WO2018137256A1 - 参考信号配置方法、参考信号接收方法及设备 - Google Patents

参考信号配置方法、参考信号接收方法及设备 Download PDF

Info

Publication number
WO2018137256A1
WO2018137256A1 PCT/CN2017/072785 CN2017072785W WO2018137256A1 WO 2018137256 A1 WO2018137256 A1 WO 2018137256A1 CN 2017072785 W CN2017072785 W CN 2017072785W WO 2018137256 A1 WO2018137256 A1 WO 2018137256A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
parameter
frequency domain
reference signal
physical resource
Prior art date
Application number
PCT/CN2017/072785
Other languages
English (en)
French (fr)
Inventor
刘显达
贺传峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/072785 priority Critical patent/WO2018137256A1/zh
Publication of WO2018137256A1 publication Critical patent/WO2018137256A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a reference signal configuration method, a reference signal receiving method, and a device.
  • a user equipment In the Long Term Evolution (LTE) system developed by the 3rd Generation Partnership Project (3GPP), a user equipment (UE) passes a channel state information reference signal (Channel State Information Reference Signal, CSI-RS) measures and feedbacks channel state information (CSI).
  • CSI-RS Channel State Information Reference Signal
  • the base station in the LTE system can configure reference signal resources to the UE. For example, when the base station configures a transmission mode (TM) 9 or 10 to the UE, the base station may further configure a CSI-RS resource for the UE, and a set of CSI-RS configuration parameters corresponding to each CSI-RS resource.
  • the CSI-RS configuration parameter includes a subframe configuration parameter, and is used to indicate that the base station sends a subframe set of the CSI-RS resource, where the set includes multiple subframes that send the CSI-RS resource, and the interval of the adjacent subframes is the same.
  • the CSI-RS configuration parameter further includes a resource configuration parameter, configured to indicate, by the base station, a resource element (Resource Element, RE for short) set of the CSI-RS resource in a PRB, where the set includes at least one of sending the CSI-RS resource.
  • Resource element Specifically, the base station sends the CSI-RS resource on a specific resource element on the system bandwidth corresponding to the time domain location, which causes the CSI-RS resource overhead to be excessive.
  • the base station configures a frequency domain configuration parameter of the CSI-RS resource to the UE, and is used to indicate that the base station sends a physical resource block (Physical Resource Block) of the CSI-RS resource according to the subframe set.
  • a PRB) set the set includes a plurality of physical resource blocks that send the CSI-RS resources, and the intervals of adjacent physical resource blocks are the same.
  • the base station transmits CSI-RS resources only in certain specific subframes and specific bandwidths (ie, time-frequency positions indicated by subframe configuration parameters and frequency domain configuration parameters), thereby reducing CSI-RS resources in the time domain. And the density in the frequency domain, reducing the resource overhead of the CSI-RS.
  • the UE receives the CSI-RS resources sent by the base station at a specific time-frequency location, obtains channel state information according to the antenna port of the specific CSI-RS, and feeds back the channel state information to the base station.
  • a CSI-RS resource is transmitted on only a part of the PRBs in the system bandwidth, taking a measurement period of the UE as an example, the UE obtains channel information of a part of the bandwidth according to the CSI-RS resources on the received at least one CSI-RS transmission subframe. Calculating the channel information on the bandwidth of other unsent CSI-RS resources on the CSI-RS resource transmission subframe by using the channel information of the obtained partial bandwidth, and finally calculating a CSI as the channel measurement according to the channel information on the system bandwidth. result.
  • the accuracy of the UE for channel estimation also decreases.
  • the resource block sets are different.
  • the CSI-RS resource overhead is reduced, the frequency domain configuration of the CSI-RS resources of the adjacent CSI-RS transmission subframes is different, so that the terminal device can jointly measure multiple The CSI-RS transmission subframe obtains a higher precision CSI.
  • the first aspect provides a reference signal configuration method, including: the network device transmitting, by the network device, a reference signal, first configuration information, and second configuration information of the at least one port, so that the terminal device performs channel measurement to obtain channel state information. Subsequently, the channel state information fed back by the terminal device is received.
  • the first configuration information includes a first subframe configuration parameter and a first frequency domain configuration parameter, where the first subframe configuration parameter is used to indicate a first subframe set of the bearer reference signal, and the first frequency domain configuration parameter is used to indicate the bearer.
  • a first physical resource block set of the reference signal the second configuration information includes a second subframe configuration parameter and a second frequency domain configuration parameter, the second subframe configuration parameter is used to indicate a second subframe set carrying the reference signal, and the second The frequency domain configuration parameter is used to indicate a second set of physical resource blocks carrying the reference signal.
  • the first subframe set includes a subframe carrying a reference signal
  • the second subframe set includes a subframe carrying a reference signal
  • the first physical resource block set includes a physical resource block carrying a reference signal in the reference signal transmitting subframe, where Any two adjacent resource blocks in the physical resource block set have the same interval
  • the second physical resource block set includes a physical resource block that carries the reference signal in the reference signal transmission subframe, and any two adjacent ones of the second physical resource block set
  • the intervals of the resource blocks are the same; the first subframe set is different from the second subframe set, and the first physical resource block set is different from the second physical resource block set.
  • the first subframe set configured by the network device is different from the second subframe set, and the first physical resource block set and the second physical resource block set that are based on the first subframe set and the second subframe set transmit reference signal are different.
  • the base station sends the reference signal only on the specific subframes and the specific bandwidth indicated by the first subframe set and the second subframe set, thereby reducing the resource overhead of sending the reference signal, and at the same time, due to the first subframe set and The second subframe set, the first physical resource block set is different from the second physical resource block set, and the physical resource block carrying the reference signal in the adjacent transmit subframe (the subframe in which the reference signal is transmitted) is also different, so that the terminal
  • the device can jointly measure multiple reference signal transmission subframes to obtain a higher precision CSI.
  • the first subframe configuration parameter includes a first subframe period parameter and a first subframe offset parameter
  • the second subframe configuration parameter includes a second Subframe period parameter and second subframe offset parameter
  • the first frequency domain configuration parameter includes a first frequency domain density parameter and a first frequency domain offset parameter
  • the second frequency domain configuration parameter includes a second frequency domain density parameter and a second frequency domain offset parameter.
  • the base station may configure the first configuration parameter and the second configuration parameter by setting a period parameter, a subframe offset parameter, a frequency domain density parameter, and a frequency domain offset parameter.
  • the first subframe period parameter is different from the second subframe period parameter, and/or the first subframe offset
  • the shift parameter is different from the second subframe offset parameter.
  • the first subframe set and the second subframe set may include the same subframe, but the first subframe set and the second subframe set include subframes that are not identical.
  • the first frequency domain density parameter is different from the second frequency domain density parameter, and/or the first frequency The domain offset parameter is different from the second frequency domain offset parameter.
  • the first set of material resource blocks is different from the second set of material resource blocks.
  • First material force The resource block set and the second material resource block set may comprise the same material resource block, but the first material resource block set and the second material resource block set comprise the same physical resource block.
  • the first subframe period parameter is the same as the second subframe period parameter, the first subframe The offset parameter is different from the second subframe offset parameter; the first frequency domain density parameter is the same as the second frequency domain density parameter, and the first frequency domain offset parameter is different from the second frequency domain offset parameter.
  • This configuration makes the first subframe set different from the second subframe set.
  • the first subframe set is completely different from the subframe included in the second subframe set.
  • the first set of material resource blocks is made different from the second set of material resource blocks.
  • the first set of material resource blocks is completely different from the physical resource block included in the second set of material resources blocks.
  • the first configuration information further includes the first resource configuration parameter
  • the first resource configuration parameter is used to indicate a time-frequency resource location of the reference signal on each physical resource block included in the first physical resource block set and a port number of the reference signal
  • the second configuration information further includes a second resource configuration parameter
  • the second resource configuration parameter is used to indicate a time-frequency resource location of the reference signal on each physical resource block included in the second physical resource block set and a port number of the reference signal; wherein, the first resource configuration parameter and the second resource configuration parameter the same.
  • the network device can map the reference signal to each PRB indicated by the first configuration parameter and the second configuration parameter by using the resource configuration parameter, and the time-frequency resources of the reference signal carried on each PRB are the same.
  • a reference signal receiving method including:
  • the terminal device receives the reference signal, the first configuration information, and the second configuration information of the at least one port sent by the network device; the terminal device performs channel measurement to obtain channel state information; and the terminal device feeds back the channel state information to the network device.
  • the first configuration information includes a first subframe configuration parameter and a first frequency domain configuration parameter, where the first subframe configuration parameter is used to indicate a first subframe set of the bearer reference signal, and the first frequency domain configuration parameter is used to indicate the bearer.
  • a first physical resource block set of the reference signal the second configuration information includes a second subframe configuration parameter and a second frequency domain configuration parameter, the second subframe configuration parameter is used to indicate a second subframe set carrying the reference signal, and the second The frequency domain configuration parameter is used to indicate a second set of physical resource blocks carrying the reference signal.
  • the first subframe set includes a subframe carrying a reference signal
  • the second subframe set includes a subframe carrying a reference signal
  • the first physical resource block set includes a physical resource block carrying a reference signal, and any two of the first physical resource block sets.
  • the interval between the adjacent resource blocks is the same
  • the second physical resource block set includes the physical resource block carrying the reference signal, and the interval between any two adjacent resource blocks in the second physical resource block set is the same
  • the first subframe set and the second The subframe set is different, and the first physical resource block set is different from the second physical resource block set.
  • a network device including:
  • a transceiver configured to send a reference signal, first configuration information, and second configuration information of the at least one port to the terminal device, and receive channel state information sent by the terminal device;
  • the first configuration information includes a first subframe configuration parameter and a first frequency domain configuration parameter, where the first subframe configuration parameter is used to indicate a first subframe set of the bearer reference signal, and the first frequency domain configuration parameter is used to indicate the bearer.
  • a first physical resource block set of the reference signal the second configuration information including a second subframe configuration parameter and a second frequency a domain configuration parameter, where the second subframe configuration parameter is used to indicate a second subframe set carrying a reference signal, and the second frequency domain configuration parameter is used to indicate a second physical resource block set carrying a reference signal;
  • the first subframe set includes a bearer a subframe of the reference signal, the second subframe set includes a subframe carrying the reference signal;
  • the first physical resource block set includes a physical resource block carrying the reference signal, and an interval of any two adjacent resource blocks in the first physical resource block set Similarly, the second physical resource block set includes a physical resource block carrying a reference signal, and the interval between any two adjacent resource blocks in the second physical resource block set is the same
  • a terminal device including:
  • a transceiver configured to receive a reference signal, first configuration information, and second configuration information of the at least one port sent by the network device, where the first configuration information includes a first subframe configuration parameter and a first frequency domain configuration parameter, the first subframe
  • the configuration parameter is used to indicate a first subframe set carrying a reference signal
  • the first frequency domain configuration parameter is used to indicate a first physical resource block set carrying a reference signal
  • the second configuration information includes a second subframe configuration parameter and a second frequency a domain configuration parameter, where the second subframe configuration parameter is used to indicate a second subframe set carrying the reference signal
  • the second frequency domain configuration parameter is used to indicate a second physical resource block set carrying the reference signal
  • a processor configured to perform channel measurement, to obtain channel state information
  • the transceiver is further configured to feed back channel state information to the network device;
  • the first subframe set includes a subframe that carries a reference signal
  • the second subframe set includes a subframe that carries a reference signal
  • the first physical resource block set includes a physical resource block that carries a reference signal, where the first physical resource block is set.
  • the interval between any two adjacent resource blocks is the same
  • the second physical resource block set includes a physical resource block carrying a reference signal
  • the interval between any two adjacent resource blocks in the second physical resource block set is the same;
  • the first subframe set and The second subframe set is different, and the first physical resource block set is different from the second physical resource block set.
  • a network device including:
  • a sending unit configured to send, to the terminal device, a reference signal, first configuration information, and second configuration information of the at least one port
  • a receiving unit configured to receive channel state information sent by the terminal device
  • the first configuration information includes a first subframe configuration parameter and a first frequency domain configuration parameter, where the first subframe configuration parameter is used to indicate a first subframe set of the bearer reference signal, and the first frequency domain configuration parameter is used to indicate the bearer.
