WO2018135232A1 - Foreign matter detection device, foreign matter detection method and manufacturing device - Google Patents

Foreign matter detection device, foreign matter detection method and manufacturing device Download PDF

Info

Publication number
WO2018135232A1
WO2018135232A1 PCT/JP2017/045967 JP2017045967W WO2018135232A1 WO 2018135232 A1 WO2018135232 A1 WO 2018135232A1 JP 2017045967 W JP2017045967 W JP 2017045967W WO 2018135232 A1 WO2018135232 A1 WO 2018135232A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
objects
foreign matter
light source
inspection apparatus
Prior art date
Application number
PCT/JP2017/045967
Other languages
French (fr)
Japanese (ja)
Inventor
京子 松田
裕介 榊原
真 和泉
森 豪
綿野 哲
Original Assignee
シャープ株式会社
株式会社Ps&T
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 株式会社Ps&T filed Critical シャープ株式会社
Priority to JP2018563236A priority Critical patent/JPWO2018135232A1/en
Publication of WO2018135232A1 publication Critical patent/WO2018135232A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids

Definitions

  • the present invention relates to a foreign matter inspection apparatus and a foreign matter inspection method.
  • This application claims priority based on Japanese Patent Application No. 2017-005839, which is a Japanese patent application filed on January 17, 2017. All the descriptions described in the Japanese patent application are incorporated herein by reference.
  • the present invention relates to a foreign matter inspection apparatus and a foreign matter inspection method that are also suitable for nondestructively determining the presence or absence of foreign matter mixed inside an object, for example, the presence or absence of organic matter such as hair and insects.
  • the present invention further relates to a manufacturing apparatus.
  • Patent Document 1 JP 2013-536950 A (Patent Document 1) and JP-A-2015-219090 (Patent Document 2) may be mentioned.
  • Patent Document 1 discloses an in-line spectroscopic reader. The spectrum of light irradiated on the object is collected in a detector of the spectrometer.
  • a tablet In factory inspections, the demand for higher speeds is extremely strict in order to increase production efficiency and reduce costs. For example, a tablet generally requires an inspection speed of 300,000 per hour, and if it is slower than this, the productivity is remarkably reduced and it cannot be used for inspection.
  • the object to be inspected is strongly scattered or absorbed, for example, if the object is a product formed by compressing starch or other powders or granules, it is difficult to inspect because the light does not pass through the interior. There is a problem of becoming.
  • Patent Document 1 does not present a specific solution for this problem, the technique described in Patent Document 1 cannot be applied in an actual factory.
  • Patent Document 2 exemplifies chocolate as an object having a strong light scattering.
  • a light scattering stronger than that of food such as tablets formed by compression molding of powder
  • a weaker transmitted light is obtained. Since it is necessary to detect, measurement time becomes long.
  • an object of the present invention is to provide a foreign matter inspection apparatus and a foreign matter inspection method capable of determining the presence or absence of foreign matter mixed inside an object at a sufficiently high speed without causing destruction. It is another object of the present invention to provide a manufacturing apparatus that can improve the yield by utilizing such determination.
  • a foreign matter inspection apparatus includes a light source for irradiating light so as to cover all of a plurality of objects held together, and a plurality of the light beams emitted from the light source.
  • a detection unit that collectively receives light transmitted through any one of the objects and detects a spectrum
  • a storage unit for storing reference data, spectral data of light detected by the detection unit, and
  • a determination unit that determines whether or not a foreign object is included in at least one of the plurality of objects based on reference data.
  • the presence or absence of foreign matter mixed in the object can be determined at a sufficiently high speed without destruction.
  • FIG. 1 It is a conceptual diagram of the foreign material inspection apparatus in Embodiment 1 based on this invention. It is a fragmentary sectional view of the holding
  • Embodiment 7 It is a conceptual diagram of the foreign material inspection apparatus in Embodiment 7 based on this invention. It is a conceptual diagram of the foreign material inspection apparatus in Embodiment 8 based on this invention. It is a flowchart of the foreign material inspection method in Embodiment 9 based on this invention. It is a flowchart of the foreign material inspection method in Embodiment 10 based on this invention. It is a conceptual diagram of the manufacturing apparatus in Embodiment 11 based on this invention.
  • Embodiment 1 With reference to FIGS. 1 to 7, a foreign substance inspection apparatus according to Embodiment 1 of the present invention will be described.
  • the foreign object inspection apparatus 101 includes a light source 6 for irradiating light so as to cover the entire plurality of objects 1 held together, and a plurality of objects 1 emitted from the light source 6.
  • the detection unit 7 that collectively receives the light transmitted through any one of the above and detects the spectrum
  • the storage unit 9 for holding the reference data 11, the spectrum data of the light detected by the detection unit 7 and the reference
  • a determination unit 10 that determines whether or not a foreign object is included in at least one of the plurality of objects 1 based on the data 11.
  • the foreign substance inspection apparatus 101 includes a holding unit 5 for holding a plurality of objects 1 at a time.
  • the object 1 may be a tablet, for example.
  • the object 1 may have a flat shape.
  • the object 1 may be formed by solidifying a powder.
  • the object 1 may be a medicine or a food.
  • the object 1 may be something in which some content is contained in the capsule.
  • the capsule here may be a soft capsule.
  • the light source 6 includes a light source body 6 a and a light adjustment unit 12.
  • the light source body 6a may include a halogen lamp.
  • the light source body 6a may include a plurality of halogen lamps.
  • the wavelength of the light emitted from the light source body 6a may be, for example, not less than 600 nm and not more than 2500 nm. Although the wavelength of the light to irradiate is not limited to this range, in this wavelength range, it is easy to transmit through the object 1 and does not damage the object 1 as when irradiated with ultraviolet rays. ,preferable. Furthermore, the wavelength of light may be, for example, not less than 800 nm and not more than 1600 nm.
