty information, and compared with the selection reference value. Distributed control system.
  6.  請求項1から請求項5のいずれか1項に記載の分散制御システムを用いた分散制御方法であって、
     適宜、前記制御機器の情報と不確実性の情報を収集して、前記制御機器を前記中央装置から制御する動作指令対象群と制御しない予備群とに分類しておき、外部から制御指令が与えられたときに、動作指令対象群に分類されている前記制御機器に対して要求された制御指令を配分して与えることを特徴とする分散制御方法。
    A distributed control method using the distributed control system according to any one of claims 1 to 5,
    The control device information and uncertainty information are collected as appropriate, and the control device is classified into an operation command target group controlled from the central device and a spare group not controlled, and a control command is given from the outside. When distributed, the distributed control method is characterized by allocating and giving a requested control command to the control devices classified in the operation command target group.
  7.  請求項6に記載の分散制御方法であって、
     前記動作指令対象群に分類されている前記制御機器のみでは、外部から要求された制御指令を達成できない時に、前記予備群に分類された前記制御機器に対しても前記制御機器に対して要求された制御指令を配分して与えることを特徴とする分散制御方法。
    The distributed control method according to claim 6, comprising:
    When only the control device classified into the operation command target group cannot achieve the control command requested from the outside, the control device classified into the reserve group is also requested from the control device. A distributed control method characterized by distributing and giving control commands.
  8.  複数の電力資源を含む電力系統に対して適用され、前記電力資源を制御する複数の制御装置が中央装置から通信手段を介して結合されている電力系統の分散制御システムであって、
     前記中央装置は、前記電力資源ごとに、電力資源の情報と不確実性の情報を収集して記憶する情報記憶部と、少なくとも前記不確実性の情報に基づいて、前記電力資源を前記中央装置から制御する動作指令対象群と制御しない予備群とに分け、動作指令対象群に定めた前記電力資源に対して外部から要求された制御指令を配分する配分計画部と、該配分計画部で定めた前記電力資源に対して配分された制御指令を送信する前記通信手段を含むことを特徴とする電力系統の分散制御システム。
    A power system distributed control system applied to a power system including a plurality of power resources, wherein a plurality of control devices for controlling the power resources are coupled from a central device via communication means,
    The central device collects and stores power resource information and uncertainty information for each power resource, and stores the power resource at least on the basis of the uncertainty information. A distribution planning unit that distributes control commands requested from the outside to the power resources defined in the operation command target group, and is divided by the distribution planning unit. A distributed control system for a power system, comprising: the communication means for transmitting a control command allocated to the power resource.
  9.  請求項8に記載の電力系統の分散制御システムであって、
     前記中央装置は、少なくとも前記不確実性の情報についてこれを指標化する不確実性判定部と、前記電力資源の情報から選択基準値を定める選択基準決定部と、前記指標化した不確実性の情報と前記選択基準値を比較することで前記電力資源を前記中央装置から制御する動作指令対象群と制御しない予備群とに分けることを特徴とする電力系統の分散制御システム。
    A power system distributed control system according to claim 8,
    The central device includes an uncertainty determination unit that indexes at least the uncertainty information, a selection criterion determination unit that determines a selection criterion value from the power resource information, and the indexed uncertainty A power system distributed control system characterized in that the power resource is divided into an operation command target group controlled from the central device and a spare group not controlled by comparing information and the selection reference value.
  10.  請求項9に記載の電力系統の分散制御システムであって、
     異なる観点での前記不確実性の情報について、夫々を指標化し、指標化した複数の前記不確実性の情報から一の評価値を定めて前記選択基準値と比較することを特徴とする電力系統の分散制御システム。
    A power system distributed control system according to claim 9,
    An electric power system characterized by indexing each of the uncertainty information from different viewpoints, determining one evaluation value from a plurality of the indexed uncertainty information, and comparing it with the selection reference value Distributed control system.
  11.  請求項8から請求項10のいずれか1項に記載の電力系統の分散制御システムであって、
     前記不確実性の情報は、前記電力資源または前記制御装置の故障についての不確実性の情報、または中央装置から制御装置に至る通信部分の通信不確実性の情報、および前記電力資源が前記中央装置からの指令以外の信号により作動している状態を示す自家利用についての不確実性の情報のうち、少なくとも1つ以上について指標化されていることを特徴とする電力系統の分散制御システム。
    A power system distributed control system according to any one of claims 8 to 10,
    The uncertainty information includes uncertainty information about a failure of the power resource or the control device, or communication uncertainty information of a communication portion from the central device to the control device, and the power resource is A distributed control system for an electric power system, characterized in that at least one or more of the uncertainties regarding self-use indicating a state of being operated by a signal other than a command from the apparatus is indexed.
  12.  請求項9または請求項10のいずれか1項に記載の電力系統の分散制御システムであって、
     前記電力資源の情報について指標化し、指標化した前記電力資源の情報と、指標化した複数の前記不確実性の情報から一の評価値を定めて前記選択基準値と比較することを特徴とする電力系統の分散制御システム。
    A power system distributed control system according to any one of claims 9 and 10,
    The power resource information is indexed, and one evaluation value is determined from the indexed information of the power resource and the plurality of indexed uncertainty information, and compared with the selection reference value. Power system distributed control system.
