WO2018137404A1 - 一种适合柴油发电机组群自主协调并网的控制方法 - Google Patents

一种适合柴油发电机组群自主协调并网的控制方法 Download PDF

Info

Publication number
WO2018137404A1
WO2018137404A1 PCT/CN2017/113889 CN2017113889W WO2018137404A1 WO 2018137404 A1 WO2018137404 A1 WO 2018137404A1 CN 2017113889 W CN2017113889 W CN 2017113889W WO 2018137404 A1 WO2018137404 A1 WO 2018137404A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
network
node
grid connection
status
Prior art date
Application number
PCT/CN2017/113889
Other languages
English (en)
French (fr)
Inventor
李向阳
吴安涛
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2018137404A1 publication Critical patent/WO2018137404A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators

Definitions

  • the invention relates to the field of generator grid-connected control, and particularly relates to a control method suitable for autonomous coordination and grid connection of a diesel generator set.
  • diesel generator sets are often required as backup emergency power sources.
  • the power supply situation must also match the load, so the output power and number of diesel generators that the power supply system is put into operation will also change, and at the same time, the diesel generator may malfunction.
  • a control coordination strategy is needed so that all diesel engine nodes in the region can independently coordinate and connect to the grid one after another to automatically form a large-capacity power grid.
  • the object of the present invention is to provide a control method suitable for autonomous coordination and grid connection of a diesel generator set for the above-mentioned deficiencies of the prior art, which does not require a special main grid-connected controller to coordinate each diesel power generation in practical applications.
  • Machine nodes, each node can coordinate independently, reducing costs and increasing the speed of grid connection.
  • a control method suitable for autonomous coordination and grid connection of a diesel generator set is as follows:
  • Each diesel generator set constitutes a network node, and a grid-connected status table capable of accommodating all network nodes is set up.
  • the status table includes the grid-connected status of each network node. It has two columns of data. The first column of data is the “communication watchdog timer”, the second column of data is the status data, and the status data is “unconnected” and “not connected”.
  • One of the "net”, “application for grid connection”, “application for success”, “connected to the network”, “connected network success” or "connection failure”, the offset address in the table is the node address in the CAN network;
  • the data communication format of the CAN network in step 1) adopts the SAE J1939 protocol, and the parameter group number PGN is added based on the protocol standard. All the CAN frames related to the grid connection use only one PGN, so that the priority of the CAN frame is only Related to the node address, the priority configuration of the network node is completed by the uniqueness of the CAN node address of the diesel generator, and the data field of the CAN frame adopts one byte, and the status byte data in the grid-connected state table is directly used;
  • Each diesel generator network node exchanges its own grid-connected status information through the CAN network, and each network node competes for the grid according to the preset priority according to its own grid-connected working state and the grid-connected working state of other diesel generators. Licensing, network nodes with low priority are automatically exited, and the highest priority network nodes obtain the right to connect to the grid. When the diesel generators that have obtained the grid connection are connected to the grid, the diesel generators that have not been connected to the grid are re-applied and competed for the grid. Licensing until all network nodes are connected to the network successfully.
  • the grid-connected coordinated control algorithm of the diesel generator network node of the step 3) is as follows:
  • Step1 the diesel generator is powered on and initialized, and the state of all network nodes in the "Grid-connected Status Table” is changed to "not connected", and the "communication watchdog timer” is initialized to 10, the unit is 100 milliseconds, and the value 10 is equivalent to 1 second;
  • Step2 the node newly accessing the CAN network continuously receives the CAN frame to update the "Grid-connected Status Table", and sends a node status data frame to the CAN network every 100 milliseconds, waits for 1 second, and then according to the grid-connected state of each node.
  • Step3 when the node is connected to the network timer to 200 milliseconds, first prohibit the node from applying for grid connection, and then if there is a higher priority node to apply for grid connection, the application will be automatically withdrawn, return to "not connected to the network", and the network timing Cleared and stopped timing. If there is no higher priority node to apply for grid connection, wait for the timer to reach 400 milliseconds, and check again if there is a higher priority node to apply for grid connection. If yes, return to "No". Grid status, clear and stop the timer. If not, modify the status of the node to "application successful", continue to wait for the timer to 500 milliseconds, update the status of the node to "connected to the network", and finally clear and close the network. Timer
  • Step4 the node in the "connected network” starts to be connected to the network. If the connection is successful, the "Connected Network Successful” status is released to the CAN network. If it is not successful, the "Connected Network Failure” status is sent, and the alarm is manually repaired. After the repair is completed, enter the start state again, and enter the "not connected to the grid” state 1 second after power-on to continue to apply for grid connection.
  • the node address of the CAN network is 8 bits, and the node data and state in the "Grid-connected Status Table" are arranged in order of the node address size.
  • the CAN network node in step 3) uses the interrupt processing to update the "grid state table", and the CAN network node sends a local state data frame every 100 milliseconds.
  • the local node receives a node CAN frame, "communication sees The dogdog timer is reset to 10, and the local node subtracts the "communication watchdog timer” every 100 milliseconds. 1.
  • the "communication watchdog timer” is zero, change the corresponding node status to "not connected” to determine that the long-term unsent data frame node is in the "unconnected” state.
  • the diesel generator network node comprises a grid connection control module, a grid information acquisition module, a grid connection execution module and a CAN bus transceiver module
  • the grid connection control module adopts STM32F407VET6 single chip microcomputer to independently coordinate the entire diesel generator group
  • the grid-connected process is controlled, and the grid information acquisition module is configured to collect voltage, phase difference, frequency, and current information of the diesel generator alternating current of the grid and the diesel generator, and the grid-connected execution module is configured to perform grid-connected operation.
  • the AC contactor is controlled by two relays, and the switches of the two relays are controlled by the grid-connected control module.
  • the CAN bus transceiver module is configured to receive and transmit status information in the "Grid-connected Status Table" of each network node.
  • the grid information acquisition module comprises an AC voltage scaling module, two comparator modules, an MCU timer module, an MCU ADC module and a Hall sensor module.
  • the MCU timer module is mainly composed of three timers: the input signal of the timer 1 is a converted grid voltage square wave signal, thereby calculating the frequency of the grid AC voltage; the input signal of the timer 2 is a transformation
  • the generator voltage square wave signal is used to calculate the frequency of the generator AC voltage; the timer 3 uses two channels, the input signal is the above two square wave signals, and the MCU obtains the zero crossing time of the two signals through the timer.
  • the difference between the grid and the generator AC voltage phase difference is calculated.
  • the CAN bus transceiver module is composed of an on-chip CAN controller and an external CAN bus transceiver in the MCU, and the external CAN bus transceiver mainly adopts the TJA1040.
  • the present invention has the following advantages and beneficial effects:
  • the diesel generator set of the invention determines the grid connection time through autonomous coordination, does not require a special main grid-connected controller to coordinate, reduces manual intervention and grid connection time, and improves the grid connection speed.
  • the method of the invention enables the diesel generators to be connected one after another, and only one diesel generator is in the grid-connecting process at the same time, which reduces the impact on the power grid, improves the reliability of the power grid and the stability of the power system. Sex.
