WO2018139035A1 - Retroflector and retroflector production method - Google Patents

Retroflector and retroflector production method Download PDF

Info

Publication number
WO2018139035A1
WO2018139035A1 PCT/JP2017/042574 JP2017042574W WO2018139035A1 WO 2018139035 A1 WO2018139035 A1 WO 2018139035A1 JP 2017042574 W JP2017042574 W JP 2017042574W WO 2018139035 A1 WO2018139035 A1 WO 2018139035A1
Authority
WO
WIPO (PCT)
Prior art keywords
retroreflector
triangular wave
vertical
plate
block
Prior art date
Application number
PCT/JP2017/042574
Other languages
French (fr)
Japanese (ja)
Inventor
誠 大坪
Original Assignee
株式会社アスカネット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アスカネット filed Critical 株式会社アスカネット
Priority to JP2018564127A priority Critical patent/JP6661799B2/en
Publication of WO2018139035A1 publication Critical patent/WO2018139035A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • G02B5/122Reflex reflectors cube corner, trihedral or triple reflector type
    • G02B5/124Reflex reflectors cube corner, trihedral or triple reflector type plural reflecting elements forming part of a unitary plate or sheet

Definitions

  • the present invention relates to a retroreflector in which incident light and reflected light pass through substantially the same path, and a manufacturing method thereof.
  • a retroreflector using a transparent sphere or a three-surface corner cube is applied to a traffic sign, an image projection device (see Patent Document 1) and the like because the directions of incident light and reflected light substantially coincide.
  • this retroreflector it is known that stronger reflected light can be obtained by using a three-sided corner cube than by using a transparent sphere.
  • Patent Document 2 an uneven surface having a large number of first and second inclined surfaces arranged at right angles and a right angle surface orthogonal to the first and second inclined surfaces at the same time is formed on a substrate, and A technique is disclosed in which metal deposition is performed on the concavo-convex surface to form first and second inclined reflecting surfaces and a vertical reflecting surface.
  • the retroreflector described in Patent Document 2 can obtain a strong reflection efficiency,
  • the central axis formed by the first and second inclined reflecting surfaces and the vertical reflecting surface is inclined by about 54.7 degrees with respect to the intersecting line of the first and second inclined reflecting surfaces, and thus the central axis of the incident angle. Therefore, in order to obtain a strong reflectance, it is necessary to use it at an angle, and there is a problem that the use efficiency of the retroreflector is lowered.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a retroreflector that is efficient in use of the surface of the retroreflector and is relatively easy to manufacture, and a method for manufacturing the retroreflector.
  • the retroreflector according to the first invention that meets the above-mentioned object is orthogonal to the first and second inclined reflecting surfaces, and the first and second inclined reflecting surfaces arranged side by side in a triangular wave shape,
  • a retroreflecting portion made of a transparent material having a vertical reflecting surface provided at a predetermined interval, and a triangle that covers the first and second inclined reflecting surfaces and bends light from the outside to the vertical reflecting surface side. And a prism portion.
  • a retroreflector according to a second invention is the retroreflector according to the first invention, wherein a high refractive index material having a refractive index of 1.5 or more is used as the material of the retroreflector.
  • the second inclined reflection surface and the vertical reflection surface are formed using total reflection.
  • a retroreflector according to a third invention is the retroreflector according to the first invention, wherein the first and second inclined reflecting surfaces and the vertical reflecting surface are formed using specular reflection. .
  • a retroreflector manufacturing method is a retroreflector manufacturing method according to the second invention, Transparent having the triangular prism portion arranged side by side on the front side, a triangular wave portion on which the first and second inclined reflection surfaces are formed, and a lateral groove on the back side in which the vertical reflection surface is formed across the triangular wave portion It has the process of manufacturing the molding base material which consists of resin by injection molding or press molding.
  • a method for producing a retroreflector according to a fifth invention is a method for producing a retroreflector according to the first or third invention, Transparent having the triangular prism portion arranged side by side on the front side, a triangular wave portion on which the first and second inclined reflection surfaces are formed, and a lateral groove on the back side in which the vertical reflection surface is formed across the triangular wave portion
  • a method for producing a retroreflector according to a sixth invention is a method for producing a retroreflector according to the second invention,
  • the triangular prism portion arranged side by side is on the front side, the first plate made of transparent resin connecting the triangular prism portion is formed on the back side, and the second plate shape made of transparent resin.
  • a method for manufacturing a retroreflector according to a seventh invention is a method for manufacturing the retroreflector according to the first or third invention,
  • the triangular prism portion arranged side by side is on the front side, the first plate made of transparent resin connecting the triangular prism portion is formed on the back side, and the second plate shape made of transparent resin.
  • a second block having a triangular wave part on the front side, a triangular wave part on which the first and second inclined reflective surfaces are formed, and a lateral groove on the back side in which the vertical reflective surface is formed across the triangular wave part,
  • a first step of manufacturing by injection molding or press molding A second step of integrally connecting the first block and the second block via the first plate-like portion and the second plate-like portion; After the first step or the second step, a metal film is formed on the back side of the second block by metal vapor deposition or sputtering to form the first and second inclined reflection surfaces and the vertical reflection surface.
  • a retroreflector manufacturing method according to an eighth invention is the retroreflector manufacturing method according to the sixth or seventh invention, wherein the first plate-like portion and the second plate-like portion include Alignment means for performing alignment at the time of connection is provided.
  • a method for manufacturing a retroreflector according to a ninth invention is the method for manufacturing a retroreflector according to the fifth or seventh invention, wherein the first and second inclined reflecting surfaces are provided on the triangular wave portion, and After forming the vertical reflection surface in the lateral groove, resin is filled into the hollow portion of the triangular wave portion and the lateral groove.
  • the retroreflector according to the present invention has a triangular prism portion that covers the first and second inclined reflecting surfaces and bends the light from the outside to the vertical reflecting surface side.
  • the optical axis on the side is positioned closer to the side perpendicular to the surface of the retroreflector, and the use efficiency of the retroreflector with respect to the light receiving surface is increased.
  • the method of manufacturing a retroreflector according to the present invention includes a triangular prism portion arranged side by side, a triangular wave portion on which first and second inclined reflecting surfaces are formed, and a lateral groove on which a vertical reflecting surface is formed (that is, Since the molding base material or the first and second blocks are manufactured by injection molding or press molding, the manufacturing is facilitated and mass production can be performed at low cost.
  • (A), (B) is a partial front sectional view and a partial side sectional view, respectively, of the retroreflector according to the first embodiment of the present invention. It is a detailed view of the retroreflector.
  • (A) and (B) are a partial front sectional view and a partial side sectional view, respectively, of a retroreflector according to a second embodiment of the present invention.
  • the retroreflector 10 according to the first embodiment of the present invention is entirely made of a transparent material (material), and the retroreflector 11 and The triangular prism portion 12 covering the retroreflecting portion 11 receives light from the front surface and performs retroreflecting to obtain a reflected light stronger than the conventional one, which is relatively easy to manufacture.
  • R1 to R5 in FIG. 1 indicate light paths from incident light L1 to reflection. This will be described in detail below.
  • the retroreflective portion 11 includes a triangular wave portion 15 formed with first and second inclined reflective surfaces 13 and 14 in which respective surfaces are orthogonally arranged in a triangular wave shape, and the triangular wave portion 15 is crossed at a predetermined interval. It has a plurality of lateral grooves 17 in which a vertical reflection surface 16 orthogonal to the first and second inclined reflection surfaces 13 and 14 is formed (perpendicular in a plan view).
  • the triangular prism portion 12 covers the retroreflecting portion 11 across the first and second inclined reflecting surfaces 13 and 14 (perpendicularly in plan view) and bends light from the outside to the vertical reflecting surface 16 side. Is.
  • the transparent materials (materials) constituting the retroreflecting portion 11 and the triangular prism portion 12 are inseparable from each other (inseparable) to form a molded base material.
  • the molding base material has a triangular prism portion 12 on the front side and a triangular wave portion 15 and a lateral groove 17 on the back side.
  • transparent material thermoplastic or thermosetting transparent plastic (transparent resin) can be used, but glass, other transparent materials (for example, ceramic), and the like can also be used.
  • transparent plastic is used for the transparent material, the molding base material is integrally formed by injection molding or press molding.
  • the triangular prism portion 12 is made of a material that is difficult to mold, such as ceramic or thermosetting plastic, the triangular prism portion and the retroreflective portion may be formed separately.
  • a minute flat portion 12 a (not shown) on the top of the triangular prism portion 12.
  • the width of the microplanar portion 12a is preferably about 0.002 to 0.1 of the pitch of the triangular prism 12.
  • the triangular wave portion 15 forming the retroreflective portion 11 has first and second inclined surfaces 18 and 19 arranged in a right angle with a cross section being a right isosceles triangle shape.
  • the second inclined surfaces 19 are alternately and continuously formed.
  • the roughness Ra of the back surface (cavity side) of the first and second inclined surfaces 18 and 19 is, for example, about 10 to 100 nm, and a metal film is formed on the back surface to provide the first and second inclined reflections.
  • Surfaces 13 and 14 are formed, respectively.
  • the lateral groove 17 forming the retroreflective portion 11 has a trapezoidal cross section and has a vertically arranged vertical surface 20 whose inner width is widened downward (in the direction opposite to the triangular prism portion 12). ing. This facilitates molding with a mold.
  • the lateral groove 17 may have a shape (triangular cross section) whose cross section has an acute angle ⁇ and whose inner width is widened downward.
  • the roughness Ra of the back surface of the vertical surface 20 is, for example, about 10 to 100 nm, and a metal film is formed on the back surface to form the vertical reflecting surface 16.
  • the maximum width P1 of the widened lateral groove 17 is preferably 0.1 to 0.5 times the pitch P2 of the lateral groove 17, for example.
  • the depth D1 of the lateral groove 17 is 0.5 to 2 times (more preferably) the depth D2 of the trough (referred to as “cavity portion 21”) formed by the first and second inclined surfaces 18 and 19. Is preferably 0.9 to 1.5 times.
  • the width W of the first and second inclined surfaces 18 and 19 is preferably 0.5 to 3 times the pitch P2 of the lateral grooves 17.
  • the first and second inclined reflecting surfaces 13 and 14 are made of a metal having high reflectivity (for example, Ag (silver), Al (aluminum), Ni (nickel), Ti (titanium), Cr (chromium), etc. ) Is formed on the back surface of the triangular wave portion 15 (first and second inclined surfaces 18 and 19) by a metal film (metal light reflecting surface) formed by vapor deposition or sputtering.
  • a metal film metal light reflecting surface
  • the vertical reflection surface 16 is also formed of a metal film formed by vapor deposition or sputtering of a metal having a high reflectance on the inner surface of the lateral groove 17 (vertical surface 20).
  • the groove inclined surface 22 facing the vertical surface 20 is preferably non-reflective surface treatment (for example, satin finish) so as not to act as a reflective surface.
  • the vertical reflecting surface 16 formed of this metal film is also thickened for convenience of explanation in FIGS. 1 (A) and 1 (B). It is shown.
  • the first and second inclined reflecting surfaces 13 and 14 and the vertical reflecting surface 16 are formed by using the specular reflection by the metal film, but use the total reflection (the incident light is not transmitted). (That is, the above-mentioned metal film is not used).