  13.  請求項8から請求項12のいずれか1項に記載の電力系統の分散制御システムを用いた電力資源の制御方法であって、
     電力資源の制御可否にかかわる不確実性と、電力資源の情報と、をもとに電力資源への指令配分を計画し、電力資源への出力の増減を指示することを特徴とする電力資源の制御方法。
    A power resource control method using the distributed control system for a power system according to any one of claims 8 to 12,
    Plans command distribution to power resources based on uncertainty related to controllability of power resources and information on power resources, and instructs to increase or decrease output to power resources. Control method.
  14.  請求項13記載の電力資源の制御方法であって、
     前記電力資源の出力要件の範囲条件に基づいて前記電力資源を動作指令対象群として選択するか否かを決定することを特徴とする電力資源の制御方法。
    A method for controlling a power resource according to claim 13,
    A method for controlling a power resource, comprising: determining whether or not to select the power resource as an operation command target group based on a range condition of an output requirement of the power resource.
  15.  請求項13記載の電力資源の制御方法であって、
     第一の電力資源とは異なる第二の電力資源に対して負荷変動の固定を指示することを特徴とする電力資源の制御方法。
    A method for controlling a power resource according to claim 13,
    A method for controlling a power resource, characterized by instructing a second power resource different from the first power resource to fix a load fluctuation.
  16.  請求項13記載の電力資源の制御方法であって、
     第一の電力資源とは異なる第二の電力資源に対して出力確保を指示することを特徴とする電力資源の制御方法。
    A method for controlling a power resource according to claim 13,
    A method for controlling a power resource, characterized by instructing output securing to a second power resource different from the first power resource.
  17.  請求項15または請求項16記載の電力資源の制御方法であって、
     第一の電力資源が指令通りに制御できなかった場合に、第二の電力資源への出力の増減を指示することを特徴とする電力資源の制御方法。
    A power resource control method according to claim 15 or claim 16, wherein
    A method for controlling an electric power resource, characterized by instructing an increase or decrease in output to the second electric power resource when the first electric power resource cannot be controlled as instructed.
  18.  請求項13記載の電力資源の制御方法であって、
     前記電力資源への指令を解除する指示を送信することを特徴とする電力資源の制御方法。
    A method for controlling a power resource according to claim 13,
    A method for controlling a power resource, comprising: transmitting an instruction to cancel a command to the power resource.
  19.  請求項13記載の電力資源の制御方法であって、
     指令を送信する通信、前記電力資源、前記電力資源を利用する需要家のいずれか、または複数の不確実性の情報に基づいて、前記電力資源への指令配分を計画し、前記電力資源への出力の増減を指示することを特徴とする電力資源の制御方法。
    A method for controlling a power resource according to claim 13,
    Based on the information of the communication that transmits the command, the power resource, the consumer that uses the power resource, or a plurality of uncertainties, the command allocation to the power resource is planned, and the power resource A method for controlling power resources, characterized by instructing increase / decrease in output.
  20.  請求項19記載の電力資源の制御方法であって、
     通信を実行する通信網上のイベント情報に基づいて、前記電力資源への指令配分を計画し、前記電力資源への出力の増減を指示することを特徴とする電力資源の制御方法。
    The power resource control method according to claim 19, comprising:
    A power resource control method, comprising: planning command distribution to the power resource based on event information on a communication network for performing communication, and instructing increase / decrease in output to the power resource.
  21.  請求項19記載の電力資源の制御方法であって、
     前記電力資源の機器情報及び稼働実績に基づいて、前記電力資源への指令配分を計画し、前記電力資源への出力の増減を指示することを特徴とする電力資源の制御方法。
    The power resource control method according to claim 19, comprising:
    A power resource control method comprising: planning command distribution to the power resource based on device information and operation results of the power resource, and instructing increase / decrease in output to the power resource.
  22.  請求項19記載の電力資源の制御方法であって、
     前記電力資源を利用する需要家の過去の利用実績に基づいて、前記電力資源への指令配分を計画し、前記電力資源への出力の増減を指示することを特徴とする電力資源の制御方法。
    The power resource control method according to claim 19, comprising:
    A power resource control method characterized by planning a command distribution to the power resource based on a past usage record of a customer who uses the power resource, and instructing an increase or a decrease in output to the power resource.
  23.  請求項19記載の電力資源の制御方法であって、
     交通情報、気象情報のいずれか、または両方の情報に基づいて、前記電力資源への指令配分を計画し、前記電力資源への出力の増減を指示することを特徴とする電力資源の制御方法。
    The power resource control method according to claim 19, comprising:
    A power resource control method characterized by planning a command distribution to the power resource based on one or both of traffic information and weather information, and instructing an increase or a decrease in output to the power resource.
PCT/JP2017/042841 2017-01-30 2017-11-29 Distribution control system, distribution control method, power-system distribution control system, and power resource control method WO2018139043A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017014063A JP6779800B2 (en) 2017-01-30 2017-01-30 Distributed control system, distributed control method, distributed control system of power system and control method of power resources
JP2017-014063 2017-01-30

