WO2018138786A1 - Advance warning detection method, advance warning detection system, and advance warning detection program - Google Patents

Advance warning detection method, advance warning detection system, and advance warning detection program Download PDF

Info

Publication number
WO2018138786A1
WO2018138786A1 PCT/JP2017/002407 JP2017002407W WO2018138786A1 WO 2018138786 A1 WO2018138786 A1 WO 2018138786A1 JP 2017002407 W JP2017002407 W JP 2017002407W WO 2018138786 A1 WO2018138786 A1 WO 2018138786A1
Authority
WO
WIPO (PCT)
Prior art keywords
sign
pipe
water level
pipe part
air pressure
Prior art date
Application number
PCT/JP2017/002407
Other languages
French (fr)
Japanese (ja)
Inventor
千葉 洋
祐輔 樋田
悟覚 ▲高▼馬
鈴木 貴志
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2017/002407 priority Critical patent/WO2018138786A1/en
Publication of WO2018138786A1 publication Critical patent/WO2018138786A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B31/00Predictive alarm systems characterised by extrapolation or other computation using updated historic data

Definitions

  • the present invention relates to a sign detection method, a sign detection system, and a sign detection program.
  • an object of the present invention is to detect at an early stage a sign of inundation occurring around a drainage pipe.
  • One aspect is the inundation of an inland water in an area where a drain pipe including a drain pipe and a plurality of pipes branched from the drain pipe and communicating the internal space and the external space of the drain pipe is laid.
  • a predictive detection method for detecting a predictor wherein a computer performs the following processing.
  • the computer acquires information indicating that the water level in the drainage pipe at the location connected to the first pipe of the plurality of pipes is equal to or greater than the threshold
  • the second of the plurality of pipes Based on the air pressure in the drain pipe part at the location connected to the pipe part, the presence / absence of a sign of inundation in the vicinity of the second pipe part is determined.
  • the computer detects a sign of inundation in the vicinity of the second pipe portion, the computer outputs an alarm indicating the sign of the inland flood.
  • FIG. 1 is a diagram illustrating a configuration example of the sign detection system according to the first embodiment.
  • the sign detection system 1 includes a plurality of measuring devices 2 (2A to 2E), a plurality of repeaters 3 (3A to 3D), and a sign detection device 4. .
  • Each of the plurality of measuring devices 2 is a device that measures a water level and an air pressure, and is installed in, for example, a drain pipe buried in the ground.
  • the measuring device 2 in the sign detection system 1 of the present embodiment includes the following three types of measuring devices.
  • the first measuring device includes a water level sensor 201 and a control device 203 as in the measuring device 2B of FIG.
  • the second measuring device includes a pressure sensor 202 and a control device 203 like the measuring device 2D of FIG.
  • the third measuring device includes a water level sensor 201, a pressure sensor 202, and a control device 203 as in the measuring device 2A in FIG.
  • the measuring devices 2C and 2E in FIG. 1 are each one of the above-described three types of measuring devices.
  • the water level sensor 201 is a sensor that detects a water level
  • the pressure sensor 202 is a sensor that detects air pressure.
  • the control device 203 acquires the sensor output from one or both of the water level sensor 201 and the pressure sensor 202 and transmits the sensor output to the sign detection device 4.
  • the control device 203 includes a communication unit that performs wireless communication with a predetermined repeater 3.
  • the plurality of repeaters 3 are each connected to a network 5 such as the Internet, and are connected to the sign detection device 4 via the network 5. That is, the plurality of measuring devices 2 are connected to the sign detection device 4 via the predetermined relay 3 and the network 5, respectively.
  • the repeater 3 may be connected to one measuring device 2A as in the repeater 3A in FIG. 1, or may be connected to a plurality of measuring devices 2B to 2D as in the repeater 3B in FIG. May be.
  • the repeater 3 may be connected to the network 5 via another repeater 3C, like the repeater 3D of FIG.
  • the sign detection device 4 is a device that collects information such as the water level and air pressure in the drainage pipes from the plurality of measuring devices 2 and detects a sign such as inundation in the drainage pipes based on the information.
  • the sign detection device 4 is connected to the network 5, and collects information such as the water level and air pressure of the drainage pipe line from the measurement device 2 via the relay 3 and the network 5.
  • the sign detection apparatus 4 transmits an alarm (alarm) to external apparatuses, such as the portable terminal 6A and the alarm device 6B, via the network 5 when detecting a sign of flooding in the drainage pipe.
  • the sign detection device 4 includes a data acquisition unit 401, a prediction unit 402, an alarm output unit 403, and a storage unit 409.
  • the data acquisition unit 401 acquires water level and air pressure information from each of the plurality of measuring devices 2.
  • the prediction unit 402 determines whether there is a sign of inland flooding based on information on the water level and air pressure acquired from the plurality of measuring devices 2 and predicts a place where the inland flooding may occur. Based on the prediction result of the prediction unit 402, the alarm output unit 403 generates an alarm (alarm) for notifying a place where the inundation may occur, and outputs the alarm to a predetermined external device.
  • storage part 409 memorize
  • FIG. 2 is a cross-sectional view showing an installation example of a measuring device.
  • FIG. 3 is a cross-sectional view illustrating a configuration example of a measurement device including a pressure sensor.
  • the sign detection system 1 is applicable to, for example, detection of a sign of inundation in a drainage pipe that collects rainwater and discharges it into a river.
  • FIG. 2 shows an example in which a plurality of measuring devices 2 are installed in a drainage pipe 8 embedded in the underground 7.
  • the drainage pipe 8 includes a drainage pipe part 801 through which the rainwater 10 flows and a plurality of pipe parts 811 and 812 branched from the drainage pipe part 801.
  • Each of the plurality of pipe portions 811 and 812 extends from the drain pipe portion 801 to the ground surface 7S, and communicates the internal space of the drain pipe portion 801 with the external space (ground).
  • the plurality of pipe portions 811 and 812 are, for example, human holes (manholes), and the open ends on the ground surface 7S side of the plurality of human hole portions 811 and 812 are closed by the manhole cover 9.
  • the plurality of measuring devices 2 in the sign system 1 of the present embodiment are installed in, for example, the human hole portions 811 and 812 of the drain pipe 8.
  • the measuring device 2 ⁇ / b> F including the water level sensor 201 among the water level sensor 201 and the pressure sensor 202 is installed in the upstream human hole portion 811, and the water level sensor 201 and the pressure are installed in the downstream human hole portion 812.
  • a measuring device 2G provided with a sensor 202 is installed.
  • the control device 203 and the pressure sensor 202 are preferably installed in a manner that does not get wet with water. For this reason, the control device 203 and the pressure sensor 202 in the measuring device 2 are installed, for example, on the surface of the manhole cover 9 facing the internal space side of the human hole portions 811 and 812. At this time, it is more preferable that the control device 203 and the pressure sensor 202 are accommodated in a sealed case 205 provided with an internal pressure adjusting valve 206 as shown in FIG.
  • the internal pressure regulating valve 206 is a valve that matches the pressure in the sealed internal space of the case 205 with the pressure outside the case 205, and is configured to allow air to pass but not water.
  • case 205 is formed with a through hole (not shown) through which the cable 204 that connects the control device 203 and the water level sensor 201 installed in the flowing water pipe section 801 is passed.
  • the through hole is closed with a sealing material 207 with the cable 204 inserted.
  • FIG. 3 is a configuration example of the measuring device 2 including the water level sensor 201 and the pressure sensor 202.
  • a device in which the pressure sensor 202 in the measuring device 2G of FIG. 3 is omitted is used.
  • the measuring device 2 including only the pressure sensor 202 of the water level sensor 201 and the pressure sensor 202 for example, a device in which the water level sensor 201 and the cable 204 in the measuring device 2G in FIG. 3 are omitted is used.
  • the case 205 in the measuring device 2 in which the water level sensor 201 and the cable 204 are omitted may not have a through hole. When a through hole is formed in the case 205, the through hole is closed with a sealing material 207.
  • the case 205 containing the control device 203 or the like is attached to the back surface of the manhole cover 9 in a direction that does not block the internal pressure adjusting valve 206 using, for example, a predetermined mounting bracket or the like.
  • the case 205 may be attached to the back surface of the manhole cover 9 using, for example, an adhesive material or an adhesive material.
  • the measuring device 2 when installing the measuring device 2 in the manhole part 811,812, it is needless to say that the measuring device 2 may be attached not only to the back surface of the manhole cover 9, but also to the inner peripheral surface of the manhole part811,812. .
  • the plurality of measuring devices 2 installed at predetermined locations of the drainage pipe 8 are each driven by a battery (not shown), and the sensor outputs of the water level sensor 201 and the pressure sensor 202 are transmitted through the nearest repeater 3 to the sign detection device 4. Send to.
  • the sign detection device 4 determines whether or not there is a sign of inundation based on the information on the water level and air pressure collected from each measurement device 2 and the network information indicating the installation location of the measurement device 2 in the drain pipe 8. And predict where inland flooding may occur.
  • FIG. 4 is a diagram showing an example of the network information indicating the installation location of the measuring device.
  • FIG. 5 is a diagram illustrating an example of a drain pipe network.
  • a group is information for identifying a drain pipe
  • a node is information for identifying a human hole (manhole) in the group (drain pipe 8).
  • the downstream node in the data table 11 is one piece of information associated with the node, and is information indicating a node (human hole) adjacent on the downstream side as viewed from itself.
  • the symbol “-” in the downstream node column of the data table 11 means that there is no corresponding node.
  • the sensor in the data table 11 is one piece of information associated with a node, and is information indicating a sensor included in the measurement device 2 installed in the node.
  • the repeater in the data table 11 is one piece of information associated with a node, and is information indicating a repeater with which the measuring device 2 installed in the node communicates.
  • the normal air pressure in the data table 11 is one piece of information associated with the node, and indicates the air pressure around the node when the water level 10S of the rainwater 10 flowing through the drainage pipe 8 is the normal water level. Information.
  • the symbol “-” in each column of the sensor, repeater, and normal air pressure in the data table 11 means that there is no corresponding information.
  • the position information in the data table 11 is one piece of information associated with the node, and is information indicating the geographical position of the node (human hole).
  • the first group G1 in the data table 11 of FIG. 4 includes four nodes N1 to N4. Of the four nodes N1 to N4, the first node N1 and the second node N2 each have a downstream node as the third node N3. The third node N3 has a downstream node as the fourth node N4. Therefore, the relationship between the drain pipe portion 801 and the manhole in the drain pipe 8 of the group G1 can be represented by a Y-shaped topology as shown in FIG.
  • Each of the four nodes N1 to N4 in FIG. 5 represents a human hole in the drain pipe 8 of the group G1.
  • the three links L 1 to L 3 in FIG. 5 each represent a set of adjacent human holes in the drainage pipe 8.
  • the first node N1 is connected to the downstream third node N3 by the first link L1.
  • the second node N2 is connected to the downstream third node N3 by the second link L2.
  • the third node N3 is connected to the downstream fourth node N4 by the third link L3. That is, the rainwater flowing in the vicinity of the human hole corresponding to the first node N1 in the drain pipe portion 801 in the drain pipe 8 of the group G1 passes through the vicinity of the human hole corresponding to the third node N3, It reaches the vicinity of the human hole corresponding to the fourth node N4.
  • the water level sensor 201 is installed in the human hole corresponding to the second node N2, and the water level sensor 201 and the pressure sensor 203 are installed in the fourth node N4.
  • the sign detection device 4 performs drainage of the group G1 based on the water level around the human hole corresponding to the second node N2 and the water level and air pressure around the human hole corresponding to the fourth node N4. A sign of inundation in the pipeline 8 is detected.
  • each of the measuring device 2 and the sign detection device 4 installed in the drain pipe 8 of the group G1 performs a process as shown in FIG. 6, for example.
  • FIG. 6 is a sequence diagram illustrating processing performed by the sign detection system according to the first embodiment.
  • the measuring device 2F in FIG. 6 is a measuring device installed in a human hole (upstream human hole) corresponding to the second node N2 of the group G1 in the table data 11 in FIG. Only the water level sensor 201 of the pressure sensors 202 is provided.
  • the measuring device 2G of FIG. 6 is a measuring device installed in a human hole (downstream human hole) corresponding to the fourth node N4 of the group G1 in the table data 11 of FIG.
  • a pressure sensor 202 is provided.
  • Step S1 is a process for measuring the water level
  • step S2 is a process for determining whether or not the water level is equal to or higher than a threshold value.
  • the processing in step S1 is performed by the water level sensor 201 and the control device 203 of the measuring device 2F, and the determination processing in step S2 is performed by the control device 203.
  • the control device 203 After acquiring the sensor output from the water level sensor 201 and calculating the current water level, the control device 203 determines whether or not the calculated water level is greater than or equal to a threshold value.
  • the determination threshold value of step S2 is, for example, a value of about 80% (that is, about 0.8H) with respect to the water level H at which the portion near the place where the measuring device 2F of the drain pipe unit 801 is installed becomes full. To do.
  • step S3 When the measured water level is smaller than the threshold value (step S2; NO), the measuring device 2F continues the process of monitoring the water level as it is. On the other hand, when the measured water level is equal to or higher than the threshold (step S2; YES), the measuring device 2F transmits the sign information to the sign detection device 4 (step S3).
  • the process of step S3 is performed by the control device 203 of the measuring device 2F.
  • the control device 203 generates predictive information including information indicating the manhole (second node N2) in which the measuring device 2F is installed and information indicating that there is a possibility of drainage flooding. . Thereafter, the control device 203 connects to the nearest repeater 3 and transmits the sign information to the sign detection device 4 via the repeater 3 and the network 5.
  • the sign detection device 4 that has received the sign information from the measuring device 2F first selects a place to be detected as a flood sign based on the sign information (step S11).
  • the process of step S11 is performed by the data collection unit 401 of the sign detection device 4, for example.
  • the data collection unit 401 detects a flood sign based on information included in the sign information indicating the manhole (node) where the measuring device 2F that transmitted the sign information is installed and the data table 11 of the storage unit 409. Select the target (hereinafter referred to as “detection target location”).
  • the data collection unit 401 uses the fourth node N4, which is downstream of the second node N2 where the measurement device 2F is installed and can measure the air pressure, as a detection target location.
  • the sign detection device 4 When the detection target location is selected, the sign detection device 4 next performs an overflow sign detection process (step S12).
  • the sign detection device 4 determines the presence / absence of an inundation sign at the detection target location based on the amount of change in air pressure at the detection target location of the drainage pipe 8. When the amount of change in air pressure at the detection target location is equal to or greater than the threshold, the sign detection device 4 determines that there is a sign of flooding in the detection target location.
  • the sign detection device 4 After completing the flood sign detection process, the sign detection device 4 next determines whether or not a flood sign has been detected (step S13). For example, the alarm output unit 403 of the sign detection device 4 performs the determination process in step S13. When a sign of flooding is detected (step S13; YES), the alarm output unit 403 performs a process of outputting an alarm to the external device 6 (step S14). After outputting the alarm, the sign detection device 4 ends the process based on the received sign information. If no sign of flooding is detected (step S13; NO), the sign detection device 4 skips the process of step S14 and ends the process based on the received sign information. After the process based on the received sign information is finished, the sign detection device 4 is in a standby state until the next sign information is received.
  • the sign detection device 4 when the water level monitored by the measuring device 2 installed in the drain pipe 8 is equal to or higher than the threshold value, the sign detection device 4 detects the inundation sign. A place to be selected is selected, and an inundation sign detection process (step S12) is performed.
  • the sign detection device 4 performs, for example, the process illustrated in FIG. 7 as the process of step S12.
  • FIG. 7 is a flowchart for explaining the contents of the flood sign detection process performed by the sign detection apparatus.
  • the sign detection device 4 first determines whether or not communication with the measuring device 2 that transmitted the sign information is possible (step S1201).
  • the determination in step S1201 is performed by the data collection unit 401, for example.
  • the data collection unit 401 tries to access the measuring device 2 that transmitted the sign information by referring to the transmission source information included in the sign information.
  • the data collection unit 401 determines whether or not communication with the measurement device 2F installed in the human hole corresponding to the second node N2 is possible.
  • step S1201 When communication with the measuring device 2 that transmitted the sign information is possible (step S1201; YES), the sign detection device 4 next determines whether or not the estimated increase in air pressure at the detection target location of the flood sign is greater than or equal to a dangerous value. Processing for determining whether or not (steps S1202 to 1205) is performed. On the other hand, when the communication with the measuring device 2 that has transmitted the sign information cannot be performed (step S1201; NO), the sign detection device 4 next determines that the actual increase in the air pressure at the detection target location of the flood sign is greater than or equal to the dangerous value. Processing for determining whether or not there is (steps S1206 to 1208) is performed.
  • the estimated increase amount of the air pressure is an increase amount of the air pressure calculated based on the estimated value of the air pressure
  • the actual increase amount of the air pressure is an increase amount of the air pressure calculated based on the measured value (actual value) of the air pressure.
  • the sign detection device 4 When performing the process of determining whether or not the estimated increase amount of the air pressure is greater than or equal to the danger value, the sign detection device 4 next acquires water level data from the measuring device 2 that transmitted the sign information (step S1202). The process of step S1202 is performed by the data collection unit 401 of the sign detection device 4.
  • the sign detection device 4 acquires rainfall information around the detection target location of the flood sign (step S1203).
  • the data collection unit 401 performs the process of step S1203.
  • the data collection unit 401 refers to the data table 11 to identify the geographical position of the node selected as the detection target location, and acquires rainfall information such as total rainfall and hourly rainfall around the geographical position. To do.
  • the data collection unit 401 acquires, for example, rainfall information around the detection target location from a web site that provides weather information.
  • step S1204 the sign detection device 4 estimates the air pressure at the detection target location based on the acquired water level and rainfall information (step S1204).
  • the process of step S1204 is performed by the prediction unit 402 of the sign detection device 4.
  • the prediction unit 402 calculates an estimated value of the air pressure in the human hole corresponding to the node selected as the detection target location of the inundation sign based on the change in the water level calculated from the acquired water level data and the rainfall information. For example, the prediction unit 402 calculates the estimated value Y of air pressure by the following equation (1).
  • X1 of Formula (1) is the water level in the location where the measuring device 2 that transmitted the sign information is installed.
  • x2 and x3 are the total rainfall and the hourly rainfall around the detection target location, respectively.
  • a1, a2, and a3 are weighting factors, respectively, and c in equation (1) is a constant.
  • the coefficients a1, a2, and a3, and the constant c are information indicating the correlation between the water level at the location where the measuring device 2 that transmitted the sign information in the drain pipe 8 is installed and the air pressure at the detection target location.
  • the coefficients a1, a2, and a3 and the constant c are calculated in advance by, for example, multiple regression analysis.
  • step S1204 the sign detection device 4 determines whether or not the estimated increase amount of the air pressure calculated based on the estimated air pressure value Y and the normal air pressure is greater than or equal to the dangerous value (step S1205).
  • the determination in step S1205 is performed by the prediction unit 402.
  • the prediction unit 402 obtains the normal air pressure associated with the node selected as the detection target location from the data table 11 and calculates the estimated increase amount of the air pressure.
  • the danger value is calculated in advance based on the relationship between the water pressure P (atmospheric pressure) and the water depth D (m) given by the following formula (2), for example.
  • D 10 ⁇ P / 1 atm (2)
  • the danger value may be set to a value (0.16 atm) of 80% of the pressure P calculated by the equation (2), for example, with a safety factor of 80%.
  • step S1205 When the estimated increase amount of the air pressure is greater than or equal to the danger value (step S1205; YES), the prediction unit 402 recognizes that there is a sign of flooding at the detection target location in the drain pipe 8 (step S1209), and flood sign detection processing. Exit. On the other hand, when the estimated increase amount of the air pressure is smaller than the danger value (step S1205; NO), the prediction unit 402 next determines whether or not the actual increase amount of the air pressure at the detection target location of the inundation sign is greater than or equal to the danger value. Is performed (steps S1206 to S1208).
  • the sign detection device 4 When performing the process of determining whether or not the actual increase in air pressure is greater than or equal to the danger value, the sign detection device 4 receives the air pressure data from the measurement device 2 installed in the human hole corresponding to the node selected as the detection target location. To get. For this reason, the sign detection device 4 first determines whether or not the air pressure at the detection target location can be measured (step S1206).
  • the process of step S1206 is performed by the data collection unit 401 of the sign detection device 4.
  • the data collection unit 401 has the measurement device 2 including the pressure sensor 202 installed in the human hole corresponding to the node selected as the detection target location, and can communicate with the measurement device 2. It is determined whether or not.
  • the data collection unit 401 refers to the data table 11 and determines whether or not the measurement device 2 including the pressure sensor 202 is installed at the detection target location.
  • the sign detection device 4 recognizes that the detection of the sign of flooding has failed (step S1211), and ends the flood sign detection process.
  • the sign detection device 4 outputs, for example, an error notification notifying the operator of the sign detection device 4 that the detection has failed.
  • step S1206 when the air pressure at the detection target location can be measured (step S1206; YES), the data collection unit 401 of the sign detection device 4 next places the human hole corresponding to the node selected as the detection target location. Air pressure data is acquired from the installed measuring device 2 (step S1207).
  • the sign detection device 4 determines whether or not the actual increase in air pressure calculated based on the current air pressure acquired from the measurement device 2 and the normal air pressure is greater than or equal to a dangerous value. (Step S1208).
  • the prediction unit 402 performs the determination in step S1208.
  • the prediction unit 402 acquires the normal air pressure at the human hole corresponding to the node selected as the detection target location from the data table 11 and calculates the actual increase amount of the air pressure.
  • the danger value is the same value as the danger value used in the determination in step S1205.
  • step S1208 When the actually increased amount of air pressure is greater than or equal to the dangerous value (step S1208; YES), the prediction unit 402 recognizes that there is a sign of flooding at the detection target location in the drainage pipe 8 (step S1209), and flood sign detection processing. Exit. On the other hand, when the actual increase amount of the air pressure is smaller than the danger value, the prediction unit 402 recognizes that there is no sign of inundation at the detection target location in the drainage pipe 8 (step S1210), and ends the inundation sign detection process. .
  • step S12 the sign detection device 4 transmits an alarm for notifying the external device 6 of the flood sign as shown in FIG. To do.
  • FIG. 8 is a diagram for explaining a method of notifying a sign of flooding.
  • FIG. 8 as an example of the external device 6 that transmits an alarm for the sign detection device 4 to notify the sign of flooding, a portable terminal 6A, a notification device 6B installed on the road, a disaster prevention wireless terminal 6C of the administrative institution 13, and broadcasting A display device 6D installed in the station 14 is shown.
  • the mobile terminal 6A is an information processing apparatus (for example, a mobile phone, a smartphone, a tablet computer, or the like) that can perform various types of communication via the network 5.
  • the alarm output unit 403 of the sign detection device 4 When transmitting an alarm from the sign detection device 4 to the portable terminal 6A, the alarm output unit 403 of the sign detection device 4 generates, for example, a message notifying the sign of flooding, and sends the message via the network 5 to the portable terminal 6A. Send to.
  • the sign detection device 4 for example, based on the geographical position of the node that is the detection target location of the flood sign and the position information of the mobile terminal 6 ⁇ / b> A, the human hole portion 812 corresponding to the node that is the detection target location.