  • a high refractive index material having a refractive index of 1.5 or more is used as a material for the retroreflector (retroreflective portion).
  • the upper limit of the refractive index is not particularly limited as long as it is 1.5 or more. For example, it is about 2, but a ceramic having a higher refractive index can be used.
  • high refractive index material having a refractive index of 1.5 or more examples include high refractive index polymer in which a high refractive index substituent is introduced in the molecule and high refractive index in which high refractive index nanoparticles are introduced into the polymer matrix. There is a rate nanocomposite.
  • High refractive index polymers include those into which a sulfur-containing substituent, a phosphorus atom-containing group, or the like is introduced.
  • High refractive index nanocomposites include, for example, those using polyimide as a polymer matrix and TiO 2 , ZrO 2 , amorphous silicon, PbS, ZnS, etc. as nanoparticles.
  • the cavities 21 and the lateral grooves 17 of the triangular wave portion 15 are filled with the resins 23 and 24. Thereby, the strength of the retroreflector 10 is improved.
  • a material having a high refractive index is used for the retroreflective portion 11 and the first and second inclined reflective surfaces 13 and 14 and the vertical reflective surface 16 are formed using total reflection, the hollow portion of the triangular wave portion 15 is formed. 21 and the lateral groove 17 are not normally filled with resin.
  • the retroreflective portion 11 includes the first and second inclined reflecting surfaces 13 and 14 arranged in a triangular wave shape, and the vertical reflecting surface 16 with respect to the first and second inclined reflecting surfaces 13 and 14. Are provided at predetermined intervals.
  • the triangular prism portion 12 has a triangular cross section and has an inclined surface 25 and a vertical surface 26 arranged in an acute angle, and the arrangement pitch thereof is matched to the pitch P2 of the lateral grooves 17. Since the triangular prism portion 12 bends light from the outside toward the vertical reflecting surface 16, the shape of the triangular prism portion (for example, the angle of the inclined surface or the height of the vertical surface) can be obtained.
  • the arrangement pitch can be variously changed. For example, as shown in FIG.
  • a molding base material made of a transparent resin having a triangular prism portion 12 arranged side by side on the front side and a triangular wave portion 15 and a lateral groove 17 formed across the triangular wave portion 15 on the back side is formed by injection molding or pressing. Manufactured by molding.
  • thermoplastic transparent resin transparent plastic
  • thermosetting transparent resin transparent plastic
  • Demolding is easy because the shape of the adjacent triangular prism portion 12 is reduced in the drawing direction, and the triangular wave portion 15 and the lateral groove 17 are also reduced in the drawing direction.
  • the material selection of the mold such as plating the resin contact surface of the mold
  • the injection position of the resin into the mold It is preferable to set the structure (cooling structure or the like).
  • a metal film is formed on the back side of the molded base material.
  • the metal film is formed by vapor deposition or sputtering of a metal having high reflectivity such as Ag, Al, Ni, Ti, or Cr.
  • a metal having high reflectivity such as Ag, Al, Ni, Ti, or Cr.
  • the metal film is formed on the back side of the molded base material.
  • the thickness of the metal film is the thickest at the top of the triangular wave portion 15 and gradually decreases toward the skirt. For this reason, there is a possibility that the light reflected by the formed first and second inclined reflecting surfaces may deviate from the originally intended direction.
  • the metal film is formed along the back surface of the triangular wave portion 15. For this reason, the light reflected by the formed first and second inclined reflecting surfaces is reflected in the intended direction.
  • the hollow portions 21 and the lateral grooves 17 of the triangular wave portion 15 are filled with resins 23 and 24 and cured. Thereby, the retroreflector 10 which improved the intensity
  • the first and second inclined reflecting surfaces 13 and 14 and the vertical reflecting surface 16 described above are formed using specular reflection by a metal film, but use total reflection (incident light is not transmitted). In this case, only the first step described above may be performed (the second step need not be performed).
  • the first and second inclined reflecting surfaces 13 and 14 and the vertical reflecting surface 16 are formed using a mirror surface made of a metal film, the bottom (lower) uneven portion may be filled with a transparent or opaque resin.
  • the 1st, 2nd inclined reflective surfaces 13 and 14 and the vertical reflective surface 16 are formed using total reflection, the uneven
  • the retroreflector 10 having such a configuration enters the incident light L1 at the R1 position of the inclined surface 25 of the triangular prism portion 12, refracts it toward the vertical reflecting surface 16, and reflects it at the R2 position of the vertical reflecting surface 16. Then, the light is reflected at the R3 position of the first inclined reflecting surface 13, reflected at the R4 position of the second inclined reflecting surface 14, and emitted from the R5 position of the inclined surface 25 of the triangular prism portion 12. Thereby, the incident light L1 and the emitted light L3 become parallel, and retroreflection is performed.
  • the retroreflector 30 according to the second embodiment of the present invention will be described with reference to FIGS. 3A and 3B.
  • the recursion according to the first embodiment of the present invention described above will be described.
  • the same members as those of the reflective reflector 10 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the retroreflector 30 is obtained by individually manufacturing the retroreflecting portion 11 and the triangular prism portion 12 covering the retroreflecting portion 11.
  • the lateral groove 17 of the retroreflector 10 according to the first embodiment is formed to protrude upward from the triangular wave portion 15, the retroreflector 30 according to the second embodiment has a depth of the lateral groove 17. It is made to correspond to the height of the triangular wave part 15.
  • the triangular prism portion 12 is arranged side by side on the front side of the first block 31, and a first plate-like portion 32 that connects the plurality of triangular prism portions 12 is formed on the back side of the first block 31.
  • the triangular wave portion 15 and the lateral groove 17 forming the retroreflecting portion 11 are provided on the back side of the second block 33, and the second plate-like portion 34 is provided on the front side of the second block 33.
  • the first and second blocks 31 and 33 that is, the triangular prism portion 12, the triangular wave portion 15 and the lateral groove 17, and the first and second plate-like portions 32 and 34
  • the transparent material Transparent resin
  • the first and second plate-like parts 32 and 34 are provided with an alignment means 35 for performing alignment when connected.
  • This alignment means 35 is comprised by the protruding item
  • the ridge portion 36 is provided on the back side of the first block 31 in a state of protruding from the first plate portion 32, and the groove portion 37 is formed in the second block 33 (second plate portion 34. ) Is provided on the front side, but may be provided in reverse. If the first plate-like portion and the second plate-like portion can be aligned, the configuration of the alignment means can be variously changed.
  • the first block 31 and the second block 33 are connected together via the first plate-like portion 32 and the second plate-like portion 34 without causing any displacement (inside the groove portion 37).
  • the projecting ridges 36 can be inserted into the rear reflector 30, and the retroreflector 30 can be formed.
  • the 1st block 31 is mounted on the 2nd block 33, ie, 1st Even when the pitch of the triangular prism portion of the block and the pitch of the vertical reflecting surface of the second block do not coincide with each other, they can be combined to function as a retroreflector (the same applies to other embodiments).
  • FIGS. 3A and 3B a method for manufacturing the retroreflector 30 according to the second embodiment of the present invention will be described with reference to FIGS. 3A and 3B. Since it is substantially the same as the manufacturing method of the body 10, it will be briefly described below.
  • first block 31 and the second block 33 are manufactured.
  • the first block 31 and the second block 33 are individually manufactured without being manufactured integrally.
  • the first and second blocks 31 and 33 can be made by injection molding or press molding, respectively, but can be purchased and used in advance.
  • the first block 31 and the second block 33 are integrally connected through the first plate-like portion 32 and the second plate-like portion 34 (the protruding portion 36 is inserted into the groove portion 37).
  • a transparent resin is provided on one or both of the back surface of the first plate portion 32 and the front surface of the second plate portion 34. Or an adhesive. Thereby, the 1st block 31 and the 2nd block 33 are united.
  • a metal film is formed on the back surface side of the second block 33 by vapor-depositing or sputtering the above-described metal having high reflectivity.
  • the first and second inclined reflecting surfaces 13 and 14 can be formed on the first and second inclined surfaces 18 and 19 of the triangular wave portion 15, and the vertical reflecting surface 16 can be formed on the vertical surface 20 of the lateral groove 17.
  • the metal film is formed after connecting the first block 31 and the second block 33 (after the second step), but the first block 31 and the second block 33 are connected. It may be carried out before (after the first step and before the second step). In this case, the first block 31 is connected to the second block 33 in which the first and second inclined reflecting surfaces 13 and 14 and the vertical reflecting surface 16 are formed.
  • the hollow portions 21 and the lateral grooves 17 of the triangular wave portion 15 are filled with resins 23 and 24 and cured.
  • the first and second inclined reflecting surfaces 13 and 14 and the vertical reflecting surface 16 described above are formed using specular reflection by a metal film, but use total reflection (incident light is not transmitted). In this case, only the first step and the second step described above may be performed (the third step is not necessary).
  • the first plate-like portion 32 and the second plate-like portion 34 are aligned, but the first plate-like portion 32 and the second plate-like portion 34 are aligned. Is not an essential requirement.
  • the present invention is applied even when the pitch of the triangular prism portion 12 and the pitch of the vertical reflecting surface 16 of the retroreflecting portion 11 are different.
  • the triangular prism portion 12 and the first and second inclined reflecting surfaces 13 and 14 are preferably substantially orthogonal.
  • the present invention has been described with reference to the embodiments. However, the present invention is not limited to the configurations described in the above-described embodiments, and is within the scope of the matters described in the claims. Other possible embodiments and modifications are also included.
  • the case where the retroreflector of the present invention and the manufacturing method thereof are configured by combining some or all of the above-described embodiments and modifications are also included in the scope of the right of the present invention.
  • the case where a resin having the same configuration as the molding base material is used as the resin filled in the hollow portion of the triangular wave portion and the lateral groove, but a different resin may be used.
  • the molded base material can be made of a normal resin, and a resin that causes total reflection can be used for the hollow portion of the triangular wave portion and the resin filled in the lateral groove.
  • the retroreflector according to the present invention has a triangular prism portion that covers the first and second inclined reflecting surfaces and bends the light from the outside to the vertical reflecting surface side.
  • the optical axis on the side is positioned closer to the side perpendicular to the surface of the retroreflector, the use efficiency of the retroreflector with respect to the light receiving surface is increased, and the retroreflector can be easily installed.
  • the method of manufacturing a retroreflector according to the present invention includes a triangular prism portion arranged side by side, a triangular wave portion on which first and second inclined reflecting surfaces are formed, and a lateral groove on which a vertical reflecting surface is formed (that is, ,
  • the molding base material or the first and second blocks) can be manufactured by injection molding or press molding, and can be mass-produced at low cost.
  • Retroreflector 11: Retroreflective part, 12: Triangular prism part, 12a: Minute plane part, 13: First inclined reflecting surface, 14: Second inclined reflecting surface, 15: Triangular wave part, 16: Vertical reflection surface, 17: lateral groove, 18: first inclined surface, 19: second inclined surface, 20: vertical surface, 21: hollow portion, 22: groove inclined surface, 23, 24: resin, 25: inclined surface , 26: vertical plane, 30: retroreflector, 31: first block, 32: first plate-like portion, 33: second block, 34: second plate-like portion, 35: alignment means , 36: ridge, 37: groove