  • the diesel generator node can be added and reduced at any time without modification of software and hardware, and each node has information about whether other nodes are connected to the CAN network and the grid-connected state, which is beneficial to Fault isolation and diagnostics facilitate the maintenance of diesel generator sets and the subsequent expansion of other functions.
  • FIG. 1 is a structural diagram of a CAN network composed of a plurality of diesel generators according to an embodiment of the present invention.
  • FIG. 2 is a structural block diagram of a diesel generator network node according to an embodiment of the present invention.
  • FIG. 3(a) is a structural diagram of a grid-connected execution module according to an embodiment of the present invention
  • FIG. 3(b) is a structural diagram of a grid information collection module according to an embodiment of the present invention.
  • FIG. 4 is a data flow diagram of a CAN network interconnection process composed of a plurality of diesel generators according to an embodiment of the present invention.
  • FIG. 5 is a flow chart of a grid-connected coordinated control algorithm for a diesel generator network node according to an embodiment of the present invention.
  • the embodiment provides a control method suitable for autonomous coordination and grid connection of a diesel generator set, and the method is as follows:
  • each diesel generator set constitutes a network node and sets a grid-connected state that can accommodate all network nodes.
  • Table, the grid-connected state table includes the grid-connected state of each network node, has two columns of data, the first column of data is a "communication watchdog timer", and the "communication watchdog timer” records the communication time of other nodes Interval state, the initial value is 10, every 100 milliseconds, the "communication watchdog timer” is decremented by 1.
  • the "communication watchdog timer" is reconfigured to 10, when When the communication data of a node is not received within 1 second, the “communication watchdog timer” will become 0, then the node is marked as "not connected", indicating that it has been removed from CAN due to malfunction or manual operation.
  • the bus is disconnected, and the CAN bus node periodically transmits data every 100 milliseconds.
  • the 110 node addresses of the CAN bus are designed to be 0x01 to 0x6E, and the seven state data are represented as shown in Table 1, and the second column number is shown in Table 1.
  • the status data is one of "not connected”, “not connected to the network”, “application for grid connection”, “application successful”, “connected to the network”, “connected network success” or “connected network failed”.
  • the offset address in the table is the node address in the CAN network;
  • the data communication format of the CAN network in step 1) refers to the SAE J1939 protocol, using a 29-bit identifier.
  • the extended frame, the identifier is specifically allocated as shown in Table 2, where P is the priority bit, only used to optimize the message delay in the bus, the receiver's acceptance filter must be shielded, use 111 here, in this
  • PGN is designed to be 62013 (0xF23D).
  • the uniqueness of the CAN node address of the diesel generator completes the priority configuration of the network node.
  • the data field of the CAN frame adopts one byte and directly uses the status byte data in the grid connection status table;
  • Each diesel generator network node exchanges its own grid-connected status information through the CAN network, and each network node competes for the grid according to the preset priority according to its own grid-connected working state and the grid-connected working state of other diesel generators. Licensing, network nodes with low priority are automatically exited, and the highest priority network nodes obtain the right to connect to the grid. When the diesel generators that have obtained the grid connection are connected to the grid, the diesel generators that have not been connected to the grid are re-applied and competed for the grid. Licensing until all network nodes are connected to the network successfully.
  • the grid-connected coordinated control algorithm of the diesel generator network node in the step 3) is as follows:
  • Step1 the diesel generator is powered on and initialized, and the state of all network nodes in the "Grid-connected Status Table” is changed to "not connected", and the "communication watchdog timer” is initialized to 10, the unit is 100 milliseconds, and the value 10 is equivalent to 1 second;
  • Step2 the node newly accessing the CAN network continuously receives the CAN frame to update the "Grid-connected Status Table", and sends a node status data frame to the CAN network every 100 milliseconds, waits for 1 second, and then according to the grid-connected state of each node.
  • Step3 when the node is connected to the network timer to 200 milliseconds, first prohibit the node from applying for grid connection, and then if there is a higher priority node to apply for grid connection, the application will be automatically withdrawn, return to "not connected to the network", and the network timing Cleared and stopped timing. If there is no higher priority node to apply for grid connection, wait for the timer to reach 400 milliseconds, and check again if there is a higher priority node to apply for grid connection. If yes, return to "No". Grid status, clear and stop the timer. If not, modify the status of the node to "application successful", continue to wait for the timer to 500 milliseconds, update the status of the node to "connected to the network", and finally clear and close the network. Timer
  • Step4 the node in the "connected network” starts to be connected to the network. If the connection is successful, it will be released to the CAN network. If the network is successful, if it is not successful, it will send "connected network failure", status, and alarm for manual maintenance. After repairing, it will enter the start state again. After power-on, it will enter the "not connected to the grid” state for 1 second to continue to apply for network connection. .
  • step 1) the node address of the CAN network is 8 bits, and the node data and state in the "Grid-connected Status Table" are arranged in order of the node address size;
  • the CAN network node in step 3) uses the interrupt processing to update the "grid state table", and the CAN network node sends a local state data frame every 100 milliseconds.
  • the "communication gatekeeper” The dog timer is reset to 10, the local node decrements the "communication watchdog timer” every 100 milliseconds, and when the "communication watchdog timer" is zero, the corresponding node status is changed to "not connected”. In order to determine that the long-term unsent data frame node is in the "unconnected" state.
  • the diesel generator network node includes a grid connection control module M201, a grid information acquisition module M203, a grid connection execution module M202, and a CAN bus transceiver module M204.
  • the grid connection control module M201 adopts ST company.
  • the grid information acquisition module M203 is used to collect the voltage, phase difference, frequency and current information of the diesel generator alternating current of the grid and the diesel generator.
  • AC voltage scaling module M304 uses a precision resistor with good consistency and a precision operational amplifier to convert the phase of the AC
  • the voltage signal is scaled down according to the ratio of 1/408, and the AC 380V becomes the maximum value less than 3V. It is suitable for connecting the voltage signal of the integrated ADC of the MCU.
  • the amplifier input resistance is connected in series with six 680k ⁇ resistors to improve the withstand voltage and meet the national standard safety. Provisions.
  • the op amp can choose TI's OPA4188, which has the advantages of low noise, rail-to-rail, zero drift.
  • the scaled-down grid and generator AC voltage signals are respectively obtained through two comparator modules M305 and M307 modules, and are input to the MCU timer module M306.
  • the MCU timer module M306 is mainly composed of three timers: the input signal of the timer 1 is the converted grid voltage square wave signal, thereby calculating the frequency of the grid AC voltage; the input signal of the timer 2 is the converted generator The voltage square wave signal is used to calculate the frequency of the generator AC voltage; the timer 3 uses two channels, and the input signal is the above two square wave signals, and the MCU obtains the difference between the zero crossing times of the two signals through the timer to calculate The grid and generator AC voltage phase difference.
  • the three-phase AC current measurement of the generator uses the Hall sensor module M309 to obtain an AC voltage signal that can be converted by the MCU ADC module M308, thereby obtaining a current real-time measurement value.
  • the grid-connected execution module M202 is mainly used for controlling a grid-connected switch.
  • the main modules are: an AC contactor M301, a grid-connected relay M302, a disconnect relay M303, and an MCU.
  • the grid-connected relay M303 and the trip relay M302 are respectively controlled by two common IO ports through a triode amplifying circuit, wherein the grid-connected relay M303 uses its normally open contact, the de-ranking relay M302 uses a normally-closed contact, and the grid-connected control module M201 is Grid information acquisition module M203 obtained by the grid and diesel engine Voltage and frequency and phase, if the first diesel generator is connected to the grid, the grid voltage is zero.