Publications (1)

Publication Number Publication Date
WO2018139043A1 true WO2018139043A1 (en) 2018-08-02

Family

ID=62978972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042841 WO2018139043A1 (en) 2017-01-30 2017-11-29 Distribution control system, distribution control method, power-system distribution control system, and power resource control method

Country Status (2)

Country Link
JP (1) JP6779800B2 (en)
WO (1) WO2018139043A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110071532A (en) * 2019-06-04 2019-07-30 苏州工业职业技术学院 AGC power distribution control device and method based on DSP
CN110908347A (en) * 2019-11-14 2020-03-24 中国大唐集团科学技术研究院有限公司火力发电技术研究院 Intelligent power plant management and control system based on Internet of things
CN112580769A (en) * 2020-12-04 2021-03-30 广东电网有限责任公司 Method, device, equipment and medium for determining maintenance strategy of power equipment
CN113852562A (en) * 2021-09-23 2021-12-28 华北电力大学 Communication and load resource joint optimization device based on improved particle swarm optimization

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7409835B2 (en) * 2019-11-22 2024-01-09 出光興産株式会社 Power control method, power control system, and program
KR20210109340A (en) * 2020-02-27 2021-09-06 (주)누리플렉스 Methods and apparatuses for classifying and controlling transaction resource for generation source variability control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280154A (en) * 2005-03-30 2006-10-12 Tokyo Electric Power Co Inc:The Dispersion power control system
JP2008146105A (en) * 2006-12-05 2008-06-26 Toshiba Corp System, method and program for evaluating power transaction
JP2013198177A (en) * 2012-03-15 2013-09-30 Hitachi Ltd Power system control device and power system method
JP2014186503A (en) * 2013-03-22 2014-10-02 Toshiba Corp Profit analyzer for power generation facility, method and program
JP2015164026A (en) * 2014-02-28 2015-09-10 中国電力株式会社 Prediction system and method
WO2016021179A1 (en) * 2014-08-04 2016-02-11 日本電気株式会社 Distributed power supply system, station control device, control method, and storage medium in which program is stored