Abstract

A retroreflector 10 that has: a retroflection part 11 that comprises a transparent material and has first and second inclined reflection surfaces 13, 14 that are arranged in the shape of a triangular wave and vertical reflection surfaces 16 that are orthogonal to the first and second inclined reflection surfaces 13, 14 and provided at prescribed intervals; and triangular prism parts 12 that extend laterally over the first and second inclined reflection surfaces 13, 14 and make light from the outside bend toward the vertical reflection surfaces 16. A retroflector production method that has a step in which injection molding or press molding is used to produce a molded parent material that comprises a transparent resin and has triangular prism parts 12 in a top side and, in a back side: a triangular wave part 15 that forms first and second inclined reflection surfaces 13, 14; and lateral grooves 17 that cut across the triangular wave part 15 and form vertical reflection surfaces 16.

Description

再帰性反射体及びその製造方法Retroreflector and manufacturing method thereof
 本発明は、入射光と反射光が略同一の経路を通過する再帰性反射体及びその製造方法に関する。 The present invention relates to a retroreflector in which incident light and reflected light pass through substantially the same path, and a manufacturing method thereof.
 透明球体や3面コーナーキューブを用いた再帰性反射体は、入射光と反射光の方向が略一致するため、交通標識や画像投影装置(特許文献1参照)等に応用されている。
 この再帰性反射体には、透明球体を用いるよりも3面コーナーキューブを用いた方が、より強い反射光が得られることが知られている。
 また、特許文献2には、直角配置された第1、第2の傾斜面と、第1、第2の傾斜面に同時に直交する直角面とを多数有する凹凸面を基材に形成し、更に凹凸面に金属蒸着を行って、第1、第2の傾斜反射面及び垂直反射面とする技術が開示されている。
A retroreflector using a transparent sphere or a three-surface corner cube is applied to a traffic sign, an image projection device (see Patent Document 1) and the like because the directions of incident light and reflected light substantially coincide.
As this retroreflector, it is known that stronger reflected light can be obtained by using a three-sided corner cube than by using a transparent sphere.
Further, in Patent Document 2, an uneven surface having a large number of first and second inclined surfaces arranged at right angles and a right angle surface orthogonal to the first and second inclined surfaces at the same time is formed on a substrate, and A technique is disclosed in which metal deposition is performed on the concavo-convex surface to form first and second inclined reflecting surfaces and a vertical reflecting surface.
特開2010-72504号公報JP 2010-72504 A 特開2016-80937号公報JP 2016-80937 A
 しかしながら、3面コーナーキューブは立方体の角を切り出した形状をしているため、微小の3面コーナーキューブが多数均一に並べられた再帰性反射体を形成するには、複雑な形状を有する金型を使用する必要があり、複数のサイズの再帰性反射体の製造が難しいという問題があった。
 また、特許文献2の技術はこの問題を解決し、製造が容易であると利点があり、実験によると、特許文献2記載の再帰性反射体においては、強い反射効率を得ることができるが、第1、第2の傾斜反射面及び垂直反射面によって形成される中心軸が第1、第2の傾斜反射面の交線に対して約54.7度傾き、このように入射角の中心軸が傾いているので、強い反射率を得るには傾けて使用する必要があり、再帰性反射体の使用効率が低下するという問題があった。
However, since the three-sided corner cube has a shape in which the corners of the cube are cut out, in order to form a retroreflector in which a large number of minute three-sided corner cubes are uniformly arranged, a mold having a complicated shape is used. There is a problem that it is difficult to manufacture a retroreflector having a plurality of sizes.
Further, the technique of Patent Document 2 has an advantage that it solves this problem and is easy to manufacture. According to experiments, the retroreflector described in Patent Document 2 can obtain a strong reflection efficiency, The central axis formed by the first and second inclined reflecting surfaces and the vertical reflecting surface is inclined by about 54.7 degrees with respect to the intersecting line of the first and second inclined reflecting surfaces, and thus the central axis of the incident angle. Therefore, in order to obtain a strong reflectance, it is necessary to use it at an angle, and there is a problem that the use efficiency of the retroreflector is lowered.
 本発明はかかる事情に鑑みてなされたもので、再帰性反射体の面の使用効率がよく、比較的製造が容易な再帰性反射体及びその製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a retroreflector that is efficient in use of the surface of the retroreflector and is relatively easy to manufacture, and a method for manufacturing the retroreflector.
 前記目的に沿う第1の発明に係る再帰性反射体は、三角波状に並べて配置された第1、第2の傾斜反射面と、該第1、第2の傾斜反射面に対して直交し、所定間隔で設けられた垂直反射面とを有する透明材からなる再帰反射部と、前記第1、第2の傾斜反射面を横切って被さり、外部からの光を前記垂直反射面側に屈曲させる三角プリズム部とを有する。 The retroreflector according to the first invention that meets the above-mentioned object is orthogonal to the first and second inclined reflecting surfaces, and the first and second inclined reflecting surfaces arranged side by side in a triangular wave shape, A retroreflecting portion made of a transparent material having a vertical reflecting surface provided at a predetermined interval, and a triangle that covers the first and second inclined reflecting surfaces and bends light from the outside to the vertical reflecting surface side. And a prism portion.
 第2の発明に係る再帰性反射体は、第1の発明に係る再帰性反射体において、該再帰性反射体の材料に屈折率が1.5以上の高屈折率材料を用い、前記第1、第2の傾斜反射面及び前記垂直反射面は全反射を利用して形成されている。 A retroreflector according to a second invention is the retroreflector according to the first invention, wherein a high refractive index material having a refractive index of 1.5 or more is used as the material of the retroreflector. The second inclined reflection surface and the vertical reflection surface are formed using total reflection.
 第3の発明に係る再帰性反射体は、第1の発明に係る再帰性反射体において、前記第1、第2の傾斜反射面及び前記垂直反射面は鏡面反射を利用して形成されている。 A retroreflector according to a third invention is the retroreflector according to the first invention, wherein the first and second inclined reflecting surfaces and the vertical reflecting surface are formed using specular reflection. .
 第4の発明に係る再帰性反射体の製造方法は、第2の発明に係る再帰性反射体の製造方法であって、
 並べて配置された前記三角プリズム部を表側に、前記第1、第2の傾斜反射面が形成される三角波部と、該三角波部を横切って前記垂直反射面が形成される横溝を裏側に有する透明樹脂からなる成型母材を、インジェクション成型又はプレス成型によって製造する工程を有する。
A retroreflector manufacturing method according to a fourth invention is a retroreflector manufacturing method according to the second invention,
Transparent having the triangular prism portion arranged side by side on the front side, a triangular wave portion on which the first and second inclined reflection surfaces are formed, and a lateral groove on the back side in which the vertical reflection surface is formed across the triangular wave portion It has the process of manufacturing the molding base material which consists of resin by injection molding or press molding.
 第5の発明に係る再帰性反射体の製造方法は、第1又は第3の発明に係る再帰性反射体の製造方法であって、
 並べて配置された前記三角プリズム部を表側に、前記第1、第2の傾斜反射面が形成される三角波部と、該三角波部を横切って前記垂直反射面が形成される横溝を裏側に有する透明樹脂からなる成型母材を、インジェクション成型又はプレス成型によって製造する第1工程と、
 前記成型母材の裏面側に金属蒸着又はスパッタリングによって金属皮膜を形成し、前記第1、第2の傾斜反射面及び前記垂直反射面を形成する第2工程とを有する。
A method for producing a retroreflector according to a fifth invention is a method for producing a retroreflector according to the first or third invention,
Transparent having the triangular prism portion arranged side by side on the front side, a triangular wave portion on which the first and second inclined reflection surfaces are formed, and a lateral groove on the back side in which the vertical reflection surface is formed across the triangular wave portion A first step of producing a molding base material made of resin by injection molding or press molding;
A second step of forming a metal film on the back side of the molded base material by metal vapor deposition or sputtering to form the first and second inclined reflecting surfaces and the vertical reflecting surface.
 第6の発明に係る再帰性反射体の製造方法は、第2の発明に係る再帰性反射体の製造方法であって、
 並べて配置された前記三角プリズム部が表側に、該三角プリズム部を連結する透明樹脂からなる第1の板状部が裏側に形成された第1のブロックと、透明樹脂からなる第2の板状部を表側に、前記第1、第2の傾斜反射面が形成される三角波部、及び、該三角波部を横切って前記垂直反射面が形成される横溝を裏側に有する第2のブロックを、それぞれインジェクション成型又はプレス成型によって製造する第1工程と、
 前記第1のブロックと前記第2のブロックを、前記第1の板状部及び前記第2の板状部を介して一体的に連結する第2工程とを有する。
A method for producing a retroreflector according to a sixth invention is a method for producing a retroreflector according to the second invention,
The triangular prism portion arranged side by side is on the front side, the first plate made of transparent resin connecting the triangular prism portion is formed on the back side, and the second plate shape made of transparent resin. A second block having a triangular wave part on the front side, a triangular wave part on which the first and second inclined reflective surfaces are formed, and a lateral groove on the back side in which the vertical reflective surface is formed across the triangular wave part, A first step of manufacturing by injection molding or press molding;
And a second step of integrally connecting the first block and the second block via the first plate-like portion and the second plate-like portion.
 第7の発明に係る再帰性反射体の製造方法は、第1又は第3の発明に係る再帰性反射体の製造方法であって、
 並べて配置された前記三角プリズム部が表側に、該三角プリズム部を連結する透明樹脂からなる第1の板状部が裏側に形成された第1のブロックと、透明樹脂からなる第2の板状部を表側に、前記第1、第2の傾斜反射面が形成される三角波部、及び、該三角波部を横切って前記垂直反射面が形成される横溝を裏側に有する第2のブロックを、それぞれインジェクション成型又はプレス成型によって製造する第1工程と、
 前記第1のブロックと前記第2のブロックを、前記第1の板状部及び前記第2の板状部を介して一体的に連結する第2工程と、
 前記第1工程又は前記第2工程の後に、前記第2のブロックの裏面側に金属蒸着又はスパッタリングによって金属皮膜を形成し、前記第1、第2の傾斜反射面及び前記垂直反射面を形成する第3工程とを有する。
A method for manufacturing a retroreflector according to a seventh invention is a method for manufacturing the retroreflector according to the first or third invention,
The triangular prism portion arranged side by side is on the front side, the first plate made of transparent resin connecting the triangular prism portion is formed on the back side, and the second plate shape made of transparent resin. A second block having a triangular wave part on the front side, a triangular wave part on which the first and second inclined reflective surfaces are formed, and a lateral groove on the back side in which the vertical reflective surface is formed across the triangular wave part, A first step of manufacturing by injection molding or press molding;
A second step of integrally connecting the first block and the second block via the first plate-like portion and the second plate-like portion;
After the first step or the second step, a metal film is formed on the back side of the second block by metal vapor deposition or sputtering to form the first and second inclined reflection surfaces and the vertical reflection surface. A third step.
 第8の発明に係る再帰性反射体の製造方法は、第6又は第7の発明に係る再帰性反射体の製造方法において、前記第1の板状部及び前記第2の板状部には、連結時に位置合わせを行う位置合わせ手段が設けられている。 A retroreflector manufacturing method according to an eighth invention is the retroreflector manufacturing method according to the sixth or seventh invention, wherein the first plate-like portion and the second plate-like portion include Alignment means for performing alignment at the time of connection is provided.
 第9の発明に係る再帰性反射体の製造方法は、第5又は第7の発明に係る再帰性反射体の製造方法において、前記三角波部に前記第1、第2の傾斜反射面、及び前記横溝に前記垂直反射面を形成した後に、前記三角波部の空洞部分と前記横溝内に樹脂を充填する。 A method for manufacturing a retroreflector according to a ninth invention is the method for manufacturing a retroreflector according to the fifth or seventh invention, wherein the first and second inclined reflecting surfaces are provided on the triangular wave portion, and After forming the vertical reflection surface in the lateral groove, resin is filled into the hollow portion of the triangular wave portion and the lateral groove.