  • the diesel engine voltage and frequency are adjusted to the national standard range (such as 380V and 50Hz), it can be realized in time. If it is not the first diesel engine connected to the grid, adjust the output voltage to the grid voltage by adjusting the excitation of the diesel engine, then adjust the diesel engine output voltage frequency by adjusting the diesel engine speed, and maintain the phase of the grid voltage and the diesel engine output voltage in the national standard. In the scope of the network, you can achieve grid connection. In order to shorten the grid connection time, the diesel engine frequency can be adjusted to be lower than the grid frequency, and then the diesel engine frequency is followed by the voltage frequency. At this time, if the frequency and phase are within the range specified by the state, the grid is immediately connected.
  • the national standard range such as 380V and 50Hz
  • the grid-connected relay M303 When the MCU's IO port outputs the grid connection control command, the grid-connected relay M303 operates. At this time, the AC contactor M301 control terminal is turned on, the AC contactor M301 operates, and the switch is closed to realize grid connection.
  • the IO port When the generator needs to be disengaged from the grid, the IO port outputs the disaggregation command, the relay M302 is deactivated, the normally closed switch is opened, the control end of the AC contactor M301 is disconnected, and the switch is disconnected to realize the disassociation.
  • the CAN bus transceiver module is configured to receive and send status information in the "Grid-Connected Status Table" of each network node, and is composed of an on-chip CAN controller and an external CAN bus transceiver in the MCU, and the external CAN bus transceiver mainly adopts TJA1040.
  • CAN receiving processing module M401 CAN sending processing module M402, grid-connected state table M403, grid-connected control coordination module M404, and grid-connected process control.
  • the CAN bus receiving and processing module M401 mainly receives the grid-connected state periodically sent by other nodes, thereby updating the "connected-network status table" M403 of the local node, and simultaneously receiving the "application-in-grid" status with a lower priority than the local node.
  • the grid-connected timer is not started, the grid timer is started.
  • the CAN sending processing module M402 sends the local node grid-connected state to the network every 100 milliseconds.
  • the "Grid-connected Status Table” M403 consists of two columns of data.
  • the first column of data is the “communication watchdog timer”
  • the second column of data is the status data
  • the status data is "not connected”, "not connected to the network”
  • One of the elements in the table indicates the state of the node in the CAN network, and the offset address is in the CAN network, one of the applications for grid connection, the application for success, the grid connection, the success of the grid connection, and the failure of the grid connection. Node address.
  • the "communication watchdog timer” mainly records the communication status of other nodes. The initial value is 10.
  • the "communication watchdog timer" of other nodes in the table is decremented by 1, and the communication data of each node is received.
  • the "communication watchdog timer" of the node is reset to 10, so when the communication data of a certain node is not received within 1 second, the "communication watchdog timer" of the node becomes 0, the status of the node is marked as "unconnected” at this time, indicating that it has been disconnected from the CAN bus due to a fault or manual operation.
  • the grid-connected state data of other nodes is updated by the state data received by the CAN receiving processing module M401, and the grid-connected state data of the local node uses the grid-connecting coordination module M404 to determine which state the node is in and updates.
  • the grid-connected coordination module M404 obtains the grid-connected state of the node and other nodes according to the "grid-connected state table", determines whether the local node has obtained the priority of the grid connection, performs the grid-connected operation, and updates the local node "grid-connected state table". "The grid state of the local node.
  • the grid coordination module M404 modifies the state of the node to "connected to the network" and sends a grid connection command to the grid-connected process control module M405. After receiving the grid-connected command, the grid-connected process control module M405 starts the grid connection, and uses the grid information collection data to perform the grid-connected process control operation through the related grid-connected algorithm.
  • the flowchart of the grid-connected coordinated control algorithm of the diesel generator network node in this embodiment is shown in FIG. 5: the system performs power-on initialization and enters the “unconnected” S501 state, and the initialization content includes: (1) “Connected Network Status Table” The status of all nodes is changed to "not connected", "communication watchdog timer” is initialized to 10; (2) initialization of CAN controller; (3) 100 milliseconds, 1 second system tick timer, grid-connected timer and Initialization of other timers. In the "unconnected” state, after waiting for 1 second, it enters the "not connected to the network” S502 state.
  • the node knows the latest grid-connected state of other nodes and whether it is connected to the CAN bus according to the "grid-connected state table", and then the node is connected. The status is changed to "not connected to the network”.
  • a node that is in the "not connected to the network” state is allowed to apply for networking only on the node and the node needs to be connected to the network, and the "connection success status", "connection in the network", and priority is higher than the current node.
  • you apply for the grid connection status you can enter the S503 "Apply for Grid” status. In other cases, the nodes are in the S502 "Not Connected” state.
  • the time when each node is allowed to apply for grid connection is: from the "Grid-connected Status Table", there is no “application for grid connection”, “application for success”, “connected network” status, and "connected network timer” prohibits application for grid connection. So far, the “Grid-connected Timer” is started as a grid-connected cycle. The “Grid-connected Timer” of all nodes is started almost at the same time. When the time is up to 200 milliseconds, it is forbidden to apply for grid connection. The node needs to wait for the next grid-connected period. The highest priority among the nodes that have applied for the grid connection is finally obtained with the grid-connected license.
  • the grid-connected timer is started in two cases: (1) the node sends the “application for grid connection” status when the grid-connected timer has not been started; (2) the grid-connected timer has not been started but receives other low priority.
  • the "Apply for Grid” status sent by the local node is used as the start of a grid-connected period when the grid-connected timer starts. In the S503 state, wait for the "grid-connected timer" to count to 200 milliseconds. All nodes are forbidden to apply for grid connection. Check whether there is "application successful", “connected to the network", and priority higher than this node in the "grid-state status table". If the network is connected, the node will exit the application and join the network and return to the state S502.
  • the node is temporarily at the highest priority of the application for grid connection. Time error, there may be a higher priority "application for grid connection” on the bus has not been transmitted, so you need to wait for the "grid timer" to 400 milliseconds, and then query the "grid status table" for "application success” In the "connected network” and the grid connection status of the "application for grid connection” with higher priority than this node, if it exists, the node exits the application and joins the network, and returns to state S502. If it does not exist, the node obtains The grid-connected priority of the grid-connected period is applied for success in the grid connection, and the S504 "application successful" status is entered.
  • the timer is waited for 500 milliseconds, and the state of S505 "Connected to the network" is directly entered.
  • the node that enters the "connected network” state starts the grid connection operation. If the grid connection is successful, the process proceeds to S507 "Connected to the network successfully” state. If the grid connection fails, the process proceeds to S506 "Connected network failed” state.
  • the node in the "Successful Mesh Failure" state in S506 enters the start state after being alarmed and manually repaired, and then is powered on and initialized. If the generator is disconnected from the network in S507, the node will return to the state of S502 "not connected to the network”. If the generator fails off the network, it will be alarmed and manually repaired, then enter the starting state, and then power on and initialize.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Small-Scale Networks (AREA)