  • a first physical resource block set of the reference signal the second configuration information includes a second subframe configuration parameter and a second frequency domain configuration parameter, the second subframe configuration parameter is used to indicate a second subframe set carrying the reference signal, and the second The frequency domain configuration parameter is used to indicate a second physical resource block set carrying a reference signal;
  • the first subframe set includes a subframe carrying a reference signal, the second subframe set includes a subframe carrying a reference signal;
  • the physical resource block carrying the reference signal includes the same interval of any two adjacent resource blocks in the first physical resource block set, and the second physical resource block set includes a physical resource block carrying the reference signal, and any of the second physical resource block set The interval between two adjacent resource blocks is the same; the first subframe set is different
  • a terminal device including:
  • a receiving unit configured to receive a reference signal, first configuration information, and second configuration information of the at least one port sent by the network device, where the first configuration information includes a first subframe configuration parameter and a first frequency domain configuration parameter, the first subframe The configuration parameter is used to indicate a first subframe set carrying a reference signal, and the first frequency domain configuration parameter is used to And indicating a first physical resource block set that carries the reference signal, where the second configuration information includes a second subframe configuration parameter and a second frequency domain configuration parameter, where the second subframe configuration parameter is used to indicate a second subframe set that carries the reference signal, The second frequency domain configuration parameter is used to indicate a second physical resource block set carrying the reference signal;
  • a measuring unit configured to perform channel measurement, and obtain channel state information
  • a sending unit configured to feed back channel state information to the network device
  • the first subframe set includes a subframe that carries a reference signal
  • the second subframe set includes a subframe that carries a reference signal
  • the first physical resource block set includes a physical resource block that carries a reference signal, where the first physical resource block is set.
  • the interval between any two adjacent resource blocks is the same
  • the second physical resource block set includes a physical resource block carrying a reference signal
  • the interval between any two adjacent resource blocks in the second physical resource block set is the same;
  • the first subframe set and The second subframe set is different, and the first physical resource block set is different from the second physical resource block set.
  • an embodiment of the present invention provides a computer readable storage medium, where the computer readable storage medium stores instructions, when the computer readable storage medium runs on the computer, causing the network device to perform the first aspect to the first aspect.
  • an embodiment of the present invention provides a computer readable storage medium, where the computer readable storage medium stores instructions, when the computer readable storage medium is run on a computer, causing the terminal device to perform the second aspect to the second aspect.
  • the embodiment of the present invention provides a computer program product, including instructions, when the base station is configured to perform the reference signal described in any one of the foregoing first aspect to the first aspect of the first aspect.
  • the method of configuring the method is not limited to one of the foregoing first aspect to the first aspect of the first aspect.
  • an embodiment of the present invention provides a computer program product, including instructions, when the terminal is executed on a terminal device, causing the terminal to perform the reference signal described in any one of the foregoing second aspect to the second aspect.
  • the method of receiving the method is not limited to a tenth aspect.
  • the embodiment of the present invention further provides a communication system, which includes the network device described in any one of the possible implementations of the third aspect to the third aspect, and any possible implementation manner of the fourth aspect or the fourth aspect.
  • any of the computer-readable storage media provided above is used to perform the method corresponding to the base station or the terminal provided above. Therefore, the beneficial effects that can be achieved can be referred to the corresponding method provided above. The beneficial effects in this are not repeated here.
  • FIG. 1 is a schematic diagram of a prior art LTE network architecture
  • FIG. 2 is a schematic diagram of a conventional reference signal configuration
  • FIG. 3 is a schematic diagram of another conventional reference signal configuration
  • FIG. 4 is a schematic diagram of a UE measurement period
  • FIG. 5 is a structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart diagram of a method for configuring a reference signal according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a subframe set according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a physical resource block set according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a configuration of a reference signal according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a subframe period according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a frequency domain period according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of another configuration of a reference signal according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of reference signal mapping according to an embodiment of the present invention.
  • FIG. 14 is a structural block diagram of a network device according to an embodiment of the present invention.
  • FIG. 15 is a block diagram showing another structure of a network device according to an embodiment of the present invention.
  • FIG. 16 is a structural block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 17 is a block diagram of another structure of a terminal device according to an embodiment of the present invention.
  • a UE receives a CSI-RS resource sent by a base station, and performs measurement and feedback on the CSI according to the CSI-RS resource.
  • the base station configures one or more CSI processes (CSI processes) to the UE.
  • the CSI process includes one or more CSI-RS resources, and a set of CSI-RS configuration parameters corresponding to each CSI-RS resource.
  • the CSI-RS configuration parameter includes a subframe configuration parameter, and the subframe configuration parameter is used to indicate that the base station sends a subframe set of the CSI-RS resource, and the set includes at least one subframe that sends the CSI-RS resource.
  • Table 1 shows the implementation of the subframe configuration parameters in the prior art.
  • the base station may configure a subframe configuration parameter I CSI-RS to the UE, and the UE may obtain a subframe period parameter T CSI-RS and a subframe offset for transmitting the CSI-RS according to the I CSI-RS lookup table 1 configured by the base station.
  • Parameter ⁇ CSI-RS .
  • the subframe period parameter T CSI-RS is used to indicate that one time domain period includes the number of subframes
  • the subframe offset parameter ⁇ CSI-RS is used to indicate a subframe in which the reference signal is transmitted in the time domain period.
  • the base station may also directly configure a CSI-RS periodicity T CSI-RS and a subframe offset ⁇ CSI-RS to the UE.
  • the subframe configuration parameter configured by the base station for the reference signal A is I CSI-RS , and the value is 3.
  • the lookup table 1 obtains that the T CSI-RS of the reference signal A is 5, and the ⁇ CSI of the reference signal A is transmitted.
  • the RS is 3.
  • the base station transmits the reference signal A on the system bandwidth. As shown in FIG. 2, the base station transmits the reference signal A on subframe #3, subframe #7 acrosssubframe#(3+4n), where n is a natural number. .
  • LTE introduces a frequency domain configuration parameter to reduce the density of the reference signal in the frequency domain. That is, the reference signal is transmitted only on a specific bandwidth instead of transmitting the reference signal on the system bandwidth.
  • the base station may configure frequency domain configuration parameters to the UE by using high layer signaling.
  • the high-level signaling includes two configuration parameters for reducing the frequency domain density of the reference signal: Frequency Density (density) 1/d and Frequency domain offset (Comb offset) f.
  • the entire bandwidth is divided into 48 subcarriers, 10 subframes in the time domain are taken as an example, and one PRB includes 12 subcarriers.
  • the PRB carrying the reference signal A includes: PRB30, PRB32, PRB70, PRB72.
  • the UE performs channel measurement in one measurement period to obtain CSI.
  • the so-called one measurement period includes at least one subframe in which the UE performs channel measurement, that is, a CSI-RS transmission subframe in which the base station transmits CSI-RS resources.
  • one measurement period includes subframe #0 to subframe #9.
  • the density of the reference signal in the frequency domain is reduced.
  • the UE obtains the channel information 1 of the partial bandwidth according to the CSI-RS resources received on the partial PRBs of the at least one CSI-RS transmission subframe in one measurement period, and calculates the CSI-RS by using the channel information of the obtained partial bandwidth.
  • the resource transmits channel information 2 on the bandwidth of other non-transmitted CSI-RS resources on the subframe, and finally calculates a CSI as a result of channel measurement according to channel information on the system bandwidth.
  • the UE receives a reference signal on four PRBs of PRB30, PRB32, PRB70, and PRB72.
  • the UE obtains channel information 1 according to the reference signals received on the PRB 30 and the PRB 32, and then estimates the channel information 2 of the PRB 31 and the PRB 33 according to the channel information 1.
  • the UE calculates the reference signals received on the PRB 80 and the PRB 82.
  • the channel information 3 is obtained, and the channel information 4 of the PRB 81 and the PRB 83 is estimated according to the channel information 3.
  • the final result of the CSI most channel measurement is determined according to the channel information 1, the channel information 2, the channel information 3, and the channel information 4.
  • the embodiment of the invention provides a communication system.
  • the communication system includes a network device 10 and a terminal device 20.
  • the network device 10 may be a base station, and the terminal device may be a UE.
  • the network device includes a processor 101, a transceiver 102, and a memory 103.
  • the terminal device includes a processor 201, a transceiver 202, and a memory 203.
  • the processor 101 is a control center of the network device, and may be a processor or a collective name of a plurality of processing elements.
  • the processor 21 is a central processing unit (CPU), may be an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • DSPs digital signal processors
  • FPGAs Field Programmable Gate Arrays
  • the processor 101 can perform various functions of the network device by running or executing a software program stored in the memory 103 and calling data stored in the memory 103.
  • processor 101 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG.
  • the network device can include multiple processors, such as processor 101 and processor 104 shown in FIG.
  • processors can be a single core processor (single- CPU) can also be a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the memory 103 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory 103 can exist independently or can be connected to the processor 101 and the transceiver.
  • the memory 103 can also be integrated with the processor 101.
  • the memory 103 is used to store a software program that executes the solution of the present invention, and is controlled by the processor 101 for execution.
  • the transceiver 102 may include a receiving unit to implement a receiving function, and a transmitting unit to implement a transmitting function. Used to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), Wireless Local Area Networks (WLAN), etc.
  • RAN radio access network
  • WLAN Wireless Local Area Networks
  • the device structure shown in FIG. 5 does not constitute a limitation to the network device, and may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the processor 201 is the same as the hardware implementation of the processor 101.
  • the memory 203 of the terminal, the transceiver 202, and the hardware 103 of the network device and the hardware implementation of the transceiver 102 are also the same, and are not described herein.
  • the processor 201 can perform various functions of the terminal device by running or executing a software program stored in the memory 203 and calling data stored in the memory 203.
  • the processor 201 may include one or more CPUs, such as the CPU 2 and the CPU 3 shown in FIG.
  • the terminal device may include a plurality of processors, such as the processor 201 and the processor 204 shown in FIG.
  • the processor 101 configures the terminal device 20 with a reference signal and at least two sets of configuration information for transmitting the reference signal. It is assumed that any two sets of configuration information of at least two sets of configuration information are first configuration information and second configuration information, respectively.
  • the first configuration information includes a first subframe configuration parameter and a first frequency domain configuration parameter, where the first subframe configuration parameter is used to indicate a first subframe set that carries the reference signal, and the first frequency domain configuration parameter is used to indicate A first set of physical resource blocks carrying the reference signal.
  • the second configuration information includes a second subframe configuration parameter and a second frequency domain configuration parameter, where the second subframe configuration parameter is used to indicate a second subframe set that carries the reference signal, and the second frequency domain configuration parameter is used to indicate A second set of physical resource blocks carrying the reference signal.
  • the first subframe set includes a plurality of subframes that carry the reference signal, and the subframes are uniformly distributed in a comb-tooth manner in the time domain, and any two adjacent subframes in the subframes have the same interval.
  • the second subframe set includes a plurality of subframes that carry the reference signal, and the plurality of subframes included in the second subframe set are evenly distributed in a comb-tooth manner in the time domain, wherein any two adjacent subframes have the same interval .
  • the first physical resource block set includes a plurality of physical resource blocks carrying the reference signal, and the physical resource blocks are evenly distributed in a comb-tooth manner in the frequency domain, wherein any two adjacent resource blocks have the same interval, and the second physical Resource block set including bearer reference letter The physical resource block of the number, the interval of any two adjacent resource blocks in the second physical resource block set is the same. Further, the first subframe set is different from the second subframe set, and the first physical resource block set is different from the second physical resource block set.
  • the transceiver 102 transmits the reference signal and the at least two sets of configuration information to the terminal device 20.
  • the transceiver 202 receives the reference signal.
  • the processor 201 performs channel measurement according to the reference signal, and calculates channel state information CSI. For example, in one measurement period, the processor 201 may calculate a CSI1 of a PRB carrying a reference signal according to the received reference signal, and estimate CSI2 of other PRBs that do not carry the reference signal according to the CSI, and finally according to the CSI2 and CSI1.
  • a CSI is determined as the final result of the channel measurement, ie channel state information.
  • the transceiver 202 transmits channel state information to the network device 10; the network device 10 receives the channel state information transmitted by the terminal device 20 through the transceiver 102.