  • An alarm may be transmitted to the mobile terminal 6A of the user 12 in the vicinity of.
  • the position information of the mobile terminal 6A can be acquired by using, for example, a Global Positioning System (GPS).
  • GPS Global Positioning System
  • the alarm device 6B installed on the road is a device that outputs voice and text information installed in the vicinity of the human hole portion 812 of the drain pipe 8.
  • the alarm includes a communication unit that communicates with the sign detection device 4 via the network 5 and a display unit that displays a message received from the sign detection device 4.
  • the sign detection device 4 transmits an alarm including a message notifying the sign of flooding to the alarm device 6B installed in the vicinity of the human hole portion 812 associated with the detection target location.
  • the alarm device 6B that has received the alarm emits a warning sound and displays a message.
  • the person in the vicinity of the place where the alarm 6B is installed is notified that there is a possibility that the inland water will overflow soon.
  • the disaster prevention radio terminal 6C of the administrative institution 13 is an information processing apparatus connected to a disaster prevention radio system (not shown).
  • the sign detection device 4 When the sign of the flood is detected, the sign detection device 4 generates an alarm (message) and transmits the alarm to the disaster prevention wireless terminal 6C via the network 5.
  • the alarm includes, for example, position information of the human hole portion 812 associated with the detection target location node.
  • the disaster prevention radio terminal 6C that has received the alarm floods an alarm (not shown) such as a speaker installed in the vicinity of the human hole portion 812 associated with the detection target node in the disaster prevention radio system, for example.
  • An audio signal for notifying the sign of the is output.
  • the display device 6D installed in the broadcasting station 14 is an alarm installed in a television broadcasting station or a radio broadcasting station.
  • the display device 6D includes a communication unit that communicates with the sign detection device 4 via the network 5, and a display unit that displays a message or the like received from the sign detection device 4.
  • the sign detection device 4 When a sign of flooding is detected, the sign detection device 4 generates an alarm (message) including position information of the human hole portion 812 associated with the node of the detection target location, and the alarm is transmitted via the network 5.
  • the data is transmitted to the display device 6D of the broadcast station 14.
  • the alarm transmitted to the display device 6D installed in the broadcasting station of the television broadcast is notified to the viewer through the television broadcast.
  • the alarm transmitted to the display device 6D installed in the radio broadcast station is notified to the listener through the radio broadcast.
  • the vicinity of the human hole portion Determine whether there is a sign of flooding.
  • the air pressure increases in the human hole part of the detection target point prior to the rise of the water level. For this reason, when an increase in the water level around a manhole (manhole) in a drain pipe is detected, there is a sign of inundation based on the estimated increase or actual increase in air pressure around other manholes.
  • FIG. 9 is a graph showing an example of temporal changes in rainfall and water level around one human hole in the drainage pipe.
  • FIG. 10 is a diagram for explaining the relationship between the pressure applied to the manhole and the flow rate of rainwater.
  • the graph 15 in FIG. 9 shows the temporal change in rainfall and water level around one manhole in 5 minute increments.
  • the torrential rain with a rainfall exceeding 20 mm / h has started around 17:35, and the water level in the drainage pipe 8 is about 20 minutes after 17:45. It has risend to a water level of about 20 cm up to the full water level H. In this way, when the water level in the sewer pipe suddenly rises due to heavy rain, etc., measures such as preparing sandbags in a short time of about 10 to 20 minutes may be taken, and measures may not be in time.
  • the pressure PB applied to the lower surface 9B of the manhole cover 9 when the pressure PB applied to the lower surface 9B of the manhole cover 9 is increased by 0.1 atm from the normal pressure, roughly speaking, the pressure PA applied to the upper surface 9A must be increased by not less than 0.1 atm. The amount of rainwater 16 flowing from the ground surface 7S into the drain pipe 8 is reduced. That is, when the pressure PB applied to the lower surface 9B of the manhole cover 9 rises by 0.1 atm from the normal pressure, roughly speaking, if the depth of the rainwater 16 on the ground surface 7S does not exceed 1 m, The inflow amount of rainwater 16 from the surface 7S into the drain pipe 8 is reduced.
  • the presence or absence of a flood sign is detected based on the change in air pressure in the drain pipe 8 as described above.
  • FIG. 11 is a cross-sectional view illustrating the relationship between the change in the water level and the change in air pressure in the drain pipe.
  • FIG. 11 shows two human hole portions 811 and 812 that allow the inside of the drain pipe 8 to communicate with the ground.
  • the interval between the two human hole portions 811 and 812 is, for example, about several hundred m to several km.
  • the measuring device 2 ⁇ / b> F including the water level sensor 201 is installed in the upstream human hole portion 811 of the two human hole portions 811 and 812.
  • a measuring device 2 ⁇ / b> G including a water level sensor 201 and a pressure sensor 202 is installed in a downstream human hole portion 812 of the two human hole portions 811.
  • the water level 10S rises rapidly around the upstream manhole portion 811, but the water level 10S remains at the normal water level around the downstream manhole portion 812.
  • the water level 10S measured around the manhole portion 812 on the downstream side is a normal water level. For this reason, when detecting an inundation sign based on the water level, it is difficult to detect an inundation sign around the downstream human hole 812.
  • the flow rate of the air flow generated by the pressure difference in the drainage pipe 8 is faster than the flow rate of the rainwater 10 flowing in the drainage pipe 8. For this reason, during the period from when the water level 10S suddenly rises around the upstream manhole portion 811 to when the air pressure rises around the downstream manhole portion 812, rainwater around the upstream manhole portion 811 It is shorter than the period until 10 reaches the periphery of the manhole portion 812 on the downstream side. That is, when the water level 10S rapidly rises around the upstream side human hole 811, the measuring device 2 installed in the downstream side human hole 812 detects the increase in the air pressure P earlier than the increase in the water level 10S.
  • the location to be detected as an inundation sign when detecting a sudden rise in the water level 10S in the drain pipe 8 is not limited to the downstream side of the location where the sudden rise in the water level 10S is detected, but the location where the sudden rise in the water level 10S is detected. It may be upstream.
  • the upstream side of the location where the rapid rise in the water level 10S in the drainage pipe 8 is detected is detected as an inundation sign, for example, the rainwater 10 flows backward through the drainage pipe portion 801 due to rapid water increase or the like. It is possible to detect signs of flooding due to
  • FIG. 12 is a cross-sectional view illustrating the relationship between the change in the water level in the drain pipe and the change in the volume of the air portion.
  • FIG. 13 is a graph for explaining the relationship between the water level in the drain pipe and the volume of the air portion.
  • FIG. 12 shows an example of a cross section of the drain pipe portion 801 in the drain pipe line 8.
  • the internal space is columnar or substantially columnar. Therefore, when the drain pipe portion 801 has an inner diameter H, when the water level 10S of the rainwater 10 is in the range from 0 to 0.5H, as the water level 10S rises, as in the curve 17 shown in FIG. The reduction rate of the volume of the air portion of the drain pipe 801 is increased. Moreover, when the water level 10S of the drain pipe part 801 becomes 0.5H or more, the volume of the air portion rapidly decreases as the water level 10S rises.
  • the sign detection system 1 when a rise in the water level is detected at a certain location in the drainage pipe 8, the drainage is determined based on the change in the air pressure in the drainage pipe 8. A sign of inundation at other points in the pipeline 8 is detected. For this reason, according to this embodiment, it becomes possible to detect in advance the sign of inundation at a location different from the location where the water level in the drainage pipe 8 has risen.
  • the sign detection device 4 estimates the air pressure of the location to be detected based on the water level at the location where the rise in the water level is detected and the rainfall information around the location that is the detection target of the flood sign. (Steps S1202 to S1204). For this reason, in the sign detection system 1 according to the present embodiment, for example, flooding around a human hole portion where the measuring device 2 including the pressure sensor 202 is not installed among the plurality of human hole portions in the drainage pipe 8. It is also possible to detect a sign of this. For this reason, it is possible to suppress an increase in the number of measuring devices 2 installed in the drain pipe 8 and to suppress an increase in introduction cost and running cost of the sign detection system 1.
  • the network information which shows the adjacency relationship of the measuring device 2 installed in the drain pipe 8 which is the detection target of the inundation sign referred to by the sign detection device 4 according to the present embodiment is not limited to the data table 11 in FIG. These can be changed as appropriate.
  • the sign detection device 4 may select a plurality of nodes. For example, when the rise in the water level is detected at the second node N2 in the drainage pipe shown in the topology of FIG. 5, the sign detection device 4 detects the first node N1, the third node N3, and the first node N1 in step S11. Two or more nodes may be selected from the four nodes N4. When a plurality of nodes are selected as the detection target of the flood sign, the sign detection device 4 performs the flood sign detection process in step S12 for each of the selected nodes.
  • the flowchart of FIG. 7 is merely an example of the flood sign detection process performed by the sign detection apparatus 4 according to the present embodiment.
  • the flood sign detection process performed by the sign detection device 4 can be changed as appropriate without departing from the gist of the present embodiment.
  • the determination process in step S1205 may be a process for determining whether or not the estimated value of air pressure calculated in step S1204 is greater than or equal to a threshold value (danger value).
  • the determination process of step S1208 may be a process of determining whether or not the actual measurement value of air pressure acquired in step S1207 is greater than or equal to a threshold value (danger value).
  • step S1205 when the estimated increase amount of air pressure is smaller than the danger value in step S1205, processing based on the actually measured air pressure value in the human hole corresponding to the node selected as the detection target location (step S1206). To S1208).
  • the inundation sign detection process is not limited to this, and if the estimated increase in air pressure is smaller than the dangerous value in step S1205, the process of steps S1206 to S1208 is not performed and there is no insufficiency sign (step S1210). ) May be recognized.
  • the estimated value Y of the air pressure is calculated in step S1204, it is not limited to the equation (1), and may be calculated by another calculation method.
  • the estimated value Y of air pressure may be calculated by a neural network.
  • FIG. 14 is a diagram for explaining a method for calculating an estimated value of air pressure using a neural network.
  • a three-layer network 18 including an input layer 1801, a hidden layer (intermediate layer) 1802, and an output layer 1803 is created. To do.
  • the input layer 1801 includes a first input unit U11, a second input unit U12, and a third input unit U13.
  • the water level x1 measured by the measuring device 2 that has transmitted the sign information is input to the first input unit U11.
  • the second input unit U12 the total rainfall amount x2 around the portion of the drainage pipe 8 that is a detection target of the inundation sign is input.
  • the third input unit U13 is input with the hourly rainfall x3 around the location to be detected as an inundation sign.
  • the hidden layer 1802 includes a first hidden unit U21, a second hidden unit U22, and a third hidden unit U23.
  • the first hidden unit U21 performs a predetermined calculation based on the water level x1, the total rainfall x2, the hourly rainfall x3, and the weighting factors wi11, wi21, and wi31 for the respective values.
  • the second hidden unit U22 performs a predetermined calculation based on the water level x1, the total rainfall x2, the hourly rainfall x3, and the weighting factors wi12, wi22, and wi32 for the respective values.
  • the third hidden unit U23 performs a predetermined calculation based on the water level x1, the total rainfall x2, the hourly rainfall x3, and the weighting factors wi13, wi23, and wi33 for the respective values.
  • the output layer 1803 calculates the air pressure based on the calculation results of the first hidden unit U21, the second hidden unit U22, and the third hidden unit U23 and the weighting factors wo1, wo2, and wo3 for the respective calculation results.
  • An estimated value Y is calculated.
  • the sign detection system 1 is not limited to the drainage pipe 8 that collects the rainwater 10 and discharges it into the river, but various water pipes in which the depth (water level) of the liquid flowing in the pipe increases or decreases. Applicable to roads.
  • the sign detection system 1 of the present embodiment can be applied to a sewage pipe that drains domestic wastewater discharged from a home to a sewage treatment plant or the like.
  • the sign detection system 1 of the present embodiment is applied to, for example, a drainage facility in a plant (production facility), and can detect a sign such as inundation due to a sudden increase in the amount of drainage at an early stage.
  • the place where the measuring device 2 is installed in various water pipes is not limited to the human hole part, and may be a hole part having a smaller diameter than the human hole part communicating the inside of the water pipe line and the outside of the water pipe line. Good.
  • FIG. 15 is a sequence diagram illustrating processing performed by the sign detection system according to the second embodiment.
  • the sign detection device 4 performs a process of monitoring the water level of the drain pipe 8 (steps S8 and S9).
  • Step S8 is a process of collecting water level data from the measuring device 2 including the water level sensor 201
  • step S9 is a process of determining whether or not a location (node) where the water level is equal to or greater than a threshold is detected.
  • the processing of steps S8 and S9 is performed by the data collection unit 401 of the sign detection device 4.
  • the data collection unit 401 identifies the measuring device 2 including the water level sensor 201 with reference to the data table 11 of FIG. 4 and acquires the water level data measured by the water level sensor 201 of the measuring device 2.
  • the data collection unit 401 may select the measuring device 2 that acquires the water level data from all the measuring devices 2 that can acquire the water level data according to a predetermined condition. For example, the data collection unit 401 may select the measurement device 2 installed in an area where it is raining, and acquire water level data from the measurement device 2.
  • the data collection unit 401 determines the presence / absence of a node whose water level is equal to or higher than a threshold based on the water level data acquired from each of the plurality of measuring devices 2.
  • the determination threshold value in step S9 is, for example, a value that is about 80% of the water level at which the location where the measuring device 2 is installed in the drain pipe portion 801 of the drain pipe 8 is full.
  • step S9; NO When the water levels of all the nodes are smaller than the threshold value (step S9; NO), the data collection unit 401 continues the process of acquiring the water level data and monitoring the water level. On the other hand, when a node whose water level is equal to or higher than the threshold is detected (step S9; YES), the data collection unit 401 passes information on the node whose water level is equal to or higher than the threshold to the prediction unit 402. In this case, the prediction unit 402 of the sign detection device 4 performs a process of selecting a place to be detected as a flood sign (step S11) and a flood sign detection process (step S12).
  • the prediction unit 402 selects a node to be detected from other nodes excluding the node whose water level is equal to or higher than the threshold value.
  • the node selected as the detection target location is not limited to the downstream side of the node whose water level is equal to or higher than the threshold value, but may be the upstream side.
  • the nodes that can be selected as detection target locations include nodes where the measuring device 2 including the pressure sensor 202 is not installed. Furthermore, there may be a plurality of nodes to be selected as detection target locations.
  • the prediction unit 402 of the prediction detection device 4 After selecting the detection target location of the flood detection sign, the prediction unit 402 of the prediction detection device 4 detects the prediction of the flood based on the change in air pressure around the human hole corresponding to the selected detection target location. A detection process (step S12) is performed.
  • the prediction unit 402 performs, for example, processing according to the flowchart of FIG. 7 as the flood sign detection processing. Note that the flood sign detection process performed by the prediction unit 402 of the sign detection apparatus 4 is not limited to the process according to the flowchart of FIG. 7 as described in the first embodiment, and can be changed as appropriate.
  • the sign detection device 4 After completing the flood sign detection process, the sign detection device 4 next determines whether or not a flood sign has been detected (step S13). When a sign of flooding is detected (step S13; YES), the sign detection device 4 performs an alarm output process (step S14) in the alarm output unit 403.
  • the alarm output unit 403 includes a portable terminal 6A, a notification device 6B installed in the vicinity of a human hole 812 with a sign of flooding, a disaster prevention wireless terminal 6C of the administrative institution 13, a broadcasting station The alarm is transmitted to various external devices such as the display device 6D installed in the system 14. When no sign of flooding is detected (step S13; NO), the sign detection device 4 resumes the process of monitoring the water level (steps S8 and S9).
  • the sign detection system 1 has a sign of inundation at a location different from the location where the water level has risen in the drainage pipe 8 based on the change in air pressure, as in the first embodiment. Determine whether or not. For this reason, it is possible to detect early signs of flooding at a location different from the location where the water level has risen.
  • the sign detection device 4 acquires water level data from the measuring device 2, and the sign detection device 4 performs processing for detecting a node whose water level is equal to or higher than a threshold value. For this reason, it is possible to omit the process of determining whether or not the water level is greater than or equal to the threshold value among the various processes performed by the control apparatus 203 of the measurement apparatus 2, and the amount of calculation processing of the control apparatus 203 is reduced. Therefore, the configuration of the control device 203 can be simplified and the manufacturing cost of the control device 203 can be reduced.
  • the sign detection device 4 can be realized by causing a computer to execute a sign detection program.
  • FIG. 16 is a diagram showing a hardware configuration of a computer.
  • the computer 20 includes a processor 2001, a main storage device 2002, an auxiliary storage device 2003, an input device 2004, an output device 2005, an input / output interface 2006, a communication control device 2007, and a medium.
  • These elements 2001 to 2008 in the computer 20 are connected to each other by a bus 2010 so that data can be exchanged between the elements.
  • the processor 2001 is a central processing unit (CPU), a micro processing unit (MPU), or the like.
  • the processor 2001 controls the overall operation of the computer 20 by executing various programs including an operating system. Further, the processor 2001 executes various application programs such as a sign detection program including the processes of steps S11 to S14 in FIG.
  • the main memory 2002 includes a Read Only Memory (ROM) and a Random Access Memory (RAM) (not shown).
  • ROM Read Only Memory
  • RAM Random Access Memory
  • ROM of the main storage device 2002 for example, a predetermined basic control program read by the processor 2001 when the computer 20 is started is recorded in advance.
  • the RAM of the main storage device 2002 is used as a working storage area as necessary when the processor 2001 executes various programs.
  • the RAM of the main storage device 2002 can be used for storing, for example, network information such as the data table 11, water level data acquired from the measuring device 2, and air pressure data.
  • the auxiliary storage device 2003 is a storage device having a larger capacity than the RAM of the main storage device 2002, and includes, for example, a hard disk drive (HDD) and a non-volatile memory such as a flash memory (solid state drive (SSD)). ) Etc.
  • the auxiliary storage device 2003 can be used to store various programs executed by the processor 2001 and various data.
  • the auxiliary storage device 2003 can be used, for example, for storing a sign detection program including the processes of steps S11 to S14 in FIG.
  • the auxiliary storage device 2003 also includes, for example, network information such as the data table 11, water level data and air pressure data acquired from the measuring device 2, detection results of inundation signs, and information indicating an external device that is an alarm transmission destination. Available for memory.
  • the input device 2004 is, for example, a keyboard device, a mouse device, a touch panel device, or the like.
  • the input device 2004 transmits input information associated with the operation content to the processor 2001.
  • the input device 2004 can be used, for example, to create the data table 11 and register an external device that transmits an alarm.
  • the output device 2005 is a display device such as a liquid crystal display device.
  • the output device 2005 can be used for displaying a detection result of a flood sign.
  • the input / output interface 2006 connects the computer 20 and other electronic devices.
  • the input / output interface 2006 includes, for example, a Universal Serial Bus (USB) standard connector.
  • USB Universal Serial Bus
  • the communication control device 2007 is a device that connects the computer 20 to the network 5 such as the Internet, and controls various communications between the computer 20 and other communication devices via the network 5.
  • the communication control device 2007 can be used, for example, for acquiring water level data and air pressure data measured by the measuring device 2 installed in the drain pipe 8.
  • the medium driving device 2008 reads a program and data recorded in the portable storage medium 21 and writes data stored in the auxiliary storage device 2003 to the portable storage medium 21.
  • a memory card reader / writer corresponding to one type or a plurality of types of standards can be used.
  • the portable storage medium 21 is a memory card reader / writer compatible with a standard such as a Secure Digital (SD) standard memory card (flash memory). ) Etc. can be used.
  • SD Secure Digital
  • Etc. flash memory having a USB standard connector can be used as the portable recording medium 21.
  • the portable recording medium 21 when the computer 20 is equipped with an optical disk drive that can be used as the medium drive device 2008, various optical disks that can be recognized by the optical disk drive can be used as the portable recording medium 21.
  • the optical disc that can be used as the portable recording medium 21 include Compact Disc (CD), Digital Versatile Disc (DVD), and Blu-ray Disc (registered trademark).
  • the portable recording medium 21 can be used, for example, for storing a sign detection program including the processes of steps S11 to S14 in FIG.
  • the portable recording medium 21 includes, for example, network information such as the data table 11, water level data and air pressure data acquired from the measuring device 2, detection results of inundation signs, and information indicating an external device to which an alarm is transmitted It can be used for memory.
  • the computer 2001 when the operator inputs an instruction to start processing for detecting a sign of flooding using the input device 2004 or the like, the computer 2001 stores the information in a non-temporary recording medium such as the auxiliary storage device 2003. Read and execute the sign detection program.
  • the sign detection program is a program including the processes of steps S11 to S14 in FIG. 6, the computer 20 receives the sign information from the measuring device 2 installed in the human hole where the water level is equal to or higher than the threshold value.
  • a location that is a detection target of an inundation sign is selected (step S11), and a process of determining the presence or absence of an inland water inundation sign at the location (step S12) is performed.
  • the processing in step S12 is, for example, the processing in steps S1201 to S1211 in FIG.
  • the computer 20 transmits an alarm to the predetermined external device 6 (step S14).
  • the processor 2001 functions (operates) as the data collection unit 401, the prediction unit 402, and the alarm output unit 403 in the sign detection device 1 of FIG.
  • the communication control device 2007 performs processing for acquiring water level data and pressure data from the measuring device 2 and passing the data to the data collection unit 401, and processing for transmitting the alarm generated by the alarm output unit 403 to a predetermined external device 6.
  • the recording medium such as the RAM of the main storage device 2002, the auxiliary storage device 2003, and the portable recording medium 21 functions as the storage unit 409 of the sign detection device 4.
  • sign detection program to be executed by the computer 20 may be a program including the processes of steps S8 and S9 in FIG.
  • the computer 20 operated as the sign detection device 4 does not need to include all the eight elements 2001 to 2008 shown in FIG. 16, and some elements can be omitted depending on the application and conditions.
  • the computer 20 may be one in which the input / output interface 2006 and the medium driving device 2008 are omitted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Emergency Management (AREA)
  • Alarm Systems (AREA)

Abstract

The present invention detects at an early stage an advance warning that internal overflow will occur within range of a drainage line. An advance warning detection method in which there is detected an advance warning of internal overflow in an area where a drainage line is laid, the drainage line including a drainage pipe part and a plurality of pipe parts which branch from the drainage pipe part and by which the interior space of the drainage pipe and an exterior space communicate, wherein a computer performs the following processes. When information indicating that the water level in the drainage pipe part at a location connected to one pipe part among the plurality of pipe parts is equal to or greater than a threshold value has been acquired, the computer determines the presence of an advance warning of internal overflow within range of a second pipe part among the plurality of pipe parts on the basis of the air pressure in the drainage pipe part at a location connected to the second pipe part. Moreover, when an advance warning of internal overflow within range of the second pipe part has been detected, the computer outputs an alarm indicating the advance warning of internal overflow.