Abstract

一种适合柴油发电机组群自主协调并网的控制方法,所述方法利用CAN总线将区域内所有需要并网的柴油发电机组连接,组成CAN网络,通过柴油发电机CAN节点地址的唯一性完成网络节点的优先级配置,各个网络节点根据自己的并网工作状态和其它柴油发电机的并网工作状态,按照预设的优先级竞争并网许可,优先级低的网络节点自动退出,最高优先级的网络节点获得并网权,当获得并网权的柴油发电机完成并网后,还未并网的柴油发电机重新申请和竞争并网许可,直到所有网络节点并网成功。该方法在实际应用中不需要专门的主并网控制器来协调各个柴油发电机节点,各个节点能够自主协调,减少了成本,提高了并网速度。

Description

一种适合柴油发电机组群自主协调并网的控制方法 技术领域
本发明涉及发电机并网控制领域,具体涉及一种适合柴油发电机组群自主协调并网的控制方法。
背景技术
在医院、通信、消防等重要领域,经常需要采用柴油发电机组作为后备应急电源。在柴油发电机组的实际应用中,随着负载的变化,供电情况也要与负载相匹配,于是供电***投入运行的柴油发电机输出功率和台数也会发生变化,同时,柴油发电机可能发生故障,此时需要启动备用的柴油发电机,并将其并入电网。因此,由于柴油发电机组扩容或者备用的需求,柴油发电机组在实际应用中需要进行并网控制。当一片区域需要多台柴油发电机并网时,为了减小对电网的冲击和保证电力***的稳定性,需要一台一台地把柴油发电机依次并入电网,多台柴油发电机不可同时并网。于是,需要一种并网协调方法,协调各台柴油发电机依次并网。目前,当柴油发电机数量较少,较多采用手动控制柴油机并网的方法,人工将一台一台柴油发电机并网,这种方式明显不适用于大范围分布的大数量柴油发电机组群。
因此,需要一种控制协调策略,使得区域内的所有柴油机节点可以自主协调并网,一台接着一台并入电网,以自动组成大容量电网。
发明内容
本发明的目的是针对上述现有技术的不足,提供了一种适合柴油发电机组群自主协调并网的控制方法,该方法在实际应用中不需要专门的主并网控制器来协调各个柴油发电机节点,各个节点能够自主协调,减少了成本,提高了并网速度。
本发明的目的可以通过如下技术方案实现:
一种适合柴油发电机组群自主协调并网的控制方法,所述方法具体如下:
1)利用CAN总线将区域内所有需要并网的柴油发电机组连接,组成CAN网络,每个柴油发电机组构成一个网络节点,并设置一个能够容纳所有网络节点的并网状态表,所述并网状态表包括每个网络节点的并网状态,具有两列数据,第一列数据为“通信看门狗计时器”,第二列数据为状态数据,状态数据为“未连接”、“未并网”、“申请并网”、“申请成功”、“并网中”、“并网成功”或“并网失败”其中之一,表中的偏移地址即为CAN网络中的节点地址;
2)步骤1)中CAN网络的数据通信格式采用SAE J1939协议,并在该协议标准基础上增加参数组编号PGN,所有与并网相关的CAN帧只使用一个PGN,使CAN帧的优先级只与节点地址有关,通过柴油发电机CAN节点地址的唯一性完成网络节点的优先级配置,CAN帧的数据域采用一个字节,直接使用并网状态表中的状态字节数据;
3)每个柴油发电机网络节点通过CAN网络交换各自的并网状态信息,各个网络节点根据自己的并网工作状态和其它柴油发电机的并网工作状态,按照预设的优先级竞争并网许可,优先级低的网络节点自动退出,最高优先级的网络节点获得并网权,当获得并网权的柴油发电机完成并网后,还未并网的柴油发电机重新申请和竞争并网许可,直到所有网络节点并网成功。
优选的,所述步骤3)的柴油发电机网络节点并网协调控制算法具体如下:
Step1,柴油发电机上电初始化,将“并网状态表”中所有网络节点的状态修改为“未连接”,“通信看门狗计时器”初始化为10,单位为100毫秒,数值10相当于1秒;
Step2,新接入CAN网络的节点不断接收CAN帧来更新“并网状态表”,并向CAN网络每100毫秒发送一个本节点状态数据帧,等待1秒后再根据各节点的并网状态来申请并网,当其它节点都没有处于“申请成功”或者“并网中”的工作状态,并且“并网状态表”中没有更高优先级节点处于“申请并网”时,即向网络中发布“申请并网”,当本节点检查“并网状态表”中有比本节点优先级低的节点“申请并网”时,同时启动并网计时器,启动并网计时器作为整个申请并网周期的开始;
Step3,当节点并网计时器到200毫秒时,首先禁止本节点申请并网,然后若有更高优先级的节点申请并网,则自动退出申请,回到“未并网”,并网计时器清零,并停止计时,若没有更高优先级的节点申请并网,则等待计时器到400毫秒,再次检测有无更高优先级的节点申请并网,若有,则回到“未并网”状态,清空并停止计时器,若无,则修改本节点状态为“申请成功”,继续等待计时器到500毫秒,更新本节点状态为“并网中”,最后清空并关闭并网计时器;
Step4,处于“并网中”的节点开始并网,若并网成功,则向CAN网络发布“并网成功”状态,若没有成功,则发送“并网失败”,状态,并报警进行人工维修,等修好之后,再次进入开始状态,上电后1秒进入“未并网”状态继续申请并网。
优选的,步骤1)中,所述CAN网络的节点地址为8位,“并网状态表”中的节点数据和状态按照节点地址大小顺序排列。
优选的,步骤3)中的CAN网络节点采用中断处理来更新“并网状态表”,CAN网络节点每100毫秒,发送一个本地状态数据帧,当本地节点接收某节点CAN帧时,“通信看门狗计时器”重新设为10,本地节点每100毫秒把“通信看门狗计时器”减 1,当“通信看门狗计时器”为零后,把相应的节点状态改为“未连接”,以此判断长期未发送数据帧节点处于“未连接”状态。
优选的,所述柴油发电机网络节点包括并网控制模块、电网信息采集模块、并网执行模块以及CAN总线收发模块,所述并网控制模块采用STM32F407VET6单片机,对整个柴油发电机组群的自主协调并网流程进行控制,所述电网信息采集模块用来采集电网以及柴油发电机交流电的电压、相位差、频率和柴油发电机交流电的电流信息,所述并网执行模块用于执行并网操作,通过两个继电器控制交流接触器,两个继电器的开关由并网控制模块进行控制,当并网继电器动作后,交流接触器控制端接通,交流接触器闭合,进行并网,当解列继电器动作后,交流接触器控制端断开,交流接触器断开,进行解列操作,所述CAN总线收发模块用于接收和发送各网络节点“并网状态表”中的状态信息。
优选的,所述电网信息采集模块包括交流电压比例缩小模块、两个比较器模块、MCU定时器模块、MCU ADC模块和霍尔传感器模块。
优选的,所述MCU定时器模块主要由三个定时器组成:定时器1的输入信号为变换后的电网电压方波信号,以此计算电网交流电压的频率;定时器2的输入信号为变换后的发电机电压方波信号,以此计算发电机交流电压的频率;定时器3使用两个通道,输入信号为上述两路方波信号,MCU通过定时器得到这两路信号的过零时间之差计算电网和发电机交流电电压相位差。
优选的,所述CAN总线收发模块由MCU中片上CAN控制器和外接CAN总线收发器组成,外接CAN总线收发器主要采用TJA1040。
本发明与现有技术相比,具有如下优点和有益效果:
1、本发明的柴油发电机组群通过自主协调来确定并网时刻,不需要专门的主并网控制器来协调,减少了人工干预和并网时间,提高了并网速度。