  • the network device sends the same reference signal on at least two different subframe sets, and the set of physical resource blocks corresponding to the different subframe sets that carry the reference signal are also different. Since the density of the reference signal in the frequency domain is not 1, the method provided by the present invention can reduce the overhead caused by transmitting the reference signal. At the same time, the physical resource block that transmits the same reference signal over the entire bandwidth is increased compared with the prior art, and the density of the same reference signal in the frequency domain is increased compared with the prior art, so that the terminal device can jointly send multiple CSIs. The physical resource block of the -RS resource obtains a higher precision CSI.
  • the network device 10 may also send a plurality of different reference signals to the terminal device 20 and configure a set of configuration information for each reference signal. Further, the configuration information configured for each reference signal may be different.
  • An embodiment of the present invention provides a method for configuring a reference signal.
  • a network device is used as a base station, and a terminal device is a UE.
  • the method includes the following steps:
  • the base station determines first configuration information and second configuration information used to send a reference signal to the UE.
  • the reference signal may be a CSI-RS, and the first configuration information and the second configuration information may be configuration parameters of the CSI-RS resource.
  • the first configuration information includes a first subframe configuration parameter and a first frequency domain configuration parameter.
  • the first subframe configuration parameter is used to indicate a first subframe set that carries the reference signal, and the first subframe set includes multiple subframes that carry the reference signal; the first frequency domain configuration parameter is used to indicate the first subframe set.
  • the second configuration information includes a second subframe configuration parameter and a second frequency domain configuration parameter.
  • the second subframe configuration parameter is used to indicate a second subframe set that carries the reference signal;
  • the second frequency domain configuration parameter is used to indicate a second physical resource that carries the reference signal on each subframe in the second subframe set. Block collection.
  • the first subframe set is different from the second subframe set, but the first subframe set and the second subframe set are allowed to overlap, that is, the first subframe set and the second subframe set are allowed to include the same.
  • the subframe, but the first subframe set and the second subframe set respectively include subframes that are not identical.
  • the first physical resource block set is different from the second physical resource block set, but the first physical resource block set and the second physical resource block set are allowed to overlap, that is, the first physical resource block set and the second physical resource block are allowed.
  • the set includes the same PRB, but the first physical resource block set and the second physical resource block set each include a PRB that is not exactly the same.
  • a plurality of subframes included in the first subframe set are uniformly distributed in a comb-like manner in the time domain, and the subframes are uniformly distributed.
  • the interval between any two adjacent subframes is the same.
  • the plurality of subframes included in the second subframe set are evenly distributed in the combo field in the time domain, and the intervals of any two adjacent subframes in the subframes are the same.
  • a plurality of PRBs included in the first physical resource block set are uniformly distributed in a comb-like manner in the frequency domain, wherein any two PRBs have the same interval, and the second physical resource block set includes multiple PRBs in the frequency.
  • the fields are uniformly distributed in a comb shape, and the intervals of any two PRBs are the same.
  • the base station sends the reference signal, the first configuration information, and the second configuration information to the UE by using the at least one antenna port.
  • the base station sends the reference signal to the UE by using the first configuration information and the specific subframe indicated by the second configuration information and the specific bandwidth.
  • An antenna port can be implemented by an actual physical antenna or a combination of a plurality of physical antennas, which is not limited herein.
  • the location of the at least one antenna port at a particular subframe and a particular bandwidth is determined by the subframe configuration parameters and frequency domain configuration parameters described above.
  • the CSI-RS configuration parameter further includes a port number and a resource configuration parameter, that is, the first configuration information (or the second configuration information) further includes a port number and a resource configuration parameter, where the resource configuration parameter includes at least one antenna. The time-frequency position of each antenna port in the port in the PRB.
  • the UE acquires a reference signal sent by the base station in the first configuration information and the second configuration information time-frequency position.
  • the UE performs channel measurement according to the received reference signal, and obtains channel state information CSI.
  • the CSI-RS resources in the adjacent CSI transmission subframes (such as subframe #0 and subframe #1 in FIG. 9) have different frequency domain configurations. That is, the CSI-RS resources are carried on different RBs. Therefore, the UE can obtain more accurate channel state information by combining adjacent CSI transmission subframes.
  • the channel information includes but is not limited to a channel matrix.
  • the UE may calculate channel information 1 according to PRB00 and PRB03, calculate channel information 2 according to PRB11, PRB14, and obtain accurate CSI according to channel information 1, interpolating channel information 2.
  • the UE can also calculate channel information according to PRB00, PRB03, PRB11, and PRB14 to obtain accurate CSI.
  • the channel information therein includes but is not limited to a channel matrix.
  • the CSI-RS resource in the adjacent CSI transmission subframe (subframe #3, subframe #9 in FIG. 3) has the same frequency domain configuration, and the UE is in one measurement cycle.
  • the channel information calculated according to the PRB 30 and the PRB 32 is the same as the channel information calculated according to the PRB 80 and the PRB 82, and the two CSI transmission subframes cannot be combined to obtain a more accurate channel estimation result.
  • the UE feeds back channel state information CSI to the base station.
  • the base station determines, according to the channel state information CSI, a data transmission scheme for transmitting data to the UE, and transmits data to the UE.
  • the channel state information CSI represents the channel quality
  • the base station may select a reasonable data transmission scheme UE to transmit data according to the channel state information CSI fed back by the UE.
  • the first subframe configuration parameter includes a first subframe period parameter T CSI-RS1 and a first subframe offset parameter ⁇ CSI-RS1
  • the second subframe configuration parameter includes a second subframe.
  • the first frequency domain configuration parameter includes a first frequency domain density parameter d1 and a first frequency domain offset parameter f1
  • the second frequency domain configuration parameter includes a second frequency domain density parameter d2 and a second frequency domain offset parameter f2.
  • the first subframe set and the second subframe set may be configured as different subframe sets by configuring T CSI-RS1 , ⁇ CSI-RS1 , T CSI-RS2 , and ⁇ CSI-RS2 .
  • the first physical resource block set and the second physical resource block set may be configured as different physical resource block sets by configuring d1, f1, d2, and f2. Specifically, there are two configurations:
  • the parameters in the first, first configuration information and the second configuration information are different: the first subframe period parameter is different from the second subframe period parameter, and/or the first subframe offset parameter is offset from the second subframe The parameters are different.
  • the parameters in the first configuration information and the second configuration information are different: the first frequency domain density parameter is different from the second frequency domain density parameter, and/or the first frequency domain offset parameter and the second frequency domain offset parameter different.
  • the subframe period parameter T CSI-RS is abbreviated as T
  • the subframe offset parameter ⁇ CSI-RS is abbreviated as ⁇ .
  • T 1 is different from T 2 , regardless of whether the subframe offset parameters are the same, that is, whether the subframes are formed into a subframe set in each time domain period, and finally the subframes determined based on T 1 and T 2 are determined.
  • the collections are all different.
  • d1 is different from d2, and the frequency domain period is different, regardless of whether the frequency domain offset parameters are the same, that is, taking the first few physical resource blocks to form a physical resource block set in each frequency domain period, and finally The set of physical resource blocks determined based on d1 and d2 are different.
  • the first configuration information and the second configuration information configured in this manner enable the base station to transmit the reference signal only in a specific bandwidth and a specific subframe, instead of transmitting the reference signal over the entire bandwidth, thereby reducing the overhead caused by transmitting the reference signal.
  • the frequency domain configuration of the CSI-RS resources of any two adjacent CSI-RS transmission subframes (that is, the subframes for transmitting the reference signal) is different, that is, on any two adjacent CSI-RS transmission subframes, the base station
  • the reference signal is transmitted through different PRBs, so that the base station can combine two adjacent CSI-RS transmitters to obtain more accurate CSI.
  • the second subframe first period parameter is the same as the second subframe period parameter, and the first subframe offset parameter is the same as the second subframe offset parameter;
  • the first frequency domain density parameter is the same as the second frequency domain density parameter,
  • the first frequency domain offset parameter is different from the second frequency domain offset parameter.
  • the first configuration information and the second configuration information configured in this manner reduce the overhead caused by the transmission of the reference signal, and any two adjacent CSI-RS transmission subframes (ie, subframes for transmitting the reference signal)
  • the frequency domain configuration of the CSI-RS resources is different, so that the base station can combine two adjacent CSI-RS transmitters to obtain more accurate CSI.
  • Table 2 shows the possible configuration of some parameters of T 1 , ⁇ 1 , T 2 , ⁇ 2 , d1, f1, d2 and f2.
  • FIG. 12 it is a schematic diagram of a base station transmitting a reference signal after configuring the first configuration information and the second configuration information according to Table 3. Taking two time domain periods in the time domain (ie, subframes #0 to #9) and two frequency domain periods in the frequency domain as an example, referring to FIG. 12, the base station transmits reference signals on PRB00, PRB03, PRB52, and PRB55. .
  • the CSI-RS resource is only transmitted on a specific bandwidth and a specific subframe, which reduces the CSI-RS resource overhead.
  • the frequency domain configuration of the CSI-RS resource of the adjacent CSI-RS transmission subframe is different, and the UE calculates respectively in any two adjacent CSI-RS transmission subframes (eg, subframe #0 and subframe #5). Channel information, and interpolating two channel information obtained by calculation to obtain higher precision CSI.
  • the configuration information of the base station configuration further includes a resource configuration parameter, configured to indicate a time-frequency resource location of the reference signal on each physical resource block included in the physical resource block set, that is, the base station according to the resource
  • the configuration parameter maps the reference signal on some resource elements (REs) of the physical resource block, and is also used to indicate the number of ports of the reference signal on each physical resource block included in the physical resource block set.
  • the first configuration information further includes a first resource configuration parameter, where the first resource configuration parameter is used to indicate a time-frequency resource location of the reference signal on each physical resource block included in the first physical resource block set, and is further used to indicate The number of ports of the reference signal on each physical resource block included in the physical resource block set;
  • the second configuration information further includes a second resource configuration parameter, where the second resource configuration parameter is used to indicate a time-frequency resource location of the reference signal on each physical resource block included in the second physical resource block set, and is further used to indicate that the reference signal is The number of ports on each physical resource block included in the physical resource block set;
  • the first resource configuration parameter is the same as the second resource configuration parameter, that is, the base station maps the reference signal to each physical resource block included in the first physical resource block set and the second physical resource block according to the same mapping rule.
  • each physical resource block in the first physical resource block set and the second physical resource block set includes the same number of ports.
  • the base station may map the reference signal on the fourth subcarrier (subcarrier 3) of PRB00 according to the resource configuration parameter, and the tenth sub of PRB00.
  • the carrier subcarrier 9
  • the position of the reference signal in the time domain is the sixth orthogonal frequency division multiplexing of the first time slot (slot 0) of the subframe corresponding to PRB00 (orthogonal frequency division)
  • each network element such as a network device and a terminal device, in order to implement the above functions, includes hardware structures and/or software modules corresponding to each function.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiment of the present invention may divide the functional modules of the network device and the terminal device according to the foregoing method.
  • each functional module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 14 is a schematic diagram showing a possible composition of the network device involved in the foregoing and the embodiment.
  • the network device may include: determining unit 401. And a transmitting unit 402 and a receiving unit 403.
  • the determining unit 401 is configured to support the network device to perform steps 301 and 306 in the method shown in FIG. 6.
  • the receiving unit 403 is configured to support the network device to perform step 306 in the method shown in FIG. 6.
  • the sending unit 402 is configured to support the network device to perform step 302 and step 307 in the method shown in FIG. 6.
  • FIG. 15 shows another possible composition diagram of the terminal device involved in the above embodiment.
  • the server includes a processor 101, a transceiver 102, and a memory 103.
  • the transceiver 102 is configured to support the network device to perform steps 302, 305, and 307 in the method illustrated in FIG.
  • the processor 101 is operative to invoke the code stored in the memory 103 to perform steps 301, 306 in the method illustrated in FIG.
  • FIG. 16 is a schematic diagram showing a possible configuration of the terminal device involved in the foregoing and the embodiment.
  • the terminal device may include: a receiving unit 501.
  • the receiving unit 501 is configured to support the terminal device to perform steps 303 and 307 in the method shown in FIG. 6.
  • the measuring unit 502 is configured to support the terminal device to perform step 304 in the method shown in FIG. 6.
  • the sending unit 503 is configured to support the terminal device to perform step 305 in the method shown in FIG. 6.
  • FIG. 17 shows another possible composition diagram of the terminal device involved in the above embodiment.
  • the server includes a processor 201, a transceiver 202, and a memory 203.
  • the transceiver 202 is configured to support the terminal device to perform steps 303, 305, and 307 in the method shown in FIG.
  • the processor 201 is configured to call the code stored in the memory 203 to perform step 303 in the method shown in FIG.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a flash memory, a mobile hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供的参考信号配置方法、参考信号接收方法及设备,网络设备将参考信号承载在不同的子帧集合,子帧集合中不同的子帧相应的物理资源块集合也不同,在降低CSI-RS资源开销的同时,使得相邻的CSI-RS发送子帧的CSI-RS资源频域配置不同,使得终端设备可以联合测量多个CSI-RS发送子帧获得精度更高的CSI。方法包括:网络设备向终端设备发送参考信号、第一配置信息以及第二配置信息。第一配置信息的第一子帧集合,与第二配置信息指示的第二子帧集合不同。第一配置信息指示的第一物理资源块集合与第二配置信息指示的第二物理资源块集合不同。其中,子帧集合、物理资源块集合用于承载所述参考信号。