 本発明に係る再帰性反射体は、第1、第2の傾斜反射面を横切って被さり、外部からの光を垂直反射面側に屈曲させる三角プリズム部を有するので、再帰性反射体の入光側の光軸線が、再帰性反射体の面に対してより垂直に近い側に位置し、再帰性反射体の受光面に対する使用効率が大きくなる。
 本発明に係る再帰性反射体の製造方法は、並べて配置された三角プリズム部と、第1、第2の傾斜反射面が形成される三角波部、及び、垂直反射面が形成される横溝(即ち、成型母材又は第1、第2のブロック)を、インジェクション成型又はプレス成型によって製造するので、製造が容易となり、安価に大量生産できる。
The retroreflector according to the present invention has a triangular prism portion that covers the first and second inclined reflecting surfaces and bends the light from the outside to the vertical reflecting surface side. The optical axis on the side is positioned closer to the side perpendicular to the surface of the retroreflector, and the use efficiency of the retroreflector with respect to the light receiving surface is increased.
The method of manufacturing a retroreflector according to the present invention includes a triangular prism portion arranged side by side, a triangular wave portion on which first and second inclined reflecting surfaces are formed, and a lateral groove on which a vertical reflecting surface is formed (that is, Since the molding base material or the first and second blocks are manufactured by injection molding or press molding, the manufacturing is facilitated and mass production can be performed at low cost.
(A)、(B)はそれぞれ本発明の第1の実施例に係る再帰性反射体の部分正断面図、部分側断面図である。(A), (B) is a partial front sectional view and a partial side sectional view, respectively, of the retroreflector according to the first embodiment of the present invention. 同再帰性反射体の詳細図である。It is a detailed view of the retroreflector. (A)、(B)はそれぞれ本発明の第2の実施例に係る再帰性反射体の部分正断面図、部分側断面図である。(A) and (B) are a partial front sectional view and a partial side sectional view, respectively, of a retroreflector according to a second embodiment of the present invention.
 続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本発明の理解に供する。
 図1(A)、(B)、図2に示すように、本発明の第1の実施例に係る再帰性反射体10は、全体が透明材(材料)からなって、再帰反射部11と、この再帰反射部11に被さる三角プリズム部12とを有し、正面から光を受けて再帰性反射を行い、従来よりも強い反射光が得られ、比較的製造が容易なものである。なお、図1中のR1~R5は、入射光L1の入射から反射までの光の経路を示している。
 以下、詳しく説明する。
Subsequently, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIGS. 1A, 1B, and 2, the retroreflector 10 according to the first embodiment of the present invention is entirely made of a transparent material (material), and the retroreflector 11 and The triangular prism portion 12 covering the retroreflecting portion 11 receives light from the front surface and performs retroreflecting to obtain a reflected light stronger than the conventional one, which is relatively easy to manufacture. Note that R1 to R5 in FIG. 1 indicate light paths from incident light L1 to reflection.
This will be described in detail below.
 再帰反射部11は、それぞれの面が直交して三角波状に配列された第1、第2の傾斜反射面13、14が形成される三角波部15と、この三角波部15を所定間隔で横切って(平面視して直交して)第1、第2の傾斜反射面13、14に対して直交する垂直反射面16が形成される複数の横溝17を有するものである。
 三角プリズム部12は、第1、第2の傾斜反射面13、14を横切って(平面視して直交して)再帰反射部11に被さり、外部からの光を垂直反射面16側に屈曲させるものである。
The retroreflective portion 11 includes a triangular wave portion 15 formed with first and second inclined reflective surfaces 13 and 14 in which respective surfaces are orthogonally arranged in a triangular wave shape, and the triangular wave portion 15 is crossed at a predetermined interval. It has a plurality of lateral grooves 17 in which a vertical reflection surface 16 orthogonal to the first and second inclined reflection surfaces 13 and 14 is formed (perpendicular in a plan view).
The triangular prism portion 12 covers the retroreflecting portion 11 across the first and second inclined reflecting surfaces 13 and 14 (perpendicularly in plan view) and bends light from the outside to the vertical reflecting surface 16 side. Is.
 上記した再帰反射部11と三角プリズム部12をそれぞれ構成する透明材(材料)は、一体不可分(分離不可能)となって成型母材を構成している。このため、成型母材は、その表側に三角プリズム部12を、その裏側に三角波部15と横溝17を、それぞれ有している。
 この透明材には、熱可塑性又は熱硬化性の透明プラスチック(透明樹脂)を使用できるが、ガラス、その他の透明素材(例えば、セラミック)等を用いることもできる。なお、透明材に透明プラスチックを用いる場合は、成型母材をインジェクション成型又はプレス成型により一体成形する。また、三角プリズム部12をセラミック又は熱硬化性プラスチック等成型の困難な材料で構成する場合は、三角プリズム部と再帰反射部を分離して形成してもよい。なお、三角プリズム部12の頂部に、図示しない微小平面部12aを設けるのが好ましい。微小平面部12aの幅は三角プリズム12のピッチの0.002~0.1程度とするのがよい。
The transparent materials (materials) constituting the retroreflecting portion 11 and the triangular prism portion 12 are inseparable from each other (inseparable) to form a molded base material. For this reason, the molding base material has a triangular prism portion 12 on the front side and a triangular wave portion 15 and a lateral groove 17 on the back side.
As the transparent material, thermoplastic or thermosetting transparent plastic (transparent resin) can be used, but glass, other transparent materials (for example, ceramic), and the like can also be used. When transparent plastic is used for the transparent material, the molding base material is integrally formed by injection molding or press molding. When the triangular prism portion 12 is made of a material that is difficult to mold, such as ceramic or thermosetting plastic, the triangular prism portion and the retroreflective portion may be formed separately. In addition, it is preferable to provide a minute flat portion 12 a (not shown) on the top of the triangular prism portion 12. The width of the microplanar portion 12a is preferably about 0.002 to 0.1 of the pitch of the triangular prism 12.
 再帰反射部11を形成する三角波部15は、断面が直角二等辺三角形状となって、直角配置された第1、第2の傾斜面18、19を有し、この第1の傾斜面18と第2の傾斜面19が交互に連続形成されている。
 この第1、第2の傾斜面18、19の裏面(空洞側)の粗さRaは、例えば、10~100nm程度であり、その裏面に金属皮膜が形成されて第1、第2の傾斜反射面13、14がそれぞれ形成される。
The triangular wave portion 15 forming the retroreflective portion 11 has first and second inclined surfaces 18 and 19 arranged in a right angle with a cross section being a right isosceles triangle shape. The second inclined surfaces 19 are alternately and continuously formed.
The roughness Ra of the back surface (cavity side) of the first and second inclined surfaces 18 and 19 is, for example, about 10 to 100 nm, and a metal film is formed on the back surface to provide the first and second inclined reflections. Surfaces 13 and 14 are formed, respectively.
 再帰反射部11を形成する横溝17は、断面が台形状となって、垂直配置された垂直面20を有し、その内幅が下方(三角プリズム部12とは反対方向)へ向けて拡幅している。これによって、金型による成型が容易となる。なお、横溝17は、その断面が、鋭角αの角度を有し、その内幅が下方へ向けて拡幅した形状(断面三角形状)でもよい。
 この垂直面20の裏面の粗さRaは、例えば、10~100nm程度であり、その裏面に金属皮膜が形成されて垂直反射面16が形成される。
The lateral groove 17 forming the retroreflective portion 11 has a trapezoidal cross section and has a vertically arranged vertical surface 20 whose inner width is widened downward (in the direction opposite to the triangular prism portion 12). ing. This facilitates molding with a mold. The lateral groove 17 may have a shape (triangular cross section) whose cross section has an acute angle α and whose inner width is widened downward.
The roughness Ra of the back surface of the vertical surface 20 is, for example, about 10 to 100 nm, and a metal film is formed on the back surface to form the vertical reflecting surface 16.
 ここで、拡幅した横溝17の最大幅P1は、横溝17のピッチP2の例えば0.1~0.5倍にするのが好ましい。
 また、横溝17の深さD1は、第1、第2の傾斜面18、19によって形成される谷部(「空洞部分21」と称する)の深さD2の0.5~2倍(より好ましくは0.9~1.5倍)にするのが好ましい。
 そして、第1、第2の傾斜面18、19の幅Wは、横溝17のピッチP2の例えば0.5~3倍にするのが好ましい。
Here, the maximum width P1 of the widened lateral groove 17 is preferably 0.1 to 0.5 times the pitch P2 of the lateral groove 17, for example.
Further, the depth D1 of the lateral groove 17 is 0.5 to 2 times (more preferably) the depth D2 of the trough (referred to as “cavity portion 21”) formed by the first and second inclined surfaces 18 and 19. Is preferably 0.9 to 1.5 times.
The width W of the first and second inclined surfaces 18 and 19 is preferably 0.5 to 3 times the pitch P2 of the lateral grooves 17.
 上記した第1、第2の傾斜反射面13、14は、高反射率を有する金属(例えば、Ag(銀)、Al(アルミニウム)、Ni(ニッケル)、Ti(チタン)、Cr(クロム)等)を三角波部15(第1、第2の傾斜面18、19)の裏面に、蒸着やスパッタリングして形成された金属皮膜(金属光反射面)により構成されている。
 なお、金属皮膜で構成される第1、第2の傾斜反射面13、14の厚みは極めて薄いが、図1(A)、(B)においては説明の便宜上、厚みを厚くして図示している(以下同様)。
The first and second inclined reflecting surfaces 13 and 14 are made of a metal having high reflectivity (for example, Ag (silver), Al (aluminum), Ni (nickel), Ti (titanium), Cr (chromium), etc. ) Is formed on the back surface of the triangular wave portion 15 (first and second inclined surfaces 18 and 19) by a metal film (metal light reflecting surface) formed by vapor deposition or sputtering.
In addition, although the thickness of the 1st, 2nd inclined reflective surfaces 13 and 14 comprised with a metal film is very thin, in FIG. 1 (A) and (B), it thickly illustrates for convenience of explanation. (The same shall apply hereinafter.)
 また、垂直反射面16も、高反射率を有する金属を横溝17(垂直面20)の内面に、蒸着やスパッタリングして形成された金属皮膜により構成されている。なお、垂直面20と対向する溝傾斜面22は、非反射面処理(例えば、梨地処理)し、反射面として作用しないようにしておくのがよい。
 この金属皮膜で構成される垂直反射面16も、上記した第1、第2の傾斜反射面13、14と同様、図1(A)、(B)においては説明の便宜上、厚みを厚くして図示している。
The vertical reflection surface 16 is also formed of a metal film formed by vapor deposition or sputtering of a metal having a high reflectance on the inner surface of the lateral groove 17 (vertical surface 20). Note that the groove inclined surface 22 facing the vertical surface 20 is preferably non-reflective surface treatment (for example, satin finish) so as not to act as a reflective surface.
Similarly to the first and second inclined reflecting surfaces 13 and 14 described above, the vertical reflecting surface 16 formed of this metal film is also thickened for convenience of explanation in FIGS. 1 (A) and 1 (B). It is shown.
 このように、第1、第2の傾斜反射面13、14と垂直反射面16は、金属皮膜による鏡面反射を利用して形成されているが、全反射(入射光が透過しない)を利用して形成することもできる(即ち、上記した金属皮膜を使用しない)。
 この場合、再帰性反射体(再帰反射部)の材料に屈折率が1.5以上の高屈折率材料を用いる。なお、屈折率の上限値については、1.5以上であれば特に限定されるものではなく、例えば、2程度であるが、セラミックの場合は更に高い屈折率のものを使用できる。
As described above, the first and second inclined reflecting surfaces 13 and 14 and the vertical reflecting surface 16 are formed by using the specular reflection by the metal film, but use the total reflection (the incident light is not transmitted). (That is, the above-mentioned metal film is not used).
In this case, a high refractive index material having a refractive index of 1.5 or more is used as a material for the retroreflector (retroreflective portion). The upper limit of the refractive index is not particularly limited as long as it is 1.5 or more. For example, it is about 2, but a ceramic having a higher refractive index can be used.
 屈折率が1.5以上の高屈折率材料としては、例えば、分子中に屈折の高い置換基を導入した高屈折率高分子と、高分子マトリックスに高屈折率のナノ粒子を導入した高屈折率ナノコンポジットがある。
 高屈折率高分子には、硫黄含有置換基やリン原子含有基等を導入したものがある。
 高屈折率ナノコンポジットには、例えば、高分子マトリックスにポリイミドを、ナノ粒子に、TiO、ZrO、アモルファスシリコン、PbS、ZnS等を用いたものがある。
Examples of the high refractive index material having a refractive index of 1.5 or more include high refractive index polymer in which a high refractive index substituent is introduced in the molecule and high refractive index in which high refractive index nanoparticles are introduced into the polymer matrix. There is a rate nanocomposite.