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280154A (en) * 2005-03-30 2006-10-12 Tokyo Electric Power Co Inc:The Dispersion power control system
JP2008146105A (en) * 2006-12-05 2008-06-26 Toshiba Corp System, method and program for evaluating power transaction
JP2013198177A (en) * 2012-03-15 2013-09-30 Hitachi Ltd Power system control device and power system method
JP2014186503A (en) * 2013-03-22 2014-10-02 Toshiba Corp Profit analyzer for power generation facility, method and program
JP2015164026A (en) * 2014-02-28 2015-09-10 中国電力株式会社 Prediction system and method
WO2016021179A1 (en) * 2014-08-04 2016-02-11 日本電気株式会社 Distributed power supply system, station control device, control method, and storage medium in which program is stored

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110071532A (en) * 2019-06-04 2019-07-30 苏州工业职业技术学院 AGC power distribution control device and method based on DSP
CN110071532B (en) * 2019-06-04 2023-07-21 苏州工业职业技术学院 AGC power distribution control device and method based on DSP
CN110908347A (en) * 2019-11-14 2020-03-24 中国大唐集团科学技术研究院有限公司火力发电技术研究院 Intelligent power plant management and control system based on Internet of things
CN110908347B (en) * 2019-11-14 2022-06-14 中国大唐集团科学技术研究院有限公司火力发电技术研究院 Intelligent power plant management and control system based on Internet of things
CN112580769A (en) * 2020-12-04 2021-03-30 广东电网有限责任公司 Method, device, equipment and medium for determining maintenance strategy of power equipment
CN112580769B (en) * 2020-12-04 2024-05-28 广东电网有限责任公司 Power equipment overhaul strategy determination method, device, equipment and medium
CN113852562A (en) * 2021-09-23 2021-12-28 华北电力大学 Communication and load resource joint optimization device based on improved particle swarm optimization
CN113852562B (en) * 2021-09-23 2024-02-27 华北电力大学 Communication and load resource joint optimization device based on improved particle swarm optimization

Also Published As

Publication number Publication date
JP6779800B2 (en) 2020-11-04
JP2018125907A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2018139043A1 (en) Distribution control system, distribution control method, power-system distribution control system, and power resource control method
Mahmud et al. An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview
Rathor et al. Energy management system for smart grid: An overview and key issues
Xia et al. An autonomous real-time charging strategy for plug-in electric vehicles to regulate frequency of distribution system with fluctuating wind generation
CN106096772A (en) Energy based on intelligent power and load corporate management system and implementation method
CN105528466A (en) Wind power optimal planning modeling method considering adaptability and economy of power system
Satuyeva et al. Energy 4.0: towards IoT applications in Kazakhstan
Soares et al. Multi-objective parallel particle swarm optimization for day-ahead Vehicle-to-Grid scheduling
CN112508306A (en) Self-adaptive method and system for power production configuration
CN110114766A (en) The method that the existing power grid of distribution electric energy is constructed
CN108346009B (en) Power production configuration method and device based on user model self-learning
Wang et al. Cyber-physical interdependent restoration scheduling for active distribution network via ad hoc wireless communication
JP7452013B2 (en) Power operation system
de Moraes et al. Short-term scheduling of integrated power and spinning reserve of a wind-hydrothermal generation system with ac network security constraints
Almassalkhi et al. Impact of energy storage on cascade mitigation in multi-energy systems
Chamana et al. Buildings participation in resilience enhancement of community microgrids: Synergy between microgrid and building management systems
Shang et al. A centralized vehicle‐to‐grid scheme with distributed computing capacity engaging internet of smart charging points: case study
Muleta et al. Study of energy management system and IOT integration in Smart Grid
Xiong et al. Multiobjective energy management strategy for multienergy communities based on optimal consumer clustering with multiagent system
Mohagheghi et al. Dynamic demand response solution for industrial customers
WO2019158575A1 (en) System and method for operating a combination of heterogeneous energy resources for fast grid services
Fatima et al. A brief review on smart grid residential network schemes
AU2016202858B2 (en) Method and device for the provision of aggregate offers of electrical energy
CN115935619A (en) Demand response-based day-ahead low-carbon scheduling method and device for active power distribution network
Fiorentino et al. Internet of things for demand side management

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893831

Country of ref document: EP

Kind code of ref document: A1