Description

予兆検知方法、予兆検知システム、及び予兆検知プログラムPredictive detection method, predictive detection system, and predictive detection program
 本発明は、予兆検知方法、予兆検知システム、及び予兆検知プログラムに関する。 The present invention relates to a sign detection method, a sign detection system, and a sign detection program.
 自治体等が排水管路等の水道管路を維持運営する上で重要な点の一つとして、台風等による大雨や集中豪雨が発生した際に迅速かつ適切な対策により被害を最小限に抑えることがある。 One of the important points for local governments to maintain and operate water pipes such as drainage pipes is to minimize damage by quick and appropriate measures in the event of heavy rains or torrential rains such as typhoons. There is.
 例えば、降雨量が多く路面上の雨水を排水管で集水しきれない場合は、内水氾濫と呼ばれる冠水や浸水が発生する。内水氾濫による被害を防ぐため、排水設備の適正化と同時に、浸水等の兆候を検知することが望まれる。排水設備の適正化として、排水管路の排水処理能力の増強や、雨水を貯めておく雨水貯留管等の施設の設置が行われている。また、浸水等の兆候を検知するため、常時、下水管内の水位をモニタリングし、該水位を浸水の危険性があるか否かの判断材料とすることも行われている。下水管内の水位をモニタリングする方法の1つとして、水道管の内面に配置した無線タグを水位センサとして用いる方法が知られている(例えば、特許文献1を参照)。 For example, if there is a lot of rainfall and the rainwater on the road surface cannot be collected by the drain pipe, flooding or inundation called inland flooding will occur. In order to prevent damage caused by inundation, it is desirable to detect signs such as inundation at the same time as optimizing drainage facilities. As optimization of the drainage facilities, the drainage treatment capacity of drainage pipes has been increased and facilities such as rainwater storage pipes for storing rainwater have been installed. In addition, in order to detect signs such as inundation, the water level in the sewer pipe is constantly monitored and the water level is used as a material for determining whether there is a risk of inundation. As one of the methods for monitoring the water level in the sewage pipe, a method using a wireless tag arranged on the inner surface of the water pipe as a water level sensor is known (see, for example, Patent Document 1).
特開2010-133885号公報JP 2010-133895 A
 集中豪雨が発生した場合には下水管内の水位が急上昇するため、浸水等の兆候を検知してから、実際に浸水等の内水氾濫が発生するまでの時間が短い。特に、近年に多くみられる突発的な集中豪雨が発生した場合には、雨が降り出してから浸水等の兆候を検知するまでの時間も非常に短くなる。 ∙ In the case of heavy rain, the water level in the sewer pipe rises rapidly, so the time from the detection of signs of inundation to the actual occurrence of inundation such as inundation is short. In particular, in the case of sudden torrential rains that are common in recent years, the time from the start of rain to the detection of signs such as inundation becomes very short.
 また、排水管路におけるある箇所で水位が急上昇して浸水等の兆候を検知した場合、当該箇所の下流側においても水位が急上昇することが考えられる。しかしながら、水位に基づいて浸水等の兆候を検知する場合、排水管路における水位が急上昇した箇所の下流側に位置する箇所で浸水等の兆候を検知するのは、該下流側に位置する箇所での水位が上昇してからとなる。 Also, if the water level suddenly rises at a certain point in the drainage pipe and a sign such as inundation is detected, it is conceivable that the water level also rises rapidly on the downstream side of the point. However, when detecting signs such as inundation based on the water level, signs of inundation etc. are detected at locations located downstream of the location where the water level in the drainage pipe has risen rapidly. After the water level rises.
 このように、排水管内の水位に基づいて浸水等の兆候を検知する場合、排水管路の各箇所において浸水等の兆候を検知してから、当該箇所で実際に浸水等の内水氾濫が発生するまでの時間が短い。このため、浸水等の内水氾濫の兆候を検知しても、土嚢を準備する等の対策が間に合わず、浸水等の被害が生じることがある。 In this way, when detecting signs such as inundation based on the water level in the drainage pipe, after detecting signs such as inundation at each location of the drainage pipe, actual inundation such as inundation occurs at that location. The time to do is short. For this reason, even if signs of inundation such as inundation are detected, measures such as preparing sandbags may not be in time and damage such as inundation may occur.
 1つの側面において、本発明は、排水管路の周囲で内水氾濫が発生する予兆を早期に検知することを目的とする。 In one aspect, an object of the present invention is to detect at an early stage a sign of inundation occurring around a drainage pipe.
 1つの態様は、排水管部と、前記排水管部から分岐し前記排水管の内部空間と外部空間とを連通する複数の管部とを含む排水管路が敷設されたエリアにおける内水氾濫の予兆を検知する予兆検知方法であって、コンピュータが、以下の処理を行う。コンピュータは、複数の管部のうちの第1の管部と接続する箇所における排水管部内の水位が閾値以上であることを示す情報を取得した場合に、複数の管部のうちの第2の管部と接続する箇所における排水管部内の空気圧に基づいて、第2の管部の周囲における内水氾濫の予兆の有無を判定する。また、コンピュータは、第2の管部の周囲における内水氾濫の予兆を検知した場合に、当該内水氾濫の予兆を示すアラームを出力する。 One aspect is the inundation of an inland water in an area where a drain pipe including a drain pipe and a plurality of pipes branched from the drain pipe and communicating the internal space and the external space of the drain pipe is laid. A predictive detection method for detecting a predictor, wherein a computer performs the following processing. When the computer acquires information indicating that the water level in the drainage pipe at the location connected to the first pipe of the plurality of pipes is equal to or greater than the threshold, the second of the plurality of pipes Based on the air pressure in the drain pipe part at the location connected to the pipe part, the presence / absence of a sign of inundation in the vicinity of the second pipe part is determined. In addition, when the computer detects a sign of inundation in the vicinity of the second pipe portion, the computer outputs an alarm indicating the sign of the inland flood.
 上述の態様によれば、排水管路の周囲で内水氾濫が発生する予兆を早期に検知することが可能となる。 According to the above-described aspect, it is possible to detect at an early stage a sign that inland water flooding will occur around the drainage pipe.
第1の実施形態に係る予兆検知システムの構成例を示す図である。It is a figure which shows the structural example of the precursor detection system which concerns on 1st Embodiment. 計測装置の設置例を示す断面図である。It is sectional drawing which shows the example of installation of a measuring device. 圧力センサを含む計測装置の構成例を示す断面図である。It is sectional drawing which shows the structural example of the measuring device containing a pressure sensor. 計測装置の設置箇所を示すネットワーク情報の例を示す図である。It is a figure which shows the example of the network information which shows the installation location of a measuring device. 排水管路のネットワークの例を示す図である。It is a figure which shows the example of the network of a drain line. 第1の実施形態に係る予兆検知システムが行う処理を説明するシーケンス図である。It is a sequence diagram explaining the process which the precursor detection system which concerns on 1st Embodiment performs. 予兆検知装置が行う氾濫予兆検知処理の内容を説明するフローチャートである。It is a flowchart explaining the content of the flood sign detection process which a sign detection apparatus performs. 氾濫の予兆を通知する方法を説明する図である。It is a figure explaining the method of notifying the prognosis of flooding. 排水管路における1つの人孔部の周囲における降雨量及び水位の時間変化の例を示すグラフ図である。It is a graph which shows the example of the time change of the rainfall and the water level in the circumference | surroundings of one human hole part in a drain pipe. マンホールに印加される圧力と雨水の流量との関係を説明する図である。It is a figure explaining the relationship between the pressure applied to a manhole, and the flow volume of rainwater. 排水管路における水位の変化と空気圧の変化との関係を説明する断面図である。It is sectional drawing explaining the relationship between the change of the water level in a drain pipe, and the change of an air pressure. 排水管路内における水位の変化と空気部分の容積の変化との関係を説明する断面図である。It is sectional drawing explaining the relationship between the change of the water level in a drain pipe, and the change of the volume of an air part. 排水管路内における水位と空気部分の容積との関係を説明するグラフ図である。It is a graph explaining the relationship between the water level in a drain pipe, and the volume of an air part. ニューラルネットワークによる空気圧の推定値の算出方法を説明する図である。It is a figure explaining the calculation method of the estimated value of the air pressure by a neural network. 第2の実施形態に係る予兆検知システムが行う処理を説明するシーケンス図である。It is a sequence diagram explaining the process which the sign detection system which concerns on 2nd Embodiment performs. コンピュータのハードウェア構成を示す図である。It is a figure which shows the hardware constitutions of a computer.
 [第1の実施形態]
 図1は、第1の実施形態に係る予兆検知システムの構成例を示す図である。
[First Embodiment]
FIG. 1 is a diagram illustrating a configuration example of the sign detection system according to the first embodiment.
 図1に示すように、本実施形態に係る予兆検知システム1は、複数の計測装置2(2A~2E)と、複数の中継器3(3A~3D)と、予兆検知装置4と、を含む。 As shown in FIG. 1, the sign detection system 1 according to the present embodiment includes a plurality of measuring devices 2 (2A to 2E), a plurality of repeaters 3 (3A to 3D), and a sign detection device 4. .
 複数の計測装置2は、それぞれ、水位や空気圧を計測する装置であり、例えば、地中に埋設された排水管路内に設置される。本実施形態の予兆検知システム1における計測装置2は、次の3種類の計測装置を含む。1つめの計測装置は、図1の計測装置2Bのように、水位センサ201と、制御装置203とを備える。2つめの計測装置は、図1の計測装置2Dのように、圧力センサ202と、制御装置203とを備える。3つめの計測装置は、図1の計測装置2Aのように、水位センサ201と、圧力センサ202と、制御装置203と、を備える。なお、図1の計測装置2C,2Eは、それぞれ、上記の3種類の計測装置のうちのいずれかである。水位センサ201は水位を検出するセンサであり、圧力センサ202は空気圧を検出するセンサである。制御装置203は、水位センサ201、及び圧力センサ202のいずれか一方、或いは両方からセンサ出力を取得し、予兆検知装置4に送信する。制御装置203は、所定の中継器3との間での無線通信を行う通信部を含む。 Each of the plurality of measuring devices 2 is a device that measures a water level and an air pressure, and is installed in, for example, a drain pipe buried in the ground. The measuring device 2 in the sign detection system 1 of the present embodiment includes the following three types of measuring devices. The first measuring device includes a water level sensor 201 and a control device 203 as in the measuring device 2B of FIG. The second measuring device includes a pressure sensor 202 and a control device 203 like the measuring device 2D of FIG. The third measuring device includes a water level sensor 201, a pressure sensor 202, and a control device 203 as in the measuring device 2A in FIG. Note that the measuring devices 2C and 2E in FIG. 1 are each one of the above-described three types of measuring devices. The water level sensor 201 is a sensor that detects a water level, and the pressure sensor 202 is a sensor that detects air pressure. The control device 203 acquires the sensor output from one or both of the water level sensor 201 and the pressure sensor 202 and transmits the sensor output to the sign detection device 4. The control device 203 includes a communication unit that performs wireless communication with a predetermined repeater 3.
 複数の中継器3は、それぞれ、インターネット等のネットワーク5に接続されており、該ネットワーク5を介して予兆検知装置4と接続される。すなわち、複数の計測装置2は、それぞれ、所定の中継器3及びネットワーク5を介して、予兆検知装置4と接続される。中継器3は、例えば、図1の中継器3Aのように1個の計測装置2Aと接続されてもよいし、図1の中継器3Bのように複数個の計測装置2B~2Dと接続されてもよい。また、中継器3は、図1の中継器3Dのように、他の中継器3Cを介してネットワーク5に接続されていてもよい。 The plurality of repeaters 3 are each connected to a network 5 such as the Internet, and are connected to the sign detection device 4 via the network 5. That is, the plurality of measuring devices 2 are connected to the sign detection device 4 via the predetermined relay 3 and the network 5, respectively. For example, the repeater 3 may be connected to one measuring device 2A as in the repeater 3A in FIG. 1, or may be connected to a plurality of measuring devices 2B to 2D as in the repeater 3B in FIG. May be. Moreover, the repeater 3 may be connected to the network 5 via another repeater 3C, like the repeater 3D of FIG.
 予兆検知装置4は、複数の計測装置2から排水管路内の水位や空気圧等の情報を収集し、当該情報に基づいて、排水管路における内水氾濫等の予兆を検知する装置である。予兆検知装置4は、ネットワーク5に接続されており、中継器3及びネットワーク5を介して、計測装置2から排水管路の水位や空気圧等の情報を収集する。また、予兆検知装置4は、排水管路における内水氾濫の予兆を検知した場合、ネットワーク5を介して、携帯端末6Aや報知器6B等の外部装置に警報(アラーム)を送信する。予兆検知装置4は、データ取得部401と、予測部402と、アラーム出力部403と、記憶部409とを含む。データ取得部401は、複数の計測装置2のそれぞれから水位や空気圧の情報を取得する。予測部402は、複数の計測装置2から取得した水位や空気圧の情報に基づいて、内水氾濫の予兆の有無を判定し、内水氾濫が発生する可能性のある箇所を予測する。アラーム出力部403は、予測部402の予測結果に基づいて、内水氾濫が発生する可能性のある箇所を報知する警報(アラーム)を生成し、該警報を所定の外部装置に出力する。記憶部409は、排水管路における各計測装置2の設置箇所を含むネットワーク情報等を記憶する。 The sign detection device 4 is a device that collects information such as the water level and air pressure in the drainage pipes from the plurality of measuring devices 2 and detects a sign such as inundation in the drainage pipes based on the information. The sign detection device 4 is connected to the network 5, and collects information such as the water level and air pressure of the drainage pipe line from the measurement device 2 via the relay 3 and the network 5. Moreover, the sign detection apparatus 4 transmits an alarm (alarm) to external apparatuses, such as the portable terminal 6A and the alarm device 6B, via the network 5 when detecting a sign of flooding in the drainage pipe. The sign detection device 4 includes a data acquisition unit 401, a prediction unit 402, an alarm output unit 403, and a storage unit 409. The data acquisition unit 401 acquires water level and air pressure information from each of the plurality of measuring devices 2. The prediction unit 402 determines whether there is a sign of inland flooding based on information on the water level and air pressure acquired from the plurality of measuring devices 2 and predicts a place where the inland flooding may occur. Based on the prediction result of the prediction unit 402, the alarm output unit 403 generates an alarm (alarm) for notifying a place where the inundation may occur, and outputs the alarm to a predetermined external device. The memory | storage part 409 memorize | stores the network information etc. which contain the installation location of each measuring device 2 in a drain pipe.
 図2は、計測装置の設置例を示す断面図である。図3は、圧力センサを含む計測装置の構成例を示す断面図である。 FIG. 2 is a cross-sectional view showing an installation example of a measuring device. FIG. 3 is a cross-sectional view illustrating a configuration example of a measurement device including a pressure sensor.
 本実施形態の予兆検知システム1は、例えば、雨水を集めて河川に放流する排水管路における内水氾濫の予兆の検知に適用可能である。 The sign detection system 1 according to the present embodiment is applicable to, for example, detection of a sign of inundation in a drainage pipe that collects rainwater and discharges it into a river.
 図2には、地中7に埋設された排水管路8に複数の計測装置2を設置した例を示している。排水管路8は、雨水10を流す排水管部801と、排水管部801から分岐した複数の管部811,812と、を含む。複数の管部811,812は、それぞれ、排水管部801から地表面7Sに延在しており、排水管部801の内部空間と外部空間(地上)とを連通している。複数の管部811,812は、例えば、人孔(マンホール)であり、複数の人孔部811,812のそれぞれにおける地表面7S側の開口端は、マンホール蓋9により塞がれている。 FIG. 2 shows an example in which a plurality of measuring devices 2 are installed in a drainage pipe 8 embedded in the underground 7. The drainage pipe 8 includes a drainage pipe part 801 through which the rainwater 10 flows and a plurality of pipe parts 811 and 812 branched from the drainage pipe part 801. Each of the plurality of pipe portions 811 and 812 extends from the drain pipe portion 801 to the ground surface 7S, and communicates the internal space of the drain pipe portion 801 with the external space (ground). The plurality of pipe portions 811 and 812 are, for example, human holes (manholes), and the open ends on the ground surface 7S side of the plurality of human hole portions 811 and 812 are closed by the manhole cover 9.
 本実施形態の予兆システム1における複数の計測装置2は、例えば、排水管路8の人孔部811,812等に設置する。図2では、上流側の人孔部811には水位センサ201及び圧力センサ202のうちの水位センサ201を備えた計測装置2Fを設置し、下流側の人孔部812には水位センサ201及び圧力センサ202を備えた計測装置2Gを設置している。 The plurality of measuring devices 2 in the sign system 1 of the present embodiment are installed in, for example, the human hole portions 811 and 812 of the drain pipe 8. In FIG. 2, the measuring device 2 </ b> F including the water level sensor 201 among the water level sensor 201 and the pressure sensor 202 is installed in the upstream human hole portion 811, and the water level sensor 201 and the pressure are installed in the downstream human hole portion 812. A measuring device 2G provided with a sensor 202 is installed.
 人孔部811,812に計測装置2を設置する場合、制御装置203や圧力センサ202は、水に濡れない態様で設置することが好ましい。このため、計測装置2における制御装置203及び圧力センサ202は、例えば、マンホール蓋9における人孔部811,812の内部空間側を向いた面に設置する。この際、制御装置203及び圧力センサ202は、図3に示すように、内圧調整弁206を設けた密閉型のケース205内に収容すると、より好ましい。内圧調整弁206は、密封状態にしたケース205の内部空間の圧力をケース205の外部の圧力と一致させる弁であり、空気は通すが水は通さないよう構成されている。また、ケース205には、制御装置203と、流水管部801に設置する水位センサ201とを接続するケーブル204を通す貫通穴(図示せず)が形成されている。当該貫通孔は、ケーブル204を挿入した状態でシール材207により塞がれている。 When installing the measuring device 2 in the human hole portions 811 and 812, the control device 203 and the pressure sensor 202 are preferably installed in a manner that does not get wet with water. For this reason, the control device 203 and the pressure sensor 202 in the measuring device 2 are installed, for example, on the surface of the manhole cover 9 facing the internal space side of the human hole portions 811 and 812. At this time, it is more preferable that the control device 203 and the pressure sensor 202 are accommodated in a sealed case 205 provided with an internal pressure adjusting valve 206 as shown in FIG. The internal pressure regulating valve 206 is a valve that matches the pressure in the sealed internal space of the case 205 with the pressure outside the case 205, and is configured to allow air to pass but not water. Further, the case 205 is formed with a through hole (not shown) through which the cable 204 that connects the control device 203 and the water level sensor 201 installed in the flowing water pipe section 801 is passed. The through hole is closed with a sealing material 207 with the cable 204 inserted.
 なお、図3は、水位センサ201及び圧力センサ202を備えた計測装置2の構成例である。水位センサ201及び圧力センサ202のうちの水位センサ201のみを備える計測装置2には、例えば、図3の計測装置2Gにおける圧力センサ202を省略したものを用いる。水位センサ201及び圧力センサ202のうちの圧力センサ202のみを備える計測装置2には、例えば、図3の計測装置2Gにおける水位センサ201及びケーブル204を省略したものを用いる。水位センサ201及びケーブル204を省略した計測装置2におけるケース205は、貫通孔が形成されていなくてもよい。ケース205に貫通孔が形成されている場合、シール材207により貫通孔を塞いでおく。 Note that FIG. 3 is a configuration example of the measuring device 2 including the water level sensor 201 and the pressure sensor 202. For the measuring device 2 including only the water level sensor 201 out of the water level sensor 201 and the pressure sensor 202, for example, a device in which the pressure sensor 202 in the measuring device 2G of FIG. 3 is omitted is used. As the measuring device 2 including only the pressure sensor 202 of the water level sensor 201 and the pressure sensor 202, for example, a device in which the water level sensor 201 and the cable 204 in the measuring device 2G in FIG. 3 are omitted is used. The case 205 in the measuring device 2 in which the water level sensor 201 and the cable 204 are omitted may not have a through hole. When a through hole is formed in the case 205, the through hole is closed with a sealing material 207.
 制御装置203等を収容したケース205は、例えば、所定の取付金具等を利用し、マンホール蓋9の裏面に、内圧調整弁206を塞がない向きで取り付ける。ケース205は、例えば、接着材或いは粘着材を利用してマンホール蓋9の裏面に取り付けてもよい。 The case 205 containing the control device 203 or the like is attached to the back surface of the manhole cover 9 in a direction that does not block the internal pressure adjusting valve 206 using, for example, a predetermined mounting bracket or the like. The case 205 may be attached to the back surface of the manhole cover 9 using, for example, an adhesive material or an adhesive material.
 また、計測装置2を人孔部811,812に設置する場合、マンホール蓋9の裏面に限らず、人孔部811,812の内周面に計測装置2を取り付けてもよいことはもちろんである。 Moreover, when installing the measuring device 2 in the manhole part 811,812, it is needless to say that the measuring device 2 may be attached not only to the back surface of the manhole cover 9, but also to the inner peripheral surface of the manhole part811,812. .
 排水管路8の所定箇所に設置した複数の計測装置2は、それぞれ、図示しないバッテリーで駆動し、最寄りの中継器3を介して、水位センサ201や圧力センサ202のセンサ出力を予兆検知装置4に送信する。予兆検知装置4は、各計測装置2から収集した水位や空気圧の情報と、排水管路8における計測装置2の設置箇所を示すネットワーク情報と、に基づいて、内水氾濫の予兆の有無を判定し、内水氾濫が発生する可能性のある箇所を予測する。 The plurality of measuring devices 2 installed at predetermined locations of the drainage pipe 8 are each driven by a battery (not shown), and the sensor outputs of the water level sensor 201 and the pressure sensor 202 are transmitted through the nearest repeater 3 to the sign detection device 4. Send to. The sign detection device 4 determines whether or not there is a sign of inundation based on the information on the water level and air pressure collected from each measurement device 2 and the network information indicating the installation location of the measurement device 2 in the drain pipe 8. And predict where inland flooding may occur.
 図4は、計測装置の設置箇所を示すネットワーク情報の例を示す図である。図5は、排水管路のネットワークの例を示す図である。 FIG. 4 is a diagram showing an example of the network information indicating the installation location of the measuring device. FIG. 5 is a diagram illustrating an example of a drain pipe network.
 図4のデータテーブル11は、排水管路8における計測装置2の設置箇所を示すネットワーク情報の一例である。データテーブル11において、グループは排水管路を識別する情報であり、ノードはグループ(排水管路8)内の人孔(マンホール)を識別する情報である。データテーブル11における下流のノードは、ノードと対応付けられた情報の1つであり、自身からみて下流側で隣接するノード(人孔)を示す情報である。データテーブル11の下流のノードの欄における「-」の記号は、該当するノードがないことを意味する。 4 is an example of network information indicating the installation location of the measuring device 2 in the drain pipe 8. In the data table 11, a group is information for identifying a drain pipe, and a node is information for identifying a human hole (manhole) in the group (drain pipe 8). The downstream node in the data table 11 is one piece of information associated with the node, and is information indicating a node (human hole) adjacent on the downstream side as viewed from itself. The symbol “-” in the downstream node column of the data table 11 means that there is no corresponding node.
 データテーブル11におけるセンサは、ノードと対応付けられた情報の1つであり、ノードに設置された計測装置2に含まれるセンサを示す情報である。データテーブル11における中継器は、ノードと対応付けられた情報の1つであり、ノードに設置された計測装置2が通信を行う中継器を示す情報である。データテーブル11における平常時の空気圧は、ノードと対応付けられた情報の1つであり、排水管路8を流れる雨水10の水位10Sが平常時の水位であるときのノードの周囲における空気圧を示す情報である。データテーブル11のセンサ、中継器、及び平常時の空気圧の各欄における「-」の記号は、該当する情報がないことを意味する。 The sensor in the data table 11 is one piece of information associated with a node, and is information indicating a sensor included in the measurement device 2 installed in the node. The repeater in the data table 11 is one piece of information associated with a node, and is information indicating a repeater with which the measuring device 2 installed in the node communicates. The normal air pressure in the data table 11 is one piece of information associated with the node, and indicates the air pressure around the node when the water level 10S of the rainwater 10 flowing through the drainage pipe 8 is the normal water level. Information. The symbol “-” in each column of the sensor, repeater, and normal air pressure in the data table 11 means that there is no corresponding information.
 データテーブル11における位置情報は、ノードと対応付けられた情報の1つであり、ノード(人孔)の地理的な位置を示す情報である。 The position information in the data table 11 is one piece of information associated with the node, and is information indicating the geographical position of the node (human hole).
 図4のデータテーブル11における1番目のグループG1は、4個のノードN1~N4を含む。4個のノードN1~N4のうちの第1のノードN1及び第2のノードN2は、それぞれ、下流のノードが第3のノードN3となっている。また、第3のノードN3は、下流のノードが第4のノードN4となっている。よって、グループG1の排水管路8における排水管部801と人孔(マンホール)との関係は、図5のようなY字型のトポロジで表すことができる。図5における4個のノードN1~N4は、それぞれ、グループG1の排水管路8における人孔を表す。図5における3本のリンクL1~L3は、それぞれ、排水管路8において隣接する人孔の組を表す。 The first group G1 in the data table 11 of FIG. 4 includes four nodes N1 to N4. Of the four nodes N1 to N4, the first node N1 and the second node N2 each have a downstream node as the third node N3. The third node N3 has a downstream node as the fourth node N4. Therefore, the relationship between the drain pipe portion 801 and the manhole in the drain pipe 8 of the group G1 can be represented by a Y-shaped topology as shown in FIG. Each of the four nodes N1 to N4 in FIG. 5 represents a human hole in the drain pipe 8 of the group G1. The three links L 1 to L 3 in FIG. 5 each represent a set of adjacent human holes in the drainage pipe 8.
 第1のノードN1は、第1のリンクL1により下流の第3のノードN3と接続している。第2のノードN2は、第2のリンクL2により下流の第3のノードN3と接続している。第3のノードN3は、第3のリンクL3により下流の第4のノードN4と接続している。すなわち、グループG1の排水管路8における排水管部801のうちの第1のノードN1と対応する人孔の近傍を流れる雨水は、第3のノードN3と対応する人孔の近傍を経由し、第4のノードN4と対応する人孔の近傍に至る。同様に、グループG1の排水管路8における排水管部801のうちの第2のノードN2と対応する人孔の近傍を流れる雨水は、第3のノードN3と対応する人孔の近傍を経由し、第4のノードN4と対応する人孔の近傍に至る。 The first node N1 is connected to the downstream third node N3 by the first link L1. The second node N2 is connected to the downstream third node N3 by the second link L2. The third node N3 is connected to the downstream fourth node N4 by the third link L3. That is, the rainwater flowing in the vicinity of the human hole corresponding to the first node N1 in the drain pipe portion 801 in the drain pipe 8 of the group G1 passes through the vicinity of the human hole corresponding to the third node N3, It reaches the vicinity of the human hole corresponding to the fourth node N4. Similarly, rainwater flowing in the vicinity of the human hole corresponding to the second node N2 in the drain pipe portion 801 in the drain pipe 8 of the group G1 passes through the vicinity of the human hole corresponding to the third node N3. To the vicinity of the human hole corresponding to the fourth node N4.