Description

参考信号配置方法、参考信号接收方法及设备 技术领域
本发明实施例涉及通信领域,尤其涉及参考信号配置方法、参考信号接收方法及设备。
背景技术
在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)制定的长期演进(Long Term Evolution,LTE)***中,用户设备(User Equipment,UE)通过信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)对信道状态信息(Channel State Information,CSI)进行测量和反馈。
LTE***中基站可以向UE配置参考信号资源。示例的,在基站向UE配置了传输模式(Transmission Mode,TM)9或者10时,基站可以进一步为UE配置CSI-RS资源,以及每个CSI-RS资源对应的一组CSI-RS配置参数。CSI-RS配置参数包括一个子帧配置参数,用于指示基站发送该CSI-RS资源的一个子帧集合,该集合包括发送该CSI-RS资源的多个子帧,相邻子帧的间隔相同。CSI-RS配置参数还包括资源配置参数,用于指示基站发送该CSI-RS资源在一个PRB内的一个资源元素(Resource Element,简称RE)集合,该集合包括发送该CSI-RS资源的至少一个资源元素。具体地,基站在该时域位置对应的***带宽上的特定资源元素上发送该CSI-RS资源,这就会导致CSI-RS资源开销过大。为了解决CSI-RS资源开销过大的问题,基站会向UE配置CSI-RS资源的频域配置参数,用于指示基站基于子帧集合发送CSI-RS资源的一个物理资源块(Physical Resource Block,PRB)集合,该集合包括发送该CSI-RS资源的多个物理资源块,相邻物理资源块的间隔相同。综上,基站只在某些特定的子帧和特定的带宽上(即子帧配置参数和频域配置参数共同指示的时频位置)发送CSI-RS资源,从而降低CSI-RS资源在时域和频域上的密度,降低CSI-RS的资源开销。
UE会在特定的时频位置接收基站发送的CSI-RS资源,根据特定CSI-RS的天线端口测量得到信道状态信息,并将该信道状态信息反馈给基站。当***带宽上只有部分PRB上发送了CSI-RS资源,以UE的一个测量周期为例,UE根据接收到的至少一个CSI-RS发送子帧上的CSI-RS资源获得部分带宽的信道信息,再通过已获得的部分带宽的信道信息计算该CSI-RS资源发送子帧上其他未发送CSI-RS资源的带宽上的信道信息,最终根据***带宽上的信道信息计算得到一个CSI作为信道测量的结果。随着CSI-RS资源在频域上的密度的降低,UE进行信道估计的精度也会降低。
发明内容
本申请提供的参考信号配置方法、参考信号接收方法及设备,网络设备配置至少两个不同的资源集合用于承载参考信号,至少两个资源集合中包含的子帧集合和相应子帧上的物理资源块集合均不相同,在降低CSI-RS资源开销的同时,使得相邻的CSI-RS发送子帧的CSI-RS资源频域配置不同,使得终端设备可以联合测量多个 CSI-RS发送子帧获得精度更高的CSI。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种参考信号配置方法,包括:网络设备向终端设备发送至少一个端口的参考信号、第一配置信息以及第二配置信息,以便终端设备进行信道测量获得信道状态信息。随后,接收终端设备反馈的信道状态信息。
其中,第一配置信息包括第一子帧配置参数以及第一频域配置参数,第一子帧配置参数用于指示承载参考信号的第一子帧集合,第一频域配置参数用于指示承载参考信号的第一物理资源块集合,第二配置信息包括第二子帧配置参数以及第二频域配置参数,第二子帧配置参数用于指示承载参考信号的第二子帧集合,第二频域配置参数用于指示承载参考信号的第二物理资源块集合。第一子帧集合包括承载参考信号的子帧,第二子帧集合包括承载参考信号的子帧;第一物理资源块集合包括在参考信号发送子帧内承载参考信号的物理资源块,第一物理资源块集合中任意两个相邻资源块的间隔相同,第二物理资源块集合包括在参考信号发送子帧内承载参考信号的物理资源块,第二物理资源块集合中任意两个相邻资源块的间隔相同;第一子帧集合与第二子帧集合不相同,第一物理资源块集合与第二物理资源块集合不相同。
网络设备配置的第一子帧集合与第二子帧集合不相同,基于第一子帧集合与第二子帧集合发送参考信号的第一物理资源块集合与第二物理资源块集合也不相同,基站只在第一子帧集合与第二子帧集合指示的某些特定的子帧和特定的带宽上发送参考信号,降低了发送参考信号的资源开销,同时,由于第一子帧集合与第二子帧集合,第一物理资源块集合与第二物理资源块集合也不相同,在相邻的发送子帧(发送参考信号的子帧)承载参考信号的物理资源块也不同,使得终端设备可以联合测量多个参考信号发送子帧计算获得精度更高的CSI。
结合第一方面,在第一方面的第一种可能的实现方式中,第一子帧配置参数包括第一子帧周期参数和第一子帧偏移参数,第二子帧配置参数包括第二子帧周期参数和第二子帧偏移参数。第一频域配置参数包括第一频域密度参数和第一频域偏移参数,第二频域配置参数包括第二频域密度参数和第二频域偏移参数。
在具体实现中,基站可以通过设置周期参数、子帧偏移参数、频域密度参数以及频域偏移参数来配置第一配置参数、第二配置参数。
结合第一方面的一种可能的实现方式,在第一方面的第二种可能的实现方式中,第一子帧周期参数与第二子帧周期参数不同,和/或,第一子帧偏移参数与第二子帧偏移参数不同。
通过这个配置使得第一子帧集合与第二子帧集合不同。第一子帧集合与第二子帧集合可以包含相同的子帧,但第一子帧集合与第二子帧集合包含的子帧不完全相同。
结合第一方面的第一种可能的实现方式中,在第一方面的第三种可能的实现方式中,第一频域密度参数与第二频域密度参数不同,和/或,第一频域偏移参数与第二频域偏移参数不同。
通过这个配置使得第一物力资源块集合与第二物力资源块集合不同。第一物力 资源块集合与第二物力资源块集合可以包含相同的物力资源块,但第一物力资源块集合与第二物力资源块集合包含的物力资源块不完全相同。
结合第一方面的第二或第三种可能的实现方式中,在第一方面的第四种可能的实现方式中,第一子帧周期参数与第二子帧周期参数相同,第一子帧偏移参数与第二子帧偏移参数不同;第一频域密度参数与第二频域密度参数相同,第一频域偏移参数与第二频域偏移参数不同。
通过这个配置使得第一子帧集合与第二子帧集合不同。第一子帧集合与第二子帧集合包含的子帧完全不相同。同时,使得第一物力资源块集合与第二物力资源块集合不同。第一物力资源块集合与第二物力资源块集合包含的物力资源块完全不相同。
结合第一方面或第一方面的第一至第三种可能的实现方式中的任一种,在第一方面的第五种可能的实现方式中,第一配置信息还包括第一资源配置参数,第一资源配置参数用于指示参考信号在第一物理资源块集合包括的每一个物理资源块上的时频资源位置和参考信号的端口数;第二配置信息还包括第二资源配置参数,第二资源配置参数用于指示参考信号在第二物理资源块集合包括的每一个物理资源块上的时频资源位置和参考信号的端口数;其中,第一资源配置参数与第二资源配置参数相同。
这样,网络设备可以通过资源配置参数将参考信号映射在第一配置参数、第二配置参数共同指示的每一个PRB上,每一个PRB上承载参考信号的时频资源相同。
第二方面,公开了一种参考信号接收方法,包括:
终端设备接收网络设备发送的至少一个端口的参考信号、第一配置信息以及第二配置信息;终端设备进行信道测量,获得信道状态信息;终端设备向网络设备反馈信道状态信息。
其中,第一配置信息包括第一子帧配置参数以及第一频域配置参数,第一子帧配置参数用于指示承载参考信号的第一子帧集合,第一频域配置参数用于指示承载参考信号的第一物理资源块集合,第二配置信息包括第二子帧配置参数以及第二频域配置参数,第二子帧配置参数用于指示承载参考信号的第二子帧集合,第二频域配置参数用于指示承载参考信号的第二物理资源块集合。第一子帧集合包括承载参考信号的子帧,第二子帧集合包括承载参考信号的子帧;第一物理资源块集合包括承载参考信号的物理资源块,第一物理资源块集合中任意两个相邻资源块的间隔相同,第二物理资源块集合包括承载参考信号的物理资源块,第二物理资源块集合中任意两个相邻资源块的间隔相同;第一子帧集合与第二子帧集合不相同,第一物理资源块集合与第二物理资源块集合不相同。
第三方面,公开了一种网络设备,包括:
收发器,用于向终端设备发送至少一个端口的参考信号、第一配置信息以及第二配置信息,接收终端设备发送的信道状态信息;
其中,第一配置信息包括第一子帧配置参数以及第一频域配置参数,第一子帧配置参数用于指示承载参考信号的第一子帧集合,第一频域配置参数用于指示承载参考信号的第一物理资源块集合,第二配置信息包括第二子帧配置参数以及第二频 域配置参数,第二子帧配置参数用于指示承载参考信号的第二子帧集合,第二频域配置参数用于指示承载参考信号的第二物理资源块集合;第一子帧集合包括承载参考信号的子帧,第二子帧集合包括承载参考信号的子帧;第一物理资源块集合包括承载参考信号的物理资源块,第一物理资源块集合中任意两个相邻资源块的间隔相同,第二物理资源块集合包括承载参考信号的物理资源块,第二物理资源块集合中任意两个相邻资源块的间隔相同;第一子帧集合与第二子帧集合不相同,第一物理资源块集合与第二物理资源块集合不相同。
第四方面,公开了一种终端设备,包括:
收发器,用于接收网络设备发送的至少一个端口的参考信号、第一配置信息以及第二配置信息,第一配置信息包括第一子帧配置参数以及第一频域配置参数,第一子帧配置参数用于指示承载参考信号的第一子帧集合,第一频域配置参数用于指示承载参考信号的第一物理资源块集合,第二配置信息包括第二子帧配置参数以及第二频域配置参数,第二子帧配置参数用于指示承载参考信号的第二子帧集合,第二频域配置参数用于指示承载参考信号的第二物理资源块集合;
处理器,用于进行信道测量,获得信道状态信息;
收发器还用于,向网络设备反馈信道状态信息;
其中,第一子帧集合包括承载参考信号的子帧,第二子帧集合包括承载参考信号的子帧;第一物理资源块集合包括承载参考信号的物理资源块,第一物理资源块集合中任意两个相邻资源块的间隔相同,第二物理资源块集合包括承载参考信号的物理资源块,第二物理资源块集合中任意两个相邻资源块的间隔相同;第一子帧集合与第二子帧集合不相同,第一物理资源块集合与第二物理资源块集合不相同。
第五方面,公开了一种网络设备,包括:
发送单元,用于向终端设备发送至少一个端口的参考信号、第一配置信息以及第二配置信息;
接收单元,用于接收终端设备发送的信道状态信息;
其中,第一配置信息包括第一子帧配置参数以及第一频域配置参数,第一子帧配置参数用于指示承载参考信号的第一子帧集合,第一频域配置参数用于指示承载参考信号的第一物理资源块集合,第二配置信息包括第二子帧配置参数以及第二频域配置参数,第二子帧配置参数用于指示承载参考信号的第二子帧集合,第二频域配置参数用于指示承载参考信号的第二物理资源块集合;第一子帧集合包括承载参考信号的子帧,第二子帧集合包括承载参考信号的子帧;第一物理资源块集合包括承载参考信号的物理资源块,第一物理资源块集合中任意两个相邻资源块的间隔相同,第二物理资源块集合包括承载参考信号的物理资源块,第二物理资源块集合中任意两个相邻资源块的间隔相同;第一子帧集合与第二子帧集合不相同,第一物理资源块集合与第二物理资源块集合不相同。
第六方面,公开了一种终端设备,包括:
接收单元,用于接收网络设备发送的至少一个端口的参考信号、第一配置信息以及第二配置信息,第一配置信息包括第一子帧配置参数以及第一频域配置参数,第一子帧配置参数用于指示承载参考信号的第一子帧集合,第一频域配置参数用于 指示承载参考信号的第一物理资源块集合,第二配置信息包括第二子帧配置参数以及第二频域配置参数,第二子帧配置参数用于指示承载参考信号的第二子帧集合,第二频域配置参数用于指示承载参考信号的第二物理资源块集合;
测量单元,用于进行信道测量,获得信道状态信息;
发送单元,用于向网络设备反馈信道状态信息;