2、本发明的方法使柴油发电机一个接着一个地并网,同一时刻只有一台柴油发电机处于并网过程中,减小了对电网的冲击,提高了电网的可靠性和电力***的稳定性。
3、采用本发明的并网算法,可以随时添加、减少柴油发电机节点,不需要进行软件和硬件的修改,而且每个节点都具有其他节点是否连接CAN网络的信息以及并网状态,有利于故障隔离和诊断,有利于柴油发电机组的维修和后续的其他功能的扩展。
附图说明
图1为本发明实施例多个柴油发电机组成的CAN网络结构图。
图2为本发明实施例柴油发电机网络节点的结构框图。
图3(a)为本发明实施例并网执行模块的结构图,图3(b)为本发明实施例电网信息采集模块的结构图。
图4为本发明实施例多个柴油发电机组成的CAN网络并网过程数据流图。
图5为本发明实施例柴油发电机网络节点并网协调控制算法流程图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例:
本实施例提供了一种适合柴油发电机组群自主协调并网的控制方法,所述方法具体如下:
1)利用CAN总线将区域内所有需要并网的柴油发电机组连接,组成CAN网络,如图1所示,每个柴油发电机组构成一个网络节点,并设置一个能够容纳所有网络节点的并网状态表,所述并网状态表包括每个网络节点的并网状态,具有两列数据,第一列数据为“通信看门狗计时器”,“通信看门狗计时器”记录其它节点通信时间间隔状态,初始值为10,每隔100毫秒,“通信看门狗计时器”减1,每接收到一个节点发送来的通信数据帧,“通信看门狗计时器”重新配置为10,当1秒内都没有收到某节点通信数据时,“通信看门狗计时器”将变为0,则该节点标记为“未连接”状态,表示其因发生故障或者人工操作等原因已从CAN总线断开,CAN总线节点每100毫秒周期地发送数据,本实施例中CAN总线的110个节点地址设计为0x01~0x6E,7个状态数据表示如表1所示,第二列数据为状态数据,状态数据为“未连接”、“未并网”、“申请并网”、“申请成功”、“并网中”、“并网成功”或“并网失败”其中之一,表中的偏移地址即为CAN网络中的节点地址;
字节数据 并网状态 字节数据 并网状态
0x00 未连接 0x11 并网中
0x01 未并网 0x0F 并网成功
0x02 申请并网 0xF0 并网失败
0x10 申请成功    
表1
2)步骤1)中CAN网络的数据通信格式参照SAE J1939协议,采用29位标识符 的扩展帧,标识符具体分配如表2所示,其中,P为优先级位,仅用于在总线中优化消息延迟,接收机的验收滤波器必须对其屏蔽,在此使用111,在本实施例的并网通信中,所有与并网相关的CAN帧使用同一个PGN,使CAN帧的优先级只与节点地址有关,在本实施例中,设计并网PGN为62013(0xF23D),通过柴油发电机CAN节点地址的唯一性完成网络节点的优先级配置,CAN帧的数据域采用一个字节,直接使用并网状态表中的状态字节数据;
P(优先级) R(保留) DP(数据页) PF(PDU格式) PS(特定PDU) SA(源地址)
ID28~ID26 ID25 ID24 ID23~ID16 ID15~ID8 ID7~ID0
111b 0b 0b 0xF2 0x3D 0x01~0x6E
表2
3)每个柴油发电机网络节点通过CAN网络交换各自的并网状态信息,各个网络节点根据自己的并网工作状态和其它柴油发电机的并网工作状态,按照预设的优先级竞争并网许可,优先级低的网络节点自动退出,最高优先级的网络节点获得并网权,当获得并网权的柴油发电机完成并网后,还未并网的柴油发电机重新申请和竞争并网许可,直到所有网络节点并网成功。
其中,所述步骤3)的柴油发电机网络节点并网协调控制算法具体如下:
Step1,柴油发电机上电初始化,将“并网状态表”中所有网络节点的状态修改为“未连接”,“通信看门狗计时器”初始化为10,单位为100毫秒,数值10相当于1秒;
Step2,新接入CAN网络的节点不断接收CAN帧来更新“并网状态表”,并向CAN网络每100毫秒发送一个本节点状态数据帧,等待1秒后再根据各节点的并网状态来申请并网,当其它节点都没有处于“申请成功”或者“并网中”的工作状态,并且“并网状态表”中没有更高优先级节点处于“申请并网”时,即向网络中发布“申请并网”,当本节点检查“并网状态表”中有比本节点优先级低的节点“申请并网”时,同时启动并网计时器,启动并网计时器作为整个申请并网周期的开始;
Step3,当节点并网计时器到200毫秒时,首先禁止本节点申请并网,然后若有更高优先级的节点申请并网,则自动退出申请,回到“未并网”,并网计时器清零,并停止计时,若没有更高优先级的节点申请并网,则等待计时器到400毫秒,再次检测有无更高优先级的节点申请并网,若有,则回到“未并网”状态,清空并停止计时器,若无,则修改本节点状态为“申请成功”,继续等待计时器到500毫秒,更新本节点状态为“并网中”,最后清空并关闭并网计时器;
Step4,处于“并网中”的节点开始并网,若并网成功,则向CAN网络发布“并 网成功”状态,若没有成功,则发送“并网失败”,状态,并报警进行人工维修,等修好之后,再次进入开始状态,上电后1秒进入“未并网”状态继续申请并网。
其中,步骤1)中,所述CAN网络的节点地址为8位,“并网状态表”中的节点数据和状态按照节点地址大小顺序排列;
其中,步骤3)中的CAN网络节点采用中断处理来更新“并网状态表”,CAN网络节点每100毫秒,发送一个本地状态数据帧,当本地节点接收某节点CAN帧时,“通信看门狗计时器”重新设为10,本地节点每100毫秒把“通信看门狗计时器”减1,当“通信看门狗计时器”为零后,把相应的节点状态改为“未连接”,以此判断长期未发送数据帧节点处于“未连接”状态。
其中,所述柴油发电机网络节点包括并网控制模块M201、电网信息采集模块M203、并网执行模块M202以及CAN总线收发模块M204,如图2所示,所述并网控制模块M201采用ST公司的STM32F407VET6单片机(MCU),其内核为ARMCortex-M4,内置单精度FPU(浮点运算单元)和精度较高的模拟外设,具有高效的信号处理能力以及Cortex-M处理器系列的低功耗和低成本,对整个柴油发电机组群的自主协调并网流程进行控制,所述电网信息采集模块M203用来采集电网以及柴油发电机交流电的电压、相位差、频率和柴油发电机交流电的电流信息,用于并网过程控制,其原理如图3(b)所示,主要模块有交流电压比例缩小模块M304、两个比较器模块M305和M307、MCU定时器模块M306、MCU ADC模块M308、霍尔传感器模块M309,交流电压比例缩小模块M304利用一致性较好的精密电阻以及精密运算放大器将交流电的相电压信号按照1/408的比例缩小,得到交流380V变为最大值小于3V的适合连接MCU内部集成ADC的电压信号;放大器输入电阻采用6个680kΩ的电阻串联以提高耐压和满足国家标准的安全规定。运算放大器可以选择TI公司的OPA4188,其具有低噪声、轨至轨、零漂移等优点。同时,比例缩小的电网和发电机交流电压信号分别经过两个比较器模块M305及M307模块得到电压方波信号,输入至MCU定时器模块M306中。