High refractive index polymers include those into which a sulfur-containing substituent, a phosphorus atom-containing group, or the like is introduced.
High refractive index nanocomposites include, for example, those using polyimide as a polymer matrix and TiO 2 , ZrO 2 , amorphous silicon, PbS, ZnS, etc. as nanoparticles.
 上記したように、第1、第2の傾斜面18、19と垂直面20の各裏面に金属皮膜を形成する場合は、金属皮膜の形成後(第1、第2の傾斜反射面13、14と垂直反射面16の形成後)、三角波部15の空洞部分21と横溝17内に樹脂23、24を充填する。これにより、再帰性反射体10の強度が向上する。
 また、再帰反射部11に屈折率の高い材料を使用し、第1、第2の傾斜反射面13、14と垂直反射面16を全反射を用いて形成する場合は、三角波部15の空洞部分21と横溝17内に、通常は、樹脂は充填しない。
As described above, when a metal film is formed on each of the back surfaces of the first and second inclined surfaces 18 and 19 and the vertical surface 20, after the metal film is formed (the first and second inclined reflecting surfaces 13 and 14). After the formation of the vertical reflection surface 16), the cavities 21 and the lateral grooves 17 of the triangular wave portion 15 are filled with the resins 23 and 24. Thereby, the strength of the retroreflector 10 is improved.
When a material having a high refractive index is used for the retroreflective portion 11 and the first and second inclined reflective surfaces 13 and 14 and the vertical reflective surface 16 are formed using total reflection, the hollow portion of the triangular wave portion 15 is formed. 21 and the lateral groove 17 are not normally filled with resin.
 上記した構成により、再帰反射部11は、第1、第2の傾斜反射面13、14が三角波状に並べて配置され、垂直反射面16が第1、第2の傾斜反射面13、14に対して直交し、所定間隔で設けられることになる。 With the above-described configuration, the retroreflective portion 11 includes the first and second inclined reflecting surfaces 13 and 14 arranged in a triangular wave shape, and the vertical reflecting surface 16 with respect to the first and second inclined reflecting surfaces 13 and 14. Are provided at predetermined intervals.
 三角プリズム部12は、断面が三角形状となって、鋭角状に配置された傾斜面25と垂直面26を有し、その配置ピッチを、横溝17のピッチP2に合わせている。
 なお、三角プリズム部12は、外部からの光を垂直反射面16側に屈曲させるものであるため、この作用が得られれば、三角プリズム部の形状(例えば、傾斜面の角度や垂直面の高さ等)や配置ピッチは、種々変更可能である。
 例えば、図2に示すように、入射光L1の三角プリズム部12の傾斜面25に対する垂線vを基準とした入射角をθ1とし、三角プリズム部12内の屈折角をθ2とした場合、
スネルの法則より、sinθ1/sinθ2=η(ηは相対屈折率)となり、入射光L1は垂直反射面16側に屈曲(屈折)して入射光L2となる。三角プリズム部12の頂角の角度φ及び屈折率ηによって、入射光L2の角度は変わるので、入射光L2が垂直反射面16に入光するように、傾斜面25の位置、角度φ、透明材の屈折率ηを決定する必要がある。
The triangular prism portion 12 has a triangular cross section and has an inclined surface 25 and a vertical surface 26 arranged in an acute angle, and the arrangement pitch thereof is matched to the pitch P2 of the lateral grooves 17.
Since the triangular prism portion 12 bends light from the outside toward the vertical reflecting surface 16, the shape of the triangular prism portion (for example, the angle of the inclined surface or the height of the vertical surface) can be obtained. The arrangement pitch can be variously changed.
For example, as shown in FIG. 2, when the incident angle of the incident light L1 with respect to the perpendicular v with respect to the inclined surface 25 of the triangular prism portion 12 is θ1, and the refraction angle in the triangular prism portion 12 is θ2,
According to Snell's law, sin θ1 / sin θ2 = η (η is a relative refractive index), and the incident light L1 is bent (refracted) toward the vertical reflecting surface 16 to become the incident light L2. Since the angle of the incident light L2 varies depending on the apex angle φ and the refractive index η of the triangular prism section 12, the position of the inclined surface 25, the angle φ, and the transparent surface so that the incident light L2 enters the vertical reflecting surface 16. It is necessary to determine the refractive index η of the material.
 続いて、本発明の第1の実施例に係る再帰性反射体10の製造方法について、図1(A)、(B)を参照しながら説明する。 Subsequently, a method of manufacturing the retroreflector 10 according to the first embodiment of the present invention will be described with reference to FIGS. 1 (A) and 1 (B).
(第1工程)
 まず、並べて配置された三角プリズム部12を表側に、三角波部15とこの三角波部15を横切って形成される横溝17とを裏側に有する、透明樹脂からなる成型母材をインジエクション成型又はプレス成型によって製造する。
(First step)
First, a molding base material made of a transparent resin having a triangular prism portion 12 arranged side by side on the front side and a triangular wave portion 15 and a lateral groove 17 formed across the triangular wave portion 15 on the back side is formed by injection molding or pressing. Manufactured by molding.
1)インジェクション成型(射出成型)
 この方法は、例えば、熱可塑性の透明樹脂(透明プラスチック)を溶融させた状態で、対となる金型内に注入し冷却して固化させた後、この金型を離間し取り出すことで、成型母材を形成する方法である。この方法では、熱可塑性の透明樹脂の代わりに熱硬化性の透明樹脂(透明プラスチック)を使用することもできる。なお、脱型は、隣り合う三角プリズム部12の形状が抜き方向に縮小し、三角波部15と横溝17も抜き方向に縮小する構成となっているので、容易である。
 また、成型母材の脱型を容易にするため、例えば、金型の材質選定(金型の樹脂接触面にめっき処理を施す等)や金型への樹脂の注入位置、また、金型の構造(冷却構造等)を設定することが好ましい。
1) Injection molding (injection molding)
In this method, for example, a thermoplastic transparent resin (transparent plastic) is melted, poured into a pair of molds, cooled and solidified, and then the molds are separated and taken out. This is a method of forming a base material. In this method, a thermosetting transparent resin (transparent plastic) can be used instead of the thermoplastic transparent resin. Demolding is easy because the shape of the adjacent triangular prism portion 12 is reduced in the drawing direction, and the triangular wave portion 15 and the lateral groove 17 are also reduced in the drawing direction.
In addition, in order to facilitate the demolding of the molding base material, for example, the material selection of the mold (such as plating the resin contact surface of the mold), the injection position of the resin into the mold, It is preferable to set the structure (cooling structure or the like).
2)プレス成型(金型成型)
 透明プラスチックからなるシート材を、ダイと、このダイに対して昇降可能なパンチの間に、間欠的に送り込むことで、成型母材を形成する方法である。
2) Press molding (mold molding)
This is a method of forming a molding base material by intermittently feeding a sheet material made of transparent plastic between a die and a punch capable of moving up and down relative to the die.
(第2工程)
 成型母材の裏面側に、金属皮膜を形成する。
 金属皮膜は、Ag、Al、Ni、Ti、Cr等の高反射率を有する金属を、蒸着やスパッタリングすることにより形成する。これにより、三角波部15の第1、第2の傾斜面18、19に第1、第2の傾斜反射面13、14を、横溝17の垂直面20に垂直反射面16を、それぞれ形成できる。
(Second step)
A metal film is formed on the back side of the molded base material.
The metal film is formed by vapor deposition or sputtering of a metal having high reflectivity such as Ag, Al, Ni, Ti, or Cr. Thereby, the first and second inclined reflecting surfaces 13 and 14 can be formed on the first and second inclined surfaces 18 and 19 of the triangular wave portion 15, and the vertical reflecting surface 16 can be formed on the vertical surface 20 of the lateral groove 17.
 このように、成型母材の裏面側に金属皮膜を形成することで、より強い反射光を得ることが可能になる。
 例えば、成型母材の表面側に金属皮膜を形成する場合、金属皮膜の厚みが、三角波部15の頂部で最も厚くなり、裾部へ向けて徐々に薄くなる。このため、形成された第1、第2の傾斜反射面で反射される光が、本来意図する方向からずれるおそれがある。
 一方、成型母材の裏面側に金属皮膜を形成する場合、金属皮膜は、三角波部15の裏面に沿って形成される。このため、形成された第1、第2の傾斜反射面で反射される光は、意図する方向へ反射される。
In this way, it is possible to obtain stronger reflected light by forming the metal film on the back side of the molded base material.
For example, when a metal film is formed on the surface side of the molded base material, the thickness of the metal film is the thickest at the top of the triangular wave portion 15 and gradually decreases toward the skirt. For this reason, there is a possibility that the light reflected by the formed first and second inclined reflecting surfaces may deviate from the originally intended direction.
On the other hand, when a metal film is formed on the back surface side of the molded base material, the metal film is formed along the back surface of the triangular wave portion 15. For this reason, the light reflected by the formed first and second inclined reflecting surfaces is reflected in the intended direction.
 そして、三角波部15の空洞部分21と横溝17内に樹脂23、24を充填し硬化させる。
 これにより、強度の向上を図った再帰性反射体10が得られる。
 なお、上記した第1、第2の傾斜反射面13、14と垂直反射面16は、金属皮膜による鏡面反射を利用して形成されているが、全反射(入射光が透過しない)を利用して形成する場合は、上記した第1工程のみを実施すればよい(第2工程の実施は不要)。第1、第2の傾斜反射面13、14と垂直反射面16を、金属皮膜による鏡面を利用して形成した場合は、底部(下部)の凹凸部に透明又は不透明の樹脂を充填することが可能であるが、第1、第2の傾斜反射面13、14と垂直反射面16を全反射を利用して形成する場合は、底部の凹凸部には樹脂を充填しない。
Then, the hollow portions 21 and the lateral grooves 17 of the triangular wave portion 15 are filled with resins 23 and 24 and cured.
Thereby, the retroreflector 10 which improved the intensity | strength is obtained.
The first and second inclined reflecting surfaces 13 and 14 and the vertical reflecting surface 16 described above are formed using specular reflection by a metal film, but use total reflection (incident light is not transmitted). In this case, only the first step described above may be performed (the second step need not be performed). When the first and second inclined reflecting surfaces 13 and 14 and the vertical reflecting surface 16 are formed using a mirror surface made of a metal film, the bottom (lower) uneven portion may be filled with a transparent or opaque resin. Although it is possible, when the 1st, 2nd inclined reflective surfaces 13 and 14 and the vertical reflective surface 16 are formed using total reflection, the uneven | corrugated | grooved part of a bottom part is not filled with resin.
 このような構成の再帰性反射体10は、入射光L1を三角プリズム部12の傾斜面25のR1位置で入光し、垂直反射面16側に屈折し、垂直反射面16のR2位置で反射し、第1の傾斜反射面13のR3位置で反射し、第2の傾斜反射面14のR4位置で反射し、三角プリズム部12の傾斜面25のR5位置から出光する。これによって、入射した光L1と、出光した光L3とが平行となり、再帰性反射が行われる。 The retroreflector 10 having such a configuration enters the incident light L1 at the R1 position of the inclined surface 25 of the triangular prism portion 12, refracts it toward the vertical reflecting surface 16, and reflects it at the R2 position of the vertical reflecting surface 16. Then, the light is reflected at the R3 position of the first inclined reflecting surface 13, reflected at the R4 position of the second inclined reflecting surface 14, and emitted from the R5 position of the inclined surface 25 of the triangular prism portion 12. Thereby, the incident light L1 and the emitted light L3 become parallel, and retroreflection is performed.
 次に、図3(A)、(B)を参照しながら、本発明の第2の実施例に係る再帰性反射体30について説明するが、前記した本発明の第1の実施例に係る再帰性反射体10と同一部材には同一符号を付し、詳しい説明を省略する。
 再帰性反射体30は、再帰反射部11と、この再帰反射部11に被さる三角プリズム部12とが、個別に製造されたものである。
 なお、第1の実施例に係る再帰性反射体10の横溝17は三角波部15より上方に突出して形成したが、第2の実施例に係る再帰性反射体30は、横溝17の深さを三角波部15の高さに一致させている。
Next, the retroreflector 30 according to the second embodiment of the present invention will be described with reference to FIGS. 3A and 3B. The recursion according to the first embodiment of the present invention described above will be described. The same members as those of the reflective reflector 10 are denoted by the same reference numerals, and detailed description thereof is omitted.
The retroreflector 30 is obtained by individually manufacturing the retroreflecting portion 11 and the triangular prism portion 12 covering the retroreflecting portion 11.