 また、図4のデータテーブル11では、第2のノードN2と対応する人孔に水位センサ201が設置されており、第4のノードN4に水位センサ201と圧力センサ203とが設置されている。このため、予兆検知装置4は、第2のノードN2と対応する人孔の周囲における水位と、第4のノードN4と対応する人孔の周囲における水位及び空気圧とに基づいて、グループG1の排水管路8における内水氾濫の予兆を検知する。この際、グループG1の排水管路8に設置された計測装置2と、予兆検知装置4とは、それぞれ、例えば、図6に示したような処理を行う。 Further, in the data table 11 of FIG. 4, the water level sensor 201 is installed in the human hole corresponding to the second node N2, and the water level sensor 201 and the pressure sensor 203 are installed in the fourth node N4. For this reason, the sign detection device 4 performs drainage of the group G1 based on the water level around the human hole corresponding to the second node N2 and the water level and air pressure around the human hole corresponding to the fourth node N4. A sign of inundation in the pipeline 8 is detected. At this time, each of the measuring device 2 and the sign detection device 4 installed in the drain pipe 8 of the group G1 performs a process as shown in FIG. 6, for example.
 図6は、第1の実施形態に係る予兆検知システムが行う処理を説明するシーケンス図である。なお、図6の計測装置2Fは、図4のテーブルデータ11におけるグループG1の第2のノードN2と対応する人孔(上流側の人孔)に設置された計測装置であり、水位センサ201及び圧力センサ202のうちの水位センサ201のみを備える。一方、図6の計測装置2Gは、図4のテーブルデータ11におけるグループG1の第4のノードN4と対応する人孔(下流側の人孔)に設置された計測装置であり、水位センサ201及び圧力センサ202を備える。 FIG. 6 is a sequence diagram illustrating processing performed by the sign detection system according to the first embodiment. The measuring device 2F in FIG. 6 is a measuring device installed in a human hole (upstream human hole) corresponding to the second node N2 of the group G1 in the table data 11 in FIG. Only the water level sensor 201 of the pressure sensors 202 is provided. On the other hand, the measuring device 2G of FIG. 6 is a measuring device installed in a human hole (downstream human hole) corresponding to the fourth node N4 of the group G1 in the table data 11 of FIG. A pressure sensor 202 is provided.
 図6に示すように、本実施形態に係る予兆検知システム1では、排水管路8における上流側の計測装置2Fにより、当該計測装置2Fの周囲における水位を監視する処理(ステップS1,S2)を行う。ステップS1は水位を計測する処理であり、ステップS2は水位が閾値以上であるか否かを判定する処理である。ステップS1の処理は計測装置2Fの水位センサ201と制御装置203とが行い、ステップS2の判定処理は制御装置203が行う。制御装置203は、水位センサ201からセンサ出力を取得して現在の水位を算出した後、算出した水位が閾値以上であるか否かを判定する。ステップS2の判定閾値は、例えば、排水管部801のうちの計測装置2Fを設置した箇所の近傍部分が満管状態となる水位Hに対して80%程度の値(すなわち0.8H程度)とする。 As shown in FIG. 6, in the sign detection system 1 according to the present embodiment, processing (steps S <b> 1 and S <b> 2) for monitoring the water level around the measurement device 2 </ b> F by the upstream measurement device 2 </ b> F in the drainage pipe 8. Do. Step S1 is a process for measuring the water level, and step S2 is a process for determining whether or not the water level is equal to or higher than a threshold value. The processing in step S1 is performed by the water level sensor 201 and the control device 203 of the measuring device 2F, and the determination processing in step S2 is performed by the control device 203. After acquiring the sensor output from the water level sensor 201 and calculating the current water level, the control device 203 determines whether or not the calculated water level is greater than or equal to a threshold value. The determination threshold value of step S2 is, for example, a value of about 80% (that is, about 0.8H) with respect to the water level H at which the portion near the place where the measuring device 2F of the drain pipe unit 801 is installed becomes full. To do.
 計測した水位が閾値よりも小さい場合(ステップS2;NO)、計測装置2Fは、そのまま水位を監視する処理を続ける。一方、計測した水位が閾値以上である場合(ステップS2;YES)、計測装置2Fは、予兆検知装置4に対し予兆情報を送信する(ステップS3)。ステップS3の処理は、計測装置2Fの制御装置203が行う。ステップS3において、制御装置203は、計測装置2Fが設置されたマンホール(第2のノードN2)を示す情報と、排水氾濫が発生する可能性があることを示す情報とを含む予兆情報を生成する。その後、制御装置203は、最寄りの中継器3に接続し、中継器3及びネットワーク5を介して、予兆情報を予兆検知装置4に送信する。 When the measured water level is smaller than the threshold value (step S2; NO), the measuring device 2F continues the process of monitoring the water level as it is. On the other hand, when the measured water level is equal to or higher than the threshold (step S2; YES), the measuring device 2F transmits the sign information to the sign detection device 4 (step S3). The process of step S3 is performed by the control device 203 of the measuring device 2F. In step S3, the control device 203 generates predictive information including information indicating the manhole (second node N2) in which the measuring device 2F is installed and information indicating that there is a possibility of drainage flooding. . Thereafter, the control device 203 connects to the nearest repeater 3 and transmits the sign information to the sign detection device 4 via the repeater 3 and the network 5.
 計測装置2Fからの予兆情報を受信した予兆検知装置4は、まず、予兆情報に基づいて、氾濫予兆の検知対象とする箇所を選択する(ステップS11)。ステップS11の処理は、例えば、予兆検知装置4のデータ収集部401が行う。データ収集部401は、予兆情報に含まれる、該予兆情報を送信した計測装置2Fが設置されたマンホール(ノード)を示す情報と、記憶部409のデータテーブル11とに基づいて、氾濫予兆の検知対象とする(以下「検知対象箇所」という)を選択する。例えば、データ収集部401は、計測装置2Fが設置された第2のノードN2の下流にあり、かつ空気圧の計測が可能な第4のノードN4を、検知対象箇所とする。 The sign detection device 4 that has received the sign information from the measuring device 2F first selects a place to be detected as a flood sign based on the sign information (step S11). The process of step S11 is performed by the data collection unit 401 of the sign detection device 4, for example. The data collection unit 401 detects a flood sign based on information included in the sign information indicating the manhole (node) where the measuring device 2F that transmitted the sign information is installed and the data table 11 of the storage unit 409. Select the target (hereinafter referred to as “detection target location”). For example, the data collection unit 401 uses the fourth node N4, which is downstream of the second node N2 where the measurement device 2F is installed and can measure the air pressure, as a detection target location.
 検知対象箇所を選択すると、予兆検知装置4は、次に、氾濫予兆検知処理(ステップS12)を行う。氾濫予兆検知処理では、予兆検知装置4は、排水管路8の検知対象箇所における空気圧の変化量に基づいて、該検知対象箇所における氾濫の予兆の有無を判定する。検知対象箇所における空気圧の変化量が閾値以上である場合、予兆検知装置4は、検知対象箇所で内水氾濫の予兆があると判定する。 When the detection target location is selected, the sign detection device 4 next performs an overflow sign detection process (step S12). In the inundation sign detection process, the sign detection device 4 determines the presence / absence of an inundation sign at the detection target location based on the amount of change in air pressure at the detection target location of the drainage pipe 8. When the amount of change in air pressure at the detection target location is equal to or greater than the threshold, the sign detection device 4 determines that there is a sign of flooding in the detection target location.
 氾濫予兆検知処理を終えると、予兆検知装置4は、次に、氾濫の予兆を検知したか否かを判定する(ステップS13)。ステップS13の判定処理は、例えば、予兆検知装置4のアラーム出力部403が行う。氾濫の予兆を検知した場合(ステップS13;YES)、アラーム出力部403は、外部装置6に対してアラームを出力する処理(ステップS14)を行う。アラームを出力した後、予兆検知装置4は、受信した予兆情報に基づく処理を終了する。また、氾濫の予兆を検知しなかった場合(ステップS13;NO)、予兆検知装置4は、ステップS14の処理をスキップし、受信した予兆情報に基づく処理を終了する。受信した予兆情報に基づく処理を終了した後、予兆検知装置4は、次の予兆情報を受信するまで待機状態となる。 After completing the flood sign detection process, the sign detection device 4 next determines whether or not a flood sign has been detected (step S13). For example, the alarm output unit 403 of the sign detection device 4 performs the determination process in step S13. When a sign of flooding is detected (step S13; YES), the alarm output unit 403 performs a process of outputting an alarm to the external device 6 (step S14). After outputting the alarm, the sign detection device 4 ends the process based on the received sign information. If no sign of flooding is detected (step S13; NO), the sign detection device 4 skips the process of step S14 and ends the process based on the received sign information. After the process based on the received sign information is finished, the sign detection device 4 is in a standby state until the next sign information is received.
 このように、本実施形態の予兆検知システム1では、排水管路8に設置した計測装置2により監視している水位が閾値以上となった場合に、予兆検知装置4において氾濫予兆の検知対象とする箇所を選択し、氾濫予兆検知処理(ステップS12)を行う。予兆検知装置4は、ステップS12の処理として、例えば、図7に示した処理を行う。 As described above, in the sign detection system 1 according to the present embodiment, when the water level monitored by the measuring device 2 installed in the drain pipe 8 is equal to or higher than the threshold value, the sign detection device 4 detects the inundation sign. A place to be selected is selected, and an inundation sign detection process (step S12) is performed. The sign detection device 4 performs, for example, the process illustrated in FIG. 7 as the process of step S12.
 図7は、予兆検知装置が行う氾濫予兆検知処理の内容を説明するフローチャートである。 FIG. 7 is a flowchart for explaining the contents of the flood sign detection process performed by the sign detection apparatus.
 氾濫予兆検知処理では、予兆検知装置4は、図7に示すように、まず、予兆情報を送信した計測装置2と通信可能であるか否かを判定する(ステップS1201)。ステップS1201の判定は、例えば、データ収集部401が行う。データ収集部401は、予兆情報に含まれる送信元情報等を参照し、予兆情報を送信した計測装置2へのアクセスを試みる。図6の例では、データ収集部401は、第2のノードN2と対応する人孔に設置した計測装置2Fと通信可能であるか否かを判定する。 In the flood sign detection process, as shown in FIG. 7, the sign detection device 4 first determines whether or not communication with the measuring device 2 that transmitted the sign information is possible (step S1201). The determination in step S1201 is performed by the data collection unit 401, for example. The data collection unit 401 tries to access the measuring device 2 that transmitted the sign information by referring to the transmission source information included in the sign information. In the example of FIG. 6, the data collection unit 401 determines whether or not communication with the measurement device 2F installed in the human hole corresponding to the second node N2 is possible.
 予兆情報を送信した計測装置2と通信可能である場合(ステップS1201;YES)、予兆検知装置4は、次に、氾濫予兆の検知対象箇所における空気圧の推定増加量が危険値以上であるか否かを判定する処理(ステップS1202~1205)を行う。一方、予兆情報を送信した計測装置2との通信を行えない場合(ステップS1201;NO)、予兆検知装置4は、次に、氾濫予兆の検知対象箇所における空気圧の実測増加量が危険値以上であるか否かを判定する処理(ステップS1206~1208)を行う。ここで、空気圧の推定増加量は空気圧の推定値に基づいて算出した空気圧の増加量であり、空気圧の実測増加量は空気圧の測定値(実測値)に基づいて算出した空気圧の増加量である。 When communication with the measuring device 2 that transmitted the sign information is possible (step S1201; YES), the sign detection device 4 next determines whether or not the estimated increase in air pressure at the detection target location of the flood sign is greater than or equal to a dangerous value. Processing for determining whether or not (steps S1202 to 1205) is performed. On the other hand, when the communication with the measuring device 2 that has transmitted the sign information cannot be performed (step S1201; NO), the sign detection device 4 next determines that the actual increase in the air pressure at the detection target location of the flood sign is greater than or equal to the dangerous value. Processing for determining whether or not there is (steps S1206 to 1208) is performed. Here, the estimated increase amount of the air pressure is an increase amount of the air pressure calculated based on the estimated value of the air pressure, and the actual increase amount of the air pressure is an increase amount of the air pressure calculated based on the measured value (actual value) of the air pressure. .
 空気圧の推定増加量が危険値以上であるか否かを判定する処理を行う場合、予兆検知装置4は、次に、予兆情報を送信した計測装置2から水位データを取得する(ステップS1202)。ステップS1202の処理は、予兆検知装置4のデータ収集部401が行う。 When performing the process of determining whether or not the estimated increase amount of the air pressure is greater than or equal to the danger value, the sign detection device 4 next acquires water level data from the measuring device 2 that transmitted the sign information (step S1202). The process of step S1202 is performed by the data collection unit 401 of the sign detection device 4.
 ステップS1202の後、予兆検知装置4は、氾濫予兆の検知対象箇所の周囲における雨量情報を取得する(ステップS1203)。ステップS1203の処理は、データ収集部401が行う。データ収集部401は、例えば、データテーブル11を参照して、検知対象箇所に選ばれたノードの地理的位置を特定し、当該地理的位置の周囲における総雨量や時間雨量等の雨量情報を取得する。データ収集部401は、例えば、気象情報を提供するwebサイト等から検知対象箇所の周囲における雨量情報を取得する。 After step S1202, the sign detection device 4 acquires rainfall information around the detection target location of the flood sign (step S1203). The data collection unit 401 performs the process of step S1203. For example, the data collection unit 401 refers to the data table 11 to identify the geographical position of the node selected as the detection target location, and acquires rainfall information such as total rainfall and hourly rainfall around the geographical position. To do. The data collection unit 401 acquires, for example, rainfall information around the detection target location from a web site that provides weather information.
 ステップS1203の後、予兆検知装置4は、取得した水位と雨量情報とに基づいて、検知対象箇所の空気圧を推定する(ステップS1204)。ステップS1204の処理は、予兆検知装置4の予測部402が行う。予測部402は、取得した水位データから算出した水位の変化と、雨量情報とに基づいて、氾濫予兆の検知対象箇所に選ばれたノードと対応する人孔内における空気圧の推定値を算出する。例えば、予測部402は、下記式(1)により、空気圧の推定値Yを算出する。 After step S1203, the sign detection device 4 estimates the air pressure at the detection target location based on the acquired water level and rainfall information (step S1204). The process of step S1204 is performed by the prediction unit 402 of the sign detection device 4. The prediction unit 402 calculates an estimated value of the air pressure in the human hole corresponding to the node selected as the detection target location of the inundation sign based on the change in the water level calculated from the acquired water level data and the rainfall information. For example, the prediction unit 402 calculates the estimated value Y of air pressure by the following equation (1).
  Y=a1・x1+a2・x2+a3・x3+c   ・・・(1)
 式(1)のx1は、予兆情報を送信した計測装置2が設置された箇所における水位である。式(1)のx2及びx3は、それぞれ、検知対象箇所の周囲における総雨量及び時間雨量である。式(1)のa1,a2,及びa3は、それぞれ、重み係数であり、式(1)のcは定数である。係数a1,a2,及びa3、並びに定数cは、排水管部8における予兆情報を送信した計測装置2が設置された箇所における水位と、検知対象箇所の空気圧との相関関係を示す情報である。係数a1,a2,及びa3、並びに定数cは、例えば、予め重回帰分析により算出しておく。
Y = a1 * x1 + a2 * x2 + a3 * x3 + c (1)
X1 of Formula (1) is the water level in the location where the measuring device 2 that transmitted the sign information is installed. In formula (1), x2 and x3 are the total rainfall and the hourly rainfall around the detection target location, respectively. In equation (1), a1, a2, and a3 are weighting factors, respectively, and c in equation (1) is a constant. The coefficients a1, a2, and a3, and the constant c are information indicating the correlation between the water level at the location where the measuring device 2 that transmitted the sign information in the drain pipe 8 is installed and the air pressure at the detection target location. The coefficients a1, a2, and a3 and the constant c are calculated in advance by, for example, multiple regression analysis.
 ステップS1204の後、予兆検知装置4は、空気圧の推定値Yと平常時の空気圧とに基づいて算出される空気圧の推定増加量が危険値以上であるか否かを判定する(ステップS1205)。ステップS1205の判定は、予測部402が行う。予測部402は、データテーブル11から検知対象箇所に選ばれたノードと対応付けられた平常時の空気圧を取得し、空気圧の推定増加量を算出する。危険値は、例えば、下記式(2)で与えられる水圧P(気圧)と水深D(m)との関係に基づいて予め算出しておく。 After step S1204, the sign detection device 4 determines whether or not the estimated increase amount of the air pressure calculated based on the estimated air pressure value Y and the normal air pressure is greater than or equal to the dangerous value (step S1205). The determination in step S1205 is performed by the prediction unit 402. The prediction unit 402 obtains the normal air pressure associated with the node selected as the detection target location from the data table 11 and calculates the estimated increase amount of the air pressure. The danger value is calculated in advance based on the relationship between the water pressure P (atmospheric pressure) and the water depth D (m) given by the following formula (2), for example.
  D=10×P/1気圧   ・・・(2)
 例えば、排水管路8における排水管部801の直径が2mである場合、危険値は、D=2として式(2)により算出される圧力P(0.2気圧)に設定する。また、危険値は、例えば、安全係数を80%とし、式(2)により算出される圧力Pの80%の値(0.16気圧)に設定してもよい。
D = 10 × P / 1 atm (2)
For example, when the diameter of the drain pipe 801 in the drain pipe 8 is 2 m, the danger value is set to the pressure P (0.2 atm) calculated by the equation (2) with D = 2. The danger value may be set to a value (0.16 atm) of 80% of the pressure P calculated by the equation (2), for example, with a safety factor of 80%.
 空気圧の推定増加量が危険値以上である場合(ステップS1205;YES)、予測部402は、排水管路8における検知対象箇所に氾濫の予兆があると認識し(ステップS1209)、氾濫予兆検知処理を終了する。一方、空気圧の推定増加量が危険値よりも小さい場合(ステップS1205;NO)、予測部402は、次に、氾濫予兆の検知対象箇所における空気圧の実測増加量が危険値以上であるか否かを判定する処理(ステップS1206~S1208)を行う。 When the estimated increase amount of the air pressure is greater than or equal to the danger value (step S1205; YES), the prediction unit 402 recognizes that there is a sign of flooding at the detection target location in the drain pipe 8 (step S1209), and flood sign detection processing. Exit. On the other hand, when the estimated increase amount of the air pressure is smaller than the danger value (step S1205; NO), the prediction unit 402 next determines whether or not the actual increase amount of the air pressure at the detection target location of the inundation sign is greater than or equal to the danger value. Is performed (steps S1206 to S1208).
 空気圧の実測増加量が危険値以上であるか否かを判定する処理を行う場合、予兆検知装置4は、検知対象箇所に選ばれたノードと対応する人孔に設置した計測装置2から空気圧データを取得する。このため、予兆検知装置4は、まず、検知対象箇所の空気圧を計測可能であるか否かを判定する(ステップS1206)。ステップS1206の処理は、予兆検知装置4のデータ収集部401が行う。ステップS1206において、データ収集部401は、例えば、検知対象箇所に選ばれたノードと対応する人孔に、圧力センサ202を備えた計測装置2が設置されており、かつ当該計測装置2と通信可能であるか否かを判定する。データ収集部401は、データテーブル11を参照して、検知対象箇所に圧力センサ202を備えた計測装置2が設置されているか否かを判定する。 When performing the process of determining whether or not the actual increase in air pressure is greater than or equal to the danger value, the sign detection device 4 receives the air pressure data from the measurement device 2 installed in the human hole corresponding to the node selected as the detection target location. To get. For this reason, the sign detection device 4 first determines whether or not the air pressure at the detection target location can be measured (step S1206). The process of step S1206 is performed by the data collection unit 401 of the sign detection device 4. In step S1206, for example, the data collection unit 401 has the measurement device 2 including the pressure sensor 202 installed in the human hole corresponding to the node selected as the detection target location, and can communicate with the measurement device 2. It is determined whether or not. The data collection unit 401 refers to the data table 11 and determines whether or not the measurement device 2 including the pressure sensor 202 is installed at the detection target location.
 検知対象箇所の空気圧を計測できない場合(ステップS1206;NO)、予兆検知装置4は、氾濫の予兆の検知に失敗したと認識し(ステップS1211)、氾濫予兆検知処理を終了する。氾濫の予兆の検知に失敗した場合、予兆検知装置4は、例えば、予兆検知装置4のオペレータ等に検知に失敗したことを通知するエラー通知を出力する。 If the air pressure at the detection target location cannot be measured (step S1206; NO), the sign detection device 4 recognizes that the detection of the sign of flooding has failed (step S1211), and ends the flood sign detection process. When the detection of the sign of flooding fails, the sign detection device 4 outputs, for example, an error notification notifying the operator of the sign detection device 4 that the detection has failed.
 これに対し、検知対象箇所の空気圧を計測可能である場合(ステップS1206;YES)、予兆検知装置4のデータ収集部401は、次に、検知対象箇所に選ばれたノードと対応する人孔に設置した計測装置2から空気圧データを取得する(ステップS1207)。 On the other hand, when the air pressure at the detection target location can be measured (step S1206; YES), the data collection unit 401 of the sign detection device 4 next places the human hole corresponding to the node selected as the detection target location. Air pressure data is acquired from the installed measuring device 2 (step S1207).
 ステップS1207の後、予兆検知装置4は、計測装置2から取得した現在の空気圧と、平常時の空気圧とに基づいて算出される空気圧の実測増加量が危険値以上であるか否かを判定する(ステップS1208)。ステップS1208の判定は、予測部402が行う。予測部402は、データテーブル11から検知対象箇所に選ばれたノードと対応する人孔における平常時の空気圧を取得し、空気圧の実測増加量を算出する。危険値は、例えば、ステップS1205の判定に用いる危険値と同じ値とする。 After step S1207, the sign detection device 4 determines whether or not the actual increase in air pressure calculated based on the current air pressure acquired from the measurement device 2 and the normal air pressure is greater than or equal to a dangerous value. (Step S1208). The prediction unit 402 performs the determination in step S1208. The prediction unit 402 acquires the normal air pressure at the human hole corresponding to the node selected as the detection target location from the data table 11 and calculates the actual increase amount of the air pressure. For example, the danger value is the same value as the danger value used in the determination in step S1205.
 空気圧の実測増加量が危険値以上である場合(ステップS1208;YES)、予測部402は、排水管路8における検知対象箇所に氾濫の予兆があると認識し(ステップS1209)、氾濫予兆検知処理を終了する。一方、空気圧の実測増加量が危険値よりも小さい場合、予測部402は、排水管路8における検知対象箇所には氾濫の予兆がないと認識し(ステップS1210)、氾濫予兆検知処理を終了する。 When the actually increased amount of air pressure is greater than or equal to the dangerous value (step S1208; YES), the prediction unit 402 recognizes that there is a sign of flooding at the detection target location in the drainage pipe 8 (step S1209), and flood sign detection processing. Exit. On the other hand, when the actual increase amount of the air pressure is smaller than the danger value, the prediction unit 402 recognizes that there is no sign of inundation at the detection target location in the drainage pipe 8 (step S1210), and ends the inundation sign detection process. .
 上記の氾濫予兆検知処理(ステップS12)において氾濫の予兆があると認識した場合、予兆検知装置4は、図6に示したように、外部装置6に対して氾濫の予兆を通知するアラームを送信する。 When it is recognized that there is a flood sign in the above flood sign detection process (step S12), the sign detection device 4 transmits an alarm for notifying the external device 6 of the flood sign as shown in FIG. To do.
 図8は、氾濫の予兆を通知する方法を説明する図である。 FIG. 8 is a diagram for explaining a method of notifying a sign of flooding.
 図8には、予兆検知装置4が氾濫の予兆を通知するアラームを送信する外部装置6の例として、携帯端末6A、路上に設置した報知器6B、行政機関13の防災無線端末6C、及び放送局14に設置した表示装置6Dを示している。 In FIG. 8, as an example of the external device 6 that transmits an alarm for the sign detection device 4 to notify the sign of flooding, a portable terminal 6A, a notification device 6B installed on the road, a disaster prevention wireless terminal 6C of the administrative institution 13, and broadcasting A display device 6D installed in the station 14 is shown.
 携帯端末6Aは、ネットワーク5を介した各種の通信が可能な情報処理装置(例えば、携帯電話機やスマートフォン、タブレット型コンピュータ等)である。予兆検知装置4から携帯端末6Aにアラームを送信する場合、予兆検知装置4のアラーム出力部403は、例えば、氾濫の予兆を通知するメッセージを生成し、ネットワーク5を介して当該メッセージを携帯端末6Aに送信する。この際、予兆検知装置4は、例えば、氾濫予兆の検知対象箇所であるノードの地理的位置と、携帯端末6Aの位置情報とに基づいて、検知対象箇所であるノードと対応する人孔部812の近傍にいる利用者12の携帯端末6Aにアラームを送信してもよい。携帯端末6Aの位置情報は、例えば、Global Positioning System(GPS)を利用することで取得可能である。 The mobile terminal 6A is an information processing apparatus (for example, a mobile phone, a smartphone, a tablet computer, or the like) that can perform various types of communication via the network 5. When transmitting an alarm from the sign detection device 4 to the portable terminal 6A, the alarm output unit 403 of the sign detection device 4 generates, for example, a message notifying the sign of flooding, and sends the message via the network 5 to the portable terminal 6A. Send to. At this time, the sign detection device 4, for example, based on the geographical position of the node that is the detection target location of the flood sign and the position information of the mobile terminal 6 </ b> A, the human hole portion 812 corresponding to the node that is the detection target location. An alarm may be transmitted to the mobile terminal 6A of the user 12 in the vicinity of. The position information of the mobile terminal 6A can be acquired by using, for example, a Global Positioning System (GPS).
 路上に設置した報知器6Bは、排水管路8の人孔部812の近傍に設置された、音声や文字情報を出力する装置である。当該報知器は、ネットワーク5を介して予兆検知装置4との通信を行う通信部と、予兆検知装置4から受信したメッセージ等を表示する表示部とを含む。氾濫の予兆を検知した場合、予兆検知装置4は、検知対象箇所と対応付けられた人孔部812の近傍に設置された報知器6Bに対し、氾濫の予兆を通知するメッセージを含むアラームを送信する。アラームを受信した報知器6Bは、例えば、警報音を発し、メッセージを表示する。これにより、報知器6Bが設置された箇所の近傍にいる人物に対し、まもなく内水氾濫が発生する可能性があることを報知する。 The alarm device 6B installed on the road is a device that outputs voice and text information installed in the vicinity of the human hole portion 812 of the drain pipe 8. The alarm includes a communication unit that communicates with the sign detection device 4 via the network 5 and a display unit that displays a message received from the sign detection device 4. When a sign of flooding is detected, the sign detection device 4 transmits an alarm including a message notifying the sign of flooding to the alarm device 6B installed in the vicinity of the human hole portion 812 associated with the detection target location. To do. For example, the alarm device 6B that has received the alarm emits a warning sound and displays a message. As a result, the person in the vicinity of the place where the alarm 6B is installed is notified that there is a possibility that the inland water will overflow soon.