其中,第一子帧集合包括承载参考信号的子帧,第二子帧集合包括承载参考信号的子帧;第一物理资源块集合包括承载参考信号的物理资源块,第一物理资源块集合中任意两个相邻资源块的间隔相同,第二物理资源块集合包括承载参考信号的物理资源块,第二物理资源块集合中任意两个相邻资源块的间隔相同;第一子帧集合与第二子帧集合不相同,第一物理资源块集合与第二物理资源块集合不相同。
第七方面,本发明实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当计算机可读存储介质在计算机上运行时,使得网络设备执行第一方面至第一方面的任意一种可能的设计方式所描述的参考信号配置方法的指令。
第八方面,本发明实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当计算机可读存储介质在计算机上运行时,使得终端设备执行第二方面至第二方面的任意一种可能的设计方式所描述的参考信号接收方法的指令。
第九方面,本发明实施例提供一种包括指令的计算机程序产品,当其在网络设备上运行时,使得基站执行上述第一方面至第一方面任意一种可能的实现方式所描述的参考信号配置方法的方法。
第十方面,本发明实施例提供一种包括指令的计算机程序产品,当其在终端设备上运行时,使得终端执行上述第二方面至第二方面任意一种可能的实现方式所描述的参考信号接收方法的方法。
本发明实施例还提供一种通信***,该通信***包括第三方面至第三方面任意一种可能的实现方式所描述的网络设备,以及第四方面或第四方面任意一种可能的实现方式所描述的终端设备。
可以理解地,上述提供的任一种计算机可读存储介质均用于执行上文所提供的基站或终端对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为现有技术LTE网络架构图;
图2为现有的一种参考信号配置示意图;
图3为现有的另一种参考信号配置示意图;
图4为UE测量周期的示意图;
图5为本发明实施例提供的通信***的架构图;
图6为本发明实施例提供的参考信号的配置方法的流程示意图;
图7为本发明实施例提供的子帧集合的示意图;
图8为本发明实施例提供的物理资源块集合的示意图;
图9为本发明实施例提供的参考信号的一种配置示意图;
图10为本发明实施例提供的子帧周期的示意图;
图11为本发明实施例提供的频域周期的示意图;
图12为本发明实施例提供的参考信号的另一配置示意图;
图13为本发明实施例提供的参考信号映射示意图;
图14为本发明实施例提供的网络设备的结构框图;
图15为本发明实施例提供的网络设备的另一结构框图;
图16为本发明实施例提供的终端设备的结构框图;
图17为本发明实施例提供的终端设备的另一结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行详细地描述。
如图1所示,LTE***中,UE接收基站发送的CSI-RS资源,并根据CSI-RS资源对CSI进行测量和反馈。在传输模式9或10下,基站向UE配置了一个或者多个CSI进程(CSI process)。其中,CSI process中包含了一个或多个CSI-RS资源,以及每个CSI-RS资源对应的一组CSI-RS配置参数。CSI-RS配置参数包括一个子帧配置参数,子帧配置参数用来指示基站发送该CSI-RS资源的一个子帧集合,该集合包括发送该CSI-RS资源的至少一个子帧。
表1给出了现有技术中子帧配置参数的实现方式。参考表1,基站可以向UE配置子帧配置参数ICSI-RS,UE根据基站配置的ICSI-RS查找表1,可以得到发送CSI-RS的子帧周期参数TCSI-RS和子帧偏移参数ΔCSI-RS。其中,子帧周期参数TCSI-RS用于指示一个时域周期包括子帧的数目,子帧偏移参数ΔCSI-RS用于指示在该时域周期内发送参考信号的子帧。或者,基站也可以直接向UE配置子帧周期参数(CSI-RS periodicity)TCSI-RS和子帧偏移参数(subframe offset)ΔCSI-RS
表1:
Figure PCTCN2017072785-appb-000001
示例的,基站为参考信号A配置的子帧配置参数为ICSI-RS,取值为3,查找表1得出发送参考信号A的TCSI-RS为5,发送参考信号A的ΔCSI-RS为3。基站会在***带宽上发送参考信号A,如图2所示,基站在子帧#3、子帧#7…..子帧#(3+4n)上发送参考信号A,其中,n为自然数。
现有技术中,在整个带宽上发送某个参考信号会造成较大的资源开销。为了解决参考信号资源开销过大的问题,LTE引入了频域配置参数降低参考信号在频域上的密度。即只在特定的带宽上发送参考信号而不是***带宽上发送参考信号。具体地,基站可以通过高层信令向UE配置频域配置参数。高层信令中包括两个用于降低参考信号频域密度的配置参数:频域密度参数(Frequency Density,density)1/d和 频域偏移量(Comb offset)f。频域密度参数1/d用于指示一个频域周期包括的PRB数目d,f用于指示在一个频域周期内的第Q个PRB上发送参考信号,其中,Q modd=f,d为正整数。
参考图3,以整个带宽被划分为48个子载波,时域上的10个子帧为例,一个PRB包括了12个子载波。假设基站为参考信号A配置的子帧配置参数ICSI-RS=3,同时还向UE配置频域密度参数d=2和频域偏移量f=0。可以得出,基站发送参考信号A的时域位置为子帧#3、子帧#7,频域位置为每个周期内的第一个PRB。参考图3,承载参考信号A的PRB包括:PRB30、PRB32、PRB70、PRB72。
通常UE在一个测量周期内进行信道测量,获得CSI。所谓一个测量周期,包括UE进行信道测量的至少一个子帧,即包括基站发送CSI-RS资源的CSI-RS发送子帧。示例的,如图4所示,一个测量周期,包括子帧#0~子帧#9。
由图3可得,随着频域配置参数的引入,参考信号在频域上的密度降低。UE在一个测量周期内根据至少一个CSI-RS发送子帧上的部分PRB上接收到的CSI-RS资源获得部分带宽的信道信息1,再通过已获得的部分带宽的信道信息计算该CSI-RS资源发送子帧上其他未发送CSI-RS资源的带宽上的信道信息2,最终根据***带宽上的信道信息计算出一个CSI作为信道测量的结果。
示例的,参考图3,UE在PRB30、PRB32、PRB70、PRB72这四个PRB上接收参考信号。在一个测量周期内,UE根据PRB30、PRB32上接收到的参考信号获得信道信息1,再根据信道信息1估算PRB31、PRB33的信道信息2,同时,UE根据PRB80、PRB82上接收到的参考信号计算获得信道信息3,再根据信道信息3估算PRB81、PRB83的信道信息4,最终根据信道信息1、信道信息2、信道信息3以及信道信息4确定出一个CSI最为信道测量的最终结果。
本发明实施例提供一种通信***,如图5所示,该通信***包括网络设备10和终端设备20。其中,网络设备可以10是基站,终端设备可以是UE。
如图5所示,网络设备包括处理器101、收发器102以及存储器103;终端设备包括处理器201、收发器202以及存储器203。
处理器101是网络设备的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器21是一个中央处理器(central processing unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
其中,处理器101可以通过运行或执行存储在存储器103内的软件程序,以及调用存储在存储器103内的数据,执行网络设备的各种功能。
在具体的实现中,作为一种实施例,处理器101可以包括一个或多个CPU,例如图5中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,网络设备可以包括多个处理器,例如图3中所示的处理器101和处理器104。这些处理器中的每一个可以是一个单核处理器(single- CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器103可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器103可以是独立存在,也可以与处理器101、收发器相连接。存储器103也可以和处理器101集成在一起。
其中,所述存储器103用于存储执行本发明方案的软件程序,并由处理器101来控制执行。
收发器102,可以包括接收单元实现接收功能,以及发送单元实现发送功能。用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。
图5中示出的设备结构并不构成对网络设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
另外,处理器201与处理器101的硬件实现相同,当然,终端的存储器203、收发器202与网络设备的存储器103、收发器102的硬件实现也相同,在此不做赘述。处理器201可以通过运行或执行存储在存储器203内的软件程序,以及调用存储在存储器203内的数据,执行终端设备的各种功能。处理器201可以包括一个或多个CPU,例如图5中所示的CPU2和CPU3。
在具体实现中,作为一种实施例,终端设备可以包括多个处理器,例如图5中所示的处理器201和处理器204。
如图5所示,在本发明的一个实施例中,处理器101为终端设备20配置了参考信号以及用于发送该参考信号的至少两组配置信息。假设至少两组配置信息中任意两组配置信息分别为第一配置信息、第二配置信息。其中,第一配置信息包括第一子帧配置参数以及第一频域配置参数,第一子帧配置参数用于指示承载该参考信号的第一子帧集合,第一频域配置参数用于指示承载该参考信号的第一物理资源块集合。同时,第二配置信息包括第二子帧配置参数以及第二频域配置参数,第二子帧配置参数用于指示承载该参考信号的第二子帧集合,第二频域配置参数用于指示承载该参考信号的第二物理资源块集合。
需要说明的是,第一子帧集合包括承载该参考信号的多个子帧,这些子帧在时域上呈梳齿状均匀分布,这些子帧中任意两个相邻子帧的间隔相同。同样,第二子帧集合包括承载该参考信号的多个子帧,第二子帧集合包括的多个子帧在时域上也呈梳齿状均匀分布,其中任意两个相邻子帧的间隔相同。另外,第一物理资源块集合包括承载该参考信号的多个物理资源块,这些物理资源块在频域上呈梳齿状均匀分布,其中任意两个相邻资源块的间隔相同,第二物理资源块集合包括承载参考信 号的物理资源块,第二物理资源块集合中任意两个相邻资源块的间隔相同。进一步地,第一子帧集合与第二子帧集合不相同,第一物理资源块集合与第二物理资源块集合不相同。
收发器102向终端设备20发送该参考信号和上述至少两组配置信息。收发器202接收该参考信号。处理器201根据该参考信号进行信道测量,计算获得信道状态信息CSI。示例的,在一个测量周期内,处理器201可以根据接收到的参考信号计算出承载参考信号的PRB的CSI1,根据这个CSI估算其他未承载该参考信号的PRB的CSI2,最后根据这些CSI2和CSI1确定出一个CSI作为信道测量的最终结果,即信道状态信息。
随后,收发器202向网络设备10发送信道状态信息;网络设备10通过收发器102接收终端设备20发送的信道状态信息。
可见,网络设备将相同的参考信号在至少两个不同的子帧集合上进行发送,且不同的子帧集合对应的承载该参考信号的物理资源块集合也不相同。由于参考信号在频域上的密度不为1,因此本发明提供的方法能够降低发送参考信号带来的开销。同时,整个带宽上发送同一个参考信号的物理资源块较现有技术有所增加,同一个参考信号在频域上的密度较现有技术有所增加,使得终端设备可以联合多个发送了CSI-RS资源的物理资源块获得精度更高的CSI。
在一种可能的实现方式中,网络设备10还可以向终端设备20发送多个不同的参考信号,并且为每个参考信号配置一组配置信息。进一步地,为各个参考信号配置的配置信息可以不同。
本发明实施例提供一种参考信号的配置方法,本实施例以网络设备为基站、终端设备为UE为例。如图6所示,该方法包括以下步骤:
301、基站确定用于向UE发送参考信号的第一配置信息和第二配置信息。
其中,参考信号可以是CSI-RS,第一配置信息、第二配置信息可以是CSI-RS资源的配置参数。第一配置信息包括第一子帧配置参数以及第一频域配置参数。第一子帧配置参数用于指示承载该参考信号的第一子帧集合,第一子帧集合包括承载该参考信号的多个子帧;第一频域配置参数用于指示在第一子帧集合中的每个子帧上承载该参考信号的第一物理资源块集合,第一物理资源块集合包括承载该参考信号的多个PRB。
同时,第二配置信息包括第二子帧配置参数以及第二频域配置参数。第二子帧配置参数用于指示承载该参考信号的第二子帧集合;第二频域配置参数用于指示在第二子帧集合中的每个子帧上承载该参考信号的第二物理资源块集合。
具体实现中,第一子帧集合与第二子帧集合不同,但允许第一子帧集合与第二子帧集合存在重合部分,即允许第一子帧集合与第二子帧集合包括相同的子帧,但第一子帧集合与第二子帧集合各自包括的子帧不完全相同。同样,第一物理资源块集合与第二物理资源块集合不同,但允许第一物理资源块集合与第二物理资源块集合存在重合部分,即允许第一物理资源块集合与第二物理资源块集合包括相同的PRB,但第一物理资源块集合与第二物理资源块集合各自包括的PRB不完全相同。
参考图7,第一子帧集合包括的多个子帧在时域上呈梳齿状均匀分布,这些子帧 中任意两个相邻子帧的间隔相同。第二子帧集合包括的多个子帧在时域上呈梳齿状均匀分布,这些子帧中任意两个相邻子帧的间隔相同。
同时,参考图8,第一物理资源块集合包括的多个PRB在频域上呈梳齿状均匀分布,其中任意两个PRB的间隔相同,第二物理资源块集合包括的多个PRB在频域上呈梳齿状均匀分布,其中任意两个PRB的间隔相同。
302、基站通过至少一个天线端口向UE发送参考信号、第一配置信息和第二配置信息。
具体实现中,基站通过第一配置信息和第二配置信息指示的特定子帧和特定带宽向UE发送上述参考信号。
其中,一个天线端口既可以由一根实际物理天线实现,也可以由若干物理天线组合实现,在此不作限定。所述至少一个天线端口在特定子帧和特定带宽的位置由上述子帧配置参数和频域配置参数决定。
在一些实现方式中,CSI-RS配置参数还包括端口数和资源配置参数,也就是说第一配置信息(或第二配置信息)还包括端口数和资源配置参数,资源配置参数包括至少一个天线端口中每一个天线端口在PRB内的时频位置。
303、UE在第一配置信息和第二配置信息时频位置上获取基站发送的参考信号。
304、UE根据接收到的参考信号进行信道测量,获得信道状态信息CSI。
示例的,参考图9,第一配置信息中,频域密度参数1/d=1/3,频域偏移参数f=0,子帧周期参数TCSI-RS=5,子帧偏移参数ΔCSI-RS=0;第二配置信息中,频域密度参数1/d=1/3,频域偏移参数f=1,子帧周期参数TCSI-RS=5,子帧偏移参数ΔCSI-RS=1。
在一个测量周期内(子帧#0~子帧#4),相邻的CSI发射子帧(如图9中的子帧#0、子帧#1)的CSI-RS资源频域配置不同,即CSI-RS资源承载在不同的RB上,因此,UE可以联合相邻CSI发射子帧获得更精确的信道状态信息。其中,信道信息包含但不局限于信道矩阵。
示例的,在图9所示的配置中,UE可以根据PRB00、PRB03计算信道信息1,根据PRB11、PRB14计算信道信息2,根据信道信息1,信道信息2插值获得精确的CSI。UE也可以根据PRB00、PRB03、PRB11、PRB14计算信道信息,获得精确的CSI。其中的信道信息包括但不局限于信道矩阵。
相比之下,现有技术(参考图3),相邻CSI发射子帧(图3中的子帧#3、子帧#9)的CSI-RS资源频域配置相同,UE在一个测量周期内,根据PRB30、PRB32计算出的信道信息,与根据PRB80、PRB82计算获得信道信息相同,无法联合这两个CSI发射子帧获得更准确的信道估计结果。
304、UE向基站反馈信道状态信息CSI。
305、基站根据信道状态信息CSI确定向UE传输数据的数据传输方案,向UE传输数据。
具体实现中,信道状态信息CSI表征了信道质量,基站可以根据UE反馈的信道状态信息CSI选择合理的数据传输方案UE传输数据。
在本发明的另一实施例中,第一子帧配置参数包括第一子帧周期参数TCSI-RS1和第一子帧偏移参数ΔCSI-RS1,第二子帧配置参数包括第二子帧周期参数TCSI-RS2和第二子帧 偏移参数ΔCSI-RS2
第一频域配置参数包括第一频域密度参数d1和第一频域偏移参数f1,第二频域配置参数包括第二频域密度参数d2和第二频域偏移参数f2。
具体实现中,可以通过配置TCSI-RS1、ΔCSI-RS1、TCSI-RS2以及ΔCSI-RS2,将第一子帧集合与第二子帧集合配置为不同的子帧集合。同样,可以通过配置d1、f1、d2以及f2将第一物理资源块集合与第二物理资源块集合配置为不同的物理资源块集合。具体可以有以下两种配置:
第一、第一配置信息和第二配置信息中的参数满足:第一子帧周期参数与第二子帧周期参数不同,和/或,第一子帧偏移参数与第二子帧偏移参数不同。
同时,第一配置信息和第二配置信息中的参数满足:第一频域密度参数与第二频域密度参数不同,和/或,第一频域偏移参数与第二频域偏移参数不同。
以下将子帧周期参数TCSI-RS简写为T,将子帧偏移参数ΔCSI-RS简写为Δ。
参考图10,T1与T2不同,无论子帧偏移参数是否相同,即无论在每个时域周期内取第几个子帧组成子帧集合,最终基于T1与T2确定的子帧集合都不同。
同样,参考图11,d1与d2不同,频域周期就不同,无论频域偏移参数是否相同,也就是无论在每个频域周期内取第几个物理资源块组成物理资源块集合,最终基于d1与d2确定的物理资源块集合都不同。
这样配置的第一配置信息和第二配置信息,使得基站只在特定的带宽、特定的子帧上发送参考信号,而不是在整个带宽上发送参考信号,降低了发送参考信号带来的开销。同时,任意两个相邻的CSI-RS发送子帧(即发送参考信号的子帧)的CSI-RS资源频域配置不同,即在任意两个相邻的CSI-RS发送子帧上,基站通过不同的PRB发送参考信号,使得基站能够联合两个相邻的CSI-RS发送子获得更精准的CSI。
第二、第一子帧周期参数与第二子帧周期参数相同,第一子帧偏移参数与第二子帧偏移参数相同;第一频域密度参数与第二频域密度参数相同,第一频域偏移参数与第二频域偏移参数不同。
当T1、T2相同,Δ1与Δ2不同,即时域周期相同。在每个时域周期内取第i个子帧组成第一子帧集合,在每个时域周期内取第j个子帧构成第二子帧集合,i不等于j,第一子帧集合与第二子帧集合一定不同。
同理,当d1与d2相同,f1与f2不同,即频域周期相同。在每个频域周期内取第i个物理资源块组成第一物理资源块集合,在每个频域周期内取第j个物理资源块构成第二物理资源块集合,i不等于j,第一物理资源块集合与第二物理资源块集合一定不同。
同理,这样配置的第一配置信息和第二配置信息,在降低发送参考信号带来的开销的同时,任意两个相邻的CSI-RS发送子帧(即发送参考信号的子帧)的CSI-RS资源频域配置不同,使得基站能够联合两个相邻的CSI-RS发送子获得更精准的CSI。
综上,表2给出了T1、Δ1、T2、Δ2、d1、f1、d2以及f2这些参数部分可能的配置情况。
表2
Figure PCTCN2017072785-appb-000002
以下对表2中的配置1做出详细说明。参考表1,将TCSI-RS1、ΔCSI-RS 1、TCSI-RS2、ΔCSI-RS2、d1、f1、d2以及f2配置为表3所示出的模式,即TCSI-RS1=TCSI-RS2=5;ΔCSI-RS1=0,ΔCSI-RS2=4;d1=d2=1/8;f1=0,f2=4。
表3
  TCSI-RS ΔCSI-RS d f
第一配置信息 10 0 1/3 0
第二配置信息 10 5 1/3 2
如图12所示,是基站根据表3配置第一配置信息以及第二配置信息后,发送参考信号的示意图。以时域上的两个时域周期(即子帧#0~#9)、频域上的两个频域周期为例,参考图12,基站在PRB00、PRB03、PRB52、PRB55上发送参考信号。
参考图12可得,CSI-RS资源只在特定的带宽、特定的子帧上进行发送,降低了CSI-RS资源开销。同时,使得相邻的CSI-RS发送子帧的CSI-RS资源频域配置不同,UE在任意两个相邻的CSI-RS发送子帧(如:子帧#0和子帧#5)分别计算信道信息,并对计算获得两个信道信息进行插值,获得精度更高的CSI。
在本发明的另一实施例中,基站配置的配置信息中还包括资源配置参数,用于指示参考信号在物理资源块集合包括的每一个物理资源块上的时频资源位置,即基站根据资源配置参数将参考信号映射在物理资源块的某些资源元(resource element,RE)上,还用于指示参考信号在物理资源块集合包括的每一个物理资源块上的端口数。具体地,第一配置信息还包括第一资源配置参数,第一资源配置参数用于指示参考信号在第一物理资源块集合包括的每一个物理资源块上的时频资源位置,还用于指示参考信号在物理资源块集合包括的每一个物理资源块上的端口数;
第二配置信息还包括第二资源配置参数,第二资源配置参数用于指示参考信号在第二物理资源块集合包括的每一个物理资源块上的时频资源位置,还用于指示参考信号在物理资源块集合包括的每一个物理资源块上的端口数;
其中,第一资源配置参数与第二资源配置参数相同,也就是说基站会按照同样的映射规则将参考信号映射在第一物理资源块集合包括的每一个物理资源块上以及第二物理资源块集合包括的每一个物理资源块上,同时,第一物理资源块集合和第二物理资源块集合中每个物理资源块包含的端口数相同。
以图12所示的PRB00(包括12个子载波)为例,参考图13,基站可以根据资源配置参数将参考信号映射在PRB00的第四个子载波(子载波3)上,以及PRB00的第十个子载波(子载波9)上。同时,参考信号在时域上的位置为PRB00对应的子帧的第一个时隙(slot 0)的第六个正交频分复用(orthogonal frequency division  multiplexing,OFDM)符号,以及PRB00对应的子帧的第一个时隙(slot 1)的第一个OFDM符号。
上述主要从各个网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个网元,例如网络设备、终端设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对网络设备、终端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图14示出了上述和实施例中涉及的网络设备的一种可能的组成示意图,如图14所示,该网络设备可以包括:确定单元401、发送单元402以及接收单元403。
其中,确定单元401,用于支持网络设备执行图6所示的方法中的步骤301、306。
接收单元403,用于支持网络设备执行图6所示方法中的步骤306。
发送单元402,用于支持网络设备执行图6所示方法中的步骤302以及步骤307。
在采用集成的单元的情况下,图15示出了上述实施例中所涉及的终端设备的另一种可能的组成示意图。如图15所示,该服务器包括:处理器101、收发器102以及存储器103。收发器102用于支持网络设备执行图6所示方法中的步骤302、305以及307。处理器101用于调用存储器103中存储的代码执行图6所示方法中的步骤301、306。
在采用对应各个功能划分各个功能模块的情况下,图16示出了上述和实施例中涉及的终端设备的一种可能的组成示意图,如图16所示,该终端设备可以包括:接收单元501、测量单元502以及发送单元503。
其中,接收单元501,用于支持终端设备执行图6所示的方法中的步骤303、307。
测量单元502,用于支持终端设备执行图6所示方法中的步骤304。
发送单元503,用于支持终端设备执行图6所示方法中的步骤305。
在采用集成的单元的情况下,图17示出了上述实施例中所涉及的终端设备的另一种可能的组成示意图。如图17所示,该服务器包括:处理器201、收发器202以及存储器203。收发器202用于支持终端设备执行图6所示方法中的步骤303、305以及307。处理器201用于调用存储器203中存储的代码执行图6所示方法中的步骤303。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据 需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种参考信号配置方法,其特征在于,包括:
    网络设备向终端设备发送至少一个端口的参考信号、第一配置信息以及第二配置信息;所述第一配置信息包括第一子帧配置参数以及第一频域配置参数,所述第一子帧配置参数用于指示承载所述参考信号的第一子帧集合,所述第一频域配置参数用于指示承载所述参考信号的第一物理资源块集合,所述第二配置信息包括第二子帧配置参数以及第二频域配置参数,所述第二子帧配置参数用于指示承载所述参考信号的第二子帧集合,所述第二频域配置参数用于指示承载所述参考信号的第二物理资源块集合;
    所述网络设备接收所述终端设备发送的信道状态信息;
    其中,所述第一子帧集合包括承载所述参考信号的子帧,所述第二子帧集合包括承载所述参考信号的子帧;所述第一物理资源块集合包括承载所述参考信号的物理资源块,所述第一物理资源块集合中任意两个相邻资源块的间隔相同,所述第二物理资源块集合包括承载所述参考信号的物理资源块,所述第二物理资源块集合中任意两个相邻资源块的间隔相同;所述第一子帧集合与所述第二子帧集合不相同,所述第一物理资源块集合与所述第二物理资源块集合不相同。
  2. 根据权利要求1所述的方法,其特征在于,所述第一子帧配置参数包括第一子帧周期参数和第一子帧偏移参数,所述第二子帧配置参数包括第二子帧周期参数和第二子帧偏移参数;
    所述第一频域配置参数包括第一频域密度参数和第一频域偏移参数,所述第二频域配置参数包括第二频域密度参数和第二频域偏移参数。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一子帧周期参数与所述第二子帧周期参数不同,和/或,所述第一子帧偏移参数与所述第二子帧偏移参数不同。
  4. 根据权利要求2所述的方法,其特征在于,
    所述第一频域密度参数与所述第二频域密度参数不同,和/或,所述第一频域偏移参数与所述第二频域偏移参数不同。
  5. 根据权利要求3或4所述的方法,其特征在于,
    所述第一子帧周期参数与所述第二子帧周期参数相同,所述第一子帧偏移参数与所述第二子帧偏移参数不同;
    所述第一频域密度参数与所述第二频域密度参数相同,所述第一频域偏移参数与所述第二频域偏移参数不同。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一配置信息还包括第一资源配置参数,所述第一资源配置参数用于指示所述参考信号在所述第一物理资源块集合包括的每一个物理资源块上的时频资源位置;
    所述第二配置信息还包括第二资源配置参数,所述第二资源配置参数用于指示所述参考信号在所述第二物理资源块集合包括的每一个物理资源块上的时频资源位置;
    其中,所述第一资源配置参数与所述第二资源配置参数相同。
  7. 一种参考信号接收方法,其特征在于,包括:
    终端设备接收网络设备发送的至少一个端口的参考信号、第一配置信息以及第二配置信息,所述第一配置信息包括第一子帧配置参数以及第一频域配置参数,所述第一子帧配置参数用于指示承载所述参考信号的第一子帧集合,所述第一频域配置参数用于指示承载所述参考信号的第一物理资源块集合,所述第二配置信息包括第二子帧配置参数以及第二频域配置参数,所述第二子帧配置参数用于指示承载所述参考信号的第二子帧集合,所述第二频域配置参数用于指示承载所述参考信号的第二物理资源块集合;
    所述终端设备进行信道测量,获得信道状态信息;
    所述终端设备向所述网络设备反馈所述信道状态信息;
    其中,所述第一子帧集合包括承载所述参考信号的子帧,所述第二子帧集合包括承载所述参考信号的子帧;所述第一物理资源块集合包括承载所述参考信号的物理资源块,所述第一物理资源块集合中任意两个相邻资源块的间隔相同,所述第二物理资源块集合包括承载所述参考信号的物理资源块,所述第二物理资源块集合中任意两个相邻资源块的间隔相同;所述第一子帧集合与所述第二子帧集合不相同,所述第一物理资源块集合与所述第二物理资源块集合不相同。
  8. 根据权利要求7所述的方法,其特征在于,所述第一子帧配置参数包括第一子帧周期参数和第一子帧偏移参数,所述第二子帧配置参数包括第二子帧周期参数和第二子帧偏移参数;
    所述第一频域配置参数包括第一频域密度参数和第一频域偏移参数,所述第二频域配置参数包括第二频域密度参数和第二频域偏移参数。
  9. 根据权利要求8所述的方法,其特征在于,
    所述第一子帧周期参数与所述第二子帧周期参数不同,和/或,所述第一子帧偏移参数与所述第二子帧偏移参数不同。
  10. 根据权利要求8所述的方法,其特征在于,
    所述第一频域密度参数与所述第二频域密度参数不同,和/或,所述第一频域偏移参数与所述第二频域偏移参数不同。
  11. 根据权利要求9或10所述的方法,其特征在于,
    所述第一子帧周期参数与所述第二子帧周期参数相同,所述第一子帧偏移参数与所述第二子帧偏移参数不同;
    所述第一频域密度参数与所述第二频域密度参数相同,所述第一频域偏移参数与所述第二频域偏移参数不同。
  12. 根据权利要求7-11任一项所述的方法,其特征在于,所述第一配置信息还包括第一资源配置参数,所述第一资源配置参数用于指示所述参考信号在所述第一物理资源块集合包括的每一个物理资源块上的时频资源位置;
    所述第二配置信息还包括第二资源配置参数,所述第二资源配置参数用于指示所述参考信号在所述第二物理资源块集合包括的每一个物理资源块上的时频资源位置;
    其中,所述第一资源配置参数与所述第二资源配置参数相同。
  13. 一种网络设备,其特征在于,包括:
    收发器,用于向终端设备发送至少一个端口的参考信号、第一配置信息以及第二 配置信息,接收所述终端设备发送的信道状态信息;
    其中,所述第一配置信息包括第一子帧配置参数以及第一频域配置参数,所述第一子帧配置参数用于指示承载所述参考信号的第一子帧集合,所述第一频域配置参数用于指示承载所述参考信号的第一物理资源块集合,所述第二配置信息包括第二子帧配置参数以及第二频域配置参数,所述第二子帧配置参数用于指示承载所述参考信号的第二子帧集合,所述第二频域配置参数用于指示承载所述参考信号的第二物理资源块集合;所述第一子帧集合包括承载所述参考信号的子帧,所述第二子帧集合包括承载所述参考信号的子帧;所述第一物理资源块集合包括承载所述参考信号的物理资源块,所述第一物理资源块集合中任意两个相邻资源块的间隔相同,所述第二物理资源块集合包括承载所述参考信号的物理资源块,所述第二物理资源块集合中任意两个相邻资源块的间隔相同;所述第一子帧集合与所述第二子帧集合不相同,所述第一物理资源块集合与所述第二物理资源块集合不相同。
  14. 根据权利要求13所述的网络设备,其特征在于,所述第一子帧配置参数包括第一子帧周期参数和第一子帧偏移参数,所述第二子帧配置参数包括第二子帧周期参数和第二子帧偏移参数;
    所述第一频域配置参数包括第一频域密度参数和第一频域偏移参数,所述第二频域配置参数包括第二频域密度参数和第二频域偏移参数。
  15. 根据权利要求14所述的网络设备,其特征在于,所述第一子帧周期参数与所述第二子帧周期参数不同,和/或,所述第一子帧偏移参数与所述第二子帧偏移参数不同。
  16. 根据权利要求14所述的网络设备,其特征在于,所述第一频域密度参数与所述第二频域密度参数不同,和/或,所述第一频域偏移参数与所述第二频域偏移参数不同。
  17. 根据权利要求15或16所述的网络设备,其特征在于,所述第一子帧周期参数与所述第二子帧周期参数相同,所述第一子帧偏移参数与所述第二子帧偏移参数不同;
    所述第一频域密度参数与所述第二频域密度参数相同,所述第一频域偏移参数与所述第二频域偏移参数不同。
  18. 根据权利要求13-17任一项所述的网络设备,其特征在于,所述第一配置信息还包括第一资源配置参数,所述第一资源配置参数用于指示所述参考信号在所述第一物理资源块集合包括的每一个物理资源块上的时频资源位置;
    所述第二配置信息还包括第二资源配置参数,所述第二资源配置参数用于指示所述参考信号在所述第二物理资源块集合包括的每一个物理资源块上的时频资源位置;
    其中,所述第一资源配置参数与所述第二资源配置参数相同。
  19. 一种终端设备,其特征在于,包括:
    收发器,用于接收网络设备发送的至少一个端口的参考信号、第一配置信息以及第二配置信息,所述第一配置信息包括第一子帧配置参数以及第一频域配置参数,所述第一子帧配置参数用于指示承载所述参考信号的第一子帧集合,所述第一频域配置参数用于指示承载所述参考信号的第一物理资源块集合,所述第二配置信息包括第二 子帧配置参数以及第二频域配置参数,所述第二子帧配置参数用于指示承载所述参考信号的第二子帧集合,所述第二频域配置参数用于指示承载所述参考信号的第二物理资源块集合;
    处理器,用于进行信道测量,获得信道状态信息;
    所述收发器还用于,向所述网络设备反馈所述信道状态信息;
    其中,所述第一子帧集合包括承载所述参考信号的子帧,所述第二子帧集合包括承载所述参考信号的子帧;所述第一物理资源块集合包括承载所述参考信号的物理资源块,所述第一物理资源块集合中任意两个相邻资源块的间隔相同,所述第二物理资源块集合包括承载所述参考信号的物理资源块,所述第二物理资源块集合中任意两个相邻资源块的间隔相同;所述第一子帧集合与所述第二子帧集合不相同,所述第一物理资源块集合与所述第二物理资源块集合不相同。
  20. 根据权利要求19所述的终端设备,其特征在于,所述第一子帧配置参数包括第一子帧周期参数和第一子帧偏移参数,所述第二子帧配置参数包括第二子帧周期参数和第二子帧偏移参数;
    所述第一频域配置参数包括第一频域密度参数和第一频域偏移参数,所述第二频域配置参数包括第二频域密度参数和第二频域偏移参数。
  21. 根据权利要求20所述的终端设备,其特征在于,所述第一子帧周期参数与所述第二子帧周期参数不同,和/或,所述第一子帧偏移参数与所述第二子帧偏移参数不同。
  22. 根据权利要求20所述的终端设备,其特征在于,所述第一频域密度参数与所述第二频域密度参数不同,和/或,所述第一频域偏移参数与所述第二频域偏移参数不同。
  23. 根据权利要求21或22所述的终端设备,其特征在于,所述第一子帧周期参数与所述第二子帧周期参数相同,所述第一子帧偏移参数与所述第二子帧偏移参数不同;
    所述第一频域密度参数与所述第二频域密度参数相同,所述第一频域偏移参数与所述第二频域偏移参数不同。
  24. 根据权利要求19-23任一项所述的终端设备,其特征在于,所述第一配置信息还包括第一资源配置参数,所述第一资源配置参数用于指示所述参考信号在所述第一物理资源块集合包括的每一个物理资源块上的时频资源位置;
    所述第二配置信息还包括第二资源配置参数,所述第二资源配置参数用于指示所述参考信号在所述第二物理资源块集合包括的每一个物理资源块上的时频资源位置;其中,所述第一资源配置参数与所述第二资源配置参数相同。
PCT/CN2017/072785 2017-01-26 2017-01-26 参考信号配置方法、参考信号接收方法及设备 WO2018137256A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/072785 WO2018137256A1 (zh) 2017-01-26 2017-01-26 参考信号配置方法、参考信号接收方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/072785 WO2018137256A1 (zh) 2017-01-26 2017-01-26 参考信号配置方法、参考信号接收方法及设备

Publications (1)

Publication Number Publication Date
WO2018137256A1 true WO2018137256A1 (zh) 2018-08-02

Family

ID=62978925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072785 WO2018137256A1 (zh) 2017-01-26 2017-01-26 参考信号配置方法、参考信号接收方法及设备

Country Status (1)

Country Link
WO (1) WO2018137256A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020143021A1 (en) * 2019-01-11 2020-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Assignment of physical resource blocks to base stations
CN112821929A (zh) * 2019-11-18 2021-05-18 华为技术有限公司 Csi测量方法及装置
CN114557014A (zh) * 2022-01-13 2022-05-27 北京小米移动软件有限公司 信息上报、信息接收方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103873124A (zh) * 2012-12-17 2014-06-18 北京三星通信技术研究有限公司 一种移动终端及其信道状态信息测量参考信号的测量方法
CN103944685A (zh) * 2013-01-18 2014-07-23 华为技术有限公司 扩展参考信号的方法、设备和通信***
CN104735691A (zh) * 2013-12-20 2015-06-24 北京三星通信技术研究有限公司 信道状态信息汇报的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103873124A (zh) * 2012-12-17 2014-06-18 北京三星通信技术研究有限公司 一种移动终端及其信道状态信息测量参考信号的测量方法
CN103944685A (zh) * 2013-01-18 2014-07-23 华为技术有限公司 扩展参考信号的方法、设备和通信***
CN104735691A (zh) * 2013-12-20 2015-06-24 北京三星通信技术研究有限公司 信道状态信息汇报的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"CSI-RS PATTERN DESIGN FOR LTE-ADVANCED", 3GPP TSG-RAN WG1 MEETING #60 RL-100969, 26 February 2010 (2010-02-26), XP050419010 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020143021A1 (en) * 2019-01-11 2020-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Assignment of physical resource blocks to base stations
US11968143B2 (en) 2019-01-11 2024-04-23 Telefonaktiebolaget Lm Ericsson (Publ) Assignment of physical resource blocks to base stations
CN112821929A (zh) * 2019-11-18 2021-05-18 华为技术有限公司 Csi测量方法及装置
CN112821929B (zh) * 2019-11-18 2023-02-03 华为技术有限公司 Csi测量方法及装置
CN114557014A (zh) * 2022-01-13 2022-05-27 北京小米移动软件有限公司 信息上报、信息接收方法、装置、设备及存储介质

Similar Documents

Publication Publication Date Title
CN111342871B (zh) 基站设备、用户设备和通信***
CN110401521B (zh) 表征准共位置参数配置的方法和装置、发射及接收设备
EP3739800A1 (en) Pilot signal generation method and apparatus
WO2018137486A1 (zh) 一种码本反馈方法和装置
WO2015161795A1 (zh) 一种信道状态信息测量的方法、***及设备
WO2015124070A1 (zh) 信道状态信息测量方法以及装置
CN103391629B (zh) 一种参考信号的配置方法和***
WO2019223659A1 (zh) 一种信号传输方法及装置
CN110536315B (zh) 确定csi报告处理时间的方法、装置、通信设备及存储介质
WO2017193996A1 (zh) 一种上行共享信道的导频传输方法及相关设备
WO2019141146A1 (zh) 一种波束配置方法和装置
WO2017076233A1 (zh) 信道状态测量导频的配置方法及装置、解析方法及装置
CN108282302B (zh) 一种参考信号发送方法、接收方法及装置
CN108347324B (zh) 通信方法和网络设备
WO2014043922A1 (zh) 传输广播消息的方法、基站和用户设备
WO2018137256A1 (zh) 参考信号配置方法、参考信号接收方法及设备
CN114513850B (zh) 定位方法、装置、计算机设备及介质
CN109687946B (zh) 一种参考信号图样的传输方法及其装置
WO2017190361A1 (zh) 一种参考信号传输方法及装置
JP2022549946A (ja) 復調参照信号の構成情報取得方法、構成方法、および装置
WO2019029292A1 (zh) 一种导频配置、信道测量方法及通信设备
EP4184841A1 (en) Csi measurement reporting method, terminal, and network-side device
EP3618334B1 (en) Pilot sending and receiving method and device
US11483115B2 (en) CSI-RS sending method and device, and base station
JP7481454B2 (ja) 基準信号構成のための方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893538

Country of ref document: EP

Kind code of ref document: A1