In addition, although the lateral groove 17 of the retroreflector 10 according to the first embodiment is formed to protrude upward from the triangular wave portion 15, the retroreflector 30 according to the second embodiment has a depth of the lateral groove 17. It is made to correspond to the height of the triangular wave part 15.
 三角プリズム部12は、第1のブロック31の表側に並べて配置され、この第1のブロック31の裏側に、複数の三角プリズム部12を連結する第1の板状部32が形成されている。
 再帰反射部11を形成する三角波部15と横溝17は、第2のブロック33の裏側に設けられ、この第2のブロック33の表側に、第2の板状部34が設けられている。
 ここで、第1、第2のブロック31、33(即ち、三角プリズム部12、三角波部15と横溝17、及び、第1、第2の板状部32、34)は、前記した透明材(透明樹脂)で構成されている。
The triangular prism portion 12 is arranged side by side on the front side of the first block 31, and a first plate-like portion 32 that connects the plurality of triangular prism portions 12 is formed on the back side of the first block 31.
The triangular wave portion 15 and the lateral groove 17 forming the retroreflecting portion 11 are provided on the back side of the second block 33, and the second plate-like portion 34 is provided on the front side of the second block 33.
Here, the first and second blocks 31 and 33 (that is, the triangular prism portion 12, the triangular wave portion 15 and the lateral groove 17, and the first and second plate-like portions 32 and 34) are made of the transparent material ( Transparent resin).
 第1、第2の板状部32、34には、連結時に位置合わせを行う位置合わせ手段35が設けられている。
 この位置合わせ手段35は、凸条部36と、この凸条部36が嵌入可能な溝部37とで構成されている。ここでは、凸条部36が、第1のブロック31の裏側に、第1の板状部32から突出した状態で設けられ、溝部37が、第2のブロック33(第2の板状部34)の表側に設けられているが、逆に設けてもよい。また、第1の板状部と第2の板状部の位置合わせができれば、位置合わせ手段の構成は種々変更できる。
The first and second plate- like parts 32 and 34 are provided with an alignment means 35 for performing alignment when connected.
This alignment means 35 is comprised by the protruding item | line part 36 and the groove part 37 in which this protruding item | line part 36 can be inserted. Here, the ridge portion 36 is provided on the back side of the first block 31 in a state of protruding from the first plate portion 32, and the groove portion 37 is formed in the second block 33 (second plate portion 34. ) Is provided on the front side, but may be provided in reverse. If the first plate-like portion and the second plate-like portion can be aligned, the configuration of the alignment means can be variously changed.
 これにより、第1のブロック31と第2のブロック33を、第1の板状部32及び第2の板状部34を介して、位置ずれを生じさせることなく一体的に連結(溝部37内に凸条部36を嵌入)でき、再帰性反射体30を形成できる。
 なお、第1のブロック31と第2のブロック33に凸状部36、溝部37を形成することになく、第2のブロック33の上に第1のブロック31を載せて、即ち、第1のブロックの三角プリズム部のピッチと、第2のブロックの垂直反射面のピッチが一致しない場合でも、これらを組み合わせても、再帰性反射体として機能する(他の実施例においても同じ)。
As a result, the first block 31 and the second block 33 are connected together via the first plate-like portion 32 and the second plate-like portion 34 without causing any displacement (inside the groove portion 37). The projecting ridges 36 can be inserted into the rear reflector 30, and the retroreflector 30 can be formed.
In addition, without forming the convex part 36 and the groove part 37 in the 1st block 31 and the 2nd block 33, the 1st block 31 is mounted on the 2nd block 33, ie, 1st Even when the pitch of the triangular prism portion of the block and the pitch of the vertical reflecting surface of the second block do not coincide with each other, they can be combined to function as a retroreflector (the same applies to other embodiments).
 続いて、本発明の第2の実施例に係る再帰性反射体30の製造方法について、図3(A)、(B)を参照しながら説明するが、この製造方法は、前記した再帰性反射体10の製造方法と略同様であるため、以下、簡単に説明する。 Subsequently, a method for manufacturing the retroreflector 30 according to the second embodiment of the present invention will be described with reference to FIGS. 3A and 3B. Since it is substantially the same as the manufacturing method of the body 10, it will be briefly described below.
(第1工程)
 まず、第1のブロック31と第2のブロック33を製造する。
 この第1のブロック31と第2のブロック33は、一体的に製造することなく、個別に製造する。
 なお、第1、第2のブロック31、33はそれぞれ、前記したインジェクション成型やプレス成型で作製したものを使用することができるが、予め製造されたものを購入して使用することもできる。
(First step)
First, the first block 31 and the second block 33 are manufactured.
The first block 31 and the second block 33 are individually manufactured without being manufactured integrally.
The first and second blocks 31 and 33 can be made by injection molding or press molding, respectively, but can be purchased and used in advance.
(第2工程)
 第1のブロック31と第2のブロック33を、第1の板状部32及び第2の板状部34を介して一体的に連結(溝部37内に凸条部36を嵌入)する。
 ここで、第1のブロック31と第2のブロック33の連結に際しては、第1の板状部32の裏面、及び、第2の板状部34の表面のいずれか一方又は双方に、透明樹脂や接着剤を塗布するのがよい。
 これにより、第1のブロック31と第2のブロック33が一体となる。
(Second step)
The first block 31 and the second block 33 are integrally connected through the first plate-like portion 32 and the second plate-like portion 34 (the protruding portion 36 is inserted into the groove portion 37).
Here, when the first block 31 and the second block 33 are connected, a transparent resin is provided on one or both of the back surface of the first plate portion 32 and the front surface of the second plate portion 34. Or an adhesive.
Thereby, the 1st block 31 and the 2nd block 33 are united.
(第3工程)
 第2のブロック33の裏面側に、前記した高反射率を有する金属を蒸着やスパッタリングすることにより、金属皮膜を形成する。
 これにより、三角波部15の第1、第2の傾斜面18、19に第1、第2の傾斜反射面13、14を、横溝17の垂直面20に垂直反射面16を、それぞれ形成できる。
 なお、ここでは、金属皮膜の形成を、第1のブロック31と第2のブロック33を連結した後(第2工程後)に実施したが、第1のブロック31と第2のブロック33を連結する前(第1工程後で第2工程前)に実施してもよい。この場合、第1のブロック31と、第1、第2の傾斜反射面13、14及び垂直反射面16が形成された第2のブロック33とを、連結することになる。
(Third step)
A metal film is formed on the back surface side of the second block 33 by vapor-depositing or sputtering the above-described metal having high reflectivity.
Thereby, the first and second inclined reflecting surfaces 13 and 14 can be formed on the first and second inclined surfaces 18 and 19 of the triangular wave portion 15, and the vertical reflecting surface 16 can be formed on the vertical surface 20 of the lateral groove 17.
Here, the metal film is formed after connecting the first block 31 and the second block 33 (after the second step), but the first block 31 and the second block 33 are connected. It may be carried out before (after the first step and before the second step). In this case, the first block 31 is connected to the second block 33 in which the first and second inclined reflecting surfaces 13 and 14 and the vertical reflecting surface 16 are formed.
 そして、三角波部15の空洞部分21と横溝17内に樹脂23、24を充填し硬化させる。
 なお、上記した第1、第2の傾斜反射面13、14と垂直反射面16は、金属皮膜による鏡面反射を利用して形成されているが、全反射(入射光が透過しない)を利用して形成する場合は、上記した第1工程と第2工程のみを実施すればよい(第3工程の実施は不要)。
 また、以上の再帰性反射体30において、第1の板状部32と第2の板状部34との位置合わせを行ったが、第1の板状部32と第2の板状部34との位置合わせは必須の要件ではなく、例えば、三角プリズム部12のピッチと、再帰反射部11の垂直反射面16のピッチが異なる場合でも本発明は適用される。なお、三角プリズム部12と第1、第2の傾斜反射面13、14は略直交しているのが好ましい。
Then, the hollow portions 21 and the lateral grooves 17 of the triangular wave portion 15 are filled with resins 23 and 24 and cured.
The first and second inclined reflecting surfaces 13 and 14 and the vertical reflecting surface 16 described above are formed using specular reflection by a metal film, but use total reflection (incident light is not transmitted). In this case, only the first step and the second step described above may be performed (the third step is not necessary).
In the above retroreflector 30, the first plate-like portion 32 and the second plate-like portion 34 are aligned, but the first plate-like portion 32 and the second plate-like portion 34 are aligned. Is not an essential requirement. For example, the present invention is applied even when the pitch of the triangular prism portion 12 and the pitch of the vertical reflecting surface 16 of the retroreflecting portion 11 are different. The triangular prism portion 12 and the first and second inclined reflecting surfaces 13 and 14 are preferably substantially orthogonal.
 以上、本発明を、実施例を参照して説明してきたが、本発明は何ら上記した実施例に記載の構成に限定されるものではなく、請求の範囲に記載されている事項の範囲内で考えられるその他の実施例や変形例も含むものである。例えば、前記したそれぞれの実施例や変形例の一部又は全部を組合せて本発明の再帰性反射体及びその製造方法を構成する場合も本発明の権利範囲に含まれる。
 前記実施例では、三角波部の空洞部分と横溝内に充填する樹脂に、成型母材と同一構成の樹脂を用いた場合について説明したが、異なる樹脂を用いてもよい。例えば、成型母材は通常の樹脂で製造し、三角波部の空洞部分と横溝内に充填する樹脂に全反射が生じる樹脂を使用することもできる。
The present invention has been described with reference to the embodiments. However, the present invention is not limited to the configurations described in the above-described embodiments, and is within the scope of the matters described in the claims. Other possible embodiments and modifications are also included. For example, the case where the retroreflector of the present invention and the manufacturing method thereof are configured by combining some or all of the above-described embodiments and modifications are also included in the scope of the right of the present invention.
In the above-described embodiment, the case where a resin having the same configuration as the molding base material is used as the resin filled in the hollow portion of the triangular wave portion and the lateral groove, but a different resin may be used. For example, the molded base material can be made of a normal resin, and a resin that causes total reflection can be used for the hollow portion of the triangular wave portion and the resin filled in the lateral groove.
 本発明に係る再帰性反射体は、第1、第2の傾斜反射面を横切って被さり、外部からの光を垂直反射面側に屈曲させる三角プリズム部を有するので、再帰性反射体の入光側の光軸線が、再帰性反射体の面に対してより垂直に近い側に位置し、再帰性反射体の受光面に対する使用効率が大きくなり、再帰性反射体の設置が容易となる。
 本発明に係る再帰性反射体の製造方法は、並べて配置された三角プリズム部と、第1、第2の傾斜反射面が形成される三角波部、及び、垂直反射面が形成される横溝(即ち、成型母材又は第1、第2のブロック)を、インジェクション成型又はプレス成型によって製造できるので、安価に大量生産できる。
The retroreflector according to the present invention has a triangular prism portion that covers the first and second inclined reflecting surfaces and bends the light from the outside to the vertical reflecting surface side. The optical axis on the side is positioned closer to the side perpendicular to the surface of the retroreflector, the use efficiency of the retroreflector with respect to the light receiving surface is increased, and the retroreflector can be easily installed.
The method of manufacturing a retroreflector according to the present invention includes a triangular prism portion arranged side by side, a triangular wave portion on which first and second inclined reflecting surfaces are formed, and a lateral groove on which a vertical reflecting surface is formed (that is, , The molding base material or the first and second blocks) can be manufactured by injection molding or press molding, and can be mass-produced at low cost.
10:再帰性反射体、11:再帰反射部、12:三角プリズム部、12a:微小平面部、13:第1の傾斜反射面、14:第2の傾斜反射面、15:三角波部、16:垂直反射面、17:横溝、18:第1の傾斜面、19:第2の傾斜面、20:垂直面、21:空洞部分、22:溝傾斜面、23、24:樹脂、25:傾斜面、26:垂直面、30:再帰性反射体、31:第1のブロック、32:第1の板状部、33:第2のブロック、34:第2の板状部、35:位置合わせ手段、36:凸条部、37:溝部 10: Retroreflector, 11: Retroreflective part, 12: Triangular prism part, 12a: Minute plane part, 13: First inclined reflecting surface, 14: Second inclined reflecting surface, 15: Triangular wave part, 16: Vertical reflection surface, 17: lateral groove, 18: first inclined surface, 19: second inclined surface, 20: vertical surface, 21: hollow portion, 22: groove inclined surface, 23, 24: resin, 25: inclined surface , 26: vertical plane, 30: retroreflector, 31: first block, 32: first plate-like portion, 33: second block, 34: second plate-like portion, 35: alignment means , 36: ridge, 37: groove