 行政機関13の防災無線端末6Cは、図示しない防災無線システムに接続された情報処理装置である。氾濫の予兆を検知した場合、予兆検知装置4は、アラーム(メッセージ)を生成し、該アラームを、ネットワーク5を介して防災無線端末6Cに送信する。アラームは、例えば、検知対象箇所のノードと対応付けられた人孔部812の位置情報を含む。アラームを受信した防災無線端末6Cは、例えば、防災無線システムにおける検知対象箇所のノードと対応付けられた人孔部812の近傍に設置されたスピーカ等の報知器(図示せず)に対し、氾濫の予兆を通知する音声信号を出力する。 The disaster prevention radio terminal 6C of the administrative institution 13 is an information processing apparatus connected to a disaster prevention radio system (not shown). When the sign of the flood is detected, the sign detection device 4 generates an alarm (message) and transmits the alarm to the disaster prevention wireless terminal 6C via the network 5. The alarm includes, for example, position information of the human hole portion 812 associated with the detection target location node. The disaster prevention radio terminal 6C that has received the alarm floods an alarm (not shown) such as a speaker installed in the vicinity of the human hole portion 812 associated with the detection target node in the disaster prevention radio system, for example. An audio signal for notifying the sign of the is output.
 放送局14に設置した表示装置6Dは、テレビジョン放送局やラジオ放送局等に設置された報知器である。当該表示装置6Dは、ネットワーク5を介して予兆検知装置4との通信を行う通信部と、予兆検知装置4から受信したメッセージ等を表示する表示部とを含む。氾濫の予兆を検知した場合、予兆検知装置4は、検知対象箇所のノードと対応付けられた人孔部812の位置情報を含むアラーム(メッセージ)を生成し、該アラームを、ネットワーク5を介して放送局14の表示装置6Dに送信する。テレビジョン放送の放送局に設置した表示装置6Dに送信したアラームは、テレビジョン放送を通じて視聴者に報知される。ラジオ放送の放送局に設置した表示装置6Dに送信したアラームは、ラジオ放送を通じて聴取者に報知される。 The display device 6D installed in the broadcasting station 14 is an alarm installed in a television broadcasting station or a radio broadcasting station. The display device 6D includes a communication unit that communicates with the sign detection device 4 via the network 5, and a display unit that displays a message or the like received from the sign detection device 4. When a sign of flooding is detected, the sign detection device 4 generates an alarm (message) including position information of the human hole portion 812 associated with the node of the detection target location, and the alarm is transmitted via the network 5. The data is transmitted to the display device 6D of the broadcast station 14. The alarm transmitted to the display device 6D installed in the broadcasting station of the television broadcast is notified to the viewer through the television broadcast. The alarm transmitted to the display device 6D installed in the radio broadcast station is notified to the listener through the radio broadcast.
 本実施形態に係る氾濫予兆検知処理では、検知対象箇所に選ばれたノードと対応する排水管路8の人孔部における空気圧の推定増加量又は実測増加量に基づいて、当該人孔部の近傍に氾濫の予兆があるか否かを判定する。排水管路において氾濫予兆の検知対象箇所である人孔部とは異なる人孔部の周囲で水位が急上昇した場合、検知対象箇所の人孔部では、水位の上昇に先駆けて空気圧が上昇する。このため、排水管路におけるあるマンホール(人孔部)の周囲での水位の上昇を検出した際に、他のマンホールの周囲での空気圧の推定増加量又は実測増加量に基づいて氾濫の予兆があるか否かを判定することで、早期に氾濫の予兆を検知することが可能となる。 In the inundation sign detection process according to the present embodiment, based on the estimated increase amount or the actually measured increase amount of air pressure in the human hole portion of the drainage pipe 8 corresponding to the node selected as the detection target location, the vicinity of the human hole portion Determine whether there is a sign of flooding. When the water level suddenly rises around a human hole part that is different from the human hole part that is the detection target location of the inundation sign in the drainage pipe, the air pressure increases in the human hole part of the detection target point prior to the rise of the water level. For this reason, when an increase in the water level around a manhole (manhole) in a drain pipe is detected, there is a sign of inundation based on the estimated increase or actual increase in air pressure around other manholes. By determining whether or not there is, it is possible to detect a sign of inundation at an early stage.
 図9は、排水管路における1つの人孔部の周囲における降雨量及び水位の時間変化の例を示すグラフ図である。図10は、マンホールに印加される圧力と雨水の流量との関係を説明する図である。 FIG. 9 is a graph showing an example of temporal changes in rainfall and water level around one human hole in the drainage pipe. FIG. 10 is a diagram for explaining the relationship between the pressure applied to the manhole and the flow rate of rainwater.
 下水管内の水位に基づいて氾濫の予兆を検知する方法では、急な集中豪雨等で下水管内の水位が急上昇した場合に、対策を講じるための十分な時間を確保することが困難となる。図9のグラフ15には、1つのマンホールの周囲における降雨量及び水位の時間変化を5分刻みで示している。図9のグラフ15では、17時35分頃に降雨量が20mm/hを超える集中豪雨が始まっており、17時45分以降の20分程度の時間で、排水管路8内の水位が、満管となる水位Hまで約20cmという水位まで急上昇している。このように、集中豪雨等により下水管内の水位が急上昇した場合、10分から20分程度のわずかな時間で土嚢を準備する等の対策を講じることとなり、対策が間に合わないことがある。 In the method of detecting a sign of inundation based on the water level in the sewer pipe, it becomes difficult to secure sufficient time for taking countermeasures when the water level in the sewer pipe rises rapidly due to sudden torrential rain. The graph 15 in FIG. 9 shows the temporal change in rainfall and water level around one manhole in 5 minute increments. In the graph 15 of FIG. 9, the torrential rain with a rainfall exceeding 20 mm / h has started around 17:35, and the water level in the drainage pipe 8 is about 20 minutes after 17:45. It has soared to a water level of about 20 cm up to the full water level H. In this way, when the water level in the sewer pipe suddenly rises due to heavy rain, etc., measures such as preparing sandbags in a short time of about 10 to 20 minutes may be taken, and measures may not be in time.
 また、排水管路8内の水位をモニタリングするだけでは、氾濫の予兆を的確に検出することが困難な場合がある。例えば、舗装道路等の路面上の雨水はマンホール蓋9の貫通孔等を通り排水管路8に集水されるしくみになっているが、排水管路8内部の空気圧が上昇すると、路面上から排水管路に流入する雨水の流量が減少する。例えば、図10に示すように、地表面7S上に雨水16が溜まっている場合、マンホール蓋9の上面9Aに印加される圧力PAは、大気圧と地表面7S上の雨水による水圧とを加えた大きさとなる。ここで、雨水の流入等により排水管路8内の水位10Sが上昇すると、排水管路8内における空気部分の容積が減少して人孔部813内の空気圧が上昇し、マンホール蓋9の下面9Bに印加される圧力PBが上昇する。そして、マンホール蓋9の下面9Bに印加される圧力PBが、上面9Aに印加される圧力PA以上になると、地表面7S上から排水管路8内への雨水16の流入量が減少し、地表面7S上の雨水16の量が増加して氾濫(浸水)が起こる。例えば、マンホール蓋9の下面9Bに印加される圧力PBが平常時の圧力から0.1気圧上昇した場合、大まかにいうと、上面9Aに印加される圧力PAが0.1気圧以上上昇しないと、地表面7S上から排水管路8内への雨水16の流入量が減少する。すなわち、マンホール蓋9の下面9Bに印加される圧力PBが平常時の圧力から0.1気圧上昇した場合、大まかにいうと、地表面7Sにおける雨水16の深さが1mを超えないと、地表面7Sから排水管路8内への雨水16の流入量が減少する。したがって、排水管路8内の水位に基づいて氾濫の予兆を検出する場合、排水管部801の水位10Sが危険水位まで達していない状態であっても、地表面7Sから排水管路8内への雨水16の流入量が減少して内水氾濫が発生する可能性がある。 In addition, it may be difficult to accurately detect signs of flooding by simply monitoring the water level in the drainage pipe 8. For example, rainwater on a road surface such as a paved road is collected in the drainage pipe 8 through the through hole of the manhole cover 9, but when the air pressure inside the drainage pipe 8 rises, The flow of rainwater flowing into the drainage pipe is reduced. For example, as shown in FIG. 10, when rainwater 16 is accumulated on the ground surface 7S, the pressure PA applied to the upper surface 9A of the manhole cover 9 is the sum of the atmospheric pressure and the water pressure due to rainwater on the ground surface 7S. It becomes the size. Here, when the water level 10S in the drainage pipe 8 rises due to the inflow of rainwater or the like, the volume of the air portion in the drainage pipe 8 decreases and the air pressure in the human hole portion 813 rises, and the lower surface of the manhole cover 9 The pressure PB applied to 9B increases. When the pressure PB applied to the lower surface 9B of the manhole cover 9 becomes equal to or higher than the pressure PA applied to the upper surface 9A, the amount of rainwater 16 flowing from the ground surface 7S into the drainage pipe 8 decreases, The amount of rainwater 16 on the surface 7S increases and flooding (flooding) occurs. For example, when the pressure PB applied to the lower surface 9B of the manhole cover 9 is increased by 0.1 atm from the normal pressure, roughly speaking, the pressure PA applied to the upper surface 9A must be increased by not less than 0.1 atm. The amount of rainwater 16 flowing from the ground surface 7S into the drain pipe 8 is reduced. That is, when the pressure PB applied to the lower surface 9B of the manhole cover 9 rises by 0.1 atm from the normal pressure, roughly speaking, if the depth of the rainwater 16 on the ground surface 7S does not exceed 1 m, The inflow amount of rainwater 16 from the surface 7S into the drain pipe 8 is reduced. Therefore, when detecting an inundation sign based on the water level in the drainage pipe 8, even if the water level 10S of the drainage pipe part 801 does not reach the dangerous water level, it enters the drainage pipe 8 from the ground surface 7S. There is a possibility that the inflow of rainwater 16 will decrease and inundation will occur.
 これに対し、本実施形態の予兆検知システム1では、上記のように、排水管路8内における空気圧の変化に基づいて、氾濫の予兆の有無を検知する。 On the other hand, in the sign detection system 1 of the present embodiment, the presence or absence of a flood sign is detected based on the change in air pressure in the drain pipe 8 as described above.
 図11は、排水管路における水位の変化と空気圧の変化との関係を説明する断面図である。 FIG. 11 is a cross-sectional view illustrating the relationship between the change in the water level and the change in air pressure in the drain pipe.
 図11には、排水管路8内と地上とを連通する2つの人孔部811,812を示している。当該2つの人孔部811,812の間隔は、例えば、数百mから数km程度である。2つの人孔部811,812のうちの上流側の人孔部811には、水位センサ201を含む計測装置2Fが設置されている。また、2つの人孔部811のうちの下流側の人孔部812には、水位センサ201及び圧力センサ202を含む計測装置2Gが設置されている。 FIG. 11 shows two human hole portions 811 and 812 that allow the inside of the drain pipe 8 to communicate with the ground. The interval between the two human hole portions 811 and 812 is, for example, about several hundred m to several km. The measuring device 2 </ b> F including the water level sensor 201 is installed in the upstream human hole portion 811 of the two human hole portions 811 and 812. A measuring device 2 </ b> G including a water level sensor 201 and a pressure sensor 202 is installed in a downstream human hole portion 812 of the two human hole portions 811.
 例えば、排水管路8における上流側の人孔部811の周囲で局地的な降雨が発生し、排水管部801における人孔部811の近傍部分の水位10Sが満管状態の80%を超える水位まで急上昇したとする。ここで、図11の2つの人孔部811,812の間隔が、数百mから数km程度である場合、上流側の水10は、十数分~数十分後に、下流側の人孔部812に到達する。 For example, local rainfall occurs around the upstream manhole portion 811 in the drainage pipe 8, and the water level 10S in the vicinity of the manhole portion 811 in the drainage pipe portion 801 exceeds 80% of the full pipe state. Assume that the water level soared. Here, when the distance between the two human hole portions 811 and 812 in FIG. 11 is about several hundred m to several km, the upstream side water 10 is 10 minutes to several tens of minutes later. Part 812 is reached.
 図11に示したように、上流側の人孔部811の周囲では水位10Sが急上昇しているものの、下流側の人孔部812の周囲では水位10Sが平常時の水位のままである場合、下流側の人孔部812の周囲で計測した水位10Sは、平常時の水位である。このため、水位に基づいて氾濫の予兆を検知する場合、下流側の人孔部812の周囲で氾濫の予兆を検知することは困難である。 As shown in FIG. 11, the water level 10S rises rapidly around the upstream manhole portion 811, but the water level 10S remains at the normal water level around the downstream manhole portion 812. The water level 10S measured around the manhole portion 812 on the downstream side is a normal water level. For this reason, when detecting an inundation sign based on the water level, it is difficult to detect an inundation sign around the downstream human hole 812.
 排水管路8における上流側の人孔部811の周囲で水位10Sが急上昇した場合、上流側の人孔部811の周囲では、排水管部801の内部空間における空気部分の容積が急速に減少するため、空気圧が上昇する。ところが、上流側の人孔部811の周囲で局所的に空気圧が上昇して排水管路8内に圧力差が生じた場合、人孔部811の周囲の空気は排水管部801の下流側に流れる。このため、排水管路8内で生じた空気圧の圧力差はすぐに解消され、排水管路8内における雨水10の流れる方向の圧力分布は略均一となる。この際、排水管路8内の空気圧は、空気部分の容積が減少した分だけ上昇する。しかも、排水管路8内での圧力差により生じる空気流の流速は、排水管路8内を流れる雨水10の流速よりも速い。このため、上流側の人孔部811の周囲で水位10Sが急上昇してから下流側の人孔部812の周囲で空気圧が上昇するまでの期間は、上流側の人孔部811の周囲の雨水10が下流側の人孔部812の周囲に到達するまでの期間よりも短い。すなわち、上流側の人孔部811の周囲で水位10Sが急上昇した場合、下流側の人孔部812に設置した計測装置2は、空気圧Pの上昇を水位10Sの上昇よりも早く検出する。したがって、上流側の人孔部811の周囲で水位10Sが急上昇した場合に、下流側の人孔部812の周囲での空気圧の変化に基づいて下流側の人孔部812の周囲での氾濫の予兆を検知することにより、早期に氾濫の予兆を検知することが可能となる。 When the water level 10S rapidly rises around the upstream human hole 811 in the drain pipe 8, the volume of the air portion in the internal space of the drain pipe 801 rapidly decreases around the upstream human hole 811. Therefore, the air pressure increases. However, when the air pressure locally increases around the upstream manhole portion 811 and a pressure difference is generated in the drainage pipe 8, the air around the manhole portion 811 flows downstream of the drainage pipe portion 801. Flowing. For this reason, the pressure difference of the air pressure generated in the drain pipe 8 is immediately eliminated, and the pressure distribution in the direction in which the rainwater 10 flows in the drain pipe 8 becomes substantially uniform. At this time, the air pressure in the drain pipe 8 is increased by the amount by which the volume of the air portion is reduced. Moreover, the flow rate of the air flow generated by the pressure difference in the drainage pipe 8 is faster than the flow rate of the rainwater 10 flowing in the drainage pipe 8. For this reason, during the period from when the water level 10S suddenly rises around the upstream manhole portion 811 to when the air pressure rises around the downstream manhole portion 812, rainwater around the upstream manhole portion 811 It is shorter than the period until 10 reaches the periphery of the manhole portion 812 on the downstream side. That is, when the water level 10S rapidly rises around the upstream side human hole 811, the measuring device 2 installed in the downstream side human hole 812 detects the increase in the air pressure P earlier than the increase in the water level 10S. Therefore, when the water level 10S suddenly rises around the upstream manhole portion 811, the flooding around the downstream manhole portion 812 is caused by the change in air pressure around the downstream manhole portion 812. By detecting the sign, it becomes possible to detect the sign of flooding at an early stage.
 なお、排水管路8において水位10Sの急上昇を検知したときに氾濫予兆の検知対象とする箇所は、水位10Sの急上昇を検知した箇所の下流側に限らず、水位10Sの急上昇を検知した箇所の上流側であってもよい。排水管路8における水位10Sの急上昇を検知した箇所よりも上流側を氾濫予兆の検知対象とした場合、例えば、急激な増水等で排水が間に合わずに雨水10が排水管部801を逆流することによる氾濫の予兆を検知することが可能となる。 In addition, the location to be detected as an inundation sign when detecting a sudden rise in the water level 10S in the drain pipe 8 is not limited to the downstream side of the location where the sudden rise in the water level 10S is detected, but the location where the sudden rise in the water level 10S is detected. It may be upstream. When the upstream side of the location where the rapid rise in the water level 10S in the drainage pipe 8 is detected is detected as an inundation sign, for example, the rainwater 10 flows backward through the drainage pipe portion 801 due to rapid water increase or the like. It is possible to detect signs of flooding due to
 図12は、排水管路内における水位の変化と空気部分の容積の変化との関係を説明する断面図である。図13は、排水管路内における水位と空気部分の容積との関係を説明するグラフ図である。 FIG. 12 is a cross-sectional view illustrating the relationship between the change in the water level in the drain pipe and the change in the volume of the air portion. FIG. 13 is a graph for explaining the relationship between the water level in the drain pipe and the volume of the air portion.
 図12には、排水管路8における排水管部801の横断面の一例を示している。排水管部801の多くは、内部空間が円柱状、或いは略円柱状となっている。このため、排水管部801が内径Hである場合、雨水10の水位10Sが0から0.5Hまでの範囲である場合、図13に示した曲線17のように、水位10Sの上昇に伴い、排水管部801の空気部分の容積の減少率が大きくなる。また、排水管部801の水位10Sが0.5H以上となった場合、水位10Sの上昇に伴い空気部分の容積が急速に減少する。このため、排水管部801における平常時の水位h1がh1<0.5Hである場合、排水管路8内で局所的に水位10Sが急上昇すると、排水管部801における水位10Sが上昇した箇所と、当該箇所の外側の部分との圧力差が大きくなる。水位10Sが上昇した箇所と、当該箇所の外側の部分との圧力差が大きくなると、圧力差により生じる空気流の流速が大きくなる。しかも、排水管部801の水位10Sが更に上昇して満管時の水位Hに近い水位h2になると、排水管部801における空気部分の横断面積が非常に小さくなる。このため、排水管路8のある箇所において水位10Sが急上昇し満管時の水位に近づくと、当該箇所から外側の部分に流れる空気流の流速が速くなり、排水管路8内における圧力差がより早く解消される。したがって、内部空間が円柱状或いは略円柱状の排水管路8においては、空気圧の変化に基づいて、より早期に氾濫の予兆を検知することが可能となる。 FIG. 12 shows an example of a cross section of the drain pipe portion 801 in the drain pipe line 8. In many of the drain pipe portions 801, the internal space is columnar or substantially columnar. Therefore, when the drain pipe portion 801 has an inner diameter H, when the water level 10S of the rainwater 10 is in the range from 0 to 0.5H, as the water level 10S rises, as in the curve 17 shown in FIG. The reduction rate of the volume of the air portion of the drain pipe 801 is increased. Moreover, when the water level 10S of the drain pipe part 801 becomes 0.5H or more, the volume of the air portion rapidly decreases as the water level 10S rises. For this reason, when the normal water level h1 in the drain pipe 801 is h1 <0.5H, when the water level 10S rises locally in the drain pipe 8, the water level 10S in the drain pipe 801 rises. The pressure difference with the outer part of the said part becomes large. When the pressure difference between the location where the water level 10S rises and the portion outside the location increases, the flow velocity of the air flow generated by the pressure difference increases. In addition, when the water level 10S of the drain pipe 801 further rises to a water level h2 that is close to the water level H when the pipe is full, the cross-sectional area of the air portion in the drain pipe 801 becomes very small. For this reason, when the water level 10S suddenly rises at a location where the drainage pipe 8 is present and approaches the water level at the time of the full pipe, the flow velocity of the airflow flowing from the location to the outer part becomes faster, and the pressure difference in the drainage pipe 8 is increased. Eliminate faster. Therefore, in the drainage pipe 8 having an inner space of a columnar shape or a substantially columnar shape, it is possible to detect a sign of inundation earlier based on a change in air pressure.
 以上説明したように、本実施形態に係る予兆検知システム1では、排水管路8内のある箇所で水位の上昇を検知したときに、排水管路8内の空気圧の変化に基づいて、当該排水管路8における他の箇所での氾濫の予兆を検知する。このため、本実施形態によれば、排水管路8における水位が上昇した箇所とは別の箇所での氾濫の予兆を早期に検知することが可能となる。 As described above, in the sign detection system 1 according to the present embodiment, when a rise in the water level is detected at a certain location in the drainage pipe 8, the drainage is determined based on the change in the air pressure in the drainage pipe 8. A sign of inundation at other points in the pipeline 8 is detected. For this reason, according to this embodiment, it becomes possible to detect in advance the sign of inundation at a location different from the location where the water level in the drainage pipe 8 has risen.
 また、本実施形態に係る予兆検知装置4は、水位の上昇を検知した箇所における水位と、氾濫予兆の検知対象とする箇所の周囲における雨量情報とに基づいて検知対象とする箇所の空気圧を推定する(ステップS1202~S1204)。このため、本実施形態に係る予兆検知システム1では、例えば、排水管路8における複数の人孔部のうちの、圧力センサ202を含む計測装置2を設置していない人孔部の周囲における氾濫の予兆を検知することも可能である。このため、排水管路8に設置する計測装置2の個数の増加を抑え、予兆検知システム1の導入コストやランニングコストの増加を抑制することが可能となる。 In addition, the sign detection device 4 according to the present embodiment estimates the air pressure of the location to be detected based on the water level at the location where the rise in the water level is detected and the rainfall information around the location that is the detection target of the flood sign. (Steps S1202 to S1204). For this reason, in the sign detection system 1 according to the present embodiment, for example, flooding around a human hole portion where the measuring device 2 including the pressure sensor 202 is not installed among the plurality of human hole portions in the drainage pipe 8. It is also possible to detect a sign of this. For this reason, it is possible to suppress an increase in the number of measuring devices 2 installed in the drain pipe 8 and to suppress an increase in introduction cost and running cost of the sign detection system 1.
 なお、本実施形態に係る予兆検知装置4が参照する、氾濫予兆の検知対象とする排水管路8に設置した計測装置2の隣接関係を示すネットワーク情報は、図4のデータテーブル11に限らず、適宜変更可能である。 In addition, the network information which shows the adjacency relationship of the measuring device 2 installed in the drain pipe 8 which is the detection target of the inundation sign referred to by the sign detection device 4 according to the present embodiment is not limited to the data table 11 in FIG. These can be changed as appropriate.
 また、図6の氾濫予兆の検知対象とする箇所(ノード)を選択する処理(ステップS11)において、予兆検知装置4は、複数のノードを選択してもよい。例えば、図5のトポロジで示される排水管路における第2のノードN2で水位の上昇を検出した場合、予兆検知装置4は、ステップS11において第1のノードN1、第3のノードN3、及び第4のノードN4のなかから2つ以上のノードを選択してもよい。氾濫予兆の検知対象として複数のノードを選択した場合、予兆検知装置4は、選択したノードのそれぞれに対し、ステップS12の氾濫予兆検知処理を行う。 Moreover, in the process (step S11) of selecting a location (node) that is a detection target of an inundation sign in FIG. 6, the sign detection device 4 may select a plurality of nodes. For example, when the rise in the water level is detected at the second node N2 in the drainage pipe shown in the topology of FIG. 5, the sign detection device 4 detects the first node N1, the third node N3, and the first node N1 in step S11. Two or more nodes may be selected from the four nodes N4. When a plurality of nodes are selected as the detection target of the flood sign, the sign detection device 4 performs the flood sign detection process in step S12 for each of the selected nodes.
 また、図7のフローチャートは、本実施形態に係る予兆検知装置4が行う氾濫予兆検知処理の一例に過ぎない。予兆検知装置4が行う氾濫予兆検知処理は、本実施形態の要旨を逸脱しない範囲において適宜変更可能である。例えば、ステップS1205の判定処理は、ステップS1204で算出した空気圧の推定値が閾値(危険値)以上であるか否かを判定する処理としてもよい。同様に、ステップS1208の判定処理は、ステップS1207で取得した空気圧の実測値が閾値(危険値)以上であるか否かを判定する処理としてもよい。 Further, the flowchart of FIG. 7 is merely an example of the flood sign detection process performed by the sign detection apparatus 4 according to the present embodiment. The flood sign detection process performed by the sign detection device 4 can be changed as appropriate without departing from the gist of the present embodiment. For example, the determination process in step S1205 may be a process for determining whether or not the estimated value of air pressure calculated in step S1204 is greater than or equal to a threshold value (danger value). Similarly, the determination process of step S1208 may be a process of determining whether or not the actual measurement value of air pressure acquired in step S1207 is greater than or equal to a threshold value (danger value).
 また、図7のフローチャートでは、ステップS1205において空気圧の推定増加量が危険値よりも小さい場合に、検知対象箇所に選ばれたノードと対応する人孔部における空気圧の実測値に基づく処理(ステップS1206~S1208)を行う。しかしながら、氾濫予兆検知処理は、これに限らず、ステップS1205において空気圧の推定増加量が危険値よりも小さい場合には、ステップS1206~S1208の処理を行わずに、氾濫の予兆がない(ステップS1210)と認識する処理であってもよい。 In the flowchart of FIG. 7, when the estimated increase amount of air pressure is smaller than the danger value in step S1205, processing based on the actually measured air pressure value in the human hole corresponding to the node selected as the detection target location (step S1206). To S1208). However, the inundation sign detection process is not limited to this, and if the estimated increase in air pressure is smaller than the dangerous value in step S1205, the process of steps S1206 to S1208 is not performed and there is no insufficiency sign (step S1210). ) May be recognized.
 また、ステップS1204において空気圧の推定値Yを算出する際には、式(1)に限らず、他の算出方法により算出してもよい。例えば、空気圧の推定値Yは、ニューラルネットワークにより算出してもよい。 Further, when the estimated value Y of the air pressure is calculated in step S1204, it is not limited to the equation (1), and may be calculated by another calculation method. For example, the estimated value Y of air pressure may be calculated by a neural network.
 図14は、ニューラルネットワークによる空気圧の推定値の算出方法を説明する図である。 FIG. 14 is a diagram for explaining a method for calculating an estimated value of air pressure using a neural network.
 ニューラルネットワークにより空気圧の推定値を算出する場合、例えば、図13に示すように、入力層1801と、1層の隠れ層(中間層)1802と、出力層1803とを含む3層ネットワーク18を作成する。 When calculating an estimated value of air pressure by a neural network, for example, as shown in FIG. 13, a three-layer network 18 including an input layer 1801, a hidden layer (intermediate layer) 1802, and an output layer 1803 is created. To do.