  • the wavelength of the irradiated light is not limited to this range, but there are large absorption peaks such as starch, lactose, and crystalline cellulose contained in general tablets in the vicinity of 1600 nm of the wavelength of the light. The influence on the spectrum due to is hidden. Moreover, if the wavelength is too short or too long, light loss due to light scattering, absorption, etc. will increase. Therefore, in the present embodiment, the wavelength of light to be irradiated is preferably 800 nm or more and 1600 nm or less.
  • a halogen lamp is used as an example of the light source body 6a.
  • the type of the light source body 6a is not limited to this and may be other types of lamps.
  • the light source body 6a only needs to be a device that can emit light having a wavelength that can detect foreign matter, and may be, for example, a tungsten lamp, a phosphor, an LED, or a laser.
  • the number of light sources 6, the wavelength of light, the intensity of light, and the like are appropriately selected according to the configuration of the apparatus, the type of the object 1, and the like.
  • the object 1 is irradiated with light from one direction using one light source 6, but the present invention is not limited to this, and the light is irradiated simultaneously from different directions using two or more light sources. May be.
  • the light adjusting unit 12 may be disposed below the light source body 6a corresponding to the light source body 6a.
  • the light adjustment unit 12 includes, for example, a lens.
  • a dimming means When acquiring the reference data, a dimming means is arranged so as to block the optical path.
  • the dimming means is, for example, a neutral density filter.
  • the amount of irradiation light is required to be the same when measuring the reference data 11 and when measuring the object 1.
  • the transmitted light of the object 1 is weak, if the light amount emitted from the light source 6 is set large so that the transmitted light becomes an appropriate light amount, measurement is performed to obtain the reference data 11. At that time, an excessive amount of light enters the detection unit 7 and exceeds the dynamic range of the spectrometer.
  • the amount of light emitted from the light source 6 is set too small, the light obtained through the target 1 is too weak when measuring the target 1, and an integration time is required to detect the spectrum of this light. Will be necessary for a long time.
  • dimming means is used to solve this problem.
  • a neutral density filter is used as the dimming means.
  • the attenuation factor (transmittance) of the dimming means is preferably substantially constant at any wavelength within the wavelength range used for measurement.
  • a neutral density filter (also referred to as an “ND filter”) having an optical density (OD) of about 3 is used as a dimming means.
  • the light reduction means is not limited to the neutral density filter, and other means may be used.
  • a neutral density filter may be used instead of the neutral density filter as a light reducing means.
  • an absorption ND filter may be used.
  • the neutral density filter to be used is not limited to a single sheet, but may be a structure in which a plurality of sheets are stacked. It is also conceivable to adjust a desired OD by overlapping a plurality of neutral density filters.
  • the neutral density filter may be a plug-in type attached to the outlet of the light source 6 and detachable. When a different OD is required, it is possible to replace the filter with a different filter as appropriate.
  • the neutral density filter may be inserted at any position between the light source 6 and the detection unit 7.
  • the near-infrared wavelength contains heat rays, and it is cheaper and easier to make the neutral density filter heat resistant than to make the lens of the light adjustment unit 12 heat resistant. Therefore, in the present embodiment, the neutral density filter is provided with a certain degree of heat resistance, and the neutral density filter is disposed between the light source 6 and the light adjusting unit 12. If it arrange
  • the neutral density filter 8 may be disposed immediately before the detection unit 7 or the detection unit 7 It may be attached to the entrance. There is an advantage that the neutral density filter 8 can be easily attached and detached depending on the attachment position of the detection unit 7 in the foreign matter inspection apparatus 101.
  • the light adjustment unit 12 adjusts the traveling direction of light from the light source body 6a.
  • the light adjustment unit 12 includes, for example, a lens.
  • the irradiation light is irradiated while covering the entire object 1 in a lump so that even foreign objects mixed in the end of the object 1 can be detected.
  • the light adjustment unit 12 is focused so that such irradiation can be performed.
  • the irradiation area is set to be slightly larger than the projected area of the object 1.
  • the area of the irradiation region may be 100.1% of the projected area of the object 1.
  • the “projected area of the object 1” here is an area obtained by projecting the object 1 onto a virtual plane perpendicular to the light irradiation direction.
  • the object 1 is a tablet manufactured by a tableting method
  • the outer peripheral surface of the tablet is hard and light is difficult to transmit. Therefore, it is possible to facilitate the transmission of light by irradiating light so that it enters from other than the outer peripheral surface.
  • the irradiation direction of light is not limited to this, and irradiation may be performed from an appropriate direction according to the inspection state of the foreign matter.
  • the lens preferably has a certain degree of heat resistance.
  • the light adjusting unit may guide the light after coming out of the light source body to a desired position with a light guide made of, for example, an optical fiber.
  • the light adjusting unit may have a configuration in which a lens is disposed at the tip of such a light guide. In this case, although light loss may occur inside the light guide means, there is an advantage that light irradiation can be easily performed from a position close to the object.
  • the light adjusting unit 12 may include a shutter that blocks light.
  • the shutter is provided as described above, the shutter is closed to block the light in accordance with the conveyance of the object so that the light from the object 1 that has been measured does not enter the detection unit 7 and become noise. Can do.
  • the shutter is provided in this way, even when it is desired to temporarily stop light irradiation for sample exchange or the like to perform some work, the shutter is closed, and the light source is kept on and the external light is kept on. In this case, it is possible to realize a state in which light is not irradiated, and a desired operation can be continued, so that the time required for starting up the light source can be saved.
  • the light source is, for example, a halogen lamp, the time required for starting up the halogen lamp can be saved, which is effective.
  • the holding part 5 has a plurality of holes 5a.
  • the hole 5a is a translucent part.
  • a partial cross-sectional view of the holding portion 5 is shown in FIG.
  • a partial perspective view of the holding portion 5 is shown in FIG.
  • the hole 5 a is larger than the outer shape of the object 1.
  • maintenance part 5 contains the 1st part 5b and the 2nd part 5c.