Claims (9)

  1.  三角波状に並べて配置された第1、第2の傾斜反射面と、該第1、第2の傾斜反射面に対して直交し、所定間隔で設けられた垂直反射面とを有する透明材からなる再帰反射部と、前記第1、第2の傾斜反射面を横切って被さり、外部からの光を前記垂直反射面側に屈曲させる三角プリズム部とを有することを特徴とする再帰性反射体。 It is made of a transparent material having first and second inclined reflecting surfaces arranged side by side in a triangular wave shape and perpendicular reflecting surfaces that are orthogonal to the first and second inclined reflecting surfaces and are provided at predetermined intervals. A retroreflector comprising: a retroreflecting portion; and a triangular prism portion that covers the first and second inclined reflecting surfaces and bends light from the outside toward the vertical reflecting surface.
  2.  請求項1記載の再帰性反射体において、該再帰性反射体の材料に屈折率が1.5以上の高屈折率材料を用い、前記第1、第2の傾斜反射面及び前記垂直反射面は全反射を利用して形成されていることを特徴とする再帰性反射体。 2. The retroreflector according to claim 1, wherein a high refractive index material having a refractive index of 1.5 or more is used as a material of the retroreflector, and the first and second inclined reflective surfaces and the vertical reflective surface are: A retroreflector characterized by being formed using total reflection.
  3.  請求項1記載の再帰性反射体において、前記第1、第2の傾斜反射面及び前記垂直反射面は鏡面反射を利用して形成されていることを特徴とする再帰性反射体。 2. The retroreflector according to claim 1, wherein the first and second inclined reflecting surfaces and the vertical reflecting surface are formed using specular reflection.
  4.  請求項2記載の再帰性反射体の製造方法であって、
     並べて配置された前記三角プリズム部を表側に、前記第1、第2の傾斜反射面が形成される三角波部と、該三角波部を横切って前記垂直反射面が形成される横溝を裏側に有する透明樹脂からなる成型母材を、インジェクション成型又はプレス成型によって製造する工程を有することを特徴とする再帰性反射体の製造方法。
    A method for producing a retroreflector according to claim 2,
    Transparent having the triangular prism portion arranged side by side on the front side, a triangular wave portion on which the first and second inclined reflection surfaces are formed, and a lateral groove on the back side in which the vertical reflection surface is formed across the triangular wave portion A method for producing a retroreflector, comprising a step of producing a molding base material made of a resin by injection molding or press molding.
  5.  請求項1又は3記載の再帰性反射体の製造方法であって、
     並べて配置された前記三角プリズム部を表側に、前記第1、第2の傾斜反射面が形成される三角波部と、該三角波部を横切って前記垂直反射面が形成される横溝を裏側に有する透明樹脂からなる成型母材を、インジェクション成型又はプレス成型によって製造する第1工程と、
     前記成型母材の裏面側に金属蒸着又はスパッタリングによって金属皮膜を形成し、前記第1、第2の傾斜反射面及び前記垂直反射面を形成する第2工程とを有することを特徴とする再帰性反射体の製造方法。
    A method for producing a retroreflector according to claim 1 or 3,
    Transparent having the triangular prism portion arranged side by side on the front side, a triangular wave portion on which the first and second inclined reflection surfaces are formed, and a lateral groove on the back side in which the vertical reflection surface is formed across the triangular wave portion A first step of producing a molding base material made of resin by injection molding or press molding;
    And a second step of forming the first and second inclined reflecting surfaces and the vertical reflecting surface by forming a metal film on the back side of the molding base material by metal vapor deposition or sputtering. A method for manufacturing a reflector.
  6.  請求項2記載の再帰性反射体の製造方法であって、
     並べて配置された前記三角プリズム部が表側に、該三角プリズム部を連結する透明樹脂からなる第1の板状部が裏側に形成された第1のブロックと、透明樹脂からなる第2の板状部を表側に、前記第1、第2の傾斜反射面が形成される三角波部、及び、該三角波部を横切って前記垂直反射面が形成される横溝を裏側に有する第2のブロックを、それぞれインジェクション成型又はプレス成型によって製造する第1工程と、
     前記第1のブロックと前記第2のブロックを、前記第1の板状部及び前記第2の板状部を介して一体的に連結する第2工程とを有することを特徴とする再帰性反射体の製造方法。
    A method for producing a retroreflector according to claim 2,
    The triangular prism portion arranged side by side is on the front side, the first plate made of transparent resin connecting the triangular prism portion is formed on the back side, and the second plate shape made of transparent resin. A second block having a triangular wave part on the front side, a triangular wave part on which the first and second inclined reflective surfaces are formed, and a lateral groove on the back side in which the vertical reflective surface is formed across the triangular wave part, A first step of manufacturing by injection molding or press molding;
    And a second step of integrally connecting the first block and the second block via the first plate-like portion and the second plate-like portion. Body manufacturing method.
  7.  請求項1又は3記載の再帰性反射体の製造方法であって、
     並べて配置された前記三角プリズム部が表側に、該三角プリズム部を連結する透明樹脂からなる第1の板状部が裏側に形成された第1のブロックと、透明樹脂からなる第2の板状部を表側に、前記第1、第2の傾斜反射面が形成される三角波部、及び、該三角波部を横切って前記垂直反射面が形成される横溝を裏側に有する第2のブロックを、それぞれインジェクション成型又はプレス成型によって製造する第1工程と、
     前記第1のブロックと前記第2のブロックを、前記第1の板状部及び前記第2の板状部を介して一体的に連結する第2工程と、
     前記第1工程又は前記第2工程の後に、前記第2のブロックの裏面側に金属蒸着又はスパッタリングによって金属皮膜を形成し、前記第1、第2の傾斜反射面及び前記垂直反射面を形成する第3工程とを有することを特徴とする再帰性反射体の製造方法。
    A method for producing a retroreflector according to claim 1 or 3,
    The triangular prism portion arranged side by side is on the front side, the first plate made of transparent resin connecting the triangular prism portion is formed on the back side, and the second plate shape made of transparent resin. A second block having a triangular wave part on the front side, a triangular wave part on which the first and second inclined reflective surfaces are formed, and a lateral groove on the back side in which the vertical reflective surface is formed across the triangular wave part, A first step of manufacturing by injection molding or press molding;
    A second step of integrally connecting the first block and the second block via the first plate-like portion and the second plate-like portion;
    After the first step or the second step, a metal film is formed on the back side of the second block by metal vapor deposition or sputtering to form the first and second inclined reflection surfaces and the vertical reflection surface. A method for producing a retroreflector comprising a third step.
  8.  請求項6又は7記載の再帰性反射体の製造方法において、前記第1の板状部及び前記第2の板状部には、連結時に位置合わせを行う位置合わせ手段が設けられていることを特徴とする再帰性反射体の製造方法。 The method of manufacturing a retroreflector according to claim 6 or 7, wherein the first plate-like portion and the second plate-like portion are provided with alignment means for performing alignment at the time of connection. A method for producing a retroreflector, which is characterized.
  9.  請求項5又は7記載の再帰性反射体の製造方法において、前記三角波部に前記第1、第2の傾斜反射面、及び前記横溝に前記垂直反射面を形成した後に、前記三角波部の空洞部分と前記横溝内に樹脂を充填することを特徴とする再帰性反射体の製造方法。 8. The method of manufacturing a retroreflector according to claim 5, wherein after forming the first and second inclined reflecting surfaces in the triangular wave portion and the vertical reflecting surface in the lateral groove, a hollow portion of the triangular wave portion. And a method of manufacturing a retroreflector, wherein the transverse groove is filled with a resin.
PCT/JP2017/042574 2017-01-27 2017-11-28 Retroflector and retroflector production method WO2018139035A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018564127A JP6661799B2 (en) 2017-01-27 2017-11-28 Retroreflector and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-013335 2017-01-27
JP2017013335 2017-01-27