MCU定时器模块M306主要由三个定时器组成:定时器1的输入信号为变换后的电网电压方波信号,以此计算电网交流电压的频率;定时器2的输入信号为变换后的发电机电压方波信号,以此计算发电机交流电压的频率;定时器3使用两个通道,输入信号为上述两路方波信号,MCU通过定时器得到这两路信号的过零时间之差从而计算电网和发电机交流电电压相位差。发电机的三相交流电电流测量采用霍尔传感器模块M309,得到可供MCU ADC模块M308进行转换的交流电压信号,从而得到电流实时测量值。所述并网执行模块M202主要是用于控制并网开关,其一个设计实例结构如图3(a)所示,主要模块有:交流接触器M301、并网继电器M302、解列继电器M303,MCU通过两个普通IO口经过三极管放大电路分别控制并网继电器M303和解列继电器M302,其中,并网继电器M303使用其常开触点,解列继电器M302使用常闭触点,并网控制模块M201根据电网信息采集模块M203得到的电网和柴油机的 电压和频率以及相位,若是第一个柴油发电机并网,则电网电压为零,此时只要把柴油机电压和频率调节到国家标准定为的范围(如380V和50Hz)即可,及时实现并网;若不是第一个并网的柴油机,则通过调节柴油机励磁把输出电压调节到电网电压,然后通过调节柴油机转速调节柴油机输出电压频率,并保持电网电压和柴油机输出电压的相位在国家标准规定的范围内,即可实现并网。为了缩短并网时间,可以先把调节柴油机频率使其低于电网频率,然后使柴油机频率追刚电压频率,此时若频率和相位都在国家规定范围内,则马上并网。当MCU的IO口输出并网控制命令时,并网继电器M303动作,此时交流接触器M301控制端接通,交流接触器M301动作,开关闭合,实现并网。当需要将发电机从电网解列时,IO口输出解列命令,解列继电器M302动作,常闭开关断开,交流接触器M301控制端断开,开关断开,实现解列。所述CAN总线收发模块用于接收和发送各网络节点“并网状态表”中的状态信息,由MCU中片上CAN控制器和外接CAN总线收发器组成,外接CAN总线收发器主要采用TJA1040。
图4为本实施例的CAN网络并网过程数据流图,主要组成模块有:CAN接收处理模块M401、CAN发送处理模块M402、并网状态表M403、并网控制协调模块M404、并网过程控制模块M405。CAN总线接收处理模块M401主要是接收其他节点周期性发送的并网状态,从而更新本地节点的“并网状态表”M403,同时,当接收到优先级低于本节点的“申请并网”状态时,若并网计时器没有启动,则启动并网计时器。CAN发送处理模块M402每隔100毫秒将本地节点并网状态发送到网络中,当发送的是本地节点“申请并网”状态时,若并网计时器没有启动,则启动并网计时器。“并网状态表”M403由两列数据组成,第1列数据为“通信看门狗计时器”,第2列数据为状态数据,状态数据为“未连接”、“未并网”、“申请并网”、“申请成功”、“并网中”、“并网成功”、“并网失败”之一,表中各个元素表示CAN网络中的节点状态,偏移地址即为CAN网络中的节点地址。“通信看门狗计时器”主要是记录其他节点的通信状态,初始值为10,每隔100毫秒,表中其他节点的“通信看门狗计时器”减1,每接收一个节点的通信数据帧,则该节点的“通信看门狗计时器”复位为10,于是当1秒内都没有接收到某个节点的通信数据时,则该节点的“通信看门狗计时器”将变为0,此时标记该节点的状态为“未连接”,表示其已经因为故障或者人工操作而从CAN总线断开。并网状态数据中,其他节点的并网状态数据利用CAN接收处理模块M401接收的状态数据进行更新,而本地节点并网状态数据则利用并网协调模块M404判断本节点处于哪种状态从而进行更新。并网协调模块M404根据“并网状态表”得到本节点以及其他节点的并网状态,判断本地节点是否取得了并网的优先权,是否进行并网操作,并且更新本地节点“并网状态表”中本节点的并网状态。当本节点取得了并网权时,并网协调模块M404将本节点的状态修改为“并网中”,并向并网过程控制模块M405发送并网命令。并网过程控制模块M405接收到并网命令后,开始并网,利用电网信息采集数据通过相关的并网算法执行并网过程控制操作。
本实施例柴油发电机网络节点并网协调控制算法流程图如图5所示:***进行上电初始化并进入“未连接”S501状态,初始化内容包括:(1)将“并网状态表”中所有节点的状态修改为“未连接”,“通信看门狗计时器”初始化为10;(2)CAN控制器的初始化;(3)100毫秒、1秒***节拍计时器、并网计时器以及其他计时器的初始化。“未连接”状态中,等待1秒后进入“未并网”S502状态,本节点根据“并网状态表”得知其他节点最新的并网状态以及是否连接CAN总线的状态,然后将本节点状态修改为“未并网”。处于“未并网”状态的节点只有在节点允许申请并网且节点需要并网以及“并网状态表”中不存在“申请成功”、“并网中”以及优先级高于本节点的“申请并网”等并网状态时,才能进入S503“申请并网”状态,其他情况节点均处于S502“未连接”状态。每个节点允许申请并网的时刻为:从“并网状态表”中不存在“申请并网”、“申请成功”、“并网中”状态开始到“并网计时器”禁止申请并网为止,“并网计时器”的启动作为一个并网周期的开始,所有节点的“并网计时器”几乎同时启动,当计时到200毫秒时,禁止申请并网,此时未申请并网的节点需要等待下一个并网周期,已申请并网的节点中最高优先级最终得到并网许可。并网计时器在两种情况下启动:(1)并网计时器还未启动时本节点发送了“申请并网”状态;(2)并网计时器还未启动但是接收到其他优先级低于本地节点发送的“申请并网”状态,并网计时器启动时作为一个并网周期的开始。S503状态时,等待“并网计时器”计时到200毫秒,所有节点禁止申请并网,查询“并网状态表”中是否存在“申请成功”、“并网中”以及优先级高于本节点的“申请并网”等并网状态,若存在,本节点退出申请并网,回到状态S502;若不存在,此刻本节点暂时处于“申请并网”的最高优先级,由于定时器启动有时间误差,总线上可能还有更高优先级的“申请并网”还未传送,因此需要等待“并网计时器”到400毫秒,再次查询“并网状态表”中是否存在“申请成功”、“并网中”以及优先级高于本节点的“申请并网”等并网状态,此刻,若存在,则本节点退出申请并网,回到状态S502,若不存在,则本节点获得本次并网周期的并网优先权,申请并网成功,进入S504“申请成功”状态。当进入S504“申请成功”状态后,等待计时器到500毫秒,直接进入S505“并网中”状态。S505状态中,进入“并网中”状态的节点开始并网操作,若并网成功,则进入S507“并网成功”状态,若并网失败,则进入S506“并网失败”状态。处于S506“并网失败”状态的节点通过报警并人工维修后进入开始状态,然后上电初始化。处于S507“并网成功”的节点若发电机解列离网,则回到S502“未并网”状态,若发电机故障离网,则报警并人工维修后进入开始状态,然后上电初始化。
以上所述,仅为本发明专利较佳的实施例,但本发明专利的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明专利所公开的范围内,根据本发明专利的技术方案及其发明专利构思加以等同替换或改变,都属于本发明专利的保护范围。