 入力層1801は、第1の入力ユニットU11と、第2の入力ユニットU12と、第3の入力ユニットU13とを含む。第1の入力ユニットU11には、予兆情報を送信した計測装置2で計測した水位x1を入力する。第2の入力ユニットU12には、排水管路8のうちの氾濫予兆の検知対象とする箇所の周囲における総雨量x2を入力する。第3の入力ユニットU13には、氾濫予兆の検知対象とする箇所の周囲における時間雨量x3を入力する。 The input layer 1801 includes a first input unit U11, a second input unit U12, and a third input unit U13. The water level x1 measured by the measuring device 2 that has transmitted the sign information is input to the first input unit U11. In the second input unit U12, the total rainfall amount x2 around the portion of the drainage pipe 8 that is a detection target of the inundation sign is input. The third input unit U13 is input with the hourly rainfall x3 around the location to be detected as an inundation sign.
 隠れ層1802は、第1の隠れユニットU21と、第2の隠れユニットU22と、第3の隠れユニットU23とを含む。第1の隠れユニットU21は、水位x1、総雨量x2、及び時間雨量x3と、それぞれの値に対する重み係数wi11,wi21,及びwi31とに基づいて、所定の演算を行う。第2の隠れユニットU22は、水位x1、総雨量x2、及び時間雨量x3と、それぞれの値に対する重み係数wi12,wi22,及びwi32とに基づいて、所定の演算を行う。第3の隠れユニットU23は、水位x1、総雨量x2、及び時間雨量x3と、それぞれの値に対する重み係数wi13,wi23,及びwi33とに基づいて、所定の演算を行う。 The hidden layer 1802 includes a first hidden unit U21, a second hidden unit U22, and a third hidden unit U23. The first hidden unit U21 performs a predetermined calculation based on the water level x1, the total rainfall x2, the hourly rainfall x3, and the weighting factors wi11, wi21, and wi31 for the respective values. The second hidden unit U22 performs a predetermined calculation based on the water level x1, the total rainfall x2, the hourly rainfall x3, and the weighting factors wi12, wi22, and wi32 for the respective values. The third hidden unit U23 performs a predetermined calculation based on the water level x1, the total rainfall x2, the hourly rainfall x3, and the weighting factors wi13, wi23, and wi33 for the respective values.
 出力層1803は、第1の隠れユニットU21、第2の隠れユニットU22、及び第3の隠れユニットU23の演算結果と、それぞれの演算結果に対する重み係数wo1,wo2,及びwo3とに基づいて、空気圧の推定値Yを算出する。 The output layer 1803 calculates the air pressure based on the calculation results of the first hidden unit U21, the second hidden unit U22, and the third hidden unit U23 and the weighting factors wo1, wo2, and wo3 for the respective calculation results. An estimated value Y is calculated.
 このニューラルネットワーク18における上記の重み係数wijk(j=1~3,k=1~3),wo1,wo2,及びwo3は、例えば、バックプロパゲーション法により算出する(学習する)。 The weight coefficients wijk (j = 1 to 3, k = 1 to 3), wo1, wo2, and wo3 in the neural network 18 are calculated (learned) by, for example, the back propagation method.
 加えて、上記した本実施形態に係る予兆検知システム1は、雨水10を集めて河川に放流する排水管路8に限らず、管内を流れる液体の深さ(水位)が増減する各種の水道管路に適用可能である。例えば、本実施形態の予兆検知システム1は、家庭から排出される生活排水を下水処理場等に排水する下水管路等にも適用可能である。また、本実施形態の予兆検知システム1は、例えば、プラント(生産設備)における排水設備に適用し、突発的な排水量の急増による浸水等の予兆を早期に検知することが可能となる。更に、各種水道管路における計測装置2を設置する箇所は、人孔部に限らず、水道管路内と水道管路外とを連通する人孔部よりも小径の孔部等であってもよい。 In addition, the sign detection system 1 according to the present embodiment described above is not limited to the drainage pipe 8 that collects the rainwater 10 and discharges it into the river, but various water pipes in which the depth (water level) of the liquid flowing in the pipe increases or decreases. Applicable to roads. For example, the sign detection system 1 of the present embodiment can be applied to a sewage pipe that drains domestic wastewater discharged from a home to a sewage treatment plant or the like. Moreover, the sign detection system 1 of the present embodiment is applied to, for example, a drainage facility in a plant (production facility), and can detect a sign such as inundation due to a sudden increase in the amount of drainage at an early stage. Further, the place where the measuring device 2 is installed in various water pipes is not limited to the human hole part, and may be a hole part having a smaller diameter than the human hole part communicating the inside of the water pipe line and the outside of the water pipe line. Good.
 [第2の実施形態]
 本実施形態では、第1の実施形態で挙げた予兆検知システム1が行う処理の別の例を説明する。
[Second Embodiment]
In the present embodiment, another example of processing performed by the sign detection system 1 described in the first embodiment will be described.
 図15は、第2の実施形態に係る予兆検知システムが行う処理を説明するシーケンス図である。 FIG. 15 is a sequence diagram illustrating processing performed by the sign detection system according to the second embodiment.
 図15に示すように、本実施形態に係る予兆検知システム1では、予兆検知装置4において排水管路8の水位を監視する処理(ステップS8,S9)を行う。ステップS8は、水位センサ201を含む計測装置2から水位データを収集する処理であり、ステップS9は水位が閾値以上である箇所(ノード)を検出したか否かを判定する処理である。ステップS8,S9の処理は、予兆検知装置4のデータ収集部401が行う。データ収集部401は、例えば、図4のデータテーブル11を参照して水位センサ201を含む計測装置2を特定し、当該計測装置2の水位センサ201により計測した水位データを取得する。この際、データ収集部401は、所定の条件に従って、水位データを取得可能な全ての計測装置2のなかから水位データを取得する計測装置2を選択してもよい。例えば、データ収集部401は、雨が降っている地域に設置された計測装置2を選択し、当該計測装置2から水位データを取得してもよい。 As shown in FIG. 15, in the sign detection system 1 according to the present embodiment, the sign detection device 4 performs a process of monitoring the water level of the drain pipe 8 (steps S8 and S9). Step S8 is a process of collecting water level data from the measuring device 2 including the water level sensor 201, and step S9 is a process of determining whether or not a location (node) where the water level is equal to or greater than a threshold is detected. The processing of steps S8 and S9 is performed by the data collection unit 401 of the sign detection device 4. For example, the data collection unit 401 identifies the measuring device 2 including the water level sensor 201 with reference to the data table 11 of FIG. 4 and acquires the water level data measured by the water level sensor 201 of the measuring device 2. At this time, the data collection unit 401 may select the measuring device 2 that acquires the water level data from all the measuring devices 2 that can acquire the water level data according to a predetermined condition. For example, the data collection unit 401 may select the measurement device 2 installed in an area where it is raining, and acquire water level data from the measurement device 2.
 データ収集部401は、複数の計測装置2のそれぞれから取得した水位データに基づいて、水位が閾値以上となっているノードの有無を判定する。ステップS9の判定閾値は、例えば、排水管路8の排水管部801のうちの計測装置2を設置した箇所が満管状態となる水位の80%程度の値とする。 The data collection unit 401 determines the presence / absence of a node whose water level is equal to or higher than a threshold based on the water level data acquired from each of the plurality of measuring devices 2. The determination threshold value in step S9 is, for example, a value that is about 80% of the water level at which the location where the measuring device 2 is installed in the drain pipe portion 801 of the drain pipe 8 is full.
 全てのノードの水位が閾値よりも小さい場合(ステップS9;NO)、データ収集部401は、水位データを取得して水位を監視する処理を続ける。一方、水位が閾値以上のノードを検出した場合(ステップS9;YES)、データ収集部401は、水位が閾値以上となったノードの情報を予測部402に渡す。この場合、予兆検知装置4の予測部402は、氾濫予兆の検知対象とする箇所を選択する処理(ステップS11)、及び氾濫予兆検知処理(ステップS12)を行う。ステップS11の処理では、予測部402は、水位が閾値以上となったノードを除く他のノードのなかから、検知対象箇所とするノードを選択する。第1の実施形態で説明したように、検知対象箇所として選択するノードは、水位が閾値以上となったノードの下流側に限らず、上流側であってもよい。また、検知対象箇所として選択可能なノードは、圧力センサ202を含む計測装置2が設置されていないノードを含む。更に、検知対象箇所として選択するノードは、複数であってもよい。 When the water levels of all the nodes are smaller than the threshold value (step S9; NO), the data collection unit 401 continues the process of acquiring the water level data and monitoring the water level. On the other hand, when a node whose water level is equal to or higher than the threshold is detected (step S9; YES), the data collection unit 401 passes information on the node whose water level is equal to or higher than the threshold to the prediction unit 402. In this case, the prediction unit 402 of the sign detection device 4 performs a process of selecting a place to be detected as a flood sign (step S11) and a flood sign detection process (step S12). In the process of step S11, the prediction unit 402 selects a node to be detected from other nodes excluding the node whose water level is equal to or higher than the threshold value. As described in the first embodiment, the node selected as the detection target location is not limited to the downstream side of the node whose water level is equal to or higher than the threshold value, but may be the upstream side. Further, the nodes that can be selected as detection target locations include nodes where the measuring device 2 including the pressure sensor 202 is not installed. Furthermore, there may be a plurality of nodes to be selected as detection target locations.
 氾濫予兆の検知対象箇所を選択した後、予兆検知装置4の予測部402は、選択した検知対象箇所と対応する人孔部の周囲における空気圧の変化に基づいて氾濫の予兆を検知する、氾濫予兆検知処理(ステップS12)を行う。予測部402は、氾濫予兆検知処理として、例えば、図7のフローチャートに沿った処理を行う。なお、予兆検知装置4の予測部402が行う氾濫予兆検知処理は、第1の実施形態で説明したように、図7のフローチャートに沿った処理に限らず、適宜変更可能である。 After selecting the detection target location of the flood detection sign, the prediction unit 402 of the prediction detection device 4 detects the prediction of the flood based on the change in air pressure around the human hole corresponding to the selected detection target location. A detection process (step S12) is performed. The prediction unit 402 performs, for example, processing according to the flowchart of FIG. 7 as the flood sign detection processing. Note that the flood sign detection process performed by the prediction unit 402 of the sign detection apparatus 4 is not limited to the process according to the flowchart of FIG. 7 as described in the first embodiment, and can be changed as appropriate.
 氾濫予兆検知処理を終えると、予兆検知装置4は、次に、氾濫の予兆を検知したか否かを判定する(ステップS13)。氾濫の予兆を検知した場合(ステップS13;YES)、予兆検知装置4は、アラーム出力部403においてアラームを出力する処理(ステップS14)を行う。アラーム出力部403は、例えば、図8に示したように、携帯端末6A、氾濫の予兆がある人孔部812の近傍に設置された報知器6B、行政機関13の防災無線端末6C、放送局14に設置された表示装置6D等の各種外部装置にアラームを送信する。氾濫の予兆が検出されなかった場合(ステップS13;NO)、予兆検知装置4は、水位を監視する処理(ステップS8,S9)を再開する。 After completing the flood sign detection process, the sign detection device 4 next determines whether or not a flood sign has been detected (step S13). When a sign of flooding is detected (step S13; YES), the sign detection device 4 performs an alarm output process (step S14) in the alarm output unit 403. For example, as shown in FIG. 8, the alarm output unit 403 includes a portable terminal 6A, a notification device 6B installed in the vicinity of a human hole 812 with a sign of flooding, a disaster prevention wireless terminal 6C of the administrative institution 13, a broadcasting station The alarm is transmitted to various external devices such as the display device 6D installed in the system 14. When no sign of flooding is detected (step S13; NO), the sign detection device 4 resumes the process of monitoring the water level (steps S8 and S9).
 このように、本実施形態の予兆検知システム1は、第1の実施形態と同様、空気圧の変化に基づいて、排水管路8における水位が上昇した箇所とは異なる箇所に氾濫の予兆があるか否かを判定する。このため、水位が上昇した箇所とは異なる箇所における氾濫の予兆を早期に検知することが可能となる。 As described above, the sign detection system 1 according to the present embodiment has a sign of inundation at a location different from the location where the water level has risen in the drainage pipe 8 based on the change in air pressure, as in the first embodiment. Determine whether or not. For this reason, it is possible to detect early signs of flooding at a location different from the location where the water level has risen.
 また、本実施形態の予兆検知システム1では、予兆検知装置4が計測装置2から水位データを取得し、予兆検知装置4において水位が閾値以上のノードを検出する処理を行う。このため、計測装置2の制御装置203が行う各種の処理のうちの水位が閾値以上であるか否かを判定する処理を省略することが可能となり、制御装置203の演算処理量が低減する。よって、制御装置203の構成を簡素化し制御装置203の製造コスト等を低減することが可能となる。 Further, in the sign detection system 1 of the present embodiment, the sign detection device 4 acquires water level data from the measuring device 2, and the sign detection device 4 performs processing for detecting a node whose water level is equal to or higher than a threshold value. For this reason, it is possible to omit the process of determining whether or not the water level is greater than or equal to the threshold value among the various processes performed by the control apparatus 203 of the measurement apparatus 2, and the amount of calculation processing of the control apparatus 203 is reduced. Therefore, the configuration of the control device 203 can be simplified and the manufacturing cost of the control device 203 can be reduced.
 上記の各実施形態に係る予兆検知装置4は、コンピュータに予兆検知プログラムを実行させることにより実現可能である。 The sign detection device 4 according to each of the above embodiments can be realized by causing a computer to execute a sign detection program.
 図16は、コンピュータのハードウェア構成を示す図である。 FIG. 16 is a diagram showing a hardware configuration of a computer.
 図16に示すように、コンピュータ20は、プロセッサ2001と、主記憶装置2002と、補助記憶装置2003と、入力装置2004と、出力装置2005と、入出力インタフェース2006と、通信制御装置2007と、媒体駆動装置2008と、を備える。コンピュータ20におけるこれらの要素2001~2008は、バス2010により相互に接続されており、要素間でのデータの受け渡しが可能になっている。 As shown in FIG. 16, the computer 20 includes a processor 2001, a main storage device 2002, an auxiliary storage device 2003, an input device 2004, an output device 2005, an input / output interface 2006, a communication control device 2007, and a medium. A driving device 2008. These elements 2001 to 2008 in the computer 20 are connected to each other by a bus 2010 so that data can be exchanged between the elements.
 プロセッサ2001は、Central Processing Unit(CPU)やMicro Processing Unit(MPU)等である。プロセッサ2001は、オペレーティングシステムを含む各種のプログラムを実行することにより、コンピュータ20の全体の動作を制御する。また、プロセッサ2001は、例えば、図6のステップS11~S14の処理を含む予兆検知プログラム等の各種のアプリケーションプログラムを実行する。 The processor 2001 is a central processing unit (CPU), a micro processing unit (MPU), or the like. The processor 2001 controls the overall operation of the computer 20 by executing various programs including an operating system. Further, the processor 2001 executes various application programs such as a sign detection program including the processes of steps S11 to S14 in FIG.
 主記憶装置2002は、図示しないRead Only Memory(ROM)及びRandom Access Memory(RAM)を含む。主記憶装置2002のROMには、例えば、コンピュータ20の起動時にプロセッサ2001が読み出す所定の基本制御プログラム等が予め記録されている。一方、主記憶装置2002のRAMは、プロセッサ2001が、各種のプログラムを実行する際に必要に応じて作業用記憶領域として使用する。主記憶装置2002のRAMは、例えば、データテーブル11等のネットワーク情報、計測装置2から取得した水位データ及び空気圧データ等の記憶に利用可能である。 The main memory 2002 includes a Read Only Memory (ROM) and a Random Access Memory (RAM) (not shown). In the ROM of the main storage device 2002, for example, a predetermined basic control program read by the processor 2001 when the computer 20 is started is recorded in advance. On the other hand, the RAM of the main storage device 2002 is used as a working storage area as necessary when the processor 2001 executes various programs. The RAM of the main storage device 2002 can be used for storing, for example, network information such as the data table 11, water level data acquired from the measuring device 2, and air pressure data.
 補助記憶装置2003は、主記憶装置2002のRAMと比べて容量の大きい記憶装置であり、例えば、Hard Disk Drive(HDD)や、フラッシュメモリのような不揮発性メモリ(Solid State Drive(SSD)を含む)等である。補助記憶装置2003は、プロセッサ2001によって実行される各種のプログラムや各種のデータ等の記憶に利用可能である。補助記憶装置2003は、例えば、図6のステップS11~S14の処理を含む予兆検知プログラムの記憶に利用可能である。また、補助記憶装置2003は、例えば、データテーブル11等のネットワーク情報、計測装置2から取得した水位データ及び空気圧データ、氾濫予兆の検知結果、並びにアラームの送信先である外部装置を示す情報等の記憶に利用可能である。 The auxiliary storage device 2003 is a storage device having a larger capacity than the RAM of the main storage device 2002, and includes, for example, a hard disk drive (HDD) and a non-volatile memory such as a flash memory (solid state drive (SSD)). ) Etc. The auxiliary storage device 2003 can be used to store various programs executed by the processor 2001 and various data. The auxiliary storage device 2003 can be used, for example, for storing a sign detection program including the processes of steps S11 to S14 in FIG. The auxiliary storage device 2003 also includes, for example, network information such as the data table 11, water level data and air pressure data acquired from the measuring device 2, detection results of inundation signs, and information indicating an external device that is an alarm transmission destination. Available for memory.
 入力装置2004は、例えば、キーボード装置、マウス装置、タッチパネル装置等である。コンピュータ20のオペレータ(利用者)が入力装置2004に対して所定の操作を行うと、入力装置2004は、その操作内容に対応付けられている入力情報をプロセッサ2001に送信する。入力装置2004は、例えば、データテーブル11の作成、アラームを送信する外部装置の登録等に利用可能である。 The input device 2004 is, for example, a keyboard device, a mouse device, a touch panel device, or the like. When an operator (user) of the computer 20 performs a predetermined operation on the input device 2004, the input device 2004 transmits input information associated with the operation content to the processor 2001. The input device 2004 can be used, for example, to create the data table 11 and register an external device that transmits an alarm.
 出力装置2005は、例えば、液晶表示装置等の表示装置である。出力装置2005は、氾濫予兆の検知結果の表示等に利用可能である。 The output device 2005 is a display device such as a liquid crystal display device. The output device 2005 can be used for displaying a detection result of a flood sign.
 入出力インタフェース2006は、コンピュータ20と、他の電子機器とを接続する。入出力インタフェース2006は、例えば、Universal Serial Bus(USB)規格のコネクタ等を備える。 The input / output interface 2006 connects the computer 20 and other electronic devices. The input / output interface 2006 includes, for example, a Universal Serial Bus (USB) standard connector.
 通信制御装置2007は、コンピュータ20をインターネット等のネットワーク5に接続し、ネットワーク5を介したコンピュータ20と他の通信機器との各種通信を制御する装置である。通信制御装置2007は、例えば、排水管路8に設置した計測装置2で計測した水位データや空気圧データの取得に利用可能である。 The communication control device 2007 is a device that connects the computer 20 to the network 5 such as the Internet, and controls various communications between the computer 20 and other communication devices via the network 5. The communication control device 2007 can be used, for example, for acquiring water level data and air pressure data measured by the measuring device 2 installed in the drain pipe 8.
 媒体駆動装置2008は、可搬型記憶媒体21に記録されているプログラムやデータの読み出し、補助記憶装置2003に記憶されたデータ等の可搬型記憶媒体21への書き込みを行う。媒体駆動装置2008には、例えば、1種類又は複数種類の規格に対応したメモリカード用リーダ/ライタが利用可能である。媒体駆動装置2008としてメモリカード用リーダ/ライタを用いる場合、可搬型記憶媒体21としては、メモリカード用リーダ/ライタが対応している規格、例えば、Secure  Digital(SD)規格のメモリカード(フラッシュメモリ)等を利用可能である。また、可搬型記録媒体21としては、例えば、USB規格のコネクタを備えたフラッシュメモリが利用可能である。更に、コンピュータ20が媒体駆動装置2008として利用可能な光ディスクドライブを搭載している場合、当該光ディスクドライブで認識可能な各種の光ディスクを可搬型記録媒体21として利用可能である。可搬型記録媒体21として利用可能な光ディスクには、例えば、Compact Disc(CD)、Digital Versatile Disc(DVD)、Blu-ray Disc(登録商標)等がある。可搬型記録媒体21は、例えば、図6のステップS11~S14の処理を含む予兆検知プログラムの記憶に利用可能である。また、可搬型記録媒体21は、例えば、データテーブル11等のネットワーク情報、計測装置2から取得した水位データ及び空気圧データ、氾濫予兆の検知結果、並びにアラームの送信先である外部装置を示す情報等の記憶に利用可能である。 The medium driving device 2008 reads a program and data recorded in the portable storage medium 21 and writes data stored in the auxiliary storage device 2003 to the portable storage medium 21. As the medium driving device 2008, for example, a memory card reader / writer corresponding to one type or a plurality of types of standards can be used. When a memory card reader / writer is used as the medium driving device 2008, the portable storage medium 21 is a memory card reader / writer compatible with a standard such as a Secure Digital (SD) standard memory card (flash memory). ) Etc. can be used. Further, as the portable recording medium 21, for example, a flash memory having a USB standard connector can be used. Furthermore, when the computer 20 is equipped with an optical disk drive that can be used as the medium drive device 2008, various optical disks that can be recognized by the optical disk drive can be used as the portable recording medium 21. Examples of the optical disc that can be used as the portable recording medium 21 include Compact Disc (CD), Digital Versatile Disc (DVD), and Blu-ray Disc (registered trademark). The portable recording medium 21 can be used, for example, for storing a sign detection program including the processes of steps S11 to S14 in FIG. In addition, the portable recording medium 21 includes, for example, network information such as the data table 11, water level data and air pressure data acquired from the measuring device 2, detection results of inundation signs, and information indicating an external device to which an alarm is transmitted It can be used for memory.
 コンピュータ20は、例えば、オペレータが入力装置2004等を利用して氾濫の予兆を検知する処理の開始命令を入力すると、プロセッサ2001が、補助記憶装置2003等の非一時的な記録媒体に記憶させた予兆検知プログラムを読み出して実行する。予兆検知プログラムが図6のステップS11~S14の処理を含むプログラムである場合、コンピュータ20は、水位が閾値以上となった人孔部に設置された計測装置2からの予兆情報を受信した後、氾濫予兆の検知対象とする箇所を選択し(ステップS11)、当該箇所における内水氾濫の予兆の有無を判定する処理(ステップS12)を行う。ステップS12の処理は、例えば、図7のステップS1201~S1211の処理とする。選択した箇所での内水氾濫の予兆を検出した場合(ステップS13;YES)、コンピュータ20は、所定の外部装置6に対してアラームを送信する(ステップS14)。予兆検知プログラムを実行している間、プロセッサ2001は、図1の予兆検知装置1におけるデータ収集部401、予測部402、及びアラーム出力部403として機能する(動作する)。この間、通信制御装置2007は、計測装置2から水位データや圧力データを取得してデータ収集部401に渡す処理、アラーム出力部403で生成したアラームを所定の外部装置6に送信する処理を行う。また、プロセッサ2001が予兆検知プログラムを実行している間、主記憶装置2002のRAM、補助記憶装置2003、可搬型記録媒体21等の記録媒体は、予兆検知装置4の記憶部409として機能する。 For example, when the operator inputs an instruction to start processing for detecting a sign of flooding using the input device 2004 or the like, the computer 2001 stores the information in a non-temporary recording medium such as the auxiliary storage device 2003. Read and execute the sign detection program. When the sign detection program is a program including the processes of steps S11 to S14 in FIG. 6, the computer 20 receives the sign information from the measuring device 2 installed in the human hole where the water level is equal to or higher than the threshold value. A location that is a detection target of an inundation sign is selected (step S11), and a process of determining the presence or absence of an inland water inundation sign at the location (step S12) is performed. The processing in step S12 is, for example, the processing in steps S1201 to S1211 in FIG. When the sign of inland water flooding at the selected location is detected (step S13; YES), the computer 20 transmits an alarm to the predetermined external device 6 (step S14). While executing the sign detection program, the processor 2001 functions (operates) as the data collection unit 401, the prediction unit 402, and the alarm output unit 403 in the sign detection device 1 of FIG. During this time, the communication control device 2007 performs processing for acquiring water level data and pressure data from the measuring device 2 and passing the data to the data collection unit 401, and processing for transmitting the alarm generated by the alarm output unit 403 to a predetermined external device 6. While the processor 2001 is executing the sign detection program, the recording medium such as the RAM of the main storage device 2002, the auxiliary storage device 2003, and the portable recording medium 21 functions as the storage unit 409 of the sign detection device 4.
 なお、コンピュータ20に実行させる予兆検知プログラムは、図15のステップS8,S9の処理を含むプログラムであってもよい。 Note that the sign detection program to be executed by the computer 20 may be a program including the processes of steps S8 and S9 in FIG.
 また、予兆検知装置4として動作させるコンピュータ20は、図16に示した8個の要素2001~2008を全て含む必要はなく、用途や条件に応じて一部の要素を省略することも可能である。例えば、コンピュータ20は、入出力インタフェース2006や媒体駆動装置2008が省略されたものであってもよい。 Further, the computer 20 operated as the sign detection device 4 does not need to include all the eight elements 2001 to 2008 shown in FIG. 16, and some elements can be omitted depending on the application and conditions. . For example, the computer 20 may be one in which the input / output interface 2006 and the medium driving device 2008 are omitted.
1 予兆検知システム
2(2A~2G) 計測装置
201 水位センサ
202 圧力センサ
203 制御装置
3(3A~3D) 中継器
4 予兆検知装置
401 データ収集部
402 予測部
403 アラーム出力部
409 記憶部
5 ネットワーク
6 外部装置
6A 携帯端末
6B 報知器
6C 防災無線端末
6D 表示装置
7 地中
7S 地表面
8 排水管路
801 排水管部
811,812,813 人孔部
9 マンホール蓋
10,16 雨水
11 データテーブル
12 人
13 行政機関
14 放送局
18 3層ネットワーク
1801 入力層
1802 隠れ層
1803 出力層
20 コンピュータ
N1,N2,N3、N4 ノード
L1,L2,L3 リンク
U11,U12,U13 入力ユニット
U21,U22,U23 隠れユニット
U3 出力ユニット
DESCRIPTION OF SYMBOLS 1 Predictive detection system 2 (2A-2G) Measuring apparatus 201 Water level sensor 202 Pressure sensor 203 Control apparatus 3 (3A-3D) Repeater 4 Predictive detection apparatus 401 Data collection part 402 Prediction part 403 Alarm output part 409 Storage part 5 Network 6 External device 6A Mobile terminal 6B Alarm 6C Disaster prevention radio terminal 6D Display device 7 Underground 7S Ground surface 8 Drain pipe 801 Drain pipe part 811, 812, 813 Manhole part 9 Manhole cover 10, 16 Rain water 11 Data table 12 Person 13 Administrative agency 14 Broadcasting station 18 Three-layer network 1801 Input layer 1802 Hidden layer 1803 Output layer 20 Computer N1, N2, N3, N4 Nodes L1, L2, L3 Link U11, U12, U13 Input unit U21, U22, U23 Hidden unit U3 Output unit