Publications (1)

Publication Number Publication Date
WO2018139035A1 true WO2018139035A1 (en) 2018-08-02

Family

ID=62979102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042574 WO2018139035A1 (en) 2017-01-27 2017-11-28 Retroflector and retroflector production method

Country Status (2)

Country Link
JP (1) JP6661799B2 (en)
WO (1) WO2018139035A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118752A1 (en) * 2020-12-04 2022-06-09 マクセル株式会社 Floating-in-space-image display device and light source device
JP7117473B1 (en) * 2021-07-26 2022-08-12 株式会社アスカネット Aerial imaging device manufacturing method
WO2022185927A1 (en) * 2021-03-05 2022-09-09 マクセル株式会社 Spatial floating image display device
WO2022209722A1 (en) * 2021-03-31 2022-10-06 マクセル株式会社 Spatial floating image display apparatus
WO2022209721A1 (en) * 2021-03-31 2022-10-06 マクセル株式会社 Space floating image display device
WO2023007816A1 (en) * 2021-07-26 2023-02-02 株式会社アスカネット Method for manufacturing aerial image formation device, and aerial image formation device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2986161B2 (en) * 1988-05-20 1999-12-06 ミネソタ マイニング アンド マニユフアクチユアリング カンパニー High efficiency cube corner retroreflective material
US20070071932A1 (en) * 2005-09-26 2007-03-29 Kejian Huang Retroreflective sheeting
US20080231976A1 (en) * 2005-03-10 2008-09-25 De La Rue International Limited Security Device Based on Customized Microprism Film
JP2011511303A (en) * 2007-12-21 2011-04-07 キム,ヒョンシク Retroreflector
WO2015198499A1 (en) * 2014-06-27 2015-12-30 株式会社アスカネット Retroreflector, and stereoscopic image display device and method using same
JP2016057346A (en) * 2014-09-05 2016-04-21 株式会社アスカネット Retroreflector and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2986161B2 (en) * 1988-05-20 1999-12-06 ミネソタ マイニング アンド マニユフアクチユアリング カンパニー High efficiency cube corner retroreflective material
US20080231976A1 (en) * 2005-03-10 2008-09-25 De La Rue International Limited Security Device Based on Customized Microprism Film
US20070071932A1 (en) * 2005-09-26 2007-03-29 Kejian Huang Retroreflective sheeting
JP2011511303A (en) * 2007-12-21 2011-04-07 キム,ヒョンシク Retroreflector
WO2015198499A1 (en) * 2014-06-27 2015-12-30 株式会社アスカネット Retroreflector, and stereoscopic image display device and method using same
JP2016057346A (en) * 2014-09-05 2016-04-21 株式会社アスカネット Retroreflector and manufacturing method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118752A1 (en) * 2020-12-04 2022-06-09 マクセル株式会社 Floating-in-space-image display device and light source device
WO2022185927A1 (en) * 2021-03-05 2022-09-09 マクセル株式会社 Spatial floating image display device
WO2022209722A1 (en) * 2021-03-31 2022-10-06 マクセル株式会社 Spatial floating image display apparatus
WO2022209721A1 (en) * 2021-03-31 2022-10-06 マクセル株式会社 Space floating image display device
JP7481289B2 (en) 2021-03-31 2024-05-10 マクセル株式会社 Space-floating image display device
JP7117473B1 (en) * 2021-07-26 2022-08-12 株式会社アスカネット Aerial imaging device manufacturing method
WO2023007816A1 (en) * 2021-07-26 2023-02-02 株式会社アスカネット Method for manufacturing aerial image formation device, and aerial image formation device
TWI808809B (en) * 2021-07-26 2023-07-11 日商亞斯卡奈特股份有限公司 Production method for aerial image forming device, and aerial image forming device

Also Published As

Publication number Publication date
JPWO2018139035A1 (en) 2019-11-07
JP6661799B2 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
WO2018139035A1 (en) Retroflector and retroflector production method
CN106104661B (en) Marker device
JP3677042B2 (en) Retroreflective corner cube article and method of making the same
JP2735299B2 (en) Retro-reflective material
JP4310421B2 (en) A tiled retroreflective sheet consisting of cube corner elements with steep slopes
US6120280A (en) Microprism master mold
US6136416A (en) Raised zone retroreflective cube corner article
KR101918135B1 (en) Retroreflector, and stereoscopic image display device and method using same
JP5091864B2 (en) Triangular pyramid cube corner retroreflective article and method for manufacturing the same
JP2001503879A (en) High tilt retroreflective cube corner article
KR102219750B1 (en) Production method for stereoscopic-image-forming device, and stereoscopic-image-forming device
JP3590065B2 (en) Retroreflective corner cube article and method of making the same
US9939639B2 (en) Screen provided with retroreflective microstructures
JP5526125B2 (en) Hexagonal cube corner retroreflective article
JP5820955B1 (en) Retroreflector and stereoscopic image display device using the same
JP3824471B2 (en) Cube corner type retroreflective sheet and cube corner mold
US10583585B2 (en) Method of manufacturing a screen provided with retroreflective microstructures
WO2004057379A1 (en) Retroreflecting functional member and retroreflecting unit
US11029456B2 (en) Retroreflector having a curved surface
JP2016057346A (en) Retroreflector and manufacturing method therefor
JP6833316B2 (en) Retroreflector and its manufacturing method
JP2019056934A (en) Image display body
JP2017129809A (en) Retroreflector
JP2021133508A (en) Molding mold
CN104133259A (en) Retroreflection film based on substrate assembly technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564127

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894490

Country of ref document: EP

Kind code of ref document: A1