Claims (8)

  1. 一种适合柴油发电机组群自主协调并网的控制方法,其特征在于,所述方法具体如下:
    1)利用CAN总线将区域内所有需要并网的柴油发电机组连接,组成CAN网络,每个柴油发电机组构成一个网络节点,并设置一个能够容纳所有网络节点的并网状态表,所述并网状态表包括每个网络节点的并网状态,具有两列数据,第一列数据为“通信看门狗计时器”,第二列数据为状态数据,状态数据为“未连接”、“未并网”、“申请并网”、“申请成功”、“并网中”、“并网成功”或“并网失败”其中之一,表中的偏移地址即为CAN网络中的节点地址;
    2)步骤1)中CAN网络的数据通信格式采用SAE J1939协议,并在该协议标准基础上增加参数组编号PGN,所有与并网相关的CAN帧只使用一个PGN,使CAN帧的优先级只与节点地址有关,通过柴油发电机CAN节点地址的唯一性完成网络节点的优先级配置,CAN帧的数据域采用一个字节,直接使用并网状态表中的状态字节数据;
    3)每个柴油发电机网络节点通过CAN网络交换各自的并网状态信息,各个网络节点根据自己的并网工作状态和其它柴油发电机的并网工作状态,按照预设的优先级竞争并网许可,优先级低的网络节点自动退出,最高优先级的网络节点获得并网权,当获得并网权的柴油发电机完成并网后,还未并网的柴油发电机重新申请和竞争并网许可,直到所有网络节点并网成功。
  2. 根据权利要求1所述的一种适合柴油发电机组群自主协调并网的控制方法,其特征在于:所述步骤3)的柴油发电机网络节点并网协调控制算法具体如下:
    Step1,柴油发电机上电初始化,将“并网状态表”中所有网络节点的状态修改为“未连接”,“通信看门狗计时器”初始化为10,单位为100毫秒,数值10相当于1秒;
    Step2,新接入CAN网络的节点不断接收CAN帧来更新“并网状态表”,并向CAN网络每100毫秒发送一个本节点状态数据帧,等待1秒后再根据各节点的并网状态来申请并网,当其它节点都没有处于“申请成功”或者“并网中”的工作状态,并且“并网状态表”中没有更高优先级节点处于“申请并网”时,即向网络中发布“申请并网”,当本节点检查“并网状态表”中有比本节点优先级低的节点“申请并网”时,同时启动并网计时器,启动并网计时器作为整个申请并网周期的开始;
    Step3,当节点并网计时器到200毫秒时,首先禁止本节点申请并网,然后若有更 高优先级的节点申请并网,则自动退出申请,回到“未并网”,并网计时器清零,并停止计时,若没有更高优先级的节点申请并网,则等待计时器到400毫秒,再次检测有无更高优先级的节点申请并网,若有,则回到“未并网”状态,清空并停止计时器,若无,则修改本节点状态为“申请成功”,继续等待计时器到500毫秒,更新本节点状态为“并网中”,最后清空并关闭并网计时器;
    Step4,处于“并网中”的节点开始并网,若并网成功,则向CAN网络发布“并网成功”状态,若没有成功,则发送“并网失败”,状态,并报警进行人工维修,等修好之后,再次进入开始状态,上电后1秒进入“未并网”状态继续申请并网。
  3. 根据权利要求1所述的一种适合柴油发电机组群自主协调并网的控制方法,其特征在于:步骤1)中,所述CAN网络的节点地址为8位,“并网状态表”中的节点数据和状态按照节点地址大小顺序排列。
  4. 根据权利要求2所述的一种适合柴油发电机组群自主协调并网的控制方法,其特征在于:步骤3)中的CAN网络节点采用中断处理来更新“并网状态表”,CAN网络节点每100毫秒,发送一个本地状态数据帧,当本地节点接收某节点CAN帧时,“通信看门狗计时器”重新设为10,本地节点每100毫秒把“通信看门狗计时器”减1,当“通信看门狗计时器”为零后,把相应的节点状态改为“未连接”,以此判断长期未发送数据帧节点处于“未连接”状态。
  5. 根据权利要求1所述的一种适合柴油发电机组群自主协调并网的控制方法,其特征在于:所述柴油发电机网络节点包括并网控制模块、电网信息采集模块、并网执行模块以及CAN总线收发模块,所述并网控制模块采用STM32F407VET6单片机,对整个柴油发电机组群的自主协调并网流程进行控制,所述电网信息采集模块用来采集电网以及柴油发电机交流电的电压、相位差、频率和柴油发电机交流电的电流信息,所述并网执行模块用于执行并网操作,通过两个继电器控制交流接触器,两个继电器的开关由并网控制模块进行控制,当并网继电器动作后,交流接触器控制端接通,交流接触器闭合,进行并网,当解列继电器动作后,交流接触器控制端断开,交流接触器断开,进行解列操作,所述CAN总线收发模块用于接收和发送各网络节点“并网状态表”中的状态信息。
  6. 根据权利要求5所述的一种适合柴油发电机组群自主协调并网的控制方法,其特征在于:所述电网信息采集模块包括交流电压比例缩小模块、两个比较器模块、MCU定时器模块、MCU ADC模块和霍尔传感器模块。
  7. 根据权利要求6所述的一种适合柴油发电机组群自主协调并网的控制方法,其特征在于:所述MCU定时器模块由三个定时器组成:定时器1的输入信号为变换后的电网电压方波信号,以此计算电网交流电压的频率;定时器2的输入信号为变换后的 发电机电压方波信号,以此计算发电机交流电压的频率;定时器3使用两个通道,输入信号为上述两路方波信号,MCU通过定时器得到这两路信号的过零时间之差计算电网和发电机交流电电压相位差。
  8. 根据权利要求5所述的一种适合柴油发电机组群自主协调并网的控制方法,其特征在于:所述CAN总线收发模块由MCU中片上CAN控制器和外接CAN总线收发器组成,所述外接CAN总线收发器采用TJA1040。
PCT/CN2017/113889 2017-01-24 2017-11-30 一种适合柴油发电机组群自主协调并网的控制方法 WO2018137404A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710059425.3A CN106849160B (zh) 2017-01-24 2017-01-24 一种适合柴油发电机组群自主协调并网的控制方法
CN201710059425.3 2017-01-24