Claims (14)

  1.  排水管部と、前記排水管部から分岐し前記排水管部の内部空間と外部空間とを連通する複数の管部とを含む排水管路が敷設されたエリアにおける内水氾濫の予兆を検知する予兆検知方法であって、
     コンピュータが、
     前記複数の管部のうちの第1の管部と接続する箇所における前記排水管部内の水位が閾値以上であることを示す情報を取得した場合に、前記複数の管部のうちの第2の管部と接続する箇所における前記排水管部内の空気圧に基づいて、前記第2の管部の周囲における内水氾濫の予兆の有無を判定し、
     前記第2の管部の周囲における内水氾濫の予兆を検知した場合に、当該内水氾濫の予兆を示すアラームを出力する、
     処理を行うことを特徴とする予兆検知方法。
    Detecting a sign of inundation in an area where a drainage pipe including a drainage pipe and a plurality of pipes branched from the drainage pipe and communicating the internal space and the external space of the drainage pipe is laid A sign detection method,
    Computer
    When the information indicating that the water level in the drainage pipe part at a location connected to the first pipe part among the plurality of pipe parts is equal to or greater than a threshold value is obtained, the second of the plurality of pipe parts. Based on the air pressure in the drainage pipe part at the location connected to the pipe part, determine the presence or absence of inland water flooding around the second pipe part,
    When a sign of inland flooding around the second pipe is detected, an alarm indicating the sign of inland flooding is output.
    A sign detection method characterized by performing processing.
  2.  前記内水氾濫の予兆の有無を判定する処理では、前記コンピュータは、
     前記排水管路内に設置された水位センサから前記第1の管部と接続する箇所における前記排水管部内の水位を取得するとともに、外部装置から前記第2の管部の周囲における雨量情報を取得し、
     取得した前記排水管部内の水位と、前記雨量情報とに基づいて、前記排水管部内の空気圧の推定値を算出し、
     前記空気圧の推定値に基づいて、前記第2の管部の周囲における内水氾濫の予兆の有無を判定する、
     ことを特徴とする請求項1に記載の予兆検知方法。
    In the process of determining the presence / absence of the inland water inundation, the computer
    Acquires the water level in the drain pipe part at the location connected to the first pipe part from the water level sensor installed in the drain pipe line, and also acquires the rainfall information around the second pipe part from an external device. And
    Based on the acquired water level in the drain pipe section and the rainfall information, calculate an estimated value of air pressure in the drain pipe section,
    Based on the estimated value of the air pressure, it is determined whether there is a sign of inundation around the second pipe,
    The sign detection method according to claim 1.
  3.  前記内水氾濫の予兆の有無を判定する処理では、前記コンピュータは、
     前記排水管路内に設置された水位センサから前記第1の管部と接続する箇所における前記排水管部内の水位を取得し、
     予め設定された、取得した前記排水管部内の水位と、前記第2の管部と接続する箇所における前記排水管部内の空気圧との相関関係を示す情報とに基づいて、前記排水管部内の空気圧の推定値を算出し、
     前記空気圧の推定値に基づいて、前記第2の管部の周囲における内水氾濫の予兆の有無を判定する、
     ことを特徴とする請求項1に記載の予兆検知方法。
    In the process of determining the presence / absence of the inland water inundation, the computer
    Obtaining a water level in the drain pipe part at a location connected to the first pipe part from a water level sensor installed in the drain pipe line;
    Based on the preset water level in the drainage pipe part and information indicating the correlation between the air pressure in the drainage pipe part at the location where the second pipe part is connected, the air pressure in the drainage pipe part To calculate an estimate of
    Based on the estimated value of the air pressure, it is determined whether there is a sign of inundation around the second pipe,
    The sign detection method according to claim 1.
  4.  前記内水氾濫の予兆の有無を判定する処理では、前記コンピュータは、
     算出した前記空気圧の推定値が閾値以上である場合に、前記内水氾濫の予兆があると判定する、
     ことを特徴とする請求項2又は3に記載の予兆検知方法。
    In the process of determining the presence / absence of the inland water inundation, the computer
    When the calculated estimated value of the air pressure is greater than or equal to a threshold value, it is determined that there is a sign of the inland water flooding,
    The sign detection method according to claim 2 or 3, characterized in that.
  5.  前記内水氾濫の予兆の有無を判定する処理では、前記コンピュータは、
     算出した前記空気圧の推定値と、予め測定しておいた前記第2の管部と接続する箇所における前記排水管部内の平常時の空気圧との差を算出し、
     算出した前記空気圧の差が閾値以上である場合に、前記内水氾濫の予兆があると判定する、
     ことを特徴とする請求項2又は3に記載の予兆検知方法。
    In the process of determining the presence / absence of the inland water inundation, the computer
    Calculate the difference between the calculated estimated value of the air pressure and the normal air pressure in the drainage pipe at the location where the second pipe is measured in advance,
    When the calculated difference in air pressure is equal to or greater than a threshold, it is determined that there is a sign of the inland flooding,
    The sign detection method according to claim 2 or 3, characterized in that.
  6.  前記内水氾濫の予兆の有無を判定する処理では、前記コンピュータは、
     前記排水管路内に設置された圧力センサから前記第2の管部と接続する箇所における前記排水管部内の空気圧を取得し、
     取得した前記排水管部内の空気圧が閾値以上である場合に、前記内水氾濫の予兆があると判定する、
     ことを特徴とする請求項1に記載の予兆検知方法。
    In the process of determining the presence / absence of the inland water inundation, the computer
    Obtaining the air pressure in the drainage pipe at the location connected to the second pipe from the pressure sensor installed in the drainage pipe;
    When the acquired air pressure in the drain pipe part is equal to or greater than a threshold value, it is determined that there is a sign of the inland water flooding,
    The sign detection method according to claim 1.
  7.  前記内水氾濫の予兆の有無を判定する処理では、前記コンピュータは、
     前記排水管路内に設置された圧力センサから前記第2の管部と接続する箇所における前記排水管部内の空気圧を取得し、
     取得した前記排水管部内の空気圧と、予め測定しておいた前記第2の管部と接続する箇所における前記排水管部内の平常時の空気圧との差を算出し、
     算出した前記空気圧の差が閾値以上である場合に、前記内水氾濫の予兆があると判定する、
     ことを特徴とする請求項1に記載の予兆検知方法。
    In the process of determining the presence / absence of the inland water inundation, the computer
    Obtaining the air pressure in the drainage pipe at the location connected to the second pipe from the pressure sensor installed in the drainage pipe;
    Calculate the difference between the acquired air pressure in the drain pipe part and the normal air pressure in the drain pipe part at the location where the second pipe part is measured in advance,
    When the calculated difference in air pressure is equal to or greater than a threshold, it is determined that there is a sign of the inland flooding,
    The sign detection method according to claim 1.
  8.  前記雨量情報は、前記第2の管部の周囲における降水量、及び前記第2の管部の周囲における雨量強度を含む、
     ことを特徴とする請求項2に記載の予兆検知方法。
    The rainfall information includes precipitation amount around the second pipe part, and rainfall intensity around the second pipe part,
    The sign detection method according to claim 2.
  9.  前記相関関係を示す情報が、前記排水管部内の水位、前記排水管部内の水量の増加率、前記第2の管部の周囲における降水量、及び前記第2の管部の周囲における雨量強度のうちの1つ以上の情報を含む、
     ことを特徴とする請求項3に記載の予兆検知方法。
    Information indicating the correlation includes the water level in the drain pipe, the rate of increase in the amount of water in the drain pipe, the precipitation around the second pipe, and the rainfall intensity around the second pipe. Including one or more pieces of information,
    The sign detection method according to claim 3.
  10.  前記複数の管部は、地中に埋設された前記排水管部の内部空間と、地上の空間とを連通するマンホールである、
     ことを特徴とする請求項1に記載の予兆検知方法。
    The plurality of pipe parts are manholes that communicate the internal space of the drain pipe part embedded in the ground with the ground space.
    The sign detection method according to claim 1.
  11.  排水管部と、前記排水管部から分岐し前記排水管部の内部空間と外部空間とを連通する複数の管部とを含む排水管路が敷設されたエリアにおける内水氾濫の予兆を検知する予兆検知装置と、
     前記排水管路内の水位を計測する複数の水位センサと、
     前記排水管路内の空気圧を計測する複数の圧力センサと、を含み、
     前記予兆検知装置は、
     前記複数の管部のうちの第1の管部と接続する箇所における前記排水管部内の水位が閾値以上であることを示す情報を取得した場合に、前記複数の管部のうちの第2の管部と接続する箇所における前記排水管部内の空気圧に基づいて、前記第2の管部の周囲における内水氾濫の予兆の有無を判定する予測部と、
     前記第2の管部の周囲における内水氾濫の予兆を検知した場合に、当該内水氾濫の予兆を示すアラームを出力するアラーム出力部と、を備える、
     ことを特徴とする予兆検知システム。
    Detecting a sign of inundation in an area where a drainage pipe including a drainage pipe and a plurality of pipes branched from the drainage pipe and communicating the internal space and the external space of the drainage pipe is laid A sign detection device;
    A plurality of water level sensors for measuring the water level in the drain pipe;
    A plurality of pressure sensors for measuring the air pressure in the drain pipe,
    The sign detection device includes:
    When the information indicating that the water level in the drainage pipe part at a location connected to the first pipe part among the plurality of pipe parts is equal to or greater than a threshold value is obtained, the second of the plurality of pipe parts. Based on the air pressure in the drainage pipe part at the place connected to the pipe part, a prediction part for determining the presence or absence of inland water flooding around the second pipe part;
    An alarm output unit that outputs an alarm indicating a sign of the inland water flood when a sign of the inland water flood in the vicinity of the second pipe is detected;
    A sign detection system characterized by this.
  12.  排水管部と、前記排水管部から分岐し前記排水管部の内部空間と外部空間とを連通する複数の管部とを含む排水管路が敷設されたエリアにおける内水氾濫の予兆を検知する予兆検知装置と、
     前記排水管路内の水位を計測する複数の水位センサと、
     前記排水管路内の空気圧を計測する複数の圧力センサと、を含み、
     前記予兆検知装置は、
     前記排水管路に設置した前記複数の水位センサ及び前記圧力センサの位置を含む情報を記憶するメモリと、
     前記メモリに接続され、前記内水氾濫の予兆を検知する処理を実行するプロセッサと、を含み、
     前記プロセッサが実行する前記処理は、
     前記複数の管部のうちの第1の管部と接続する箇所における前記排水管部内の水位が閾値以上であることを示す情報を取得した場合に、前記複数の管部のうちの第2の管部と接続する箇所における前記排水管部内の空気圧に基づいて、前記第2の管部の周囲における内水氾濫の予兆の有無を判定し、
     前記第2の管部の周囲における内水氾濫の予兆を検知した場合に、当該内水氾濫の予兆を示すアラームを出力する、処理を含む、
     ことを特徴とする予兆検知システム。
    Detecting a sign of inundation in an area where a drainage pipe including a drainage pipe and a plurality of pipes branched from the drainage pipe and communicating the internal space and the external space of the drainage pipe is laid A sign detection device;
    A plurality of water level sensors for measuring the water level in the drain pipe;
    A plurality of pressure sensors for measuring the air pressure in the drain pipe,
    The sign detection device includes:
    A memory for storing information including positions of the plurality of water level sensors and the pressure sensors installed in the drain pipe;
    A processor connected to the memory and executing a process of detecting a sign of the inland flooding,
    The processing executed by the processor is:
    When the information indicating that the water level in the drainage pipe part at a location connected to the first pipe part among the plurality of pipe parts is equal to or greater than a threshold value is obtained, the second of the plurality of pipe parts. Based on the air pressure in the drainage pipe part at the location connected to the pipe part, determine the presence or absence of inland water flooding around the second pipe part,
    Including a process of outputting an alarm indicating a sign of the inland water flood when a sign of the inland water flood is detected around the second pipe part,
    A sign detection system characterized by this.
  13.  排水管部と、前記排水管部から分岐し前記排水管部の内部空間と外部空間とを連通する複数の管部とを含む排水管路が敷設されたエリアにおける内水氾濫の予兆を検知する処理をコンピュータに実行させる予兆検知プログラムであって、
     前記処理は、
     前記複数の管部のうちの第1の管部と接続する箇所における前記排水管部内の水位が閾値以上であることを示す情報を取得した場合に、前記複数の管部のうちの第2の管部と接続する箇所における前記排水管部内の空気圧に基づいて、前記第2の管部の周囲における内水氾濫の予兆の有無を判定し、
     前記第2の管部の周囲における内水氾濫の予兆を検知した場合に、当該内水氾濫の予兆を示すアラームを出力する、処理を含む、
     ことを特徴とする予兆検知プログラム。
    Detecting a sign of inundation in an area where a drainage pipe including a drainage pipe and a plurality of pipes branched from the drainage pipe and communicating the internal space and the external space of the drainage pipe is laid A predictive detection program for causing a computer to execute processing,
    The process is
    When the information indicating that the water level in the drainage pipe part at a location connected to the first pipe part among the plurality of pipe parts is equal to or greater than a threshold value is obtained, the second of the plurality of pipe parts. Based on the air pressure in the drainage pipe part at the location connected to the pipe part, determine the presence or absence of inland water flooding around the second pipe part,
    Including a process of outputting an alarm indicating a sign of the inland water flood when a sign of the inland water flood is detected around the second pipe part,
    A sign detection program characterized by this.
  14.  排水管部と、前記排水管部から分岐し前記排水管部の内部空間と外部空間とを連通する複数の管部とを含む排水管路が敷設されたエリアにおける内水氾濫の予兆を検知する処理をコンピュータに実行させる予兆検知プログラムを記録した、非一時的でコンピュータでの読み取りが可能な記録媒体であって、
     前記処理は、
     前記複数の管部のうちの第1の管部と接続する箇所における前記排水管部内の水位が閾値以上であることを示す情報を取得した場合に、前記複数の管部のうちの第2の管部と接続する箇所における前記排水管部内の空気圧に基づいて、前記第2の管部の周囲における内水氾濫の予兆の有無を判定し、
     前記第2の管部の周囲における内水氾濫の予兆を検知した場合に、当該内水氾濫の予兆を示すアラームを出力する、処理を含む、
     ことを特徴とする記録媒体。
    Detecting a sign of inundation in an area where a drainage pipe including a drainage pipe and a plurality of pipes branched from the drainage pipe and communicating the internal space and the external space of the drainage pipe is laid A non-temporary computer-readable recording medium that records a sign detection program that causes a computer to execute processing,
    The process is
    When the information indicating that the water level in the drainage pipe part at a location connected to the first pipe part among the plurality of pipe parts is equal to or greater than a threshold value is obtained, the second of the plurality of pipe parts. Based on the air pressure in the drainage pipe part at the location connected to the pipe part, determine the presence or absence of inland water flooding around the second pipe part,
    Including a process of outputting an alarm indicating a sign of the inland water flood when a sign of the inland water flood is detected around the second pipe part,
    A recording medium characterized by the above.
PCT/JP2017/002407 2017-01-24 2017-01-24 Advance warning detection method, advance warning detection system, and advance warning detection program WO2018138786A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/002407 WO2018138786A1 (en) 2017-01-24 2017-01-24 Advance warning detection method, advance warning detection system, and advance warning detection program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/002407 WO2018138786A1 (en) 2017-01-24 2017-01-24 Advance warning detection method, advance warning detection system, and advance warning detection program

