WO2018135434A1 - Cd-free colloidal quantum dot capable of emitting visible fluorescence, and method for producing same - Google Patents

Cd-free colloidal quantum dot capable of emitting visible fluorescence, and method for producing same Download PDF

Info

Publication number
WO2018135434A1
WO2018135434A1 PCT/JP2018/000807 JP2018000807W WO2018135434A1 WO 2018135434 A1 WO2018135434 A1 WO 2018135434A1 JP 2018000807 W JP2018000807 W JP 2018000807W WO 2018135434 A1 WO2018135434 A1 WO 2018135434A1
Authority
WO
WIPO (PCT)
Prior art keywords
colloidal quantum
liquid
raw material
temperature
quantum dots
Prior art date
Application number
PCT/JP2018/000807
Other languages
French (fr)
Japanese (ja)
Inventor
孝久 小俣
宇野 貴博
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017248935A external-priority patent/JP2018115315A/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to EP18741280.4A priority Critical patent/EP3572482A4/en
Priority to KR1020197023225A priority patent/KR20190104583A/en
Priority to US16/478,208 priority patent/US20190367810A1/en
Priority to CN201880007299.XA priority patent/CN110199006A/en
Publication of WO2018135434A1 publication Critical patent/WO2018135434A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present invention relates to a colloidal quantum dot that emits visible fluorescence, which is a kind of photoluminescent material, and a method for producing the same. More specifically, a colloidal quantum dot that does not contain Cd and emits visible fluorescence having emission wavelength controllability (particle size controllability), full width at half maximum (FWHM) of emission spectrum, and Stokes shift equivalent to that of a CdSe-based colloidal quantum dot, and its It relates to a manufacturing method. In particular, the present invention relates to a colloidal quantum dot not containing Cd that emits green or red visible fluorescence equivalent to a CdSe-based colloidal quantum dot and a method for producing the same.
  • This international application includes Japanese Patent Application No.
  • Japanese Patent Application No. 2017-6353 filed on January 18, 2017
  • Japanese Patent Application No. 248935 Japanese Patent Application No. 248935
  • December 26, 2017. No. 2017-248935 Japanese Patent Application No. 2017-248935
  • the optical filter is used to extract the light of the necessary wavelength from the light emission of the phosphor, to improve the color purity, and to achieve good chromaticity, but the optical filter reduces the light transmittance Therefore, the excitation energy must be increased, resulting in a significant reduction in efficiency.
  • One solution to this problem is to use a material that has a sharp emission spectrum, such as a colloidal quantum dot, and that can freely control the emission wavelength by particle size control using the quantum size effect. Can achieve chromaticity.
  • a material that has a sharp emission spectrum such as a colloidal quantum dot
  • a product using a blue LED as a backlight and a colloidal quantum dot phosphor that emits light when excited is commercially available.
  • Non-Patent Document 1 and Non-Patent Document 2 disclose colloidal quantum dots that do not contain Cd that emit green light or red light.
  • Non-Patent Document 1 discloses that a stable InP / ZnS core-shell colloidal quantum dot having high luminescence was developed by adding zinc acetate and dodecanethiol to an InP core solution step by step, and that zinc acetate is on the surface. It has been reported to play an important role in etching and ZnS shell formation.
  • Non-patent document 2 describes the origin of the photoluminescence (PL) particle size dependence of CuInS 2 —ZnS alloy / ZnS core-shell colloidal quantum dots (ternary compound semiconductors) and the effect of thin coating of ZnS on PL characteristics. Has been reported.
  • PL photoluminescence
  • the InP colloidal quantum dots shown in Non-Patent Document 1 have a light emission wavelength that varies greatly due to a slight difference in particle size, particularly in the region shorter than green, so that the particle size can be precisely controlled. Otherwise, it will not be a colloidal quantum dot with good chromaticity, and secondly, it has a large Stokes shift, so there is a large energy loss, and thirdly, the phosphide used as a synthetic raw material is very reactive and dangerous. There is a problem such as.
  • Non-Patent Document 2 the ternary compound semiconductor colloidal quantum dots represented by CuInS 2 shown in Non-Patent Document 2 have a wide solid solution region where a plurality of compounds exist, and synthesize compounds according to the chemical composition.
  • the technology is extremely difficult, and electron-hole recombination is via a defect level.
  • the emission spectrum is broad and the color purity is inferior.
  • a large Stokes shift There is a problem that energy loss is large and green light emission is difficult to realize.
  • the object of the present invention is to solve the above-mentioned problems and to emit Cd that emits visible fluorescence having emission wavelength controllability (particle size controllability), emission spectrum full width at half maximum (FWHM), and Stokes shift equivalent to those of CdSe-based colloidal quantum dots. It is providing the colloidal quantum dot which does not contain and its manufacturing method.
  • an object of the present invention is to provide a colloidal quantum dot not containing Cd that emits green or red visible fluorescence equivalent to that of a CdSe-based colloidal quantum dot and a method for producing the same.
  • the present inventors paid attention to ZnS, ZnSe, and ZnTe as II-VI compound semiconductors not containing Cd.
  • the band gaps in these bulk bodies are 3.83 eV, 2.72 eV, and 2.25 eV, respectively (both of zinc blende type crystals), and the colloidal quantum dots of ZnS and ZnSe emit light in the green or red region. While it is not possible to realize a possible band gap, ZnTe colloidal quantum dots can emit light in the blue-green region using the quantum size effect, but even if the particle size is greatly changed in the green region The change in the emission wavelength remains small, and the controllability of the emission wavelength in the green region is poor.
  • the band gap is as small as 2.03 eV.
  • the present inventors consider that such band gap bowing is realized also in colloidal quantum dots, and by combining the quantum size effect and band gap bowing, the band gap in the green or red region is realized, The invention has been reached.
  • a first aspect of the present invention is a core particle that is coated with a shell made of a compound semiconductor and forms the core of the shell, and emits visible fluorescence when irradiated with excitation light having a wavelength in the near ultraviolet region or blue region. It is a colloidal quantum dot that does not contain emitted Cd.
  • This colloidal quantum dot is represented by the chemical formula A (B1 1-x , B2 x ) (where 0 ⁇ x ⁇ 1), Zn as a group II element at the A site, and Te as a group VI element at the B1 site.
  • the B2 site has Se or S as a group VI element, and has an average particle size of 1 nm or more and 10 nm or less.
  • the second aspect of the present invention is a colloidal quantum dot that is based on the first aspect and does not include Cd in which the B2 site is Se and the visible fluorescence is green light.
  • a third aspect of the present invention is a colloidal quantum dot which is an invention based on the first aspect, wherein the B2 site is S and the visible fluorescence is red light and does not contain Cd.
  • a fourth aspect of the present invention is a first mixed liquid prepared by mixing a Zn raw material liquid, a Te raw material liquid, and a Se raw material liquid, or a second mixed liquid prepared by mixing a capping agent and a diluent. Any one of the above liquids is heated to a temperature of 200 ° C. to 350 ° C., a predetermined amount of the other liquid is injected into the heated one liquid in a non-oxidizing atmosphere, and the other liquid is injected into the one liquid.
  • This is a method for producing a colloidal quantum dot that does not contain Cd whose visible fluorescence is green light by adjusting the temperature of the liquid injected to 200 ° C. to 350 ° C. and holding it for 1 minute to 5 hours.
  • a fifth aspect of the present invention is a third mixed solution prepared by mixing a Zn raw material solution and a Te raw material solution or a fourth mixed solution prepared by mixing an S raw material solution, a capping agent, and a diluent. Any one of the above liquids is heated to a temperature of 200 ° C. to 350 ° C., a predetermined amount of the other liquid is injected into the heated one liquid in a non-oxidizing atmosphere, and the other liquid is injected into the one liquid.
  • This is a method for producing a colloidal quantum dot that does not contain Cd whose visible fluorescence is red light by adjusting the temperature of the solution injected at 200 ° C. to 350 ° C. and holding it for 1 minute to 5 hours.
  • the InP-based colloidal shown in Non-Patent Document 1 when irradiated with excitation light having a wavelength in the near-ultraviolet region or blue region, the InP-based colloidal shown in Non-Patent Document 1
  • the characteristics equivalent to those of the CdSe-based colloidal quantum dots can be realized, exceeding the characteristics of the quantum dots and the colloidal quantum dots of the ternary compound semiconductor shown in Non-Patent Document 2.
  • the influence of the difference in particle size on the change in the emission wavelength becomes small, the emission wavelength can be precisely controlled, and good chromaticity is realized.
  • the full width at half maximum (FWHM) of the emission spectrum is narrowed, and the color purity is improved.
  • the Stokes shift is reduced and energy loss is reduced. In all items, the characteristics are improved to the same level as the CdSe colloidal quantum dots.
  • the B2 site is changed to Se to form a Zn (Te 1-x , Se x ) colloidal quantum dot, whereby the visible fluorescence is changed to green.
  • the visible fluorescence is changed to red by changing the B2 site to S and forming a Zn (Te 1-x , S x ) colloidal quantum dot.
  • the first mixed liquid obtained by mixing the raw material liquids of Zn, Te, and Se and the second mixed liquid obtained by mixing the capping agent and the diluent are mixed together. Since the elements (Zn, Te, Se) are collectively prepared, the molar composition ratio of the colloidal quantum dots can be easily controlled by the molar charge ratio. In addition, since the lower temperature liquid is injected into one higher temperature liquid, the temperature after injection can be greatly changed (decreased), the separation between nucleation and growth is improved, and the colloidal is highly uniform. Since quantum dots are obtained and the grown nuclei are kept at a constant temperature, the particle size can be easily controlled with time, and as a result, colloidal quantum dots containing no Cd whose visible fluorescence is green light are obtained.
  • the third mixed solution obtained by mixing the respective raw material solutions of Zn and Te, and the fourth mixed solution obtained by mixing the S raw material solution, the capping agent, and the diluent are used. Since the lower temperature of the liquid is injected into the higher temperature of the liquid, the post-injection temperature can be greatly changed (decreased), the separation between nucleation and growth is improved, and colloidal quantum dots with high uniformity Furthermore, since the grown nuclei are kept at a constant temperature, the particle size can be easily controlled by time, and as a result, a colloidal quantum dot containing no Cd whose visible fluorescence is red light is obtained.
  • FIG. 4 is a diagram showing a simulation result of a band gap with respect to a Se molar composition ratio x Se in a Zn (Te 1-x , Se x ) colloidal quantum dot having a particle diameter of 2 to 10 nm.
  • Molar ratio x Se of Se is a diagram showing a simulation of the band gap results for the particle size in the Zn (Te 1-x, Se x) colloidal quantum dot when the 0.35.
  • FIG. 4 is a diagram showing a simulation result of a band gap with respect to a molar composition ratio x S of S in a Zn (Te 1-x , S x ) colloidal quantum dot having a particle diameter of 2 to 10 nm. It is a figure which shows the simulation result of the band gap with respect to the particle size in Zn (Te1 -x , Sx ) colloidal quantum dot when the molar composition ratio xS of S is 0.35.
  • Non-Patent Documents 4 and 5 report calculations for theoretically predicting the particle size dependence of the optical gap of colloidal quantum dots. Among them, effective mass approximation calculation that can obtain the same result as other methods by simple notation is convenient.
  • the Schrödinger equation for particles (mass: m) in potential: V (r) is expressed by the following equation (1).
  • a relational expression between the particle size and the optical gap is derived by a model assuming an effective mass approximation in a well-type potential of a finite depth.
  • the confinement potential is expressed as the following equation (2) as a central symmetry V (r) at a finite depth.
  • V (r) the radius of the spherical colloidal quantum dot is r 0 .
  • V 0 is defined as the following equation (3).
  • ⁇ E HOMO-LUMO is the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the surfactant coordinated as a capping agent on the surface of the colloidal quantum dot.
  • Energy difference ⁇ E HOMO-LUMO of oleic acid used as the surfactant is a value obtained by measuring the light absorption spectrum: 4.35 eV.
  • ZnTe, ZnSe, the band gap of the bulk of the ZnS: E g and electron-hole effective mass: m e * / m 0, m h * / m 0 is used the values shown in the following Table 1 .
  • the band gap: E is the band gap of the bulk body of ZnTe, ZnSe, ZnS: E g and the effective mass of electrons / holes: me * / m 0 , M h * / m 0 .
  • the band gap in the mixed crystal bulk body is calculated using the following equations (4) and (5) expressed using the bowing parameter (b).
  • the electron-hole effective mass m e * / m 0, m h * / the additive property assuming the m 0, calculating the relationship between the band gap and the particle size-molar ratio of the colloidal quantum dots is doing.
  • the additivity of the effective mass of electrons of Zn (Te 1-x , Se x ) is expressed by the following formula (6).
  • FIG. 2 shows a simulation result of the band gap with respect to the particle diameter in the Zn (Te 1-x , Se x ) colloidal quantum dot when the Se molar composition ratio x Se is 0.35.
  • the band portion indicates the green light emitting region.
  • FIG. 3 shows the simulation results of the band gap with respect to the molar composition ratio x S of S in Zn (Te 1-x , S x ) colloidal quantum dots having a particle diameter of 2 to 10 nm.
  • FIG. 4 shows a simulation result of the band gap with respect to the particle diameter in a Zn (Te 1-x , S x ) colloidal quantum dot when the molar composition ratio x S of S is 0.35.
  • a band portion indicates a red light emitting region. Taking into account the Stokes shift, which is typically 100 meV, red light is emitted from Zn (Te 1-x , S x ) colloidal quantum dots that do not contain Cd by adjusting the molar composition ratio x S of S and the particle size. Can be realized.
  • the colloidal quantum dot of this embodiment is a core particle that is coated with a shell made of a compound semiconductor and forms the core of the shell, and emits visible fluorescence when irradiated with excitation light having a wavelength in the near ultraviolet region or blue region. It is a colloidal quantum dot that does not contain emitted Cd.
  • This colloidal quantum dot is represented by the chemical formula A (B1 1-x , B2 x ) (where 0 ⁇ x ⁇ 1), Zn as a group II element at the A site, and Te as a group VI element at the B1 site.
  • the B2 site has Se or S as a group VI element, and has an average particle size of 1 nm or more and 10 nm or less.
  • the average particle size is less than 1 nm, it is difficult to control the particle size, and if it exceeds 10 nm, it takes a very long time for grain growth, resulting in poor production efficiency, widening the particle size distribution, and color. Purity deteriorates.
  • isoelectronic trap is obtained by adding a small amount of an element (Se) having the same electron configuration as an element constituting a compound semiconductor (for example, Zn and Te) and substituting a lattice point, This means that electrons or holes are attracted and become bound due to the difference in electron affinity.
  • the light emission mechanism by the isoelectronic trap can be explained by using a coordinate coordinate model indicating the relationship between the lattice displacement and the energy.
  • the excitons in the excited state are trapped in the pit of the excited state potential created by being bound. By entering the depression, the difference from the ground state potential is reduced. Therefore, the transition between the level of the dent and the ground state results in light emission with energy smaller than the band gap of the original compound semiconductor (ZnTe).
  • a method for producing a colloidal quantum dot of the present invention as a first embodiment, a method for producing a Zn (Te 1-x , Se x ) colloidal quantum dot whose visible fluorescence is green light is described as a second embodiment.
  • the manufacturing method of Zn (Te1 -x , Sx ) colloidal quantum dot whose visible fluorescence is red light is each explained in full detail.
  • the method for producing a colloidal quantum dot that emits green light is prepared by mixing a liquid prepared by mixing a Zn raw material liquid, a Te raw material liquid, and a Se raw material liquid, or a capping agent and a diluent.
  • One of the two liquids is heated to a temperature of 200 ° C. to 350 ° C., and a predetermined amount of the other liquid is injected into the heated one liquid in a non-oxidizing atmosphere.
  • the liquid into which the other liquid was injected was adjusted to a temperature of 200 ° C. to 350 ° C. and held for 1 minute to 5 hours, thereby producing a colloidal quantum dot containing no Cd whose visible fluorescence is green light. is there.
  • An example of the manufacturing method of the first embodiment is as follows: (a) a step of mixing a Zn raw material liquid, a Te raw material liquid, and a Se raw material liquid to prepare a first mixed liquid; and (b) sealing. (C) adjusting the temperature of the second mixed liquid to 200 ° C. to 350 ° C., and adding the capping agent and diluent to the container and mixing them; In a non-oxidizing atmosphere, a step of injecting a predetermined amount of the first mixture into the second mixture; and (d) a temperature of the solution obtained by injecting the first mixture into the second mixture is 200. And a step of adjusting to a temperature of from 350 to 350 ° C. and holding for 1 minute to 5 hours.
  • the reason why the temperature of the second mixed solution is adjusted to 200 ° C. to 350 ° C. is that if it is less than 200 ° C., rapid nucleation does not occur and the particle size distribution becomes wide, and if it exceeds 350 ° C., This is because volatilization of the organic solvent occurs preferentially and hinders the production of colloidal quantum dots.
  • the adjustment temperature of the second liquid mixture is preferably 250 ° C. to 310 ° C.
  • the temperature of the liquid obtained by injecting the first mixed liquid into the second mixed liquid is set to 200 ° C. to 350 ° C. If the temperature is lower than 200 ° C., the growth rate of the colloid becomes very slow, and the particle size can be controlled by time.
  • a preferred holding temperature is 230 ° C to 300 ° C.
  • the retention time of the liquid obtained by injecting the first mixed liquid into the second mixed liquid is set to 1 minute to 5 hours because the raw material is hardly consumed and the yield is greatly reduced if it is less than 1 minute. Yes, if it exceeds 5 hours, the productivity is poor, and the cost of power consumed during heating during growth greatly increases.
  • the preferred holding time is 10 minutes to 60 minutes.
  • Zn raw material solution liquid diethylzinc (DEZ) or powdered zinc stearate (Zn (St) 2 ) or the like as a Zn source is placed in a container substituted with an inert gas, and trioctylphosphine is added thereto.
  • Organic solvents such as (TOP), octadecene (ODE), acetic acid, oleic acid (OA), stearic acid, hexadecylamine (HDA), oleylamine (OLA), trioctylamine (TOA), tributylphosphonic acid (TBPA) It is prepared by adding a complexing agent) and heating.
  • the organic solvent is not limited to the organic solvents described above as long as the organic solvent forms a complex with Zn ions.
  • the container containing the mixed solution of Zn raw material is heated with an oil bath or the like.
  • the temperature heated in the oil bath is 20 ° C. to 350 ° C., and the holding time at the heated temperature is 5 minutes to 5 hours.
  • the heating temperature is less than 20 ° C. or the holding time is less than 5 minutes, the Zn source is not sufficiently dissolved in the organic solvent (complexing agent), and an undissolved portion of the Zn source is likely to be generated.
  • Te raw material liquid is filled with powdered metal tellurium (Te) as a Te source, powdered tellurium oxide or an available inexpensive and safe organic tellurium compound in a container substituted with an inert gas.
  • Te powdered metal tellurium
  • the same organic solvent (complex forming agent) as used for the preparation of the Zn raw material solution is added and heated.
  • the organic solvent is not limited to the organic solvents described above as long as the organic solvent forms a complex with Te ions.
  • the container containing the Te raw material mixture is heated in an oil bath or the like. The temperature at which the oil bath is heated is 100 ° C. to 350 ° C., and the holding time at the heated temperature is 5 minutes to 5 hours.
  • the Te source When the heating temperature is less than 100 ° C. or the holding time is less than 5 minutes, the Te source is not sufficiently dissolved in the organic solvent (complexing agent), and an undissolved portion of the Te source is likely to be generated. On the other hand, when the heating temperature exceeds 350 ° C., volatilization of the organic solvent (complex forming agent) occurs preferentially, which hinders dissolution of the Te source. When the holding time exceeds 5 hours, the Te source has sufficiently reached dissolution equilibrium, and wasteful power consumption due to heating occurs.
  • the Se raw material liquid is filled with powdered metal selenium (Se) as a Se source, powdered selenium oxide or an available inexpensive and safe organic selenium compound in a container substituted with an inert gas.
  • the same organic solvent (complex forming agent) as used for the preparation of the Zn raw material solution is added and heated. Note that the organic solvent is not limited to the organic solvents described above as long as the organic solvent forms a complex with Se ions.
  • the container containing the Se raw material mixture is heated in an oil bath or the like. The temperature heated in the oil bath is 20 ° C. to 350 ° C., and the holding time at the heated temperature is 5 minutes to 5 hours.
  • the Se source When the heating temperature is less than 20 ° C. or the holding time is less than 5 minutes, the Se source is not sufficiently dissolved in the organic solvent (complexing agent), and the Se source is not easily dissolved. On the other hand, if the heating temperature exceeds 350 ° C., the organic solvent (complexing agent) volatilizes preferentially, which hinders dissolution of the Se source. When the holding time exceeds 5 hours, the Se source has sufficiently reached dissolution equilibrium, and wasteful power consumption due to heating occurs. 1 to 10 mol of an organic solvent (complexing agent) is added to 1 mol of Se source. When the Se raw material is dissolved, the mixed solution becomes transparent.
  • preparation of Se raw material liquid is not limited to said preparation conditions, Conditions can be adjusted according to the combination with the solvent for complex formation to be used.
  • the first mixed liquid is a mixture of a Zn raw material liquid, a Te raw material liquid, and a Se raw material liquid in a container substituted with an inert gas so as to have a predetermined molar composition ratio. Prepared with stirring.
  • the second mixed liquid is a mixture of a capping agent and a diluent in a container, and after performing a degassing process of “120 ° C. ⁇ 30 minutes” in a vacuum while stirring, it is returned to atmospheric pressure with an inert gas, It is prepared by raising the temperature to 200 ° C. to 350 ° C. using a mantle heater or the like while ventilating an inert gas.
  • Examples of the capping agent include trioctylphosphine (TOP), oleic acid (OA), stearic acid, hexadecylamine (HDA), oleylamine (OLA), tributylphosphonic acid (TBPA), trioctylphosphine oxide (TOPO) and the like. It is done.
  • Examples of the diluent include trioctylphosphine (TOP), octadecene (ODE), oleylamine (OLA), hexadecylamine (HDA), and trioctylphosphine oxide (TOPO). Add 1-5 mol of diluent to 1 mol of capping agent.
  • the first mixed liquid room temperature
  • the injection is performed at a pushing speed of 1 to 20 mL / second using a syringe having an inner diameter of 10 mm.
  • the liquid mixture of Zn raw material liquid, Te raw material liquid, and Se raw material liquid is prepared.
  • a mixing method such as nozzle mixing or ejector mixing may be employed using an inert compressed gas depending on the scale of mixing.
  • the reason why the temperature of the second mixed solution is adjusted to 200 ° C. to 350 ° C. is that if it is less than 200 ° C., rapid nucleation does not occur and the particle size distribution becomes wide, and if it exceeds 350 ° C., This is because volatilization of the organic solvent occurs preferentially and hinders the nucleation of colloidal quantum dots.
  • the average particle size of the obtained colloidal quantum dots can be made constant.
  • the Se molar composition ratio x Se is fixed at around 0.30
  • the temperature of the second mixed solution, the temperature of the solution after the first mixed solution is injected into the second mixed solution, and the holding time are adjusted.
  • the average particle size of the colloidal quantum dots can be adjusted in the range of 3.0 to 7.0 nm.
  • the band gap of the colloidal quantum dots changes due to the quantum size effect, and green light emission (2.15 to 2.45 eV) is realized in the region where the average particle size is 3.0 to 7.0 nm.
  • the method for producing a colloidal quantum dot emitting red light according to the second embodiment is prepared by mixing a Zn raw material liquid and a Te raw material liquid or a S raw material liquid, a capping agent, and a diluent.
  • One of the two liquids is heated to a temperature of 200 ° C. to 350 ° C., and a predetermined amount of the other liquid is injected into the heated one liquid in a non-oxidizing atmosphere.
  • the liquid into which the other liquid was injected was adjusted to a temperature of 200 ° C. to 350 ° C. and held for 1 minute to 5 hours to produce a colloidal quantum dot containing no Cd whose visible fluorescence is red light. is there.
  • C) adjusting the temperature of the fourth mixture to 200 ° C. to 350 ° C., and non-oxidizing the inside of the sealed container A step of injecting a predetermined amount of the third mixed liquid into the fourth mixed liquid in a neutral atmosphere; and (d) the temperature of the liquid injected with the third mixed liquid into the fourth mixed liquid is 200 ° C. to Adjusting to 350 ° C. and holding for 1 minute to 5 hours.
  • the reason why the temperature of the fourth mixed liquid is adjusted to 200 ° C. to 350 ° C.
  • the adjustment temperature of the fourth mixed solution is preferably 260 ° C. to 320 ° C.
  • the temperature of the liquid obtained by injecting the third mixed liquid into the fourth mixed liquid is set to 200 ° C. to 350 ° C. If the temperature is lower than 200 ° C., the growth rate of the colloidal quantum dots becomes very slow.
  • a preferred holding temperature is 240 ° C to 310 ° C.
  • the retention time of the liquid obtained by injecting the third mixed liquid into the fourth mixed liquid is set to 1 minute to 5 hours because the raw material is hardly consumed and the yield is greatly reduced if it is less than 1 minute. Yes, if it exceeds 5 hours, the productivity is poor, and the cost of power consumed during heating during growth greatly increases.
  • the preferred holding time is 10 minutes to 3 hours.
  • the Zn raw material liquid is prepared in the same manner as the Zn raw material liquid used in the above-described method for producing Zn (Te 1-x , Se x ) colloidal quantum dots. 1 to 16 mol of an organic solvent (complexing agent) is added to 1 mol of Zn source. When the Zn raw material is dissolved, the mixed solution becomes transparent.
  • preparation of Zn raw material liquid is not limited to said preparation conditions, Conditions can be adjusted according to the combination with the solvent for complex formation to be used.
  • Te raw material liquid is prepared in the same manner as the Te raw material liquid used in the above-described method for producing Zn (Te 1-x , Se x ) colloidal quantum dots.
  • the S raw material liquid is filled with powdered sulfur (S) as an S source or an available inexpensive and safe organic sulfur compound in a container substituted with an inert gas. It is prepared by adding the same organic solvent (complexing agent) as used and heating. Note that the organic solvent is not limited to the organic solvents described above as long as the organic solvent forms a complex with S ions.
  • the container containing the mixed solution of the S raw material is heated with an oil bath or the like. The temperature heated in the oil bath is 20 ° C. to 350 ° C., and the holding time at the heated temperature is 5 minutes to 5 hours. When the heating temperature is less than 20 ° C.
  • the S source is not sufficiently dissolved in the organic solvent (complexing agent), and an undissolved portion of the S source is likely to be generated.
  • the heating temperature exceeds 350 ° C.
  • the volatilization of the organic solvent (complexing agent) occurs preferentially, which hinders dissolution of the S source.
  • the holding time exceeds 5 hours, the S source has sufficiently reached dissolution equilibrium, and wasteful power consumption due to heating occurs. 1 to 10 mol of an organic solvent (complexing agent) is added to 1 mol of the S source.
  • the mixed solution becomes transparent.
  • preparation of S raw material liquid is not limited to said preparation conditions, Conditions can be adjusted according to the combination with the solvent for complex formation to be used.
  • the third liquid mixture is prepared by mixing the Zn raw material liquid and the Te raw material liquid so as to have a predetermined molar composition ratio in a container substituted with an inert gas, and stirring the mixture while venting the inert gas at room temperature. Is done.
  • the fourth mixed liquid is a mixture of S raw material liquid, capping agent and diluent in a container, and after deaeration treatment at 120 ° C. for 30 minutes in vacuum with stirring, a large amount of inert gas is used.
  • the pressure is adjusted to 200 ° C. to 350 ° C. using a mantle heater or the like while returning to atmospheric pressure and passing an inert gas.
  • Examples of the capping agent include trioctylphosphine (TOP), oleic acid (OA), stearic acid, hexadecylamine (HDA), oleylamine (OLA), tributylphosphonic acid (TBPA), trioctylphosphine oxide (TOPO) and the like. It is done.
  • Examples of the diluent include trioctylphosphine (TOP), octadecene (ODE), oleylamine (OLA), hexadecylamine (HDA), and trioctylphosphine oxide (TOPO). Add 5-30 mol of capping agent and 1-30 mol of diluent to 1 mol of S source.
  • the 3rd liquid mixture (room temperature) is injected into the 4th liquid mixture at once using a syringe or the like, and colloidal quantum dots Generate nuclei.
  • the injection is performed at a pushing speed of 1 to 20 mL / second using a syringe having an inner diameter of 10 mm.
  • nuclei are formed over time, and the particle size distribution becomes wide. At high speeds above the upper limit, the injection operation becomes technically difficult.
  • a synthetic liquid is prepared by mixing the Zn raw material liquid, the Te raw material liquid, and the S raw material liquid.
  • a mixing method such as nozzle mixing or ejector mixing may be employed using an inert compressed gas depending on the scale of mixing.
  • the reason why the temperature of the fourth mixed liquid is adjusted to 200 ° C. to 350 ° C. is that if it is less than 200 ° C., rapid nucleation does not occur and the particle size distribution becomes wide, and if it exceeds 350 ° C., This is because volatilization of the organic solvent occurs preferentially and hinders the production of colloidal quantum dots.
  • the average particle diameter of the obtained colloidal quantum dot can be made constant.
  • the band gap of the colloidal quantum dots changes due to the quantum size effect, and red light emission (1.80 to 2.10 eV). ) Is realized.
  • the raw materials used in the examples and comparative examples of the present invention are as follows. ⁇ raw materials ⁇ The following reagents were prepared. All reagents were not purified and were used commercially. (1) Diethyl zinc (DEZ, ⁇ 52wt% Zn basis, Aldrich), (2) Selenium powder (Se, 100mesh, 99.99%, trace metal basis, Aldrich), (3) Tellurium powder (Te, 100mesh, 99.99% trace metal basis, Aldrich), (4) Tri-n-octylphosphine (TOP, ⁇ 96.0%, Wako Pure Chemical Industries), (5) oleylamine (OLA,> 98%, Aldrich), (6) Oleic acid (OA, 99%, Aldrich), (7) 1-octadecene (ODE,> 90%, Tokyo Kasei), (8) 1-dodecanethiol (DDT,> 95%, Tokyo Kasei), (9) Hexane (> 96%, Wako Pure Chemical) (
  • Example 1 [Synthesis of Zn (Te 1-x , Se x ) colloidal quantum dots]
  • a series of operations from the weighing of the reagent to the end of the synthesis were performed mainly in a glove box filled with nitrogen gas. Operation outside some glove boxes was performed in a sealed container filled with nitrogen gas so that the solution did not come into contact with the atmosphere.
  • Te powder 1.9142 g (15 mmol) and TOP: 50 mL were weighed into a three-necked flask and heated to 250 ° C. while bubbling argon gas, and stirred until the Te powder was completely dissolved and became a yellow transparent color. After dissolution, the mixture was allowed to cool to room temperature to obtain a Te raw material liquid. Further, Se powder: 1.1845 g (15 mmol) and TOP: 50 mL were weighed in a vial and put into an ultrasonic cleaner to completely dissolve Se powder to obtain a colorless and transparent Se raw material liquid.
  • Zn raw material liquid, Te raw material liquid, and Se raw material liquid can also be prepared separately
  • DEZ is in a liquid state, and here, TOP and DEZ are mixed and dissolved in Te raw material liquid and Se raw material liquid, It was set as the 1st liquid mixture.
  • the said 1st liquid mixture was rapidly inject
  • the colloidal quantum dots were grown at a temperature of 270 ° C. for 10 minutes, and then allowed to cool to room temperature.
  • the reaction solution was a clear solution without turbidity.
  • the temperature of the second liquid mixture is 290 ° C.
  • the growth temperature after the first liquid mixture is injected into the second liquid mixture is 270 ° C.
  • the growth time at that temperature is 10 minutes. This is a condition for adjusting the average particle diameter to 4.0 ⁇ 0.1 nm.
  • the particle size of the colloidal quantum dots can be adjusted. Table 2 below shows this condition.
  • Example 2 to 5 and Comparative Example 1 For Examples 2 to 5 and Comparative Example 1, the same Te raw material liquid, Se raw material liquid, TOP, DEZ and the like as in Example 1 were used. In Examples 2 to 5 and Comparative Example 1, these Te raw material liquid, Se raw material liquid, TOP, DEZ, and the like have a molar composition ratio x Se of colloidal quantum dots as shown in Table 2 above. And adjusting the particle size of the colloidal quantum dots by adjusting the temperature of the second mixed solution, the growth temperature after injecting the first mixed solution into the second mixed solution, and the growth time at that temperature. . Otherwise, in the same manner as in Example 1, Zn (Te 1-x , Se x ) / ZnS core-shell colloidal quantum dots were synthesized.
  • the Se raw material solution 1.5 mL was added to a 10 mL vial containing the Zn raw material solution, and after sufficient stirring, the mixture was immersed in an oil bath heated to 280 ° C. and held for 9 minutes while venting argon gas. Thereafter, the vial was taken out from the oil bath and allowed to cool to room temperature. The reaction solution was light yellow and transparent.
  • Example 2 shows the molar composition ratio x Se of the colloidal quantum dots of Comparative Example 2, the temperature of the second mixed liquid, the growth temperature after the first mixed liquid is injected into the second mixed liquid, and the growth at that temperature. Each time is shown.
  • the second mixed liquid which is the same mixed solution of OA and ODE as in Example 1, was heated to 310 ° C. while agitating and stirring argon gas. After confirming that the temperature of this 2nd liquid mixture was stabilized, the said 1st liquid mixture was rapidly inject
  • Example 7 to 12 For Examples 7 to 12, the same Te raw material liquid, Se raw material liquid, TOP, DEZ and the like as in Example 1 were used. In Examples 7 to 12, these Te raw material liquid, Se raw material liquid, TOP, DEZ, and the like were weighed so that the molar composition ratio of Se of colloidal quantum dots xSe as shown in Table 3 above. The particle size of the colloidal quantum dots was adjusted by adjusting the temperature of the second liquid mixture, the growth temperature after injecting the first liquid mixture into the second liquid mixture, and the growth time at that temperature. Otherwise, in the same manner as in Example 6, Zn (Te 1-x , Se x ) / ZnS core-shell colloidal quantum dots were synthesized.
  • tris (trimethylsilyl) phosphine (P (SiC 3 H 9 ) 3 ): 0.02 mmol was dissolved in ODE (C 18 H 36 ): 3 mL to prepare a P raw material solution.
  • the In raw material liquid was returned to atmospheric pressure with argon gas, and the temperature was raised to 300 ° C. while aerated and stirred with argon gas.
  • the P raw material solution weighed in a predetermined amount with a syringe was quickly injected into the heated In raw material solution, and then immediately cooled to room temperature to prepare an InP core colloidal quantum dot reaction solution.
  • the InP / ZnS core-shell colloidal quantum dot reaction liquid was cooled to room temperature, and isopropanol (C 3 H 8 O): 40 mL was added to the cooled liquid to aggregate the InP / ZnS core-shell colloidal quantum dots.
  • the precipitate recovered by centrifugation was redispersed with an appropriate amount of toluene (C 7 H 8 ), and a series of steps of aggregation with isopropanol, recovery by centrifugation, and redispersion with toluene were repeated several times.
  • the finally obtained precipitate by centrifugation was vacuum-dried at room temperature, and the remaining organic solvent was removed to obtain InP / ZnS core-shell colloidal quantum dots.
  • Zinc-sulfur solution: 2.5 mL, copper solution: 1.25 mL, and In solution: 1.25 mL were weighed and mixed, then heated to 200 ° C. while bubbling argon gas and maintained for 60 seconds.
  • a CuInS 2 —ZnS alloy core colloidal quantum dot reaction solution was prepared.
  • CuInS 2 —ZnS alloy core colloidal quantum dot 2.26 mg was taken out from 1.0 mL of the above CuInS 2 —ZnS alloy core colloidal quantum dot reaction solution.
  • this is used as a capping agent OA (C 18 H 34 O 2 ): 32 ⁇ L of zinc diethyldithiocarbamate concentration: 5.5 mM TOP and ODE mixed solution: Redispersed to 1.5 mL.
  • Se powder 94.8 mg (1.2 mmol) is weighed into a 12 mL screw cap bottle, TOP: 5.0 mL is added, and the powder is easily dissolved by stirring with a tube mixer and ultrasonic waves. A liquid was prepared. This Se raw material liquid was colorless and transparent.
  • the Cd raw material solution 2.0 mL and the Se raw material solution: 1.0 mL were collected and mixed in a 12 mL screw mouth bottle.
  • As a capping agent 150 ⁇ L of octylamine was added. After stirring well with a tube mixer, it was immersed in an oil bath at 280 ° C. and subjected to a heating reaction for a predetermined time until it grew to a particle size emitting green light.
  • Reaction solution About 3.0 mL was divided into test tubes, and 4-fold amount (12.0 mL) of butanol was added for dilution. Next, 2 times the amount of methanol (6.0 mL) was added to the diluted solution to aggregate the quantum dots. Centrifugation was carried out for 15 minutes to separate a colorless and transparent supernatant solution and a bright red precipitate, and the supernatant solution was removed.
  • Zn (st) 2 31.6 mg (0.05 mmol) was weighed into a 12 mL screw mouth bottle, and ODE: 2.0 mL was added. This solution was heated in an oil bath at 140 ° C. for about 10 minutes to melt the powder. When the screw cap bottle was pulled up and cooled to room temperature, the powder re-deposited but was used as it was. S used dodecanethiol as a solvent and S raw material.
  • Example 13 [Synthesis of Zn (Te 1-x , S x ) colloidal quantum dots]
  • a series of operations from the weighing of reagents to the end of synthesis were carried out in a glove box mainly filled with nitrogen gas, as in Example 1. I went there. The operation outside some glove boxes was performed in a sealed container filled with nitrogen gas in the same manner as in Example 1 so that the solution did not come into contact with the atmosphere.
  • Te raw material liquid Te powder: 114.8 mg (0.90 mmol) and TOP: 3.00 mL (6.72 mmol) were weighed into a 10 mL septum vial and heated to 200 ° C. while bubbling argon gas, and the Te powder was completely dissolved. The mixture was stirred until it became a yellow transparent color. After dissolution, the mixture was allowed to cool to room temperature to obtain a Te raw material liquid (0.3M).
  • Diethyl zinc (DEZ) as a raw material liquid 25 ⁇ L (0.25 mmol) was added, and the total volume was adjusted to 2 mL with TOP.
  • DEZ Diethyl zinc
  • the color of the solution changed from yellow transparent to colorless and transparent.
  • a mixed solution obtained by mixing the Zn raw material liquid and the Te raw material liquid was used as a third mixed liquid.
  • the reaction solution was a clear solution without turbidity.
  • the temperature of the fourth mixed solution is set to 300 ° C.
  • the growth temperature after the third mixed solution is injected into the fourth mixed solution is set to 290 ° C.
  • the growth time at that temperature is set to 15 minutes. This is a condition for adjusting the average particle diameter to 6.0 ⁇ 0.1 nm.
  • Example 14 to 17 and Comparative Example 6 For Examples 14 to 17 and Comparative Example 6, the same Te raw material liquid, S raw material liquid, TOP, DEZ and the like as in Example 13 were used. In Examples 14 to 17 and Comparative Example 6, these Te raw material liquid, S raw material liquid, TOP, DEZ, and the like have a molar composition ratio x S of S of colloidal quantum dots as shown in Table 4 above. And adjusting the temperature of the fourth mixed solution, the growth temperature after injecting the third mixed solution into the fourth mixed solution, and the growth time at that temperature to adjust the particle size of the colloidal quantum dots to 6. Adjusted to 0 ⁇ 0.1 nm. Otherwise, in the same manner as in Example 13, a Zn (Te 1-x , S x ) / ZnS core-shell colloidal quantum dot was synthesized.
  • the S powder was completely dissolved in an ultrasonic cleaner to prepare a colorless and transparent S raw material solution.
  • Example 19 to 24 In Examples 19 to 24, these Te raw material liquids, TOP, DEZ, and the like are weighed so that the molar composition ratio x S of S of colloidal quantum dots is as shown in Table 5 above, and the S raw material Is measured so as to have a molar composition ratio x S of S , and the temperature of the fourth mixed solution prepared by adding OA and ODE thereto, the growth temperature after injecting the third mixed solution into the fourth mixed solution, The particle size of the colloidal quantum dots was adjusted by adjusting the growth time at that temperature. Other than that was carried out similarly to Example 18, and the Zn (Te1 -x , Sx ) / ZnS core-shell colloidal quantum dot was synthesize
  • a CuInS 2 —ZnS alloy core colloidal quantum dot reaction liquid was prepared in the same manner as in Comparative Example 4 except that this was maintained for 3 minutes, and then a CuInS 2 —ZnS alloy / ZnS core shell colloidal quantum dot was obtained.
  • the average particle diameter of colloidal quantum dots was calculated by using a powder X-ray diffraction measurement method (XRD: X-ray diffraction). Using an X-ray diffractometer (RINT2500, Rigaku) equipped with a rotating cathode X-ray generation source and a curved monochromator, Cu-K ⁇ rays generated at an X-ray acceleration voltage of 40 kV and current of 375 mA (15 kW) It was measured by irradiating colloidal quantum dots on a reflective quartz plate.
  • XRD powder X-ray diffraction measurement method
  • the average particle diameter d XRD was calculated from the full width at half maximum (FWHM) of the diffraction pattern obtained by XRD using the Scherrer equation shown in the following equation (8).
  • B is the half width [rad] of the diffraction pattern
  • is the diffraction angle [rad].
  • 0.9 was used for the Scherrer constant.
  • the average particle diameter d XRD was obtained from the linear approximation by the least square method of the cos ⁇ and 0.9 ⁇ / B plots of the diffraction patterns on the diffraction planes of the (111) plane, the (220) plane, and the (311) plane.
  • d XRD 0.9 ⁇ / Bcos ⁇ (8)
  • the molar feed ratio (x Se ) of Se was adjusted within the range of 0 ⁇ x Se ⁇ 1, Zn
  • the emission energy of the (Te 1-x , Se x ) colloidal quantum dots could be controlled to a desired value in the green region: 2.15 to 2.45 eV.
  • the Se molar charge ratio (x Se ) is in the range of 0.25 to 0.40
  • the Zn (Te 1-x , Se x ) colloidal quantum dot exhibits a minimum emission energy of about 2.3 eV. It was.
  • Table 3 above shows the synthesis conditions of colloidal quantum dots when the average particle size is adjusted by setting the Se molar charge ratio (x Se ) of Zn (Te 1-x , Se x ) to be constant at 0.30. .
  • the Se feed ratio (x Se ) is adjusted to 0.30
  • the temperature of the second mixed solution which is a mixed solution of OA and ODE
  • the first mixing which is a raw material solution
  • the average particle size is adjusted to 3.5 to 6.3 nm.
  • the emission energy of the Te 1-x , Se x ) colloidal quantum dots could be adjusted to the green region: 2.15 to 2.45 eV.
  • the green wavelength required for the color gamut expansion is about 530 nm (2.33 to 2.34 eV).
  • “Compliance” item “Yes” is indicated when conforming, and “None” when not conforming.
  • the colloidal quantum dots of Example 7 were made of InP / ZnS (Comparative Example 3), which is a representative example of colloidal quantum dots that do not contain Cd whose visible fluorescence is green, and ternary compound semiconductors ( When compared with Comparative Example 4), first, the average particle size can be increased, so the emission wavelength controllability is greatly improved, and second, the full width at half maximum (FWHM) of the emission spectrum is sharp. Therefore, the chromaticity better than that of the existing colloidal quantum dots not containing Cd can be realized, and the gamut expansion is expected. Third, the Stokes shift is greatly reduced, and the energy loss is greatly reduced.
  • FWHM full width at half maximum
  • the molar charge ratio (x S ) of S is adjusted in the range of 0 ⁇ x S ⁇ 1, Zn (Te).
  • the emission energy of the 1-x , S x ) colloidal quantum dots could be controlled to a desired value within the red region: 1.80 to 2.10 eV.
  • the Zn (Te 1-x , S x ) colloidal quantum dot exhibits a minimum emission energy of 1.96 eV. It was.
  • Table 5 shows the synthesis conditions for colloidal quantum dots when the average particle size is adjusted with the S molar charge ratio (x S ) of Zn (Te 1-x , S x ) kept constant at 0.35. .
  • the colloidal quantum dots emitting visible fluorescence of the present invention can be used in the fields of displays, illumination, medical images, biosensors, LEDs, and lasers.

Abstract

A Cd-free colloidal quantum dot which is a core particle that is coated with a shell made from a compound semiconductor and serves as a core for the shell, and which can emit visible fluorescence upon the irradiation with excited light having a wavelength falling within a near ultraviolet region or a blue region. The colloidal quantum dot is represented by the chemical formula: A(B11-x,B2x) (wherein 0 < x < 1), has Zn as a Group-II element in the A site, has Te as a Group-VI element in the B1 site and has Se or S as a Group-VI element in the B2 site, and has an average particle diameter of 1 to 10 nm inclusive.

Description

可視蛍光を発するCdを含まないコロイダル量子ドット及びその製造方法Colloidal quantum dots that do not contain Cd and emit visible fluorescence, and methods for producing the same
 本発明は、光ルミネセンス材料の一種の可視蛍光を発するコロイダル量子ドット及びその製造方法に関する。更に詳しくは、CdSe系のコロイダル量子ドットと同等の発光波長制御性(粒径制御性)、発光スペクトルの半値全幅(FWHM)及びストークスシフトを有する可視蛍光を発するCdを含まないコロイダル量子ドット及びその製造方法に関する。特に、CdSe系のコロイダル量子ドットと同等の緑色又は赤色の可視蛍光を発するCdを含まないコロイダル量子ドット及びその製造方法に関するものである。なお、本国際出願は、2017年1月18日に出願した日本国特許出願第6353号(特願2017-6353)及び2017年12月26日に出願した日本国特許出願第248935号(特願2017-248935)に基づく優先権を主張するものであり、特願2017-6353及び特願2017-248935の全内容を本国際出願に援用する。 The present invention relates to a colloidal quantum dot that emits visible fluorescence, which is a kind of photoluminescent material, and a method for producing the same. More specifically, a colloidal quantum dot that does not contain Cd and emits visible fluorescence having emission wavelength controllability (particle size controllability), full width at half maximum (FWHM) of emission spectrum, and Stokes shift equivalent to that of a CdSe-based colloidal quantum dot, and its It relates to a manufacturing method. In particular, the present invention relates to a colloidal quantum dot not containing Cd that emits green or red visible fluorescence equivalent to a CdSe-based colloidal quantum dot and a method for producing the same. This international application includes Japanese Patent Application No. 6353 (Japanese Patent Application No. 2017-6353) filed on January 18, 2017 and Japanese Patent Application No. 248935 (Japanese Patent Application No. 248935) filed on December 26, 2017. No. 2017-248935), and the entire contents of Japanese Patent Application No. 2017-6353 and Japanese Patent Application No. 2017-248935 are incorporated herein by reference.
 近年、液晶ディスプレイ(LCD)では、画素の高精細化と広色域化の要望が高まっている。広色域化の実現には、バックライトに使われる赤色(R)・緑色(G)・青色(B)の各色の色純度を高め、良好な色度に設定する必要がある。励起光に用いる青色LEDは、シャープな発光スペクトルを有し、高い色純度が得られており、良好な色度に設定できる。しかし、青色LED光で励起され、緑色光又は赤色光を発するバルク蛍光体で、変換効率に優れ、高い色純度を有し、良好な色度に設定できる材料が今のところ存在しないため、緑色領域と赤色領域での色域拡大が難しい。現状は、光学フィルターを用いて、蛍光体の発光から必要な波長の光を取り出し、色純度を高め、良好な色度を実現する対策が取られているが、光学フィルターによって光透過率が低下するため、励起エネルギーを上げなければならず、その結果、効率が著しく低下してしまう。光学フィルターを用いずに、高いエネルギー変換効率で広色域化するための方法が必要である。 In recent years, there has been an increasing demand for liquid crystal displays (LCDs) with higher pixel definition and wider color gamut. In order to realize a wide color gamut, it is necessary to increase the color purity of each of the red (R), green (G), and blue (B) colors used in the backlight and to set a good chromaticity. The blue LED used for the excitation light has a sharp emission spectrum, has high color purity, and can be set to good chromaticity. However, there is currently no bulk phosphor that is excited by blue LED light and emits green light or red light, and has excellent conversion efficiency, high color purity, and good chromaticity. It is difficult to expand the color gamut in the red and red areas. At present, the optical filter is used to extract the light of the necessary wavelength from the light emission of the phosphor, to improve the color purity, and to achieve good chromaticity, but the optical filter reduces the light transmittance Therefore, the excitation energy must be increased, resulting in a significant reduction in efficiency. There is a need for a method for widening the color gamut with high energy conversion efficiency without using an optical filter.
 この問題の解決法の一つとして、コロイダル量子ドットのように、シャープな発光スペクトルを有し、量子サイズ効果を利用して粒径制御により自在に発光波長を制御できる材料を用いると、所望の色度を実現できる。一部のLCDにおいては、バックライトに青色LEDと、それにより励起されて発光するコロイダル量子ドット蛍光体を用いた製品が市販された例がある。 One solution to this problem is to use a material that has a sharp emission spectrum, such as a colloidal quantum dot, and that can freely control the emission wavelength by particle size control using the quantum size effect. Can achieve chromaticity. In some LCDs, there are examples in which a product using a blue LED as a backlight and a colloidal quantum dot phosphor that emits light when excited is commercially available.
 従来、コロイダル量子ドット材料としてCdSe/ZnSが用いられているが、その毒性が問題となっている。そのため、Cdを含まないコロイダル量子ドット材料の研究開発が広く行われており、近年、特に活発化している。例えば、緑色光又は赤色光を発するCdを含まないコロイダル量子ドットが非特許文献1及び非特許文献2に開示されている。 Conventionally, CdSe / ZnS has been used as a colloidal quantum dot material, but its toxicity is a problem. Therefore, research and development of colloidal quantum dot materials that do not contain Cd have been widely carried out, and in recent years have become particularly active. For example, Non-Patent Document 1 and Non-Patent Document 2 disclose colloidal quantum dots that do not contain Cd that emit green light or red light.
 非特許文献1には、酢酸亜鉛とドデカンチオールをInPコア溶液に段階的に添加することにより、高い発光性を有する安定なInP/ZnSコアシェルコロイダル量子ドットが開発されたこと、及び酢酸亜鉛が表面エッチングとZnSシェル形成に重要な役割を果たすことが報告されている。非特許文献2には、CuInS2-ZnS合金/ZnSコアシェルコロイダル量子ドット(三元系化合物半導体)の光ルミネセンス(PL)の粒径依存に関する起源と、ZnSの薄いコーティングがPL特性に与える効果が報告されている。 Non-Patent Document 1 discloses that a stable InP / ZnS core-shell colloidal quantum dot having high luminescence was developed by adding zinc acetate and dodecanethiol to an InP core solution step by step, and that zinc acetate is on the surface. It has been reported to play an important role in etching and ZnS shell formation. Non-patent document 2 describes the origin of the photoluminescence (PL) particle size dependence of CuInS 2 —ZnS alloy / ZnS core-shell colloidal quantum dots (ternary compound semiconductors) and the effect of thin coating of ZnS on PL characteristics. Has been reported.
 非特許文献1に示されるInP系のコロイダル量子ドットには、第一に、特に緑色より短波長の領域において僅かな粒径の違いによって発光波長が大きく変化するので、粒径を精密に制御できなければ、良好な色度のコロイダル量子ドットにはならず、第二に、大きなストークスシフトを有するので、エネルギーロスが大きく、第三に、合成原料となるリン化物は非常に反応性が高く危険である等の課題がある。 First, the InP colloidal quantum dots shown in Non-Patent Document 1 have a light emission wavelength that varies greatly due to a slight difference in particle size, particularly in the region shorter than green, so that the particle size can be precisely controlled. Otherwise, it will not be a colloidal quantum dot with good chromaticity, and secondly, it has a large Stokes shift, so there is a large energy loss, and thirdly, the phosphide used as a synthetic raw material is very reactive and dangerous. There is a problem such as.
 また、非特許文献2に示されるCuInS2に代表される三元系化合物半導体のコロイダル量子ドットには、第一に、複数の化合物が存在する固溶域が広く、化学式組成通りの化合物を合成する技術の難易度が非常に高く、電子-正孔の再結合は欠陥準位を介したものになるため、第二に、発光スペクトルがブロードで色純度が劣り、第三に、大きなストークスシフトを有し、エネルギーロスが大きく、緑色発光の実現が困難である等の課題がある。 In addition, the ternary compound semiconductor colloidal quantum dots represented by CuInS 2 shown in Non-Patent Document 2 have a wide solid solution region where a plurality of compounds exist, and synthesize compounds according to the chemical composition. The technology is extremely difficult, and electron-hole recombination is via a defect level. Second, the emission spectrum is broad and the color purity is inferior. Third, a large Stokes shift There is a problem that energy loss is large and green light emission is difficult to realize.
 本発明の目的は、上記課題を解決した、CdSe系のコロイダル量子ドットと同等の発光波長制御性(粒径制御性)、発光スペクトルの半値全幅(FWHM)及びストークスシフトを有する可視蛍光を発するCdを含まないコロイダル量子ドット及びその製造方法を提供することにある。特に、CdSe系のコロイダル量子ドットと同等の緑色又は赤色の可視蛍光を発するCdを含まないコロイダル量子ドット及びその製造方法を提供することにある。 The object of the present invention is to solve the above-mentioned problems and to emit Cd that emits visible fluorescence having emission wavelength controllability (particle size controllability), emission spectrum full width at half maximum (FWHM), and Stokes shift equivalent to those of CdSe-based colloidal quantum dots. It is providing the colloidal quantum dot which does not contain and its manufacturing method. In particular, an object of the present invention is to provide a colloidal quantum dot not containing Cd that emits green or red visible fluorescence equivalent to that of a CdSe-based colloidal quantum dot and a method for producing the same.
 本発明者らは、Cdを含まないII-VI化合物半導体としてZnS、ZnSe、ZnTeに着目した。これらのバルク体におけるバンドギャップはそれぞれ3.83eV、2.72eV、2.25eV(いずれも閃亜鉛鉱型結晶の場合)であり、ZnS、ZnSeのコロイダル量子ドットでは、緑色又は赤色領域の発光を可能にするバンドギャップを実現することはできない一方、ZnTeのコロイダル量子ドットでは、量子サイズ効果を利用して青緑色領域での発光が可能であるが、緑色領域において粒径を大きく変化させても発光波長の変化は小さいままにとどまり、緑色領域における発光波長の制御性が悪い。 The present inventors paid attention to ZnS, ZnSe, and ZnTe as II-VI compound semiconductors not containing Cd. The band gaps in these bulk bodies are 3.83 eV, 2.72 eV, and 2.25 eV, respectively (both of zinc blende type crystals), and the colloidal quantum dots of ZnS and ZnSe emit light in the green or red region. While it is not possible to realize a possible band gap, ZnTe colloidal quantum dots can emit light in the blue-green region using the quantum size effect, but even if the particle size is greatly changed in the green region The change in the emission wavelength remains small, and the controllability of the emission wavelength in the green region is poor.
 バンドギャップを制御する方法として化合物の混晶化が挙げられ、化合物の混晶化により、バンドギャップが組成に関して負に湾曲するバンドギャップボーイングが生じることがバルク体の結晶において知られている。特に、Zn(Te,S)、Zn(Te,Se)、Zn(Te,O)のようにアニオンを混晶化した場合、巨大なバンドギャップボーイングが生じ、混晶化していない単一化合物のバンドギャップよりも小さくなる。例えば、非特許文献3には、MOCVDによりGaAs基板上に成膜したZn(Te1-x,Sex)膜においてバンドギャップボーイングが確認されており、Seのモル組成比xSe=0.35でバンドギャップが最大で2.03eVまで小さくなることが報告されている。本発明者らは、コロイダル量子ドットにおいても、このようなバンドギャップボーイングが実現すると考え、量子サイズ効果とバンドギャップボーイングとを組み合わせることで、緑色又は赤色領域におけるバンドギャップの制御を実現し、本発明に到達した。 As a method for controlling the band gap, compound crystallization can be mentioned. It is known in the bulk crystal that the compound crystallization causes band gap bowing in which the band gap is negatively curved with respect to the composition. In particular, when anions are mixed into crystals such as Zn (Te, S), Zn (Te, Se), Zn (Te, O), a huge band gap bowing occurs, and a single compound that is not mixed is formed. It becomes smaller than the band gap. For example, in Non-Patent Document 3, band gap bowing is confirmed in a Zn (Te 1-x , Se x ) film formed on a GaAs substrate by MOCVD, and the molar composition ratio of Se x Se = 0.35. It is reported that the band gap is as small as 2.03 eV. The present inventors consider that such band gap bowing is realized also in colloidal quantum dots, and by combining the quantum size effect and band gap bowing, the band gap in the green or red region is realized, The invention has been reached.
 本発明の第1の観点は、化合物半導体からなるシェルで被覆され、前記シェルのコアをなすコア粒子であって、近紫外領域又は青色領域の波長を有する励起光を照射したときに可視蛍光を発するCdを含まないコロイダル量子ドットである。このコロイダル量子ドットは、化学式A(B11-x,B2x)(ただし、0<x<1)で表され、AサイトにII族元素としてのZnを、B1サイトにVI族元素としてのTeを、B2サイトにVI族元素としてのSe又はSをそれぞれ有し、平均粒径が1nm以上10nm以下であることを特徴とする。 A first aspect of the present invention is a core particle that is coated with a shell made of a compound semiconductor and forms the core of the shell, and emits visible fluorescence when irradiated with excitation light having a wavelength in the near ultraviolet region or blue region. It is a colloidal quantum dot that does not contain emitted Cd. This colloidal quantum dot is represented by the chemical formula A (B1 1-x , B2 x ) (where 0 <x <1), Zn as a group II element at the A site, and Te as a group VI element at the B1 site. The B2 site has Se or S as a group VI element, and has an average particle size of 1 nm or more and 10 nm or less.
 本発明の第2の観点は、第1の観点に基づく発明であって、前記B2サイトがSeであって、可視蛍光が緑色光であるCdを含まないコロイダル量子ドットである。 The second aspect of the present invention is a colloidal quantum dot that is based on the first aspect and does not include Cd in which the B2 site is Se and the visible fluorescence is green light.
 本発明の第3の観点は、第1の観点に基づく発明であって、前記B2サイトがSであって、可視蛍光が赤色光であるCdを含まないコロイダル量子ドットである。 A third aspect of the present invention is a colloidal quantum dot which is an invention based on the first aspect, wherein the B2 site is S and the visible fluorescence is red light and does not contain Cd.
 本発明の第4の観点は、Zn原料液とTe原料液とSe原料液とを混合して調製された第1混合液又はキャッピング剤と希釈剤とを混合して調製された第2混合液のいずれか一方の液を200℃~350℃の温度に加熱し、前記加熱した一方の液に前記いずれか他方の液を非酸化性雰囲気下で所定量注入し、前記一方の液に前記他方の液を注入した液を200℃~350℃の温度に調整し、1分~5時間保持することにより、可視蛍光が緑色光であるCdを含まないコロイダル量子ドットを製造する方法である。 A fourth aspect of the present invention is a first mixed liquid prepared by mixing a Zn raw material liquid, a Te raw material liquid, and a Se raw material liquid, or a second mixed liquid prepared by mixing a capping agent and a diluent. Any one of the above liquids is heated to a temperature of 200 ° C. to 350 ° C., a predetermined amount of the other liquid is injected into the heated one liquid in a non-oxidizing atmosphere, and the other liquid is injected into the one liquid. This is a method for producing a colloidal quantum dot that does not contain Cd whose visible fluorescence is green light by adjusting the temperature of the liquid injected to 200 ° C. to 350 ° C. and holding it for 1 minute to 5 hours.
 本発明の第5の観点は、Zn原料液とTe原料液とを混合して調製された第3混合液又はS原料液とキャッピング剤と希釈剤とを混合して調製された第4混合液のいずれか一方の液を200℃~350℃の温度に加熱し、前記加熱した一方の液に前記いずれか他方の液を非酸化性雰囲気下で所定量注入し、前記一方の液に前記他方の液を注入した液を200℃~350℃の温度に調整し、1分~5時間保持することにより、可視蛍光が赤色光であるCdを含まないコロイダル量子ドットを製造する方法である。 A fifth aspect of the present invention is a third mixed solution prepared by mixing a Zn raw material solution and a Te raw material solution or a fourth mixed solution prepared by mixing an S raw material solution, a capping agent, and a diluent. Any one of the above liquids is heated to a temperature of 200 ° C. to 350 ° C., a predetermined amount of the other liquid is injected into the heated one liquid in a non-oxidizing atmosphere, and the other liquid is injected into the one liquid. This is a method for producing a colloidal quantum dot that does not contain Cd whose visible fluorescence is red light by adjusting the temperature of the solution injected at 200 ° C. to 350 ° C. and holding it for 1 minute to 5 hours.
 本発明の第1の観点の可視蛍光を発するCdを含まないコロイダル量子ドットでは、近紫外領域又は青色領域の波長を有する励起光を照射したときに、非特許文献1に示されるInP系のコロイダル量子ドット及び非特許文献2に示される三元系化合物半導体のコロイダル量子ドットの特性を上回って、CdSe系のコロイダル量子ドットと同等の特性を実現できる。具体的には、特に短波長領域において粒径の違いが発光波長の変化に与える影響が小さくなり、発光波長の精密な制御が可能となり、良好な色度が実現する。また、発光スペクトルの半値全幅(FWHM)が狭くなり、色純度が向上する。また、ストークスシフトが小さくなり、エネルギーロスが低減する。全ての項目でCdSe系のコロイダル量子ドットと同等レベルまで特性が改善される。 In the colloidal quantum dot that does not contain Cd and emits visible fluorescence according to the first aspect of the present invention, when irradiated with excitation light having a wavelength in the near-ultraviolet region or blue region, the InP-based colloidal shown in Non-Patent Document 1 The characteristics equivalent to those of the CdSe-based colloidal quantum dots can be realized, exceeding the characteristics of the quantum dots and the colloidal quantum dots of the ternary compound semiconductor shown in Non-Patent Document 2. Specifically, particularly in the short wavelength region, the influence of the difference in particle size on the change in the emission wavelength becomes small, the emission wavelength can be precisely controlled, and good chromaticity is realized. In addition, the full width at half maximum (FWHM) of the emission spectrum is narrowed, and the color purity is improved. In addition, the Stokes shift is reduced and energy loss is reduced. In all items, the characteristics are improved to the same level as the CdSe colloidal quantum dots.
 本発明の第2の観点の可視蛍光を発するCdを含まないコロイダル量子ドットでは、B2サイトをSeにして、Zn(Te1-x,Sex)コロイダル量子ドットにすることにより、可視蛍光を緑色光にすることができる。 In the colloidal quantum dot that does not contain Cd and emits visible fluorescence according to the second aspect of the present invention, the B2 site is changed to Se to form a Zn (Te 1-x , Se x ) colloidal quantum dot, whereby the visible fluorescence is changed to green. Can be light.
 本発明の第3の観点の可視蛍光を発するCdを含まないコロイダル量子ドットでは、B2サイトをSにして、Zn(Te1-x,Sx)コロイダル量子ドットにすることにより、可視蛍光を赤色光にすることができる。 In the colloidal quantum dot that does not contain Cd and emits visible fluorescence according to the third aspect of the present invention, the visible fluorescence is changed to red by changing the B2 site to S and forming a Zn (Te 1-x , S x ) colloidal quantum dot. Can be light.
 本発明の第4の観点の製造方法では、Zn、Te及びSeの各原料液を混合した第1混合液と、キャッピング剤と希釈剤とを混合した第2混合液とを混合して、全元素(Zn、Te、Se)を一括調製するため、コロイダル量子ドットのモル組成比をモル仕込比で簡便に制御できる。また温度の高い一方の液に温度の低い他方の液を注入するため、注入後の温度を大きく変化(低下)させることができ、核生成と成長の分離性が向上し、均一性の高いコロイダル量子ドットが得られ、更に、成長した核を一定温度に保持するため、粒径を時間で容易に制御でき、結果として、可視蛍光が緑色光であるCdを含まないコロイダル量子ドットが得られる。 In the manufacturing method according to the fourth aspect of the present invention, the first mixed liquid obtained by mixing the raw material liquids of Zn, Te, and Se and the second mixed liquid obtained by mixing the capping agent and the diluent are mixed together. Since the elements (Zn, Te, Se) are collectively prepared, the molar composition ratio of the colloidal quantum dots can be easily controlled by the molar charge ratio. In addition, since the lower temperature liquid is injected into one higher temperature liquid, the temperature after injection can be greatly changed (decreased), the separation between nucleation and growth is improved, and the colloidal is highly uniform. Since quantum dots are obtained and the grown nuclei are kept at a constant temperature, the particle size can be easily controlled with time, and as a result, colloidal quantum dots containing no Cd whose visible fluorescence is green light are obtained.
 本発明の第5の観点の製造方法では、Zn及びTeの各原料液を混合した第3混合液と、S原料液とキャッピング剤と希釈剤とを混合した第4混合液と用いて、温度の高い一方の液に温度の低い他方の液を注入するため、注入後の温度を大きく変化(低下)させることができ、核生成と成長の分離性が向上し、均一性の高いコロイダル量子ドットが得られ、更に、成長した核を一定温度に保持するため、粒径を時間で容易に制御でき、結果として、可視蛍光が赤色光であるCdを含まないコロイダル量子ドットが得られる。 In the manufacturing method according to the fifth aspect of the present invention, the third mixed solution obtained by mixing the respective raw material solutions of Zn and Te, and the fourth mixed solution obtained by mixing the S raw material solution, the capping agent, and the diluent are used. Since the lower temperature of the liquid is injected into the higher temperature of the liquid, the post-injection temperature can be greatly changed (decreased), the separation between nucleation and growth is improved, and colloidal quantum dots with high uniformity Furthermore, since the grown nuclei are kept at a constant temperature, the particle size can be easily controlled by time, and as a result, a colloidal quantum dot containing no Cd whose visible fluorescence is red light is obtained.
粒径が2~10nmのZn(Te1-x,Sex)コロイダル量子ドットにおけるSeのモル組成比xSeに対するバンドギャップのシミュレーション結果を示す図である。FIG. 4 is a diagram showing a simulation result of a band gap with respect to a Se molar composition ratio x Se in a Zn (Te 1-x , Se x ) colloidal quantum dot having a particle diameter of 2 to 10 nm. Seのモル組成比xSeが0.35のときのZn(Te1-x,Sex)コロイダル量子ドットにおける粒径に対するバンドギャップのシミュレーション結果を示す図である。Molar ratio x Se of Se is a diagram showing a simulation of the band gap results for the particle size in the Zn (Te 1-x, Se x) colloidal quantum dot when the 0.35. 粒径が2~10nmのZn(Te1-x,Sx)コロイダル量子ドットにおけるSのモル組成比xSに対するバンドギャップのシミュレーション結果を示す図である。FIG. 4 is a diagram showing a simulation result of a band gap with respect to a molar composition ratio x S of S in a Zn (Te 1-x , S x ) colloidal quantum dot having a particle diameter of 2 to 10 nm. Sのモル組成比xSが0.35のときのZn(Te1-x,Sx)コロイダル量子ドットにおける粒径に対するバンドギャップのシミュレーション結果を示す図である。It is a figure which shows the simulation result of the band gap with respect to the particle size in Zn (Te1 -x , Sx ) colloidal quantum dot when the molar composition ratio xS of S is 0.35.
 次に本発明を実施するための形態を説明する。 Next, a mode for carrying out the present invention will be described.
[有効質量近似計算を用いた材料設計]
 非特許文献4及び5には、コロイダル量子ドットの光学ギャップの粒径依存性を理論的に予測する計算が報告されている。その中でも、シンプルな表記によって他の手法と同様の結果が得られる有効質量近似計算が便利である。ポテンシャル:V(r)中にある粒子(質量:m)に対するシュレディンガー方程式は次の式(1)で表わされる。
[Material design using effective mass approximation]
Non-Patent Documents 4 and 5 report calculations for theoretically predicting the particle size dependence of the optical gap of colloidal quantum dots. Among them, effective mass approximation calculation that can obtain the same result as other methods by simple notation is convenient. The Schrödinger equation for particles (mass: m) in potential: V (r) is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここでは、有限深さの井戸型ポテンシャルにおいて有効質量近似を仮定したモデルによって粒径と光学ギャップの関係式を導出する。閉じ込めポテンシャルは、有限の深さで中心対称V(r)として、次の式(2)のように表わされる。ただし、球状のコロイダル量子ドットの半径をr0としている。 Here, a relational expression between the particle size and the optical gap is derived by a model assuming an effective mass approximation in a well-type potential of a finite depth. The confinement potential is expressed as the following equation (2) as a central symmetry V (r) at a finite depth. However, the radius of the spherical colloidal quantum dot is r 0 .
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
  V0は次の式(3)のように定義する。 V 0 is defined as the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
ここで、ΔEHOMO-LUMOは、コロイダル量子ドットの表層にキャッピング剤として配位している界面活性剤の最高被占軌道(HOMO:Highest Occupied Molecular Orbital)と最低空軌道(LUMO:Lowest Unoccupied Molecular Orbital)のエネルギー差である。界面活性剤として用いたオレイン酸のΔEHOMO-LUMOは光吸収スペクトル測定より求めた値:4.35eVとしている。その他、ZnTe、ZnSe、ZnSのバルク体のバンドギャップ:Egや電子・正孔の有効質量:me */m0、mh */m0は次の表1に示す値を用いている。 Here, ΔE HOMO-LUMO is the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the surfactant coordinated as a capping agent on the surface of the colloidal quantum dot. ) Energy difference. ΔE HOMO-LUMO of oleic acid used as the surfactant is a value obtained by measuring the light absorption spectrum: 4.35 eV. Other, ZnTe, ZnSe, the band gap of the bulk of the ZnS: E g and electron-hole effective mass: m e * / m 0, m h * / m 0 is used the values shown in the following Table 1 .
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上より、コロイダル量子ドットの粒径がr0の時のバンドギャップ:Eが、ZnTe、ZnSe、ZnSのバルク体のバンドギャップ:Egと電子・正孔の有効質量:me */m0、mh */m0を用いて求められる。
 混晶系のバルク体におけるバンドギャップは、ボーイングパラメーター(b)を用いて表された次の式(4)及び(5)を用いて計算する。
From the above, when the colloidal quantum dot particle size is r 0 , the band gap: E is the band gap of the bulk body of ZnTe, ZnSe, ZnS: E g and the effective mass of electrons / holes: me * / m 0 , M h * / m 0 .
The band gap in the mixed crystal bulk body is calculated using the following equations (4) and (5) expressed using the bowing parameter (b).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、電子・正孔の有効質量:me */m0、mh */m0の加成性を仮定して、コロイダル量子ドットのバンドギャップと粒径・モル組成比の関係を計算している。例えば、Zn(Te1-x,Sex)の電子の有効質量の加成性は次の式(6)のように表わされる。 Here, the electron-hole effective mass: m e * / m 0, m h * / the additive property assuming the m 0, calculating the relationship between the band gap and the particle size-molar ratio of the colloidal quantum dots is doing. For example, the additivity of the effective mass of electrons of Zn (Te 1-x , Se x ) is expressed by the following formula (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 上記式(1)~(6)に基づいて、粒径が2~10nmのZn(Te1-x,Sex)コロイダル量子ドットにおけるSeのモル組成比xSeに対するバンドギャップのシミュレーション結果を図1に示す。Seのモル組成比xSeと粒径を適切に制御することで、光学ギャップ:2.1~3.4eVの範囲内の、所望のエネルギー値、言い換えると、所望の発光色を実現できる。また、Seのモル組成比xSeが0.35のときのZn(Te1-x,Sex)コロイダル量子ドットにおける粒径に対するバンドギャップのシミュレーション結果を図2に示す。帯の部分が緑色発光領域を示している。一般的に100meVであるストークスシフトを考慮して、Seのモル組成比xSeと粒径を調整することで、Cdを含まないZn(Te1-x,Sex)コロイダル量子ドットにて緑色発光が実現できる。また、粒径が2~10nmのZn(Te1-x,Sx)コロイダル量子ドットにおけるSのモル組成比xSに対するバンドギャップのシミュレーション結果を図3に示す。Sのモル組成比xSと粒径を適切に制御することで、光学ギャップ:1.9~4.0eVの範囲内の、所望のエネルギー値、言い換えると、所望の発光色を実現できる。更に、Sのモル組成比xSが0.35のときのZn(Te1-x,Sx)コロイダル量子ドットにおける粒径に対するバンドギャップのシミュレーション結果を図4に示す。帯の部分が赤色発光領域を示している。一般的に100meVであるストークスシフトを考慮して、Sのモル組成比xSと粒径を調整することで、Cdを含まないZn(Te1-x,Sx)コロイダル量子ドットにて赤色発光が実現できる。 Based on the above formulas (1) to (6), the simulation results of the band gap with respect to the molar composition ratio x Se of Se in Zn (Te 1-x , Se x ) colloidal quantum dots having a particle size of 2 to 10 nm are shown in FIG. Shown in By appropriately controlling the Se molar composition ratio x Se and the particle size, it is possible to realize a desired energy value, in other words, a desired emission color, within the optical gap range of 2.1 to 3.4 eV. FIG. 2 shows a simulation result of the band gap with respect to the particle diameter in the Zn (Te 1-x , Se x ) colloidal quantum dot when the Se molar composition ratio x Se is 0.35. The band portion indicates the green light emitting region. Considering the Stokes shift, which is typically 100 meV, by adjusting the Se molar composition ratio x Se and the particle size, green light is emitted from Zn (Te 1-x , Se x ) colloidal quantum dots that do not contain Cd. Can be realized. FIG. 3 shows the simulation results of the band gap with respect to the molar composition ratio x S of S in Zn (Te 1-x , S x ) colloidal quantum dots having a particle diameter of 2 to 10 nm. By appropriately controlling the molar composition ratio x S of S and the particle diameter, a desired energy value in the range of 1.9 to 4.0 eV, in other words, a desired emission color can be realized. Furthermore, FIG. 4 shows a simulation result of the band gap with respect to the particle diameter in a Zn (Te 1-x , S x ) colloidal quantum dot when the molar composition ratio x S of S is 0.35. A band portion indicates a red light emitting region. Taking into account the Stokes shift, which is typically 100 meV, red light is emitted from Zn (Te 1-x , S x ) colloidal quantum dots that do not contain Cd by adjusting the molar composition ratio x S of S and the particle size. Can be realized.
[本実施形態のコロイダル量子ドット]
 本実施形態のコロイダル量子ドットは、化合物半導体からなるシェルで被覆され、前記シェルのコアをなすコア粒子であって、近紫外領域又は青色領域の波長を有する励起光を照射したときに可視蛍光を発するCdを含まないコロイダル量子ドットである。このコロイダル量子ドットは、化学式A(B11-x,B2x)(ただし、0<x<1)で表され、AサイトにII族元素としてのZnを、B1サイトにVI族元素としてのTeを、B2サイトにVI族元素としてのSe又はSをそれぞれ有し、平均粒径が1nm以上10nm以下であることを特徴とする。ここで、xが0<x<1であるのは、x=0であると、ZnTeとなり、また、x=1であると、ZnSe又はZnSとなり、それぞれ本発明の目的・効果を奏しないからである。また、平均粒径が1nm未満であると、粒径制御が困難になり、10nmを超えると、粒成長に非常に長い時間を要し、生産効率が悪くなるとともに、粒度分布が広くなり、色純度が悪くなる。
[Colloidal quantum dots of this embodiment]
The colloidal quantum dot of this embodiment is a core particle that is coated with a shell made of a compound semiconductor and forms the core of the shell, and emits visible fluorescence when irradiated with excitation light having a wavelength in the near ultraviolet region or blue region. It is a colloidal quantum dot that does not contain emitted Cd. This colloidal quantum dot is represented by the chemical formula A (B1 1-x , B2 x ) (where 0 <x <1), Zn as a group II element at the A site, and Te as a group VI element at the B1 site. The B2 site has Se or S as a group VI element, and has an average particle size of 1 nm or more and 10 nm or less. Here, x is 0 <x <1 because when x = 0, it becomes ZnTe, and when x = 1, it becomes ZnSe or ZnS, which does not have the object and effect of the present invention. It is. Further, if the average particle size is less than 1 nm, it is difficult to control the particle size, and if it exceeds 10 nm, it takes a very long time for grain growth, resulting in poor production efficiency, widening the particle size distribution, and color. Purity deteriorates.
 等電子トラップの概念は1965年にThomasらにより提案された。等電子トラップとは、化合物半導体を構成している元素(例えば、ZnとTe)と同じ電子配置をもつ元素(Se)を微量に添加し、格子点を置換させると、母体元素(Te)との電子親和力の相違のために、電子又は正孔が引き付けられ、束縛状態となるものをいう。等電子トラップによる発光機構は、格子の変位とエネルギーの関係を示す配位座標モデルを用いて説明できる。励起状態にある励起子が、束縛されることによってできた励起状態のポテンシャルのくぼみにトラップされる。くぼみに入ることで、基底状態のポテンシャルとの差が小さくなる。従って、くぼみの準位と基底状態との間の遷移は、元々の化合物半導体(ZnTe)が持つバンドギャップよりも小さいエネルギーでの発光となる。 The concept of isoelectronic trap was proposed in 1965 by Thomas et al. An isoelectron trap is obtained by adding a small amount of an element (Se) having the same electron configuration as an element constituting a compound semiconductor (for example, Zn and Te) and substituting a lattice point, This means that electrons or holes are attracted and become bound due to the difference in electron affinity. The light emission mechanism by the isoelectronic trap can be explained by using a coordinate coordinate model indicating the relationship between the lattice displacement and the energy. The excitons in the excited state are trapped in the pit of the excited state potential created by being bound. By entering the depression, the difference from the ground state potential is reduced. Therefore, the transition between the level of the dent and the ground state results in light emission with energy smaller than the band gap of the original compound semiconductor (ZnTe).
 上記化学式A(B11-x,B2x)において、B2サイトをSeにすると、Zn(Te1-x,Sex)コロイダル量子ドットとなり、等電子トラップにより、Seのモル組成比を変量すると、励起子がトラップされる励起状態のポテンシャルのくぼみと、基底状態のポテンシャルとの差が変化し、この元素の組み合せの場合、あるモル組成比にて、可視蛍光を緑色光にすることができる。また、上記化学式A(B11-x,B2x)において、B2サイトをSにすると、Zn(Te1-x,Sx)コロイダル量子ドットとなり、前記と同様の機構にて、Sのモル組成比を変量すると、励起子がトラップされる励起状態のポテンシャルのくぼみと、基底状態のポテンシャルとの差が変化し、この元素の組み合せの場合、あるモル組成比にて、可視蛍光を赤色光にすることができる。 In the above chemical formula A (B1 1-x , B2 x ), when the B2 site is set to Se, a Zn (Te 1-x , Se x ) colloidal quantum dot is obtained, and when the molar composition ratio of Se is varied by an isoelectronic trap, The difference between the pit of the excited state potential where the exciton is trapped and the potential of the ground state changes, and in the case of a combination of these elements, the visible fluorescence can be changed to green light at a certain molar composition ratio. In the above chemical formula A (B1 1-x , B2 x ), when the B2 site is set to S, it becomes a Zn (Te 1-x , S x ) colloidal quantum dot. When the ratio is varied, the difference between the excited-state potential indentation where the exciton is trapped and the ground-state potential changes. In this combination of elements, visible fluorescence is converted to red light at a certain molar composition ratio. can do.
 本発明のコロイダル量子ドットの製造方法として、次に、第1の実施形態として、可視蛍光が緑色光であるZn(Te1-x,Sex)コロイダル量子ドットの製造方法を、第2の実施形態として、可視蛍光が赤色光であるZn(Te1-x,Sx)コロイダル量子ドットの製造方法を、それぞれ詳述する。 Next, as a method for producing a colloidal quantum dot of the present invention, as a first embodiment, a method for producing a Zn (Te 1-x , Se x ) colloidal quantum dot whose visible fluorescence is green light is described as a second embodiment. As a form, the manufacturing method of Zn (Te1 -x , Sx ) colloidal quantum dot whose visible fluorescence is red light is each explained in full detail.
<第1の実施形態>
〔可視蛍光が緑色光であるZn(Te1-x,Sex)コロイダル量子ドットの製造方法〕
 第1の実施形態の緑色光を発するコロイダル量子ドットの製造方法は、Zn原料液とTe原料液とSe原料液とを混合して調製された液又はキャッピング剤と希釈剤とを混合して調製された液のいずれか一方の液を200℃~350℃の温度に加熱し、前記加熱した一方の液に前記いずれか他方の液を非酸化性雰囲気下で所定量注入し、前記一方の液に前記他方の液を注入した液を200℃~350℃の温度に調整し、1分~5時間保持することにより、可視蛍光が緑色光であるCdを含まないコロイダル量子ドットを製造する方法である。
<First Embodiment>
[Method for producing Zn (Te 1-x , Se x ) colloidal quantum dots whose visible fluorescence is green light]
The method for producing a colloidal quantum dot that emits green light according to the first embodiment is prepared by mixing a liquid prepared by mixing a Zn raw material liquid, a Te raw material liquid, and a Se raw material liquid, or a capping agent and a diluent. One of the two liquids is heated to a temperature of 200 ° C. to 350 ° C., and a predetermined amount of the other liquid is injected into the heated one liquid in a non-oxidizing atmosphere. The liquid into which the other liquid was injected was adjusted to a temperature of 200 ° C. to 350 ° C. and held for 1 minute to 5 hours, thereby producing a colloidal quantum dot containing no Cd whose visible fluorescence is green light. is there.
 この第1の実施形態の製造方法は、一例を挙げると、(a)Zn原料液とTe原料液とSe原料液とを混合して、第1混合液を調製する工程と、(b)密閉容器にキャッピング剤と希釈剤を入れて混合して、第2混合液を調製する工程と、(c)前記第2混合液の温度を200℃~350℃に調整し、かつ前記密閉容器内を非酸化性雰囲気にした状態で、前記第2混合液に前記第1混合液を所定量注入する工程と、(d)前記第2混合液に前記第1混合液を注入した液の温度を200℃~350℃に調整し、1分~5時間保持する工程と、を含む。ここで、第2混合液の温度を200℃~350℃に調整するのは、200℃未満では、素早い核生成が起こらず、粒度分布が広くなるからであり、また、350℃を超えると、有機溶媒の揮発が優先的に生じ、コロイダル量子ドットの生成に支障をきたすからである。好ましい第2混合液の調整温度は250℃~310℃である。また、第2混合液に前記第1混合液を注入した液の温度を200℃~350℃にするのは、200℃未満では、コロイドの成長速度が非常に遅くなり、時間による粒径制御が極めて困難になるからであり、350℃を超えると、有機溶媒の揮発が優先的に生じ、コロイダル量子ドットの成長に支障をきたすからである。好ましい保持温度は230℃~300℃である。更に、第2混合液に前記第1混合液を注入した液の保持時間を1分~5時間にするのは、1分未満では、原料が殆ど消費されず、収率が大きく低減するからであり、5時間を超えると、生産性が悪く、成長時の加熱時に消費される電力のコストが大きく増加するからである。好ましい保持時間は10分~60分である。 An example of the manufacturing method of the first embodiment is as follows: (a) a step of mixing a Zn raw material liquid, a Te raw material liquid, and a Se raw material liquid to prepare a first mixed liquid; and (b) sealing. (C) adjusting the temperature of the second mixed liquid to 200 ° C. to 350 ° C., and adding the capping agent and diluent to the container and mixing them; In a non-oxidizing atmosphere, a step of injecting a predetermined amount of the first mixture into the second mixture; and (d) a temperature of the solution obtained by injecting the first mixture into the second mixture is 200. And a step of adjusting to a temperature of from 350 to 350 ° C. and holding for 1 minute to 5 hours. Here, the reason why the temperature of the second mixed solution is adjusted to 200 ° C. to 350 ° C. is that if it is less than 200 ° C., rapid nucleation does not occur and the particle size distribution becomes wide, and if it exceeds 350 ° C., This is because volatilization of the organic solvent occurs preferentially and hinders the production of colloidal quantum dots. The adjustment temperature of the second liquid mixture is preferably 250 ° C. to 310 ° C. In addition, the temperature of the liquid obtained by injecting the first mixed liquid into the second mixed liquid is set to 200 ° C. to 350 ° C. If the temperature is lower than 200 ° C., the growth rate of the colloid becomes very slow, and the particle size can be controlled by time. This is because when the temperature exceeds 350 ° C., the volatilization of the organic solvent occurs preferentially, which hinders the growth of colloidal quantum dots. A preferred holding temperature is 230 ° C to 300 ° C. Furthermore, the retention time of the liquid obtained by injecting the first mixed liquid into the second mixed liquid is set to 1 minute to 5 hours because the raw material is hardly consumed and the yield is greatly reduced if it is less than 1 minute. Yes, if it exceeds 5 hours, the productivity is poor, and the cost of power consumed during heating during growth greatly increases. The preferred holding time is 10 minutes to 60 minutes.
〔Zn原料液の調製〕
 Zn原料液は、不活性ガスで置換した容器内に、Zn源としての液状のジエチル亜鉛(DEZ)又は粉末状のステアリン酸亜鉛(Zn(St)2)等を入れ、これに、トリオクチルホスフィン(TOP)、オクタデセン(ODE)、酢酸、オレイン酸(OA)、ステアリン酸、ヘキサデシルアミン(HDA)、オレイルアミン(OLA)、トリオクチルアミン(TOA)、トリブチルホスホン酸(TBPA)等の有機溶媒(錯形成剤)を加えて、加熱することにより調製される。なお、Znイオンと錯体を形成する有機溶媒であれば、上述の有機溶媒に限定されるものではない。不活性ガスを通気しながら、Zn原料の混合液が入った容器をオイルバス等で加熱する。オイルバスで加熱する温度は20℃~350℃であり、加熱した温度での保持時間は5分~5時間である。加熱温度が20℃未満又は保持時間が5分未満では、Zn源の有機溶媒(錯形成剤)への溶解が十分でなく、Zn源の未溶解分が発生しやすい。また、加熱温度が350℃を超えると、有機溶媒(錯形成剤)の揮発が優先的に生じ、Zn源の溶解に支障をきたす。保持時間が5時間を超えると、Zn源は十分に溶解平衡に達しており、加熱による無駄な電力消費が発生する。Zn源1molに対して有機溶媒(錯形成剤)を1~16mol加える。Zn原料が溶解すると、混合液が透明になる。なお、Zn原料液の調製は、上記の調製条件に限定されるものではなく、用いる錯体形成用溶媒との組み合わせに応じて条件を調整することができる。
[Preparation of Zn raw material solution]
In the Zn raw material solution, liquid diethylzinc (DEZ) or powdered zinc stearate (Zn (St) 2 ) or the like as a Zn source is placed in a container substituted with an inert gas, and trioctylphosphine is added thereto. Organic solvents such as (TOP), octadecene (ODE), acetic acid, oleic acid (OA), stearic acid, hexadecylamine (HDA), oleylamine (OLA), trioctylamine (TOA), tributylphosphonic acid (TBPA) It is prepared by adding a complexing agent) and heating. Note that the organic solvent is not limited to the organic solvents described above as long as the organic solvent forms a complex with Zn ions. While venting inert gas, the container containing the mixed solution of Zn raw material is heated with an oil bath or the like. The temperature heated in the oil bath is 20 ° C. to 350 ° C., and the holding time at the heated temperature is 5 minutes to 5 hours. When the heating temperature is less than 20 ° C. or the holding time is less than 5 minutes, the Zn source is not sufficiently dissolved in the organic solvent (complexing agent), and an undissolved portion of the Zn source is likely to be generated. On the other hand, if the heating temperature exceeds 350 ° C., volatilization of the organic solvent (complexing agent) occurs preferentially, which hinders dissolution of the Zn source. When the holding time exceeds 5 hours, the Zn source has sufficiently reached dissolution equilibrium, and wasteful power consumption due to heating occurs. 1 to 16 mol of an organic solvent (complexing agent) is added to 1 mol of Zn source. When the Zn raw material is dissolved, the mixed solution becomes transparent. In addition, preparation of Zn raw material liquid is not limited to said preparation conditions, Conditions can be adjusted according to the combination with the solvent for complex formation to be used.
〔Te原料液の調製〕
 Te原料液は、不活性ガスで置換した容器内に、Te源としての粉末状の金属テルル(Te)、粉末状の酸化テルル又は入手可能な安価で安全な有機テルル化合物等を入れ、これに、Zn原料液の調製に用いたのと同様の有機溶媒(錯形成剤)を加えて、加熱することにより調製される。なお、Teイオンと錯体を形成する有機溶媒であれば、上述の有機溶媒に限定されるものではない。不活性ガスを通気しながら、Te原料の混合液が入った容器をオイルバス等で加熱する。オイルバスで加熱する温度は100℃~350℃であり、加熱した温度での保持時間は5分~5時間である。加熱温度が100℃未満又は保持時間が5分未満では、Te源の有機溶媒(錯形成剤)への溶解が十分でなく、Te源の未溶解分が発生しやすい。また、加熱温度が350℃を超えると、有機溶媒(錯形成剤)の揮発が優先的に生じ、Te源の溶解に支障をきたす。保持時間が5時間を超えると、Te源は十分に溶解平衡に達しており、加熱による無駄な電力消費が発生する。
[Preparation of Te raw material liquid]
The Te raw material liquid is filled with powdered metal tellurium (Te) as a Te source, powdered tellurium oxide or an available inexpensive and safe organic tellurium compound in a container substituted with an inert gas. The same organic solvent (complex forming agent) as used for the preparation of the Zn raw material solution is added and heated. Note that the organic solvent is not limited to the organic solvents described above as long as the organic solvent forms a complex with Te ions. While ventilating the inert gas, the container containing the Te raw material mixture is heated in an oil bath or the like. The temperature at which the oil bath is heated is 100 ° C. to 350 ° C., and the holding time at the heated temperature is 5 minutes to 5 hours. When the heating temperature is less than 100 ° C. or the holding time is less than 5 minutes, the Te source is not sufficiently dissolved in the organic solvent (complexing agent), and an undissolved portion of the Te source is likely to be generated. On the other hand, when the heating temperature exceeds 350 ° C., volatilization of the organic solvent (complex forming agent) occurs preferentially, which hinders dissolution of the Te source. When the holding time exceeds 5 hours, the Te source has sufficiently reached dissolution equilibrium, and wasteful power consumption due to heating occurs.
〔Se原料液の調製〕
 Se原料液は、不活性ガスで置換した容器内に、Se源としての粉末状の金属セレン(Se)、粉末状の酸化セレン又は入手可能な安価で安全な有機セレン化合物等を入れ、これに、Zn原料液の調製に用いたのと同様の有機溶媒(錯形成剤)を加えて、加熱することにより調製される。なお、Seイオンと錯体を形成する有機溶媒であれば、上述の有機溶媒に限定されるものではない。不活性ガスを通気しながら、Se原料の混合液が入った容器をオイルバス等で加熱する。オイルバスで加熱する温度は20℃~350℃であり、加熱した温度での保持時間は5分~5時間である。加熱温度が20℃未満又は保持時間が5分未満では、Se源の有機溶媒(錯形成剤)への溶解が十分でなく、Se源の未溶解分が発生しやすい。また、加熱温度が350℃を超えると、有機溶媒(錯形成剤)の揮発が優先的に生じ、Se源の溶解に支障をきたす。保持時間が5時間を超えると、Se源は十分に溶解平衡に達しており、加熱による無駄な電力消費が発生する。Se源1molに対して有機溶媒(錯形成剤)を1~10mol加える。Se原料が溶解すると、混合液が透明になる。なお、Se原料液の調製は、上記の調製条件に限定されるものではなく、用いる錯体形成用溶媒との組み合わせに応じて条件を調整することができる。
[Preparation of Se raw material liquid]
The Se raw material liquid is filled with powdered metal selenium (Se) as a Se source, powdered selenium oxide or an available inexpensive and safe organic selenium compound in a container substituted with an inert gas. The same organic solvent (complex forming agent) as used for the preparation of the Zn raw material solution is added and heated. Note that the organic solvent is not limited to the organic solvents described above as long as the organic solvent forms a complex with Se ions. While ventilating the inert gas, the container containing the Se raw material mixture is heated in an oil bath or the like. The temperature heated in the oil bath is 20 ° C. to 350 ° C., and the holding time at the heated temperature is 5 minutes to 5 hours. When the heating temperature is less than 20 ° C. or the holding time is less than 5 minutes, the Se source is not sufficiently dissolved in the organic solvent (complexing agent), and the Se source is not easily dissolved. On the other hand, if the heating temperature exceeds 350 ° C., the organic solvent (complexing agent) volatilizes preferentially, which hinders dissolution of the Se source. When the holding time exceeds 5 hours, the Se source has sufficiently reached dissolution equilibrium, and wasteful power consumption due to heating occurs. 1 to 10 mol of an organic solvent (complexing agent) is added to 1 mol of Se source. When the Se raw material is dissolved, the mixed solution becomes transparent. In addition, preparation of Se raw material liquid is not limited to said preparation conditions, Conditions can be adjusted according to the combination with the solvent for complex formation to be used.
〔Zn(Te1-x,Sex)コロイダル量子ドット作製用の第1混合液の調製〕
 第1混合液は、不活性ガスで置換した容器内に、Zn原料液とTe原料液とSe原料液を所定のモル組成比になるように混合し、室温にて不活性ガスを通気しながら撹拌して調製される。
[Preparation of first mixed solution for preparing Zn (Te 1-x , Se x ) colloidal quantum dots]
The first mixed liquid is a mixture of a Zn raw material liquid, a Te raw material liquid, and a Se raw material liquid in a container substituted with an inert gas so as to have a predetermined molar composition ratio. Prepared with stirring.
〔Zn(Te1-x,Sex)コロイダル量子ドット作製用の第2混合液の調製〕
 第2混合液は、容器内にキャッピング剤と希釈剤を混合し、撹拌しながら真空中で「120℃×30分間」の脱気処理を行った後、不活性ガスにて大気圧に戻し、不活性ガスを通気しながら、マントルヒーター等を用いて200℃~350℃に昇温し調製される。キャッピング剤としては、トリオクチルホスフィン(TOP)、オレイン酸(OA)、ステアリン酸、ヘキサデシルアミン(HDA)、オレイルアミン(OLA)、トリブチルホスホン酸(TBPA)、トリオクチルホスフィンオキシド(TOPO)等が挙げられる。希釈剤としては、トリオクチルホスフィン(TOP)、オクタデセン(ODE)、オレイルアミン(OLA)、ヘキサデシルアミン(HDA)、トリオクチルホスフィンオキシド(TOPO)等が挙げられる。キャッピング剤1molに対して希釈剤を1~5mol加える。
[Preparation of second mixed solution for preparing Zn (Te 1-x , Se x ) colloidal quantum dots]
The second mixed liquid is a mixture of a capping agent and a diluent in a container, and after performing a degassing process of “120 ° C. × 30 minutes” in a vacuum while stirring, it is returned to atmospheric pressure with an inert gas, It is prepared by raising the temperature to 200 ° C. to 350 ° C. using a mantle heater or the like while ventilating an inert gas. Examples of the capping agent include trioctylphosphine (TOP), oleic acid (OA), stearic acid, hexadecylamine (HDA), oleylamine (OLA), tributylphosphonic acid (TBPA), trioctylphosphine oxide (TOPO) and the like. It is done. Examples of the diluent include trioctylphosphine (TOP), octadecene (ODE), oleylamine (OLA), hexadecylamine (HDA), and trioctylphosphine oxide (TOPO). Add 1-5 mol of diluent to 1 mol of capping agent.
〔第2混合液の第1混合液への注入〕
 マントルヒーター等を用いて200℃~350℃に昇温した第2混合液の温度が安定した後、第1混合液(室温)をシリンジ等を用いて第2混合液へ一気に注入し、コロイダル量子ドットの核を生成させる。具体的には、内径10mmのシリンジを用いて1~20mL/秒の押し込み速度で注入する。下限値未満の速度でゆっくり注入すると、経時的に核が生成するため、粒度分布が広くなる。上限値を超えた高速度では注入操作が技術的に困難になる。これにより、Zn原料液とTe原料液とSe原料液の混合液が調製される。第1混合液を第2混合液へ混合する方法として、混合の規模によっては、不活性圧縮ガスを利用して、ノズル混合、エジェクター混合等の混合方法を採用してもよい。ここで、第2混合液の温度を200℃~350℃に調整するのは、200℃未満では、素早い核生成が起こらず、粒度分布が広くなるからであり、また、350℃を超えると、有機溶媒の揮発が優先的に生じ、コロイダル量子ドットの核生成に支障をきたすからである。
[Injection of the second liquid mixture into the first liquid mixture]
After the temperature of the second mixed liquid heated to 200 ° C. to 350 ° C. using a mantle heater or the like is stabilized, the first mixed liquid (room temperature) is injected into the second mixed liquid at once using a syringe or the like, and colloidal quantum Generate dot nuclei. Specifically, the injection is performed at a pushing speed of 1 to 20 mL / second using a syringe having an inner diameter of 10 mm. When slowly injected at a rate less than the lower limit, nuclei are formed over time, and the particle size distribution becomes wide. At high speeds above the upper limit, the injection operation becomes technically difficult. Thereby, the liquid mixture of Zn raw material liquid, Te raw material liquid, and Se raw material liquid is prepared. As a method of mixing the first mixed solution into the second mixed solution, a mixing method such as nozzle mixing or ejector mixing may be employed using an inert compressed gas depending on the scale of mixing. Here, the reason why the temperature of the second mixed solution is adjusted to 200 ° C. to 350 ° C. is that if it is less than 200 ° C., rapid nucleation does not occur and the particle size distribution becomes wide, and if it exceeds 350 ° C., This is because volatilization of the organic solvent occurs preferentially and hinders the nucleation of colloidal quantum dots.
〔注入後の核成長〕
 第1混合液(室温)をシリンジ等を用いて第2混合液へ一気に注入した後、速やかに溶液の温度が低下する。溶液の温度を200℃~350℃で1分~5時間保持して、コロイダル量子ドットを成長させる。所定時間保持した後、室温まで放冷する。反応溶液は濁りのない透明な溶液になる。ここで、200℃未満では、コロイドの成長速度が非常に遅くなり、時間による粒径制御が極めて困難になり、350℃を超えると、有機溶媒の揮発が優先的に生じ、コロイダル量子ドットの成長に支障をきたす。また、1分未満では、原料が殆ど消費されず、収率が大きく低減し、5時間を超えると、生産性が悪く、成長時の加熱時に消費される電力のコストが大きく増加する。
[Nuclear growth after implantation]
After inject | pouring a 1st liquid mixture (room temperature) at a stretch into a 2nd liquid mixture using a syringe etc., the temperature of a solution falls quickly. The temperature of the solution is maintained at 200 ° C. to 350 ° C. for 1 minute to 5 hours to grow colloidal quantum dots. After holding for a predetermined time, it is allowed to cool to room temperature. The reaction solution becomes a clear solution without turbidity. Here, when the temperature is lower than 200 ° C., the growth rate of the colloid becomes very slow and it becomes extremely difficult to control the particle size by time. When the temperature exceeds 350 ° C., the organic solvent volatilizes preferentially, and the growth of colloidal quantum dots Cause trouble. When the time is less than 1 minute, almost no raw material is consumed and the yield is greatly reduced. When the time is longer than 5 hours, the productivity is poor and the cost of power consumed during heating during growth is greatly increased.
 第2混合液の温度、第1混合液を第2混合液へ注入した後の溶液の温度と保持時間を調整することで、得られるコロイダル量子ドットの平均粒径を一定にすることができる。このようにして平均粒径を4.0±0.1nmに調整した場合、第1混合液中のSeのモル仕込比xSeを変えると、即ち、コロイダル量子ドットのSeのモル組成比xSeを変えると、バンドギャップボーイング効果が観察され、xSe=0.30付近でバンドギャップの値が最小値:約2.4eVを示す。次に、Seのモル組成比xSeを0.30付近で固定した場合、第2混合液の温度、第1混合液を第2混合液へ注入した後の溶液の温度と保持時間を調整することで、コロイダル量子ドットの平均粒径を3.0~7.0nmの範囲で調整できる。量子サイズ効果によりコロイダル量子ドットのバンドギャップが変化し、平均粒径が3.0~7.0nmの領域で緑色発光(2.15~2.45eV)が実現する。 By adjusting the temperature of the second mixed liquid, the temperature of the solution after the first mixed liquid is injected into the second mixed liquid, and the holding time, the average particle size of the obtained colloidal quantum dots can be made constant. When the average particle size is adjusted to 4.0 ± 0.1 nm in this way, changing the Se molar charge ratio x Se in the first mixed solution, that is, the molar composition ratio x Se of colloidal quantum dots Se. , The band gap bowing effect is observed, and the value of the band gap is about 2.4 eV in the vicinity of x Se = 0.30. Next, when the Se molar composition ratio x Se is fixed at around 0.30, the temperature of the second mixed solution, the temperature of the solution after the first mixed solution is injected into the second mixed solution, and the holding time are adjusted. Thus, the average particle size of the colloidal quantum dots can be adjusted in the range of 3.0 to 7.0 nm. The band gap of the colloidal quantum dots changes due to the quantum size effect, and green light emission (2.15 to 2.45 eV) is realized in the region where the average particle size is 3.0 to 7.0 nm.
<第2の実施形態>
〔可視蛍光が赤色光であるZn(Te1-x,Sx)コロイダル量子ドットの製造方法〕
 第2の実施形態の赤色光を発するコロイダル量子ドットの製造方法は、Zn原料液とTe原料液とを混合して調製された液又はS原料液とキャッピング剤と希釈剤とを混合して調製された液のいずれか一方の液を200℃~350℃の温度に加熱し、前記加熱した一方の液に前記いずれか他方の液を非酸化性雰囲気下で所定量注入し、前記一方の液に前記他方の液を注入した液を200℃~350℃の温度に調整し、1分~5時間保持することにより、可視蛍光が赤色光であるCdを含まないコロイダル量子ドットを製造する方法である。
<Second Embodiment>
[Method for producing Zn (Te 1-x , S x ) colloidal quantum dots whose visible fluorescence is red light]
The method for producing a colloidal quantum dot emitting red light according to the second embodiment is prepared by mixing a Zn raw material liquid and a Te raw material liquid or a S raw material liquid, a capping agent, and a diluent. One of the two liquids is heated to a temperature of 200 ° C. to 350 ° C., and a predetermined amount of the other liquid is injected into the heated one liquid in a non-oxidizing atmosphere. The liquid into which the other liquid was injected was adjusted to a temperature of 200 ° C. to 350 ° C. and held for 1 minute to 5 hours to produce a colloidal quantum dot containing no Cd whose visible fluorescence is red light. is there.
 この第2の実施形態の製造方法は、一例を挙げると、(a)Zn原料液とTe原料液とを混合して、第3混合液を調製する工程と、(b)密閉容器にS原料液とキャッピング剤と希釈剤を混合して、第4混合液を調製する工程と、(c)前記第4混合液の温度を200℃~350℃に調整し、かつ前記密閉容器内を非酸化性雰囲気にした状態で、前記第4混合液に前記第3混合液を所定量注入する工程と、(d)前記第4混合液に前記第3混合液を注入した液の温度を200℃~350℃に調整し、1分~5時間保持する工程と、を含む。ここで、第4混合液の温度を200℃~350℃に調整するのは、200℃未満では、素早い核生成が起こらず、粒度分布が広くなるからであり、また、350℃を超えると、有機溶媒の揮発が優先的に生じ、コロイダル量子ドットの生成に支障をきたすからである。好ましい第4混合液の調整温度は260℃~320℃である。また、第4混合液に前記第3混合液を注入した液の温度を200℃~350℃にするのは、200℃未満では、コロイダル量子ドットの成長速度が非常に遅くなり、時間による粒径制御が極めて困難になるからであり、350℃を超えると、有機溶媒の揮発が優先的に生じ、コロイダル量子ドットの成長に支障をきたすからである。好ましい保持温度は240℃~310℃である。更に、第4混合液に前記第3混合液を注入した液の保持時間を1分~5時間にするのは、1分未満では、原料が殆ど消費されず、収率が大きく低減するからであり、5時間を超えると、生産性が悪く、成長時の加熱時に消費される電力のコストが大きく増加するからである。好ましい保持時間は10分~3時間である。 In the manufacturing method of the second embodiment, for example, (a) a step of mixing a Zn raw material liquid and a Te raw material liquid to prepare a third mixed liquid; and (b) an S raw material in a sealed container. (C) adjusting the temperature of the fourth mixture to 200 ° C. to 350 ° C., and non-oxidizing the inside of the sealed container A step of injecting a predetermined amount of the third mixed liquid into the fourth mixed liquid in a neutral atmosphere; and (d) the temperature of the liquid injected with the third mixed liquid into the fourth mixed liquid is 200 ° C. to Adjusting to 350 ° C. and holding for 1 minute to 5 hours. Here, the reason why the temperature of the fourth mixed liquid is adjusted to 200 ° C. to 350 ° C. is that if it is less than 200 ° C., rapid nucleation does not occur and the particle size distribution becomes wide, and if it exceeds 350 ° C., This is because volatilization of the organic solvent occurs preferentially and hinders the production of colloidal quantum dots. The adjustment temperature of the fourth mixed solution is preferably 260 ° C. to 320 ° C. In addition, the temperature of the liquid obtained by injecting the third mixed liquid into the fourth mixed liquid is set to 200 ° C. to 350 ° C. If the temperature is lower than 200 ° C., the growth rate of the colloidal quantum dots becomes very slow. This is because it becomes extremely difficult to control, and when it exceeds 350 ° C., volatilization of the organic solvent occurs preferentially, which hinders the growth of colloidal quantum dots. A preferred holding temperature is 240 ° C to 310 ° C. Furthermore, the retention time of the liquid obtained by injecting the third mixed liquid into the fourth mixed liquid is set to 1 minute to 5 hours because the raw material is hardly consumed and the yield is greatly reduced if it is less than 1 minute. Yes, if it exceeds 5 hours, the productivity is poor, and the cost of power consumed during heating during growth greatly increases. The preferred holding time is 10 minutes to 3 hours.
〔Zn原料液の調製〕
 Zn原料液は、前述したZn(Te1-x,Sex)コロイダル量子ドットの製造方法で用いたZn原料液と同様に調製される。Zn源1molに対して有機溶媒(錯形成剤)を1~16mol加える。Zn原料が溶解すると、混合液が透明になる。なお、Zn原料液の調製は、上記の調製条件に限定されるものではなく、用いる錯体形成用溶媒との組み合わせに応じて条件を調整することができる。
[Preparation of Zn raw material solution]
The Zn raw material liquid is prepared in the same manner as the Zn raw material liquid used in the above-described method for producing Zn (Te 1-x , Se x ) colloidal quantum dots. 1 to 16 mol of an organic solvent (complexing agent) is added to 1 mol of Zn source. When the Zn raw material is dissolved, the mixed solution becomes transparent. In addition, preparation of Zn raw material liquid is not limited to said preparation conditions, Conditions can be adjusted according to the combination with the solvent for complex formation to be used.
〔Te原料液の調製〕
 Te原料液は、前述したZn(Te1-x,Sex)コロイダル量子ドットの製造方法で用いたTe原料液と同様に調製される。
[Preparation of Te raw material liquid]
The Te raw material liquid is prepared in the same manner as the Te raw material liquid used in the above-described method for producing Zn (Te 1-x , Se x ) colloidal quantum dots.
〔S原料液の調製〕
 S原料液は、不活性ガスで置換した容器内に、S源としての粉末状の硫黄(S)又は入手可能な安価で安全な有機硫黄化合物等を入れ、これに、Zn原料液の調製に用いたのと同様の有機溶媒(錯形成剤)を加えて、加熱することにより調製される。なお、Sイオンと錯体を形成する有機溶媒であれば、上述の有機溶媒に限定されるものではない。不活性ガスを通気しながら、S原料の混合液が入った容器をオイルバス等で加熱する。オイルバスで加熱する温度は20℃~350℃であり、加熱した温度での保持時間は5分~5時間である。加熱温度が20℃未満又は保持時間が5分未満では、S源の有機溶媒(錯形成剤)への溶解が十分でなく、S源の未溶解分が発生しやすい。また、加熱温度が350℃を超えると、有機溶媒(錯形成剤)の揮発が優先的に生じ、S源の溶解に支障をきたす。保持時間が5時間を超えると、S源は十分に溶解平衡に達しており、加熱による無駄な電力消費が発生する。S源1molに対して有機溶媒(錯形成剤)を1~10mol加える。S原料が溶解すると、混合液が透明になる。なお、S原料液の調製は、上記の調製条件に限定されるものではなく、用いる錯体形成用溶媒との組み合わせに応じて条件を調整することができる。
[Preparation of S raw material solution]
The S raw material liquid is filled with powdered sulfur (S) as an S source or an available inexpensive and safe organic sulfur compound in a container substituted with an inert gas. It is prepared by adding the same organic solvent (complexing agent) as used and heating. Note that the organic solvent is not limited to the organic solvents described above as long as the organic solvent forms a complex with S ions. While ventilating the inert gas, the container containing the mixed solution of the S raw material is heated with an oil bath or the like. The temperature heated in the oil bath is 20 ° C. to 350 ° C., and the holding time at the heated temperature is 5 minutes to 5 hours. When the heating temperature is less than 20 ° C. or the holding time is less than 5 minutes, the S source is not sufficiently dissolved in the organic solvent (complexing agent), and an undissolved portion of the S source is likely to be generated. On the other hand, when the heating temperature exceeds 350 ° C., the volatilization of the organic solvent (complexing agent) occurs preferentially, which hinders dissolution of the S source. When the holding time exceeds 5 hours, the S source has sufficiently reached dissolution equilibrium, and wasteful power consumption due to heating occurs. 1 to 10 mol of an organic solvent (complexing agent) is added to 1 mol of the S source. When the S raw material is dissolved, the mixed solution becomes transparent. In addition, preparation of S raw material liquid is not limited to said preparation conditions, Conditions can be adjusted according to the combination with the solvent for complex formation to be used.
〔Zn(Te1-x,Sx)コロイダル量子ドット作製用の第3混合液の調製〕
 第3混合液は、不活性ガスで置換した容器内に、Zn原料液とTe原料液を所定のモル組成比になるように混合し、室温にて不活性ガスを通気しながら撹拌して調製される。
[Preparation of third mixed solution for preparing Zn (Te 1-x , S x ) colloidal quantum dots]
The third liquid mixture is prepared by mixing the Zn raw material liquid and the Te raw material liquid so as to have a predetermined molar composition ratio in a container substituted with an inert gas, and stirring the mixture while venting the inert gas at room temperature. Is done.
〔Zn(Te1-x,Sx)コロイダル量子ドット作製用の第4混合液の調製〕
 第4混合液は、容器内にS原料液とキャッピング剤と希釈剤を混合し、撹拌しながら真空中で「120℃×30分間」の脱気処理を行った後、不活性ガスにて大気圧に戻し、不活性ガスを通気しながら、マントルヒーター等を用いて200℃~350℃に昇温し調製される。キャッピング剤としては、トリオクチルホスフィン(TOP)、オレイン酸(OA)、ステアリン酸、ヘキサデシルアミン(HDA)、オレイルアミン(OLA)、トリブチルホスホン酸(TBPA)、トリオクチルホスフィンオキシド(TOPO)等が挙げられる。希釈剤としては、トリオクチルホスフィン(TOP)、オクタデセン(ODE)、オレイルアミン(OLA)、ヘキサデシルアミン(HDA)、トリオクチルホスフィンオキシド(TOPO)等が挙げられる。S源1molに対してキャッピング剤を5~30mol、希釈剤を1~30mol加える。
[Preparation of fourth mixed solution for preparing Zn (Te 1-x , S x ) colloidal quantum dots]
The fourth mixed liquid is a mixture of S raw material liquid, capping agent and diluent in a container, and after deaeration treatment at 120 ° C. for 30 minutes in vacuum with stirring, a large amount of inert gas is used. The pressure is adjusted to 200 ° C. to 350 ° C. using a mantle heater or the like while returning to atmospheric pressure and passing an inert gas. Examples of the capping agent include trioctylphosphine (TOP), oleic acid (OA), stearic acid, hexadecylamine (HDA), oleylamine (OLA), tributylphosphonic acid (TBPA), trioctylphosphine oxide (TOPO) and the like. It is done. Examples of the diluent include trioctylphosphine (TOP), octadecene (ODE), oleylamine (OLA), hexadecylamine (HDA), and trioctylphosphine oxide (TOPO). Add 5-30 mol of capping agent and 1-30 mol of diluent to 1 mol of S source.
〔第3混合液の第4混合液への注入〕
 マントルヒーター等を用いて200℃~350℃に昇温した第4混合液の温度が安定したら、第3混合液(室温)をシリンジ等を用いて第4混合液へ一気に注入し、コロイダル量子ドットの核を生成させる。具体的には、内径10mmのシリンジを用いて1~20mL/秒の押し込み速度で注入する。下限値未満の速度でゆっくり注入すると、経時的に核が生成するため、粒度分布が広くなる。上限値を超えた高速度では、注入操作が技術的に困難になる。これにより、Zn原料液とTe原料液とS原料液を混合した合成液が調製される。第3混合液を第4混合液へ混合する方法として、混合の規模によっては、不活性圧縮ガスを利用して、ノズル混合、エジェクター混合等の混合方法を採用してもよい。ここで、第4混合液の温度を200℃~350℃に調整するのは、200℃未満では、素早い核生成が起こらず、粒度分布が広くなるからであり、また、350℃を超えると、有機溶媒の揮発が優先的に生じ、コロイダル量子ドットの生成に支障をきたすからである。
[Injection of the third mixture into the fourth mixture]
When the temperature of the 4th liquid mixture heated to 200 ° C to 350 ° C using a mantle heater or the like stabilizes, the 3rd liquid mixture (room temperature) is injected into the 4th liquid mixture at once using a syringe or the like, and colloidal quantum dots Generate nuclei. Specifically, the injection is performed at a pushing speed of 1 to 20 mL / second using a syringe having an inner diameter of 10 mm. When slowly injected at a rate less than the lower limit, nuclei are formed over time, and the particle size distribution becomes wide. At high speeds above the upper limit, the injection operation becomes technically difficult. Thereby, a synthetic liquid is prepared by mixing the Zn raw material liquid, the Te raw material liquid, and the S raw material liquid. As a method of mixing the third mixed solution into the fourth mixed solution, a mixing method such as nozzle mixing or ejector mixing may be employed using an inert compressed gas depending on the scale of mixing. Here, the reason why the temperature of the fourth mixed liquid is adjusted to 200 ° C. to 350 ° C. is that if it is less than 200 ° C., rapid nucleation does not occur and the particle size distribution becomes wide, and if it exceeds 350 ° C., This is because volatilization of the organic solvent occurs preferentially and hinders the production of colloidal quantum dots.
〔注入後の核成長〕
 第3混合液(室温)をシリンジ等を用いて第4混合液へ一気に注入した後、速やかに溶液の温度が低下する。溶液の温度を200℃~350℃で1分~5時間保持して、コロイダル量子ドットを成長させる。所定時間保持した後、室温まで放冷する。反応溶液は濁りのない透明な溶液になる。ここで、200℃未満では、コロイダル量子ドットの成長速度が非常に遅くなり、時間による粒径制御が極めて困難になり、350℃を超えると、有機溶媒の揮発が優先的に生じ、コロイダル量子ドットの成長に支障をきたす。また、1分未満では、原料が殆ど消費されず、収率が大きく低減し、5時間を超えると、生産性が悪く、成長時の加熱時に消費される電力のコストが大きく増加する。
[Nuclear growth after implantation]
After injecting the third mixed solution (room temperature) into the fourth mixed solution at a stretch using a syringe or the like, the temperature of the solution quickly decreases. The temperature of the solution is maintained at 200 ° C. to 350 ° C. for 1 minute to 5 hours to grow colloidal quantum dots. After holding for a predetermined time, it is allowed to cool to room temperature. The reaction solution becomes a clear solution without turbidity. Here, if the temperature is lower than 200 ° C., the growth rate of the colloidal quantum dots becomes very slow, and it becomes extremely difficult to control the particle size by time. If the temperature exceeds 350 ° C., volatilization of the organic solvent occurs preferentially, and the colloidal quantum dots Will hinder growth. When the time is less than 1 minute, almost no raw material is consumed and the yield is greatly reduced. When the time is longer than 5 hours, the productivity is poor and the cost of power consumed during heating during growth is greatly increased.
 第4混合液の温度、第3混合液を第4混合液へ注入した後の溶液の温度と保持時間を調整することで、得られるコロイダル量子ドットの平均粒径を一定にすることができる。
 このようにして平均粒径を7.0±0.1nmに調整した場合、第4混合液中のSのモル仕込比xSを変えると、即ち、コロイダル量子ドットのSのモル組成比xSを変えると、バンドギャップボーイング効果が観察され、xS=0.30付近でバンドギャップの値が最小値:2.0eVを示す。次に、コロイダル量子ドットの平均粒径を5.0~9.0nmの範囲で調整することで、量子サイズ効果によりコロイダル量子ドットのバンドギャップが変化し、赤色発光(1.80~2.10eV)が実現する。
By adjusting the temperature of the 4th liquid mixture, the temperature of the solution after inject | pouring a 3rd liquid mixture into a 4th liquid mixture, and holding time, the average particle diameter of the obtained colloidal quantum dot can be made constant.
When the average particle size is adjusted to 7.0 ± 0.1 nm in this way, the molar charge ratio x S of S in the fourth mixed solution is changed, that is, the molar composition ratio x S of the colloidal quantum dots. Is changed, the band gap bowing effect is observed, and the value of the band gap shows a minimum value: 2.0 eV in the vicinity of x S = 0.30. Next, by adjusting the average particle size of the colloidal quantum dots in the range of 5.0 to 9.0 nm, the band gap of the colloidal quantum dots changes due to the quantum size effect, and red light emission (1.80 to 2.10 eV). ) Is realized.
 次に本発明の実施例を比較例とともに詳しく説明する。 Next, examples of the present invention will be described in detail together with comparative examples.
 本発明の実施例及び比較例において使用する原材料は次の通りである。
〔原材料〕
 次の試薬を用意した。全ての試薬は精製せず、市販の状態で使用した。
(1)ジエチル亜鉛(DEZ、≧52wt% Zn basis、アルドリッチ)、
(2)セレン粉(Se、100mesh、99.99%、trace metal basis、アルドリッチ)、
(3)テルル粉(Te、100mesh、99.99% trace metal basis、アルドリッチ)、
(4)トリ-n-オクチルホスフィン(TOP、≧96.0%、和光純薬)、
(5)オレイルアミン(OLA、>98%、アルドリッチ)、
(6)オレイン酸(OA、99%、アルドリッチ)、
(7)1-オクタデセン(ODE、>90%、東京化成)、
(8)1-ドデカンチオール(DDT、>95%、東京化成)、
(9)ヘキサン(>96%、和光純薬)、
(10)エタノール(96%、今津薬品工業)
(11)無水酢酸亜鉛(99.99%、アルドリッチ)
(12)酢酸インジウム(99.99%、アルドリッチ)
(13)パルミチン酸(95%、和光純薬)
(14)トリス(トリメチルシリル)ホスフィン(10wt%ヘキサン溶液、Stream Chemicals)
(15)イソプロパノール(>99.7%、関東化学)
(16)トルエン(>99.5%、関東化学)
(17)ジエチルジチオカルバミン酸亜鉛(>94%、和光純薬)
(18)沃化銅(95%、和光純薬)
(19)沃化インジウム(99.998%、アルドリッチ)
(20)酢酸カドミウム二水和物(99.9%、和光純薬)
(21)オクチルアミン(98%、和光純薬)
(22)ブタノール(99%、和光純薬)
(23)メタノール(>99.8%、関東化学)
(24)ステアリン酸亜鉛(10~11%(Zn)、和光純薬)
(25)硫黄粉末(99.98%、アルドリッチ)
The raw materials used in the examples and comparative examples of the present invention are as follows.
〔raw materials〕
The following reagents were prepared. All reagents were not purified and were used commercially.
(1) Diethyl zinc (DEZ, ≧ 52wt% Zn basis, Aldrich),
(2) Selenium powder (Se, 100mesh, 99.99%, trace metal basis, Aldrich),
(3) Tellurium powder (Te, 100mesh, 99.99% trace metal basis, Aldrich),
(4) Tri-n-octylphosphine (TOP, ≧ 96.0%, Wako Pure Chemical Industries),
(5) oleylamine (OLA,> 98%, Aldrich),
(6) Oleic acid (OA, 99%, Aldrich),
(7) 1-octadecene (ODE,> 90%, Tokyo Kasei),
(8) 1-dodecanethiol (DDT,> 95%, Tokyo Kasei),
(9) Hexane (> 96%, Wako Pure Chemical)
(10) Ethanol (96%, Imazu Pharmaceutical)
(11) Anhydrous zinc acetate (99.99%, Aldrich)
(12) Indium acetate (99.99%, Aldrich)
(13) Palmitic acid (95%, Wako Pure Chemical Industries)
(14) Tris (trimethylsilyl) phosphine (10 wt% hexane solution, Stream Chemicals)
(15) Isopropanol (> 99.7%, Kanto Chemical)
(16) Toluene (> 99.5%, Kanto Chemical)
(17) Zinc diethyldithiocarbamate (> 94%, Wako Pure Chemical Industries)
(18) Copper iodide (95%, Wako Pure Chemical Industries)
(19) Indium iodide (99.998%, Aldrich)
(20) Cadmium acetate dihydrate (99.9%, Wako Pure Chemical Industries)
(21) Octylamine (98%, Wako Pure Chemical Industries)
(22) Butanol (99%, Wako Pure Chemical Industries)
(23) Methanol (> 99.8%, Kanto Chemical)
(24) Zinc stearate (10-11% (Zn), Wako Pure Chemical Industries)
(25) Sulfur powder (99.98%, Aldrich)
 以下、第1の実施形態に基づき、実施例1~12及び比較例1~5を説明する。 Hereinafter, Examples 1 to 12 and Comparative Examples 1 to 5 will be described based on the first embodiment.
 <実施例1>
〔Zn(Te1-x,Sex)コロイダル量子ドットの合成〕
 Zn(Te1-x,Sex)コロイダル量子ドットを合成するために、上記試薬の秤量から合成終了までの一連の操作は、主に窒素ガスが充填されたグローブボックス中で行った。一部のグローブボックス外での操作に関しては、溶液が大気に触れないように、窒素ガスで充填した密閉容器中で行った。
<Example 1>
[Synthesis of Zn (Te 1-x , Se x ) colloidal quantum dots]
In order to synthesize Zn (Te 1-x , Se x ) colloidal quantum dots, a series of operations from the weighing of the reagent to the end of the synthesis were performed mainly in a glove box filled with nitrogen gas. Operation outside some glove boxes was performed in a sealed container filled with nitrogen gas so that the solution did not come into contact with the atmosphere.
〔原料溶液の調製〕
 Te粉末:1.9142g(15mmol)とTOP:50mLを三口フラスコ中に秤量し、アルゴンガスを通気しながら250℃に加熱し、Te粉末が完全に溶解して黄透明色になるまで撹拌した。溶解後は室温まで放冷し、Te原料液とした。また、Se粉末:1.1845g(15mmol)とTOP:50mLをバイアル中に秤量し、超音波洗浄機に投入して、Se粉末を完全に溶解させ無色透明のSe原料液とした。上述のTe原料液、Se原料液、TOP、DEZをそれぞれ、コロイダル量子ドットのSeのモル組成比xSe=0.40になるように秤量し、10mLバイアル中で十分に混合して、原料溶液とした。なお、Zn原料液とTe原料液とSe原料液を個別に調製することもできるが、DEZは液状であるので、ここでは、Te原料液とSe原料液にTOPとDEZを混合・溶解し、第1混合液とした。
(Preparation of raw material solution)
Te powder: 1.9142 g (15 mmol) and TOP: 50 mL were weighed into a three-necked flask and heated to 250 ° C. while bubbling argon gas, and stirred until the Te powder was completely dissolved and became a yellow transparent color. After dissolution, the mixture was allowed to cool to room temperature to obtain a Te raw material liquid. Further, Se powder: 1.1845 g (15 mmol) and TOP: 50 mL were weighed in a vial and put into an ultrasonic cleaner to completely dissolve Se powder to obtain a colorless and transparent Se raw material liquid. The above Te raw material liquid, Se raw material liquid, TOP, DEZ are weighed so that the molar composition ratio Se of colloidal quantum dots x Se = 0.40 and mixed well in a 10 mL vial to obtain a raw material solution It was. In addition, although Zn raw material liquid, Te raw material liquid, and Se raw material liquid can also be prepared separately, DEZ is in a liquid state, and here, TOP and DEZ are mixed and dissolved in Te raw material liquid and Se raw material liquid, It was set as the 1st liquid mixture.
〔Zn(Te1-x,Sex)コロイダル量子ドットの合成手順〕
 100mLの四つ口フラスコにキャッピング剤としてのOA:6.48mL(20mmol)と希釈剤としてのODE:20mLをそれぞれ秤量して混合し、第2混合液を調製した。この第2混合液を撹拌しながら真空中で「120℃×30分間」の脱気処理を行った。その後、この第2混合液をアルゴンガスにて大気圧に戻し、アルゴンガスを通気・撹拌しながら290℃まで昇温した。この第2混合液の温度が安定したことを確認した後、この第2混合液に上記第1混合液をシリンジを用いて素早く注入した。注入後の反応液を撹拌しながら、270℃の温度で10分間保持してコロイダル量子ドットを成長させた後、室温まで放冷した。反応溶液は濁りがない透明な溶液であった。ここで、第2混合液の温度を290℃とすること、第1混合液を第2混合液に注入した後の成長温度を270℃とすること、その温度での成長時間を10分間とすることは、すべて、平均粒径を4.0±0.1nmに調整するための条件である。第2混合液の温度、第1混合液を第2混合液に注入した後の成長温度、その温度での成長時間、を調整することで、コロイダル量子ドットの粒径を調整することができる。以下の表2にこの条件を示す。
[Procedure for synthesizing Zn (Te 1-x , Se x ) colloidal quantum dots]
OA as a capping agent: 6.48 mL (20 mmol) and ODE as a diluent: 20 mL were weighed and mixed in a 100 mL four-necked flask to prepare a second mixed solution. The second mixture was stirred and degassed at 120 ° C. for 30 minutes. Then, this 2nd liquid mixture was returned to atmospheric pressure with argon gas, and it heated up to 290 degreeC, ventilating and stirring argon gas. After confirming that the temperature of this 2nd liquid mixture was stabilized, the said 1st liquid mixture was rapidly inject | poured into this 2nd liquid mixture using the syringe. While stirring the reaction liquid after the injection, the colloidal quantum dots were grown at a temperature of 270 ° C. for 10 minutes, and then allowed to cool to room temperature. The reaction solution was a clear solution without turbidity. Here, the temperature of the second liquid mixture is 290 ° C., the growth temperature after the first liquid mixture is injected into the second liquid mixture is 270 ° C., and the growth time at that temperature is 10 minutes. This is a condition for adjusting the average particle diameter to 4.0 ± 0.1 nm. By adjusting the temperature of the second mixed liquid, the growth temperature after the first mixed liquid is injected into the second mixed liquid, and the growth time at that temperature, the particle size of the colloidal quantum dots can be adjusted. Table 2 below shows this condition.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
〔Zn(Te1-x,Sex)コロイダル量子ドットの抽出〕
 こうして得られた反応溶液:12mLにヘキサン:6mLとエタノール:18mLを加えて凝集させた。遠心分離によって沈殿物としてコロイダル量子ドットを分離回収した。沈殿をヘキサン:6mLに再分散させ、再度エタノール:18mL加えて凝集させた。この操作を数回繰り返した後、室温で真空乾燥して残留するヘキサンとエタノールを除去した。これにより、コロイダル量子ドットを抽出した。
[Extraction of Zn (Te 1-x , Se x ) colloidal quantum dots]
To the reaction solution thus obtained: 12 mL, hexane: 6 mL and ethanol: 18 mL were added for aggregation. The colloidal quantum dots were separated and collected as a precipitate by centrifugation. The precipitate was redispersed in hexane: 6 mL, and ethanol: 18 mL was added again to cause aggregation. After repeating this operation several times, the remaining hexane and ethanol were removed by vacuum drying at room temperature. Thereby, colloidal quantum dots were extracted.
〔ZnSシェルの成長〕
 こうして得られたZn(Te1-x,Sex)コロイダル量子ドットをOLA:1mL、TOP:2mL、ODE:10mLと混合し、撹拌しながら真空中で「100℃×30分間」の脱気処理を行った。その後、アルゴンガスにて大気圧に戻し、アルゴンガスを通気・撹拌しながら240℃まで昇温した。そこに、DEZ:0.034mL、DDT:0.073mL、ODE:6mLを混合した溶液(約6mL)を30分間かけて滴下した。このとき、溶液の温度を240℃に保持した。滴下終了後、240℃で15分間保持し、室温まで放冷した。
[Growth of ZnS shell]
The Zn (Te 1-x , Se x ) colloidal quantum dots thus obtained were mixed with OLA: 1 mL, TOP: 2 mL, ODE: 10 mL, and degassed at “100 ° C. × 30 minutes” in vacuum with stirring. Went. Thereafter, the pressure was returned to atmospheric pressure with argon gas, and the temperature was raised to 240 ° C. while venting and stirring the argon gas. The solution (about 6 mL) which mixed DEZ: 0.034mL, DDT: 0.073mL, and ODE: 6mL was dripped there over 30 minutes. At this time, the temperature of the solution was kept at 240 ° C. After completion of dropping, the mixture was kept at 240 ° C. for 15 minutes and allowed to cool to room temperature.
〔Zn(Te1-x,Sex)/ZnSコアシェルコロイダル量子ドットの抽出〕
 こうして得られた反応溶液:2mLにヘキサン:1mLとエタノール:3mLを加えて凝集させた。遠心分離によって沈殿物としてコロイダル量子ドットを分離回収した。沈殿をヘキサン:1mLに再分散させ、再度エタノール:3mL加えて凝集させた。この操作を数回繰り返した後、室温で真空乾燥して残留するヘキサンとエタノールを除去した。これにより、コアシェルコロイダル量子ドットを抽出した。
[Extraction of Zn (Te 1-x , Se x ) / ZnS core-shell colloidal quantum dots]
To the reaction solution thus obtained: 2 mL, hexane: 1 mL and ethanol: 3 mL were added for aggregation. The colloidal quantum dots were separated and collected as a precipitate by centrifugation. The precipitate was redispersed in hexane: 1 mL, and agglomerated by adding 3 mL of ethanol again. After repeating this operation several times, the remaining hexane and ethanol were removed by vacuum drying at room temperature. Thereby, core-shell colloidal quantum dots were extracted.
 <実施例2~5及び比較例1>
 実施例2~5及び比較例1について、実施例1とそれぞれ同じTe原料液、Se原料液、TOP、DEZ等を用いた。実施例2~5及び比較例1では、これらのTe原料液、Se原料液、TOP、DEZ等を、上述した表2に示すように、コロイダル量子ドットのSeのモル組成比xSeとなるように、秤量するとともに、第2混合液の温度、第1混合液を第2混合液に注入した後の成長温度、その温度での成長時間を調整して、コロイダル量子ドットの粒径を調整した。それ以外は実施例1と同様にして、Zn(Te1-x,Sex)/ZnSコアシェルコロイダル量子ドットを合成した。
<Examples 2 to 5 and Comparative Example 1>
For Examples 2 to 5 and Comparative Example 1, the same Te raw material liquid, Se raw material liquid, TOP, DEZ and the like as in Example 1 were used. In Examples 2 to 5 and Comparative Example 1, these Te raw material liquid, Se raw material liquid, TOP, DEZ, and the like have a molar composition ratio x Se of colloidal quantum dots as shown in Table 2 above. And adjusting the particle size of the colloidal quantum dots by adjusting the temperature of the second mixed solution, the growth temperature after injecting the first mixed solution into the second mixed solution, and the growth time at that temperature. . Otherwise, in the same manner as in Example 1, Zn (Te 1-x , Se x ) / ZnS core-shell colloidal quantum dots were synthesized.
 <比較例2>
〔ZnSeコロイダル量子ドットの合成〕
〔原料溶液の調製〕
 無水酢酸亜鉛:18.3mg(0.1mmoL)、ODE:3.5mL(10.91mmoL)、OLA:0.330mL(1.00mmol)を10mLバイアル中に秤量し、60℃に加温した振とう機で撹拌して、無水酢酸亜鉛を完全に溶解させ無色透明なZn原料液を調製した。また、コロイダル量子ドットのSeのモル組成比xSe=1.00になるように、Se粉末:63.2mg(0.8mmol)、TOP:2.0mL(4.48mmol)を別の10mLバイアル中に秤量し、超音波洗浄機中でSe粉末を完全に溶解させて、無色透明のSe原料液を調製した。
<Comparative example 2>
[Synthesis of ZnSe colloidal quantum dots]
(Preparation of raw material solution)
Anhydrous zinc acetate: 18.3 mg (0.1 mmol), ODE: 3.5 mL (10.91 mmol), OLA: 0.330 mL (1.00 mmol) were weighed into a 10 mL vial and shaken at 60 ° C. The mixture was stirred in a machine to completely dissolve anhydrous zinc acetate to prepare a colorless and transparent Zn raw material liquid. Further, Se powder: 63.2 mg (0.8 mmol), TOP: 2.0 mL (4.48 mmol) in another 10 mL vial so that the Se molar composition ratio x Se = 1.00 of the colloidal quantum dots. The Se powder was completely dissolved in an ultrasonic cleaner to prepare a colorless and transparent Se raw material liquid.
〔ZnSeコロイダル量子ドットの合成手順〕
 上記Zn原料液の入った10mLバイアルに上記Se原料液:1.5mLを加え、十分に撹拌した後、280℃に加温したオイルバスに浸漬し、アルゴンガスを通気しながら9分間保持した。その後、バイアルをオイルバスから取り出し、室温まで放冷した。反応溶液は淡い黄透明色であった。
[Procedure for synthesizing ZnSe colloidal quantum dots]
The Se raw material solution: 1.5 mL was added to a 10 mL vial containing the Zn raw material solution, and after sufficient stirring, the mixture was immersed in an oil bath heated to 280 ° C. and held for 9 minutes while venting argon gas. Thereafter, the vial was taken out from the oil bath and allowed to cool to room temperature. The reaction solution was light yellow and transparent.
〔反応溶液からのZnSeコロイダル量子ドットの抽出〕
 上記反応溶液からのZnSeコロイダル量子ドットの抽出はZn(Te1-x,Sex)コロイダル量子ドットと同様の手順で行った。
[Extraction of ZnSe colloidal quantum dots from reaction solution]
Extraction of ZnSe colloidal quantum dots from the reaction solution was performed in the same procedure as for Zn (Te 1-x , Se x ) colloidal quantum dots.
 比較例2について、上記以外は、実施例1と同様にして、ZnSe/ZnSコアシェルコロイダル量子ドットを合成した。上述した表2に比較例2のコロイダル量子ドットのSeのモル組成比xSe、第2混合液の温度、第1混合液を第2混合液に注入した後の成長温度、その温度での成長時間をそれぞれ示す。 About the comparative example 2, except having the above, it carried out similarly to Example 1, and synthesize | combined the ZnSe / ZnS core-shell colloidal quantum dot. Table 2 above shows the molar composition ratio x Se of the colloidal quantum dots of Comparative Example 2, the temperature of the second mixed liquid, the growth temperature after the first mixed liquid is injected into the second mixed liquid, and the growth at that temperature. Each time is shown.
 <実施例6>
 実施例1とそれぞれ同じTe原料液、Se原料液、TOP、DEZをそれぞれ、コロイダル量子ドットのSeのモル組成比xSe=0.30になるように秤量し、10mLバイアル中で十分に混合して、第1混合液とした。一方、実施例1と同じOAとODEの混合溶液である第2混合液をアルゴンガス通気・撹拌しながら310℃まで昇温した。この第2混合液の温度が安定したことを確認した後、この第2混合液に上記第1混合液をシリンジを用いて素早く注入した。注入後の反応液は、撹拌しながら290℃の温度で10分間保持してコロイダル量子ドットを成長させた後、室温まで放冷した。それ以外は実施例1と同様にして、Zn(Te1-x,Sex)/ZnSコアシェルコロイダル量子ドットを合成した。以下の表3にコロイダル量子ドットのSeのモル組成比xSe、第2混合液の温度、第1混合液を第2混合液に注入した後の成長温度、その温度での成長時間をそれぞれ示す。
<Example 6>
The same Te raw material liquid, Se raw material liquid, TOP and DEZ as in Example 1 were weighed so that the molar composition ratio of Se of colloidal quantum dots x Se = 0.30, and mixed well in a 10 mL vial. Thus, a first mixed solution was obtained. On the other hand, the second mixed liquid, which is the same mixed solution of OA and ODE as in Example 1, was heated to 310 ° C. while agitating and stirring argon gas. After confirming that the temperature of this 2nd liquid mixture was stabilized, the said 1st liquid mixture was rapidly inject | poured into this 2nd liquid mixture using the syringe. The reaction solution after the injection was stirred for 10 minutes at a temperature of 290 ° C. to grow colloidal quantum dots, and then allowed to cool to room temperature. Otherwise, in the same manner as in Example 1, Zn (Te 1-x , Se x ) / ZnS core-shell colloidal quantum dots were synthesized. Table 3 below shows the molar composition ratio x Se of the colloidal quantum dots, the temperature of the second liquid mixture, the growth temperature after the first liquid mixture is injected into the second liquid mixture, and the growth time at that temperature. .
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 <実施例7~12>
 実施例7~12について、実施例1とそれぞれ同じTe原料液、Se原料液、TOP、DEZ等を用いた。実施例7~12では、これらのTe原料液、Se原料液、TOP、DEZ等を、上述した表3に示すように、コロイダル量子ドットのSeのモル組成比xSeとなるように、秤量するとともに、第2混合液の温度、第1混合液を第2混合液に注入した後の成長温度、その温度での成長時間を調整して、コロイダル量子ドットの粒径を調整した。それ以外は実施例6と同様にして、Zn(Te1-x,Sex)/ZnSコアシェルコロイダル量子ドットを合成した。
<Examples 7 to 12>
For Examples 7 to 12, the same Te raw material liquid, Se raw material liquid, TOP, DEZ and the like as in Example 1 were used. In Examples 7 to 12, these Te raw material liquid, Se raw material liquid, TOP, DEZ, and the like were weighed so that the molar composition ratio of Se of colloidal quantum dots xSe as shown in Table 3 above. The particle size of the colloidal quantum dots was adjusted by adjusting the temperature of the second liquid mixture, the growth temperature after injecting the first liquid mixture into the second liquid mixture, and the growth time at that temperature. Otherwise, in the same manner as in Example 6, Zn (Te 1-x , Se x ) / ZnS core-shell colloidal quantum dots were synthesized.
 <比較例3>
〔InP/ZnSコロイダル量子ドットの合成〕
〔InPコアコロイダル量子ドットの合成〕
 酢酸インジウム(In(C232)3):0.04mmolをパルミチン酸(C16322):0.12mmolとODE(C1836):2mLに加え、撹拌しながら110℃に昇温し、真空処理を1.5時間実施し、In原料液を調製した。一方、トリス(トリメチルシリル)ホスフィン(P(SiC39)  3):0.02mmolをODE(C1836):3mLに溶解し、P原料液を調製した。上記In原料液を、アルゴンガスにて大気圧に戻し、アルゴンガス通気・撹拌しながら300℃に昇温した。この昇温したIn原料液にシリンジにて所定量秤量された上記P原料液を素早く注入した後、直ちに室温まで急冷し、InPコアコロイダル量子ドット反応液を調製した。
<Comparative Example 3>
[Synthesis of InP / ZnS colloidal quantum dots]
[Synthesis of InP core colloidal quantum dots]
Indium acetate (In (C 2 H 3 O 2 ) 3 ): 0.04 mmol was added to palmitic acid (C 16 H 32 O 2 ): 0.12 mmol and ODE (C 18 H 36 ): 2 mL, and the mixture was stirred with 110 The temperature was raised to 0 ° C. and vacuum treatment was carried out for 1.5 hours to prepare an In raw material liquid. On the other hand, tris (trimethylsilyl) phosphine (P (SiC 3 H 9 )   3 ): 0.02 mmol was dissolved in ODE (C 18 H 36 ): 3 mL to prepare a P raw material solution. The In raw material liquid was returned to atmospheric pressure with argon gas, and the temperature was raised to 300 ° C. while aerated and stirred with argon gas. The P raw material solution weighed in a predetermined amount with a syringe was quickly injected into the heated In raw material solution, and then immediately cooled to room temperature to prepare an InP core colloidal quantum dot reaction solution.
〔ZnSシェル成長〕
 上記InPコアコロイダル量子ドット反応液に酢酸亜鉛(Zn(C232)3):0.1mmolを投入し、撹拌しながら230℃まで昇温し、数時間保持した。その後、この昇温保持した液に1-ドデカンチオール(C1226S):0.04mmolを素早く注入し、1時間保持して、InP/ZnSコアシェルコロイダル量子ドット反応液を調製した。
[ZnS shell growth]
Zinc acetate (Zn (C 2 H 3 O 2 ) 3 ): 0.1 mmol was added to the above InP core colloidal quantum dot reaction solution, heated to 230 ° C. with stirring, and maintained for several hours. Thereafter, 1-dodecanethiol (C 12 H 26 S): 0.04 mmol was quickly injected into this liquid held at elevated temperature and held for 1 hour to prepare an InP / ZnS core-shell colloidal quantum dot reaction liquid.
〔洗浄・回収〕
 上記InP/ZnSコアシェルコロイダル量子ドット反応液を室温まで冷却し、この冷却した液にイソプロパノール(C38O):40mLを加え、InP/ZnSコアシェルコロイダル量子ドットを凝集させた。遠心分離にて回収された沈殿物をトルエン(C78)適当量で再分散させ、イソプロパノールによる凝集と遠心分離による回収とトルエンによる再分散の一連の工程を数回繰り返した。最終的に得られた遠心分離による沈殿物を室温で真空乾燥し、残留している有機溶媒を除去して、InP/ZnSコアシェルコロイダル量子ドットを得た。
[Washing / collecting]
The InP / ZnS core-shell colloidal quantum dot reaction liquid was cooled to room temperature, and isopropanol (C 3 H 8 O): 40 mL was added to the cooled liquid to aggregate the InP / ZnS core-shell colloidal quantum dots. The precipitate recovered by centrifugation was redispersed with an appropriate amount of toluene (C 7 H 8 ), and a series of steps of aggregation with isopropanol, recovery by centrifugation, and redispersion with toluene were repeated several times. The finally obtained precipitate by centrifugation was vacuum-dried at room temperature, and the remaining organic solvent was removed to obtain InP / ZnS core-shell colloidal quantum dots.
 <比較例4>
〔CuInS2-ZnS合金/ZnSコロイダル量子ドットの合成〕
〔CuInS2-ZnS合金コアコロイダル量子ドットの合成〕
  ジエチルジチオカルバミン酸亜鉛(C102024Zn):0.25mmolをTOP(P(C817)3):3.0mLに室温にて溶解し、そこから1.0mLを採取し、ODE(C1836):4.0mLと混合した。これを亜鉛-硫黄溶液とした。沃化銅(CuI):0.1mmolを60℃にてOLA(C1837N):3.0mLに溶解した。これをCu液とした。沃化インジウム(InI3):0.1mmolを室温にてOLA:3.0mlに溶解した。これをIn溶液とした。亜鉛-硫黄溶液:2.5mLと銅溶液:1.25mLとIn溶液:1.25mLを秤量し、これらを混合した後、アルゴンガスをバブリングしながら200℃まで昇温し、そのまま60秒間維持し、CuInS2-ZnS合金コアコロイダル量子ドット反応液を調製した。
<Comparative example 4>
[Synthesis of CuInS 2 -ZnS alloy / ZnS colloidal quantum dots]
[Synthesis of CuInS 2 -ZnS alloy core colloidal quantum dots]
Zinc diethyldithiocarbamate (C 10 H 20 N 2 S 4 Zn): 0.25 mmol was dissolved in TOP (P (C 8 H 17 ) 3 ): 3.0 mL at room temperature, and 1.0 mL was collected therefrom. , ODE (C 18 H 36 ): mixed with 4.0 mL. This was used as a zinc-sulfur solution. Copper iodide (CuI): 0.1 mmol was dissolved in OLA (C 18 H 37 N): 3.0 mL at 60 ° C. This was made into Cu liquid. Indium iodide (InI 3 ): 0.1 mmol was dissolved in OLA: 3.0 ml at room temperature. This was designated as an In solution. Zinc-sulfur solution: 2.5 mL, copper solution: 1.25 mL, and In solution: 1.25 mL were weighed and mixed, then heated to 200 ° C. while bubbling argon gas and maintained for 60 seconds. A CuInS 2 —ZnS alloy core colloidal quantum dot reaction solution was prepared.
〔ZnSシェル成長〕
 上記CuInS2-ZnS合金コアコロイダル量子ドット反応液:1.0mLからCuInS2-ZnS合金コアコロイダル量子ドット:2.26mgを取り出した。非常に薄い硫化亜鉛シェルを成長させる場合には、これを、キャッピング剤としてOA(C18342):32μLを含んだジエチルジチオカルバミン酸亜鉛濃度:5.5mMのTOPとODEの混合溶液:1.5mLに再分散させた。比較的薄い硫化亜鉛シェルを成長させる場合には、キャッピング剤としてオレイン酸(C18342):210μLを含んだジエチルジチオカルバミン酸亜鉛濃度:35.3mMのTOPとODEの混合溶液:2.0mLに再分散させた。これらを140℃にて5時間反応させ、CuInS2-ZnS合金/ZnSコアシェルコロイダル量子ドット反応液を調製した。
[ZnS shell growth]
CuInS 2 —ZnS alloy core colloidal quantum dot: 2.26 mg was taken out from 1.0 mL of the above CuInS 2 —ZnS alloy core colloidal quantum dot reaction solution. When growing a very thin zinc sulfide shell, this is used as a capping agent OA (C 18 H 34 O 2 ): 32 μL of zinc diethyldithiocarbamate concentration: 5.5 mM TOP and ODE mixed solution: Redispersed to 1.5 mL. When growing a relatively thin zinc sulfide shell, zinc diethyldithiocarbamate containing 210 μL of oleic acid (C 18 H 34 O 2 ) as a capping agent: 35.3 mM of a mixed solution of TOP and ODE: 2. Redispersed in 0 mL. These were reacted at 140 ° C. for 5 hours to prepare a CuInS 2 —ZnS alloy / ZnS core-shell colloidal quantum dot reaction solution.
〔洗浄・回収〕
 上記CuInS2-ZnS合金/ZnSコアシェルコロイダル量子ドット反応液を室温まで冷却し、イソプロパノール(C38O):40mLを加え、CuInS2-ZnS合金/ZnSコアシェルコロイダル量子ドットを凝集させた。遠心分離にて回収された沈殿物をトルエン(C78)適当量で再分散させ、イソプロパノールによる凝集と遠心分離による回収とトルエンによる再分散の一連の工程を数回繰り返した。最終的に得られた遠心分離による沈殿物を室温で真空乾燥し、残留している有機溶媒を除去して、CuInS2-ZnS合金/ZnSコアシェルコロイダル量子ドットを得た。
[Washing / collecting]
The CuInS 2 —ZnS alloy / ZnS core / shell colloidal quantum dot reaction liquid was cooled to room temperature, isopropanol (C 3 H 8 O): 40 mL was added, and the CuInS 2 —ZnS alloy / ZnS core / shell colloidal quantum dots were aggregated. The precipitate recovered by centrifugation was redispersed with an appropriate amount of toluene (C 7 H 8 ), and a series of steps of aggregation with isopropanol, recovery by centrifugation, and redispersion with toluene were repeated several times. The finally obtained precipitate by centrifugation was vacuum-dried at room temperature, and the remaining organic solvent was removed to obtain a CuInS 2 —ZnS alloy / ZnS core-shell colloidal quantum dot.
 <比較例5>
〔CdSe/ZnSコロイダル量子ドットの合成〕
〔コアとして用いるCdSeコロイダル量子ドットの合成〕
(Cd原料液の調製)
 酢酸カドミウム二水和物粉末:42.6mg(0.16mmol)を12mLねじ口瓶に秤量し、OA:264μL及びODE:8.0mLを加えた。180℃のオイルバスを用いて60分間加熱し、粉末を溶解してCd原料液を調製した。このCd原料液は無色透明であった。
(Se原料液の調製)
 Se粉末:94.8mg(1.2mmol)を12mLねじ口瓶に秤量し、TOP:5.0mLを加え、チューブミキサーと超音波での撹拌を行うことで、粉末は簡単に溶解してSe原料液を調製した。このSe原料液は無色透明であった。
(Cd原料液とSe原料液の混合・反応)
 上記Cd原料液:2.0mLと上記Se原料液:1.0mLをそれぞれ採取し、12mLねじ口瓶中で混合した。キャッピング剤としてオクチルアミン:150μLを加えた。チューブミキサーでよく撹拌した後、280℃のオイルバスに浸漬し、緑色光を発光する粒径に成長するまで、所定時間加熱反応を行った。
<Comparative Example 5>
[Synthesis of CdSe / ZnS colloidal quantum dots]
[Synthesis of CdSe colloidal quantum dots used as cores]
(Preparation of Cd raw material liquid)
Cadmium acetate dihydrate powder: 42.6 mg (0.16 mmol) was weighed into a 12 mL screw cap bottle, and OA: 264 μL and ODE: 8.0 mL were added. It heated for 60 minutes using the oil bath of 180 degreeC, the powder was melt | dissolved, and Cd raw material liquid was prepared. This Cd raw material liquid was colorless and transparent.
(Preparation of Se raw material liquid)
Se powder: 94.8 mg (1.2 mmol) is weighed into a 12 mL screw cap bottle, TOP: 5.0 mL is added, and the powder is easily dissolved by stirring with a tube mixer and ultrasonic waves. A liquid was prepared. This Se raw material liquid was colorless and transparent.
(Mixing and reaction of Cd raw material liquid and Se raw material liquid)
The Cd raw material solution: 2.0 mL and the Se raw material solution: 1.0 mL were collected and mixed in a 12 mL screw mouth bottle. As a capping agent, 150 μL of octylamine was added. After stirring well with a tube mixer, it was immersed in an oil bath at 280 ° C. and subjected to a heating reaction for a predetermined time until it grew to a particle size emitting green light.
〔合成後のコロイド溶液からのCdSeコアコロイダル量子ドットの回収〕
 反応溶液:約3.0mLを試験管に分け、ブタノールを4倍量(12.0mL)加え希釈した。次に、この希釈液にメタノールを2倍量(6.0mL)加え、量子ドットを凝集させた。遠心分離を15分間行い、無色透明の上澄み溶液と真っ赤な沈殿に分離し、上澄み溶液を除去した。
[Recovery of CdSe core colloidal quantum dots from colloidal solution after synthesis]
Reaction solution: About 3.0 mL was divided into test tubes, and 4-fold amount (12.0 mL) of butanol was added for dilution. Next, 2 times the amount of methanol (6.0 mL) was added to the diluted solution to aggregate the quantum dots. Centrifugation was carried out for 15 minutes to separate a colorless and transparent supernatant solution and a bright red precipitate, and the supernatant solution was removed.
〔被覆用ZnS原料液の調製〕
(Zn(st)2をZn源にドデカンチオールをS源に用いた被覆)
 Zn(st)2:31.6mg(0.05mmol)を12mLねじ口瓶に秤量し、ODE:2.0mLを加えた。この液を140℃のオイルバスで10分間程度加熱し、粉末を融解した。ねじ口瓶を引上げて室温まで冷却すると、粉末は再析出したが、このまま用いた。Sはドデカンチオールを溶媒兼S原料として用いた。
[Preparation of ZnS raw material solution for coating]
(Coating using Zn (st) 2 as Zn source and dodecanethiol as S source)
Zn (st) 2 : 31.6 mg (0.05 mmol) was weighed into a 12 mL screw mouth bottle, and ODE: 2.0 mL was added. This solution was heated in an oil bath at 140 ° C. for about 10 minutes to melt the powder. When the screw cap bottle was pulled up and cooled to room temperature, the powder re-deposited but was used as it was. S used dodecanethiol as a solvent and S raw material.
〔ZnS原料液への再分散と混合・被覆処理〕
(再分散と混合)
 CdSeコアコロイダル量子ドットの沈殿が入った試験管にS原料液:2.0mLを加え、再分散させた。それを準備しておいたZn原料液の入ったバイアルに移した。ドデカンチオールがキャッピング剤として働くことを期待して、キャッピング剤は添加しなかった。
(加熱・被覆処理)
 出発溶液を210℃のオイルバスで120分間加熱した。
[Re-dispersion in ZnS raw material and mixing / coating]
(Redispersion and mixing)
S raw material liquid: 2.0 mL was added to a test tube containing a precipitate of CdSe core colloidal quantum dots and redispersed. It was transferred to a vial containing the prepared Zn raw material solution. In the hope that dodecanethiol would act as a capping agent, no capping agent was added.
(Heating and coating treatment)
The starting solution was heated in a 210 ° C. oil bath for 120 minutes.
〔洗浄・回収〕
 CdSe/ZnSコアシェルコロイダル量子ドット反応液を室温まで冷却し、イソプロパノール(C38O):40mLを加え、CdSe/ZnSコアシェルコロイダル量子ドットを凝集させた。遠心分離にて回収された沈殿物をトルエン(C78)適当量で再分散させ、イソプロパノールによる凝集と遠心分離による回収とトルエンによる再分散の一連の工程を数回繰り返した。最終的に得られた遠心分離による沈殿物を室温で真空乾燥し、残留している有機溶媒を除去して、CdSe/ZnSコアシェルコロイダル量子ドットを合成した。
[Washing / collecting]
CdSe / ZnS core-shell colloidal quantum dot reaction liquid was cooled to room temperature, isopropanol (C 3 H 8 O): 40 mL was added, and CdSe / ZnS core-shell colloidal quantum dots were aggregated. The precipitate recovered by centrifugation was redispersed with an appropriate amount of toluene (C 7 H 8 ), and a series of steps of aggregation with isopropanol, recovery by centrifugation, and redispersion with toluene were repeated several times. The finally obtained precipitate obtained by centrifugation was vacuum-dried at room temperature to remove the remaining organic solvent, and CdSe / ZnS core-shell colloidal quantum dots were synthesized.
 以下、第2の実施形態に基づき、実施例13~24及び比較例6~9を説明する。 Hereinafter, Examples 13 to 24 and Comparative Examples 6 to 9 will be described based on the second embodiment.
 <実施例13>
〔Zn(Te1-x,Sx)コロイダル量子ドットの合成〕
 Zn(Te1-x,Sx)コロイダル量子ドットを合成するために、試薬の秤量から合成終了までの一連の操作は、実施例1と同様に、主に窒素ガスが充填されたグローブボックス中で行った。一部のグローブボックス外での操作に関しては、実施例1と同様に、溶液が大気に触れないように、窒素ガスで充填した密閉容器中で行った。
<Example 13>
[Synthesis of Zn (Te 1-x , S x ) colloidal quantum dots]
In order to synthesize Zn (Te 1-x , S x ) colloidal quantum dots, a series of operations from the weighing of reagents to the end of synthesis were carried out in a glove box mainly filled with nitrogen gas, as in Example 1. I went there. The operation outside some glove boxes was performed in a sealed container filled with nitrogen gas in the same manner as in Example 1 so that the solution did not come into contact with the atmosphere.
〔Te原料液の調製〕
 Te粉末:114.8mg(0.90mmol)とTOP:3.00mL(6.72mmol)を10mLセプタムバイアル中に秤量し、アルゴンガスを通気しながら200℃に加熱し、Te粉末が完全に溶解して黄透明色になるまで撹拌した。溶解後は室温まで放冷し、Te原料液(0.3M)とした。
〔ZnTe原料液の調製〕
上記Te原料液(0.3M)をコロイダル量子ドットのSのモル組成比xS=0.45(Teのモル組成比1-xS=0.55)になるように秤量し、そこにZn原料液としてのジエチル亜鉛(DEZ):25μL(0.25mmol)を添加し、TOPにて全容量が2mLとなるように調整した。チューブミキサーにて十分に混合すると、溶液の色は黄透明色から無色透明に変化した。このZn原料液とTe原料液とを混合した混合溶液を第3混合液とした。
〔S原料液の調製〕
S原料液としての1-ドデカンチオールをコロイダル量子ドットのSのモル組成比xS=0.45になるように秤量し、そこにキャッピング剤としてのOLA:9.4mL(20mmol)を添加し、希釈剤としてのODEにて全容量が20mLとなるように調整した。チューブミキサーにて十分に混合し、このS原料液とキャッピング剤と希釈剤を混合して第4混合液を調製した。
[Preparation of Te raw material liquid]
Te powder: 114.8 mg (0.90 mmol) and TOP: 3.00 mL (6.72 mmol) were weighed into a 10 mL septum vial and heated to 200 ° C. while bubbling argon gas, and the Te powder was completely dissolved. The mixture was stirred until it became a yellow transparent color. After dissolution, the mixture was allowed to cool to room temperature to obtain a Te raw material liquid (0.3M).
[Preparation of ZnTe raw material solution]
The Te raw material liquid (0.3 M) was weighed so that the molar composition ratio x S of colloidal quantum dots x s = 0.45 (the molar composition ratio of Te 1-x s = 0.55). Diethyl zinc (DEZ) as a raw material liquid: 25 μL (0.25 mmol) was added, and the total volume was adjusted to 2 mL with TOP. When mixed well with a tube mixer, the color of the solution changed from yellow transparent to colorless and transparent. A mixed solution obtained by mixing the Zn raw material liquid and the Te raw material liquid was used as a third mixed liquid.
[Preparation of S raw material solution]
1-dodecanethiol as the S raw material liquid was weighed so that the molar composition ratio x S of colloidal quantum dots x S = 0.45, and OLA as a capping agent: 9.4 mL (20 mmol) was added thereto, The total volume was adjusted to 20 mL with ODE as a diluent. This was mixed sufficiently with a tube mixer, and this S raw material liquid, capping agent and diluent were mixed to prepare a fourth mixed liquid.
〔Zn(Te1-x,Sx)コロイダル量子ドットの合成手順〕
 上記第4混合液を撹拌しながら真空中で「120℃×30分間」の脱気処理を行った。その後、アルゴンガスにて大気圧に戻し、アルゴンガスを通気・撹拌しながら300℃まで昇温した。この第4混合液の温度が安定したことを確認した後、この第4混合液に上記第3混合液をシリンジを用いて素早く注入した。注入後の反応液を撹拌しながら、290℃の温度で15分間保持してコロイダル量子ドットを成長させた後、室温まで放冷した。反応溶液は濁りがない透明な溶液であった。ここで、第4混合液の温度を300℃にすること、第3混合液を第4混合液に注入した後の成長温度を290℃にすること、その温度での成長時間を15分間とすることは、すべて、平均粒径を6.0±0.1nmに調整するための条件である。第4混合液の温度、第3混合液を第4混合液に注入した後の成長温度、その温度での成長時間、を調整することで、コロイダル量子ドットの粒径を調整することができる。以下の表4にこの条件を示す。
[Procedure for synthesizing Zn (Te 1-x , S x ) colloidal quantum dots]
The degassing process of “120 ° C. × 30 minutes” was performed in vacuum while stirring the fourth mixed solution. Thereafter, the pressure was returned to atmospheric pressure with argon gas, and the temperature was raised to 300 ° C. while the argon gas was aerated and stirred. After confirming that the temperature of this 4th liquid mixture was stabilized, the said 3rd liquid mixture was rapidly inject | poured into this 4th liquid mixture using the syringe. While stirring the reaction liquid after the injection, the colloidal quantum dots were grown at a temperature of 290 ° C. for 15 minutes, and then allowed to cool to room temperature. The reaction solution was a clear solution without turbidity. Here, the temperature of the fourth mixed solution is set to 300 ° C., the growth temperature after the third mixed solution is injected into the fourth mixed solution is set to 290 ° C., and the growth time at that temperature is set to 15 minutes. This is a condition for adjusting the average particle diameter to 6.0 ± 0.1 nm. By adjusting the temperature of the fourth mixed liquid, the growth temperature after the third mixed liquid is injected into the fourth mixed liquid, and the growth time at that temperature, the particle size of the colloidal quantum dots can be adjusted. Table 4 below shows this condition.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例13で得られたZn(Te1-x,Sx)コロイダル量子ドットの抽出、こうして得られたZn(Te1-x,Sx)コロイダル量子ドットをコアとするZnSシェルの成長、こうして得られたZn(Te1-x,Sx)/ZnSコアシェルコロイダル量子ドットの抽出については、それぞれ実施例1と同様に行った。 Extraction of Zn (Te 1-x , S x ) colloidal quantum dots obtained in Example 13, growth of ZnS shell with Zn (Te 1-x , S x ) colloidal quantum dots thus obtained as a core, thus Extraction of the obtained Zn (Te 1-x , S x ) / ZnS core-shell colloidal quantum dots was performed in the same manner as in Example 1.
 <実施例14~17及び比較例6>
 実施例14~17及び比較例6について、実施例13とそれぞれ同じTe原料液、S原料液、TOP、DEZ等を用いた。実施例14~17及び比較例6では、これらのTe原料液、S原料液、TOP、DEZ等を、上述した表4に示すように、コロイダル量子ドットのSのモル組成比xSとなるように、秤量するとともに、第4混合液の温度、第3混合液を第4混合液に注入した後の成長温度、その温度での成長時間を調整して、コロイダル量子ドットの粒径を6.0±0.1nmに調整した。それ以外は実施例13と同様にして、Zn(Te1-x,Sx)/ZnSコアシェルコロイダル量子ドットを合成した。
<Examples 14 to 17 and Comparative Example 6>
For Examples 14 to 17 and Comparative Example 6, the same Te raw material liquid, S raw material liquid, TOP, DEZ and the like as in Example 13 were used. In Examples 14 to 17 and Comparative Example 6, these Te raw material liquid, S raw material liquid, TOP, DEZ, and the like have a molar composition ratio x S of S of colloidal quantum dots as shown in Table 4 above. And adjusting the temperature of the fourth mixed solution, the growth temperature after injecting the third mixed solution into the fourth mixed solution, and the growth time at that temperature to adjust the particle size of the colloidal quantum dots to 6. Adjusted to 0 ± 0.1 nm. Otherwise, in the same manner as in Example 13, a Zn (Te 1-x , S x ) / ZnS core-shell colloidal quantum dot was synthesized.
 <比較例7>
〔ZnSコロイダル量子ドットの合成〕
[原料溶液の調製]
 無水酢酸亜鉛:18.3mg(0.1mmoL)、ODE:3.5mL(10.91mmoL)、OLA:0.330mL(1.00mmol)を10mLバイアル中に秤量し、60℃に加温した振とう機で撹拌して、無水酢酸亜鉛を完全に溶解させ無色透明なZn原料液を調製した。また、コロイダル量子ドットのSのモル組成比xS=1.00になるように、S粉末:25.7mg(0.8mmol)、TOP:2.0mL(4.48mmol)を別の10mLバイアル中に秤量し、超音波洗浄機中でS粉末を完全に溶解させて、無色透明のS原料液を調製した。
<Comparative Example 7>
[Synthesis of ZnS colloidal quantum dots]
[Preparation of raw material solution]
Anhydrous zinc acetate: 18.3 mg (0.1 mmol), ODE: 3.5 mL (10.91 mmol), OLA: 0.330 mL (1.00 mmol) were weighed into a 10 mL vial and shaken at 60 ° C. The mixture was stirred in a machine to completely dissolve anhydrous zinc acetate to prepare a colorless and transparent Zn raw material liquid. Further, S powder: 25.7 mg (0.8 mmol) and TOP: 2.0 mL (4.48 mmol) were added to another 10 mL vial so that the molar composition ratio of S of the colloidal quantum dot x S = 1.00. The S powder was completely dissolved in an ultrasonic cleaner to prepare a colorless and transparent S raw material solution.
〔ZnSコロイダル量子ドットの合成手順〕
 上記Zn原料液の入った10mLバイアルに上記S原料液:1.5mLを加え、十分に撹拌した後、280℃に加温したオイルバスに浸漬し、アルゴンガスを通気しながら9分間保持した。その後、バイアルをオイルバスから取り出し、室温まで放冷した。反応溶液は淡い黄透明色であった。
[Procedure for synthesizing ZnS colloidal quantum dots]
The S raw material solution: 1.5 mL was added to a 10 mL vial containing the Zn raw material solution, and after sufficient stirring, immersed in an oil bath heated to 280 ° C. and held for 9 minutes while venting argon gas. Thereafter, the vial was taken out from the oil bath and allowed to cool to room temperature. The reaction solution was light yellow and transparent.
〔反応溶液からのZnSコロイダル量子ドットの抽出〕
 上記反応溶液からのZnSコロイダル量子ドットの抽出はZn(Te1-x,Sx)コロイダル量子ドットと同様の手順で行った。
[Extraction of ZnS colloidal quantum dots from reaction solution]
Extraction of ZnS colloidal quantum dots from the reaction solution was performed in the same procedure as for Zn (Te 1-x , S x ) colloidal quantum dots.
 上述した表4に比較例7のコロイダル量子ドットのSのモル組成比xS、第4混合液の温度、第3混合液を第4混合液に注入した後の成長温度、その温度での成長時間をそれぞれ示す。 In Table 4 above, the molar composition ratio x S of the colloidal quantum dots of Comparative Example 7, the temperature of the fourth mixed solution, the growth temperature after injecting the third mixed solution into the fourth mixed solution, and the growth at that temperature Each time is shown.
 <実施例18>
 実施例13とそれぞれ同じTe原料液、TOP、DEZをそれぞれ、コロイダル量子ドットのSのモル組成比xS=0.35になるように秤量し、10mLバイアル中で十分に混合して、第3混合液とした。一方、S原料をSのモル組成比xS=0.35になるように秤量し、そこにOAとODEを添加して作製した第4混合液をアルゴンガス通気・撹拌しながら310℃まで昇温した。この第4混合液の温度が安定したことを確認した後、この第4混合液に上記第3混合液をシリンジを用いて素早く注入した。注入後の反応液は、撹拌しながら290℃の温度で10分間保持してコロイダル量子ドットを成長させた後、室温まで放冷した。それ以外は実施例13と同様にZn(Te1-x,Sx)/ZnSコアシェルコロイダル量子ドットを合成した。以下の表5にコロイダル量子ドットのSのモル組成比xS、第4混合液の温度、第3混合液を第4混合液に注入した後の成長温度、その温度での成長時間をそれぞれ示す。
<Example 18>
The same Te raw material solution, TOP, DEZ as in Example 13 were weighed so that the molar composition ratio S of colloidal quantum dots x s = 0.35, and mixed well in a 10 mL vial. A mixed solution was obtained. On the other hand, the S raw material was weighed so that the molar composition ratio x S of S was 0.35, and OA and ODE were added thereto, and the fourth mixed liquid was raised to 310 ° C. while aerated and stirred with argon gas. Warm up. After confirming that the temperature of this 4th liquid mixture was stabilized, the said 3rd liquid mixture was rapidly inject | poured into this 4th liquid mixture using the syringe. The reaction solution after the injection was stirred for 10 minutes at a temperature of 290 ° C. to grow colloidal quantum dots, and then allowed to cool to room temperature. Otherwise, Zn (Te 1-x , S x ) / ZnS core-shell colloidal quantum dots were synthesized in the same manner as in Example 13. Table 5 below shows the molar composition ratio x S of colloidal quantum dots S , the temperature of the fourth liquid mixture, the growth temperature after injecting the third liquid mixture into the fourth liquid mixture, and the growth time at that temperature. .
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 <実施例19~24>
 実施例19~24では、これらのTe原料液、TOP、DEZ等を、上述した表5に示すように、コロイダル量子ドットのSのモル組成比xSとなるように、秤量するとともに、S原料をSのモル組成比xSになるように秤量し、そこにOAとODEを添加して作製した第4混合液の温度、第3混合液を第4混合液に注入した後の成長温度、その温度での成長時間を調整して、コロイダル量子ドットの粒径を調整した。それ以外は実施例18と同様にして、Zn(Te1-x,Sx)/ZnSコアシェルコロイダル量子ドットを合成した。
<Examples 19 to 24>
In Examples 19 to 24, these Te raw material liquids, TOP, DEZ, and the like are weighed so that the molar composition ratio x S of S of colloidal quantum dots is as shown in Table 5 above, and the S raw material Is measured so as to have a molar composition ratio x S of S , and the temperature of the fourth mixed solution prepared by adding OA and ODE thereto, the growth temperature after injecting the third mixed solution into the fourth mixed solution, The particle size of the colloidal quantum dots was adjusted by adjusting the growth time at that temperature. Other than that was carried out similarly to Example 18, and the Zn (Te1 -x , Sx ) / ZnS core-shell colloidal quantum dot was synthesize | combined.
 <比較例8>
〔InP/ZnSコロイダル量子ドットの合成〕
 比較例8のInPコアコロイダル量子ドットの合成では、昇温したIn原料液にシリンジにて所定量秤量されたP原料液を素早く注入した後、比較例3では直ちに室温まで急冷していたのに対して、比較例8では30分間維持し、InPコアコロイダル量子ドット反応液を調製した。この30分維持する以外は、比較例3と同様にしてInPコアコロイダル量子ドット反応液を調製し、更に続いてInP/ZnSコアシェルコロイダル量子ドットを得た。
<Comparative Example 8>
[Synthesis of InP / ZnS colloidal quantum dots]
In the synthesis of the InP core colloidal quantum dot of Comparative Example 8, the P raw material liquid weighed in a predetermined amount with a syringe was quickly injected into the heated In raw material liquid, and then immediately cooled to room temperature in Comparative Example 3. In contrast, Comparative Example 8 was maintained for 30 minutes to prepare an InP core colloidal quantum dot reaction solution. An InP core colloidal quantum dot reaction solution was prepared in the same manner as in Comparative Example 3 except that this was maintained for 30 minutes, and then an InP / ZnS core-shell colloidal quantum dot was obtained.
 <比較例9>
〔CuInS2-ZnS合金/ZnSコロイダル量子ドットの合成〕
 比較例9のCuInS2-ZnS合金コアコロイダル量子ドットの合成では、アルゴンガスをバブリングしながら200℃まで昇温し、比較例4ではそのまま60秒間維持していたのに対して、比較例9ではそのまま3分間維持して、CuInS2-ZnS合金コアコロイダル量子ドット反応液を調製した。この3分間維持する以外は、比較例4と同様にしてCuInS2-ZnS合金コアコロイダル量子ドット反応液を調製し、更に続いてCuInS2-ZnS合金/ZnSコアシェルコロイダル量子ドットを得た。
<Comparative Example 9>
[Synthesis of CuInS 2 -ZnS alloy / ZnS colloidal quantum dots]
In the synthesis of the CuInS 2 —ZnS alloy core colloidal quantum dot of Comparative Example 9, the temperature was raised to 200 ° C. while bubbling argon gas, and in Comparative Example 4, the temperature was maintained as it was for 60 seconds, whereas in Comparative Example 9, The reaction mixture was maintained for 3 minutes to prepare a CuInS 2 —ZnS alloy core colloidal quantum dot reaction solution. A CuInS 2 —ZnS alloy core colloidal quantum dot reaction liquid was prepared in the same manner as in Comparative Example 4 except that this was maintained for 3 minutes, and then a CuInS 2 —ZnS alloy / ZnS core shell colloidal quantum dot was obtained.
 <比較例10>
〔CdSe/ZnSコロイダル量子ドットの合成〕
  比較例10のCdSe/ZnSコロイダル量子ドットの合成では、Cd原料液とSe原料液の混合液にキャッピング剤を加えて撹拌混合した後、280℃のオイルバスに浸漬し、比較例5では緑色光を発光する粒径に成長するまで、所定時間加熱反応を行ったのに対して、比較例10では赤色光を発光する粒径まで成長するまで、所定時間の加熱反応を行った。これ以外は、比較例5と同様にしてCdSe/ZnSコアシェルコロイダル量子ドットを得た。
<Comparative Example 10>
[Synthesis of CdSe / ZnS colloidal quantum dots]
In the synthesis of the CdSe / ZnS colloidal quantum dots of Comparative Example 10, a capping agent was added to the liquid mixture of the Cd raw material liquid and the Se raw material liquid, and the mixture was stirred and mixed, and then immersed in an oil bath at 280 ° C. In contrast, in Comparative Example 10, the heating reaction was performed for a predetermined time until it grew to a particle size emitting red light. Other than this, CdSe / ZnS core-shell colloidal quantum dots were obtained in the same manner as in Comparative Example 5.
 <Zn(Te1-x,Sex)コロイダル量子ドットの比較評価>
 実施例1~12及び比較例1~5で得られたZn(Te1-x,Sex)コロイダル量子ドットについて、平均粒径を4.0±0.1nmの一定にして、上述したSeのモル仕込比(xSe)を0.00から1.00に変量したときの(1)吸光・発光特性、及び(2)コロイダル量子ドットの平均粒径を下記に示す方法で調べた。これらの結果を上述した表2、表3及び以下の表6に示す。
<Comparative evaluation of Zn (Te 1-x , Se x ) colloidal quantum dots>
With respect to the Zn (Te 1-x , Se x ) colloidal quantum dots obtained in Examples 1 to 12 and Comparative Examples 1 to 5, the average particle diameter was kept constant at 4.0 ± 0.1 nm, and the above-mentioned Se When the molar charge ratio (x Se ) was varied from 0.00 to 1.00, (1) absorption / luminescence characteristics and (2) average particle diameter of colloidal quantum dots were examined by the following methods. These results are shown in Tables 2 and 3 and Table 6 below.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 (1)吸光・発光特性
 吸光・発光特性はそれぞれ日立製の分光測定装置(U4100)と日本分光製の蛍光分光測定装置(FP6500)にて測定した。吸光・発光ピークのエネルギー[eV]は、ピーク波長λ[nm]より、次の式(7)を用いて求めた。ここで、プランク定数は6.62607×10-34[Jsec]、cは真空中の光速:2.99792×108[m/sec]である。
     E=プランク定数×c/λ (7)
ここで、吸光ピークのエネルギー値を光学ギャップとした。発光ピークの波長を発光波長とした。吸光・発光ピークの各エネルギー値の差をストークスシフトとした。発光ピークの半分の高さにおける発光プロファイルの幅を半値全幅とした。
(1) Absorption / Emission Characteristics Absorption / emission characteristics were measured with a Hitachi spectrophotometer (U4100) and a JASCO spectrofluorometer (FP6500), respectively. The energy [eV] of the light absorption / emission peak was determined from the peak wavelength λ [nm] using the following formula (7). Here, the Planck's constant is 6.62607 × 10 −34 [Jsec], and c is the speed of light in a vacuum: 2.99792 × 10 8 [m / sec].
E = Planck constant × c / λ (7)
Here, the energy value of the absorption peak was defined as the optical gap. The wavelength of the emission peak was defined as the emission wavelength. The difference between the energy values of the absorption and emission peaks was defined as Stokes shift. The width of the light emission profile at half the height of the light emission peak was defined as the full width at half maximum.
 (2)コロイダル量子ドットの平均粒径
 コロイダル量子ドットの平均粒径の算出には粉末X線回折測定法(XRD:X-ray diffraction)を用いた。回転型陰極X線発生源と湾曲モノクロメータを備えたX線回折装置(RINT2500、リガク)を使って、X線加速電圧:40kV、電流:375mA(15kW)で発生したCu-Kα線を、無反射石英板上のコロイダル量子ドットに照射して測定した。平均粒子径dXRDはXRDにより得られた回折パターンの半値幅(FWHM:Full Width at Half Maximum)から次の式(8)に示すシェラーの式を用いて算出した。ここで、Bは回折パターンの半値幅[rad]、θは回折角[rad]とする。シェラー定数には0.9を用いた。(111)面、(220)面、(311)面の各回折面における回折パターンのcosθと0.9λ/Bのプロットの最小二乗法による線形近似から平均粒子径dXRDを求めた。
     dXRD=0.9λ/Bcosθ (8)
(2) Average particle diameter of colloidal quantum dots The average particle diameter of colloidal quantum dots was calculated by using a powder X-ray diffraction measurement method (XRD: X-ray diffraction). Using an X-ray diffractometer (RINT2500, Rigaku) equipped with a rotating cathode X-ray generation source and a curved monochromator, Cu-Kα rays generated at an X-ray acceleration voltage of 40 kV and current of 375 mA (15 kW) It was measured by irradiating colloidal quantum dots on a reflective quartz plate. The average particle diameter d XRD was calculated from the full width at half maximum (FWHM) of the diffraction pattern obtained by XRD using the Scherrer equation shown in the following equation (8). Here, B is the half width [rad] of the diffraction pattern, and θ is the diffraction angle [rad]. 0.9 was used for the Scherrer constant. The average particle diameter d XRD was obtained from the linear approximation by the least square method of the cos θ and 0.9λ / B plots of the diffraction patterns on the diffraction planes of the (111) plane, the (220) plane, and the (311) plane.
d XRD = 0.9λ / Bcos θ (8)
 上述した表2から明らかなように、平均粒径を4.0±0.1nmに調整したとき、Seのモル仕込比(xSe)を0<xSe<1の範囲にて調整すると、Zn(Te1-x,Sex)コロイダル量子ドットの発光エネルギーを、緑色領域:2.15~2.45eVの範囲内で所望の値に制御することができた。特に、Seのモル仕込比(xSe)が0.25~0.40の範囲にて、Zn(Te1-x,Sex)コロイダル量子ドットは発光エネルギーの最小値:約2.3eVを示していた。 As apparent from Table 2 above, when the average particle size was adjusted to 4.0 ± 0.1 nm, the molar feed ratio (x Se ) of Se was adjusted within the range of 0 <x Se <1, Zn The emission energy of the (Te 1-x , Se x ) colloidal quantum dots could be controlled to a desired value in the green region: 2.15 to 2.45 eV. In particular, when the Se molar charge ratio (x Se ) is in the range of 0.25 to 0.40, the Zn (Te 1-x , Se x ) colloidal quantum dot exhibits a minimum emission energy of about 2.3 eV. It was.
 Zn(Te1-x,Sex)のSeのモル仕込比(xSe)を0.30の一定にして、平均粒径を調整したときのコロイダル量子ドットの合成条件を上述した表3に示す。 Table 3 above shows the synthesis conditions of colloidal quantum dots when the average particle size is adjusted by setting the Se molar charge ratio (x Se ) of Zn (Te 1-x , Se x ) to be constant at 0.30. .
 上述した表3から明らかなように、Seのモル仕込比(xSe)を0.30に調整したとき、OAとODEの混合溶液である第2混合液の温度、原料溶液である第1混合液をこの第2混合液に注入した後の成長温度、その温度での成長時間を調整して、平均粒径を3.5~6.3nmに調整することで、量子サイズ効果により、Zn(Te1-x,Sex)コロイダル量子ドットの発光エネルギーを緑色領域:2.15~2.45eVに調整することができた。特に、色域拡大に求められている緑色波長は530nm程度(2.33~2.34eV)であって、これを実現している実施例11に対して、表3の「緑色領域拡大への適合」の項目において、適合する場合を「有り」、適合しない場合を「無し」とした。 As is apparent from Table 3 above, when the Se feed ratio (x Se ) is adjusted to 0.30, the temperature of the second mixed solution, which is a mixed solution of OA and ODE, and the first mixing, which is a raw material solution By adjusting the growth temperature after injecting the liquid into the second mixed liquid and the growth time at that temperature, the average particle size is adjusted to 3.5 to 6.3 nm. The emission energy of the Te 1-x , Se x ) colloidal quantum dots could be adjusted to the green region: 2.15 to 2.45 eV. In particular, the green wavelength required for the color gamut expansion is about 530 nm (2.33 to 2.34 eV). In the “Compliance” item, “Yes” is indicated when conforming, and “None” when not conforming.
 表6から明らかなように、実施例7のコロイダル量子ドットを、可視蛍光が緑色光のCdを含まないコロイダル量子ドットの代表例であるInP/ZnS(比較例3)や三元系化合物半導体(比較例4)と比較したときに、第一に、平均粒径を大きくすることができるので、発光波長制御性が大きく向上しており、第二に、発光スペクトルの半値全幅(FWHM)のシャープさが大きく向上していることから、Cdを含まない既存のコロイダル量子ドットより良好な色度を実現でき、色域拡大が期待される。また、第三に、ストークスシフトが大きく低減し、エネルギーロスが大きく低減している。色域拡大に関して、CdSe/ZnS(比較例5)と同等の特性を示しており、Cd代替の動きが加速している中、CdSe/ZnSを代替するコロイダル量子ドットの有力候補だと考えることができることが判明した。 As is clear from Table 6, the colloidal quantum dots of Example 7 were made of InP / ZnS (Comparative Example 3), which is a representative example of colloidal quantum dots that do not contain Cd whose visible fluorescence is green, and ternary compound semiconductors ( When compared with Comparative Example 4), first, the average particle size can be increased, so the emission wavelength controllability is greatly improved, and second, the full width at half maximum (FWHM) of the emission spectrum is sharp. Therefore, the chromaticity better than that of the existing colloidal quantum dots not containing Cd can be realized, and the gamut expansion is expected. Third, the Stokes shift is greatly reduced, and the energy loss is greatly reduced. Regarding color gamut expansion, it shows the same characteristics as CdSe / ZnS (Comparative Example 5), and while the movement of Cd substitution is accelerating, it can be considered as a promising candidate for colloidal quantum dots that substitute CdSe / ZnS. It turns out that you can.
 <Zn(Te1-x,Sx)コロイダル量子ドットの比較評価>
  実施例13~24及び比較例6~7で得られたZn(Te1-x,Sx)コロイダル量子ドットについて、平均粒径を6.0±0.1nmの一定にして、上述したSのモル仕込比(xS)を0.00から1.00に変量したときの(1)吸光・発光特性、及び(2)コロイダル量子ドットの平均粒径を上述した方法で調べた。これらの結果を上述した表4、表5に示す。
<Comparison evaluation of Zn (Te1 -x , Sx ) colloidal quantum dots>
For the Zn (Te 1-x , S x ) colloidal quantum dots obtained in Examples 13 to 24 and Comparative Examples 6 to 7, the average particle diameter was kept constant at 6.0 ± 0.1 nm, and the above S When the molar charge ratio (x S ) was varied from 0.00 to 1.00, (1) absorption / luminescence characteristics, and (2) the average particle size of colloidal quantum dots were examined by the method described above. These results are shown in Tables 4 and 5 described above.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表4から明らかなように、平均粒径を6.0±0.1nmに調整したとき、Sのモル仕込比(xS)を0<xS<1の範囲にて調整すると、Zn(Te1-x,Sx)コロイダル量子ドットの発光エネルギーを、赤色領域:1.80~2.10eVの範囲内で所望の値に制御することができた。特に、Sのモル仕込比(xS)が0.30~0.35の範囲にて、Zn(Te1-x,Sx)コロイダル量子ドットは発光エネルギーの最小値:1.96eVを示していた。 As is apparent from Table 4, when the average particle size is adjusted to 6.0 ± 0.1 nm, the molar charge ratio (x S ) of S is adjusted in the range of 0 <x S <1, Zn (Te The emission energy of the 1-x , S x ) colloidal quantum dots could be controlled to a desired value within the red region: 1.80 to 2.10 eV. In particular, when the molar charge ratio (x S ) of S is in the range of 0.30 to 0.35, the Zn (Te 1-x , S x ) colloidal quantum dot exhibits a minimum emission energy of 1.96 eV. It was.
 Zn(Te1-x,Sx)のSのモル仕込比(xS)を0.35の一定にして、平均粒径を調整したときのコロイダル量子ドットの合成条件を上述した表5に示す。 Table 5 shows the synthesis conditions for colloidal quantum dots when the average particle size is adjusted with the S molar charge ratio (x S ) of Zn (Te 1-x , S x ) kept constant at 0.35. .
 表5から明らかなように、Sのモル仕込比(xS)を0.35に調整したとき、OAとODEの混合溶液である第4混合液の温度、原料溶液である第3混合液をこの第4混合液に注入した後の成長温度、その温度での成長時間を調整して、平均粒径を5.5~8.3nmに調整することで、量子サイズ効果により、Zn(Te1-x,Sx)コロイダル量子ドットの発光エネルギーを赤色領域:1.80~2.10eVに調整することができた。特に、色域拡大に求められている赤色波長は630nm程度(1.96~1.97eV)であって、これを実現している実施例19に対して、表5の「赤色領域拡大への適合」の項目において、適合する場合を「有り」、適合しない場合を「無し」とした。 As is apparent from Table 5, when the molar charge ratio of S (x S ) was adjusted to 0.35, the temperature of the fourth mixed solution, which is a mixed solution of OA and ODE, and the third mixed solution, which is a raw material solution, By adjusting the growth temperature after the injection into the fourth mixed solution and the growth time at that temperature, and adjusting the average particle size to 5.5 to 8.3 nm, Zn (Te 1 The emission energy of the -x , S x ) colloidal quantum dots could be adjusted to the red region: 1.80 to 2.10 eV. In particular, the red wavelength required for the color gamut expansion is about 630 nm (1.96 to 1.97 eV). In the “Compliance” item, “Yes” is indicated when conforming, and “None” when not conforming.
 表7から明らかなように、可視蛍光が赤色光のCdを含まないコロイダル量子ドットの代表例であるInP/ZnS(比較例8)や三元系化合物半導体(比較例9)と比較したときに、第一に、平均粒径を大きくすることができるので、発光波長制御性が大きく向上しており、第二に、発光スペクトルの半値全幅(FWHM)のシャープさが大きく向上していることから、Cdを含まない既存のコロイダル量子ドットより良好な色度を実現でき、色域拡大が期待される。また、第三に、ストークスシフトが大きく低減し、エネルギーロスが大きく低減している。色域拡大に関して、CdSe/ZnS(比較例10)と同等の特性を示しており、Cd代替の動きが加速している中、CdSe/ZnSを代替するコロイダル量子ドットの有力候補だと考えることができることが判明した。 As is apparent from Table 7, when visible fluorescence is compared with InP / ZnS (Comparative Example 8) and ternary compound semiconductors (Comparative Example 9), which are representative examples of colloidal quantum dots that do not contain Cd of red light. First, since the average particle size can be increased, the emission wavelength controllability is greatly improved, and, second, the sharpness of the full width at half maximum (FWHM) of the emission spectrum is greatly improved. , Chromaticity better than that of existing colloidal quantum dots not containing Cd can be realized, and a color gamut expansion is expected. Third, the Stokes shift is greatly reduced, and the energy loss is greatly reduced. It shows the same characteristics as CdSe / ZnS (Comparative Example 10) in terms of color gamut expansion. While the movement of Cd substitution is accelerating, it can be considered as a promising candidate for colloidal quantum dots that replace CdSe / ZnS. It turns out that you can.
 本発明の可視蛍光を発するコロイダル量子ドットは、ディスプレイ、照明、医療用画像、バイオセンサー、LED、レーザーの分野で利用することができる。 The colloidal quantum dots emitting visible fluorescence of the present invention can be used in the fields of displays, illumination, medical images, biosensors, LEDs, and lasers.

Claims (5)

  1.  化合物半導体からなるシェルで被覆され、前記シェルのコアをなすコア粒子であって、近紫外領域又は青色領域の波長を有する励起光を照射したときに可視蛍光を発するCdを含まないコロイダル量子ドットであって、
     化学式A(B11-x,B2x)(ただし、0<x<1)で表され、AサイトにII族元素としてのZnを、B1サイトにVI族元素としてのTeを、B2サイトにVI族元素としてのSe又はSをそれぞれ有し、
      平均粒径が1nm以上10nm以下であることを特徴とする可視蛍光を発するCdを含まないコロイダル量子ドット。
    A colloidal quantum dot that is coated with a shell made of a compound semiconductor and forms the core of the shell, and does not contain Cd that emits visible fluorescence when irradiated with excitation light having a wavelength in the near ultraviolet region or blue region. There,
    Chemical formula A (B1 1-x , B2 x ) (where 0 <x <1), Zn as a Group II element at the A site, Te as a Group VI element at the B1 site, and VI at the B2 site Each having Se or S as a group element;
    A colloidal quantum dot that does not contain Cd and emits visible fluorescence, wherein the average particle diameter is 1 nm or more and 10 nm or less.
  2.  前記B2サイトがSeであって、可視蛍光が緑色光である請求項1記載のCdを含まないコロイダル量子ドット。 The colloidal quantum dot containing no Cd according to claim 1, wherein the B2 site is Se and the visible fluorescence is green light.
  3.  前記B2サイトがSであって、可視蛍光が赤色光である請求項1記載のCdを含まないコロイダル量子ドット。 The colloidal quantum dot containing no Cd according to claim 1, wherein the B2 site is S and the visible fluorescence is red light.
  4.  Zn原料液とTe原料液とSe原料液とを混合して調製された第1混合液又はキャッピング剤と希釈剤とを混合して調製された第2混合液のいずれか一方の液を200℃~350℃の温度に加熱し、前記加熱した一方の液に前記いずれか他方の液を非酸化性雰囲気下で所定量注入し、前記一方の液に前記他方の液を注入した液を200℃~350℃の温度に調整し、1分~5時間保持することにより、可視蛍光が緑色光であるCdを含まないコロイダル量子ドットを製造する方法。 One of the first mixed liquid prepared by mixing the Zn raw material liquid, the Te raw material liquid, and the Se raw material liquid or the second mixed liquid prepared by mixing the capping agent and the diluent is 200 ° C. Heated to a temperature of ˜350 ° C., a predetermined amount of the other liquid was injected into the heated one liquid in a non-oxidizing atmosphere, and a liquid obtained by injecting the other liquid into the one liquid was 200 ° C. A method for producing a colloidal quantum dot containing no Cd whose visible fluorescence is green light by adjusting the temperature to ˜350 ° C. and holding it for 1 minute to 5 hours.
  5.  Zn原料液とTe原料液とを混合して調製された第3混合液又はS原料液とキャッピング剤と希釈剤とを混合して調製された第4混合液のいずれか一方の液を200℃~350℃の温度に加熱し、前記加熱した一方の液に前記いずれか他方の液を非酸化性雰囲気下で所定量注入し、前記一方の液に前記他方の液を注入した液を200℃~350℃の温度に調整し、1分~5時間保持することにより、可視蛍光が赤色光であるCdを含まないコロイダル量子ドットを製造する方法。 One of the third mixed liquid prepared by mixing the Zn raw material liquid and the Te raw material liquid or the fourth mixed liquid prepared by mixing the S raw material liquid, the capping agent, and the diluent is 200 ° C. Heated to a temperature of ˜350 ° C., a predetermined amount of the other liquid was injected into the heated one liquid in a non-oxidizing atmosphere, and a liquid obtained by injecting the other liquid into the one liquid was 200 ° C. A method for producing a colloidal quantum dot containing no Cd whose visible fluorescence is red light by adjusting the temperature to ˜350 ° C. and holding it for 1 minute to 5 hours.
PCT/JP2018/000807 2017-01-18 2018-01-15 Cd-free colloidal quantum dot capable of emitting visible fluorescence, and method for producing same WO2018135434A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18741280.4A EP3572482A4 (en) 2017-01-18 2018-01-15 Cd-free colloidal quantum dot capable of emitting visible fluorescence, and method for producing same
KR1020197023225A KR20190104583A (en) 2017-01-18 2018-01-15 Colloidal quantum dots that do not contain Cd that emits visible fluorescence and methods of manufacturing the same
US16/478,208 US20190367810A1 (en) 2017-01-18 2018-01-15 Cd-free colloidal quantum dot capable of emitting visible fluorescence, and method for producing same
CN201880007299.XA CN110199006A (en) 2017-01-18 2018-01-15 Issue the Colloidal Quantum Dots and its manufacturing method without Cd of visible fluorescence

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-006353 2017-01-18
JP2017006353 2017-01-18
JP2017248935A JP2018115315A (en) 2017-01-18 2017-12-26 Cd-FREE COLLOIDAL QUANTUM DOT EMITTING VISIBLE FLORESCENCE AND METHOD FOR PRODUCING THE SAME
JP2017-248935 2017-12-26

Publications (1)

Publication Number Publication Date
WO2018135434A1 true WO2018135434A1 (en) 2018-07-26

Family

ID=62909140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000807 WO2018135434A1 (en) 2017-01-18 2018-01-15 Cd-free colloidal quantum dot capable of emitting visible fluorescence, and method for producing same

Country Status (1)

Country Link
WO (1) WO2018135434A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353A (en) 1986-06-13 1988-01-05 東洋製罐株式会社 Easy-open cover
WO2005071764A1 (en) * 2004-01-23 2005-08-04 Hoya Corporation Quantum dot light-emitting device and method for manufacturing same
JP2006291175A (en) * 2005-03-17 2006-10-26 National Institute Of Advanced Industrial & Technology Blue luminescent phsphor with dispersed semiconductor nanoparticles
WO2007034877A1 (en) * 2005-09-22 2007-03-29 National Institute Of Advanced Industrial Science And Technology Semiconductor nanoparticles dispersed glass fine particles and process for preparing the same
JP2008547235A (en) * 2005-07-11 2008-12-25 ソウル オプト デバイス カンパニー リミテッド Light emitting device using nanowire phosphor
JP2009516182A (en) * 2005-11-16 2009-04-16 シグナロミクス ゲーエムベーハー Fluorescent nanoparticles
WO2010071137A1 (en) * 2008-12-16 2010-06-24 メトロ電気株式会社 Optical reading method
JP2011505432A (en) * 2007-10-29 2011-02-24 イーストマン コダック カンパニー Production of colloidal ternary nanocrystals
JP2013539798A (en) * 2010-09-16 2013-10-28 イッスム・リサーチ・ディベロップメント・カンパニー・オブ・ザ・ヘブルー・ユニバーシティ・オブ・エルサレム・リミテッド Anisotropic semiconductor nanoparticles
JP2015516467A (en) * 2012-02-03 2015-06-11 コーニンクレッカ フィリップス エヌ ヴェ Novel material and method for dispersing nanoparticles with high quantum yield and stability in matrix
JP2017006353A (en) 2015-06-22 2017-01-12 北日本通信工業株式会社 Prize acquisition game device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353A (en) 1986-06-13 1988-01-05 東洋製罐株式会社 Easy-open cover
WO2005071764A1 (en) * 2004-01-23 2005-08-04 Hoya Corporation Quantum dot light-emitting device and method for manufacturing same
JP2006291175A (en) * 2005-03-17 2006-10-26 National Institute Of Advanced Industrial & Technology Blue luminescent phsphor with dispersed semiconductor nanoparticles
JP2008547235A (en) * 2005-07-11 2008-12-25 ソウル オプト デバイス カンパニー リミテッド Light emitting device using nanowire phosphor
WO2007034877A1 (en) * 2005-09-22 2007-03-29 National Institute Of Advanced Industrial Science And Technology Semiconductor nanoparticles dispersed glass fine particles and process for preparing the same
JP2009516182A (en) * 2005-11-16 2009-04-16 シグナロミクス ゲーエムベーハー Fluorescent nanoparticles
JP2011505432A (en) * 2007-10-29 2011-02-24 イーストマン コダック カンパニー Production of colloidal ternary nanocrystals
WO2010071137A1 (en) * 2008-12-16 2010-06-24 メトロ電気株式会社 Optical reading method
JP2013539798A (en) * 2010-09-16 2013-10-28 イッスム・リサーチ・ディベロップメント・カンパニー・オブ・ザ・ヘブルー・ユニバーシティ・オブ・エルサレム・リミテッド Anisotropic semiconductor nanoparticles
JP2015516467A (en) * 2012-02-03 2015-06-11 コーニンクレッカ フィリップス エヌ ヴェ Novel material and method for dispersing nanoparticles with high quantum yield and stability in matrix
JP2017006353A (en) 2015-06-22 2017-01-12 北日本通信工業株式会社 Prize acquisition game device

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KAMATA ET AL., J. CRYSTAL GROWTH, vol. 170, 1997
NANDA ET AL., J. APPL. PHYS., vol. 95, no. 9, 2004
NOSE ET AL., J. PHYS . : CONF. SER., vol. 165, 2009, pages 012028
PELLEGRINI ET AL., J. APPL. PHYS., vol. 97, 2005, pages 073706
RYU ET AL., CHEM. MATER., vol. 21, no. 4, 2009

Similar Documents

Publication Publication Date Title
JP2018115315A (en) Cd-FREE COLLOIDAL QUANTUM DOT EMITTING VISIBLE FLORESCENCE AND METHOD FOR PRODUCING THE SAME
US10910525B2 (en) Cadmium-free quantum dot nanoparticles
JP6567013B2 (en) Nanoparticles
JP6114369B2 (en) Nanoparticles
Pu et al. Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS)
JP5739152B2 (en) Quantum dot manufacturing method
US10550325B2 (en) Method for synthesizing core shell nanocrystals at high temperatures
US7867557B2 (en) Nanoparticles
JP5175426B2 (en) Method for producing cadmium sulfide nanocrystals emitting at multiple wavelengths, cadmium sulfide nanocrystals produced thereby, and white light-emitting diode element using the same
US7118627B2 (en) Synthesis of colloidal PbS nanocrystals with size tunable NIR emission
JP2023145429A (en) Semiconductor nanoparticle, method for producing the same, and light-emitting device
Singh et al. Magic-sized CdSe nanoclusters: a review on synthesis, properties and white light potential
JP7307046B2 (en) Core-shell type semiconductor nanoparticles, method for producing the same, and light-emitting device
US20100062154A1 (en) Method for preparing core/shell structure nanoparticles
JP2005325016A (en) Manufacturing method of metal nanocrystalline sulfide using thiol compound as sulfur precursor
TW201502238A (en) Group III-V/zinc chalcogenide alloyed semiconductor quantum dots
KR20100071700A (en) Semiconductor nanocrystal and preparation method thereof
KR20080107578A (en) Core/shell nanocrystals and method for preparing the same
EP3922604A1 (en) Semiconductor nanoparticles and method for producing same
Zhang et al. Formation of highly luminescent Zn1− xCdxSe nanocrystals using CdSe and ZnSe seeds
WO2018135434A1 (en) Cd-free colloidal quantum dot capable of emitting visible fluorescence, and method for producing same
US11866629B2 (en) Scalable and safe nanocrystal precursor
WO2021106362A1 (en) Core-shell-type quantum dot and method for manufacturing core-shell-type quantum dot
CN113122232B (en) Quantum dot material, preparation method thereof and quantum dot light emitting diode
Chung et al. Green light emission of Zn x Cd1-xSe nanocrystals synthesized by one-pot method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197023225

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018741280

Country of ref document: EP

Effective date: 20190819