Publications (1)

Publication Number Publication Date
WO2018137404A1 true WO2018137404A1 (zh) 2018-08-02

Family

ID=59121820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113889 WO2018137404A1 (zh) 2017-01-24 2017-11-30 一种适合柴油发电机组群自主协调并网的控制方法

Country Status (2)

Country Link
CN (1) CN106849160B (zh)
WO (1) WO2018137404A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106849160B (zh) * 2017-01-24 2019-05-14 华南理工大学 一种适合柴油发电机组群自主协调并网的控制方法
CN107425550A (zh) * 2017-09-12 2017-12-01 上海科泰电源股份有限公司 一种数据中心柴油发电机孤岛电站双环网配电***
CN111525623B (zh) * 2020-04-29 2021-11-02 合肥康尔信电力***有限公司 柴油发电机组并机输出双母线同时在线互备供电控制***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110196546A1 (en) * 2010-02-09 2011-08-11 Open Access Technology International, Inc. Systems and methods for demand response and distributed energy resource management
CN105071432A (zh) * 2015-07-31 2015-11-18 太原理工大学 柴油发电机并联控制装置
CN105337301A (zh) * 2014-08-12 2016-02-17 国家电网公司 微电网并网点的选择方法和装置
CN205092586U (zh) * 2015-10-15 2016-03-16 广东原创通信咨询设计有限公司 一种基于can总线的可再生能源并网逆变器通信监控***
CN106849160A (zh) * 2017-01-24 2017-06-13 华南理工大学 一种适合柴油发电机组群自主协调并网的控制方法
US20170256951A1 (en) * 2016-03-05 2017-09-07 Daniel Crespo-Dubie Distributed System and Methods for Coordination, Control, and Virtualization of Electric Generators, Storage and Loads.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110196546A1 (en) * 2010-02-09 2011-08-11 Open Access Technology International, Inc. Systems and methods for demand response and distributed energy resource management
CN105337301A (zh) * 2014-08-12 2016-02-17 国家电网公司 微电网并网点的选择方法和装置
CN105071432A (zh) * 2015-07-31 2015-11-18 太原理工大学 柴油发电机并联控制装置
CN205092586U (zh) * 2015-10-15 2016-03-16 广东原创通信咨询设计有限公司 一种基于can总线的可再生能源并网逆变器通信监控***
US20170256951A1 (en) * 2016-03-05 2017-09-07 Daniel Crespo-Dubie Distributed System and Methods for Coordination, Control, and Virtualization of Electric Generators, Storage and Loads.
CN106849160A (zh) * 2017-01-24 2017-06-13 华南理工大学 一种适合柴油发电机组群自主协调并网的控制方法

Also Published As

Publication number Publication date
CN106849160A (zh) 2017-06-13
CN106849160B (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
WO2018137404A1 (zh) 一种适合柴油发电机组群自主协调并网的控制方法
CN102624075B (zh) 模块化ups***多机并联方法及连接方案
CN107347027A (zh) 一种基于EtherCAT的链路冗余通信***
CN103162372B (zh) 空调器及其rs485总线***以及总线***控制方法
CN201335955Y (zh) 一种基于CANopen协议的CAN总线智能电动装置
CN102811152B (zh) 一种多主总线网络通讯实时交易数据交换实现方法
CN106773959A (zh) 一种基于两芯线通讯的弱电唤醒***及方法
CN106878162A (zh) 一种EnOcean与DALI协议转换网关及实现该网关的方法
CN108268001A (zh) 高性能modbus-io扩展模块
CN108800482B (zh) 空调集群控制方法
CN101640415A (zh) 一种电源均流***及其均流控制方法
CN213937951U (zh) 一种智能家居网关
CN110456705B (zh) 可动态扩展接口的网络控制装置、楼宇自控***
CN209562575U (zh) 一种网络唤醒装置及交互智能平板
CN203775227U (zh) 一种多协议工业以太网的远程i/o模板
CN105743634B (zh) 一种并联设备***及其载波同步控制方法
CN102180333B (zh) 福伊特偶合器控制装置
CN202713348U (zh) 一种断路器的通信模块
CN114552981A (zh) 一种模块化dc/dc变换器的动态控制方法
CN210490537U (zh) 工业双电源采集网关和用于网关服务器的电源切换***
CN103135483A (zh) Profibus与Modbus的协议转换模块和智能断路器
CN207853563U (zh) 一种rtu的双机切换装置
CN218332354U (zh) 一种新型的网络远程控制电路
CN206684534U (zh) 一种电厂profibus总线控制***的连接结构
CN110492801A (zh) 一种三网络冗余分布式励磁***及其工作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17894594

Country of ref document: EP

Kind code of ref document: A1