Publications (1)

Publication Number Publication Date
WO2018138786A1 true WO2018138786A1 (en) 2018-08-02

Family

ID=62978175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002407 WO2018138786A1 (en) 2017-01-24 2017-01-24 Advance warning detection method, advance warning detection system, and advance warning detection program

Country Status (1)

Country Link
WO (1) WO2018138786A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109269593A (en) * 2018-10-18 2019-01-25 泰华智慧产业集团股份有限公司 Underground emits excessive detection system
CN109610610A (en) * 2019-01-14 2019-04-12 中国市政工程西北设计研究院有限公司 A kind of application apparatus of new city drainage inspection well
CN110132377A (en) * 2019-06-28 2019-08-16 仙居贝格智能设备科技有限公司 A kind of flood prediction meanss
CN111412962A (en) * 2020-04-15 2020-07-14 江苏鑫亚达仪表制造有限公司 High-precision water level measuring device of water level meter
CN116678470A (en) * 2023-08-03 2023-09-01 山东省地质矿产勘查开发局第二水文地质工程地质大队(山东省鲁北地质工程勘察院) Underground water level observation equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09175594A (en) * 1995-12-22 1997-07-08 Mitsui Eng & Shipbuild Co Ltd Pneumatic storage type internal water flood storage tank
JP2004339752A (en) * 2003-05-14 2004-12-02 Kajima Corp Flood damage analysis system
US20140156232A1 (en) * 2012-11-30 2014-06-05 International Business Machines Corporation Methods, systems and computer program storage devices for generating a flooding forecast
JP2016099248A (en) * 2014-11-21 2016-05-30 富士通株式会社 Sensor and measurement system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09175594A (en) * 1995-12-22 1997-07-08 Mitsui Eng & Shipbuild Co Ltd Pneumatic storage type internal water flood storage tank
JP2004339752A (en) * 2003-05-14 2004-12-02 Kajima Corp Flood damage analysis system
US20140156232A1 (en) * 2012-11-30 2014-06-05 International Business Machines Corporation Methods, systems and computer program storage devices for generating a flooding forecast
JP2016099248A (en) * 2014-11-21 2016-05-30 富士通株式会社 Sensor and measurement system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109269593A (en) * 2018-10-18 2019-01-25 泰华智慧产业集团股份有限公司 Underground emits excessive detection system
CN109269593B (en) * 2018-10-18 2020-01-21 泰华智慧产业集团股份有限公司 Underground overflow detection system
CN109610610A (en) * 2019-01-14 2019-04-12 中国市政工程西北设计研究院有限公司 A kind of application apparatus of new city drainage inspection well
CN110132377A (en) * 2019-06-28 2019-08-16 仙居贝格智能设备科技有限公司 A kind of flood prediction meanss
CN110132377B (en) * 2019-06-28 2021-01-01 浙江弄潮儿智慧科技有限公司 Flood prediction device
CN111412962A (en) * 2020-04-15 2020-07-14 江苏鑫亚达仪表制造有限公司 High-precision water level measuring device of water level meter
CN116678470A (en) * 2023-08-03 2023-09-01 山东省地质矿产勘查开发局第二水文地质工程地质大队(山东省鲁北地质工程勘察院) Underground water level observation equipment
CN116678470B (en) * 2023-08-03 2023-10-27 山东省地质矿产勘查开发局第二水文地质工程地质大队(山东省鲁北地质工程勘察院) Underground water level observation equipment

Similar Documents

Publication Publication Date Title
WO2018138786A1 (en) Advance warning detection method, advance warning detection system, and advance warning detection program
JP6470573B2 (en) Underpass monitoring system, underpass monitoring device, and underpass monitoring method
JP6441464B2 (en) Disaster prevention system
KR20170033103A (en) System for monitoring flooding of road and its method
KR102485941B1 (en) Forecast alarm system for inundating with water
JP6794899B2 (en) Liquid level measurement system, liquid level measurement method, and liquid level measurement program
JP5342309B2 (en) Work safety support system in sewer pipes
CN117057616A (en) Water conservancy monitoring method and system based on digital twin
KR20170014094A (en) Smart pump station operation system and method
JP3175722U (en) Alarm system for water stop device
Gupta et al. Urban waterlogging detection and severity prediction using artificial neural networks
JP4799300B2 (en) Monitoring system
JP4427509B2 (en) Rainwater storage facility operation system
KR102263963B1 (en) Multiplex Prevention System of Disaster
JP2007280161A (en) Inundation occurrence estimating device and program
CN114005252A (en) Monitoring system and method based on multi-source information of mountain torrent disasters
KR101659310B1 (en) System and method for managing drain pipes
KR20150040505A (en) Method, apparatus and system for flooded area forecast service based on location
KR20230005642A (en) Urban flooding citizen support service provision system
JP5361621B2 (en) Precipitation abnormality detection method, precipitation abnormality detection system, and manhole cover
KR101595951B1 (en) System and method for alerting disaster in smart phone
US20220356690A1 (en) Decoupling tidal effects from water depth measurements in stormwater drainage systems
JP6867638B2 (en) Sewerage monitoring system and sewerage monitoring program
CN115983800A (en) Road safety intelligent drainage pipe network method and system
JP5925585B2 (en) Main line manhole emergency simulation system, method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP