WO2018135557A1 - Curable epoxy resin composition - Google Patents

Curable epoxy resin composition Download PDF

Info

Publication number
WO2018135557A1
WO2018135557A1 PCT/JP2018/001302 JP2018001302W WO2018135557A1 WO 2018135557 A1 WO2018135557 A1 WO 2018135557A1 JP 2018001302 W JP2018001302 W JP 2018001302W WO 2018135557 A1 WO2018135557 A1 WO 2018135557A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
epoxy resin
curable epoxy
compound
Prior art date
Application number
PCT/JP2018/001302
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木弘世
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to JP2018562416A priority Critical patent/JP7146643B2/en
Priority to KR1020197024267A priority patent/KR102489346B1/en
Publication of WO2018135557A1 publication Critical patent/WO2018135557A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/508Amines heterocyclic containing only nitrogen as a heteroatom having three nitrogen atoms in the ring
    • C08G59/5086Triazines; Melamines; Guanamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a curable epoxy resin composition, a cured product obtained by curing the curable epoxy resin composition, and an optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable epoxy resin composition.
  • a sealing agent for forming a sealing material having high heat resistance for example, a composition containing monoallyl diglycidyl isocyanurate and a bisphenol A type epoxy resin is known (see Patent Document 1).
  • a composition containing monoallyl diglycidyl isocyanurate and a bisphenol A type epoxy resin is known (see Patent Document 1).
  • Patent Document 1 a composition containing monoallyl diglycidyl isocyanurate and a bisphenol A type epoxy resin.
  • the coloring of the sealant progresses depending on light and heat emitted from the optical semiconductor element and high humidity conditions.
  • the light to be output is absorbed, and as a result, there is a problem that the luminous intensity of the light output from the optical semiconductor device decreases with time.
  • -Liquid alicyclic epoxy resins having an alicyclic skeleton such as an adduct of epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate and ⁇ -caprolactone and 1,2,8,9-diepoxylimonene are known. ing.
  • the cured products of these alicyclic epoxy resins are susceptible to various stresses, and cracks are generated when a thermal shock such as a cooling cycle (repeating heating and cooling periodically) is applied. Etc. had occurred.
  • an optical semiconductor device for example, a surface-mount type optical semiconductor device
  • a reflow process for joining the electrodes of the optical semiconductor device to a wiring board by soldering.
  • lead-free solder having a high melting point has been used as a solder as a bonding material, and the heat treatment in the reflow process has become a higher temperature (for example, the peak temperature is 240 to 260 ° C.).
  • the peak temperature is 240 to 260 ° C.
  • the sealing material in the optical semiconductor device has high heat resistance and light resistance, and also has a characteristic that cracks are not easily generated when a thermal shock is applied (sometimes referred to as “thermal shock resistance”), and
  • thermal shock resistance sometimes referred to as “thermal shock resistance”
  • reflow resistance characteristics that are less likely to cause cracking or peeling even when heat-treated in the reflow process.
  • the optical semiconductor device is kept under high humidity conditions for a certain time (for example, 192 hours under conditions of 30 ° C. and 60% RH; 60 ° C., 60% RH).
  • an object of the present invention is to have high heat resistance, light resistance, thermal shock resistance, and reflow resistance, and in particular, to improve the current-carrying characteristics and moisture absorption reflow resistance of optical semiconductor devices at high temperatures and high humidity. It is providing the curable epoxy resin composition which can form a possible hardened
  • cured material. Another object of the present invention is to have high heat resistance, light resistance, thermal shock resistance and reflow resistance, and in particular, to improve the current-carrying characteristics and moisture absorption reflow resistance of optical semiconductor devices at high temperatures and high humidity. It is in providing the hardened
  • another object of the present invention is excellent in current-carrying characteristics at high temperature and high humidity, and further suppressed deterioration such as a decrease in luminous intensity when heat-treated in a reflow process after being stored under high humidity conditions. Another object is to provide a high-quality optical semiconductor device.
  • a curable epoxy resin composition containing an alicyclic epoxy compound, a monoallyl diglycidyl isocyanurate compound, and a stress relaxation agent has high heat resistance
  • a cured product having light resistance, thermal shock resistance, and reflow resistance can be formed, and in particular, a cured product capable of improving current-carrying characteristics and moisture absorption reflow resistance at high temperatures and high humidity of an optical semiconductor device can be formed.
  • the present invention relates to an alicyclic epoxy compound (A) and the following formula (1).
  • R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • the curable epoxy resin composition characterized by including the monoallyl diglycidyl isocyanurate compound (B) represented by these, and a stress relaxation agent (C) is provided.
  • the stress relaxation agent (C) may be at least one selected from the group consisting of silicone rubber particles (C1) and silicone oil (C2).
  • the silicone rubber particles (C1) may be cross-linked polydimethylsiloxane having a silicone resin on the surface.
  • the silicone oil (C2) may be a polyalkylene ether-modified silicone compound having a structure represented by the following formula (2) having an epoxy equivalent of 3000 to 15000.
  • x is an integer from 80 to 140
  • y is an integer from 1 to 5
  • z is an integer from 5 to 20.
  • R 3 is an alkylene group having 2 or 3 carbon atoms.
  • A is a polyalkylene ether group having a structure represented by the following formula (2a). (In the formula, a and b are each independently an integer of 0 to 40.
  • B is a hydrogen atom or a methyl group.)]
  • the alicyclic epoxy compound (A) may be a compound having a cyclohexene oxide group.
  • the alicyclic epoxy compound (A) has the following formula (I-1): The compound represented by these may be sufficient.
  • the curable epoxy resin composition may further contain rubber particles other than silicone rubber particles.
  • the curable epoxy resin composition may further contain a curing agent (D) and a curing accelerator (E).
  • the curable epoxy resin composition may further contain a curing catalyst (F).
  • the present invention also provides a cured product of the curable epoxy resin composition.
  • the curable epoxy resin composition may be an optical semiconductor sealing resin composition.
  • the present invention also provides an optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable epoxy resin composition.
  • the curable epoxy resin composition of the present invention Since the curable epoxy resin composition of the present invention has the above-described configuration, by curing the resin composition, it has high heat resistance, light resistance, thermal shock resistance, and reflow resistance. A cured product capable of improving the current-carrying characteristics and moisture absorption reflow resistance at high temperatures and high humidity can be formed. For this reason, when the curable epoxy resin composition of the present invention is used as a resin composition for sealing an optical semiconductor, deterioration such as a decrease in luminous intensity is unlikely to occur particularly under severe conditions of high temperature and high humidity. In addition, it is possible to obtain a highly durable and high quality optical semiconductor device that is less susceptible to deterioration such as a decrease in luminous intensity even when heat treatment is performed in a reflow process after storage under high humidity conditions.
  • FIG. 1 It is the schematic which shows one Embodiment of the optical semiconductor device by which the optical semiconductor element was sealed with the hardened
  • the left figure (a) is a perspective view
  • the right figure (b) is a sectional view. It is an example of the surface temperature profile (temperature profile in one heat processing among two heat processing) of the optical semiconductor device in the solder heat resistance test of an Example.
  • the curable epoxy resin composition of the present invention comprises an alicyclic epoxy compound (A) and a monoallyl diglycidyl isocyanurate compound (B) represented by the following formula (1) (“monoallyl diglycidyl isocyanurate compound ( B) ”) and a stress relaxation agent (C) as essential components (curable composition).
  • the alicyclic epoxy compound (alicyclic epoxy resin) (A) in the curable epoxy resin composition of the present invention has an alicyclic (aliphatic ring) structure and an epoxy group (oxiranyl group) in the molecule (in one molecule). And a compound having at least In the curable epoxy resin composition of the present invention, a known or commonly used alicyclic epoxy compound can be used.
  • alicyclic epoxy compound (A) specifically, (i) a compound having an epoxy group (alicyclic epoxy group) composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring, (Ii) A compound in which an epoxy group is directly bonded to the alicyclic ring with a single bond, and the like.
  • the compound having an epoxy group (alicyclic epoxy group) composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring (i) has at least one alicyclic epoxy group in the molecule. Any known or commonly used compound can be used without any particular limitation. Especially, as said alicyclic epoxy group, a cyclohexene oxide group is preferable.
  • a compound having a cyclohexene oxide group is preferable from the viewpoint of transparency and heat resistance.
  • a compound (alicyclic epoxy compound) represented by the following formula (I) is preferable.
  • X represents a single bond or a linking group (a divalent group having one or more atoms).
  • the linking group include a divalent hydrocarbon group, an alkenylene group in which part or all of a carbon-carbon double bond is epoxidized, a carbonyl group, an ether bond, an ester bond, a carbonate group, an amide group, and the like. And a group in which a plurality of are connected.
  • a substituent such as an alkyl group may be bonded to one or more carbon atoms constituting the cyclohexane ring (cyclohexene oxide group) in the formula (I).
  • Examples of the compound in which X in the above formula (I) is a single bond include (3,4,3 ′, 4′-diepoxy) bicyclohexane and the like.
  • Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms, a divalent alicyclic hydrocarbon group, and the like.
  • Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group.
  • divalent alicyclic hydrocarbon group examples include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1,3-cyclopentylene group, And divalent cycloalkylene groups (including cycloalkylidene groups) such as cyclohexylene group, 1,4-cyclohexylene group and cyclohexylidene group.
  • alkenylene group in the alkenylene group in which part or all of the carbon-carbon double bond is epoxidized include, for example, vinylene group, propenylene group, 1-butenylene group And straight-chain or branched alkenylene groups having 2 to 8 carbon atoms such as 2-butenylene group, butadienylene group, pentenylene group, hexenylene group, heptenylene group, octenylene group and the like.
  • the epoxidized alkenylene group is preferably an alkenylene group in which all of the carbon-carbon double bonds are epoxidized, more preferably 2 to 4 carbon atoms in which all of the carbon-carbon double bonds are epoxidized. Alkenylene group.
  • the linking group X is particularly preferably a linking group containing an oxygen atom, specifically, —CO—, —O—CO—O—, —COO—, —O—, —CONH—, epoxidation.
  • Representative examples of the alicyclic epoxy compounds represented by the above formula (I) include compounds represented by the following formulas (I-1) to (I-10), bis (3,4-epoxycyclohexylmethyl) ) Ether, 1,2-bis (3,4-epoxycyclohexane-1-yl) ethane, 1,2-epoxy-1,2-bis (3,4-epoxycyclohexane-1-yl) ethane, 2,2 -Bis (3,4-epoxycyclohexane-1-yl) propane and the like.
  • l and m each represents an integer of 1 to 30.
  • R in the following formula (I-5) is an alkylene group having 1 to 8 carbon atoms, and is a methylene group, ethylene group, propylene group, isopropylene group, butylene group, isobutylene group, s-butylene group, pentylene group, hexylene.
  • linear or branched alkylene groups such as a group, a heptylene group, and an octylene group.
  • linear or branched alkylene groups having 1 to 3 carbon atoms such as a methylene group, an ethylene group, a propylene group, and an isopropylene group are preferable.
  • N1 to n6 in the following formulas (I-9) and (I-10) each represents an integer of 1 to 30.
  • Examples of the compound (ii) in which the epoxy group is directly bonded to the alicyclic ring with a single bond include compounds represented by the following formula (II).
  • R 4 represents a p-valent organic group.
  • p represents an integer of 1 to 20.
  • Examples of the p-valent organic group include a p-valent organic group having a structure formed by removing p hydroxy groups from the structural formula of an organic compound having p hydroxy groups described later.
  • q represents an integer of 1 to 50.
  • p is an integer greater than or equal to 2
  • several q may be the same and may differ.
  • the sum (total) of q in the formula (II) is an integer of 3 to 100.
  • R 5 is a substituent on the cyclohexane ring shown in the formula, and represents any of the groups represented by the following formulas (IIa) to (IIc).
  • the bonding position of R 5 on the cyclohexane ring is not particularly limited. Usually, when the positions of the two carbon atoms of the cyclohexane ring bonded to the oxygen atom are the 1st and 2nd positions, the carbon atom at the 4th or 5th position It is.
  • the bonding positions of R 5 in each cyclohexane ring may be the same or different.
  • At least one R 5 in the formula (II) is a group (epoxy group) represented by the formula (IIa).
  • a plurality of R 5 s may be the same or different.
  • R 6 represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkylcarbonyl group, or a substituted or unsubstituted arylcarbonyl group.
  • alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, octyl group, and 2-ethylhexyl. Examples thereof include straight-chain or branched alkyl groups having 1 to 20 carbon atoms.
  • alkylcarbonyl group examples include methylcarbonyl group (acetyl group), ethylcarbonyl group, n-propylcarbonyl group, isopropylcarbonyl group, n-butylcarbonyl group, isobutylcarbonyl group, s-butylcarbonyl group, t-butyl.
  • alkylcarbonyl group examples include methylcarbonyl group (acetyl group), ethylcarbonyl group, n-propylcarbonyl group, isopropylcarbonyl group, n-butylcarbonyl group, isobutylcarbonyl group, s-butylcarbonyl group, t-butyl.
  • alkylcarbonyl group examples include methylcarbonyl group (acetyl group), ethylcarbonyl group, n-propylcarbonyl group, isopropylcarbonyl group, n-butylcarbonyl group, iso
  • arylcarbonyl group examples include arylcarbonyl groups having 6 to 20 carbon atoms such as a phenylcarbonyl group (benzoyl group), 1-naphthylcarbonyl group, 2-naphthylcarbonyl group, and the like.
  • Examples of the substituent that the above-described alkyl group, alkylcarbonyl group, and arylcarbonyl group may have include a substituent having 0 to 20 carbon atoms (more preferably 0 to 10 carbon atoms).
  • Examples of the substituent include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxy group; alkoxy group such as methoxy group, ethoxy group, propoxy group, isopropyloxy group, butoxy group and isobutyloxy group (Preferably C 1-6 alkoxy group, more preferably C 1-4 alkoxy group); alkenyloxy group such as allyloxy group (preferably C 2-6 alkenyloxy group, more preferably C 2-4 alkenyloxy group)
  • An acyloxy group such as an acetyloxy group, a propionyloxy group and a (meth) acryloyloxy group (preferably a C 1-12
  • examples of the substituent that the above-described arylcarbonyl group may have include the above-described substituted or unsubstituted alkyl group and the above-described substituted or unsubstituted alkylcarbonyl group.
  • the ratio of the group (epoxy group) represented by formula (IIa) to the total amount (100 mol%) of R 5 in the compound represented by formula (II) is not particularly limited, but is 40 mol% or more (for example, 40 to 100 mol%) is preferable, more preferably 60 mol% or more, and still more preferably 80 mol% or more. There exists a tendency for the heat resistance of a hardened
  • the above ratio can be calculated by, for example, 1 H-NMR spectrum measurement, oxirane oxygen concentration measurement, or the like.
  • the compound represented by the formula (II) is not particularly limited.
  • an organic compound [R 4 (OH) p ] having p hydroxy groups in the molecule is used as an initiator (that is, the hydroxy group of the compound). (Starting with active hydrogen)), 1,2-epoxy-4-vinylcyclohexane (3-vinyl-7-oxabicyclo [4.1.0] heptane) is subjected to ring-opening polymerization (cationic polymerization), and then Manufactured by epoxidation with an oxidizing agent.
  • Examples of the organic compound [R 4 (OH) p ] having p hydroxy groups in the molecule include aliphatic alcohols such as methanol, ethanol, propanol, butanol, pentanol, hexanol, octanol; ethylene glycol, diethylene glycol , Triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, pentanediol, 1,6-hexanediol, neopentyl glycol, neopentyl glycol ester, cyclohexanedi Methanol, glycerin, diglycerin, polyglycerin, trimethylolpropane, pentaerythritol, dipentaerythritol, hydrogenated bisphenol A, hydrogenated bisphenol F, water Polyhydric alcohol such as bisphenol S; polyviny
  • the 1,2-epoxy-4-vinylcyclohexane can be produced by a known or commonly used method, and is not particularly limited.
  • 4-vinylcyclohexene obtained by dimerization reaction of butadiene is replaced with an oxidizing agent such as peracetic acid. Obtained by partial epoxidation using.
  • 1,2-epoxy-4-vinylcyclohexane a commercially available product can be used.
  • the oxidant may be a known or conventional oxidant such as hydrogen peroxide or organic peracid, and is not particularly limited.
  • the organic peracid include performic acid, peracetic acid, peroxygen. Examples include benzoic acid and trifluoroperacetic acid. Among them, peracetic acid is preferable because it is industrially available at low cost and has high stability.
  • the standard polystyrene equivalent weight average molecular weight of the compound represented by the formula (II) is not particularly limited, but is preferably 300 to 100,000, more preferably 1,000 to 10,000.
  • the weight average molecular weight is 300 or more, the mechanical strength, heat resistance, and light resistance of the cured product tend to be further improved.
  • the weight average molecular weight is 100,000 or less, the viscosity does not become too high and the fluidity during molding tends to be maintained low.
  • the weight average molecular weight is measured by a gel permeation chromatography (GPC) method.
  • the equivalent (epoxy equivalent) of the epoxy group of the compound represented by the formula (II) is not particularly limited, but is preferably 50 to 1000, more preferably 100 to 500.
  • the epoxy equivalent is 50 or more, the cured product tends not to be brittle.
  • the epoxy equivalent is 1000 or less, the mechanical strength of the cured product tends to be improved.
  • the epoxy equivalent is measured according to JIS K7236: 2001.
  • the alicyclic epoxy compound (A) can be used singly or in combination of two or more.
  • commercially available products such as trade names “Celoxide 2021P”, “Celoxide 2081”, “EHPE3150” (manufactured by Daicel Corporation) can be used.
  • Examples of the alicyclic epoxy compound (A) include compounds represented by the above formula (I-1) [3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate; for example, trade name “Celoxide 2021P”. (Daicel Co., Ltd.) etc. are particularly preferred.
  • the content (blending amount) of the alicyclic epoxy compound (A) in the curable epoxy resin composition of the present invention is not particularly limited, but is 10 with respect to the total amount (100% by weight) of the curable epoxy resin composition. It is preferably -95% by weight, more preferably 15-90% by weight, and still more preferably 20-90% by weight.
  • the ratio of the alicyclic epoxy compound (A) to the total amount (100% by weight) of the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B) is Although not particularly limited, it is preferably 20 to 99% by weight, more preferably 30 to 95% by weight, and still more preferably 40 to 95% by weight.
  • the ratio of the alicyclic epoxy compound (A) is 20% by weight or more, the curability of the curable epoxy resin composition tends to be further improved, and the heat resistance of the cured product tends to be further improved.
  • the ratio of the alicyclic epoxy compound (A) is 99% by weight or less, the thermal shock resistance of the cured product tends to be further improved.
  • the monoallyl diglycidyl isocyanurate compound (B) in the curable epoxy resin composition of the present invention is a compound represented by the above formula (1).
  • R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, pentyl, hexyl, heptyl, octyl and the like. Examples thereof include a chain or branched alkyl group.
  • R 1 and R 2 in the above formula (1) are particularly preferably hydrogen atoms.
  • monoallyl diglycidyl isocyanurate compound (B) examples include monoallyl diglycidyl isocyanurate, 1-allyl-3,5-bis (2-methylepoxypropyl) isocyanurate, 1- (2-methyl And propenyl) -3,5-diglycidyl isocyanurate, 1- (2-methylpropenyl) -3,5-bis (2-methylepoxypropyl) isocyanurate, and the like.
  • monoallyl diglycidyl isocyanurate compound (B) can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the monoallyl diglycidyl isocyanurate compound (B) may be modified in advance by adding a compound that reacts with an epoxy group (oxiranyl group) such as alcohol or acid anhydride.
  • an epoxy group oxiranyl group
  • content (blending amount) of the monoallyl diglycidyl isocyanurate compound (B) in the curable epoxy resin composition of the present invention is not particularly limited, it is 5 with respect to 100 parts by weight of the alicyclic epoxy compound (A). Is preferably 120 parts by weight, more preferably 5 to 110 parts by weight, and still more preferably 5 to 105 parts by weight.
  • the curability of the curable epoxy resin composition is further improved, and the heat resistance and mechanical strength of the cured product are further improved. There is a tendency to improve.
  • Monoallyl diglycidyl isocyanurate compound (100% by weight) with respect to the total amount (100% by weight) of alicyclic epoxy compound (A) and monoallyl diglycidyl isocyanurate compound (B) contained in the curable epoxy resin composition of the present invention (
  • the proportion of B) is not particularly limited, but is preferably 1 to 60% by weight, more preferably 5 to 55% by weight, and still more preferably 7 to 55% by weight.
  • the curability of the curable epoxy resin composition is further improved, and the heat resistance and mechanical strength of the cured product are further improved. Tend to.
  • the stress relaxation agent (C) in the curable epoxy resin composition of the present invention is a compound that can relieve internal stress in the cured product.
  • the curable epoxy resin composition of the present invention contains the stress relaxation agent (C)
  • the heat resistance, light resistance, thermal shock resistance, and reflow resistance of the cured product are improved.
  • a cured product capable of improving current-carrying characteristics and moisture absorption reflow resistance at high humidity can be formed.
  • the stress relaxation agent (C) is not particularly limited.
  • silicone rubber particles (C1) silicone oil (C2), liquid rubber component (C3), inorganic filler (C4), thermoplastic resin (C5), and the like. Is mentioned.
  • the silicone rubber particles (C1) are not particularly limited, and examples thereof include those composed of polysiloxanes such as polydimethylsiloxane and polymethylphenylsiloxane. Moreover, it is preferable that the polysiloxane which comprises a silicone rubber particle (C1) is bridge
  • the crosslinked polysiloxane is not particularly limited. For example, it is crosslinked by a condensation reaction such as a silanol group, a radical reaction between a mercaptosilyl group and a vinylsilyl group, or an addition reaction between a vinylsilyl group and a hydrosilyl group (SiH group). In terms of reactivity and reaction process, polysiloxane crosslinked by addition reaction of vinyl group-containing organopolysiloxane and organohydrogenpolysiloxane in the presence of a platinum-based catalyst. Is preferred.
  • the silicone rubber particles (C1) may be surface-treated from the viewpoint of familiarity with the epoxy resin composition, improvement of dispersibility, and adjustment of the viscosity of the epoxy resin composition after dispersion.
  • the aspect of the surface treatment is not particularly limited, and examples thereof include silicone rubber particles coated with methyl methacrylate, silicone rubber particles coated with silicone resin, and the like.
  • the average particle diameter (d 50 ) of the silicone rubber particles (C1) is not particularly limited, but is preferably 0.1 to 100 ⁇ m, more preferably 0.5 to 50 ⁇ m.
  • the maximum particle size of the silicone rubber particles (C1) is not particularly limited, but is preferably 0.1 to 250 ⁇ m, more preferably 0.1 to 150 ⁇ m. When the average particle size is 100 ⁇ m or less (or the maximum particle size is 250 ⁇ m or less), the crack resistance of the cured product tends to be further improved. On the other hand, when the average particle size is 0.1 ⁇ m or more (or the maximum particle size is 0.1 ⁇ m or more), the dispersibility of the silicone rubber particles (C1) tends to be further improved.
  • the shape of the silicone rubber particles (C1) is not particularly limited, but is preferably spherical from the viewpoint of improving workability.
  • the silicone rubber particles (C1) have high heat resistance, light resistance, thermal shock resistance, and reflow resistance, and in particular, improve energization characteristics and moisture absorption reflow resistance at high temperatures and high humidity of optical semiconductor devices. From the standpoint that a cured product that can be formed can be formed, those composed of a crosslinked polysiloxane or those whose surfaces are coated with a silicone resin are preferable. Among them, an epoxy resin component and silicone rubber particles are preferable. In view of the compatibility of (C1), it is particularly preferred that the surface of the crosslinked polydimethylsiloxane is coated with a silicone resin.
  • the silicone rubber particles (C1) can be used alone or in combination of two or more.
  • the silicone rubber particles (C1) can be produced by a known or conventional method.
  • the silicone rubber particles produced by the method described in JP-A-7-196815 can be used.
  • Commercially available products such as “ ⁇ 594”, “X-52-875”, “KMP-590”, “KMP-701” (manufactured by Shin-Etsu Chemical Co., Ltd.) can also be used.
  • the silicone oil (C2) is not particularly limited, and examples thereof include non-modified silicone oil and modified silicone oil.
  • the non-modified silicone oil is not particularly limited, and examples thereof include a polydimethylsiloxane type, a polymethylhydrogensiloxane type, and a polymethylphenylsiloxane type.
  • the modified silicone oil is not particularly limited, and for example, either a reactive silicone oil that is reactive with an epoxy resin or a non-reactive silicone oil that is not reactive with an epoxy resin may be used.
  • the reactive silicone oil include amino-modified type, epoxy-modified type, carboxyl-modified type, carbinol-modified type, methacryl-modified type, mercapto-modified type, and phenol-modified type.
  • non-reactive silicone oils include polyalkylene ether-modified types, methylstyryl-modified types, alkyl-modified types, fatty acid ester-modified types, alkoxy-modified types, and fluorine-modified types.
  • the reactive silicone oil may have a non-reactive modifying group, and examples thereof include polyalkylene ether-amino modified silicone oil and polyalkylene ether-epoxy modified silicone oil.
  • Polyalkylene ether-epoxy modified silicone oils that have reactivity with the product and can be controlled in fluidity and viscosity are preferred.
  • the silicone oil (C2) has high heat resistance, light resistance, thermal shock resistance, and reflow resistance, and in particular, improves the current-carrying characteristics and moisture absorption reflow resistance of the optical semiconductor device at high temperature and high humidity.
  • a polyalkylene ether-epoxy modified silicone oil is preferable, and in particular, a polyalkylene ether modified having a structure represented by the following formula (2) having an epoxy equivalent of 3000 to 15000:
  • a silicone compound hereinafter sometimes referred to as “polyalkylene ether-modified silicone compound (2)” is preferred.
  • R 3 is an alkylene group having 2 or 3 carbon atoms.
  • alkylene group having 2 or 3 carbon atoms include a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group, and a trimethylene group is preferable.
  • x represents an integer of 80 to 140.
  • y represents an integer of 1 to 5.
  • z represents an integer of 5 to 20. Note that the structures in parentheses to which z is attached may be the same or different.
  • A is a polyalkylene ether group having a structure represented by the following formula (2a).
  • a and b are each independently an integer of 0 to 40.
  • a is 40 or less, the water resistance of the cured product tends to be improved.
  • b is 40 or less, the fluidity of the curable epoxy resin composition tends to be improved.
  • the total of a and b is not particularly limited, but is preferably an integer of 1 to 80. When the sum of a and b is in the range, it becomes easy to control the water resistance of the cured product and the fluidity of the curable epoxy resin composition.
  • B is a hydrogen atom or a methyl group. From the viewpoint of water resistance of the cured product, B is preferably a methyl group.
  • each structural unit in the above formula (2) may be a random type or a block type as long as two trimethylsilyl groups in the formula (2) are present at both ends. Further, the addition form of each structural unit in the above formula (2a) may be a random type or a block type as long as B is present at the terminal. Further, the order of arrangement of the structural units in the above formulas (2) and (2a) is not particularly limited.
  • the epoxy equivalent of the polyalkylene ether-modified silicone compound (2) is from 3000 to 15000, preferably from 4000 to 15000, more preferably from 5000 to 13000.
  • the epoxy equivalent is 3000 or more, the stress relaxation inside the cured product tends to be further improved.
  • the epoxy equivalent is 15000 or less, the compatibility with the resin tends to be further improved.
  • the epoxy equivalent of the polyalkylene ether-modified silicone compound (2) can be measured in accordance with JIS K 7236: 2001.
  • the silicone oil (C2) can be used alone or in combination of two or more.
  • the silicone oil (C2) can be produced by a known or conventional method.
  • the silicone oil (C2) produced by the method described in JP-A-2008-201904 is used.
  • a commercial product such as “SF8421” (made by Toray Dow Corning Co., Ltd.) or “Y-19268” (made by Momentive Performance Materials Japan). You can also.
  • the liquid rubber component (C3) is not particularly limited.
  • polybutadiene maleated polybutadiene, acrylated polybutadiene, methacrylated polybutadiene, epoxidized polybutadiene, acrylonitrile butadiene rubber, carboxy terminal acrylonitrile butadiene rubber, amino terminal acrylonitrile butadiene rubber.
  • the said liquid rubber component (C3) can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the inorganic filler (C4) is not particularly limited.
  • fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia examples include zirconia, zircon, fosterite, steatite, spinel, mullite, titania and the like.
  • These inorganic fillers can be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the average particle diameter (d 50 ) of the inorganic filler (C4) is not particularly limited, but is usually 1 to 50 ⁇ m, preferably 1 to 25 ⁇ m, more preferably 1 to 10 ⁇ m.
  • the inorganic filler (C4) preferably further contains a coupling agent from the viewpoint of improving the dispersibility by increasing the affinity between the epoxy resin component and the inorganic filler (C4).
  • the coupling agent is not particularly limited, and known ones can be used, but various silane compounds such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, vinyl silane, titanium compound, and aluminum chelates. Aluminum / zirconium compounds are preferred.
  • vinyltrichlorosilane vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, and ⁇ -acryloxypropyltrimethoxy.
  • the amount of the coupling agent is not particularly limited, but is preferably 0.05 to 5% by mass, more preferably 0.1 to 2.5% by mass with respect to the inorganic filler (C4).
  • the dispersibility improvement effect of an inorganic filler (C4) can be acquired, and by making it 5 mass% or less, the void in a hardened
  • thermoplastic resin (C5) is not particularly limited.
  • thermoplastic resins can be used singly or in combination of two or more.
  • the glass transition temperature (Tg) of the thermoplastic resin (C5) is not particularly limited, but is preferably 200 ° C. or lower.
  • the said stress relaxation agent (C) can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the stress relaxation agent (C) has high heat resistance, light resistance, thermal shock resistance, and reflow resistance, and in particular, improves the current-carrying characteristics and moisture absorption reflow resistance of optical semiconductor devices at high temperatures and high humidity.
  • at least one selected from the group consisting of silicone rubber particles (C1) and silicone oils (C2) is preferable, and in particular, as silicone rubber particles (C1) Is preferably a crosslinked polydimethylsiloxane having a silicone resin on its surface, and the silicone oil (C2) is preferably a polyalkylene ether-modified silicone compound (2).
  • the content (blending amount) of the stress relaxation agent (C) of the present invention is not particularly limited, but is preferably 0.1 to 100 parts by weight, more preferably 100 parts by weight with respect to 100 parts by weight of the alicyclic epoxy compound (A). Is 0.1 to 50 parts by weight, more preferably 0.5 to 30 parts by weight.
  • the content of the stress relaxation agent (C) is 100 parts by weight or less, the curability of the curable epoxy resin composition tends to be further improved.
  • Content of stress relaxation agent (C) with respect to total amount (100 parts by weight) of alicyclic epoxy compound (A) and monoallyl diglycidyl isocyanurate compound (B) contained in curable epoxy resin composition of the present invention Is not particularly limited, but is preferably 0.1 to 20 parts by weight, more preferably 0.3 to 18 parts by weight, and still more preferably 0.5 to 15 parts by weight.
  • the content of the stress relaxation agent (C) is preferably 0.1 to 20 parts by weight, more preferably 0.3 to 18 parts by weight, and still more preferably 0.5 to 15 parts by weight.
  • the curable epoxy resin composition of the present invention may further contain a curing agent (D).
  • the curing agent (D) is a compound having an epoxy group (oxiranyl group) such as an alicyclic epoxy compound (A), a monoallyl diglycidyl isocyanurate compound (B), and an epoxy-modified silicone oil as a stress relaxation agent (C). It is a compound which has a function which hardens a curable epoxy resin composition by reacting with.
  • a known or conventional curing agent can be used as a curing agent for epoxy resin, and is not particularly limited.
  • acid anhydrides (acid anhydride curing agents), amines ( Amine curing agents), polyamide resins, imidazoles (imidazole curing agents), polymercaptans (polymercaptan curing agents), phenols (phenolic curing agents), polycarboxylic acids, dicyandiamides, organic acid hydrazides, etc.
  • acid anhydrides (acid anhydride curing agents)
  • amines Amine curing agents
  • polyamide resins imidazoles (imidazole curing agents)
  • polymercaptans polymercaptan curing agents
  • phenols phenolic curing agents
  • polycarboxylic acids dicyandiamides
  • organic acid hydrazides etc.
  • acid anhydrides as the curing agent (D)
  • known or commonly used acid anhydride curing agents can be used, and are not particularly limited.
  • methyltetrahydrophthalic anhydride (4 -Methyltetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, etc.
  • methylhexahydrophthalic anhydride such as 4-methylhexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride
  • dodecenyl succinic anhydride methyl Endomethylenetetrahydrophthalic anhydride, phthalic anhydride, maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylcyclohexene dicarboxylic anhydride, pyromellitic anhydride, trimellitic anhydride, benzophenonetetracarboxylic anhydride, anhydrous Nadic
  • acid anhydrides for example, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, dodecenyl succinic anhydride, methylendomethylenetetrahydrophthalic anhydride, etc.
  • a solid acid anhydride at 25 ° C. for example, by dissolving in a liquid acid anhydride at 25 ° C. to form a liquid mixture, the curing agent (D in the curable epoxy resin composition of the present invention (D ) Tends to be improved.
  • saturated monocyclic hydrocarbon dicarboxylic acid anhydrides (including those in which a substituent such as an alkyl group is bonded to the ring) are preferable from the viewpoint of heat resistance and transparency of the cured product.
  • amines (amine-based curing agent) as the curing agent (D) a known or conventional amine-based curing agent can be used, and is not particularly limited.
  • ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine Aliphatic polyamines such as dipropylenediamine, diethylaminopropylamine, polypropylenetriamine; mensendiamine, isophoronediamine, bis (4-amino-3-methyldicyclohexyl) methane, diaminodicyclohexylmethane, bis (aminomethyl) cyclohexane, N-amino Cycloaliphatic polyamines such as ethylpiperazine, 3,9-bis (3-aminopropyl) -3,4,8,10-tetraoxaspiro [5,5] undecane; m-phenylenediamine, p-phenylenediamine, Len-2
  • phenols phenolic curing agents
  • known or conventional phenolic curing agents can be used, and are not particularly limited.
  • novolac type phenol resins novolac type cresol resins
  • paraxylylene-modified phenols examples thereof include aralkyl resins such as resins, paraxylylene / metaxylylene-modified phenol resins, terpene-modified phenol resins, dicyclopentadiene-modified phenol resins, and triphenol propane.
  • Examples of the polyamide resin as the curing agent (D) include a polyamide resin having one or both of a primary amino group and a secondary amino group in the molecule.
  • imidazole (imidazole curing agent) as the curing agent (D), a known or conventional imidazole curing agent can be used, and is not particularly limited.
  • Examples of the polymercaptans (polymercaptan-based curing agent) as the curing agent (D) include liquid polymercaptan and polysulfide resin.
  • polycarboxylic acids examples include adipic acid, sebacic acid, terephthalic acid, trimellitic acid, carboxy group-containing polyester, and the like.
  • the curing agent (D) acid anhydrides (acid anhydride curing agents) are preferable from the viewpoint of heat resistance and transparency of the cured product.
  • curing agent (D) can also be used individually by 1 type in the curable epoxy resin composition of this invention, and can also be used in combination of 2 or more type.
  • a commercial item can also be used as a hardening
  • commercially available acid anhydrides include trade names “Licacid MH-700” and “Licacid MH-700F” (manufactured by Shin Nippon Rika Co., Ltd.); trade name “HN-5500” (Hitachi Chemical Industries). Etc.).
  • the content (blending amount) of the curing agent (D) in the curable epoxy resin composition of the present invention is not particularly limited, but is 100 parts by weight based on the total amount of compounds having an epoxy group contained in the curable epoxy resin composition.
  • the amount is preferably 50 to 200 parts by weight, more preferably 80 to 150 parts by weight. More specifically, when acid anhydrides are used as the curing agent (D), 0.5 equivalent per 1 epoxy group equivalent in the compound having all epoxy groups contained in the curable epoxy resin composition of the present invention. It is preferable to use at a ratio of ⁇ 1.5 equivalent.
  • the curing accelerator (E) is a compound having a function of accelerating the reaction rate when a compound having an epoxy group (oxiranyl group) reacts with the curing agent (D).
  • the curing accelerator (E) may be a known or conventional curing accelerator, and is not particularly limited.
  • 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) or a salt thereof (for example, , Phenol salt, octylate, p-toluenesulfonate, formate, tetraphenylborate salt, etc.); 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) or a salt thereof (for example, phenol Salt, octylate, p-toluenesulfonate, formate, tetraphenylborate, etc.); benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N-dimethylcyclohexylamine, etc.
  • DBU 1,8-diazabicyclo [5.4.0] undecene-7
  • DBN 1,5-diazabicyclo [4.3.0] nonene-5
  • DBN 1,5-diazabicyclo [4.3.0] nonen
  • Imidazoles such as 2-ethyl-4-methylimidazole and 1-cyanoethyl-2-ethyl-4-methylimidazole
  • Phosphate compounds such as triphenylphosphine and tris (dimethoxy) phosphine
  • Phosphonium compounds such as tetraphenylphosphonium tetra (p-tolyl) borate
  • Organometallic salts such as zinc octylate, tin octylate, and zinc stearate; Examples thereof include metal chelates such as aluminum acetylacetone complex.
  • a hardening accelerator (E) can also be used individually by 1 type in the curable epoxy resin composition of this invention, and can also be used in combination of 2 or more type.
  • the curing accelerator (E) trade names “U-CAT SA 506”, “U-CAT SA 102”, “U-CAT 5003”, “U-CAT 18X”, “U-CAT 12XD” ( (Developed product) (San Apro Co., Ltd.); Trade names “TPP-K”, “TPP-MK” (Hokuko Chemical Co., Ltd.); Trade name “PX-4ET” (Nippon Chemical Industry ( It is also possible to use a commercial product such as a product manufactured by Co. Ltd.
  • the content (blending amount) of the curing accelerator (E) in the curable epoxy resin composition of the present invention is not particularly limited, but the total amount of compounds having epoxy groups contained in the curable epoxy resin composition is 100 parts by weight. On the other hand, it is preferably 0.01 to 5 parts by weight, more preferably 0.02 to 3 parts by weight, still more preferably 0.03 to 2 parts by weight.
  • the content of the curing accelerator (E) is preferably 0.01 to 5 parts by weight, more preferably 0.02 to 3 parts by weight, still more preferably 0.03 to 2 parts by weight.
  • the curable epoxy resin composition of the present invention may further contain a curing catalyst (F) (for example, instead of the curing agent (D)).
  • the curing catalyst (F) is a curing reaction (polymerization) of a cation curable compound such as an alicyclic epoxy compound (A), a monoallyl diglycidyl isocyanurate compound (B), or an epoxy-modified silicone oil as a stress relaxation agent (C). It is a compound having the function of curing the curable epoxy resin composition by initiating and / or promoting reaction.
  • the curing catalyst (F) is not particularly limited.
  • a cationic polymerization initiator photo cationic polymerization initiator, thermal cationic polymerization
  • a cationic polymerization initiator that initiates polymerization by generating cationic species by performing light irradiation, heat treatment, or the like.
  • Initiators, etc. Lewis acid / amine complexes, Bronsted acid salts, imidazoles and the like.
  • Examples of the photocationic polymerization initiator as the curing catalyst (F) include hexafluoroantimonate salts, pentafluorohydroxyantimonate salts, hexafluorophosphate salts, hexafluoroarsenate salts, and more specifically.
  • triarylsulfonium hexafluorophosphate eg, p-phenylthiophenyldiphenylsulfonium hexafluorophosphate
  • sulfonium salts such as triarylsulfonium hexafluoroantimonate (particularly, triarylsulfonium salts)
  • diaryl iodonium hexafluorophosphate Diaryl iodonium hexafluoroantimonate, bis (dodecylphenyl) iodonium tetrakis (pentafluorophenyl) borate, iodine Iodonium salts such as nium [4- (4-methylphenyl-2-methylpropyl) phenyl] hexafluorophosphate; phosphonium salts such as tetrafluorophosphonium hexafluorophosphate; pyridinium salts such as N-he
  • cationic photopolymerization initiator examples include, for example, trade names “UVACURE 1590” (manufactured by Daicel Cytec Co., Ltd.); trade names “CD-1010”, “CD-1011”, “CD-1012” (above, the United States).
  • Commercial products such as Sartomer); trade name “Irgacure 264” (manufactured by BASF); trade name “CIT-1682” (manufactured by Nippon Soda Co., Ltd.) can be preferably used.
  • thermal cationic polymerization initiator as the curing catalyst (F) include aryldiazonium salts, aryliodonium salts, arylsulfonium salts, allene-ion complexes, etc., and trade names “PP-33”, “CP-66”.
  • thermal cationic polymerization initiator a compound of a chelate compound of a metal such as aluminum or titanium and acetoacetic acid or diketone and a silanol such as triphenylsilanol, or a metal such as aluminum or titanium and acetoacetic acid or diketone
  • a compound of a chelate compound with a phenol and a phenol such as bisphenol S.
  • Lewis acid / amine complex as the curing catalyst (F), a known or commonly used Lewis acid / amine complex-based curing catalyst can be used, and is not particularly limited.
  • a known or commonly used Lewis acid / amine complex-based curing catalyst can be used, and is not particularly limited.
  • Bronsted acid salts as the curing catalyst (F), known or commonly used Bronsted acid salts can be used, and are not particularly limited.
  • imidazole as the curing catalyst (F), known or conventional imidazoles can be used, and are not particularly limited.
  • the curing catalyst (F) can be used alone or in combination of two or more.
  • a commercial item can also be used as a curing catalyst (F).
  • the content (blending amount) of the curing catalyst (F) in the curable epoxy resin composition of the present invention is not particularly limited, but is 100 parts by weight based on the total amount of the compounds having an epoxy group contained in the curable epoxy resin composition.
  • the amount is preferably 0.01 to 5 parts by weight, more preferably 0.02 to 3 parts by weight, and still more preferably 0.03 to 2 parts by weight.
  • the curable epoxy resin composition of the present invention may further contain rubber particles other than silicone rubber particles (hereinafter sometimes simply referred to as “rubber particles”).
  • rubber particles known and commonly used rubber particles can be used without particular limitation as long as they are other than silicone rubber particles.
  • particulate NBR acrylonitrile-butadiene rubber
  • CTBN reactive terminal carboxy group NBR
  • metal-free NBR metal-free NBR
  • particulate SBR styrene-butadiene rubber
  • the rubber particles are preferably rubber particles having a multilayer structure (core-shell structure) composed of a core portion having rubber elasticity and at least one shell layer covering the core portion.
  • the rubber particles are particularly composed of a polymer (polymer) having (meth) acrylic acid ester as an essential monomer component, and a functional group capable of reacting with a compound having an epoxy group such as an alicyclic epoxy compound (A) on the surface.
  • Rubber particles having a hydroxy group and / or a carboxy group (either one or both of a hydroxy group and a carboxy group) as a group are preferred. If neither the hydroxy group nor the carboxy group is present on the surface of the rubber particles, the cured product becomes cloudy due to a thermal shock such as a cold cycle, and the transparency tends to decrease, which is not preferable.
  • the polymer constituting the core part having rubber elasticity in the rubber particles is not particularly limited as long as it is other than a silicone compound, but such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, etc.
  • a polymer containing (meth) acrylic acid ester as an essential monomer component is preferred.
  • the polymer constituting the core part having rubber elasticity includes, for example, aromatic vinyl such as styrene and ⁇ -methylstyrene; nitrile such as acrylonitrile and methacrylonitrile; conjugated diene such as butadiene and isoprene; ethylene, propylene, An ⁇ -olefin such as isobutene may be included as a monomer component.
  • the polymer constituting the core portion having rubber elasticity is combined with one or more selected from the group consisting of aromatic vinyl, nitrile, and conjugated diene together with (meth) acrylic acid ester as a monomer component. It is preferable to include. That is, as the polymer constituting the core portion, for example, (meth) acrylic acid ester / aromatic vinyl, (meth) acrylic acid ester / conjugated diene and other binary copolymers, (meth) acrylic acid ester / aromatic And terpolymers such as group vinyl / conjugated dienes.
  • the polymer constituting the core part includes, as other monomer components, divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl maleate, triallyl cyanurate, diallyl phthalate, butylene glycol diacrylate, etc.
  • a reactive crosslinking monomer having two or more reactive functional groups in the molecule may be contained.
  • the core part of the rubber particles is, among other things, a (meth) acrylate / aromatic vinyl binary copolymer (particularly butyl acrylate / styrene) or (meth) acrylate / aromatic vinyl / others.
  • a core portion composed of a terpolymer of monomers (particularly butyl acrylate / styrene / divinylbenzene) is preferable in that the refractive index of the rubber particles can be easily adjusted.
  • the glass transition temperature of the polymer constituting the core part of the rubber particles is not particularly limited, but is preferably less than 60 ° C. (eg, ⁇ 150 ° C. or more and less than 60 ° C.), more preferably ⁇ 150 to 15 ° C., and even more preferably. Is -100 to 0 ° C.
  • the glass transition temperature of the polymer which comprises the said core part means the calculated value calculated by the formula of the following Fox (refer Bull. Am. Phys. Soc., 1 (3) 123 (1956)).
  • Tg glass transition temperature (unit: K) of the polymer constituting the core portion indicates, W i is the weight fraction of the monomer i for the monomer total amount constituting the polymer constituting the core portion Indicates the rate. Further, Tg i is the glass transition temperature of the homopolymer of monomer i (unit: K) shows a.
  • the glass transition temperature of the homopolymer values described in various documents can be adopted, for example, values described in “POLYMER HANDBOOK 3rd edition” (published by John Wiley & Sons, Inc.) can be adopted. In addition, about the thing which is not described in literature, the value of the glass transition temperature measured by DSC method of the homopolymer obtained by superposing
  • the core portion of the rubber particles can be manufactured by a commonly used method, for example, by a method of polymerizing the monomer by an emulsion polymerization method.
  • the whole amount of the monomer may be charged all at once and polymerized, or after polymerizing a part of the monomer, the remainder may be added continuously or intermittently for polymerization.
  • a polymerization method using seed particles may be used.
  • the polymer constituting the shell layer of the rubber particles is preferably a polymer different from the polymer constituting the core portion (polymer having a different monomer composition).
  • the shell layer preferably has a hydroxy group and / or a carboxy group as a functional group capable of reacting with a compound having an epoxy group such as an alicyclic epoxy compound (A).
  • the polymer constituting the shell layer is preferably a polymer containing (meth) acrylic acid ester such as methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate as an essential monomer component.
  • (meth) acrylic acid ester such as methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate
  • (meth) acrylic acid esters other than butyl acrylate for example, ( (Meth) methyl acrylate, ethyl (meth) acrylate, butyl methacrylate, etc.
  • Examples of the monomer component that may be contained in addition to the (meth) acrylic acid ester include aromatic vinyl such as styrene and ⁇ -methylstyrene; nitrile such as acrylonitrile and methacrylonitrile.
  • aromatic vinyl such as styrene and ⁇ -methylstyrene
  • nitrile such as acrylonitrile and methacrylonitrile.
  • the rubber particles as a monomer component constituting the shell layer, it is preferable to contain the monomer alone or in combination of two or more together with (meth) acrylic acid ester, and in particular, at least contain aromatic vinyl. Is preferable in that the refractive index of the rubber particles can be easily adjusted.
  • the polymer constituting the shell layer forms a hydroxy group and / or a carboxy group as a functional group capable of reacting with a compound having an epoxy group such as an alicyclic epoxy compound (A) as a monomer component.
  • Hydroxy group-containing monomers eg, hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate
  • carboxy group-containing monomers eg, ⁇ , ⁇ -unsaturated acids such as (meth) acrylic acid; ⁇ , ⁇ -unsaturated acid anhydrides such as maleic anhydride
  • the polymer constituting the shell layer in the rubber particles preferably contains one or two or more kinds selected from the monomers together with (meth) acrylic acid ester as a monomer component. That is, the shell layer is composed of, for example, a ternary copolymer such as (meth) acrylic acid ester / aromatic vinyl / hydroxyalkyl (meth) acrylate, (meth) acrylic acid ester / aromatic vinyl / ⁇ , ⁇ -unsaturated acid.
  • a shell layer composed of a polymer or the like is preferable.
  • the polymer constituting the shell layer includes, as the other monomer components, divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl maleate, trimethyl, as well as the above-described monomer.
  • a reactive crosslinking monomer having two or more reactive functional groups may be contained in the molecule such as allyl cyanurate, diallyl phthalate, butylene glycol diacrylate.
  • the glass transition temperature of the polymer constituting the shell layer of the rubber particles is not particularly limited, but is preferably 60 to 120 ° C., more preferably 70 to 115 ° C.
  • the heat resistance of the cured product tends to be further improved.
  • cured material tends to improve more by making the glass transition temperature of the said polymer into 120 degrees C or less.
  • the glass transition temperature of the polymer which comprises the said shell layer means the calculated value computed by the said Formula of Fox, For example, it can measure similarly to the glass transition temperature of the polymer which comprises the above-mentioned core.
  • the rubber particles can be obtained by covering the core portion with a shell layer.
  • the method for coating the core part with the shell layer include a method of coating the surface of the core part having rubber elasticity obtained by the above method by applying a polymer constituting the shell layer; Examples thereof include a graft polymerization method in which the core portion having rubber elasticity is a trunk component and each component constituting the shell layer is a branch component.
  • the average particle diameter of the rubber particles is not particularly limited, but is preferably 10 to 500 nm, more preferably 20 to 400 nm.
  • the maximum particle size of the rubber particles is not particularly limited, but is preferably 50 to 1000 nm, more preferably 100 to 800 nm.
  • the average particle size is 500 nm or less (or the maximum particle size is 1000 nm or less)
  • the dispersibility of the rubber particles in the cured product is improved, and the crack resistance tends to be further improved.
  • the average particle diameter is 10 nm or more (or the maximum particle diameter is 50 nm or more)
  • the crack resistance of the cured product tends to be further improved.
  • the refractive index of the rubber particles is not particularly limited, but is preferably 1.40 to 1.60, more preferably 1.42 to 1.58.
  • the difference between the refractive index of the rubber particles and the refractive index of the cured product obtained by curing the curable epoxy resin composition containing the rubber particles (the curable epoxy resin composition of the present invention) is ⁇ 0.03. Is preferably within. By setting the difference in refractive index within ⁇ 0.03, excellent transparency of the cured product is secured, and the optical intensity of the optical semiconductor device tends to be kept high.
  • the refractive index of the rubber particles is, for example, by casting 1 g of rubber particles into a mold and compression molding at 210 ° C. and 4 MPa to obtain a flat plate having a thickness of 1 mm. From the obtained flat plate, a test piece of 20 mm length ⁇ 6 mm width And using a multi-wavelength Abbe refractometer (trade name “DR-M2”, manufactured by Atago Co., Ltd.) in a state where the prism and the test piece are in close contact using monobromonaphthalene as an intermediate solution, It can be determined by measuring the refractive index at 20 ° C. and sodium D line.
  • DR-M2 multi-wavelength Abbe refractometer
  • the refractive index of the cured product of the curable epoxy resin composition of the present invention is, for example, a test piece having a length of 20 mm ⁇ width of 6 mm ⁇ thickness of 1 mm from a cured product obtained by the heat curing method described in the section of cured product below. And using a multi-wavelength Abbe refractometer (trade name “DR-M2”, manufactured by Atago Co., Ltd.) in a state where the prism and the test piece are in close contact using monobromonaphthalene as an intermediate solution, It can be determined by measuring the refractive index at 20 ° C. and sodium D line.
  • DR-M2 multi-wavelength Abbe refractometer
  • the content (blending amount) of the rubber particles in the curable epoxy resin composition of the present invention is not particularly limited, but with respect to 100 parts by weight of the total amount of compounds having an epoxy group contained in the curable epoxy resin composition,
  • the amount is preferably 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight.
  • the curable epoxy resin composition of the present invention may contain various additives within a range that does not impair the effects of the present invention.
  • a compound having a hydroxy group such as ethylene glycol, diethylene glycol, propylene glycol, or glycerin
  • the reaction can be allowed to proceed slowly.
  • silicone and fluorine antifoaming agents, leveling agents, and silane coupling agents such as ⁇ -glycidoxypropyltrimethoxysilane and 3-mercaptopropyltrimethoxysilane, as long as the viscosity and transparency are not impaired.
  • Surfactants inorganic fillers such as silica and alumina, flame retardants, colorants, antioxidants, ultraviolet absorbers, ion adsorbents, pigments, phosphors (eg YAG phosphor fine particles, silicate phosphors) Inorganic phosphor fine particles such as fine particles) and conventional additives such as mold release agents can be used.
  • inorganic fillers such as silica and alumina, flame retardants, colorants, antioxidants, ultraviolet absorbers, ion adsorbents, pigments, phosphors (eg YAG phosphor fine particles, silicate phosphors)
  • phosphors eg YAG phosphor fine particles, silicate phosphors
  • Inorganic phosphor fine particles such as fine particles
  • conventional additives such as mold release agents
  • the curable epoxy resin composition of the present invention is not particularly limited, but can be prepared by stirring and mixing each of the above components in a heated state as necessary.
  • the curable epoxy resin composition of the present invention can be used as a one-component composition in which each component is mixed in advance, for example, two or more stored separately.
  • These components can also be used as a multi-liquid composition (for example, a two-liquid system) that is used by mixing them at a predetermined ratio before use.
  • the stirring / mixing method is not particularly limited, and for example, known or commonly used stirring / mixing means such as various mixers such as a dissolver and a homogenizer, a kneader, a roll, a bead mill, and a self-revolving stirrer can be used. Further, after stirring and mixing, defoaming may be performed under vacuum.
  • stirring / mixing means such as various mixers such as a dissolver and a homogenizer, a kneader, a roll, a bead mill, and a self-revolving stirrer can be used. Further, after stirring and mixing, defoaming may be performed under vacuum.
  • the rubber particles are prepared by dispersing the rubber particles in the alicyclic epoxy compound (A) in advance (the composition is referred to as “rubber”). It is preferable to blend in a state of “sometimes referred to as a“ particle-dispersed epoxy compound ””. That is, when rubber particles are blended in the curable epoxy resin composition of the present invention, the curable epoxy resin composition of the present invention contains the rubber particle-dispersed epoxy compound, the monoallyl diglycidyl isocyanurate compound (B), It is preferable to prepare by mixing the stress relaxation agent (C) and other components as necessary. Such a preparation method can particularly improve the dispersibility of the rubber particles in the curable epoxy resin composition.
  • the blending method of the rubber particles is not limited to the above method, and may be a method of blending alone.
  • the rubber particle-dispersed epoxy compound is obtained by dispersing the rubber particles in the alicyclic epoxy compound (A).
  • the alicyclic epoxy compound (A) in the rubber particle-dispersed epoxy compound may be the total amount of the alicyclic epoxy compound (A) constituting the curable epoxy resin composition, or may be a partial amount. There may be.
  • the rubber particles in the rubber particle-dispersed epoxy compound may be the total amount of rubber particles constituting the curable epoxy resin composition, or may be a partial amount.
  • the viscosity of the rubber particle-dispersed epoxy compound can be adjusted, for example, by using a reactive diluent together (that is, the rubber particle-dispersed epoxy compound may further contain a reactive diluent).
  • a reactive diluent for example, an aliphatic polyglycidyl ether having a viscosity at room temperature (25 ° C.) of 200 mPa ⁇ s or less can be preferably used.
  • Examples of the aliphatic polyglycidyl ether having a viscosity (25 ° C.) of 200 mPa ⁇ s or less include cyclohexane dimethanol diglycidyl ether, cyclohexane diol diglycidyl ether, neopentyl glycol diglycidyl ether, and 1,6-hexanediol diglycidyl ether. , Trimethylolpropane triglycidyl ether, polypropylene glycol diglycidyl ether, and the like.
  • the usage-amount of the said reactive diluent can be adjusted suitably, and is not specifically limited.
  • the method for producing the rubber particle-dispersed epoxy compound is not particularly limited, and a well-known and commonly used method can be used. For example, after the rubber particles are dehydrated and dried to form powder, the rubber particles are mixed and dispersed in the alicyclic epoxy compound (A), or the emulsion of rubber particles and the alicyclic epoxy compound (A) are directly mixed. Subsequently, a method of dehydrating and the like can be mentioned.
  • the curable epoxy resin composition of the present invention is preferably liquid at 25 ° C.
  • the viscosity at 25 ° C. of the curable epoxy resin composition of the present invention is not particularly limited, but is preferably 100 to 10,000 mPa ⁇ s, more preferably 200 to 9000 mPa ⁇ s, and still more preferably 300 to 8000 mPa ⁇ s.
  • the viscosity of the curable epoxy resin composition at 25 ° C. is, for example, using a digital viscometer (model number “DVU-EII type”, manufactured by Tokimec Co., Ltd.), rotor: standard 1 ° 34 ′ ⁇ R24, temperature : Measured under conditions of 25 ° C. and rotation speed: 0.5 to 10 rpm.
  • the curable epoxy resin composition of the present invention By curing the curable epoxy resin composition of the present invention, it has high transparency, heat resistance, light resistance, and reflow resistance, excellent thermal shock resistance, especially at high temperatures and high humidity of optical semiconductor devices.
  • a cured product capable of improving current-carrying characteristics and moisture absorption reflow resistance (a cured product obtained by curing the curable epoxy resin composition of the present invention may be referred to as “cured product of the present invention”). be able to.
  • the curing means known or conventional means such as heat treatment or light irradiation treatment can be used.
  • the temperature for curing by heating is not particularly limited, but is preferably 45 to 200 ° C, more preferably 50 to 190 ° C, and still more preferably 55 to 180 ° C.
  • the heating time (curing time) for curing is not particularly limited, but is preferably 30 to 600 minutes, more preferably 45 to 540 minutes, and further preferably 60 to 480 minutes.
  • the curing temperature and the curing time are lower than the lower limit value in the above range, curing is insufficient.
  • the curing temperature and the curing time are higher than the upper limit value in the above range, the resin component may be decomposed.
  • the curing conditions depend on various conditions, for example, when the curing temperature is increased, the curing time can be shortened, and when the curing temperature is decreased, the curing time can be appropriately increased.
  • hardening can also be performed in one step and can also be performed in two or more steps.
  • the curable epoxy resin composition of the present invention is a resin composition for sealing an optical semiconductor element in an optical semiconductor device, that is, an optical semiconductor sealing resin composition (an optical semiconductor element sealing agent in an optical semiconductor device). ) Can be preferably used.
  • an optical semiconductor sealing resin composition an optical semiconductor element sealing agent in an optical semiconductor device.
  • the curable epoxy resin composition of the present invention has high transparency, heat resistance, light resistance, and reflow resistance, excellent thermal shock resistance, especially light
  • An optical semiconductor device in which an optical semiconductor element is sealed with a cured product capable of improving current-carrying characteristics and moisture absorption reflow resistance at high temperatures and high humidity of the semiconductor device is obtained.
  • the above optical semiconductor device is less likely to decrease in light intensity even when subjected to thermal shock, high temperature heat or high humidity conditions, and when it is subjected to heat treatment in a reflow process after absorbing moisture for a certain period of time under high humidity conditions In addition, cracks and peeling are unlikely to occur, and durability is high.
  • the optical semiconductor device of the present invention is an optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable epoxy resin composition (resin composition for optical semiconductor sealing) of the present invention.
  • the optical semiconductor element can be sealed, for example, by injecting the curable epoxy resin composition prepared by the above-described method into a predetermined mold and heat-curing under predetermined conditions. Thereby, the optical semiconductor device with which the optical semiconductor element was sealed with the hardened
  • the curing temperature and the curing time can be appropriately set within the same range as when the cured product is prepared.
  • the curable epoxy resin composition of the present invention is not limited to the above-described optical semiconductor element sealing application, and includes, for example, an optical pickup sensor, an adhesive, an electrical insulating material, a laminate, a coating, an ink, a paint, a sealant, and a resist.
  • Composite materials, transparent substrates, transparent sheets, transparent films, optical elements, optical lenses, optical members, stereolithography, electronic paper, touch panels, solar cell substrates, optical waveguides, light guide plates, holographic memories, etc. can do.
  • Production Example 1 Manufacture of rubber particles
  • 500 g of ion-exchanged water and 0.68 g of sodium dioctylsulfosuccinate were charged, and the temperature was raised to 80 ° C. while stirring under a nitrogen stream.
  • a monomer mixture composed of 9.5 g of butyl acrylate, 2.57 g of styrene, and 0.39 g of divinylbenzene corresponding to about 5% by weight of the amount required to form the core portion of the rubber particles.
  • the obtained latex was frozen at ⁇ 30 ° C., dehydrated and washed with a suction filter, and then blown and dried at 60 ° C. overnight to obtain rubber particles.
  • the resulting rubber particles had an average particle size of 254 nm and a maximum particle size of 486 nm.
  • the average particle size and the maximum particle size of the rubber particles are determined based on a nanotrac TM particle size distribution measuring device (trade name “UPA-EX150”, manufactured by Nikkiso Co., Ltd.) using the dynamic light scattering method as a measurement principle. ) was used to measure the sample, and in the obtained particle size distribution curve, the average particle size, which is the particle size when the cumulative curve becomes 50%, is the average particle size, and the frequency (%) of the particle size distribution measurement result is 0 The maximum particle size at the time of exceeding 0.000 was defined as the maximum particle size.
  • a nanotrac TM particle size distribution measuring device (trade name “UPA-EX150”, manufactured by Nikkiso Co., Ltd.) using the dynamic light scattering method as a measurement principle. ) was used to measure the sample, and in the obtained particle size distribution curve, the average particle size, which is the particle size when the cumulative curve becomes 50%, is the average particle size, and the frequency (%) of the particle size distribution measurement result is 0
  • Production Example 2 (Manufacture of rubber particle-dispersed epoxy compounds) 10 parts by weight of the rubber particles obtained in Production Example 1 were dispersed in 70 parts by weight of a trade name “Celoxide 2021P” (manufactured by Daicel Corporation) using a dissolver while being heated to 60 ° C. in a nitrogen stream. (1000 rpm, 60 minutes) and vacuum degassing to obtain a rubber particle-dispersed epoxy compound (viscosity at 25 ° C .: 1356 mPa ⁇ s). The viscosity at 25 ° C.
  • Example 1 First, the product name “Celoxide 2021P” (manufactured by Daicel Corporation), the product name “MA-DGIC” (manufactured by Shikoku Kasei Kogyo Co., Ltd.), The name “KMP-600” (manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed evenly using a self-revolving stirrer (trade name “Awatori Nerita AR-250”, manufactured by Shinky Co., Ltd.) Defoaming was performed to produce an epoxy resin. The above mixing was carried out with stirring at 80 ° C. for 1 hour in order to dissolve MA-DGIC.
  • the revolution ratio stirrer (trade name “Awatori”) was prepared by combining the epoxy resin obtained above and the epoxy curing agent obtained in Production Example 3 so that the blending ratio (unit: parts by weight) shown in Table 1 was obtained.
  • the mixture was uniformly mixed and defoamed to obtain a curable epoxy resin composition.
  • the curable epoxy resin composition obtained above was cast into an optical semiconductor lead frame (InGaN element, 3.5 mm ⁇ 2.8 mm) shown in FIG. 1, and then in an oven (resin curing oven) at 120 ° C.
  • FIG. 1 100 is a reflector (light reflecting resin composition), 101 is a metal wiring, 102 is an optical semiconductor element, 103 is a bonding wire, and 104 is a cured product (sealing material).
  • Example 2 to 9 Comparative Examples 1 to 6 A curable epoxy resin composition was prepared in the same manner as in Example 1 except that the composition of the curable epoxy resin composition was changed to the composition shown in Table 1.
  • Example 9 the rubber particle-dispersed epoxy compound obtained in Production Example 2 was used as a constituent component of the epoxy resin. Further, in the same manner as in Example 1, an optical semiconductor device in which an optical semiconductor element was sealed with a cured product was produced.
  • Example 10 First, the product name “Celoxide 2021P” (manufactured by Daicel Corporation), the product name “MA-DGIC” (manufactured by Shikoku Kasei Kogyo Co., Ltd.), The name “KMP-600” (manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed evenly using a self-revolving stirrer (trade name “Awatori Nerita AR-250”, manufactured by Shinky Co., Ltd.) Defoaming was performed to produce an epoxy resin. In addition, the said mixing was implemented by stirring at 80 degreeC for 1 hour.
  • the epoxy resin obtained above and the trade name “Sun-Aid SI-100L” (manufactured by Sanshin Chemical Industry Co., Ltd.) were revolved so that the blending ratio (unit: parts by weight) shown in Table 2 was obtained.
  • a curable epoxy resin composition was obtained by uniformly mixing and defoaming using an agitator (trade name “Awatori Nertaro AR-250”, manufactured by Shinky Co., Ltd.). Further, the curable epoxy resin composition obtained above was cast into an optical semiconductor lead frame (InGaN element, 3.5 mm ⁇ 2.8 mm) shown in FIG. 1, and then in an oven (resin curing oven) at 120 ° C. By curing by heating for 5 hours, an optical semiconductor device in which an optical semiconductor element was sealed with a cured product of the curable epoxy resin composition was obtained.
  • Example 11 to 18, Comparative Examples 7 to 12 A curable epoxy resin composition was prepared in the same manner as in Example 10 except that the composition of the curable epoxy resin composition was changed to the composition shown in Table 2.
  • Example 18 the rubber particle-dispersed epoxy compound obtained in Production Example 2 was used as a constituent component of the epoxy resin. Further, in the same manner as in Example 10, an optical semiconductor device in which an optical semiconductor element was sealed with a cured product was produced.
  • Luminance retention [%] heat resistance test
  • Luminance retention [%] heat resistance and humidity resistance test
  • ⁇ Luminance retention [%] (heat resistance test) ⁇ ⁇ Total luminous flux after 100 hours (heat resistance test) (lm) ⁇ / ⁇ total luminous flux for 0 hour (lm) ⁇ ⁇ 100
  • ⁇ Luminance retention [%] (heat and humidity resistance test) ⁇ ⁇ Total luminous flux after 100 hours (heat and humidity resistance test) (lm) ⁇ / ⁇ total luminous flux for 0 hour (lm) ⁇ ⁇ 100
  • FIG. 2 shows an example of a surface temperature profile (temperature profile in one of the two heat treatments) of the optical semiconductor device when heated by the reflow furnace. Thereafter, the optical semiconductor device was observed using a digital microscope (trade name “VHX-900”, manufactured by Keyence Co., Ltd.), whether or not a crack having a length of 90 ⁇ m or more occurred in the cured product, and It was evaluated whether or not electrode peeling (peeling of the cured product from the electrode surface) occurred.
  • the number of optical semiconductor devices in which a crack having a length of 90 ⁇ m or more occurred in the cured product is shown in the column of “Solder heat resistance test [number of cracks]” in Tables 1 and 2.
  • the number of the generated optical semiconductor devices is shown in the column of “Solder heat resistance test [electrode peeling number]” in Tables 1 and 2.
  • Thermal shock test The optical semiconductor devices obtained in Examples and Comparative Examples (5 were used for each curable epoxy resin composition) were exposed in an atmosphere of ⁇ 40 ° C. for 30 minutes, and subsequently in an atmosphere of 150 ° C. A thermal shock with one cycle of exposure to 30 minutes was applied for 200 cycles using a thermal shock tester. Thereafter, the length of cracks generated in the cured product in the optical semiconductor device was observed using a digital microscope (trade name “VHX-900”, manufactured by Keyence Corporation), and among the five optical semiconductor devices, The number of optical semiconductor devices in which cracks having a length of 90 ⁇ m or more occurred in the cured product was measured. The results are shown in the column of “thermal shock test [number of cracks]” in Tables 1 and 2.
  • Conductivity test luminous intensity retention rate (heat resistance test) is 85% or more
  • Conductivity test luminous intensity retention rate (heat resistance and humidity resistance test) is 85% or more
  • Solder heat resistance test 90 ⁇ m in length on the cured product The number of optical semiconductor devices in which the above cracks occurred was zero
  • Solder heat resistance test the number of optical semiconductor devices in which electrode peeling occurred was zero
  • Thermal shock test 90 ⁇ m or more in length on the cured product The number of the optical semiconductor devices in which the cracks occurred is 0. The results are shown in the “Comprehensive judgment” column of Tables 1 and 2.
  • Example and the comparative example is as follows.
  • MA-DGIC Trade name “MA-DGIC” [monoallyl diglycidyl Isocyanurate], Shikoku Kasei Kogyo Co., Ltd.
  • YD-128 trade name “YD-128” [bisphenol A type epoxy resin], manufactured by Nippon Steel Chemical Co., Ltd.
  • KMP-600 trade name “KMP-600” [crosslinked polydimethylsiloxane with silicone resin on the surface], manufactured by Shin-Etsu Chemical Co., Ltd.
  • KMP-602 trade name “KMP-602” [silicone resin on the surface Prepared cross-linked polydimethylsiloxane], manufactured by Shin-Etsu Chemical Co., Ltd.
  • SF8421 trade name “SF8421” [polyalkylene ether-modified silicone compound represented by formula (2)], manufactured by Toray Dow Corning Co., Ltd.
  • Test equipment Resin curing oven Espec Co., Ltd. GPHH-201 -Thermostatic chamber ESPEC Co., Ltd. Small high temperature chamber ST-120B1 ⁇ Total luminous flux measuring machine Optronic Laboratories Multi-spectral Radiation Measurement System OL771 ⁇ Thermal shock tester Espec Co., Ltd. Small thermal shock device TSE-11-A ⁇ Reflow furnace manufactured by Nippon Antom Co., Ltd., UNI-5016F
  • Alicyclic epoxy compound (A) and the following formula (1) [Wherein, R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms (preferably a hydrogen atom).
  • the curable epoxy resin composition characterized by including the monoallyl diglycidyl isocyanurate compound (B) represented by these, and a stress relaxation agent (C).
  • the alicyclic epoxy compound (A) has (i) a compound having an epoxy group (alicyclic epoxy group) composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring, and (ii) ) The curable epoxy resin composition according to the above [1], comprising at least one selected from the group consisting of compounds in which an epoxy group is directly bonded to the alicyclic ring with a single bond. [3] The curable epoxy resin composition according to the above [1] or [2], wherein the alicyclic epoxy compound (A) includes a compound having a cyclohexene oxide group.
  • the linking group is a divalent hydrocarbon group, an alkenylene group in which part or all of the carbon-carbon double bond is epoxidized, a carbonyl group, an ether bond, an ester bond, a carbonate group, an amide group, or these
  • the curable epoxy resin composition according to the above [4], wherein is a group in which a plurality of are connected.
  • the alicyclic epoxy compound represented by the formula (I) is a compound represented by the following formulas (I-1) to (I-10), bis (3,4-epoxycyclohexylmethyl) ether, 1,2-bis (3,4-epoxycyclohexane-1-yl) ethane, 1,2-epoxy-1,2-bis (3,4-epoxycyclohexane-1-yl) ethane, and 2,2-bis
  • the curable epoxy resin composition according to the above [4] or [5] which is at least one selected from the group consisting of (3,4-epoxycyclohexane-1-yl) propane.
  • R in the above formula (I-5) is an alkylene group having 1 to 8 carbon atoms (preferably a linear or branched alkylene group having 1 to 3 carbon atoms).
  • n1 to n6 each represents an integer of 1 to 30.
  • the alicyclic epoxy compound (A) is represented by the following formula (I-1)
  • R 4 represents a p-valent organic group.
  • p represents an integer of 1 to 20.
  • q represents an integer of 1 to 50. When p is an integer greater than or equal to 2, several q may be the same and may differ.
  • the sum (total) of q in the formula (II) is an integer of 3 to 100.
  • R 5 represents any one of groups represented by the following formulas (IIa) to (IIc). At least one of R 5 is a group represented by the formula (IIa).
  • R 6 represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkylcarbonyl group, or a substituted or unsubstituted arylcarbonyl group.)] [9]
  • the ratio of the group represented by the formula (IIa) to the total amount (100 mol%) of R 5 in the compound represented by the formula (II) is 40 mol% or more (preferably 60 mol% or more, more
  • Composition. [11] In any one of the above [8] to [10], the epoxy group equivalent (epoxy equivalent) of the compound represented by the formula (II) is 50 to 1000 (preferably 100 to 500).
  • the content (blending amount) of the alicyclic epoxy compound (A) is 10 to 95% by weight (preferably 15 to 90% by weight) with respect to the total amount (100% by weight) of the curable epoxy resin composition.
  • the ratio of the alicyclic epoxy compound (A) to the total amount (100% by weight) of the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B) is 20 to 99% by weight (preferably The curable epoxy resin composition according to any one of [1] to [12] above, which is 30 to 95% by weight, more preferably 40 to 95% by weight.
  • the content (blending amount) of the monoallyl diglycidyl isocyanurate compound (B) is 5 to 120 parts by weight (preferably 5 to 110 parts by weight) with respect to 100 parts by weight of the alicyclic epoxy compound (A).
  • the curable epoxy resin composition according to any one of [1] to [13] above, more preferably 5 to 105 parts by weight.
  • the ratio of the monoallyl diglycidyl isocyanurate compound (B) to the total amount (100% by weight) of the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B) is 1 to 60
  • the stress relaxation agent (C) is selected from the group consisting of silicone rubber particles (C1), silicone oil (C2), liquid rubber component (C3), inorganic filler (C4), and thermoplastic resin (C5).
  • the stress relaxation agent (C) is at least one selected from the group consisting of silicone rubber particles (C1) and silicone oil (C2).
  • a polyalkylene ether-modified silicone compound (hereinafter referred to as “polyalkylene ether-modified silicone compound (2)”) wherein the silicone oil (C2) has a structure represented by the following formula (2) having an epoxy equivalent of 3000 to 15000:
  • the curable epoxy resin composition according to any one of [16] to [20] above.
  • x is an integer from 80 to 140
  • y is an integer from 1 to 5
  • z is an integer from 5 to 20.
  • R 3 is an alkylene group having 2 or 3 carbon atoms (preferably a trimethylene group).
  • A is a polyalkylene ether group having a structure represented by the following formula (2a). (Wherein, a and b are each independently an integer of 0 to 40.
  • the content (blending amount) of the stress relaxation agent (C) is 0.1 to 100 parts by weight (preferably 0.1 to 50 parts by weight) with respect to 100 parts by weight of the alicyclic epoxy compound (A).
  • the content of the stress relaxation agent (C) relative to the total amount (100 parts by weight) of the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B) is 0.1 to 20 parts by weight
  • the curing agent (D) is an anhydride of a saturated monocyclic hydrocarbon dicarboxylic acid (including those having a substituent such as an alkyl group bonded to the ring).
  • the curable epoxy resin composition according to one.
  • the content (blending amount) of the curing agent (D) is 50 to 200 parts by weight (preferably 80 to 200 parts by weight based on 100 parts by weight of the total amount of compounds having an epoxy group contained in the curable epoxy resin composition). 150 parts by weight), the curable epoxy resin composition according to any one of the above [26] to [29].
  • the content (blending amount) of the curing accelerator (E) is 0.01 to 5 parts by weight (preferably with respect to 100 parts by weight of the total amount of compounds having an epoxy group contained in the curable epoxy resin composition). Is 0.02 to 3 parts by weight, more preferably 0.03 to 2 parts by weight).
  • the curable epoxy resin composition according to any one of [26] to [30] above.
  • the content (blending amount) of the curing catalyst (F) is 0.01 to 5 parts by weight (preferably with respect to 100 parts by weight of the total amount of compounds having epoxy groups contained in the curable epoxy resin composition).
  • the rubber particles other than silicone rubber particles are rubber particles having a multilayer structure (core-shell structure) composed of a core portion having rubber elasticity and at least one shell layer covering the core portion. 34].
  • the refractive index of the rubber particles other than the silicone rubber particles is 1.40 to 1.60 (preferably 1.42 to 1.58).
  • the difference between the refractive index of rubber particles other than silicone rubber particles and the refractive index of a cured product obtained by curing a curable epoxy resin composition containing the rubber particles is within ⁇ 0.03.
  • the content (blending amount) of rubber particles other than silicone rubber particles is 0.5 to 30 parts by weight with respect to 100 parts by weight of the total amount of compounds having epoxy groups contained in the curable epoxy resin composition (
  • the curable resin composition of the present invention can be preferably used as a material (sealing agent) for forming a sealing material for an optical semiconductor element (LED element) in an optical semiconductor device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The purpose of the present invention is to provide a curable epoxy resin composition with which it is possible to form a cured product that has high heat resistance, light stability, thermal shock resistance, and reflow resistance, and that in particular can enhance the conductivity characteristics and moisture-preconditioning reflow resistance of an optical semiconductor device in high temperatures and high humidity. The present invention provides a curable epoxy resin composition which is characterized by including an alicyclic epoxy compound (A), a monoallyl diglycidyl isocyanurate compound (B) represented by formula (1), and a stress relaxer (C). The stress relaxer (C) is preferably selected from the group consisting of silicone rubber particles (C1) and silicone oils (C2). [In the formula, R1 and R2 are the same or different, and represent a hydrogen atom or a C1–8 alkyl group.]

Description

硬化性エポキシ樹脂組成物Curable epoxy resin composition
 本発明は、硬化性エポキシ樹脂組成物、該硬化性エポキシ樹脂組成物を硬化させて得られる硬化物、及び該硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置に関する。本願は、2017年1月23日に日本に出願した、特願2017-009858の優先権を主張し、その内容をここに援用する。 The present invention relates to a curable epoxy resin composition, a cured product obtained by curing the curable epoxy resin composition, and an optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable epoxy resin composition. About. This application claims the priority of Japanese Patent Application No. 2017-009858 filed in Japan on January 23, 2017, the contents of which are incorporated herein by reference.
 近年、光半導体装置の高出力化が進んでおり、このような光半導体装置において光半導体素子を被覆する樹脂(封止材)には、高い耐熱性や耐光性が求められている。従来、耐熱性が高い封止材を形成するための封止剤として、例えば、モノアリルジグリシジルイソシアヌレートとビスフェノールA型エポキシ樹脂を含む組成物が知られている(特許文献1参照)。しかしながら、上記組成物を高出力の青色・白色光半導体用の封止剤として用いた場合には、光半導体素子から発せられる光及び熱、高湿度条件によって封止材の着色が進行し、本来出力されるべき光が吸収されてしまい、その結果、光半導体装置から出力される光の光度が経時で低下するという問題が生じていた。 In recent years, the output of optical semiconductor devices has been increased, and high heat resistance and light resistance are required for the resin (encapsulant) covering the optical semiconductor element in such an optical semiconductor device. Conventionally, as a sealing agent for forming a sealing material having high heat resistance, for example, a composition containing monoallyl diglycidyl isocyanurate and a bisphenol A type epoxy resin is known (see Patent Document 1). However, when the above composition is used as a sealant for a high-output blue / white light semiconductor, the coloring of the sealant progresses depending on light and heat emitted from the optical semiconductor element and high humidity conditions. The light to be output is absorbed, and as a result, there is a problem that the luminous intensity of the light output from the optical semiconductor device decreases with time.
 高い耐熱性及び耐光性を有し、黄変しにくい硬化物(封止材)を形成する封止剤として、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレートとε-カプロラクトンの付加物、1,2,8,9-ジエポキシリモネン等の脂環骨格を有する液状の脂環式エポキシ樹脂が知られている。しかし、これらの脂環式エポキシ樹脂の硬化物は各種応力に弱く、冷熱サイクル(加熱と冷却を周期的に繰り返すこと)のような熱衝撃が加えられた場合に、クラック(ひび割れ)が発生する等の問題が生じていた。 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate, 3,4 as a sealing agent that forms a cured product (sealing material) that has high heat resistance and light resistance and is not easily yellowed. -Liquid alicyclic epoxy resins having an alicyclic skeleton such as an adduct of epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate and ε-caprolactone and 1,2,8,9-diepoxylimonene are known. ing. However, the cured products of these alicyclic epoxy resins are susceptible to various stresses, and cracks are generated when a thermal shock such as a cooling cycle (repeating heating and cooling periodically) is applied. Etc. had occurred.
 また、光半導体装置(例えば、表面実装型の光半導体装置)は、はんだ付けにより光半導体装置の電極を配線基板に接合するためのリフロー工程を経るのが一般的である。近年、接合材としてのはんだとして、融点の高い無鉛はんだが使用されるようになってきており、リフロー工程での加熱処理がより高温(例えば、ピーク温度が240~260℃)になってきている。このような状況下、従来の光半導体装置においては、リフロー工程での加熱処理により封止材が光半導体装置のリードフレームから剥離したり、封止材にクラックが生じたりする等の劣化の問題が生じていた。 Also, an optical semiconductor device (for example, a surface-mount type optical semiconductor device) generally undergoes a reflow process for joining the electrodes of the optical semiconductor device to a wiring board by soldering. In recent years, lead-free solder having a high melting point has been used as a solder as a bonding material, and the heat treatment in the reflow process has become a higher temperature (for example, the peak temperature is 240 to 260 ° C.). . Under such circumstances, in the conventional optical semiconductor device, there is a problem of deterioration such that the sealing material is peeled off from the lead frame of the optical semiconductor device due to the heat treatment in the reflow process, or the sealing material is cracked. Has occurred.
 このため、光半導体装置における封止材には、高い耐熱性、耐光性に加え、熱衝撃が加えられた場合にもクラックが生じにくい特性(「耐熱衝撃性」と称する場合がある)、及び、リフロー工程において加熱処理された際にもクラックや剥離が生じにくい特性(「耐リフロー性」と称する場合がある)が求められている。特に、近年、封止材のより高い信頼性確保の観点から、光半導体装置を高湿条件下で一定時間(例えば、30℃、60%RHの条件下で192時間;60℃、60%RHの条件下で52時間等)置いて吸湿させた後にリフロー工程で加熱処理した場合にもなお上述のクラックや剥離が生じにくいこと(このような特性を「耐吸湿リフロー性」と称する場合がある)も求められている。 For this reason, the sealing material in the optical semiconductor device has high heat resistance and light resistance, and also has a characteristic that cracks are not easily generated when a thermal shock is applied (sometimes referred to as “thermal shock resistance”), and In addition, there is a demand for characteristics (sometimes referred to as “reflow resistance”) that are less likely to cause cracking or peeling even when heat-treated in the reflow process. In particular, in recent years, from the viewpoint of ensuring higher reliability of the sealing material, the optical semiconductor device is kept under high humidity conditions for a certain time (for example, 192 hours under conditions of 30 ° C. and 60% RH; 60 ° C., 60% RH). The above-mentioned cracks and peeling are not likely to occur even when heat treatment is performed in the reflow process after placing and absorbing moisture under the above conditions (such as 52 hours) (this characteristic is sometimes referred to as “moisture absorption reflow resistance”). ) Is also required.
特開2000-344867号公報JP 2000-344867 A
 従って、本発明の目的は、高い耐熱性、耐光性、耐熱衝撃性、及び耐リフロー性を有し、特に、光半導体装置の高温、高湿度における通電特性及び耐吸湿リフロー性を向上させることが可能な硬化物を形成できる硬化性エポキシ樹脂組成物を提供することにある。
 また、本発明の他の目的は、高い耐熱性、耐光性、耐熱衝撃性、及び耐リフロー性を有し、特に、光半導体装置の高温、高湿度における通電特性及び耐吸湿リフロー性を向上させることが可能な硬化物を提供することにある。
 また、本発明の他の目的は、高温、高湿度における通電特性に優れ、さらに高湿条件下で保管された後にリフロー工程で加熱処理した場合の光度低下等の劣化が抑制された、耐久性及び品質の高い光半導体装置を提供することにある。
Accordingly, an object of the present invention is to have high heat resistance, light resistance, thermal shock resistance, and reflow resistance, and in particular, to improve the current-carrying characteristics and moisture absorption reflow resistance of optical semiconductor devices at high temperatures and high humidity. It is providing the curable epoxy resin composition which can form a possible hardened | cured material.
Another object of the present invention is to have high heat resistance, light resistance, thermal shock resistance and reflow resistance, and in particular, to improve the current-carrying characteristics and moisture absorption reflow resistance of optical semiconductor devices at high temperatures and high humidity. It is in providing the hardened | cured material which can be performed.
In addition, another object of the present invention is excellent in current-carrying characteristics at high temperature and high humidity, and further suppressed deterioration such as a decrease in luminous intensity when heat-treated in a reflow process after being stored under high humidity conditions. Another object is to provide a high-quality optical semiconductor device.
 本発明者は、上記課題を解決するため鋭意検討した結果、脂環式エポキシ化合物と、モノアリルジグリシジルイソシアヌレート化合物と、応力緩和剤とを含む硬化性エポキシ樹脂組成物が、高い耐熱性、耐光性、耐熱衝撃性、及び耐リフロー性を有し、特に、光半導体装置の高温、高湿度における通電特性及び耐吸湿リフロー性を向上させることが可能な硬化物を形成できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have found that a curable epoxy resin composition containing an alicyclic epoxy compound, a monoallyl diglycidyl isocyanurate compound, and a stress relaxation agent has high heat resistance, It has been found that a cured product having light resistance, thermal shock resistance, and reflow resistance can be formed, and in particular, a cured product capable of improving current-carrying characteristics and moisture absorption reflow resistance at high temperatures and high humidity of an optical semiconductor device can be formed. Was completed.
 すなわち、本発明は、脂環式エポキシ化合物(A)と、下記式(1)
Figure JPOXMLDOC01-appb-C000005
[式中、R1、R2は、同一又は異なって、水素原子又は炭素数1~8のアルキル基を示す。]
で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、応力緩和剤(C)とを含むことを特徴とする硬化性エポキシ樹脂組成物を提供する。
That is, the present invention relates to an alicyclic epoxy compound (A) and the following formula (1).
Figure JPOXMLDOC01-appb-C000005
[Wherein R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. ]
The curable epoxy resin composition characterized by including the monoallyl diglycidyl isocyanurate compound (B) represented by these, and a stress relaxation agent (C) is provided.
 前記硬化性エポキシ樹脂組成物において、前記応力緩和剤(C)は、シリコーンゴム粒子(C1)及びシリコーンオイル(C2)からなる群より選択される少なくとも1種であってもよい。 In the curable epoxy resin composition, the stress relaxation agent (C) may be at least one selected from the group consisting of silicone rubber particles (C1) and silicone oil (C2).
 前記硬化性エポキシ樹脂組成物において、前記シリコーンゴム粒子(C1)は、シリコーンレジンを表面に備える架橋されたポリジメチルシロキサンであってもよい。 In the curable epoxy resin composition, the silicone rubber particles (C1) may be cross-linked polydimethylsiloxane having a silicone resin on the surface.
 前記硬化性エポキシ樹脂組成物において、前記シリコーンオイル(C2)は、エポキシ当量3000~15000の下記式(2)で表される構造を有するポリアルキレンエーテル変性シリコーン化合物であってもよい。
Figure JPOXMLDOC01-appb-C000006
[式中、xは80~140の整数、yは1~5の整数、zは5~20の整数である。R3は炭素数2又は3のアルキレン基である。Aは、下記式(2a)で表される構造を有するポリアルキレンエーテル基である。
Figure JPOXMLDOC01-appb-C000007
(式中、a及びbはそれぞれ独立して、0~40の整数である。Bは水素原子またはメチル基である。)]
In the curable epoxy resin composition, the silicone oil (C2) may be a polyalkylene ether-modified silicone compound having a structure represented by the following formula (2) having an epoxy equivalent of 3000 to 15000.
Figure JPOXMLDOC01-appb-C000006
[Wherein x is an integer from 80 to 140, y is an integer from 1 to 5, and z is an integer from 5 to 20. R 3 is an alkylene group having 2 or 3 carbon atoms. A is a polyalkylene ether group having a structure represented by the following formula (2a).
Figure JPOXMLDOC01-appb-C000007
(In the formula, a and b are each independently an integer of 0 to 40. B is a hydrogen atom or a methyl group.)]
 前記硬化性エポキシ樹脂組成物において、前記脂環式エポキシ化合物(A)は、シクロヘキセンオキシド基を有する化合物であってもよい。 In the curable epoxy resin composition, the alicyclic epoxy compound (A) may be a compound having a cyclohexene oxide group.
 前記硬化性エポキシ樹脂組成物において、前記脂環式エポキシ化合物(A)は、下記式(I-1)
Figure JPOXMLDOC01-appb-C000008
で表される化合物であってもよい。
In the curable epoxy resin composition, the alicyclic epoxy compound (A) has the following formula (I-1):
Figure JPOXMLDOC01-appb-C000008
The compound represented by these may be sufficient.
 前記硬化性エポキシ樹脂組成物は、さらに、シリコーンゴム粒子以外のゴム粒子を含んでいてもよい。 The curable epoxy resin composition may further contain rubber particles other than silicone rubber particles.
 前記硬化性エポキシ樹脂組成物は、さらに、硬化剤(D)及び硬化促進剤(E)を含んでいてもよい。 The curable epoxy resin composition may further contain a curing agent (D) and a curing accelerator (E).
 前記硬化性エポキシ樹脂組成物は、さらに、硬化触媒(F)を含んでいてもよい。 The curable epoxy resin composition may further contain a curing catalyst (F).
 また、本発明は、前記硬化性エポキシ樹脂組成物の硬化物を提供する。 The present invention also provides a cured product of the curable epoxy resin composition.
 前記硬化性エポキシ樹脂組成物は、光半導体封止用樹脂組成物であってもよい。 The curable epoxy resin composition may be an optical semiconductor sealing resin composition.
 また、本発明は、前記硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置を提供する。 The present invention also provides an optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable epoxy resin composition.
 本発明の硬化性エポキシ樹脂組成物は上記構成を有するため、該樹脂組成物を硬化させることにより、高い耐熱性、耐光性、耐熱衝撃性、及び耐リフロー性を有し、特に、光半導体装置の高温、高湿度における通電特性及び耐吸湿リフロー性を向上させることが可能な硬化物を形成することができる。このため、本発明の硬化性エポキシ樹脂組成物を光半導体封止用樹脂組成物として使用した場合には、特に、高温、高湿度の過酷な条件下において光度低下等の劣化が生じにくく、さらに、高湿条件下で保管した後にリフロー工程で加熱処理した場合でも光度低下等の劣化が生じにくい、耐久性及び品質の高い光半導体装置を得ることができる。 Since the curable epoxy resin composition of the present invention has the above-described configuration, by curing the resin composition, it has high heat resistance, light resistance, thermal shock resistance, and reflow resistance. A cured product capable of improving the current-carrying characteristics and moisture absorption reflow resistance at high temperatures and high humidity can be formed. For this reason, when the curable epoxy resin composition of the present invention is used as a resin composition for sealing an optical semiconductor, deterioration such as a decrease in luminous intensity is unlikely to occur particularly under severe conditions of high temperature and high humidity. In addition, it is possible to obtain a highly durable and high quality optical semiconductor device that is less susceptible to deterioration such as a decrease in luminous intensity even when heat treatment is performed in a reflow process after storage under high humidity conditions.
本発明の硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置の一実施形態を示す概略図である。左側の図(a)は斜視図であり、右側の図(b)は断面図である。It is the schematic which shows one Embodiment of the optical semiconductor device by which the optical semiconductor element was sealed with the hardened | cured material of the curable epoxy resin composition of this invention. The left figure (a) is a perspective view, and the right figure (b) is a sectional view. 実施例のはんだ耐熱性試験における光半導体装置の表面温度プロファイル(二度の加熱処理のうち一方の加熱処理における温度プロファイル)の一例である。It is an example of the surface temperature profile (temperature profile in one heat processing among two heat processing) of the optical semiconductor device in the solder heat resistance test of an Example.
<硬化性エポキシ樹脂組成物>
 本発明の硬化性エポキシ樹脂組成物は、脂環式エポキシ化合物(A)と、下記式(1)で表されるモノアリルジグリシジルイソシアヌレート化合物(B)(「モノアリルジグリシジルイソシアヌレート化合物(B)」と称する場合がある)と、応力緩和剤(C)とを必須成分として含む組成物(硬化性組成物)である。
Figure JPOXMLDOC01-appb-C000009
<Curable epoxy resin composition>
The curable epoxy resin composition of the present invention comprises an alicyclic epoxy compound (A) and a monoallyl diglycidyl isocyanurate compound (B) represented by the following formula (1) (“monoallyl diglycidyl isocyanurate compound ( B) ”) and a stress relaxation agent (C) as essential components (curable composition).
Figure JPOXMLDOC01-appb-C000009
[脂環式エポキシ化合物(A)]
 本発明の硬化性エポキシ樹脂組成物における脂環式エポキシ化合物(脂環式エポキシ樹脂)(A)は、分子内(一分子中)に脂環(脂肪族環)構造とエポキシ基(オキシラニル基)とを少なくとも有する化合物である。本発明の硬化性エポキシ樹脂組成物においては、公知乃至慣用の脂環式エポキシ化合物を使用することができる。脂環式エポキシ化合物(A)としては、具体的には、(i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(脂環エポキシ基)を有する化合物、(ii)脂環にエポキシ基が直接単結合で結合している化合物等が挙げられる。
[Alicyclic epoxy compound (A)]
The alicyclic epoxy compound (alicyclic epoxy resin) (A) in the curable epoxy resin composition of the present invention has an alicyclic (aliphatic ring) structure and an epoxy group (oxiranyl group) in the molecule (in one molecule). And a compound having at least In the curable epoxy resin composition of the present invention, a known or commonly used alicyclic epoxy compound can be used. As the alicyclic epoxy compound (A), specifically, (i) a compound having an epoxy group (alicyclic epoxy group) composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring, (Ii) A compound in which an epoxy group is directly bonded to the alicyclic ring with a single bond, and the like.
 上述の(i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(脂環エポキシ基)を有する化合物としては、分子内に脂環式エポキシ基を1つ以上有する公知乃至慣用の化合物を使用することができ、特に限定されない。中でも、上記脂環エポキシ基としては、シクロヘキセンオキシド基が好ましい。 The compound having an epoxy group (alicyclic epoxy group) composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring (i) has at least one alicyclic epoxy group in the molecule. Any known or commonly used compound can be used without any particular limitation. Especially, as said alicyclic epoxy group, a cyclohexene oxide group is preferable.
 上述の(i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基を有する化合物としては、透明性、耐熱性の観点で、シクロヘキセンオキシド基を有する化合物が好ましく、特に、下記式(I)で表される化合物(脂環式エポキシ化合物)が好ましい。
Figure JPOXMLDOC01-appb-C000010
As the compound (i) having an epoxy group composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring, a compound having a cyclohexene oxide group is preferable from the viewpoint of transparency and heat resistance. In particular, a compound (alicyclic epoxy compound) represented by the following formula (I) is preferable.
Figure JPOXMLDOC01-appb-C000010
 上記式(I)中、Xは単結合又は連結基(1以上の原子を有する二価の基)を示す。上記連結基としては、例えば、二価の炭化水素基、炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基、カルボニル基、エーテル結合、エステル結合、カーボネート基、アミド基、これらが複数個連結した基等が挙げられる。なお、式(I)におけるシクロヘキサン環(シクロヘキセンオキシド基)を構成する炭素原子の1以上には、アルキル基等の置換基が結合していてもよい。 In the above formula (I), X represents a single bond or a linking group (a divalent group having one or more atoms). Examples of the linking group include a divalent hydrocarbon group, an alkenylene group in which part or all of a carbon-carbon double bond is epoxidized, a carbonyl group, an ether bond, an ester bond, a carbonate group, an amide group, and the like. And a group in which a plurality of are connected. In addition, a substituent such as an alkyl group may be bonded to one or more carbon atoms constituting the cyclohexane ring (cyclohexene oxide group) in the formula (I).
 上記式(I)中のXが単結合である化合物としては、(3,4,3',4'-ジエポキシ)ビシクロヘキサン等が挙げられる。 Examples of the compound in which X in the above formula (I) is a single bond include (3,4,3 ′, 4′-diepoxy) bicyclohexane and the like.
 上記二価の炭化水素基としては、炭素数が1~18の直鎖又は分岐鎖状のアルキレン基、二価の脂環式炭化水素基等が挙げられる。炭素数が1~18の直鎖又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基等が挙げられる。上記二価の脂環式炭化水素基としては、例えば、1,2-シクロペンチレン基、1,3-シクロペンチレン基、シクロペンチリデン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基、シクロヘキシリデン基等の二価のシクロアルキレン基(シクロアルキリデン基を含む)等が挙げられる。 Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms, a divalent alicyclic hydrocarbon group, and the like. Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group. Examples of the divalent alicyclic hydrocarbon group include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1,3-cyclopentylene group, And divalent cycloalkylene groups (including cycloalkylidene groups) such as cyclohexylene group, 1,4-cyclohexylene group and cyclohexylidene group.
 上記炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基(「エポキシ化アルケニレン基」と称する場合がある)におけるアルケニレン基としては、例えば、ビニレン基、プロペニレン基、1-ブテニレン基、2-ブテニレン基、ブタジエニレン基、ペンテニレン基、ヘキセニレン基、ヘプテニレン基、オクテニレン基等の炭素数2~8の直鎖又は分岐鎖状のアルケニレン基等が挙げられる。特に、上記エポキシ化アルケニレン基としては、炭素-炭素二重結合の全部がエポキシ化されたアルケニレン基が好ましく、より好ましくは炭素-炭素二重結合の全部がエポキシ化された炭素数2~4のアルケニレン基である。 Examples of the alkenylene group in the alkenylene group in which part or all of the carbon-carbon double bond is epoxidized (sometimes referred to as “epoxidized alkenylene group”) include, for example, vinylene group, propenylene group, 1-butenylene group And straight-chain or branched alkenylene groups having 2 to 8 carbon atoms such as 2-butenylene group, butadienylene group, pentenylene group, hexenylene group, heptenylene group, octenylene group and the like. In particular, the epoxidized alkenylene group is preferably an alkenylene group in which all of the carbon-carbon double bonds are epoxidized, more preferably 2 to 4 carbon atoms in which all of the carbon-carbon double bonds are epoxidized. Alkenylene group.
 上記連結基Xとしては、特に、酸素原子を含有する連結基が好ましく、具体的には、-CO-、-O-CO-O-、-COO-、-O-、-CONH-、エポキシ化アルケニレン基;これらの基が複数個連結した基;これらの基の1又は2以上と二価の炭化水素基の1又は2以上とが連結した基等が挙げられる。二価の炭化水素基としては上記で例示したものが挙げられる。 The linking group X is particularly preferably a linking group containing an oxygen atom, specifically, —CO—, —O—CO—O—, —COO—, —O—, —CONH—, epoxidation. An alkenylene group; a group in which a plurality of these groups are linked; a group in which one or more of these groups are linked to one or more of divalent hydrocarbon groups, and the like. Examples of the divalent hydrocarbon group include those exemplified above.
 上記式(I)で表される脂環式エポキシ化合物の代表的な例としては、下記式(I-1)~(I-10)で表される化合物、ビス(3,4-エポキシシクロヘキシルメチル)エーテル、1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタン、1,2-エポキシ-1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタン、2,2-ビス(3,4-エポキシシクロヘキサン-1-イル)プロパン等が挙げられる。なお、下記式(I-5)、(I-7)中のl、mは、それぞれ1~30の整数を表す。下記式(I-5)中のRは炭素数1~8のアルキレン基であり、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、s-ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基等の直鎖又は分岐鎖状のアルキレン基が挙げられる。これらの中でも、メチレン基、エチレン基、プロピレン基、イソプロピレン基等の炭素数1~3の直鎖又は分岐鎖状のアルキレン基が好ましい。下記式(I-9)、(I-10)中のn1~n6は、それぞれ1~30の整数を示す。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Representative examples of the alicyclic epoxy compounds represented by the above formula (I) include compounds represented by the following formulas (I-1) to (I-10), bis (3,4-epoxycyclohexylmethyl) ) Ether, 1,2-bis (3,4-epoxycyclohexane-1-yl) ethane, 1,2-epoxy-1,2-bis (3,4-epoxycyclohexane-1-yl) ethane, 2,2 -Bis (3,4-epoxycyclohexane-1-yl) propane and the like. In the following formulas (I-5) and (I-7), l and m each represents an integer of 1 to 30. R in the following formula (I-5) is an alkylene group having 1 to 8 carbon atoms, and is a methylene group, ethylene group, propylene group, isopropylene group, butylene group, isobutylene group, s-butylene group, pentylene group, hexylene. And linear or branched alkylene groups such as a group, a heptylene group, and an octylene group. Among these, linear or branched alkylene groups having 1 to 3 carbon atoms such as a methylene group, an ethylene group, a propylene group, and an isopropylene group are preferable. N1 to n6 in the following formulas (I-9) and (I-10) each represents an integer of 1 to 30.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 上述の(ii)脂環にエポキシ基が直接単結合で結合している化合物としては、例えば、下記式(II)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000013
Examples of the compound (ii) in which the epoxy group is directly bonded to the alicyclic ring with a single bond include compounds represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000013
 上記式(II)中、R4はp価の有機基を示す。pは、1~20の整数を示す。p価の有機基としては、例えば、後述のp個のヒドロキシ基を有する有機化合物の構造式からp個のヒドロキシ基を除いて形成された構造を有するp価の有機基等が挙げられる。 In the above formula (II), R 4 represents a p-valent organic group. p represents an integer of 1 to 20. Examples of the p-valent organic group include a p-valent organic group having a structure formed by removing p hydroxy groups from the structural formula of an organic compound having p hydroxy groups described later.
 式(II)中、qは、1~50の整数を示す。なお、pが2以上の整数の場合、複数のqは同一であってもよいし、異なっていてもよい。式(II)におけるqの和(総和)は、3~100の整数である。 In the formula (II), q represents an integer of 1 to 50. In addition, when p is an integer greater than or equal to 2, several q may be the same and may differ. The sum (total) of q in the formula (II) is an integer of 3 to 100.
 式(II)中、R5は、式中に示されるシクロヘキサン環上の置換基であり、下記式(IIa)~(IIc)で表される基のいずれかを示す。上記シクロヘキサン環上のR5の結合位置は特に限定されないが、通常、酸素原子と結合するシクロヘキサン環の2つの炭素原子の位置を1位、2位とした場合、4位又は5位の炭素原子である。また、式(II)で表される化合物が複数のシクロヘキサン環を有する場合、それぞれのシクロヘキサン環におけるR5の結合位置は同一であってもよいし、異なっていてもよい。式(II)におけるR5の少なくとも1つは、式(IIa)で表される基(エポキシ基)である。なお、式(II)で表される化合物が2以上のR5を有する場合、複数のR5は同一であってもよいし、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
In the formula (II), R 5 is a substituent on the cyclohexane ring shown in the formula, and represents any of the groups represented by the following formulas (IIa) to (IIc). The bonding position of R 5 on the cyclohexane ring is not particularly limited. Usually, when the positions of the two carbon atoms of the cyclohexane ring bonded to the oxygen atom are the 1st and 2nd positions, the carbon atom at the 4th or 5th position It is. When the compound represented by the formula (II) has a plurality of cyclohexane rings, the bonding positions of R 5 in each cyclohexane ring may be the same or different. At least one R 5 in the formula (II) is a group (epoxy group) represented by the formula (IIa). In addition, when the compound represented by formula (II) has two or more R 5 s , a plurality of R 5 s may be the same or different.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 式(IIc)中、R6は、水素原子、置換若しくは無置換のアルキル基、置換若しくは無置換のアルキルカルボニル基、又は置換若しくは無置換のアリールカルボニル基を示す。上記アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、2-エチルヘキシル基等の炭素数1~20の直鎖又は分岐鎖状のアルキル基等が挙げられる。上記アルキルカルボニル基としては、例えば、メチルカルボニル基(アセチル基)、エチルカルボニル基、n-プロピルカルボニル基、イソプロピルカルボニル基、n-ブチルカルボニル基、イソブチルカルボニル基、s-ブチルカルボニル基、t-ブチルカルボニル基等の炭素数1~20の直鎖又は分岐鎖状のアルキル-カルボニル基等が挙げられる。上記アリールカルボニル基としては、例えば、フェニルカルボニル基(ベンゾイル基)、1-ナフチルカルボニル基、2-ナフチルカルボニル基等の炭素数6~20のアリール-カルボニル基等が挙げられる。 In formula (IIc), R 6 represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkylcarbonyl group, or a substituted or unsubstituted arylcarbonyl group. Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, octyl group, and 2-ethylhexyl. Examples thereof include straight-chain or branched alkyl groups having 1 to 20 carbon atoms. Examples of the alkylcarbonyl group include methylcarbonyl group (acetyl group), ethylcarbonyl group, n-propylcarbonyl group, isopropylcarbonyl group, n-butylcarbonyl group, isobutylcarbonyl group, s-butylcarbonyl group, t-butyl. Examples thereof include a linear or branched alkyl-carbonyl group having 1 to 20 carbon atoms such as a carbonyl group. Examples of the arylcarbonyl group include arylcarbonyl groups having 6 to 20 carbon atoms such as a phenylcarbonyl group (benzoyl group), 1-naphthylcarbonyl group, 2-naphthylcarbonyl group, and the like.
 上述のアルキル基、アルキルカルボニル基、アリールカルボニル基が有していてもよい置換基としては、例えば、炭素数0~20(より好ましくは炭素数0~10)の置換基等が挙げられる。上記置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシ基;メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、イソブチルオキシ基等のアルコキシ基(好ましくはC1-6アルコキシ基、より好ましくはC1-4アルコキシ基);アリルオキシ基等のアルケニルオキシ基(好ましくはC2-6アルケニルオキシ基、より好ましくはC2-4アルケニルオキシ基);アセチルオキシ基、プロピオニルオキシ基、(メタ)アクリロイルオキシ基等のアシルオキシ基(好ましくはC1-12アシルオキシ基);メルカプト基;メチルチオ基、エチルチオ基等のアルキルチオ基(好ましくはC1-6アルキルチオ基、より好ましくはC1-4アルキルチオ基);アリルチオ基等のアルケニルチオ基(好ましくはC2-6アルケニルチオ基、より好ましくはC2-4アルケニルチオ基);カルボキシ基;メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基等のアルコキシカルボニル基(好ましくはC1-6アルコキシ-カルボニル基);アミノ基;メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジエチルアミノ基等のモノ又はジアルキルアミノ基(好ましくはモノ又はジ-C1-6アルキルアミノ基);アセチルアミノ基、プロピオニルアミノ基等のアシルアミノ基(好ましくはC1-11アシルアミノ基);エチルオキセタニルオキシ基等のオキセタニル基含有基;アセチル基、プロピオニル基等のアシル基;オキソ基;これらの2以上が必要に応じてC1-6アルキレン基を介して結合した基等が挙げられる。また、上述のアリールカルボニル基が有していてもよい置換基としては、さらに、上記置換若しくは無置換のアルキル基、上記置換若しくは無置換のアルキルカルボニル基も挙げられる。 Examples of the substituent that the above-described alkyl group, alkylcarbonyl group, and arylcarbonyl group may have include a substituent having 0 to 20 carbon atoms (more preferably 0 to 10 carbon atoms). Examples of the substituent include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxy group; alkoxy group such as methoxy group, ethoxy group, propoxy group, isopropyloxy group, butoxy group and isobutyloxy group (Preferably C 1-6 alkoxy group, more preferably C 1-4 alkoxy group); alkenyloxy group such as allyloxy group (preferably C 2-6 alkenyloxy group, more preferably C 2-4 alkenyloxy group) An acyloxy group such as an acetyloxy group, a propionyloxy group and a (meth) acryloyloxy group (preferably a C 1-12 acyloxy group); a mercapto group; an alkylthio group such as a methylthio group and an ethylthio group (preferably a C 1-6 alkylthio group) group, more preferably a C 1-4 alkylthio group); allyl alkenylthio such groups (Preferably C 2-6 alkenylthio group, more preferably C 2-4 alkenylthio group); carboxy; methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, an alkoxycarbonyl group (preferably C such as butoxycarbonyl group 1-6 alkoxy-carbonyl group); amino group; mono- or dialkylamino group such as methylamino group, ethylamino group, dimethylamino group, diethylamino group (preferably mono- or di-C 1-6 alkylamino group); acetyl An acylamino group such as an amino group or a propionylamino group (preferably a C 1-11 acylamino group); an oxetanyl group-containing group such as an ethyl oxetanyloxy group; an acyl group such as an acetyl group or a propionyl group; an oxo group; It includes groups attached via a C 1-6 alkylene group optionally It is. In addition, examples of the substituent that the above-described arylcarbonyl group may have include the above-described substituted or unsubstituted alkyl group and the above-described substituted or unsubstituted alkylcarbonyl group.
 式(II)で表される化合物におけるR5の全量(100モル%)に対する、式(IIa)で表される基(エポキシ基)の割合は、特に限定されないが、40モル%以上(例えば、40~100モル%)が好ましく、より好ましくは60モル%以上、さらに好ましくは80モル%以上である。上記割合が40モル%以上であると、硬化物の耐熱性や耐光性、機械特性等がより向上する傾向がある。なお、上記割合は、例えば、1H-NMRスペクトル測定や、オキシラン酸素濃度測定等により算出することができる。 The ratio of the group (epoxy group) represented by formula (IIa) to the total amount (100 mol%) of R 5 in the compound represented by formula (II) is not particularly limited, but is 40 mol% or more (for example, 40 to 100 mol%) is preferable, more preferably 60 mol% or more, and still more preferably 80 mol% or more. There exists a tendency for the heat resistance of a hardened | cured material, light resistance, a mechanical characteristic, etc. to improve that the said ratio is 40 mol% or more. The above ratio can be calculated by, for example, 1 H-NMR spectrum measurement, oxirane oxygen concentration measurement, or the like.
 式(II)で表される化合物は、特に限定されないが、例えば、分子内にp個のヒドロキシ基を有する有機化合物[R4(OH)p]を開始剤として(即ち、当該化合物のヒドロキシ基(活性水素)を出発点として)、1,2-エポキシ-4-ビニルシクロヘキサン(3-ビニル-7-オキサビシクロ[4.1.0]ヘプタン)を開環重合(カチオン重合)させ、その後、酸化剤によりエポキシ化することによって製造される。 The compound represented by the formula (II) is not particularly limited. For example, an organic compound [R 4 (OH) p ] having p hydroxy groups in the molecule is used as an initiator (that is, the hydroxy group of the compound). (Starting with active hydrogen)), 1,2-epoxy-4-vinylcyclohexane (3-vinyl-7-oxabicyclo [4.1.0] heptane) is subjected to ring-opening polymerization (cationic polymerization), and then Manufactured by epoxidation with an oxidizing agent.
 上記分子内にp個のヒドロキシ基を有する有機化合物[R4(OH)p]としては、例えば、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、オクタノール等の脂肪族アルコール;エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ネオペンチルグリコールエステル、シクロヘキサンジメタノール、グリセリン、ジグリセリン、ポリグリセリン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、水添ビスフェノールA、水添ビスフェノールF、水添ビスフェノールS等の多価アルコール;ポリビニルアルコール、ポリ酢酸ビニル部分加水分解物、デンプン、アクリルポリオール樹脂、スチレン-アリルアルコール共重合樹脂、ポリエステルポリオール、ポリカプロラクトンポリオール、ポリプロピレンポリオール、ポリテトラメチレングリコール、ポリカーボネートポリオール類、ヒドロキシ基を有するポリブタジエン、セルロース、セルロースアセテート、セルロースアセテートブチレート、ヒドロキシエチルセルロース等のセルロース系ポリマー等のヒドロキシ基を有するオリゴマー又はポリマー等が挙げられる。 Examples of the organic compound [R 4 (OH) p ] having p hydroxy groups in the molecule include aliphatic alcohols such as methanol, ethanol, propanol, butanol, pentanol, hexanol, octanol; ethylene glycol, diethylene glycol , Triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, pentanediol, 1,6-hexanediol, neopentyl glycol, neopentyl glycol ester, cyclohexanedi Methanol, glycerin, diglycerin, polyglycerin, trimethylolpropane, pentaerythritol, dipentaerythritol, hydrogenated bisphenol A, hydrogenated bisphenol F, water Polyhydric alcohol such as bisphenol S; polyvinyl alcohol, polyvinyl acetate partial hydrolyzate, starch, acrylic polyol resin, styrene-allyl alcohol copolymer resin, polyester polyol, polycaprolactone polyol, polypropylene polyol, polytetramethylene glycol, polycarbonate polyol Examples thereof include oligomers or polymers having a hydroxy group such as polybutadiene having a hydroxy group, cellulose, cellulose acetate, cellulose acetate butyrate, and cellulose-based polymers such as hydroxyethyl cellulose.
 上記1,2-エポキシ-4-ビニルシクロヘキサンは、公知乃至慣用の方法により製造でき、特に限定されないが、例えば、ブタジエンの二量化反応によって得られる4-ビニルシクロヘキセンを、過酢酸等の酸化剤を使用して部分エポキシ化することによって得られる。また、1,2-エポキシ-4-ビニルシクロヘキサンとしては、市販品を使用することもできる。 The 1,2-epoxy-4-vinylcyclohexane can be produced by a known or commonly used method, and is not particularly limited. For example, 4-vinylcyclohexene obtained by dimerization reaction of butadiene is replaced with an oxidizing agent such as peracetic acid. Obtained by partial epoxidation using. Moreover, as 1,2-epoxy-4-vinylcyclohexane, a commercially available product can be used.
 また、上記酸化剤としては、過酸化水素や有機過酸等の公知乃至慣用の酸化剤を使用することができ、特に限定されないが、例えば、有機過酸としては、過ギ酸、過酢酸、過安息香酸、トリフルオロ過酢酸等が挙げられる。中でも、過酢酸は工業的に安価に入手可能であり、かつ安定度も高いため、好ましい。 The oxidant may be a known or conventional oxidant such as hydrogen peroxide or organic peracid, and is not particularly limited. Examples of the organic peracid include performic acid, peracetic acid, peroxygen. Examples include benzoic acid and trifluoroperacetic acid. Among them, peracetic acid is preferable because it is industrially available at low cost and has high stability.
 なお、上述の開環重合及びエポキシ化は、より具体的には、例えば、特開昭60-161973号公報等に記載の周知慣用の方法に従って実施することができる。 The above ring-opening polymerization and epoxidation can be carried out more specifically according to well-known and conventional methods described in, for example, JP-A-60-161973.
 式(II)で表される化合物の標準ポリスチレン換算の重量平均分子量は、特に限定されないが、300~100000が好ましく、より好ましくは1000~10000である。重量平均分子量が300以上であると、硬化物の機械強度や耐熱性、耐光性がより向上する傾向がある。一方、重量平均分子量が100000以下であると、粘度が高くなり過ぎず成型時の流動性を低く維持しやすい傾向がある。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定される。 The standard polystyrene equivalent weight average molecular weight of the compound represented by the formula (II) is not particularly limited, but is preferably 300 to 100,000, more preferably 1,000 to 10,000. When the weight average molecular weight is 300 or more, the mechanical strength, heat resistance, and light resistance of the cured product tend to be further improved. On the other hand, when the weight average molecular weight is 100,000 or less, the viscosity does not become too high and the fluidity during molding tends to be maintained low. The weight average molecular weight is measured by a gel permeation chromatography (GPC) method.
 式(II)で表される化合物のエポキシ基の当量(エポキシ当量)は、特に限定されないが、50~1000が好ましく、より好ましくは100~500である。エポキシ当量が50以上であると、硬化物が脆くなりにくい傾向がある。一方、エポキシ当量が1000以下であると、硬化物の機械強度が向上する傾向がある。なお、エポキシ当量は、JIS K7236:2001に準じて測定される。 The equivalent (epoxy equivalent) of the epoxy group of the compound represented by the formula (II) is not particularly limited, but is preferably 50 to 1000, more preferably 100 to 500. When the epoxy equivalent is 50 or more, the cured product tends not to be brittle. On the other hand, when the epoxy equivalent is 1000 or less, the mechanical strength of the cured product tends to be improved. The epoxy equivalent is measured according to JIS K7236: 2001.
 本発明の硬化性エポキシ樹脂組成物において脂環式エポキシ化合物(A)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、脂環式エポキシ化合物(A)としては、例えば、商品名「セロキサイド2021P」、「セロキサイド2081」、「EHPE3150」(以上、(株)ダイセル製)等の市販品を使用することもできる。 In the curable epoxy resin composition of the present invention, the alicyclic epoxy compound (A) can be used singly or in combination of two or more. In addition, as the alicyclic epoxy compound (A), for example, commercially available products such as trade names “Celoxide 2021P”, “Celoxide 2081”, “EHPE3150” (manufactured by Daicel Corporation) can be used.
 脂環式エポキシ化合物(A)としては、上記式(I-1)で表される化合物[3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート;例えば、商品名「セロキサイド2021P」((株)ダイセル製)等]が特に好ましい。 Examples of the alicyclic epoxy compound (A) include compounds represented by the above formula (I-1) [3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate; for example, trade name “Celoxide 2021P”. (Daicel Co., Ltd.) etc. are particularly preferred.
 本発明の硬化性エポキシ樹脂組成物における脂環式エポキシ化合物(A)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物の全量(100重量%)に対して、10~95重量%が好ましく、より好ましくは15~90重量%、さらに好ましくは20~90重量%である。脂環式エポキシ化合物(A)の含有量を上記範囲に制御することにより、硬化性エポキシ樹脂組成物の硬化性がより向上したり、硬化物の耐熱性や機械強度がより向上する傾向がある。 The content (blending amount) of the alicyclic epoxy compound (A) in the curable epoxy resin composition of the present invention is not particularly limited, but is 10 with respect to the total amount (100% by weight) of the curable epoxy resin composition. It is preferably -95% by weight, more preferably 15-90% by weight, and still more preferably 20-90% by weight. By controlling the content of the alicyclic epoxy compound (A) within the above range, the curability of the curable epoxy resin composition tends to be further improved, and the heat resistance and mechanical strength of the cured product tend to be further improved. .
 本発明の硬化性エポキシ樹脂組成物における、脂環式エポキシ化合物(A)、及びモノアリルジグリシジルイソシアヌレート化合物(B)の全量(100重量%)に対する脂環式エポキシ化合物(A)の割合は、特に限定されないが、20~99重量%が好ましく、より好ましくは30~95重量%、さらに好ましくは40~95重量%である。脂環式エポキシ化合物(A)の割合を20重量%以上とすることにより、硬化性エポキシ樹脂組成物の硬化性がより向上したり、硬化物の耐熱性がより向上する傾向がある。一方、脂環式エポキシ化合物(A)の割合を99重量%以下とすることにより、硬化物の耐熱衝撃性がより向上する傾向がある In the curable epoxy resin composition of the present invention, the ratio of the alicyclic epoxy compound (A) to the total amount (100% by weight) of the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B) is Although not particularly limited, it is preferably 20 to 99% by weight, more preferably 30 to 95% by weight, and still more preferably 40 to 95% by weight. By setting the ratio of the alicyclic epoxy compound (A) to 20% by weight or more, the curability of the curable epoxy resin composition tends to be further improved, and the heat resistance of the cured product tends to be further improved. On the other hand, when the ratio of the alicyclic epoxy compound (A) is 99% by weight or less, the thermal shock resistance of the cured product tends to be further improved.
[モノアリルジグリシジルイソシアヌレート化合物(B)]
 本発明の硬化性エポキシ樹脂組成物におけるモノアリルジグリシジルイソシアヌレート化合物(B)は、上記式(1)で表される化合物である。式(1)中、R1、R2は、同一又は異なって、水素原子又は炭素数1~8のアルキル基を示す。炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の直鎖又は分岐鎖状のアルキル基が挙げられる。中でも、メチル基、エチル基、プロピル基、イソプロピル基等の炭素数1~3の直鎖又は分岐鎖状のアルキル基が好ましい。上記式(1)中のR1及びR2は、水素原子であることが特に好ましい。
[Monoallyl diglycidyl isocyanurate compound (B)]
The monoallyl diglycidyl isocyanurate compound (B) in the curable epoxy resin composition of the present invention is a compound represented by the above formula (1). In formula (1), R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. Examples of the alkyl group having 1 to 8 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, pentyl, hexyl, heptyl, octyl and the like. Examples thereof include a chain or branched alkyl group. Of these, a linear or branched alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, a propyl group, and an isopropyl group is preferable. R 1 and R 2 in the above formula (1) are particularly preferably hydrogen atoms.
 モノアリルジグリシジルイソシアヌレート化合物(B)の代表的な例としては、モノアリルジグリシジルイソシアヌレート、1-アリル-3,5-ビス(2-メチルエポキシプロピル)イソシアヌレート、1-(2-メチルプロペニル)-3,5-ジグリシジルイソシアヌレート、1-(2-メチルプロペニル)-3,5-ビス(2-メチルエポキシプロピル)イソシアヌレート等が挙げられる。なお、モノアリルジグリシジルイソシアヌレート化合物(B)は一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。 Representative examples of the monoallyl diglycidyl isocyanurate compound (B) include monoallyl diglycidyl isocyanurate, 1-allyl-3,5-bis (2-methylepoxypropyl) isocyanurate, 1- (2-methyl And propenyl) -3,5-diglycidyl isocyanurate, 1- (2-methylpropenyl) -3,5-bis (2-methylepoxypropyl) isocyanurate, and the like. In addition, monoallyl diglycidyl isocyanurate compound (B) can also be used individually by 1 type, and can also be used in combination of 2 or more type.
 なお、モノアリルジグリシジルイソシアヌレート化合物(B)は、アルコールや酸無水物等のエポキシ基(オキシラニル基)と反応する化合物を加えてあらかじめ変性して用いてもよい。 In addition, the monoallyl diglycidyl isocyanurate compound (B) may be modified in advance by adding a compound that reacts with an epoxy group (oxiranyl group) such as alcohol or acid anhydride.
 本発明の硬化性エポキシ樹脂組成物におけるモノアリルジグリシジルイソシアヌレート化合物(B)の含有量(配合量)は、特に限定されないが、脂環式エポキシ化合物(A)100重量部に対して、5~120重量部が好ましく、より好ましくは5~110重量部、さらに好ましくは5~105重量部である。モノアリルジグリシジルイソシアヌレート化合物(B)の含有量を5重量部以上とすることにより、硬化物の電極に対する密着性、耐熱衝撃性がより向上する傾向がある。一方、モノアリルジグリシジルイソシアヌレート化合物(B)の含有量を120重量部以下とすることにより、硬化性エポキシ樹脂組成物の硬化性がより向上したり、硬化物の耐熱性や機械強度がより向上する傾向がある。 Although content (blending amount) of the monoallyl diglycidyl isocyanurate compound (B) in the curable epoxy resin composition of the present invention is not particularly limited, it is 5 with respect to 100 parts by weight of the alicyclic epoxy compound (A). Is preferably 120 parts by weight, more preferably 5 to 110 parts by weight, and still more preferably 5 to 105 parts by weight. By setting the content of the monoallyl diglycidyl isocyanurate compound (B) to 5 parts by weight or more, the adhesion of the cured product to the electrode and the thermal shock resistance tend to be further improved. On the other hand, by setting the content of the monoallyl diglycidyl isocyanurate compound (B) to 120 parts by weight or less, the curability of the curable epoxy resin composition is further improved, and the heat resistance and mechanical strength of the cured product are further improved. There is a tendency to improve.
 本発明の硬化性エポキシ樹脂組成物に含まれる脂環式エポキシ化合物(A)、及び、モノアリルジグリシジルイソシアヌレート化合物(B)の合計量(100重量%)に対するモノアリルジグリシジルイソシアヌレート化合物(B)の割合は、特に限定されないが、1~60重量%が好ましく、より好ましくは5~55重量%、さらに好ましくは7~55重量%である。モノアリルジグリシジルイソシアヌレート化合物(B)の割合を1重量%以上とすることにより、硬化物の電極に対する密着性、耐熱衝撃性がより向上する傾向がある。一方、モノアリルジグリシジルイソシアヌレート化合物(B)の割合を60重量%以下とすることにより、硬化性エポキシ樹脂組成物の硬化性がより向上したり、硬化物の耐熱性や機械強度がより向上する傾向がある。 Monoallyl diglycidyl isocyanurate compound (100% by weight) with respect to the total amount (100% by weight) of alicyclic epoxy compound (A) and monoallyl diglycidyl isocyanurate compound (B) contained in the curable epoxy resin composition of the present invention ( The proportion of B) is not particularly limited, but is preferably 1 to 60% by weight, more preferably 5 to 55% by weight, and still more preferably 7 to 55% by weight. By setting the ratio of the monoallyl diglycidyl isocyanurate compound (B) to 1% by weight or more, the adhesion of the cured product to the electrode and the thermal shock resistance tend to be further improved. On the other hand, by setting the ratio of the monoallyl diglycidyl isocyanurate compound (B) to 60% by weight or less, the curability of the curable epoxy resin composition is further improved, and the heat resistance and mechanical strength of the cured product are further improved. Tend to.
[応力緩和剤(C)]
 本発明の硬化性エポキシ樹脂組成物における応力緩和剤(C)は、硬化物中の内部応力を緩和させることができる化合物である。本発明の硬化性エポキシ樹脂組成物が応力緩和剤(C)を含むことにより、硬化物の耐熱性、耐光性、耐熱衝撃性、及び耐リフロー性が向上し、特に、光半導体装置の高温、高湿度における通電特性及び耐吸湿リフロー性を向上させることが可能な硬化物を形成することができる。
[Stress relaxation agent (C)]
The stress relaxation agent (C) in the curable epoxy resin composition of the present invention is a compound that can relieve internal stress in the cured product. When the curable epoxy resin composition of the present invention contains the stress relaxation agent (C), the heat resistance, light resistance, thermal shock resistance, and reflow resistance of the cured product are improved. A cured product capable of improving current-carrying characteristics and moisture absorption reflow resistance at high humidity can be formed.
 上記応力緩和剤(C)としては、特に限定されず、例えば、シリコーンゴム粒子(C1)、シリコーンオイル(C2)、液状ゴム成分(C3)、無機フィラー(C4)、熱可塑性樹脂(C5)等が挙げられる。 The stress relaxation agent (C) is not particularly limited. For example, silicone rubber particles (C1), silicone oil (C2), liquid rubber component (C3), inorganic filler (C4), thermoplastic resin (C5), and the like. Is mentioned.
 上記シリコーンゴム粒子(C1)としては、特に限定されず、例えば、ポリジメチルシロキサン、ポリメチルフェニルシロキサン等のポリシロキサンから構成されるものが挙げられる。
 また、シリコーンゴム粒子(C1)を構成するポリシロキサンは、架橋されていることが好ましい。架橋されたポリシロキサンとしては、特に限定されず、例えば、シラノール基などの縮合反応、メルカプトシリル基とビニルシリル基とのラジカル反応、ビニルシリル基とヒドロシリル基(SiH基)との付加反応などにより架橋されたポリシロキサンなどが例示されるが、反応性、反応工程上の点からは、ビニル基含有オルガノポリシロキサンとオルガノハイドロジェンポリシロキサンを白金系触媒の存在下で付加反応させて架橋されたポリシロキサンが好ましい。
The silicone rubber particles (C1) are not particularly limited, and examples thereof include those composed of polysiloxanes such as polydimethylsiloxane and polymethylphenylsiloxane.
Moreover, it is preferable that the polysiloxane which comprises a silicone rubber particle (C1) is bridge | crosslinked. The crosslinked polysiloxane is not particularly limited. For example, it is crosslinked by a condensation reaction such as a silanol group, a radical reaction between a mercaptosilyl group and a vinylsilyl group, or an addition reaction between a vinylsilyl group and a hydrosilyl group (SiH group). In terms of reactivity and reaction process, polysiloxane crosslinked by addition reaction of vinyl group-containing organopolysiloxane and organohydrogenpolysiloxane in the presence of a platinum-based catalyst. Is preferred.
 また、上記シリコーンゴム粒子(C1)は、エポキシ樹脂組成物とのなじみ、分散性向上、及び分散後のエポキシ樹脂組成物の粘度調整の観点から、表面処理されていてもよい。表面処理の態様は、特に限定されず、例えば、メチルメタクリレートで被覆されたシリコーンゴム粒子、シリコーンレジンで被覆されたシリコーンゴム粒子などが挙げられる。 The silicone rubber particles (C1) may be surface-treated from the viewpoint of familiarity with the epoxy resin composition, improvement of dispersibility, and adjustment of the viscosity of the epoxy resin composition after dispersion. The aspect of the surface treatment is not particularly limited, and examples thereof include silicone rubber particles coated with methyl methacrylate, silicone rubber particles coated with silicone resin, and the like.
 上記シリコーンゴム粒子(C1)の平均粒子径(d50)は、特に限定されないが、0.1~100μmが好ましく、より好ましくは0.5~50μmである。また、上記シリコーンゴム粒子(C1)の最大粒子径は、特に限定されないが、0.1~250μmが好ましく、より好ましくは0.1~150μmである。平均粒子径を100μm以下(又は、最大粒子径を250μm以下)とすることにより、硬化物の耐クラック性がより向上する傾向がある。一方、平均粒子径を0.1μm以上(又は、最大粒子径を0.1μm以上)とすることにより、上記シリコーンゴム粒子(C1)の分散性がより向上する傾向がある。
 また、シリコーンゴム粒子(C1)の形状も特に限定されないが、作業性を向上させる観点から、球状が好ましい。
The average particle diameter (d 50 ) of the silicone rubber particles (C1) is not particularly limited, but is preferably 0.1 to 100 μm, more preferably 0.5 to 50 μm. The maximum particle size of the silicone rubber particles (C1) is not particularly limited, but is preferably 0.1 to 250 μm, more preferably 0.1 to 150 μm. When the average particle size is 100 μm or less (or the maximum particle size is 250 μm or less), the crack resistance of the cured product tends to be further improved. On the other hand, when the average particle size is 0.1 μm or more (or the maximum particle size is 0.1 μm or more), the dispersibility of the silicone rubber particles (C1) tends to be further improved.
The shape of the silicone rubber particles (C1) is not particularly limited, but is preferably spherical from the viewpoint of improving workability.
 上記シリコーンゴム粒子(C1)としては、高い耐熱性、耐光性、耐熱衝撃性、及び耐リフロー性を有し、特に、光半導体装置の高温、高湿度における通電特性及び耐吸湿リフロー性を向上させることが可能な硬化物を形成することができるという観点から、架橋されたポリシロキサンからなるもの、或いは、これの表面をシリコーンレジンで被覆したものが好ましく、なかでも、エポキシ樹脂成分とシリコーンゴム粒子(C1)の相溶性の点から、架橋されたポリジメチルシロキサンの表面をシリコーンレジンで被覆したものが特に好ましい。 The silicone rubber particles (C1) have high heat resistance, light resistance, thermal shock resistance, and reflow resistance, and in particular, improve energization characteristics and moisture absorption reflow resistance at high temperatures and high humidity of optical semiconductor devices. From the standpoint that a cured product that can be formed can be formed, those composed of a crosslinked polysiloxane or those whose surfaces are coated with a silicone resin are preferable. Among them, an epoxy resin component and silicone rubber particles are preferable. In view of the compatibility of (C1), it is particularly preferred that the surface of the crosslinked polydimethylsiloxane is coated with a silicone resin.
 本発明の硬化性エポキシ樹脂組成物においてシリコーンゴム粒子(C1)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、上記シリコーンゴム粒子(C1)としては、公知乃至慣用の方法により製造することができ、その製造方法は、例えば、特開平7-196815号公報に記載された方法により製造されたシリコーンゴム粒子を使用することができる。或いは、商品名「KMP-600」、「KMP-601」、「KMP-602」、「KMP-605」、「X-52-7030」、「KMP-597」、「KMP-598」、「KMP-594」、「X-52-875」、「KMP-590」、「KMP-701」(以上、信越化学工業(株)製)等の市販品を使用することもできる。 In the curable epoxy resin composition of the present invention, the silicone rubber particles (C1) can be used alone or in combination of two or more. The silicone rubber particles (C1) can be produced by a known or conventional method. For example, the silicone rubber particles produced by the method described in JP-A-7-196815 can be used. Can be used. Alternatively, trade names “KMP-600”, “KMP-601”, “KMP-602”, “KMP-605”, “X-52-7030”, “KMP-597”, “KMP-598”, “KMP” Commercially available products such as “−594”, “X-52-875”, “KMP-590”, “KMP-701” (manufactured by Shin-Etsu Chemical Co., Ltd.) can also be used.
 上記シリコーンオイル(C2)としては、特に限定されず、例えば、非変性シリコーンオイル、変性シリコーンオイル等が挙げられる。 The silicone oil (C2) is not particularly limited, and examples thereof include non-modified silicone oil and modified silicone oil.
 非変性シリコーンオイルとしては、特に限定されず、例えば、ポリジメチルシロキサンタイプ、ポリメチルハイドロジェンシロキサンタイプ、ポリメチルフェニルシロキサンタイプ等が挙げられる。 The non-modified silicone oil is not particularly limited, and examples thereof include a polydimethylsiloxane type, a polymethylhydrogensiloxane type, and a polymethylphenylsiloxane type.
 変性シリコーンオイルとしては、特に限定されず、例えば、エポキシ樹脂に対して反応性を有する反応性シリコーンオイル、エポキシ樹脂に対して反応性を有しない非反応性シリコーンオイルのいずれを用いてもよい。反応性シリコーンオイルとしては、例えば、アミノ変性タイプ、エポキシ変性タイプ、カルボキシル変性タイプ、カルビノール変性タイプ、メタクリル変性タイプ、メルカプト変性タイプ、フェノール変性タイプ等が挙げられる。非反応性シリコーンオイルとしては、例えば、ポリアルキレンエーテル変性タイプ、メチルスチリル変性タイプ、アルキル変性タイプ、脂肪酸エステル変性タイプ、アルコキシ変性タイプ、フッ素変性タイプ等が挙げられる。また、反応性シリコーンオイルは、非反応性変性基を有していてもよく、例えば、ポリアルキレンエーテル-アミノ変性シリコーンオイル、ポリアルキレンエーテル-エポキシ変性シリコーンオイル等が挙げられ、硬化性エポキシ樹脂組成物との反応性を有し、流動性や粘度の制御が可能なポリアルキレンエーテル-エポキシ変性シリコーンオイルが好ましい。 The modified silicone oil is not particularly limited, and for example, either a reactive silicone oil that is reactive with an epoxy resin or a non-reactive silicone oil that is not reactive with an epoxy resin may be used. Examples of the reactive silicone oil include amino-modified type, epoxy-modified type, carboxyl-modified type, carbinol-modified type, methacryl-modified type, mercapto-modified type, and phenol-modified type. Examples of non-reactive silicone oils include polyalkylene ether-modified types, methylstyryl-modified types, alkyl-modified types, fatty acid ester-modified types, alkoxy-modified types, and fluorine-modified types. The reactive silicone oil may have a non-reactive modifying group, and examples thereof include polyalkylene ether-amino modified silicone oil and polyalkylene ether-epoxy modified silicone oil. Polyalkylene ether-epoxy modified silicone oils that have reactivity with the product and can be controlled in fluidity and viscosity are preferred.
 上記シリコーンオイル(C2)としては、高い耐熱性、耐光性、耐熱衝撃性、及び耐リフロー性を有し、特に、光半導体装置の高温、高湿度における通電特性及び耐吸湿リフロー性を向上させることが可能な硬化物を形成することができるという観点から、ポリアルキレンエーテル-エポキシ変性シリコーンオイルが好ましく、特に、エポキシ当量3000~15000の下記式(2)で表される構造を有するポリアルキレンエーテル変性シリコーン化合物(以下、「ポリアルキレンエーテル変性シリコーン化合物(2)」と称する場合がある)が好ましい。
Figure JPOXMLDOC01-appb-C000017
The silicone oil (C2) has high heat resistance, light resistance, thermal shock resistance, and reflow resistance, and in particular, improves the current-carrying characteristics and moisture absorption reflow resistance of the optical semiconductor device at high temperature and high humidity. In view of the ability to form a cured product that can be cured, a polyalkylene ether-epoxy modified silicone oil is preferable, and in particular, a polyalkylene ether modified having a structure represented by the following formula (2) having an epoxy equivalent of 3000 to 15000: A silicone compound (hereinafter sometimes referred to as “polyalkylene ether-modified silicone compound (2)”) is preferred.
Figure JPOXMLDOC01-appb-C000017
 上記式(2)中、R3は炭素数2又は3のアルキレン基である。炭素数が2又は3のアルキレン基としては、例えば、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基等が挙げられ、トリメチレン基が好ましい。 In the above formula (2), R 3 is an alkylene group having 2 or 3 carbon atoms. Examples of the alkylene group having 2 or 3 carbon atoms include a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group, and a trimethylene group is preferable.
 上記式(2)中、xは80~140の整数を示す。
 上記式(2)中、yは1~5の整数を示す。yが2以上の整数の場合、yが付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
 上記式(2)中、zは5~20の整数を示す。なお、zが付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
In the above formula (2), x represents an integer of 80 to 140.
In the above formula (2), y represents an integer of 1 to 5. When y is an integer of 2 or more, the structures in parentheses to which y is attached may be the same or different.
In the above formula (2), z represents an integer of 5 to 20. Note that the structures in parentheses to which z is attached may be the same or different.
 上記式(2)中、Aは下記式(2a)で表される構造を有するポリアルキレンエーテル基である。
Figure JPOXMLDOC01-appb-C000018
In the above formula (2), A is a polyalkylene ether group having a structure represented by the following formula (2a).
Figure JPOXMLDOC01-appb-C000018
 上記式(2a)中、a及びbはそれぞれ独立して、0~40の整数である。
aが40以下であることにより、硬化物の耐水性が向上する傾向がある。
 一方、bが40以下であることにより、硬化性エポキシ樹脂組成物の流動性が向上する傾向がある。
In the above formula (2a), a and b are each independently an integer of 0 to 40.
When a is 40 or less, the water resistance of the cured product tends to be improved.
On the other hand, when b is 40 or less, the fluidity of the curable epoxy resin composition tends to be improved.
 a及びbの合計は、特に限定されないが、好ましくは1~80の整数である。a及びbの合計が当該範囲にあることにより、硬化物の耐水性と、硬化性エポキシ樹脂組成物の流動性を制御しやすくなる。 The total of a and b is not particularly limited, but is preferably an integer of 1 to 80. When the sum of a and b is in the range, it becomes easy to control the water resistance of the cured product and the fluidity of the curable epoxy resin composition.
 上記式(2a)中、Bは水素原子、又はメチル基である。硬化物の耐水性の観点からは、Bはメチル基が好ましい。 In the above formula (2a), B is a hydrogen atom or a methyl group. From the viewpoint of water resistance of the cured product, B is preferably a methyl group.
 上記式(2)における各構造単位の付加形態は、式(2)中の2つのトリメチルシリル基が両末端に存在する限り、ランダム型であってもよいし、ブロック型であってもよい。また、上記式(2a)における各構造単位の付加形態も、Bが末端に存在する限り、ランダム型であってもよいし、ブロック型であってもよい。また、上記式(2)、(2a)における各構造単位の配列の順番も特に限定されない。 The addition form of each structural unit in the above formula (2) may be a random type or a block type as long as two trimethylsilyl groups in the formula (2) are present at both ends. Further, the addition form of each structural unit in the above formula (2a) may be a random type or a block type as long as B is present at the terminal. Further, the order of arrangement of the structural units in the above formulas (2) and (2a) is not particularly limited.
 上記ポリアルキレンエーテル変性シリコーン化合物(2)のエポキシ当量は、上記の通り、3000~15000であり、好ましくは4000~15000、より好ましくは5000~13000である。エポキシ当量が3000以上であることにより、硬化物の内部の応力緩和がより向上する傾向がある。一方、エポキシ当量を15000以下とすることにより、樹脂との相溶性がより向上する傾向がある。
 なお、ポリアルキレンエーテル変性シリコーン化合物(2)のエポキシ当量は、JIS K 7236:2001に準拠して測定することができる。
As described above, the epoxy equivalent of the polyalkylene ether-modified silicone compound (2) is from 3000 to 15000, preferably from 4000 to 15000, more preferably from 5000 to 13000. When the epoxy equivalent is 3000 or more, the stress relaxation inside the cured product tends to be further improved. On the other hand, when the epoxy equivalent is 15000 or less, the compatibility with the resin tends to be further improved.
The epoxy equivalent of the polyalkylene ether-modified silicone compound (2) can be measured in accordance with JIS K 7236: 2001.
 本発明の硬化性エポキシ樹脂組成物においてシリコーンオイル(C2)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、上記シリコーンオイル(C2)としては、公知乃至慣用の方法により製造することができ、例えば、特開2008-201904号公報に記載された方法により製造されたシリコーンオイル(C2)を使用することができ、或いは、商品名「SF8421」(東レ・ダウコーニング(株)製)、商品名「Y-19268」(モメンティブ・パフォーマンス・マテリアルズ・ジャパン(同)製)等の市販品を使用することもできる。 In the curable epoxy resin composition of the present invention, the silicone oil (C2) can be used alone or in combination of two or more. The silicone oil (C2) can be produced by a known or conventional method. For example, the silicone oil (C2) produced by the method described in JP-A-2008-201904 is used. Or use a commercial product such as “SF8421” (made by Toray Dow Corning Co., Ltd.) or “Y-19268” (made by Momentive Performance Materials Japan). You can also.
 上記液状ゴム成分(C3)としては、特に限定されず、例えば、ポリブタジエン、マレイン化ポリブタジエン、アクリル化ポリブタジエン、メタクリル化ポリブタジエン、エポキシ化ポリブタジエン、アクリロニトリルブタジエンゴム、カルボキシ末端アクリロニトリルブタジエンゴム、アミノ末端アクリロニトリルブタジエンゴム、ビニル末端アクリロニトリルブタジエンゴム、スチレンブタジエンゴム等が挙げられる。
 上記液状ゴム成分(C3)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。
The liquid rubber component (C3) is not particularly limited. For example, polybutadiene, maleated polybutadiene, acrylated polybutadiene, methacrylated polybutadiene, epoxidized polybutadiene, acrylonitrile butadiene rubber, carboxy terminal acrylonitrile butadiene rubber, amino terminal acrylonitrile butadiene rubber. Vinyl-terminated acrylonitrile butadiene rubber, styrene butadiene rubber and the like.
The said liquid rubber component (C3) can also be used individually by 1 type, and can also be used in combination of 2 or more type.
 上記無機フィラー(C4)としては、特に限定されず、例えば、溶融シリカ、結晶シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等が挙げられる。これらの無機フィラーは、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。 The inorganic filler (C4) is not particularly limited. For example, fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, Examples include zirconia, zircon, fosterite, steatite, spinel, mullite, titania and the like. These inorganic fillers can be used individually by 1 type, and can also be used in combination of 2 or more type.
 上記無機フィラー(C4)の平均粒子径(d50)は、特に限定されないが、通常1~50μmであり、好ましくは1~25μmであり、より好ましくは1~10μmである。 The average particle diameter (d 50 ) of the inorganic filler (C4) is not particularly limited, but is usually 1 to 50 μm, preferably 1 to 25 μm, more preferably 1 to 10 μm.
 また、上記無機フィラー(C4)は、エポキシ樹脂成分と無機フィラー(C4)との親和性を高めて分散性を向上する観点から、カップリング剤をさらに含むことが好ましい。カップリング剤としては、特に限定されず、公知のものを用いることもできるが、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物等が好ましい。これらの具体例としては、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、γ-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-アニリノプロピルメチルジメトキシシラン、γ-[ビス(β-ヒドロキシエチル)]アミノプロピルトリエトキシシラン、N-γ-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-(β-アミノエチル)アミノプロピルジメトキシメチルシラン、N-(トリメトキシシリルプロピル)エチレンジアミン、N-(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等のシラン系カップリング剤、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等のチタネート系カップリング剤等が挙げられる。これらの中でも、シラン系カップリング剤がより好ましい。これらのカップリング剤は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。 The inorganic filler (C4) preferably further contains a coupling agent from the viewpoint of improving the dispersibility by increasing the affinity between the epoxy resin component and the inorganic filler (C4). The coupling agent is not particularly limited, and known ones can be used, but various silane compounds such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, vinyl silane, titanium compound, and aluminum chelates. Aluminum / zirconium compounds are preferred. Specific examples thereof include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, and γ-acryloxypropyltrimethoxy. Silane, γ- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-anilinopropyltrimethoxysilane, γ-anilinopropylmethyldimethoxysilane, γ- [bis (β-hydroxyethyl)] aminopropyltriethoxysilane, N γ- (aminoethyl) -γ-aminopropyltrimethoxysilane, γ- (β-aminoethyl) aminopropyldimethoxymethylsilane, N- (trimethoxysilylpropyl) ethylenediamine, N- (dimethoxymethylsilylisopropyl) ethylenediamine, methyl Trimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, hexamethyldisilane, vinyltrimethoxysilane Silane coupling agents such as γ-mercaptopropylmethyldimethoxysilane, isopropyl triisostearoyl titanate, isopropyl tris (dioctylpyrophosphate) titanate, isopropyl Li (N-aminoethyl-aminoethyl) titanate, tetraoctyl bis (ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctyl pyrophosphate) ) Oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, isopropyldimethacrylisostearoyl titanate, isopropyltridodecylbenzenesulfonyl titanate, isopropylisostearoyl diacryl titanate, isopropyltri (dioctylphosphate) titanate, isopropyl Tricumylphenyl titanate, tetraisopropylbis (dioctyl phosphite) titanate And titanate coupling agents such as soot. Among these, a silane coupling agent is more preferable. One of these coupling agents can be used alone, or two or more of these coupling agents can be used in combination.
 上記カップリング剤の配合量は、特に限定されないが、無機フィラー(C4)に対して0.05~5質量%であることが好ましく、0.1~2.5質量%がより好ましい。シランカップリング剤の配合量を0.05質量%以上とすることで、無機フィラー(C4)の分散性向上効果を得ることができ、5質量%以下とすることで、硬化物中のボイドの発生を抑えることができる。 The amount of the coupling agent is not particularly limited, but is preferably 0.05 to 5% by mass, more preferably 0.1 to 2.5% by mass with respect to the inorganic filler (C4). By making the compounding quantity of a silane coupling agent 0.05 mass% or more, the dispersibility improvement effect of an inorganic filler (C4) can be acquired, and by making it 5 mass% or less, the void in a hardened | cured material is made. Occurrence can be suppressed.
 上記熱可塑性樹脂(C5)としては、特に限定されず、例えば、ポリイミド樹脂、ポリアミド樹脂、ポリエーテルイミド樹脂、ポリエステル樹脂、ポリエステルイミド樹脂、フェノキシ樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルケトン樹脂等が挙げられる。これらの中でも、耐熱性の観点から、フェノキシ樹脂、ポリイミド樹脂が好ましい。これらの熱可塑性樹脂は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。 The thermoplastic resin (C5) is not particularly limited. For example, polyimide resin, polyamide resin, polyetherimide resin, polyester resin, polyesterimide resin, phenoxy resin, polysulfone resin, polyethersulfone resin, polyphenylene sulfide resin, Examples include polyether ketone resins. Among these, phenoxy resin and polyimide resin are preferable from the viewpoint of heat resistance. These thermoplastic resins can be used singly or in combination of two or more.
 上記熱可塑性樹脂(C5)のガラス転移温度(Tg)は、特に限定されないが、200℃以下であることが好ましい。 The glass transition temperature (Tg) of the thermoplastic resin (C5) is not particularly limited, but is preferably 200 ° C. or lower.
 上記応力緩和剤(C)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。
 上記応力緩和剤(C)としては、高い耐熱性、耐光性、耐熱衝撃性、及び耐リフロー性を有し、特に、光半導体装置の高温、高湿度における通電特性及び耐吸湿リフロー性を向上させることが可能な硬化物を形成することができるという観点から、シリコーンゴム粒子(C1)及びシリコーンオイル(C2)からなる群より選択される少なくとも1種が好ましく、特に、シリコーンゴム粒子(C1)としては、シリコーンレジンを表面に備える架橋されたポリジメチルシロキサンが好ましく、シリコーンオイル(C2)としては、ポリアルキレンエーテル変性シリコーン化合物(2)が好ましい。
The said stress relaxation agent (C) can also be used individually by 1 type, and can also be used in combination of 2 or more type.
The stress relaxation agent (C) has high heat resistance, light resistance, thermal shock resistance, and reflow resistance, and in particular, improves the current-carrying characteristics and moisture absorption reflow resistance of optical semiconductor devices at high temperatures and high humidity. From the viewpoint that a cured product capable of being formed can be formed, at least one selected from the group consisting of silicone rubber particles (C1) and silicone oils (C2) is preferable, and in particular, as silicone rubber particles (C1) Is preferably a crosslinked polydimethylsiloxane having a silicone resin on its surface, and the silicone oil (C2) is preferably a polyalkylene ether-modified silicone compound (2).
 本発明の応力緩和剤(C)の含有量(配合量)は、特に限定されないが、脂環式エポキシ化合物(A)100重量部に対して、0.1~100重量部が好ましく、より好ましくは0.1~50重量部、さらに好ましくは0.5~30重量部である。応力緩和剤(C)の含有量を0.1重量部以上とすることにより、硬化物の耐熱性、耐光性、耐熱衝撃性、及び耐リフロー性、特に耐吸湿リフロー性がより向上する傾向がある。一方、応力緩和剤(C)の含有量を100重量部以下とすることにより、硬化性エポキシ樹脂組成物の硬化性がより向上する傾向がある。 The content (blending amount) of the stress relaxation agent (C) of the present invention is not particularly limited, but is preferably 0.1 to 100 parts by weight, more preferably 100 parts by weight with respect to 100 parts by weight of the alicyclic epoxy compound (A). Is 0.1 to 50 parts by weight, more preferably 0.5 to 30 parts by weight. By setting the content of the stress relaxation agent (C) to 0.1 parts by weight or more, the heat resistance, light resistance, thermal shock resistance, and reflow resistance, particularly moisture absorption reflow resistance of the cured product tend to be further improved. is there. On the other hand, when the content of the stress relaxation agent (C) is 100 parts by weight or less, the curability of the curable epoxy resin composition tends to be further improved.
 本発明の硬化性エポキシ樹脂組成物に含まれる脂環式エポキシ化合物(A)、及びモノアリルジグリシジルイソシアヌレート化合物(B)の合計量(100重量部)に対する応力緩和剤(C)の含有量は、特に限定されないが、0.1~20重量部が好ましく、より好ましくは0.3~18重量部、さらに好ましくは0.5~15重量部である。応力緩和剤(C)の含有量を0.1重量部以上とすることにより、硬化性エポキシ樹脂組成物の硬化性がより向上したり、硬化物の耐熱性、耐光性、耐熱衝撃性、及び耐リフロー性、特に耐吸湿リフロー性がより向上する傾向がある。一方、応力緩和剤(C)の含有量を20重量部以下とすることにより、硬化性エポキシ樹脂組成物の硬化性がより向上する傾向がある。 Content of stress relaxation agent (C) with respect to total amount (100 parts by weight) of alicyclic epoxy compound (A) and monoallyl diglycidyl isocyanurate compound (B) contained in curable epoxy resin composition of the present invention Is not particularly limited, but is preferably 0.1 to 20 parts by weight, more preferably 0.3 to 18 parts by weight, and still more preferably 0.5 to 15 parts by weight. By setting the content of the stress relaxation agent (C) to 0.1 parts by weight or more, the curability of the curable epoxy resin composition is further improved, or the heat resistance, light resistance, thermal shock resistance of the cured product, and Reflow resistance, particularly moisture absorption reflow resistance, tends to be further improved. On the other hand, when the content of the stress relaxation agent (C) is 20 parts by weight or less, the curability of the curable epoxy resin composition tends to be further improved.
[硬化剤(D)]
 本発明の硬化性エポキシ樹脂組成物は、さらに、硬化剤(D)を含んでいてもよい。硬化剤(D)は、脂環式エポキシ化合物(A)、モノアリルジグリシジルイソシアヌレート化合物(B)、応力緩和剤(C)としてのエポキシ変性シリコーンオイル等のエポキシ基(オキシラニル基)を有する化合物と反応することにより、硬化性エポキシ樹脂組成物を硬化させる働きを有する化合物である。硬化剤(D)としては、エポキシ樹脂用硬化剤として公知乃至慣用の硬化剤を使用することができ、特に限定されないが、例えば、酸無水物類(酸無水物系硬化剤)、アミン類(アミン系硬化剤)、ポリアミド樹脂、イミダゾール類(イミダゾール系硬化剤)、ポリメルカプタン類(ポリメルカプタン系硬化剤)、フェノール類(フェノール系硬化剤)、ポリカルボン酸類、ジシアンジアミド類、有機酸ヒドラジド等が挙げられる。
[Curing agent (D)]
The curable epoxy resin composition of the present invention may further contain a curing agent (D). The curing agent (D) is a compound having an epoxy group (oxiranyl group) such as an alicyclic epoxy compound (A), a monoallyl diglycidyl isocyanurate compound (B), and an epoxy-modified silicone oil as a stress relaxation agent (C). It is a compound which has a function which hardens a curable epoxy resin composition by reacting with. As the curing agent (D), a known or conventional curing agent can be used as a curing agent for epoxy resin, and is not particularly limited. For example, acid anhydrides (acid anhydride curing agents), amines ( Amine curing agents), polyamide resins, imidazoles (imidazole curing agents), polymercaptans (polymercaptan curing agents), phenols (phenolic curing agents), polycarboxylic acids, dicyandiamides, organic acid hydrazides, etc. Can be mentioned.
 硬化剤(D)としての酸無水物類(酸無水物系硬化剤)としては、公知乃至慣用の酸無水物系硬化剤を使用でき、特に限定されないが、例えば、メチルテトラヒドロ無水フタル酸(4-メチルテトラヒドロ無水フタル酸、3-メチルテトラヒドロ無水フタル酸等)、メチルヘキサヒドロ無水フタル酸(4-メチルヘキサヒドロ無水フタル酸、3-メチルヘキサヒドロ無水フタル酸等)、ドデセニル無水コハク酸、メチルエンドメチレンテトラヒドロ無水フタル酸、無水フタル酸、無水マレイン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物、無水ピロメリット酸、無水トリメリット酸、ベンゾフェノンテトラカルボン酸無水物、無水ナジック酸、無水メチルナジック酸、水素化メチルナジック酸無水物、4-(4-メチル-3-ペンテニル)テトラヒドロ無水フタル酸、無水コハク酸、無水アジピン酸、無水セバシン酸、無水ドデカン二酸、メチルシクロヘキセンテトラカルボン酸無水物、ビニルエーテル-無水マレイン酸共重合体、アルキルスチレン-無水マレイン酸共重合体等が挙げられる。中でも、取り扱い性の観点で、25℃で液状の酸無水物[例えば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ドデセニル無水コハク酸、メチルエンドメチレンテトラヒドロ無水フタル酸等]が好ましい。一方、25℃で固体状の酸無水物については、例えば、25℃で液状の酸無水物に溶解させて液状の混合物とすることで、本発明の硬化性エポキシ樹脂組成物における硬化剤(D)としての取り扱い性が向上する傾向がある。酸無水物系硬化剤としては、硬化物の耐熱性、透明性の観点で、飽和単環炭化水素ジカルボン酸の無水物(環にアルキル基等の置換基が結合したものも含む)が好ましい。 As the acid anhydrides (acid anhydride curing agents) as the curing agent (D), known or commonly used acid anhydride curing agents can be used, and are not particularly limited. For example, methyltetrahydrophthalic anhydride (4 -Methyltetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, etc.), methylhexahydrophthalic anhydride (such as 4-methylhexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride), dodecenyl succinic anhydride, methyl Endomethylenetetrahydrophthalic anhydride, phthalic anhydride, maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylcyclohexene dicarboxylic anhydride, pyromellitic anhydride, trimellitic anhydride, benzophenonetetracarboxylic anhydride, anhydrous Nadic acid, methyl nadic acid anhydride, hydrogenated methyl Nadic acid anhydride, 4- (4-methyl-3-pentenyl) tetrahydrophthalic anhydride, succinic anhydride, adipic anhydride, sebacic anhydride, dodecanedioic anhydride, methylcyclohexene tetracarboxylic anhydride, vinyl ether-maleic anhydride Examples include acid copolymers and alkylstyrene-maleic anhydride copolymers. Among these, acid anhydrides [for example, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, dodecenyl succinic anhydride, methylendomethylenetetrahydrophthalic anhydride, etc.] that are liquid at 25 ° C. are preferable from the viewpoint of handleability. On the other hand, for a solid acid anhydride at 25 ° C., for example, by dissolving in a liquid acid anhydride at 25 ° C. to form a liquid mixture, the curing agent (D in the curable epoxy resin composition of the present invention (D ) Tends to be improved. As the acid anhydride curing agent, saturated monocyclic hydrocarbon dicarboxylic acid anhydrides (including those in which a substituent such as an alkyl group is bonded to the ring) are preferable from the viewpoint of heat resistance and transparency of the cured product.
 硬化剤(D)としてのアミン類(アミン系硬化剤)としては、公知乃至慣用のアミン系硬化剤を使用でき、特に限定されないが、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロピレンジアミン、ジエチルアミノプロピルアミン、ポリプロピレントリアミン等の脂肪族ポリアミン;メンセンジアミン、イソホロンジアミン、ビス(4-アミノ-3-メチルジシクロヘキシル)メタン、ジアミノジシクロヘキシルメタン、ビス(アミノメチル)シクロヘキサン、N-アミノエチルピペラジン、3,9-ビス(3-アミノプロピル)-3,4,8,10-テトラオキサスピロ[5,5]ウンデカン等の脂環式ポリアミン;m-フェニレンジアミン、p-フェニレンジアミン、トリレン-2,4-ジアミン、トリレン-2,6-ジアミン、メシチレン-2,4-ジアミン、3,5-ジエチルトリレン-2,4-ジアミン、3,5-ジエチルトリレン-2,6-ジアミン等の単核ポリアミン、ビフェニレンジアミン、4,4-ジアミノジフェニルメタン、2,5-ナフチレンジアミン、2,6-ナフチレンジアミン等の芳香族ポリアミン等が挙げられる。 As the amines (amine-based curing agent) as the curing agent (D), a known or conventional amine-based curing agent can be used, and is not particularly limited. For example, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, Aliphatic polyamines such as dipropylenediamine, diethylaminopropylamine, polypropylenetriamine; mensendiamine, isophoronediamine, bis (4-amino-3-methyldicyclohexyl) methane, diaminodicyclohexylmethane, bis (aminomethyl) cyclohexane, N-amino Cycloaliphatic polyamines such as ethylpiperazine, 3,9-bis (3-aminopropyl) -3,4,8,10-tetraoxaspiro [5,5] undecane; m-phenylenediamine, p-phenylenediamine, Len-2,4-diamine, tolylene-2,6-diamine, mesitylene-2,4-diamine, 3,5-diethyltolylene-2,4-diamine, 3,5-diethyltolylene-2,6- Examples thereof include mononuclear polyamines such as diamine, aromatic polyamines such as biphenylenediamine, 4,4-diaminodiphenylmethane, 2,5-naphthylenediamine, and 2,6-naphthylenediamine.
 硬化剤(D)としてのフェノール類(フェノール系硬化剤)としては、公知乃至慣用のフェノール系硬化剤を使用でき、特に限定されないが、例えば、ノボラック型フェノール樹脂、ノボラック型クレゾール樹脂、パラキシリレン変性フェノール樹脂、パラキシリレン・メタキシリレン変性フェノール樹脂等のアラルキル樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、トリフェノールプロパン等が挙げられる。 As the phenols (phenolic curing agents) as the curing agent (D), known or conventional phenolic curing agents can be used, and are not particularly limited. For example, novolac type phenol resins, novolac type cresol resins, paraxylylene-modified phenols. Examples thereof include aralkyl resins such as resins, paraxylylene / metaxylylene-modified phenol resins, terpene-modified phenol resins, dicyclopentadiene-modified phenol resins, and triphenol propane.
 硬化剤(D)としてのポリアミド樹脂としては、例えば、分子内に第一級アミノ基及び第二級アミノ基のいずれか一方又は両方を有するポリアミド樹脂等が挙げられる。 Examples of the polyamide resin as the curing agent (D) include a polyamide resin having one or both of a primary amino group and a secondary amino group in the molecule.
 硬化剤(D)としてのイミダゾール類(イミダゾール系硬化剤)としては、公知乃至慣用のイミダゾール系硬化剤を使用でき、特に限定されないが、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテート、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2-メチルイミダゾリウムイソシアヌレート、2-フェニルイミダゾリウムイソシアヌレート、2,4-ジアミノ-6-[2-メチルイミダゾリル-(1)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2-エチル-4-メチルイミダゾリル-(1)]-エチル-s-トリアジン等が挙げられる。 As the imidazole (imidazole curing agent) as the curing agent (D), a known or conventional imidazole curing agent can be used, and is not particularly limited. For example, 2-methylimidazole, 2-ethyl-4-methylimidazole 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1 -Cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2-methylimidazolium isocyanurate, 2-phenylimidazolium isocyanate 2,4-diamino-6- [2-methylimidazolyl- (1)]-ethyl-s-triazine, 2,4-diamino-6- [2-ethyl-4-methylimidazolyl- (1)]- And ethyl-s-triazine.
 硬化剤(D)としてのポリメルカプタン類(ポリメルカプタン系硬化剤)としては、例えば、液状のポリメルカプタン、ポリスルフィド樹脂等が挙げられる。 Examples of the polymercaptans (polymercaptan-based curing agent) as the curing agent (D) include liquid polymercaptan and polysulfide resin.
 硬化剤(D)としてのポリカルボン酸類としては、例えば、アジピン酸、セバシン酸、テレフタル酸、トリメリット酸、カルボキシ基含有ポリエステル等が挙げられる。 Examples of the polycarboxylic acids as the curing agent (D) include adipic acid, sebacic acid, terephthalic acid, trimellitic acid, carboxy group-containing polyester, and the like.
 中でも、硬化剤(D)としては、硬化物の耐熱性、透明性の観点で、酸無水物類(酸無水物系硬化剤)が好ましい。なお、本発明の硬化性エポキシ樹脂組成物において硬化剤(D)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、硬化剤(D)としては、市販品を使用することもできる。例えば、酸無水物類の市販品としては、商品名「リカシッド MH-700」、「リカシッド MH-700F」(以上、新日本理化(株)製);商品名「HN-5500」(日立化成工業(株)製)等が挙げられる。 Among these, as the curing agent (D), acid anhydrides (acid anhydride curing agents) are preferable from the viewpoint of heat resistance and transparency of the cured product. In addition, the hardening | curing agent (D) can also be used individually by 1 type in the curable epoxy resin composition of this invention, and can also be used in combination of 2 or more type. Moreover, a commercial item can also be used as a hardening | curing agent (D). For example, commercially available acid anhydrides include trade names “Licacid MH-700” and “Licacid MH-700F” (manufactured by Shin Nippon Rika Co., Ltd.); trade name “HN-5500” (Hitachi Chemical Industries). Etc.).
 本発明の硬化性エポキシ樹脂組成物における硬化剤(D)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量100重量部に対して、50~200重量部が好ましく、より好ましくは80~150重量部である。より具体的には、硬化剤(D)として酸無水物類を使用する場合、本発明の硬化性エポキシ樹脂組成物に含まれる全てのエポキシ基を有する化合物におけるエポキシ基1当量あたり、0.5~1.5当量となる割合で使用することが好ましい。硬化剤(D)の含有量を50重量部以上とすることにより、硬化を十分に進行させることができ、硬化物の強靭性がより向上する傾向がある。一方、硬化剤(D)の含有量を200重量部以下とすることにより、着色が抑制され、色相に優れた硬化物が得られる傾向がある。 The content (blending amount) of the curing agent (D) in the curable epoxy resin composition of the present invention is not particularly limited, but is 100 parts by weight based on the total amount of compounds having an epoxy group contained in the curable epoxy resin composition. The amount is preferably 50 to 200 parts by weight, more preferably 80 to 150 parts by weight. More specifically, when acid anhydrides are used as the curing agent (D), 0.5 equivalent per 1 epoxy group equivalent in the compound having all epoxy groups contained in the curable epoxy resin composition of the present invention. It is preferable to use at a ratio of ˜1.5 equivalent. By making content of a hardening | curing agent (D) into 50 weight part or more, hardening can fully be advanced and there exists a tendency for the toughness of hardened | cured material to improve more. On the other hand, when the content of the curing agent (D) is 200 parts by weight or less, coloring tends to be suppressed and a cured product having excellent hue tends to be obtained.
[硬化促進剤(E)]
 本発明の硬化性エポキシ樹脂組成物は、特に硬化剤(D)を含む場合には、さらに硬化促進剤(E)を含むことが好ましい。硬化促進剤(E)は、エポキシ基(オキシラニル基)を有する化合物が硬化剤(D)と反応する際に、その反応速度を促進する機能を有する化合物である。硬化促進剤(E)としては、公知乃至慣用の硬化促進剤を使用でき、特に限定されないが、例えば、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)又はその塩(例えば、フェノール塩、オクチル酸塩、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩等);1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)又はその塩(例えば、フェノール塩、オクチル酸塩、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩等);ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、N,N-ジメチルシクロヘキシルアミン等の三級アミン;2-エチル-4-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール等のイミダゾール;リン酸エステル;トリフェニルホスフィン、トリス(ジメトキシ)ホスフィン等のホスフィン類;テトラフェニルホスホニウムテトラ(p-トリル)ボレート等のホスホニウム化合物;オクチル酸亜鉛、オクチル酸スズ、ステアリン酸亜鉛等の有機金属塩;アルミニウムアセチルアセトン錯体等の金属キレート等が挙げられる。
[Curing accelerator (E)]
When the curable epoxy resin composition of the present invention contains a curing agent (D), it is preferable to further contain a curing accelerator (E). The curing accelerator (E) is a compound having a function of accelerating the reaction rate when a compound having an epoxy group (oxiranyl group) reacts with the curing agent (D). The curing accelerator (E) may be a known or conventional curing accelerator, and is not particularly limited. For example, 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) or a salt thereof (for example, , Phenol salt, octylate, p-toluenesulfonate, formate, tetraphenylborate salt, etc.); 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) or a salt thereof (for example, phenol Salt, octylate, p-toluenesulfonate, formate, tetraphenylborate, etc.); benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N-dimethylcyclohexylamine, etc. Tertiary amines; Imidazoles such as 2-ethyl-4-methylimidazole and 1-cyanoethyl-2-ethyl-4-methylimidazole; Phosphate compounds such as triphenylphosphine and tris (dimethoxy) phosphine; Phosphonium compounds such as tetraphenylphosphonium tetra (p-tolyl) borate; Organometallic salts such as zinc octylate, tin octylate, and zinc stearate; Examples thereof include metal chelates such as aluminum acetylacetone complex.
 なお、本発明の硬化性エポキシ樹脂組成物において硬化促進剤(E)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、硬化促進剤(E)としては、商品名「U-CAT SA 506」、「U-CAT SA 102」、「U-CAT 5003」、「U-CAT 18X」、「U-CAT 12XD」(開発品)(以上、サンアプロ(株)製);商品名「TPP-K」、「TPP-MK」(以上、北興化学工業(株)製);商品名「PX-4ET」(日本化学工業(株)製)等の市販品を使用することもできる。 In addition, a hardening accelerator (E) can also be used individually by 1 type in the curable epoxy resin composition of this invention, and can also be used in combination of 2 or more type. Further, as the curing accelerator (E), trade names “U-CAT SA 506”, “U-CAT SA 102”, “U-CAT 5003”, “U-CAT 18X”, “U-CAT 12XD” ( (Developed product) (San Apro Co., Ltd.); Trade names “TPP-K”, “TPP-MK” (Hokuko Chemical Co., Ltd.); Trade name “PX-4ET” (Nippon Chemical Industry ( It is also possible to use a commercial product such as a product manufactured by Co. Ltd.
 本発明の硬化性エポキシ樹脂組成物における硬化促進剤(E)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量100重量部に対して、0.01~5重量部が好ましく、より好ましくは0.02~3重量部、さらに好ましくは0.03~2重量部である。硬化促進剤(E)の含有量を0.01重量部以上とすることにより、いっそう効率的な硬化促進効果が得られる傾向がある。一方、硬化促進剤(E)の含有量を5重量部以下とすることにより、着色が抑制され、色相に優れた硬化物が得られる傾向がある。 The content (blending amount) of the curing accelerator (E) in the curable epoxy resin composition of the present invention is not particularly limited, but the total amount of compounds having epoxy groups contained in the curable epoxy resin composition is 100 parts by weight. On the other hand, it is preferably 0.01 to 5 parts by weight, more preferably 0.02 to 3 parts by weight, still more preferably 0.03 to 2 parts by weight. By setting the content of the curing accelerator (E) to 0.01 parts by weight or more, a more efficient curing promoting effect tends to be obtained. On the other hand, by setting the content of the curing accelerator (E) to 5 parts by weight or less, coloring tends to be suppressed and a cured product excellent in hue tends to be obtained.
[硬化触媒(F)]
 本発明の硬化性エポキシ樹脂組成物は、さらに(例えば、硬化剤(D)の代わりに)硬化触媒(F)を含んでいてもよい。硬化触媒(F)は、脂環式エポキシ化合物(A)、モノアリルジグリシジルイソシアヌレート化合物(B)、応力緩和剤(C)としてのエポキシ変性シリコーンオイル等のカチオン硬化性化合物の硬化反応(重合反応)を開始及び/又は促進させることにより、硬化性エポキシ樹脂組成物を硬化させる働きを有する化合物である。硬化触媒(F)としては、特に限定されないが、例えば、光照射や加熱処理等を施すことによりカチオン種を発生して、重合を開始させるカチオン重合開始剤(光カチオン重合開始剤、熱カチオン重合開始剤等)や、ルイス酸・アミン錯体、ブレンステッド酸塩類、イミダゾール類等が挙げられる。
[Curing catalyst (F)]
The curable epoxy resin composition of the present invention may further contain a curing catalyst (F) (for example, instead of the curing agent (D)). The curing catalyst (F) is a curing reaction (polymerization) of a cation curable compound such as an alicyclic epoxy compound (A), a monoallyl diglycidyl isocyanurate compound (B), or an epoxy-modified silicone oil as a stress relaxation agent (C). It is a compound having the function of curing the curable epoxy resin composition by initiating and / or promoting reaction. The curing catalyst (F) is not particularly limited. For example, a cationic polymerization initiator (photo cationic polymerization initiator, thermal cationic polymerization) that initiates polymerization by generating cationic species by performing light irradiation, heat treatment, or the like. Initiators, etc.), Lewis acid / amine complexes, Bronsted acid salts, imidazoles and the like.
 硬化触媒(F)としての光カチオン重合開始剤としては、例えば、ヘキサフルオロアンチモネート塩、ペンタフルオロヒドロキシアンチモネート塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアルセネート塩等が挙げられ、より具体的には、例えば、トリアリールスルホニウムヘキサフルオロホスフェート(例えば、p-フェニルチオフェニルジフェニルスルホニウムヘキサフルオロホスフェート等)、トリアリールスルホニウムヘキサフルオロアンチモネート等のスルホニウム塩(特に、トリアリールスルホニウム塩);ジアリールヨードニウムヘキサフルオロホスフェート、ジアリールヨードニウムヘキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ヨードニウム[4-(4-メチルフェニル-2-メチルプロピル)フェニル]ヘキサフルオロホスフェート等のヨードニウム塩;テトラフルオロホスホニウムヘキサフルオロホスフェート等のホスホニウム塩;N-ヘキシルピリジニウムテトラフルオロボレート等のピリジニウム塩等が挙げられる。また、光カチオン重合開始剤としては、例えば、商品名「UVACURE1590」(ダイセル・サイテック(株)製);商品名「CD-1010」、「CD-1011」、「CD-1012」(以上、米国サートマー製);商品名「イルガキュア264」(BASF社製);商品名「CIT-1682」(日本曹達(株)製)等の市販品を好ましく使用することもできる。 Examples of the photocationic polymerization initiator as the curing catalyst (F) include hexafluoroantimonate salts, pentafluorohydroxyantimonate salts, hexafluorophosphate salts, hexafluoroarsenate salts, and more specifically. For example, triarylsulfonium hexafluorophosphate (eg, p-phenylthiophenyldiphenylsulfonium hexafluorophosphate), sulfonium salts such as triarylsulfonium hexafluoroantimonate (particularly, triarylsulfonium salts); diaryl iodonium hexafluorophosphate Diaryl iodonium hexafluoroantimonate, bis (dodecylphenyl) iodonium tetrakis (pentafluorophenyl) borate, iodine Iodonium salts such as nium [4- (4-methylphenyl-2-methylpropyl) phenyl] hexafluorophosphate; phosphonium salts such as tetrafluorophosphonium hexafluorophosphate; pyridinium salts such as N-hexylpyridinium tetrafluoroborate It is done. Examples of the cationic photopolymerization initiator include, for example, trade names “UVACURE 1590” (manufactured by Daicel Cytec Co., Ltd.); trade names “CD-1010”, “CD-1011”, “CD-1012” (above, the United States). Commercial products such as Sartomer); trade name “Irgacure 264” (manufactured by BASF); trade name “CIT-1682” (manufactured by Nippon Soda Co., Ltd.) can be preferably used.
 硬化触媒(F)としての熱カチオン重合開始剤としては、例えば、アリールジアゾニウム塩、アリールヨードニウム塩、アリールスルホニウム塩、アレン-イオン錯体等が挙げられ、商品名「PP-33」、「CP-66」、「CP-77」(以上(株)ADEKA製);商品名「FC-509」(スリーエム製);商品名「UVE1014」(G.E.製);商品名「サンエイドSI-60L」、「サンエイドSI-80L」、「サンエイドSI-100L」、「サンエイドSI-110L」、「サンエイドSI-150L」(以上、三新化学工業(株)製);商品名「CG-24-61」(BASF社製)等の市販品を好ましく使用することができる。さらに、熱カチオン重合開始剤としては、アルミニウムやチタン等の金属とアセト酢酸若しくはジケトン類とのキレート化合物とトリフェニルシラノール等のシラノールとの化合物、又は、アルミニウムやチタン等の金属とアセト酢酸若しくはジケトン類とのキレート化合物とビスフェノールS等のフェノール類との化合物等も挙げられる。 Examples of the thermal cationic polymerization initiator as the curing catalyst (F) include aryldiazonium salts, aryliodonium salts, arylsulfonium salts, allene-ion complexes, etc., and trade names “PP-33”, “CP-66”. "CP-77" (manufactured by ADEKA); trade name "FC-509" (manufactured by 3M); trade name "UVE1014" (manufactured by GE); trade name "Sun-Aid SI-60L" “Sun-Aid SI-80L”, “Sun-Aid SI-100L”, “Sun-Aid SI-110L”, “Sun-Aid SI-150L” (manufactured by Sanshin Chemical Industry Co., Ltd.); trade name “CG-24-61” ( Commercially available products such as BASF) can be preferably used. Further, as the thermal cationic polymerization initiator, a compound of a chelate compound of a metal such as aluminum or titanium and acetoacetic acid or diketone and a silanol such as triphenylsilanol, or a metal such as aluminum or titanium and acetoacetic acid or diketone Examples thereof include a compound of a chelate compound with a phenol and a phenol such as bisphenol S.
 硬化触媒(F)としてのルイス酸・アミン錯体としては、公知乃至慣用のルイス酸・アミン錯体系硬化触媒を使用することができ、特に限定されないが、例えば、BF3・n-ヘキシルアミン、BF3・モノエチルアミン、BF3・ベンジルアミン、BF3・ジエチルアミン、BF3・ピペリジン、BF3・トリエチルアミン、BF3・アニリン、BF4・n-ヘキシルアミン、BF4・モノエチルアミン、BF4・ベンジルアミン、BF4・ジエチルアミン、BF4・ピペリジン、BF4・トリエチルアミン、BF4・アニリン、PF5・エチルアミン、PF5・イソプロピルアミン、PF5・ブチルアミン、PF5・ラウリルアミン、PF5・ベンジルアミン、AsF5・ラウリルアミン等が挙げられる。 As the Lewis acid / amine complex as the curing catalyst (F), a known or commonly used Lewis acid / amine complex-based curing catalyst can be used, and is not particularly limited. For example, BF 3 .n-hexylamine, BF 3 · monoethylamine, BF 3 · benzylamine, BF 3 · diethylamine, BF 3 · piperidine, BF 3 · triethylamine, BF 3 · aniline, BF 4 - n-hexylamine, BF 4 - monoethylamine, BF 4 - benzylamine , BF 4 · diethylamine, BF 4 · piperidine, BF 4 · triethylamine, BF 4 · aniline, PF 5 · ethylamine, PF 5 · isopropylamine, PF 5 · butylamine, PF 5 · laurylamine, PF 5 · benzylamine, AsF 5. Laurylamine etc. are mentioned.
 硬化触媒(F)としてのブレンステッド酸塩類としては、公知乃至慣用のブレンステッド酸塩類を使用することができ、特に限定されないが、例えば、脂肪族スルホニウム塩、芳香族スルホニウム塩、ヨードニウム塩、ホスホニウム塩等が挙げられる。 As the Bronsted acid salts as the curing catalyst (F), known or commonly used Bronsted acid salts can be used, and are not particularly limited. For example, aliphatic sulfonium salts, aromatic sulfonium salts, iodonium salts, phosphoniums. Examples include salts.
 硬化触媒(F)としてのイミダゾール類としては、公知乃至慣用のイミダゾール類を使用することができ、特に限定されないが、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテート、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2-メチルイミダゾリウムイソシアヌレート、2-フェニルイミダゾリウムイソシアヌレート、2,4-ジアミノ-6-[2-メチルイミダゾリル-(1)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2-エチル-4-メチルイミダゾリル-(1)]-エチル-s-トリアジン等が挙げられる。 As the imidazole as the curing catalyst (F), known or conventional imidazoles can be used, and are not particularly limited. For example, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecyl Imidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2- Undecylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2-methylimidazolium isocyanurate, 2-phenylimidazolium isocyanurate, 2,4 - Amino-6- [2-methylimidazolyl- (1)]-ethyl-s-triazine, 2,4-diamino-6- [2-ethyl-4-methylimidazolyl- (1)]-ethyl-s-triazine, etc. Is mentioned.
 本発明の硬化性エポキシ樹脂組成物において硬化触媒(F)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。なお、上述のように、硬化触媒(F)としては市販品を使用することもできる。 In the curable epoxy resin composition of the present invention, the curing catalyst (F) can be used alone or in combination of two or more. In addition, as above-mentioned, a commercial item can also be used as a curing catalyst (F).
 本発明の硬化性エポキシ樹脂組成物における硬化触媒(F)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量100重量部に対して、0.01~5重量部が好ましく、より好ましくは0.02~3重量部、さらに好ましくは0.03~2重量部である。硬化触媒(F)を上記範囲内で使用することにより、硬化性エポキシ樹脂組成物の硬化速度が高まり、硬化物の耐熱性及び透明性がバランスよく向上する傾向がある。 The content (blending amount) of the curing catalyst (F) in the curable epoxy resin composition of the present invention is not particularly limited, but is 100 parts by weight based on the total amount of the compounds having an epoxy group contained in the curable epoxy resin composition. The amount is preferably 0.01 to 5 parts by weight, more preferably 0.02 to 3 parts by weight, and still more preferably 0.03 to 2 parts by weight. By using the curing catalyst (F) within the above range, the curing rate of the curable epoxy resin composition is increased, and the heat resistance and transparency of the cured product tend to be improved in a balanced manner.
[ゴム粒子]
 本発明の硬化性エポキシ樹脂組成物は、さらに、シリコーンゴム粒子以外のゴム粒子(以下、単に「ゴム粒子」と称する場合がある)を含んでいてもよい。上記ゴム粒子としては、シリコーンゴム粒子以外のものであれば、公知慣用のゴム粒子を特に制限なく使用することができ、例えば、粒子状NBR(アクリロニトリル-ブタジエンゴム)、反応性末端カルボキシ基NBR(CTBN)、メタルフリーNBR、粒子状SBR(スチレン-ブタジエンゴム)等のゴム粒子が挙げられる。上記ゴム粒子としては、ゴム弾性を有するコア部分と、該コア部分を被覆する少なくとも1層のシェル層とからなる多層構造(コアシェル構造)を有するゴム粒子が好ましい。上記ゴム粒子は、特に、(メタ)アクリル酸エステルを必須モノマー成分とするポリマー(重合体)で構成され、表面に脂環式エポキシ化合物(A)等のエポキシ基を有する化合物と反応し得る官能基としてヒドロキシ基及び/又はカルボキシ基(ヒドロキシ基及びカルボキシ基のいずれか一方又は両方)を有するゴム粒子が好ましい。上記ゴム粒子の表面にヒドロキシ基及びカルボキシ基のいずれもが存在しない場合、冷熱サイクル等の熱衝撃により硬化物が白濁して透明性が低下しやすくなるため好ましくない。
[Rubber particles]
The curable epoxy resin composition of the present invention may further contain rubber particles other than silicone rubber particles (hereinafter sometimes simply referred to as “rubber particles”). As the rubber particles, known and commonly used rubber particles can be used without particular limitation as long as they are other than silicone rubber particles. For example, particulate NBR (acrylonitrile-butadiene rubber), reactive terminal carboxy group NBR ( CTBN), metal-free NBR, and particulate SBR (styrene-butadiene rubber). The rubber particles are preferably rubber particles having a multilayer structure (core-shell structure) composed of a core portion having rubber elasticity and at least one shell layer covering the core portion. The rubber particles are particularly composed of a polymer (polymer) having (meth) acrylic acid ester as an essential monomer component, and a functional group capable of reacting with a compound having an epoxy group such as an alicyclic epoxy compound (A) on the surface. Rubber particles having a hydroxy group and / or a carboxy group (either one or both of a hydroxy group and a carboxy group) as a group are preferred. If neither the hydroxy group nor the carboxy group is present on the surface of the rubber particles, the cured product becomes cloudy due to a thermal shock such as a cold cycle, and the transparency tends to decrease, which is not preferable.
 上記ゴム粒子におけるゴム弾性を有するコア部分を構成するポリマーは、シリコーン化合物以外であれば、特に限定されないが、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステルを必須のモノマー成分として含むポリマーであることが好ましい。上記ゴム弾性を有するコア部分を構成するポリマーは、その他、例えば、スチレン、α-メチルスチレン等の芳香族ビニル;アクリロニトリル、メタクリロニトリル等のニトリル;ブタジエン、イソプレン等の共役ジエン;エチレン、プロピレン、イソブテン等のα-オレフィン等をモノマー成分として含んでいてもよい。 The polymer constituting the core part having rubber elasticity in the rubber particles is not particularly limited as long as it is other than a silicone compound, but such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, etc. A polymer containing (meth) acrylic acid ester as an essential monomer component is preferred. The polymer constituting the core part having rubber elasticity includes, for example, aromatic vinyl such as styrene and α-methylstyrene; nitrile such as acrylonitrile and methacrylonitrile; conjugated diene such as butadiene and isoprene; ethylene, propylene, An α-olefin such as isobutene may be included as a monomer component.
 中でも、上記ゴム弾性を有するコア部分を構成するポリマーは、モノマー成分として、(メタ)アクリル酸エステルと共に、芳香族ビニル、ニトリル、及び共役ジエンからなる群より選択された一種又は二種以上を組み合わせて含むことが好ましい。即ち、上記コア部分を構成するポリマーとしては、例えば、(メタ)アクリル酸エステル/芳香族ビニル、(メタ)アクリル酸エステル/共役ジエン等の二元共重合体、(メタ)アクリル酸エステル/芳香族ビニル/共役ジエン等の三元共重合体等が挙げられる。 Among them, the polymer constituting the core portion having rubber elasticity is combined with one or more selected from the group consisting of aromatic vinyl, nitrile, and conjugated diene together with (meth) acrylic acid ester as a monomer component. It is preferable to include. That is, as the polymer constituting the core portion, for example, (meth) acrylic acid ester / aromatic vinyl, (meth) acrylic acid ester / conjugated diene and other binary copolymers, (meth) acrylic acid ester / aromatic And terpolymers such as group vinyl / conjugated dienes.
 上記コア部分を構成するポリマーは、その他のモノマー成分として、ジビニルベンゼン、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジアリルマレエート、トリアリルシアヌレート、ジアリルフタレート、ブチレングリコールジアクリレート等の分子内に2個以上の反応性官能基を有する反応性架橋モノマーを含有していてもよい。 The polymer constituting the core part includes, as other monomer components, divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl maleate, triallyl cyanurate, diallyl phthalate, butylene glycol diacrylate, etc. A reactive crosslinking monomer having two or more reactive functional groups in the molecule may be contained.
 上記ゴム粒子のコア部分は、中でも、(メタ)アクリル酸エステル/芳香族ビニルの二元共重合体(特に、アクリル酸ブチル/スチレン)、又は(メタ)アクリル酸エステル/芳香族ビニル/その他のモノマーの三元共重合体(特に、アクリル酸ブチル/スチレン/ジビニルベンゼン)より構成されたコア部分であることが、ゴム粒子の屈折率を容易に調整できる点で好ましい。 The core part of the rubber particles is, among other things, a (meth) acrylate / aromatic vinyl binary copolymer (particularly butyl acrylate / styrene) or (meth) acrylate / aromatic vinyl / others. A core portion composed of a terpolymer of monomers (particularly butyl acrylate / styrene / divinylbenzene) is preferable in that the refractive index of the rubber particles can be easily adjusted.
 上記ゴム粒子のコア部分を構成するポリマーのガラス転移温度は、特に限定されないが、60℃未満(例えば、-150℃以上、60℃未満)が好ましく、より好ましくは-150~15℃、さらに好ましくは-100~0℃である。上記ポリマーのガラス転移温度を60℃未満とすることにより硬化物の耐クラック性(各種応力に対してクラックを生じにくい特性)がより向上する傾向がある。なお、上記コア部分を構成するポリマーのガラス転移温度は、下記Foxの式により算出される計算値を意味する(Bull.Am.Phys.Soc.,1(3)123(1956)参照)。下記Foxの式中、Tgはコア部分を構成するポリマーのガラス転移温度(単位:K)を示し、Wiはコア部分を構成するポリマーを構成する単量体全量に対する単量体iの重量分率を示す。また、Tgiは単量体iの単独重合体のガラス転移温度(単位:K)を示す。下記Foxの式は、コアを構成するポリマーが単量体1、単量体2、・・・・、及び単量体nの共重合体である場合の式を示す。
   1/Tg=W1/Tg1+W2/Tg2+・・・・+Wn/Tgn
 上記単独重合体のガラス転移温度は、各種文献に記載の値を採用することができ、例えば、「POLYMER HANDBOOK 第3版」(John Wiley & Sons,Inc.発行)に記載の値を採用できる。なお、文献に記載のないものについては、単量体を常法により重合して得られる単独重合体の、DSC法により測定されるガラス転移温度の値を採用することができる。
The glass transition temperature of the polymer constituting the core part of the rubber particles is not particularly limited, but is preferably less than 60 ° C. (eg, −150 ° C. or more and less than 60 ° C.), more preferably −150 to 15 ° C., and even more preferably. Is -100 to 0 ° C. By setting the glass transition temperature of the polymer to less than 60 ° C., the crack resistance of the cured product (characteristic that hardly causes cracks with respect to various stresses) tends to be further improved. In addition, the glass transition temperature of the polymer which comprises the said core part means the calculated value calculated by the formula of the following Fox (refer Bull. Am. Phys. Soc., 1 (3) 123 (1956)). Wherein the following Fox, Tg glass transition temperature (unit: K) of the polymer constituting the core portion indicates, W i is the weight fraction of the monomer i for the monomer total amount constituting the polymer constituting the core portion Indicates the rate. Further, Tg i is the glass transition temperature of the homopolymer of monomer i (unit: K) shows a. The following Fox formula shows the formula when the polymer constituting the core is a copolymer of monomer 1, monomer 2,..., And monomer n.
1 / Tg = W 1 / Tg 1 + W 2 / Tg 2 +... + W n / Tg n
As the glass transition temperature of the homopolymer, values described in various documents can be adopted, for example, values described in “POLYMER HANDBOOK 3rd edition” (published by John Wiley & Sons, Inc.) can be adopted. In addition, about the thing which is not described in literature, the value of the glass transition temperature measured by DSC method of the homopolymer obtained by superposing | polymerizing a monomer by a conventional method is employable.
 上記ゴム粒子のコア部分は、通常用いられる方法で製造することができ、例えば、上記モノマーを乳化重合法により重合する方法等により製造することができる。乳化重合法においては、上記モノマーの全量を一括して仕込んで重合してもよいし、上記モノマーの一部を重合した後、残りを連続的に又は断続的に添加して重合してもよいし、さらに、シード粒子を使用する重合方法を使用してもよい。 The core portion of the rubber particles can be manufactured by a commonly used method, for example, by a method of polymerizing the monomer by an emulsion polymerization method. In the emulsion polymerization method, the whole amount of the monomer may be charged all at once and polymerized, or after polymerizing a part of the monomer, the remainder may be added continuously or intermittently for polymerization. Further, a polymerization method using seed particles may be used.
 上記ゴム粒子のシェル層を構成するポリマーは、上記コア部分を構成するポリマーとは異種のポリマー(異なるモノマー組成を有するポリマー)であることが好ましい。また、上述のように、上記シェル層は、脂環式エポキシ化合物(A)等のエポキシ基を有する化合物と反応し得る官能基としてヒドロキシ基及び/又はカルボキシ基を有することが好ましい。これにより、特に、脂環式エポキシ化合物(A)との界面で接着性を向上させることができ、該シェル層を有するゴム粒子を含む硬化性エポキシ樹脂組成物を硬化させた硬化物に対して、優れた耐クラック性を発揮させることができる。また、硬化物のガラス転移温度の低下を防止することもできる。 The polymer constituting the shell layer of the rubber particles is preferably a polymer different from the polymer constituting the core portion (polymer having a different monomer composition). Further, as described above, the shell layer preferably has a hydroxy group and / or a carboxy group as a functional group capable of reacting with a compound having an epoxy group such as an alicyclic epoxy compound (A). Thereby, especially with respect to the hardened | cured material which can improve adhesiveness in an interface with an alicyclic epoxy compound (A), and hardened the curable epoxy resin composition containing the rubber particle which has this shell layer. , Excellent crack resistance can be exhibited. Moreover, the fall of the glass transition temperature of hardened | cured material can also be prevented.
 上記シェル層を構成するポリマーは、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステルを必須のモノマー成分として含むポリマーであることが好ましい。例えば、上記コア部分における(メタ)アクリル酸エステルとしてアクリル酸ブチルを用いた場合、シェル層を構成するポリマーのモノマー成分としては、例えば、アクリル酸ブチル以外の(メタ)アクリル酸エステル(例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、メタクリル酸ブチル等)を使用することが好ましい。(メタ)アクリル酸エステル以外に含んでいてもよいモノマー成分としては、例えば、スチレン、α-メチルスチレン等の芳香族ビニル;アクリロニトリル、メタクリロニトリル等のニトリル等が挙げられる。上記ゴム粒子においては、シェル層を構成するモノマー成分として、(メタ)アクリル酸エステルと共に、上記モノマーを単独で、又は二種以上を組み合わせて含むことが好ましく、特に、少なくとも芳香族ビニルを含むことが、上記ゴム粒子の屈折率を容易に調整できる点で好ましい。 The polymer constituting the shell layer is preferably a polymer containing (meth) acrylic acid ester such as methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate as an essential monomer component. . For example, when butyl acrylate is used as the (meth) acrylic acid ester in the core portion, as a monomer component of the polymer constituting the shell layer, for example, (meth) acrylic acid esters other than butyl acrylate (for example, ( (Meth) methyl acrylate, ethyl (meth) acrylate, butyl methacrylate, etc.) are preferably used. Examples of the monomer component that may be contained in addition to the (meth) acrylic acid ester include aromatic vinyl such as styrene and α-methylstyrene; nitrile such as acrylonitrile and methacrylonitrile. In the rubber particles, as a monomer component constituting the shell layer, it is preferable to contain the monomer alone or in combination of two or more together with (meth) acrylic acid ester, and in particular, at least contain aromatic vinyl. Is preferable in that the refractive index of the rubber particles can be easily adjusted.
 さらに、上記シェル層を構成するポリマーは、モノマー成分として、脂環式エポキシ化合物(A)等のエポキシ基を有する化合物と反応し得る官能基としてのヒドロキシ基及び/又はカルボキシ基を形成するために、ヒドロキシ基含有モノマー(例えば、2-ヒドロキシエチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート等)や、カルボキシ基含有モノマー(例えば、(メタ)アクリル酸等のα,β-不飽和酸;マレイン酸無水物等のα,β-不飽和酸無水物等)を含有することが好ましい。 Further, the polymer constituting the shell layer forms a hydroxy group and / or a carboxy group as a functional group capable of reacting with a compound having an epoxy group such as an alicyclic epoxy compound (A) as a monomer component. Hydroxy group-containing monomers (eg, hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate) and carboxy group-containing monomers (eg, α, β-unsaturated acids such as (meth) acrylic acid; Α, β-unsaturated acid anhydrides such as maleic anhydride) are preferably contained.
 上記ゴム粒子におけるシェル層を構成するポリマーは、モノマー成分として、(メタ)アクリル酸エステルと共に、上記モノマーから選択された一種又は二種以上を組み合わせて含むことが好ましい。即ち、上記シェル層は、例えば、(メタ)アクリル酸エステル/芳香族ビニル/ヒドロキシアルキル(メタ)アクリレート、(メタ)アクリル酸エステル/芳香族ビニル/α,β-不飽和酸等の三元共重合体等から構成されたシェル層であることが好ましい。 The polymer constituting the shell layer in the rubber particles preferably contains one or two or more kinds selected from the monomers together with (meth) acrylic acid ester as a monomer component. That is, the shell layer is composed of, for example, a ternary copolymer such as (meth) acrylic acid ester / aromatic vinyl / hydroxyalkyl (meth) acrylate, (meth) acrylic acid ester / aromatic vinyl / α, β-unsaturated acid. A shell layer composed of a polymer or the like is preferable.
 また、上記シェル層を構成するポリマーは、その他のモノマー成分として、コア部分と同様に、上記モノマーの他にジビニルベンゼン、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジアリルマレエート、トリアリルシアヌレート、ジアリルフタレート、ブチレングリコールジアクリレート等の分子内に2個以上の反応性官能基を有する反応性架橋モノマーを含有していてもよい。 Further, the polymer constituting the shell layer includes, as the other monomer components, divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl maleate, trimethyl, as well as the above-described monomer. A reactive crosslinking monomer having two or more reactive functional groups may be contained in the molecule such as allyl cyanurate, diallyl phthalate, butylene glycol diacrylate.
 上記ゴム粒子のシェル層を構成するポリマーのガラス転移温度は、特に限定されないが、60~120℃が好ましく、より好ましくは70~115℃である。上記ポリマーのガラス転移温度を60℃以上とすることにより、硬化物の耐熱性がより向上する傾向がある。一方、上記ポリマーのガラス転移温度を120℃以下とすることにより、硬化物の耐クラック性がより向上する傾向がある。なお、上記シェル層を構成するポリマーのガラス転移温度は、上記Foxの式により算出される計算値を意味し、例えば、上述のコアを構成するポリマーのガラス転移温度と同様にして測定できる。 The glass transition temperature of the polymer constituting the shell layer of the rubber particles is not particularly limited, but is preferably 60 to 120 ° C., more preferably 70 to 115 ° C. By setting the glass transition temperature of the polymer to 60 ° C. or higher, the heat resistance of the cured product tends to be further improved. On the other hand, the crack resistance of hardened | cured material tends to improve more by making the glass transition temperature of the said polymer into 120 degrees C or less. In addition, the glass transition temperature of the polymer which comprises the said shell layer means the calculated value computed by the said Formula of Fox, For example, it can measure similarly to the glass transition temperature of the polymer which comprises the above-mentioned core.
 上記ゴム粒子(コアシェル構造を有するゴム粒子)は、上記コア部分をシェル層により被覆することで得られる。上記コア部分をシェル層で被覆する方法としては、例えば、上記方法により得られたゴム弾性を有するコア部分の表面に、シェル層を構成するポリマーを塗布することにより被覆する方法;上記方法により得られたゴム弾性を有するコア部分を幹成分とし、シェル層を構成する各成分を枝成分としてグラフト重合する方法等が挙げられる。 The rubber particles (rubber particles having a core-shell structure) can be obtained by covering the core portion with a shell layer. Examples of the method for coating the core part with the shell layer include a method of coating the surface of the core part having rubber elasticity obtained by the above method by applying a polymer constituting the shell layer; Examples thereof include a graft polymerization method in which the core portion having rubber elasticity is a trunk component and each component constituting the shell layer is a branch component.
 上記ゴム粒子の平均粒子径は、特に限定されないが、10~500nmが好ましく、より好ましくは20~400nmである。また、上記ゴム粒子の最大粒子径は、特に限定されないが、50~1000nmが好ましく、より好ましくは100~800nmである。平均粒子径を500nm以下(又は、最大粒子径を1000nm以下)とすることにより、硬化物におけるゴム粒子の分散性が向上し、耐クラック性がより向上する傾向がある。一方、平均粒子径を10nm以上(又は、最大粒子径を50nm以上)とすることにより、硬化物の耐クラック性がより向上する傾向がある。 The average particle diameter of the rubber particles is not particularly limited, but is preferably 10 to 500 nm, more preferably 20 to 400 nm. The maximum particle size of the rubber particles is not particularly limited, but is preferably 50 to 1000 nm, more preferably 100 to 800 nm. When the average particle size is 500 nm or less (or the maximum particle size is 1000 nm or less), the dispersibility of the rubber particles in the cured product is improved, and the crack resistance tends to be further improved. On the other hand, when the average particle diameter is 10 nm or more (or the maximum particle diameter is 50 nm or more), the crack resistance of the cured product tends to be further improved.
 上記ゴム粒子の屈折率は、特に限定されないが、1.40~1.60が好ましく、より好ましくは1.42~1.58である。また、ゴム粒子の屈折率と、該ゴム粒子を含む硬化性エポキシ樹脂組成物(本発明の硬化性エポキシ樹脂組成物)を硬化させて得られる硬化物の屈折率との差は±0.03以内であることが好ましい。屈折率の差を±0.03以内とすることにより、硬化物の優れた透明性が確保され、光半導体装置の光度が高く保持される傾向がある。 The refractive index of the rubber particles is not particularly limited, but is preferably 1.40 to 1.60, more preferably 1.42 to 1.58. The difference between the refractive index of the rubber particles and the refractive index of the cured product obtained by curing the curable epoxy resin composition containing the rubber particles (the curable epoxy resin composition of the present invention) is ± 0.03. Is preferably within. By setting the difference in refractive index within ± 0.03, excellent transparency of the cured product is secured, and the optical intensity of the optical semiconductor device tends to be kept high.
 ゴム粒子の屈折率は、例えば、ゴム粒子1gを型に注型して210℃、4MPaで圧縮成形し、厚さ1mmの平板を得、得られた平板から、縦20mm×横6mmの試験片を切り出し、中間液としてモノブロモナフタレンを使用してプリズムと該試験片とを密着させた状態で、多波長アッベ屈折計(商品名「DR-M2」、(株)アタゴ製)を使用し、20℃、ナトリウムD線での屈折率を測定することにより求めることができる。 The refractive index of the rubber particles is, for example, by casting 1 g of rubber particles into a mold and compression molding at 210 ° C. and 4 MPa to obtain a flat plate having a thickness of 1 mm. From the obtained flat plate, a test piece of 20 mm length × 6 mm width And using a multi-wavelength Abbe refractometer (trade name “DR-M2”, manufactured by Atago Co., Ltd.) in a state where the prism and the test piece are in close contact using monobromonaphthalene as an intermediate solution, It can be determined by measuring the refractive index at 20 ° C. and sodium D line.
 本発明の硬化性エポキシ樹脂組成物の硬化物の屈折率は、例えば、下記硬化物の項に記載の加熱硬化方法により得られた硬化物から、縦20mm×横6mm×厚さ1mmの試験片を切り出し、中間液としてモノブロモナフタレンを使用してプリズムと該試験片とを密着させた状態で、多波長アッベ屈折計(商品名「DR-M2」、(株)アタゴ製)を使用し、20℃、ナトリウムD線での屈折率を測定することにより求めることができる。 The refractive index of the cured product of the curable epoxy resin composition of the present invention is, for example, a test piece having a length of 20 mm × width of 6 mm × thickness of 1 mm from a cured product obtained by the heat curing method described in the section of cured product below. And using a multi-wavelength Abbe refractometer (trade name “DR-M2”, manufactured by Atago Co., Ltd.) in a state where the prism and the test piece are in close contact using monobromonaphthalene as an intermediate solution, It can be determined by measuring the refractive index at 20 ° C. and sodium D line.
 本発明の硬化性エポキシ樹脂組成物における上記ゴム粒子の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量100重量部に対して、0.5~30重量部が好ましく、より好ましくは1~20重量部である。ゴム粒子の含有量を0.5重量部以上とすることにより、硬化物の耐クラック性がより向上する傾向がある。一方、ゴム粒子の含有量を30重量部以下とすることにより、硬化物の耐熱性がより向上する傾向がある。 The content (blending amount) of the rubber particles in the curable epoxy resin composition of the present invention is not particularly limited, but with respect to 100 parts by weight of the total amount of compounds having an epoxy group contained in the curable epoxy resin composition, The amount is preferably 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight. By setting the content of the rubber particles to 0.5 parts by weight or more, the crack resistance of the cured product tends to be further improved. On the other hand, when the content of the rubber particles is 30 parts by weight or less, the heat resistance of the cured product tends to be further improved.
[添加剤]
 本発明の硬化性エポキシ樹脂組成物は、上記以外にも、本発明の効果を損なわない範囲内で各種添加剤を含んでいてもよい。上記添加剤として、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン等のヒドロキシ基を有する化合物を含有させると、反応を緩やかに進行させることができる。その他にも、粘度や透明性を損なわない範囲内で、シリコーン系やフッ素系消泡剤、レベリング剤、γ-グリシドキシプロピルトリメトキシシランや3-メルカプトプロピルトリメトキシシラン等のシランカップリング剤、界面活性剤、シリカ、アルミナ等の無機充填剤、難燃剤、着色剤、酸化防止剤、紫外線吸収剤、イオン吸着体、顔料、蛍光体(例えば、YAG系の蛍光体微粒子、シリケート系蛍光体微粒子等の無機蛍光体微粒子等)、離型剤等の慣用の添加剤を使用することができる。
[Additive]
In addition to the above, the curable epoxy resin composition of the present invention may contain various additives within a range that does not impair the effects of the present invention. For example, when a compound having a hydroxy group such as ethylene glycol, diethylene glycol, propylene glycol, or glycerin is contained as the additive, the reaction can be allowed to proceed slowly. In addition, silicone and fluorine antifoaming agents, leveling agents, and silane coupling agents such as γ-glycidoxypropyltrimethoxysilane and 3-mercaptopropyltrimethoxysilane, as long as the viscosity and transparency are not impaired. , Surfactants, inorganic fillers such as silica and alumina, flame retardants, colorants, antioxidants, ultraviolet absorbers, ion adsorbents, pigments, phosphors (eg YAG phosphor fine particles, silicate phosphors) Inorganic phosphor fine particles such as fine particles) and conventional additives such as mold release agents can be used.
 本発明の硬化性エポキシ樹脂組成物は、特に限定されないが、上記の各成分を、必要に応じて加熱した状態で攪拌・混合することにより調製することができる。なお、本発明の硬化性エポキシ樹脂組成物は、各成分があらかじめ混合されたものをそのまま使用する1液系の組成物として使用することもできるし、例えば、別々に保管しておいた2以上の成分を使用前に所定の割合で混合して使用する多液系(例えば、2液系)の組成物として使用することもできる。上記攪拌・混合の方法は、特に限定されず、例えば、ディゾルバー、ホモジナイザー等の各種ミキサー、ニーダー、ロール、ビーズミル、自公転式撹拌装置等の公知乃至慣用の攪拌・混合手段を使用できる。また、攪拌・混合後、真空下にて脱泡してもよい。 The curable epoxy resin composition of the present invention is not particularly limited, but can be prepared by stirring and mixing each of the above components in a heated state as necessary. In addition, the curable epoxy resin composition of the present invention can be used as a one-component composition in which each component is mixed in advance, for example, two or more stored separately. These components can also be used as a multi-liquid composition (for example, a two-liquid system) that is used by mixing them at a predetermined ratio before use. The stirring / mixing method is not particularly limited, and for example, known or commonly used stirring / mixing means such as various mixers such as a dissolver and a homogenizer, a kneader, a roll, a bead mill, and a self-revolving stirrer can be used. Further, after stirring and mixing, defoaming may be performed under vacuum.
 特に限定されないが、本発明の硬化性エポキシ樹脂組成物にゴム粒子を配合する場合、当該ゴム粒子は、あらかじめ脂環式エポキシ化合物(A)中に分散させた組成物(当該組成物を「ゴム粒子分散エポキシ化合物」と称する場合がある)の状態で配合することが好ましい。即ち、本発明の硬化性エポキシ樹脂組成物にゴム粒子を配合する場合、本発明の硬化性エポキシ樹脂組成物は、上記ゴム粒子分散エポキシ化合物と、モノアリルジグリシジルイソシアヌレート化合物(B)と、応力緩和剤(C)と、必要に応じてその他の成分とを混合することにより調製することが好ましい。このような調製方法により、特に、硬化性エポキシ樹脂組成物におけるゴム粒子の分散性を向上させることができる。但し、ゴム粒子の配合方法は、上記方法に限定されず、それ単独で配合する方法であってもよい。 Although not particularly limited, when rubber particles are blended in the curable epoxy resin composition of the present invention, the rubber particles are prepared by dispersing the rubber particles in the alicyclic epoxy compound (A) in advance (the composition is referred to as “rubber”). It is preferable to blend in a state of “sometimes referred to as a“ particle-dispersed epoxy compound ””. That is, when rubber particles are blended in the curable epoxy resin composition of the present invention, the curable epoxy resin composition of the present invention contains the rubber particle-dispersed epoxy compound, the monoallyl diglycidyl isocyanurate compound (B), It is preferable to prepare by mixing the stress relaxation agent (C) and other components as necessary. Such a preparation method can particularly improve the dispersibility of the rubber particles in the curable epoxy resin composition. However, the blending method of the rubber particles is not limited to the above method, and may be a method of blending alone.
(ゴム粒子分散エポキシ化合物)
 上記ゴム粒子分散エポキシ化合物は、上記ゴム粒子を脂環式エポキシ化合物(A)に分散させることによって得られる。なお、上記ゴム粒子分散エポキシ化合物における脂環式エポキシ化合物(A)は、硬化性エポキシ樹脂組成物を構成する脂環式エポキシ化合物(A)の全量であってもよいし、一部の量であってもよい。同様に、上記ゴム粒子分散エポキシ化合物におけるゴム粒子は、硬化性エポキシ樹脂組成物を構成するゴム粒子の全量であってもよいし、一部の量であってもよい。
(Rubber particle dispersed epoxy compound)
The rubber particle-dispersed epoxy compound is obtained by dispersing the rubber particles in the alicyclic epoxy compound (A). The alicyclic epoxy compound (A) in the rubber particle-dispersed epoxy compound may be the total amount of the alicyclic epoxy compound (A) constituting the curable epoxy resin composition, or may be a partial amount. There may be. Similarly, the rubber particles in the rubber particle-dispersed epoxy compound may be the total amount of rubber particles constituting the curable epoxy resin composition, or may be a partial amount.
 上記ゴム粒子分散エポキシ化合物の粘度は、例えば、反応性希釈剤を併用することにより調整することができる(即ち、ゴム粒子分散エポキシ化合物は、さらに反応性希釈剤を含んでいてもよい)。上記反応性希釈剤としては、例えば、常温(25℃)における粘度が200mPa・s以下の脂肪族ポリグリシジルエーテルを好ましく使用できる。粘度(25℃)が200mPa・s以下の脂肪族ポリグリシジルエーテルとしては、例えば、シクロヘキサンジメタノールジグリシジルエーテル、シクロヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等が挙げられる。上記反応性希釈剤の使用量は、適宜調整することができ、特に限定されない。 The viscosity of the rubber particle-dispersed epoxy compound can be adjusted, for example, by using a reactive diluent together (that is, the rubber particle-dispersed epoxy compound may further contain a reactive diluent). As the reactive diluent, for example, an aliphatic polyglycidyl ether having a viscosity at room temperature (25 ° C.) of 200 mPa · s or less can be preferably used. Examples of the aliphatic polyglycidyl ether having a viscosity (25 ° C.) of 200 mPa · s or less include cyclohexane dimethanol diglycidyl ether, cyclohexane diol diglycidyl ether, neopentyl glycol diglycidyl ether, and 1,6-hexanediol diglycidyl ether. , Trimethylolpropane triglycidyl ether, polypropylene glycol diglycidyl ether, and the like. The usage-amount of the said reactive diluent can be adjusted suitably, and is not specifically limited.
 上記ゴム粒子分散エポキシ化合物の製造方法は、特に限定されず、周知慣用の方法を使用することができる。例えば、ゴム粒子を脱水乾燥して粉体とした後に、脂環式エポキシ化合物(A)に混合し、分散させる方法や、ゴム粒子のエマルジョンと脂環式エポキシ化合物(A)とを直接混合し、続いて脱水する方法等が挙げられる。 The method for producing the rubber particle-dispersed epoxy compound is not particularly limited, and a well-known and commonly used method can be used. For example, after the rubber particles are dehydrated and dried to form powder, the rubber particles are mixed and dispersed in the alicyclic epoxy compound (A), or the emulsion of rubber particles and the alicyclic epoxy compound (A) are directly mixed. Subsequently, a method of dehydrating and the like can be mentioned.
 本発明の硬化性エポキシ樹脂組成物は、25℃において液体(液状)であることが好ましい。本発明の硬化性エポキシ樹脂組成物の25℃における粘度は、特に限定されないが、100~10000mPa・sが好ましく、より好ましくは200~9000mPa・s、さらに好ましくは300~8000mPa・sである。25℃における粘度を100mPa・s以上とすることにより、注型時の作業性が向上したり、硬化物の耐熱性がより向上する傾向がある。一方、25℃における粘度を10000mPa・s以下とすることにより、注型時の作業性が向上したり、硬化物に注型不良に由来する不具合が生じにくくなる傾向がある。なお、硬化性エポキシ樹脂組成物の25℃における粘度は、例えば、デジタル粘度計(型番「DVU-EII型」、(株)トキメック製)を用いて、ローター:標準1°34’×R24、温度:25℃、回転数:0.5~10rpmの条件で測定することができる。 The curable epoxy resin composition of the present invention is preferably liquid at 25 ° C. The viscosity at 25 ° C. of the curable epoxy resin composition of the present invention is not particularly limited, but is preferably 100 to 10,000 mPa · s, more preferably 200 to 9000 mPa · s, and still more preferably 300 to 8000 mPa · s. By setting the viscosity at 25 ° C. to 100 mPa · s or more, workability at the time of casting tends to be improved, and the heat resistance of the cured product tends to be further improved. On the other hand, when the viscosity at 25 ° C. is 10000 mPa · s or less, workability at the time of casting tends to be improved, and defects derived from poor casting in the cured product tend not to occur. The viscosity of the curable epoxy resin composition at 25 ° C. is, for example, using a digital viscometer (model number “DVU-EII type”, manufactured by Tokimec Co., Ltd.), rotor: standard 1 ° 34 ′ × R24, temperature : Measured under conditions of 25 ° C. and rotation speed: 0.5 to 10 rpm.
<硬化物>
 本発明の硬化性エポキシ樹脂組成物を硬化させることにより、高い透明性、耐熱性、耐光性、及び耐リフロー性を有し、耐熱衝撃性に優れ、特に、光半導体装置の高温、高湿度における通電特性及び耐吸湿リフロー性を向上させることが可能な硬化物(本発明の硬化性エポキシ樹脂組成物を硬化させて得られる硬化物を「本発明の硬化物」と称する場合がある)を得ることができる。硬化の手段としては、加熱処理や光照射処理等の公知乃至慣用の手段を利用できる。加熱により硬化させる際の温度(硬化温度)は、特に限定されないが、45~200℃が好ましく、より好ましくは50~190℃、さらに好ましくは55~180℃である。また、硬化の際に加熱する時間(硬化時間)は、特に限定されないが、30~600分が好ましく、より好ましくは45~540分、さらに好ましくは60~480分である。硬化温度と硬化時間が上記範囲の下限値より低い場合は硬化が不十分となり、逆に上記範囲の上限値より高い場合は樹脂成分の分解が起きる場合があるので、いずれも好ましくない。硬化条件は種々の条件に依存するが、例えば、硬化温度を高くした場合は硬化時間を短く、硬化温度を低くした場合は硬化時間を長くする等により、適宜調整することができる。また、硬化は、一段階で行うこともできるし、二段階以上の多段階で行うこともできる。
<Hardened product>
By curing the curable epoxy resin composition of the present invention, it has high transparency, heat resistance, light resistance, and reflow resistance, excellent thermal shock resistance, especially at high temperatures and high humidity of optical semiconductor devices. A cured product capable of improving current-carrying characteristics and moisture absorption reflow resistance (a cured product obtained by curing the curable epoxy resin composition of the present invention may be referred to as “cured product of the present invention”). be able to. As the curing means, known or conventional means such as heat treatment or light irradiation treatment can be used. The temperature for curing by heating (curing temperature) is not particularly limited, but is preferably 45 to 200 ° C, more preferably 50 to 190 ° C, and still more preferably 55 to 180 ° C. Further, the heating time (curing time) for curing is not particularly limited, but is preferably 30 to 600 minutes, more preferably 45 to 540 minutes, and further preferably 60 to 480 minutes. When the curing temperature and the curing time are lower than the lower limit value in the above range, curing is insufficient. On the contrary, when the curing temperature and the curing time are higher than the upper limit value in the above range, the resin component may be decomposed. Although the curing conditions depend on various conditions, for example, when the curing temperature is increased, the curing time can be shortened, and when the curing temperature is decreased, the curing time can be appropriately increased. Moreover, hardening can also be performed in one step and can also be performed in two or more steps.
<光半導体封止用樹脂組成物>
 本発明の硬化性エポキシ樹脂組成物は、光半導体装置における光半導体素子を封止するための樹脂組成物、即ち、光半導体封止用樹脂組成物(光半導体装置における光半導体素子の封止剤)として好ましく使用できる。本発明の硬化性エポキシ樹脂組成物を光半導体封止用樹脂組成物として用いることにより、高い透明性、耐熱性、耐光性、及び耐リフロー性を有し、耐熱衝撃性に優れ、特に、光半導体装置の高温、高湿度における通電特性及び耐吸湿リフロー性を向上させることが可能な硬化物により光半導体素子が封止された光半導体装置が得られる。上記光半導体装置は、熱衝撃、高温の熱や高湿度条件が加えられた場合でも光度低下が生じにくく、また、高湿条件下で一定時間置いて吸湿させた後にリフロー工程で加熱処理した場合にもクラックや剥離が生じにくく、耐久性が高い。
<Resin composition for optical semiconductor encapsulation>
The curable epoxy resin composition of the present invention is a resin composition for sealing an optical semiconductor element in an optical semiconductor device, that is, an optical semiconductor sealing resin composition (an optical semiconductor element sealing agent in an optical semiconductor device). ) Can be preferably used. By using the curable epoxy resin composition of the present invention as an optical semiconductor encapsulating resin composition, it has high transparency, heat resistance, light resistance, and reflow resistance, excellent thermal shock resistance, especially light An optical semiconductor device in which an optical semiconductor element is sealed with a cured product capable of improving current-carrying characteristics and moisture absorption reflow resistance at high temperatures and high humidity of the semiconductor device is obtained. The above optical semiconductor device is less likely to decrease in light intensity even when subjected to thermal shock, high temperature heat or high humidity conditions, and when it is subjected to heat treatment in a reflow process after absorbing moisture for a certain period of time under high humidity conditions In addition, cracks and peeling are unlikely to occur, and durability is high.
<光半導体装置>
 本発明の光半導体装置は、本発明の硬化性エポキシ樹脂組成物(光半導体封止用樹脂組成物)の硬化物により光半導体素子が封止された光半導体装置である。光半導体素子の封止は、例えば、上述の方法で調製した硬化性エポキシ樹脂組成物を所定の成形型内に注入し、所定の条件で加熱硬化して行うことができる。これにより、硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置が得られる。硬化温度と硬化時間は、硬化物の調製時と同様の範囲で適宜設定することができる。
<Optical semiconductor device>
The optical semiconductor device of the present invention is an optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable epoxy resin composition (resin composition for optical semiconductor sealing) of the present invention. The optical semiconductor element can be sealed, for example, by injecting the curable epoxy resin composition prepared by the above-described method into a predetermined mold and heat-curing under predetermined conditions. Thereby, the optical semiconductor device with which the optical semiconductor element was sealed with the hardened | cured material of the curable epoxy resin composition is obtained. The curing temperature and the curing time can be appropriately set within the same range as when the cured product is prepared.
 本発明の硬化性エポキシ樹脂組成物は、上述の光半導体素子の封止用途に限定されず、例えば、光ピックアップセンサー、接着剤、電気絶縁材、積層板、コーティング、インク、塗料、シーラント、レジスト、複合材料、透明基材、透明シート、透明フィルム、光学素子、光学レンズ、光学部材、光造形、電子ペーパー、タッチパネル、太陽電池基板、光導波路、導光板、ホログラフィックメモリ等の各種用途に使用することができる。 The curable epoxy resin composition of the present invention is not limited to the above-described optical semiconductor element sealing application, and includes, for example, an optical pickup sensor, an adhesive, an electrical insulating material, a laminate, a coating, an ink, a paint, a sealant, and a resist. , Composite materials, transparent substrates, transparent sheets, transparent films, optical elements, optical lenses, optical members, stereolithography, electronic paper, touch panels, solar cell substrates, optical waveguides, light guide plates, holographic memories, etc. can do.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお、表1、2における「-」は、当該成分の配合を行わなかったことを意味する。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In Tables 1 and 2, “-” means that the component was not blended.
 製造例1
(ゴム粒子の製造)
 還流冷却器付きの1L重合容器に、イオン交換水500g、及びジオクチルスルホコハク酸ナトリウム0.68gを仕込み、窒素気流下に撹拌しながら、80℃に昇温した。ここに、ゴム粒子のコア部分を形成するために必要とする量の約5重量%分に該当するアクリル酸ブチル9.5g、スチレン2.57g、及びジビニルベンゼン0.39gからなる単量体混合物を一括添加し、20分間撹拌して乳化させた後、ペルオキソ二硫酸カリウム9.5mgを添加し、1時間撹拌して最初のシード重合を行った。続いて、ペルオキソ二硫酸カリウム180.5mgを添加し、5分間撹拌した。ここに、コア部分を形成するために必要とする量の残り(約95重量%分)のアクリル酸ブチル180.5g、スチレン48.89g、及びジビニルベンゼン7.33gにジオクチルスルホコハク酸ナトリウム0.95gを溶解させてなる単量体混合物を2時間かけて連続的に添加し、2度目のシード重合を行い、その後、1時間熟成してコア部分を得た。
 次いで、ペルオキソ二硫酸カリウム60mgを添加して5分間撹拌し、ここに、メタクリル酸メチル60g、アクリル酸1.5g、及びアリルメタクリレート0.3gにジオクチルスルホコハク酸ナトリウム0.3gを溶解させてなる単量体混合物を30分かけて連続的に添加し、シード重合を行った。その後、1時間熟成し、コア部分を被覆するシェル層を形成した。
 次いで、室温(25℃)まで冷却し、目開き120μmのプラスチック製網で濾過することにより、コアシェル構造を有するゴム粒子を含むラテックスを得た。得られたラテックスをマイナス30℃で凍結し、吸引濾過器で脱水洗浄した後、60℃で一昼夜送風乾燥してゴム粒子を得た。得られたゴム粒子の平均粒子径は254nm、最大粒子径は486nmであった。
Production Example 1
(Manufacture of rubber particles)
In a 1 L polymerization vessel equipped with a reflux condenser, 500 g of ion-exchanged water and 0.68 g of sodium dioctylsulfosuccinate were charged, and the temperature was raised to 80 ° C. while stirring under a nitrogen stream. Here, a monomer mixture composed of 9.5 g of butyl acrylate, 2.57 g of styrene, and 0.39 g of divinylbenzene corresponding to about 5% by weight of the amount required to form the core portion of the rubber particles. Were added together and emulsified by stirring for 20 minutes, and then 9.5 mg of potassium peroxodisulfate was added and stirred for 1 hour to perform the first seed polymerization. Subsequently, 180.5 mg of potassium peroxodisulfate was added and stirred for 5 minutes. Here, the remaining amount (about 95% by weight) of butyl acrylate 180.5 g, styrene 48.89 g, divinylbenzene 7.33 g and 0.95 g sodium dioctyl sulfosuccinate required to form the core portion. A monomer mixture obtained by dissolving sucrose was continuously added over 2 hours to perform seed polymerization for the second time, and then aged for 1 hour to obtain a core part.
Next, 60 mg of potassium peroxodisulfate was added and stirred for 5 minutes. Here, 0.3 g of sodium dioctylsulfosuccinate was dissolved in 60 g of methyl methacrylate, 1.5 g of acrylic acid and 0.3 g of allyl methacrylate. The monomer mixture was continuously added over 30 minutes to perform seed polymerization. Then, it aged for 1 hour and formed the shell layer which coat | covers a core part.
Next, the mixture was cooled to room temperature (25 ° C.) and filtered through a plastic mesh having an opening of 120 μm to obtain a latex containing rubber particles having a core-shell structure. The obtained latex was frozen at −30 ° C., dehydrated and washed with a suction filter, and then blown and dried at 60 ° C. overnight to obtain rubber particles. The resulting rubber particles had an average particle size of 254 nm and a maximum particle size of 486 nm.
 なお、ゴム粒子の平均粒子径、最大粒子径は、動的光散乱法を測定原理とした「NanotracTM」形式のナノトラック粒度分布測定装置(商品名「UPA-EX150」、日機装(株)製)を使用して試料を測定し、得られた粒度分布曲線において、累積カーブが50%となる時点の粒子径である累積平均径を平均粒子径、粒度分布測定結果の頻度(%)が0.00%を超えた時点の最大の粒子径を最大粒子径とした。なお、上記試料としては、下記製造例2で得られたゴム粒子分散エポキシ化合物1重量部をテトラヒドロフラン20重量部に分散させたものを用いた。 The average particle size and the maximum particle size of the rubber particles are determined based on a nanotrac particle size distribution measuring device (trade name “UPA-EX150”, manufactured by Nikkiso Co., Ltd.) using the dynamic light scattering method as a measurement principle. ) Was used to measure the sample, and in the obtained particle size distribution curve, the average particle size, which is the particle size when the cumulative curve becomes 50%, is the average particle size, and the frequency (%) of the particle size distribution measurement result is 0 The maximum particle size at the time of exceeding 0.000 was defined as the maximum particle size. In addition, as said sample, what disperse | distributed 1 weight part of rubber particle dispersion | distribution epoxy compounds obtained by the following manufacture example 2 to 20 weight part of tetrahydrofuran was used.
 製造例2
(ゴム粒子分散エポキシ化合物の製造)
 製造例1で得られたゴム粒子10重量部を、窒素気流下、60℃に加温した状態でディゾルバーを使用して、商品名「セロキサイド2021P」((株)ダイセル製)70重量部に分散させ(1000rpm、60分間)、真空脱泡して、ゴム粒子分散エポキシ化合物(25℃での粘度:1356mPa・s)を得た。
 なお、製造例2で得られたゴム粒子分散エポキシ化合物(10重量部のゴム粒子を70重量部のセロキサイド2021Pに分散させたもの)の25℃での粘度は、デジタル粘度計(商品名「DVU-EII型」、(株)トキメック製)を使用して測定した。
Production Example 2
(Manufacture of rubber particle-dispersed epoxy compounds)
10 parts by weight of the rubber particles obtained in Production Example 1 were dispersed in 70 parts by weight of a trade name “Celoxide 2021P” (manufactured by Daicel Corporation) using a dissolver while being heated to 60 ° C. in a nitrogen stream. (1000 rpm, 60 minutes) and vacuum degassing to obtain a rubber particle-dispersed epoxy compound (viscosity at 25 ° C .: 1356 mPa · s).
The viscosity at 25 ° C. of the rubber particle-dispersed epoxy compound obtained in Production Example 2 (10 parts by weight of rubber particles dispersed in 70 parts by weight of ceroxide 2021P) is a digital viscometer (trade name “DVU”). -EII ", manufactured by Tokimec Co., Ltd.).
 製造例3
(エポキシ硬化剤の製造)
 表1に示す配合割合(単位:重量部)で、商品名「リカシッド MH-700」(新日本理化(株)製)、商品名「U-CAT 18X」(サンアプロ(株)製)、及びエチレングリコール(和光純薬工業(株)製)を、自公転式攪拌装置(商品名「あわとり練太郎AR-250」、(株)シンキー製)を使用して均一に混合し、脱泡してエポキシ硬化剤(「K剤」と称する場合がある)を得た。
Production Example 3
(Manufacture of epoxy curing agent)
In the blending ratio (unit: parts by weight) shown in Table 1, the product name “Ricacid MH-700” (manufactured by Shin Nippon Rika Co., Ltd.), the product name “U-CAT 18X” (manufactured by San Apro Co., Ltd.), and ethylene Glycol (manufactured by Wako Pure Chemical Industries, Ltd.) is uniformly mixed using a self-revolving stirrer (trade name “Awatori Nertaro AR-250”, manufactured by Shinky Co., Ltd.) and defoamed. An epoxy curing agent (sometimes referred to as “K agent”) was obtained.
 実施例1
 まず、表1に示す配合割合(単位:重量部)で、商品名「セロキサイド2021P」((株)ダイセル製)、商品名「MA-DGIC」(四国化成工業(株)製)、及び、商品名「KMP-600」(信越化学工業(株)製)を、自公転式攪拌装置(商品名「あわとり練太郎AR-250」、(株)シンキー製)を使用して均一に混合し、脱泡して、エポキシ樹脂を作製した。なお、上記混合は、MA-DGICを溶解させるために80℃で1時間攪拌して実施した。
 次に、表1に示す配合割合(単位:重量部)となるように、上記で得たエポキシ樹脂と、製造例3で得たエポキシ硬化剤とを自公転式攪拌装置(商品名「あわとり練太郎AR-250」、(株)シンキー製)を使用して均一に混合し、脱泡して、硬化性エポキシ樹脂組成物を得た。
 さらに、上記で得た硬化性エポキシ樹脂組成物を図1に示す光半導体のリードフレーム(InGaN素子、3.5mm×2.8mm)に注型した後、120℃のオーブン(樹脂硬化オーブン)で5時間加熱して硬化させることで、上記硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置を得た。なお、図1において、100はリフレクター(光反射用樹脂組成物)、101は金属配線、102は光半導体素子、103はボンディングワイヤ、104は硬化物(封止材)を示す。
Example 1
First, the product name “Celoxide 2021P” (manufactured by Daicel Corporation), the product name “MA-DGIC” (manufactured by Shikoku Kasei Kogyo Co., Ltd.), The name “KMP-600” (manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed evenly using a self-revolving stirrer (trade name “Awatori Nerita AR-250”, manufactured by Shinky Co., Ltd.) Defoaming was performed to produce an epoxy resin. The above mixing was carried out with stirring at 80 ° C. for 1 hour in order to dissolve MA-DGIC.
Next, the revolution ratio stirrer (trade name “Awatori”) was prepared by combining the epoxy resin obtained above and the epoxy curing agent obtained in Production Example 3 so that the blending ratio (unit: parts by weight) shown in Table 1 was obtained. Using Nertaro AR-250 "(manufactured by Shinky Co., Ltd.), the mixture was uniformly mixed and defoamed to obtain a curable epoxy resin composition.
Further, the curable epoxy resin composition obtained above was cast into an optical semiconductor lead frame (InGaN element, 3.5 mm × 2.8 mm) shown in FIG. 1, and then in an oven (resin curing oven) at 120 ° C. By curing by heating for 5 hours, an optical semiconductor device in which an optical semiconductor element was sealed with a cured product of the curable epoxy resin composition was obtained. In FIG. 1, 100 is a reflector (light reflecting resin composition), 101 is a metal wiring, 102 is an optical semiconductor element, 103 is a bonding wire, and 104 is a cured product (sealing material).
 実施例2~9、比較例1~6
 硬化性エポキシ樹脂組成物の組成を表1に示す組成に変更したこと以外は実施例1と同様にして、硬化性エポキシ樹脂組成物を調製した。なお、実施例9においては、エポキシ樹脂の構成成分として、製造例2で得たゴム粒子分散エポキシ化合物を使用した。
 また、実施例1と同様にして、硬化物により光半導体素子が封止された光半導体装置を作製した。
Examples 2 to 9, Comparative Examples 1 to 6
A curable epoxy resin composition was prepared in the same manner as in Example 1 except that the composition of the curable epoxy resin composition was changed to the composition shown in Table 1. In Example 9, the rubber particle-dispersed epoxy compound obtained in Production Example 2 was used as a constituent component of the epoxy resin.
Further, in the same manner as in Example 1, an optical semiconductor device in which an optical semiconductor element was sealed with a cured product was produced.
 実施例10
 まず、表2に示す配合割合(単位:重量部)で、商品名「セロキサイド2021P」((株)ダイセル製)、商品名「MA-DGIC」(四国化成工業(株)製)、及び、商品名「KMP-600」(信越化学工業(株)製)を、自公転式攪拌装置(商品名「あわとり練太郎AR-250」、(株)シンキー製)を使用して均一に混合し、脱泡して、エポキシ樹脂を作製した。なお、上記混合は、80℃で1時間攪拌して実施した。
 次に、表2に示す配合割合(単位:重量部)となるように、上記で得たエポキシ樹脂と、商品名「サンエイドSI-100L」(三新化学工業(株)製)とを自公転式攪拌装置(商品名「あわとり練太郎AR-250」、(株)シンキー製)を使用して均一に混合し、脱泡して、硬化性エポキシ樹脂組成物を得た。
 さらに、上記で得た硬化性エポキシ樹脂組成物を図1に示す光半導体のリードフレーム(InGaN素子、3.5mm×2.8mm)に注型した後、120℃のオーブン(樹脂硬化オーブン)で5時間加熱して硬化させることで、上記硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置を得た。
Example 10
First, the product name “Celoxide 2021P” (manufactured by Daicel Corporation), the product name “MA-DGIC” (manufactured by Shikoku Kasei Kogyo Co., Ltd.), The name “KMP-600” (manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed evenly using a self-revolving stirrer (trade name “Awatori Nerita AR-250”, manufactured by Shinky Co., Ltd.) Defoaming was performed to produce an epoxy resin. In addition, the said mixing was implemented by stirring at 80 degreeC for 1 hour.
Next, the epoxy resin obtained above and the trade name “Sun-Aid SI-100L” (manufactured by Sanshin Chemical Industry Co., Ltd.) were revolved so that the blending ratio (unit: parts by weight) shown in Table 2 was obtained. A curable epoxy resin composition was obtained by uniformly mixing and defoaming using an agitator (trade name “Awatori Nertaro AR-250”, manufactured by Shinky Co., Ltd.).
Further, the curable epoxy resin composition obtained above was cast into an optical semiconductor lead frame (InGaN element, 3.5 mm × 2.8 mm) shown in FIG. 1, and then in an oven (resin curing oven) at 120 ° C. By curing by heating for 5 hours, an optical semiconductor device in which an optical semiconductor element was sealed with a cured product of the curable epoxy resin composition was obtained.
 実施例11~18、比較例7~12
 硬化性エポキシ樹脂組成物の組成を表2に示す組成に変更したこと以外は実施例10と同様にして、硬化性エポキシ樹脂組成物を調製した。なお、実施例18においては、エポキシ樹脂の構成成分として、製造例2で得たゴム粒子分散エポキシ化合物を使用した。
 また、実施例10と同様にして、硬化物により光半導体素子が封止された光半導体装置を作製した。
Examples 11 to 18, Comparative Examples 7 to 12
A curable epoxy resin composition was prepared in the same manner as in Example 10 except that the composition of the curable epoxy resin composition was changed to the composition shown in Table 2. In Example 18, the rubber particle-dispersed epoxy compound obtained in Production Example 2 was used as a constituent component of the epoxy resin.
Further, in the same manner as in Example 10, an optical semiconductor device in which an optical semiconductor element was sealed with a cured product was produced.
 <評価>
 実施例及び比較例で得られた光半導体装置について、下記の評価試験を実施した。
<Evaluation>
The following evaluation tests were carried out on the optical semiconductor devices obtained in the examples and comparative examples.
 [通電試験]
 実施例及び比較例で得られた光半導体装置(各硬化性エポキシ樹脂組成物につき2個ずつ用いた)の全光束を、全光束測定機を用いて測定し、これを「0時間の全光束」とした。さらに、85℃の恒温槽内で100時間、光半導体装置に30mAの電流を流した後、並びに60℃、90%RHの条件下の恒温槽内で100時間、光半導体装置に20mAの電流を流した後の全光束を測定し、これらをそれぞれ「100時間後の全光束(耐熱試験)」、及び「100時間後の全光束(耐熱耐湿試験)」とした。そして、次式からそれぞれの光度保持率を算出した。結果を表1、2の「光度保持率[%](耐熱試験)」、及び「光度保持率[%](耐熱耐湿試験)」の欄にそれぞれ示す。
 {光度保持率[%](耐熱試験)}
   ={100時間後の全光束(耐熱試験)(lm)}/{0時間の全光束(lm)}×100
 {光度保持率[%](耐熱耐湿試験)}
   ={100時間後の全光束(耐熱耐湿試験)(lm)}/{0時間の全光束(lm)}×100
[Energization test]
The total luminous fluxes of the optical semiconductor devices (two used for each curable epoxy resin composition) obtained in the examples and comparative examples were measured using a total luminous flux measuring instrument. " Furthermore, a current of 30 mA was passed through the optical semiconductor device for 100 hours in an 85 ° C. constant temperature bath, and a current of 20 mA was supplied to the optical semiconductor device for 100 hours in a constant temperature bath at 60 ° C. and 90% RH. The total luminous flux after flowing was measured, and these were designated as “total luminous flux after 100 hours (heat resistance test)” and “total luminous flux after 100 hours (heat resistance and humidity resistance test)”, respectively. And each luminous intensity retention was computed from following Formula. The results are shown in the columns of “Luminance retention [%] (heat resistance test)” and “Luminance retention [%] (heat resistance and humidity resistance test)” in Tables 1 and 2, respectively.
{Luminance retention [%] (heat resistance test)}
= {Total luminous flux after 100 hours (heat resistance test) (lm)} / {total luminous flux for 0 hour (lm)} × 100
{Luminance retention [%] (heat and humidity resistance test)}
= {Total luminous flux after 100 hours (heat and humidity resistance test) (lm)} / {total luminous flux for 0 hour (lm)} × 100
 [はんだ耐熱性試験]
 実施例及び比較例で得られた光半導体装置(各硬化性エポキシ樹脂組成物につき5個ずつ用いた)を、30℃、60%RHの条件下で192時間静置して吸湿処理した。次いで、上記光半導体装置をリフロー炉に入れ、下記加熱条件にて加熱処理した。その後、上記光半導体装置を室温環境下に取り出して放冷した後、再度リフロー炉に入れて同条件で加熱処理した。即ち、当該はんだ耐熱性試験においては、光半導体装置に対して下記加熱条件による熱履歴を二度与えた。
〔加熱条件(光半導体装置の表面温度基準)〕
(1)予備加熱:150~190℃で60~120秒
(2)予備加熱後の本加熱:217℃以上で60~150秒、最高温度260℃
 但し、予備加熱から本加熱に移行する際の昇温速度は最大で3℃/秒に制御した。
 図2には、リフロー炉による加熱の際の光半導体装置の表面温度プロファイル(二度の加熱処理のうち一方の加熱処理における温度プロファイル)の一例を示す。
 その後、デジタルマイクロスコープ(商品名「VHX-900」、(株)キーエンス製)を使用して光半導体装置を観察し、硬化物に長さが90μm以上のクラックが発生したか否か、及び、電極剥離(電極表面からの硬化物の剥離)が発生したか否かを評価した。光半導体装置5個のうち、硬化物に長さが90μm以上のクラックが発生した光半導体装置の個数を表1、2の「はんだ耐熱性試験[クラック数]」の欄に示し、電極剥離が発生した光半導体装置の個数を表1、2の「はんだ耐熱性試験[電極剥離数]」の欄に示した。
[Solder heat resistance test]
The optical semiconductor devices obtained in Examples and Comparative Examples (5 pieces were used for each curable epoxy resin composition) were left to stand for 192 hours under the conditions of 30 ° C. and 60% RH for moisture absorption treatment. Subsequently, the said optical semiconductor device was put into the reflow furnace, and it heat-processed on the following heating conditions. Thereafter, the optical semiconductor device was taken out in a room temperature environment and allowed to cool, and then again placed in a reflow furnace and heat-treated under the same conditions. That is, in the solder heat resistance test, the thermal history under the following heating conditions was given twice to the optical semiconductor device.
[Heating conditions (based on surface temperature of optical semiconductor device)]
(1) Preheating: 150 to 190 ° C. for 60 to 120 seconds (2) Main heating after preheating: 217 ° C. or more for 60 to 150 seconds, maximum temperature 260 ° C.
However, the rate of temperature increase when shifting from preheating to main heating was controlled to 3 ° C./second at the maximum.
FIG. 2 shows an example of a surface temperature profile (temperature profile in one of the two heat treatments) of the optical semiconductor device when heated by the reflow furnace.
Thereafter, the optical semiconductor device was observed using a digital microscope (trade name “VHX-900”, manufactured by Keyence Co., Ltd.), whether or not a crack having a length of 90 μm or more occurred in the cured product, and It was evaluated whether or not electrode peeling (peeling of the cured product from the electrode surface) occurred. Of the five optical semiconductor devices, the number of optical semiconductor devices in which a crack having a length of 90 μm or more occurred in the cured product is shown in the column of “Solder heat resistance test [number of cracks]” in Tables 1 and 2. The number of the generated optical semiconductor devices is shown in the column of “Solder heat resistance test [electrode peeling number]” in Tables 1 and 2.
 [熱衝撃試験]
 実施例及び比較例で得られた光半導体装置(各硬化性エポキシ樹脂組成物につき5個ずつ用いた)に対し、-40℃の雰囲気下に30分曝露し、続いて、150℃の雰囲気下に30分曝露することを1サイクルとした熱衝撃を、熱衝撃試験機を用いて200サイクル分与えた。その後、光半導体装置における硬化物に生じたクラックの長さを、デジタルマイクロスコープ(商品名「VHX-900」、(株)キーエンス製)を使用して観察し、光半導体装置5個のうち、硬化物に長さが90μm以上のクラックが発生した光半導体装置の個数を計測した。結果を表1、2の「熱衝撃試験[クラック数]」の欄に示す。
[Thermal shock test]
The optical semiconductor devices obtained in Examples and Comparative Examples (5 were used for each curable epoxy resin composition) were exposed in an atmosphere of −40 ° C. for 30 minutes, and subsequently in an atmosphere of 150 ° C. A thermal shock with one cycle of exposure to 30 minutes was applied for 200 cycles using a thermal shock tester. Thereafter, the length of cracks generated in the cured product in the optical semiconductor device was observed using a digital microscope (trade name “VHX-900”, manufactured by Keyence Corporation), and among the five optical semiconductor devices, The number of optical semiconductor devices in which cracks having a length of 90 μm or more occurred in the cured product was measured. The results are shown in the column of “thermal shock test [number of cracks]” in Tables 1 and 2.
 [総合判定]
 各試験の結果、下記(1)~(5)をいずれも満たすものを○(良好)と判定した。一方、下記(1)~(5)のいずれかを満たさない場合には×(不良)と判定した。
(1)通電試験:光度保持率(耐熱試験)が85%以上
(2)通電試験:光度保持率(耐熱耐湿試験)が85%以上
(3)はんだ耐熱性試験:硬化物に長さが90μm以上のクラックが発生した光半導体装置の個数が0個
(4)はんだ耐熱性試験:電極剥離が発生した光半導体装置の個数が0個
(5)熱衝撃試験:硬化物に長さが90μm以上のクラックが発生した光半導体装置の個数が0個
 結果を表1、2の「総合判定」の欄に示す。
[Comprehensive judgment]
As a result of each test, a sample satisfying all of the following (1) to (5) was judged as ◯ (good). On the other hand, when any of the following (1) to (5) was not satisfied, it was determined as x (defective).
(1) Conductivity test: luminous intensity retention rate (heat resistance test) is 85% or more (2) Conductivity test: luminous intensity retention rate (heat resistance and humidity resistance test) is 85% or more (3) Solder heat resistance test: 90 μm in length on the cured product The number of optical semiconductor devices in which the above cracks occurred was zero (4) Solder heat resistance test: the number of optical semiconductor devices in which electrode peeling occurred was zero (5) Thermal shock test: 90 μm or more in length on the cured product The number of the optical semiconductor devices in which the cracks occurred is 0. The results are shown in the “Comprehensive judgment” column of Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 なお、実施例、比較例で使用した成分は、以下の通りである。
(エポキシ樹脂)
 セロキサイド2021P:商品名「セロキサイド2021P」[3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート]、(株)ダイセル製
 MA-DGIC:商品名「MA-DGIC」[モノアリルジグリシジルイソシアヌレート]、四国化成工業(株)製
 YD-128:商品名「YD-128」[ビスフェノールA型エポキシ樹脂]、新日鐵化学(株)製
(応力緩和剤)
 KMP-600:商品名「KMP-600」[シリコーンレジンを表面に備える架橋されたポリジメチルシロキサン]、信越化学工業(株)製
 KMP-602:商品名「KMP-602」[シリコーンレジンを表面に備える架橋されたポリジメチルシロキサン]、信越化学工業(株)製
 SF8421:商品名「SF8421」[式(2)で表されるポリアルキレンエーテル変性シリコーン化合物]、東レ・ダウコーニング(株)製
 Y-19268:商品名「Y-19268」[式(2)で表されるポリアルキレンエーテル変性シリコーン化合物]、モメンティブ・パフォーマンス・マテリアルズ・ジャパン(同)製
(エポキシ硬化剤)
 MH-700:商品名「リカシッド MH-700」[4-メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸=70/30]、新日本理化(株)製
 U-CAT 18X:商品名「U-CAT 18X」[硬化促進剤]、サンアプロ(株)製
 エチレングリコール:和光純薬工業(株)製
(硬化触媒)
 サンエイドSI-100L:商品名「サンエイドSI-100L」[硬化触媒]、三新化学工業(株)製
In addition, the component used by the Example and the comparative example is as follows.
(Epoxy resin)
Celoxide 2021P: Trade name “Celoxide 2021P” [3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate], manufactured by Daicel Corporation MA-DGIC: Trade name “MA-DGIC” [monoallyl diglycidyl Isocyanurate], Shikoku Kasei Kogyo Co., Ltd. YD-128: trade name “YD-128” [bisphenol A type epoxy resin], manufactured by Nippon Steel Chemical Co., Ltd. (stress relieving agent)
KMP-600: trade name “KMP-600” [crosslinked polydimethylsiloxane with silicone resin on the surface], manufactured by Shin-Etsu Chemical Co., Ltd. KMP-602: trade name “KMP-602” [silicone resin on the surface Prepared cross-linked polydimethylsiloxane], manufactured by Shin-Etsu Chemical Co., Ltd. SF8421: trade name “SF8421” [polyalkylene ether-modified silicone compound represented by formula (2)], manufactured by Toray Dow Corning Co., Ltd. 19268: Trade name “Y-19268” [polyalkylene ether-modified silicone compound represented by formula (2)], manufactured by Momentive Performance Materials Japan (epoxy curing agent)
MH-700: Trade name “Licacid MH-700” [4-methylhexahydrophthalic anhydride / hexahydrophthalic anhydride = 70/30], manufactured by Shin Nippon Rika Co., Ltd. U-CAT 18X: Trade name “U-CAT 18X "[curing accelerator], manufactured by San Apro Co., Ltd. Ethylene glycol: manufactured by Wako Pure Chemical Industries, Ltd. (curing catalyst)
Sun-Aid SI-100L: Trade name “Sun-Aid SI-100L” [curing catalyst], manufactured by Sanshin Chemical Industry Co., Ltd.
 試験機器
 ・樹脂硬化オーブン
  エスペック(株)製 GPHH-201
 ・恒温槽
  エスペック(株)製 小型高温チャンバー ST-120B1
 ・全光束測定機
  オプトロニックラボラトリーズ社製 マルチ分光放射測定システム OL771
 ・熱衝撃試験機
  エスペック(株)製 小型冷熱衝撃装置 TSE-11-A
 ・リフロー炉
  日本アントム(株)製、UNI-5016F
Test equipment ・ Resin curing oven Espec Co., Ltd. GPHH-201
-Thermostatic chamber ESPEC Co., Ltd. Small high temperature chamber ST-120B1
・ Total luminous flux measuring machine Optronic Laboratories Multi-spectral Radiation Measurement System OL771
・ Thermal shock tester Espec Co., Ltd. Small thermal shock device TSE-11-A
・ Reflow furnace manufactured by Nippon Antom Co., Ltd., UNI-5016F
 上記で説明した本発明のバリエーションを以下に付記する。
[1]脂環式エポキシ化合物(A)と、下記式(1)
Figure JPOXMLDOC01-appb-C000021
[式中、R1、R2は、同一又は異なって、水素原子又は炭素数1~8のアルキル基(好ましくは水素原子)を示す。]
で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、応力緩和剤(C)とを含むことを特徴とする硬化性エポキシ樹脂組成物。
[2]脂環式エポキシ化合物(A)が、(i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(脂環エポキシ基)を有する化合物、及び(ii)脂環にエポキシ基が直接単結合で結合している化合物からなる群より選択される少なくとも1種を含む、上記[1]に記載の硬化性エポキシ樹脂組成物。
[3]脂環式エポキシ化合物(A)が、シクロヘキセンオキシド基を有する化合物を含む、上記[1]又は[2]に記載の硬化性エポキシ樹脂組成物。
[4]脂環式エポキシ化合物(A)が、下記式(I)で表される化合物を含む、上記[1]~[3]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000022
[式(I)中、Xは単結合又は連結基(1以上の原子を有する二価の基)を示す。シクロヘキサン環(シクロヘキセンオキシド基)を構成する炭素原子の1以上には、置換基(好ましくはアルキル基)が結合していてもよい。]
[5]連結基が、二価の炭化水素基、炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基、カルボニル基、エーテル結合、エステル結合、カーボネート基、アミド基、又はこれらが複数個連結した基である、上記[4]に記載の硬化性エポキシ樹脂組成物。
[6]上記式(I)で表される脂環式エポキシ化合物が、下記式(I-1)~(I-10)で表される化合物、ビス(3,4-エポキシシクロヘキシルメチル)エーテル、1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタン、1,2-エポキシ-1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタン、及び2,2-ビス(3,4-エポキシシクロヘキサン-1-イル)プロパンからなる群より選択される少なくとも1種である、上記[4]又は[5]に記載の硬化性エポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
[上記式(I-5)、(I-7)中のl、mは、それぞれ1~30の整数を示す。上記式(I-5)中のRは炭素数1~8のアルキレン基(好ましくは、炭素数1~3の直鎖又は分岐鎖状のアルキレン基)である。上記式(I-9)、(I-10)中のn1~n6は、それぞれ1~30の整数を示す。]
[7]脂環式エポキシ化合物(A)が、下記式(I-1)
Figure JPOXMLDOC01-appb-C000025
で表される化合物を含む、上記[6]に記載の硬化性エポキシ樹脂組成物。
[8]脂環式エポキシ化合物(A)が、下記式(II)で表される化合物を含む、上記[1]~[7]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000026
[式(II)中、R4はp価の有機基を示す。pは、1~20の整数を示す。qは、1~50の整数を示す。pが2以上の整数の場合、複数のqは同一であってもよいし、異なっていてもよい。式(II)におけるqの和(総和)は、3~100の整数である。R5は、下記式(IIa)~(IIc)で表される基のいずれかを示す。R5の少なくとも1つは、式(IIa)で表される基である。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
(式(IIc)中、R6は、水素原子、置換若しくは無置換のアルキル基、置換若しくは無置換のアルキルカルボニル基、又は置換若しくは無置換のアリールカルボニル基を示す。)]
[9]式(II)で表される化合物におけるR5の全量(100モル%)に対する、式(IIa)で表される基の割合が、40モル%以上(好ましくは60モル%以上、より好ましくは80モル%以上)である、上記[8]に記載の硬化性エポキシ樹脂組成物。
[10]式(II)で表される化合物の標準ポリスチレン換算の重量平均分子量が、300~100000(好ましくは1000~10000)である、上記[8]又は[9]に記載の硬化性エポキシ樹脂組成物。
[11]式(II)で表される化合物のエポキシ基の当量(エポキシ当量)が、50~1000(好ましくは100~500)である、上記[8]~[10]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[12]脂環式エポキシ化合物(A)の含有量(配合量)が、硬化性エポキシ樹脂組成物の全量(100重量%)に対して、10~95重量%(好ましくは15~90重量%、より好ましくは20~90重量%)である、上記[1]~[11]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[13]脂環式エポキシ化合物(A)、及びモノアリルジグリシジルイソシアヌレート化合物(B)の全量(100重量%)に対する脂環式エポキシ化合物(A)の割合が、20~99重量%(好ましくは30~95重量%、より好ましくは40~95重量%)である、上記[1]~[12]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
The variations of the present invention described above are appended below.
[1] Alicyclic epoxy compound (A) and the following formula (1)
Figure JPOXMLDOC01-appb-C000021
[Wherein, R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms (preferably a hydrogen atom). ]
The curable epoxy resin composition characterized by including the monoallyl diglycidyl isocyanurate compound (B) represented by these, and a stress relaxation agent (C).
[2] The alicyclic epoxy compound (A) has (i) a compound having an epoxy group (alicyclic epoxy group) composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring, and (ii) ) The curable epoxy resin composition according to the above [1], comprising at least one selected from the group consisting of compounds in which an epoxy group is directly bonded to the alicyclic ring with a single bond.
[3] The curable epoxy resin composition according to the above [1] or [2], wherein the alicyclic epoxy compound (A) includes a compound having a cyclohexene oxide group.
[4] The curable epoxy resin composition according to any one of the above [1] to [3], wherein the alicyclic epoxy compound (A) includes a compound represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000022
[In Formula (I), X represents a single bond or a linking group (a divalent group having one or more atoms). A substituent (preferably an alkyl group) may be bonded to one or more carbon atoms constituting the cyclohexane ring (cyclohexene oxide group). ]
[5] The linking group is a divalent hydrocarbon group, an alkenylene group in which part or all of the carbon-carbon double bond is epoxidized, a carbonyl group, an ether bond, an ester bond, a carbonate group, an amide group, or these The curable epoxy resin composition according to the above [4], wherein is a group in which a plurality of are connected.
[6] The alicyclic epoxy compound represented by the formula (I) is a compound represented by the following formulas (I-1) to (I-10), bis (3,4-epoxycyclohexylmethyl) ether, 1,2-bis (3,4-epoxycyclohexane-1-yl) ethane, 1,2-epoxy-1,2-bis (3,4-epoxycyclohexane-1-yl) ethane, and 2,2-bis The curable epoxy resin composition according to the above [4] or [5], which is at least one selected from the group consisting of (3,4-epoxycyclohexane-1-yl) propane.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
[In the above formulas (I-5) and (I-7), l and m each represents an integer of 1 to 30. R in the above formula (I-5) is an alkylene group having 1 to 8 carbon atoms (preferably a linear or branched alkylene group having 1 to 3 carbon atoms). In the above formulas (I-9) and (I-10), n1 to n6 each represents an integer of 1 to 30. ]
[7] The alicyclic epoxy compound (A) is represented by the following formula (I-1)
Figure JPOXMLDOC01-appb-C000025
The curable epoxy resin composition according to the above [6], comprising a compound represented by the formula:
[8] The curable epoxy resin composition according to any one of [1] to [7], wherein the alicyclic epoxy compound (A) includes a compound represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000026
[In the formula (II), R 4 represents a p-valent organic group. p represents an integer of 1 to 20. q represents an integer of 1 to 50. When p is an integer greater than or equal to 2, several q may be the same and may differ. The sum (total) of q in the formula (II) is an integer of 3 to 100. R 5 represents any one of groups represented by the following formulas (IIa) to (IIc). At least one of R 5 is a group represented by the formula (IIa).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
(In Formula (IIc), R 6 represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkylcarbonyl group, or a substituted or unsubstituted arylcarbonyl group.)]
[9] The ratio of the group represented by the formula (IIa) to the total amount (100 mol%) of R 5 in the compound represented by the formula (II) is 40 mol% or more (preferably 60 mol% or more, more The curable epoxy resin composition according to the above [8], which is preferably 80 mol% or more.
[10] The curable epoxy resin according to the above [8] or [9], wherein the compound represented by the formula (II) has a weight average molecular weight in terms of standard polystyrene of 300 to 100,000 (preferably 1000 to 10,000). Composition.
[11] In any one of the above [8] to [10], the epoxy group equivalent (epoxy equivalent) of the compound represented by the formula (II) is 50 to 1000 (preferably 100 to 500). The curable epoxy resin composition described.
[12] The content (blending amount) of the alicyclic epoxy compound (A) is 10 to 95% by weight (preferably 15 to 90% by weight) with respect to the total amount (100% by weight) of the curable epoxy resin composition. The curable epoxy resin composition according to any one of [1] to [11] above, more preferably 20 to 90% by weight.
[13] The ratio of the alicyclic epoxy compound (A) to the total amount (100% by weight) of the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B) is 20 to 99% by weight (preferably The curable epoxy resin composition according to any one of [1] to [12] above, which is 30 to 95% by weight, more preferably 40 to 95% by weight.
[14]モノアリルジグリシジルイソシアヌレート化合物(B)の含有量(配合量)が、脂環式エポキシ化合物(A)100重量部に対して、5~120重量部(好ましくは5~110重量部、より好ましくは5~105重量部)である、上記[1]~[13]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[15]脂環式エポキシ化合物(A)、及び、モノアリルジグリシジルイソシアヌレート化合物(B)の合計量(100重量%)に対するモノアリルジグリシジルイソシアヌレート化合物(B)の割合が、1~60重量%(好ましくは5~55重量%、より好ましくは7~55重量%)である、上記[1]~[14]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[14] The content (blending amount) of the monoallyl diglycidyl isocyanurate compound (B) is 5 to 120 parts by weight (preferably 5 to 110 parts by weight) with respect to 100 parts by weight of the alicyclic epoxy compound (A). The curable epoxy resin composition according to any one of [1] to [13] above, more preferably 5 to 105 parts by weight.
[15] The ratio of the monoallyl diglycidyl isocyanurate compound (B) to the total amount (100% by weight) of the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B) is 1 to 60 The curable epoxy resin composition according to any one of the above [1] to [14], wherein the curable epoxy resin composition is 1 wt% (preferably 5 to 55 wt%, more preferably 7 to 55 wt%).
[16]応力緩和剤(C)が、シリコーンゴム粒子(C1)、シリコーンオイル(C2)、液状ゴム成分(C3)、無機フィラー(C4)、及び熱可塑性樹脂(C5)からなる群より選択される少なくとも1種である、上記[1]~[15]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[17]応力緩和剤(C)が、シリコーンゴム粒子(C1)及びシリコーンオイル(C2)からなる群より選択される少なくとも1種である、上記[1]~[16]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[18]シリコーンゴム粒子(C1)が、シリコーンレジンを表面に備える架橋されたポリジメチルシロキサンである、上記[16]又は[17]に記載の硬化性エポキシ樹脂組成物。
[19]シリコーンゴム粒子(C1)の平均粒子径(d50)が、0.1~100μmが(好ましくは0.5~50μmで)ある、上記[16]~[18]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[20]シリコーンゴム粒子(C1)の最大粒子径が、0.1~250μm(好ましくは0.1~150μm)である、上記[16]~[19]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[21]シリコーンオイル(C2)が、エポキシ当量3000~15000の下記式(2)で表される構造を有するポリアルキレンエーテル変性シリコーン化合物(以下、「ポリアルキレンエーテル変性シリコーン化合物(2)」と称する場合がある)である、上記[16]~[20]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000030
[式中、xは80~140の整数、yは1~5の整数、zは5~20の整数である。R3は炭素数2又は3のアルキレン基(好ましくはトリメチレン基)である。Aは、下記式(2a)で表される構造を有するポリアルキレンエーテル基である。
Figure JPOXMLDOC01-appb-C000031
(式中、a及びbはそれぞれ独立して、0~40の整数である。Bは水素原子またはメチル基(好ましくはメチル基)である。)]
[22]a及びbの合計が、1~80の整数である、上記[21]に記載の硬化性エポキシ樹脂組成物。
[23]ポリアルキレンエーテル変性シリコーン化合物(2)のエポキシ当量が4000~15000(好ましくは5000~13000)である、上記[21]又は[22]に記載の硬化性エポキシ樹脂組成物。
[24]応力緩和剤(C)の含有量(配合量)が、脂環式エポキシ化合物(A)100重量部に対して、0.1~100重量部(好ましくは0.1~50重量部、より好ましくは0.5~30重量部)である、上記[1]~[23]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[25]脂環式エポキシ化合物(A)、及びモノアリルジグリシジルイソシアヌレート化合物(B)の合計量(100重量部)に対する応力緩和剤(C)の含有量が、0.1~20重量部(好ましくは0.3~18重量部、より好ましくは0.5~15重量部)である、上記[1]~[24]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[16] The stress relaxation agent (C) is selected from the group consisting of silicone rubber particles (C1), silicone oil (C2), liquid rubber component (C3), inorganic filler (C4), and thermoplastic resin (C5). The curable epoxy resin composition according to any one of the above [1] to [15], which is at least one kind.
[17] In any one of the above [1] to [16], the stress relaxation agent (C) is at least one selected from the group consisting of silicone rubber particles (C1) and silicone oil (C2). The curable epoxy resin composition described.
[18] The curable epoxy resin composition according to the above [16] or [17], wherein the silicone rubber particles (C1) are cross-linked polydimethylsiloxane having a silicone resin on the surface.
[19] Any one of the above [16] to [18], wherein the silicone rubber particles (C1) have an average particle diameter (d 50 ) of 0.1 to 100 μm (preferably 0.5 to 50 μm). The curable epoxy resin composition described in 1.
[20] The curability according to any one of the above [16] to [19], wherein the silicone rubber particles (C1) have a maximum particle size of 0.1 to 250 μm (preferably 0.1 to 150 μm). Epoxy resin composition.
[21] A polyalkylene ether-modified silicone compound (hereinafter referred to as “polyalkylene ether-modified silicone compound (2)”) wherein the silicone oil (C2) has a structure represented by the following formula (2) having an epoxy equivalent of 3000 to 15000: The curable epoxy resin composition according to any one of [16] to [20] above.
Figure JPOXMLDOC01-appb-C000030
[Wherein x is an integer from 80 to 140, y is an integer from 1 to 5, and z is an integer from 5 to 20. R 3 is an alkylene group having 2 or 3 carbon atoms (preferably a trimethylene group). A is a polyalkylene ether group having a structure represented by the following formula (2a).
Figure JPOXMLDOC01-appb-C000031
(Wherein, a and b are each independently an integer of 0 to 40. B is a hydrogen atom or a methyl group (preferably a methyl group)]
[22] The curable epoxy resin composition according to the above [21], wherein the sum of a and b is an integer of 1 to 80.
[23] The curable epoxy resin composition according to [21] or [22] above, wherein the polyalkylene ether-modified silicone compound (2) has an epoxy equivalent of 4000 to 15000 (preferably 5000 to 13000).
[24] The content (blending amount) of the stress relaxation agent (C) is 0.1 to 100 parts by weight (preferably 0.1 to 50 parts by weight) with respect to 100 parts by weight of the alicyclic epoxy compound (A). The curable epoxy resin composition according to any one of [1] to [23] above, more preferably 0.5 to 30 parts by weight.
[25] The content of the stress relaxation agent (C) relative to the total amount (100 parts by weight) of the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B) is 0.1 to 20 parts by weight The curable epoxy resin composition according to any one of the above [1] to [24], which is (preferably 0.3 to 18 parts by weight, more preferably 0.5 to 15 parts by weight).
[26]さらに、硬化剤(D)及び硬化促進剤(E)を含む、上記[1]~[25]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[27]硬化剤(D)が、酸無水物類(酸無水物系硬化剤)である、上記[26]に記載の硬化性エポキシ樹脂組成物。
[28]硬化剤(D)が、25℃で液状の酸無水物類(酸無水物系硬化剤)である、上記[26]又は[27]に記載の硬化性エポキシ樹脂組成物。
[29]硬化剤(D)が、飽和単環炭化水素ジカルボン酸の無水物(環にアルキル基等の置換基が結合したものも含む)である、上記[26]~[28]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[30]硬化剤(D)の含有量(配合量)が、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量100重量部に対して、50~200重量部(好ましくは80~150重量部)である、上記[26]~[29]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[31]硬化促進剤(E)の含有量(配合量)が、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量100重量部に対して、0.01~5重量部(好ましくは0.02~3重量部、より好ましくは0.03~2重量部)である、上記[26]~[30]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[26] The curable epoxy resin composition according to any one of the above [1] to [25], further comprising a curing agent (D) and a curing accelerator (E).
[27] The curable epoxy resin composition according to the above [26], wherein the curing agent (D) is an acid anhydride (an acid anhydride curing agent).
[28] The curable epoxy resin composition according to the above [26] or [27], wherein the curing agent (D) is an acid anhydride (acid anhydride curing agent) that is liquid at 25 ° C.
[29] Any of the above [26] to [28], wherein the curing agent (D) is an anhydride of a saturated monocyclic hydrocarbon dicarboxylic acid (including those having a substituent such as an alkyl group bonded to the ring). The curable epoxy resin composition according to one.
[30] The content (blending amount) of the curing agent (D) is 50 to 200 parts by weight (preferably 80 to 200 parts by weight based on 100 parts by weight of the total amount of compounds having an epoxy group contained in the curable epoxy resin composition). 150 parts by weight), the curable epoxy resin composition according to any one of the above [26] to [29].
[31] The content (blending amount) of the curing accelerator (E) is 0.01 to 5 parts by weight (preferably with respect to 100 parts by weight of the total amount of compounds having an epoxy group contained in the curable epoxy resin composition). Is 0.02 to 3 parts by weight, more preferably 0.03 to 2 parts by weight). The curable epoxy resin composition according to any one of [26] to [30] above.
[32]さらに、硬化触媒(F)を含む、上記[1]~[31]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[33]硬化触媒(F)の含有量(配合量)が、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量100重量部に対して、0.01~5重量部(好ましくは0.02~3重量部、より好ましくは0.03~2重量部)である、上記[32]に記載の硬化性エポキシ樹脂組成物。
[32] The curable epoxy resin composition according to any one of [1] to [31], further including a curing catalyst (F).
[33] The content (blending amount) of the curing catalyst (F) is 0.01 to 5 parts by weight (preferably with respect to 100 parts by weight of the total amount of compounds having epoxy groups contained in the curable epoxy resin composition). The curable epoxy resin composition according to the above [32], which is 0.02 to 3 parts by weight, more preferably 0.03 to 2 parts by weight.
[34]さらに、シリコーンゴム粒子以外のゴム粒子を含む、上記[1]~[33]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[35]シリコーンゴム粒子以外のゴム粒子が、ゴム弾性を有するコア部分と、該コア部分を被覆する少なくとも1層のシェル層とからなる多層構造(コアシェル構造)を有するゴム粒子である、上記[34]に記載の硬化性エポキシ樹脂組成物。
[36]シリコーンゴム粒子以外のゴム粒子が、(メタ)アクリル酸エステルを必須モノマー成分とするポリマーで構成されるゴム粒子である、上記[34]又は[35]に記載の硬化性エポキシ樹脂組成物。
[37]シリコーンゴム粒子以外のゴム粒子が、表面にヒドロキシ基及び/又はカルボキシ基を有するゴム粒子である、上記[34]~[36]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[38]シリコーンゴム粒子以外のゴム粒子の平均粒子径が、10~500nm(好ましくは20~400nm)である、上記[34]~[37]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[39]シリコーンゴム粒子以外のゴム粒子の最大粒子径が、50~1000nm(好ましくは100~800nm)である、上記[34]~[38]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[40]シリコーンゴム粒子以外のゴム粒子の屈折率が、1.40~1.60(好ましくは1.42~1.58)である、上記[34]~[39]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[41]シリコーンゴム粒子以外のゴム粒子の屈折率と、該ゴム粒子を含む硬化性エポキシ樹脂組成物を硬化させて得られる硬化物の屈折率との差が±0.03以内である、上記[34]~[40]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[42]シリコーンゴム粒子以外のゴム粒子の含有量(配合量)が、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量100重量部に対して、0.5~30重量部(好ましくは1~20重量部)である、上記[34]~[41]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[34] The curable epoxy resin composition according to any one of the above [1] to [33], further comprising rubber particles other than silicone rubber particles.
[35] The rubber particles other than silicone rubber particles are rubber particles having a multilayer structure (core-shell structure) composed of a core portion having rubber elasticity and at least one shell layer covering the core portion. 34].
[36] The curable epoxy resin composition according to the above [34] or [35], wherein the rubber particles other than the silicone rubber particles are rubber particles composed of a polymer having (meth) acrylic acid ester as an essential monomer component. object.
[37] The curable epoxy resin composition according to any one of the above [34] to [36], wherein the rubber particles other than the silicone rubber particles are rubber particles having a hydroxy group and / or a carboxy group on the surface. .
[38] The curable epoxy resin composition according to any one of the above [34] to [37], wherein the rubber particles other than the silicone rubber particles have an average particle size of 10 to 500 nm (preferably 20 to 400 nm). object.
[39] The curable epoxy resin composition according to any one of the above [34] to [38], wherein the rubber particles other than the silicone rubber particles have a maximum particle size of 50 to 1000 nm (preferably 100 to 800 nm). object.
[40] In any one of the above [34] to [39], the refractive index of the rubber particles other than the silicone rubber particles is 1.40 to 1.60 (preferably 1.42 to 1.58). The curable epoxy resin composition described.
[41] The difference between the refractive index of rubber particles other than silicone rubber particles and the refractive index of a cured product obtained by curing a curable epoxy resin composition containing the rubber particles is within ± 0.03. [34] The curable epoxy resin composition according to any one of [40].
[42] The content (blending amount) of rubber particles other than silicone rubber particles is 0.5 to 30 parts by weight with respect to 100 parts by weight of the total amount of compounds having epoxy groups contained in the curable epoxy resin composition ( The curable epoxy resin composition according to any one of [34] to [41], which is preferably 1 to 20 parts by weight.
[43]硬化性エポキシ樹脂組成物の25℃における粘度が、100~10000mPa・s(好ましくは200~9000mPa・s、より好ましくは300~8000mPa・s)である、上記[1]~[42]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[44]上記[1]~[43]のいずれか1つに記載の硬化性エポキシ樹脂組成物の硬化物。
[45]光半導体封止用樹脂組成物である、上記[1]~[43]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[46]上記[45]に記載の硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置。
[43] The above [1] to [42], wherein the curable epoxy resin composition has a viscosity at 25 ° C. of 100 to 10,000 mPa · s (preferably 200 to 9000 mPa · s, more preferably 300 to 8000 mPa · s). The curable epoxy resin composition as described in any one of these.
[44] A cured product of the curable epoxy resin composition according to any one of [1] to [43].
[45] The curable epoxy resin composition according to any one of [1] to [43], which is a resin composition for optical semiconductor encapsulation.
[46] An optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable epoxy resin composition according to [45].
 本発明の硬化性樹脂組成物は、特に光半導体装置における光半導体素子(LED素子)の封止材を形成するための材料(封止剤)として好ましく使用することができる。 The curable resin composition of the present invention can be preferably used as a material (sealing agent) for forming a sealing material for an optical semiconductor element (LED element) in an optical semiconductor device.
 100:リフレクター(光反射用樹脂組成物)
 101:金属配線
 102:光半導体素子
 103:ボンディングワイヤ
 104:硬化物(封止材)
100: Reflector (resin composition for light reflection)
DESCRIPTION OF SYMBOLS 101: Metal wiring 102: Optical semiconductor element 103: Bonding wire 104: Hardened | cured material (sealing material)

Claims (12)

  1.  脂環式エポキシ化合物(A)と、下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1、R2は、同一又は異なって、水素原子又は炭素数1~8のアルキル基を示す。]
    で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、応力緩和剤(C)とを含むことを特徴とする硬化性エポキシ樹脂組成物。
    Alicyclic epoxy compound (A) and the following formula (1)
    Figure JPOXMLDOC01-appb-C000001
    [Wherein R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. ]
    The curable epoxy resin composition characterized by including the monoallyl diglycidyl isocyanurate compound (B) represented by these, and a stress relaxation agent (C).
  2.  前記応力緩和剤(C)が、シリコーンゴム粒子(C1)及びシリコーンオイル(C2)からなる群より選択される少なくとも1種である請求項1に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to claim 1, wherein the stress relaxation agent (C) is at least one selected from the group consisting of silicone rubber particles (C1) and silicone oil (C2).
  3.  前記シリコーンゴム粒子(C1)が、シリコーンレジンを表面に備える架橋されたポリジメチルシロキサンである請求項2に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to claim 2, wherein the silicone rubber particles (C1) are cross-linked polydimethylsiloxane having a silicone resin on the surface.
  4.  前記シリコーンオイル(C2)が、エポキシ当量3000~15000の下記式(2)で表される構造を有するポリアルキレンエーテル変性シリコーン化合物である請求項2又は3に記載の硬化性エポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    [式中、xは80~140の整数、yは1~5の整数、zは5~20の整数である。R3は炭素数2又は3のアルキレン基である。Aは、下記式(2a)で表される構造を有するポリアルキレンエーテル基である。
    Figure JPOXMLDOC01-appb-C000003
    (式中、a及びbはそれぞれ独立して、0~40の整数である。Bは水素原子またはメチル基である。)]
    The curable epoxy resin composition according to claim 2 or 3, wherein the silicone oil (C2) is a polyalkylene ether-modified silicone compound having a structure represented by the following formula (2) having an epoxy equivalent of 3000 to 15000.
    Figure JPOXMLDOC01-appb-C000002
    [Wherein x is an integer from 80 to 140, y is an integer from 1 to 5, and z is an integer from 5 to 20. R 3 is an alkylene group having 2 or 3 carbon atoms. A is a polyalkylene ether group having a structure represented by the following formula (2a).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, a and b are each independently an integer of 0 to 40. B is a hydrogen atom or a methyl group.)]
  5.  前記脂環式エポキシ化合物(A)が、シクロヘキセンオキシド基を有する化合物である請求項1~4のいずれか1項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 4, wherein the alicyclic epoxy compound (A) is a compound having a cyclohexene oxide group.
  6.  前記脂環式エポキシ化合物(A)が、下記式(I-1)
    Figure JPOXMLDOC01-appb-C000004
    で表される化合物である請求項1~5のいずれか1項に記載の硬化性エポキシ樹脂組成物。
    The alicyclic epoxy compound (A) is represented by the following formula (I-1)
    Figure JPOXMLDOC01-appb-C000004
    The curable epoxy resin composition according to any one of claims 1 to 5, which is a compound represented by the formula:
  7.  さらに、シリコーンゴム粒子以外のゴム粒子を含む請求項1~6のいずれか1項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 6, further comprising rubber particles other than silicone rubber particles.
  8.  さらに、硬化剤(D)及び硬化促進剤(E)を含む請求項1~7のいずれか1項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 7, further comprising a curing agent (D) and a curing accelerator (E).
  9.  さらに、硬化触媒(F)を含む請求項1~7のいずれか1項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 7, further comprising a curing catalyst (F).
  10.  請求項1~9のいずれか1項に記載の硬化性エポキシ樹脂組成物の硬化物。 A cured product of the curable epoxy resin composition according to any one of claims 1 to 9.
  11.  光半導体封止用樹脂組成物である請求項1~9のいずれか1項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 9, which is a resin composition for optical semiconductor encapsulation.
  12.  請求項11に記載の硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置。 An optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable epoxy resin composition according to claim 11.
PCT/JP2018/001302 2017-01-23 2018-01-18 Curable epoxy resin composition WO2018135557A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018562416A JP7146643B2 (en) 2017-01-23 2018-01-18 Curable epoxy resin composition
KR1020197024267A KR102489346B1 (en) 2017-01-23 2018-01-18 Curable Epoxy Resin Composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017009858 2017-01-23
JP2017-009858 2017-01-23

Publications (1)

Publication Number Publication Date
WO2018135557A1 true WO2018135557A1 (en) 2018-07-26

Family

ID=62908843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001302 WO2018135557A1 (en) 2017-01-23 2018-01-18 Curable epoxy resin composition

Country Status (4)

Country Link
JP (1) JP7146643B2 (en)
KR (1) KR102489346B1 (en)
TW (1) TWI753994B (en)
WO (1) WO2018135557A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969133A (en) * 2020-06-16 2020-11-20 深圳信达新能源科技有限公司 Preparation method of battery and prepared battery
JP2021042337A (en) * 2019-09-13 2021-03-18 味の素株式会社 Resin composition
JP2021528503A (en) * 2019-05-30 2021-10-21 天津徳高化成新材料股▲ふん▼有限公司Tecore Synchem Inc Encapsulating resin composition for surface mount discrete devices of LED displays and its applications
WO2022148103A1 (en) * 2021-01-07 2022-07-14 天津德高化成光电科技有限责任公司 Prepolymer, encapsulating resin containing same, and use of encapsulating resin
CN115772374A (en) * 2022-12-20 2023-03-10 武汉市三选科技有限公司 Liquid mold sealing adhesive and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018921A (en) * 2011-07-13 2013-01-31 Daicel Corp Curable epoxy resin composition
JP2013203865A (en) * 2012-03-28 2013-10-07 Kyocera Chemical Corp Resin composition for sealing semiconductor and semiconductor device
JP2014133807A (en) * 2013-01-09 2014-07-24 Daicel Corp Curable epoxy resin composition
JP5708486B2 (en) * 2009-06-03 2015-04-30 住友ベークライト株式会社 Semiconductor sealing resin composition and semiconductor device
JP2015098586A (en) * 2013-10-16 2015-05-28 株式会社ダイセル Curable epoxy resin composition
JP2016040383A (en) * 2015-12-07 2016-03-24 日立化成株式会社 Epoxy resin composition for encapsulating electronic component and electronic component device using the same
JP2016050221A (en) * 2014-08-28 2016-04-11 株式会社ダイセル Curable epoxy resin composition
JP2016065146A (en) * 2014-09-25 2016-04-28 京セラケミカル株式会社 Thermosetting resin composition, semiconductor device and electrical and electronic component
JP2016113525A (en) * 2014-12-12 2016-06-23 ナミックス株式会社 Liquid epoxy resin composition, semiconductor encapsulation agent, semiconductor device and manufacturing method of liquid epoxy resin composition
WO2017138491A1 (en) * 2016-02-12 2017-08-17 株式会社ダイセル Curable resin composition for reflecting light, cured product thereof, and optical semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3477111B2 (en) 1999-06-01 2003-12-10 四国化成工業株式会社 Thermosetting epoxy resin composition
JP5968137B2 (en) * 2012-07-20 2016-08-10 ナミックス株式会社 Liquid encapsulant and electronic parts using it
TWI618728B (en) * 2013-08-07 2018-03-21 日立化成股份有限公司 Epoxy resin composition and electronic component device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708486B2 (en) * 2009-06-03 2015-04-30 住友ベークライト株式会社 Semiconductor sealing resin composition and semiconductor device
JP2013018921A (en) * 2011-07-13 2013-01-31 Daicel Corp Curable epoxy resin composition
JP2013203865A (en) * 2012-03-28 2013-10-07 Kyocera Chemical Corp Resin composition for sealing semiconductor and semiconductor device
JP2014133807A (en) * 2013-01-09 2014-07-24 Daicel Corp Curable epoxy resin composition
JP2015098586A (en) * 2013-10-16 2015-05-28 株式会社ダイセル Curable epoxy resin composition
JP2016050221A (en) * 2014-08-28 2016-04-11 株式会社ダイセル Curable epoxy resin composition
JP2016065146A (en) * 2014-09-25 2016-04-28 京セラケミカル株式会社 Thermosetting resin composition, semiconductor device and electrical and electronic component
JP2016113525A (en) * 2014-12-12 2016-06-23 ナミックス株式会社 Liquid epoxy resin composition, semiconductor encapsulation agent, semiconductor device and manufacturing method of liquid epoxy resin composition
JP2016040383A (en) * 2015-12-07 2016-03-24 日立化成株式会社 Epoxy resin composition for encapsulating electronic component and electronic component device using the same
WO2017138491A1 (en) * 2016-02-12 2017-08-17 株式会社ダイセル Curable resin composition for reflecting light, cured product thereof, and optical semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021528503A (en) * 2019-05-30 2021-10-21 天津徳高化成新材料股▲ふん▼有限公司Tecore Synchem Inc Encapsulating resin composition for surface mount discrete devices of LED displays and its applications
JP7017636B2 (en) 2019-05-30 2022-02-08 天津徳高化成新材料股▲ふん▼有限公司 Encapsulating resin composition for surface mount discrete devices of LED displays and its applications
JP2021042337A (en) * 2019-09-13 2021-03-18 味の素株式会社 Resin composition
JP7184002B2 (en) 2019-09-13 2022-12-06 味の素株式会社 resin composition
JP7396443B2 (en) 2019-09-13 2023-12-12 味の素株式会社 resin composition
CN111969133A (en) * 2020-06-16 2020-11-20 深圳信达新能源科技有限公司 Preparation method of battery and prepared battery
WO2022148103A1 (en) * 2021-01-07 2022-07-14 天津德高化成光电科技有限责任公司 Prepolymer, encapsulating resin containing same, and use of encapsulating resin
CN115772374A (en) * 2022-12-20 2023-03-10 武汉市三选科技有限公司 Liquid mold sealing adhesive and preparation method thereof
CN115772374B (en) * 2022-12-20 2023-08-18 武汉市三选科技有限公司 Liquid mold sealing adhesive and preparation method thereof

Also Published As

Publication number Publication date
JPWO2018135557A1 (en) 2019-11-14
KR102489346B1 (en) 2023-01-18
TW201840627A (en) 2018-11-16
JP7146643B2 (en) 2022-10-04
KR20190103432A (en) 2019-09-04
TWI753994B (en) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2018135557A1 (en) Curable epoxy resin composition
JP6343575B2 (en) Curable epoxy resin composition
JP5764419B2 (en) Curable epoxy resin composition
JP5852014B2 (en) Curable epoxy resin composition
JP6376907B2 (en) Curable epoxy resin composition
JP2018119032A (en) Curable resin composition for light reflection and cured product thereof, and optical semiconductor device
JP2015096602A (en) Curable epoxy resin composition
JP6014134B2 (en) Curable epoxy resin composition
WO2018135558A1 (en) Curable resin composition for optical reflection, cured product thereof, and optical semiconductor device
JP2016160352A (en) Curable epoxy resin composition
JP2015110772A (en) Curable epoxy resin composition
JP2015086374A (en) Curable epoxy resin composition
WO2014038446A1 (en) Curable epoxy resin composition and cured product thereof, and optical semiconductor device
JP2017115006A (en) Curable epoxy resin composition
WO2012093590A1 (en) Curable epoxy resin composition
JP2015098586A (en) Curable epoxy resin composition
JP7329320B2 (en) Curable epoxy resin composition
JP2015086375A (en) Curable epoxy resin composition
JP6306483B2 (en) Curable epoxy resin composition
JP2020070392A (en) Curable epoxy resin composition
JP2016050221A (en) Curable epoxy resin composition
JP6118313B2 (en) Curable epoxy resin composition
JP7329319B2 (en) Curable epoxy resin composition
JP2015086376A (en) Curable epoxy resin composition
JP2019112477A (en) Curable epoxy resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18742326

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018562416

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197024267

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18742326

Country of ref document: EP

Kind code of ref document: A1