  • the first portion 5b is made of a material that does not transmit light.
  • the second portion 5c is formed of a material that transmits light. As shown in FIG.
  • the first portion 5b exists not only on the upper side of the second portion 5c but also on the lower side. As shown in FIG. 2, the second portion 5c may be sandwiched from above and below by the first portion 5b.
  • the second portion 5c has an opening 5c1.
  • the diameter of the opening 5 c 1 is smaller than the outer diameter of the object 1.
  • the object 1 can be supported by the second portion 5c inside the hole 5a.
  • the first portion 5b is less permeable to near infrared light so that stray light from the outside does not enter.
  • the first portion 5b can be realized by forming a member using a material having low permeability such as black alumite.
  • the first portion 5b can be realized by forming a member with another material and then coating with a material having low permeability such as black alumite. Since the holding part 5 has a plurality of holes 5a, the holding part 5 can hold a plurality of objects 1 at the same time. The plurality of objects 1 are held in a state where they are arranged in a range in which light directed to a certain region can be collectively covered by the light adjusting unit 12.
  • the holding part 5 has a hole 5a, and the object 1 is held by being placed inside the hole 5a, but this is only an example.
  • the object 1 is not limited to the hole as long as the object 1 can be held and the passage of the transmitted light can be secured to a sufficient extent to measure the transmitted light.
  • the second portion 5c is provided to support the object 1, and the second portion 5c has the opening 5c1, but in order to prevent the transmitted light from being blocked as much as possible.
  • the area of the opening 5c1 may be, for example, 90% of the surface area of the surface where the object 1 is in contact with the second portion 5c. This ratio is not limited to 90%, and may be 95%, for example.
  • the second portion 5c is plate-shaped and may be referred to as a “support plate”.
  • the second portion 5c may be formed using a transparent member having a wavelength characteristic that transmits light.
  • quartz glass or synthetic quartz glass can be employed as a material of the second portion 5c.
  • the second portion 5c is not limited to being transparent with respect to the wavelength of transmitted light.
  • the second portion 5c can be configured to be translucent or opaque.
  • the selection range of the material is widened, so that a material that can easily hold the object can be selected.
  • the ratio of noise light passing through the gap between the object 1 and the holding unit 5 may increase.
  • the second portion 5c is opaque, such noise light may be emitted. Can be blocked.
  • a lens 14 is disposed below the holding unit 5.
  • the light transmitted through the object 1 held by the holding unit 5 is collected by the lens 14 and enters the detection unit 7.
  • the light may be guided from the holding unit 5 to the detection unit 7 by a light guide made of an optical fiber.
  • a shutter for blocking light at the entrance of the detection unit 7 may be disposed in a freely openable / closable state. In this way, the light can be blocked by closing the shutter so that the light from the object that has been measured does not enter the detector 7 and become noise. In addition, if the shutter is arranged in this way, it is advantageous in that the light can be blocked when it is desired to temporarily prevent the strong light from entering the detection unit 7.
  • a polychromator type spectroscope may be used for the detection unit 7, for example.
  • a polychromator type spectroscope a large number of light receiving elements are arranged at the end of a prism that divides light into each wavelength, and light of each wavelength can be measured simultaneously.
  • the polychromator type spectrometer is also called a multi-channel detector.
  • the polychromator type spectrometer has the advantage of high measurement time.
  • Polychromators include those using a light receiving element and a prism, and those using a CCD.
  • the type of polychromator is appropriately selected according to the configuration of the inspection apparatus, the type of tablet to be measured, the wavelength of light, and the like.
  • a system in which an InGaAs light receiving element and a prism, which are more accurate than a CCD, are combined is used.
  • the spectroscope provided in the detector 7 measures the spectrum of the received light.
  • the detection unit 7 does not necessarily include a spectroscope.
  • the detection unit 7 may be configured to include any of a photodiode, a phototransistor, an avalanche photodiode, and a photomultiplier tube, for example.
  • the number and arrangement of the light receiving elements in the detection unit 7 are appropriately selected according to the configuration of the foreign substance inspection apparatus, the type of the object to be measured, the wavelength of light used, and the like.
  • the foreign substance inspection apparatus 101 may include a control unit 13.
  • the control unit 13 controls the light source 6, the storage unit 9, the detection unit 7, the transport unit, and the like.
  • the control unit 13 may control the opening and closing of the shutter.
  • Each process by the control part 13 may be implement
  • the determination unit 10 performs an operation with reference to the measurement data of the object 1 obtained by the detection unit 7 based on the transmitted light and the data stored in the storage unit 9, and foreign matter mixed in the object 1. Whether or not is included is determined.
  • the determination unit 10 is illustrated as being different from the control unit 13, but the determination unit 10 may be provided as a part of the control unit. The control unit may also serve as the determination unit.
  • the storage unit 9 is for storing information necessary for inspection.
  • the storage unit 9 includes, for example, an area for temporarily storing measurement data from the detection unit 7, various programs executed by the control unit, an area for storing data used in these programs, and these programs. An area to be loaded and a work area used when these programs are executed are provided.
  • the various programs are, for example, a program for making a determination, a calculation algorithm, a database, and the like.
  • the storage unit 9 can hold reference data 11 used for determination by the determination unit 10.
  • the lens of the light adjusting unit 12 Prior to the inspection, the lens of the light adjusting unit 12 is previously focused so that the irradiation light covers the target 1 when the target 1 is in the holding unit 5. That is, the focus is adjusted so that the irradiation light covers at least 100% of the cross-sectional area of the object 1 in a plane perpendicular to the irradiation light.
  • the irradiation area is set to be slightly larger than the object 1. Here, it is 100.1% of the total cross-sectional area.
  • Measurement conditions that can be artificially changed such as the irradiation time of light, the amount of irradiation light, the slit width of the spectrometer, the integration time, the average number of times, the set temperature, and the sensitivity, are predetermined according to the type of the object 1 and We will not change these conditions during this period.
  • the holding unit 5 present at the measurement position holds one object 1 and irradiates light for each object 1 for a certain period of time.
  • the light irradiation time is set to a time short enough to avoid inappropriate heating of the object 1. In the present embodiment, the irradiation time is 0.8 seconds per time.
  • the light source 6 only needs to be a light source that can irradiate light for a short time.
  • a flash-type lamp or chopper may be used.
  • irradiation is performed for a short time of 0.8 seconds per object 1, but the irradiation time is not limited to this. Increasing the amount of light makes it easier for light to pass through the object 1, so the irradiation time may be lengthened depending on the type of the object 1.
  • the irradiation light includes heat rays, the object 1 is heated when irradiated with light. The temperature rises as the amount of light to be irradiated is increased and the irradiation time is lengthened. Depending on the type of the object 1, the component is altered by being heated too much. In the case where the object 1 has already been heated and heated in a drying process or the like prior to the inspection process, the temperature is set as the upper limit.
  • the temperature in the drying step or the like performed before is generally kept below the temperature at which the components of the object 1 are altered. That is, the degree of temperature rise determined by the irradiation time and the amount of light to be irradiated is set to be equal to or lower than the temperature generated in any process performed before the inspection process, and the amount of irradiation light is made as large as possible within the range satisfying this condition, and the measurement time Is preferably shortened.
  • the upper limit of the irradiation time and the irradiation light amount is appropriately determined depending on the component and structure of the object 1.
  • the holding unit 5 may have a configuration shown in FIGS. 4 and 5, for example.
  • the holding part 5 has a hole 5a and includes a protrusion 5e protruding toward the inside of the hole 5a.
  • FIG. 4 is a cross-sectional view of the state in which the object 1 is placed on the holding unit 5
  • FIG. 5 is a plan view of the vicinity of the holding unit 5 without the object 1.
  • the three protrusions 5e are provided at equal intervals of about 120 °.
  • the number of protrusions 5e may be other than three.
  • the arrangement angles of the protrusions 5e need not be equal.
  • the holding part 5 includes a first part 5b, a second part 5c, and a lens 5d, and the second part 5c has an opening.
  • the opening of the second portion 5c has a mortar shape. It is preferable that the opening part of the 2nd part 5c becomes a mortar shape that the shape of the target object 1 fits.
  • a measurement for obtaining the reference data 11 is performed before inspecting the object 1, a measurement for obtaining the reference data 11 is performed.
  • the measurement for acquiring the reference data 11 needs to be performed at least once before the inspection of the object 1 is started. This measurement is performed with the foreign matter inspection apparatus 101 in the first state.
  • the measurement for acquiring the reference data 11 is to be performed again.
  • the selection is appropriately made according to the configuration of the inspection apparatus, the type of the object to be measured, the wavelength of light, and the like.
  • the measurement for obtaining the reference data 11 is performed, for example, 1 day before the start of the morning inspection and before the start of the afternoon inspection. You only have to do it once.
  • the ND filter used at this time is determined according to the type of the object.
  • the inspection of the object 1 is started.
  • the holding unit 5 With the plurality of objects 1 installed on the holding unit 5, the holding unit 5 is arranged in the light irradiation region. At this time, the position of the holding unit 5 is the same as the position when the reference data is measured. 6).
  • a plurality of objects 1 are irradiated with light. 7).
  • the light passes through the plurality of objects 1.
  • “transmission” includes passing through the object 1 while being scattered (including multiple scattering). 8).
  • the light transmitted through the plurality of objects 1 is collected by the lens 14 and enters the detection unit 7.
  • the spectroscope provided in the detection unit 7 measures the light intensity I for each wavelength.
  • the measurement result is stored in the storage unit 9 as measurement data.
  • the transmitted light includes information inside the object 1.
  • the determination unit 10 performs conversion for extracting information on the foreign matter from the difference between the incident light and the transmitted light using the measured light intensity.
  • the determination unit 10 determines the presence or absence of foreign matter from the calculated absorbance A1.
  • discriminant analysis is used.
  • a calculation model for calculating the class predicted value and the similarity of the sample from the absorbance is used.
  • the calculation model derivation method includes support vector machine, pattern recognition, Mahalanobis distance analysis, SIMCA (Soft Independent Modeling of Class Analysis) discriminant analysis, canonical discriminant analysis method and the like.
  • the calculation model may be determined by selecting an optimum derivation method according to the purpose of what kind of object to be determined.
  • a calculation model for determining the characteristics of a foreign substance contained in a tablet as a target object is derived by the PLS-DA (Partial Linear Square-Discriminant Analysis) method, and the value calculated from the tablet measurement data using this calculation model is Foreign matter contamination is determined based on whether or not the reference value is greater than a preset reference value.
  • a calculation model for performing the calculation is determined by the wavelength of light to be irradiated, the type of tablet, the configuration of the transport unit of the inspection apparatus, and the like, and is stored in the storage unit 9 in advance.
  • the determination unit 10 refers to the absorbance obtained from the measurement result in the detection unit 7 and the calculation model for each type of tablet read from the database stored in the storage unit 9 to calculate an index indicating the characteristics of the tablet. The presence / absence of foreign matter is determined.
  • the determination unit 10 can make a determination using a relational database or a correspondence table, or a plot using a graph as appropriate, depending on the type of tablet.
  • a calculation model for calculating a predicted value and a bias value is used as an index for determining whether the tablet is a normal tablet or a tablet mixed with hair. If the predicted value calculated from the calculation model is 0.5 or more and the bias value is less than 0.5, it is “normal”, and if the predicted value is less than 0.5 and the bias value is less than 0.5, “hair is mixed. Can be determined. In addition, when the predicted value is less than 0.5 and the deviation value is 0.5 or more, it cannot be specified that the hair is mixed, but insects are mixed inside or some abnormality such as cracking occurs. It can be considered that there is a high possibility. In this case, the type of abnormality can be specified using still another calculation model. For example, if an index indicating whether the tablet is a normal tablet or a tablet in which insects are mixed can be calculated, the presence or absence of insects can be detected.
  • a plurality of indices can be calculated and plotted on a graph, and the determination can be made by region.
  • the determination value A and the determination value B are calculated using two indices, respectively, and plotted using these. It can be judged normal if it is above a predetermined reference line as plotted by a black circle, and abnormal if it is below the reference line as plotted by a white circle.
  • two-dimensional plotting is performed, but the present invention is not limited to two-dimensional plotting.
  • three-dimensional plotting may be performed using three indexes, and contamination of foreign matter may be determined based on whether or not the plotting is performed in an area where it is confirmed that a normal tablet is plotted in advance.
  • the target object 1 determined to be contaminated with foreign matter or the lot including the same is discarded.
  • the holding unit 5 since the inspection is performed in a state where a plurality of objects 1 are held by one holding unit 5, when it is determined that foreign matter is mixed, the holding unit 5 normally It is assumed that all objects 1 held are discarded.
  • the present embodiment since a plurality of objects can be inspected at the same time, the presence or absence of foreign matter mixed in the object can be determined at a sufficiently high speed without destruction. Since this embodiment can be applied when a large number of objects are to be efficiently inspected over the entire number, it is suitable for inspection in a factory.
  • the light source 6 expands to such an extent that the light source main body 6a and the light emitted from the light source main body 6a are transmitted or reflected to cover the entire plurality of objects 1. It is preferable that the light adjusting unit 12 as an optical member is provided, and the light emitted from the light source body 6a reaches the plurality of objects 1 after being expanded by the light adjusting unit 12 as an optical member.
  • the optical member is the light adjustment unit 12
  • the optical member is not limited to the light adjustment unit 12.
  • the optical member may be a diffusion plate 15.
  • the light source 6 may include a plurality of light source elements 6e, and each light source element 6e may include a light adjusting unit 12 individually.
  • the light source element 6e may be a light bulb such as a halogen lamp.
  • the foreign substance inspection apparatus 101 includes a holding unit 5 for holding a plurality of objects, and the holding unit 5 arranges the plurality of objects 1 two-dimensionally. It may be provided with a tray for holding it in a state in which it is placed. Since the holding unit 5 includes the tray in this way, it becomes easy to handle a plurality of objects 1 in a certain number.
  • the tray may be the holding unit 5 itself, or may be a part of the holding unit 5.
  • the tray may be for holding a plurality of objects 1 in a matrix array. As described above, it is preferable that a plurality of objects 1 are efficiently held in a limited area if they are held in a matrix arrangement.
  • the wavelength of light emitted from the light source 6 is preferably 800 nm or more and 1500 nm or less. Furthermore, the wavelength of light emitted from the light source 6 is preferably 800 nm or more and 1600 nm or less. The reason is as described in the explanation regarding the light source.
  • the foreign substance inspection apparatus 101 includes a holding unit 5 for holding a plurality of objects, and the holding unit 5 includes a number of light transmitting units corresponding to the plurality of objects 1. And covering at least a part of the inner region of the light-transmitting part so as to support the object 1 from below when each of the plurality of objects 1 is individually arranged at a position corresponding to the light-transmitting part. It is preferable that the light directed from the light source 6 toward the detection unit 7 passes through the light transmission unit.
  • the “translucent portion” may be, for example, the hole 5a shown in FIG.
  • the hole 5a is a through hole.
  • the translucent portion is not limited to the through hole, and may be a portion where light can pass through anyway.
  • the translucent part may be a gap between some members, for example.
  • the translucent portion may be a portion where some translucent member is disposed. It may be a portion that is partially or completely blocked by some translucent member.
  • the part other than the light transmitting part of the member having the light transmitting part may be the first part 5b.
  • the “supporting portion” may be, for example, a portion in which the second portion 5c shown in FIG. 2 protrudes inside the hole 5a.
  • the support portion is not limited to projecting over the entire circumference in this way, and one or more projections may project inward.
  • the support portion may be a projection 5e shown in FIGS.
  • the support part may be transparent.
  • the degree to which the support portion blocks the transmitted light can be reduced, and the inspection can be performed efficiently.
  • the second portion 5 c is transparent.
  • the appearance inspection may be additionally performed before or after the foreign matter determination according to the present invention. As described above, if the appearance inspection is further combined with the foreign matter inspection apparatus in the present embodiment, the foreign matter can be detected more reliably.
  • the storage unit 9 may record inspection results and inspection data such as date and temperature. For example, records concerning the status of other devices, such as the number and time of people entering and leaving a certain space, the materials used, the timing of washing the tablet press, the presence or absence of a fluorescent lamp breakage accident, etc. Good. If combined with these data and analyzed, they can be presented as comprehensive data for preventing foreign matter contamination. That is, it can be utilized as a means for preventing the recurrence of foreign matter contamination.
  • FIG. 10 shows a configuration other than the foreign matter inspection apparatus in the present embodiment.
  • the individual holding unit 5 has a tray shape.
  • a plurality of holding portions 5 are placed on the circular rotor 20.
  • the plurality of holding portions 5 are arranged in the circumferential direction along the outer edge of the rotor 20.
  • the rotor 20 rotates intermittently or continuously as indicated by an arrow 91.
  • the new holding unit 5 is arranged in a vacant space on the rotor 20 by being supplied from the feeder 21.
  • the light source 6 includes a light source body 6 a and a light adjustment unit 12.
  • the light source 6 is disposed so as to irradiate light to one of the plurality of holding units 5 arranged on the rotor 20.
  • the detection unit 7, the determination unit 10, the control unit 13, and the like are not shown.
  • the holding unit 5 in which no foreign matter is detected is discharged from the OK chute 22.
  • the holding unit 5 in which the foreign matter is detected is discharged from the NG chute 23.
  • the new holding unit 5 is successively carried into the light irradiation area by the light source 6 by the circular rotor 16, even when a large number of holding units 5 are to be inspected, foreign object inspection can be performed efficiently. Can be performed.
  • the objects 1 are arranged in a matrix in the holding unit 5, but as shown in FIG. 11, even if the objects 1 are stacked in the container 16. Good. Furthermore, as shown in FIG. 12, a plurality of objects 1 may be randomly placed in the container 17.
  • the container 17 has a cylindrical shape, but the shape of the container 17 is not limited to the cylindrical shape, and may be, for example, a square shape when viewed from above.
  • the plurality of objects 1 are stacked, but may be arranged without being stacked.
  • the plurality of objects may be arranged randomly or regularly. For example, a plurality of objects may be arranged in a matrix so as not to overlap each other in the container.
  • Embodiment 3 With reference to FIG. 13, the foreign substance inspection apparatus in Embodiment 3 based on this invention is demonstrated.
  • the basic configuration of foreign object inspection apparatus 102 in the present embodiment is the same as that in the first embodiment, but the configuration of the holding unit is different from that in the first embodiment.
  • a holding unit 5e is used instead of the holding unit 5.
  • a certain number of objects 1 form a group.
  • the holding unit 5e is configured so that a plurality of groups of objects 1 can be arranged simultaneously.
  • the light source 6 does not irradiate all the objects 1 on the holding unit 5e with light at the same time, but irradiates light toward all the objects 1 belonging to one group on the holding unit 5e.
  • the determination unit 10, the control unit 13, and the like are not shown.
  • a larger number of objects 1 than can be arranged in a single light irradiation region can be collectively held, and light irradiation can be performed sequentially for each group. Therefore, it is suitable for promptly inspecting a large number of objects 1.
  • Embodiment 4 With reference to FIG. 14, the foreign substance inspection apparatus in Embodiment 4 based on this invention is demonstrated.
  • the foreign substance inspection apparatus 103 according to the present embodiment has the same basic configuration as that of the first embodiment, but differs from the first embodiment with respect to the configuration of the holding unit. As shown in FIG. 14, in the present embodiment, a holding unit 5 f is used instead of the holding unit 5.
  • the foreign substance inspection apparatus 103 emits light from a light source 6 for irradiating light so as to cover two or more objects 1 among a plurality of objects 1 being sequentially conveyed. Then, a detection unit 7 that collectively receives light transmitted through one of the two or more objects 1 to detect a spectrum, a storage unit 9 that holds reference data 11, and a detection unit 7 A determination unit that determines whether or not a foreign object is included in at least one of the plurality of objects based on the detected spectrum data of the light and the reference data.
  • the foreign object inspection apparatus 103 includes a holding unit 5f for sequentially transporting the plurality of objects 1.
  • the holding unit 5f is preferably a conveyor that holds and conveys the plurality of objects 1 in a two-dimensional array.
  • a state other than the two-dimensionally arranged state for example, a state in which the object 1 is partly stacked on the conveyor and placed in a random positional relationship can be cited. Although it may be in such a state, it is preferable that the plurality of objects 1 are regularly and two-dimensionally arranged.
  • the holding part 5f may be an endless conveyor.
  • the target objects 1 are arranged in a plurality of rows on a holding portion 5f that is an endless conveyor, but as a foreign object inspection apparatus 104 shown in FIG.
  • the part 5h may be provided.
  • the objects 1 are arranged in one row.
  • the objects 1 conveyed by the conveyor can be inspected one after another, which is efficient.
  • Embodiment 5 With reference to FIG. 16, the foreign substance inspection apparatus in Embodiment 5 based on this invention is demonstrated.
  • the lens 14 is arranged as the light collecting means below the holding unit 5.
  • a reflector 18 is arranged instead of the lens 14 as shown in FIG. .
  • the light transmitted through the object 1 is collected while being reflected by the reflector 18 and enters the detection unit 7.
  • the light can be collected in a desired direction depending on the attitude of the reflector 18, so that the degree of freedom of the installation position of the detection unit 7 can be increased.
  • Embodiment 6 With reference to FIG. 17, the foreign substance inspection apparatus in Embodiment 6 based on this invention is demonstrated.
  • the lens 14 is arranged as the light condensing means below the holding portion 5, but in this embodiment, a lens is provided near the exit of the hole 5a as shown in FIG. 5d is arranged.
  • the lens 5d is individually provided so as to correspond to each of the objects 1.
  • the lens 5 d may be a part of the holding unit 5.
  • the light transmitted through the object 1 is collected by the lens 5 d and enters the detection unit 7.
  • the light transmitted through the object 1 can be collected by the lens 5d at a position close to the object 1, the light transmitted through the object 1 can be efficiently used for inspection. .
  • Embodiment 7 With reference to FIG. 18, the foreign substance inspection apparatus in Embodiment 7 based on this invention is demonstrated.
  • the present invention is not limited to this, and two or more light sources are used from different directions. It may be irradiated.
  • irradiation is performed from one side of holding unit 5 toward target object 1 using light sources 6i and 6j.
  • the light transmitted through the object 1 is guided to the detection unit 7 by the lens 14.
  • the light source 6 i includes a light source body 6 a 1 and a light adjustment unit 12.
  • the light source 6j includes a light source body 6a2 and a light adjusting unit 12.
  • light is transmitted from the lower side of the holding unit 5 toward the upper side.
  • the configuration of other parts, the usage method, and the like are the same as those described in the first embodiment.
  • Embodiment 8 With reference to FIG. 19, the foreign substance inspection apparatus in Embodiment 8 based on this invention is demonstrated.
  • the light transmitted through the object 1 is received by the detection unit 7, but not only the transmitted light but also reflected light may be used.
  • a plurality of concave portions are provided in the holding portion 5, and the bottom surface of each concave portion reflects light transmitted through the object 1. It is formed as a surface.
  • the light transmitted through each object 1 is reflected by the bottom surface of the concave portion of the holding unit 5 and is transmitted again through the object 1. In this way, the light transmitted through each object 1 and traveling in the direction away from the holding unit 5 is collected by the lens 14 and received by the detection unit 7.
  • the foreign matter inspection apparatus includes a holding unit 5 for holding a plurality of objects 1, and the holding unit 5 has a reflecting surface and temporarily transmits any one of the plurality of objects 1. At least a part of the light that has been reflected is reflected by the reflecting surface, passes through one of the plurality of objects 1 again, and then enters the detection unit 7.
  • the configuration of other parts, the usage method, and the like are the same as those described in the first embodiment.
  • the same effects as described in the first embodiment can be obtained also by the foreign substance inspection apparatus in the present embodiment.
  • the present embodiment since the light reaches the detection unit 7 after passing through the inside of the object 1 twice, a more accurate inspection can be performed.
  • FIG. 20 shows a flowchart of the foreign substance inspection method in this embodiment.
  • This foreign matter inspection method is a foreign matter inspection method for determining whether or not foreign matter is mixed in at least one of a plurality of objects, and includes a step S1 of holding the plurality of objects collectively and the plurality of objects.
  • a step of irradiating light from the light source so as to cover the whole of the object, and light that has transmitted at least once through the plurality of objects among the light from the light source is collectively collected by the detection unit Step S3 of detecting spectrum data of light received by the detection unit as measurement data, and whether foreign objects are mixed in at least one of the plurality of objects based on the measurement data and reference data Step S4 for determining whether or not.
  • FIG. 21 shows a flowchart of the foreign substance inspection method in this embodiment.
  • This foreign matter inspection method is a foreign matter inspection method for determining whether or not foreign matter is mixed in at least one of a plurality of objects, and sequentially holds and sequentially transports the plurality of objects.
  • the detection unit collectively receives the light, and detects the spectrum data of the light received by the detection unit as measurement data, and based on the measurement data and the reference data, And step S4 for determining whether or not foreign matter is mixed in at least one of the plurality of objects.
  • the present embodiment it is possible to determine the presence or absence of foreign matter mixed inside the object 1 in a nondestructive manner.
  • foreign object inspection of a plurality of objects 1 can be performed quickly.
  • the manufacturing apparatus in this Embodiment is an apparatus for manufacturing the target object 1, Comprising: It is a manufacturing apparatus provided with the foreign material inspection apparatus of one of the structures demonstrated so far. This manufacturing apparatus is shown in FIG. What is shown in FIG. 22 is conceptual only, and the layout of the manufacturing apparatus is not necessarily such.
  • the manufacturing apparatus 501 includes a production unit 301 that produces the object 1, and further includes a foreign substance inspection apparatus 101.
  • the object 1 produced by the production unit 301 is inspected by the foreign substance inspection apparatus 101.
  • the conveyance of the object 1 to the foreign matter inspection apparatus 101 is performed by, for example, the conveyance apparatus 302.
  • the conveyance device 302 conveys the object 1 stored in the cassette.
  • the conveyance device 302 shown here is merely an example, and is not limited to such a form.
  • the manufacturing apparatus in the present embodiment only the object 1 that has been determined by the foreign substance inspection apparatus 101 to be free of foreign matters is obtained as a manufactured product. Therefore, in this Embodiment, a target object can be manufactured efficiently. In particular, when foreign matter is mixed in the object, it can be appropriately detected and eliminated as a defective product, so that the yield can be improved.
  • the production unit 301 and the foreign substance inspection apparatus 101 are shown as apparatuses that are housed in separate housings. However, this is merely an example, and the two are integrated. And may be housed in a single housing.
  • a tablet that is, a tablet is shown as the target object 1.
  • the present invention is not limited to a tablet form, and can be applied to a powder, a granule, a capsule, and a film.
  • the object 1 may be, for example, a medicine, a drug, a food, a health maintenance intake, and the like.
  • Each of the plurality of objects may be any one selected from the group consisting of medicines, pharmaceuticals, health maintenance intakes, nutrients, granules, powders, films, and capsules.
  • a discriminant analysis technique is used, but the present invention is not limited to this.
  • any other method may be used as long as it is a method capable of discriminating contamination by using the absorbance calculated for the different wavelengths of light to be irradiated.
  • other analysis methods such as a canonical discriminant analysis method may be used.
  • each of the plurality of objects 1 is manufactured by the tableting method, and the light from the light source 6 is in the same direction as the direction pressed during the manufacturing by the tableting method. It is preferable that any one of the plurality of objects 1 is transmitted along. This is because the light transmittance is improved in this direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

This foreign matter detection device (101) is provided with: a light source (6) for irradiating light so as to cover the entirety of multiple targets (1) held together; a detection unit (7) which receives together light emitted from the light source (6) that has passed through any of the multiple targets (1) and detects the spectrum thereof; a storage unit (9) for holding reference data (11); and a determination unit (10) which, on the basis of the reference data (11) and spectral data of the light detected by the determination unit (7), determines whether or not foreign matter is contained in any of the targets (1).

Description

異物検査装置、異物検査方法および製造装置Foreign object inspection apparatus, foreign object inspection method, and manufacturing apparatus
 本発明は、異物検査装置および異物検査方法に関するものである。本出願は、2017年1月17日に出願した日本特許出願である特願2017-005839号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。特に、対象物の内部に混入した異物の有無、たとえば毛髪、虫などの有機物の異物の有無を非破壊で判定することにも適した異物検査装置および異物検査方法に関する。さらに本発明は、製造装置にも関する。 The present invention relates to a foreign matter inspection apparatus and a foreign matter inspection method. This application claims priority based on Japanese Patent Application No. 2017-005839, which is a Japanese patent application filed on January 17, 2017. All the descriptions described in the Japanese patent application are incorporated herein by reference. In particular, the present invention relates to a foreign matter inspection apparatus and a foreign matter inspection method that are also suitable for nondestructively determining the presence or absence of foreign matter mixed inside an object, for example, the presence or absence of organic matter such as hair and insects. The present invention further relates to a manufacturing apparatus.
 消費者の安全意識の高まりによって、商品への異物の混入がよりクローズアップされるようになっている。たとえば高齢化に伴い、飲み込みやすい口腔内速崩壊錠や噛み砕けるタブレットが増加しているが、飲み込んでしまう商品が多かった時代には発見されなかったような内部に混入した異物が発見されて問題となるケースが生じやすくなっている。 -Increasing consumer awareness of safety has led to the close-up of foreign substances in products. For example, with the aging of the population, the number of rapidly disintegrating intraoral quick disintegrating tablets and tablets that can be chewed has increased. The case that becomes becomes easy to occur.
 異物混入が発生した場合は消費者に不安やストレスを与えることになり、信頼が損なわれたメーカーの製品は購入が避けられる傾向にある。さらに異物混入が発生した場合には法律で定められた回収手順を踏むために、莫大な損失が発生する。 If foreign matter is mixed, it will cause anxiety and stress to consumers, and the products of manufacturers whose trust has been lost tend to be avoided. Furthermore, when foreign matter is mixed, a huge loss occurs because the recovery procedure prescribed by law is followed.
 こうした異物混入問題においては、発見される異物としては毛髪や虫といった有機物が圧倒的に多い。にも関わらず、生産ラインに導入されている異物検査装置は、外観検査で検知可能な外部の異物や、X線または磁力によって発見しやすい無機物を検出するためのものであるケースがほとんどである。有機物からなる異物が対象物の内部に混入している場合は、外観検査のみでは検出できず、X線または磁力による検査でも検出できなかった。そのため、対象物の抜取り検査を行なうか、衛生管理による未然防止などに頼るほかなかった。 In such a foreign matter contamination problem, organic matters such as hair and insects are overwhelmingly found as foreign matters. Nevertheless, most foreign substance inspection devices introduced into production lines are for detecting foreign substances that can be detected by visual inspection, and inorganic substances that are easily detected by X-rays or magnetic force. . In the case where a foreign substance made of an organic substance is mixed in the object, it cannot be detected only by appearance inspection, and cannot be detected by X-ray or magnetic force inspection. For this reason, we had to resort to sampling inspection of the object or to prevent it by hygiene management.
 医薬品についてはX線コンピュータ断層撮影法(X線CT:Computed Tomography)によって内部の異物解析をする例が存在するが、あくまで実験室向けの研究用機器としてのものであり、工場における自動検査には対応していない。工場などでも製品の検査を実施できるように、非破壊で内部にある有機物を検知するインライン向けの技術が求められている。 For pharmaceuticals, there are examples of internal foreign matter analysis using X-ray computed tomography (X-ray CT), but it is only used as a research equipment for laboratories. Not supported. There is a need for in-line technology that detects non-destructive internal organic substances so that products can be inspected even in factories.
 一方で食品への有機物からなる異物の混入を検出するためには、いくつかの方法が検討されている。たとえば、特表2013-536950号公報(特許文献1)と特開2015-219090号公報(特許文献2)とが挙げられる。 On the other hand, several methods have been studied to detect the contamination of foreign substances consisting of organic substances in food. For example, JP 2013-536950 A (Patent Document 1) and JP-A-2015-219090 (Patent Document 2) may be mentioned.
 特許文献1では、インライン分光リーダが開示されている。対象物に照射した光のスペクトルを、分光計の検出器に集めている。 Patent Document 1 discloses an in-line spectroscopic reader. The spectrum of light irradiated on the object is collected in a detector of the spectrometer.
 特許文献2では、内部を透過した光を撮影している。 In patent document 2, the light which permeate | transmitted the inside is image | photographed.
特表2013-536950号公報Special table 2013-536950 gazette 特開2015-219090号公報Japanese Patent Laid-Open No. 2015-219090
 工場における検査では生産効率アップおよびコスト低減のため、高速化への要求が非常に厳しい。たとえば、錠剤では一般的に1時間当たり30万個もの検査速度が必要とされ、これよりも遅ければ生産性を著しく低下させてしまい、検査に用いることができないとされている。 In factory inspections, the demand for higher speeds is extremely strict in order to increase production efficiency and reduce costs. For example, a tablet generally requires an inspection speed of 300,000 per hour, and if it is slower than this, the productivity is remarkably reduced and it cannot be used for inspection.
 従来技術としてX線CTのような3次元解析の方法もあるが、このような方法では各方向からスキャンするために、時間がかかり、生産現場として求められる検査速度を実現することができない。 As a conventional technique, there is a three-dimensional analysis method such as X-ray CT. However, in such a method, scanning from each direction takes time, and the inspection speed required for the production site cannot be realized.
 さらに、光の散乱や吸収が強い検査対象物、たとえば対象物がスターチなどの粉体や顆粒を圧縮して形成された商品である場合には、光が内部をくまなく透過しにくく検査が困難になるという問題がある。 In addition, if the object to be inspected is strongly scattered or absorbed, for example, if the object is a product formed by compressing starch or other powders or granules, it is difficult to inspect because the light does not pass through the interior. There is a problem of becoming.
 特許文献1は、この問題に対して具体的な解決方法を提示していないために、特許文献1に記載された技術は実際の工場では適用することができない。 Since Patent Document 1 does not present a specific solution for this problem, the technique described in Patent Document 1 cannot be applied in an actual factory.
 特許文献2では光散乱の強い検査物としてチョコレートが例示されているが、こうした食品よりも光散乱の強い検査対象物、たとえば粉体を圧縮成型した錠剤などに適用すると、より微弱な透過光を検出する必要があるために測定時間が長くなってしまう。 Patent Document 2 exemplifies chocolate as an object having a strong light scattering. However, when applied to an object to be inspected with a light scattering stronger than that of food, such as tablets formed by compression molding of powder, a weaker transmitted light is obtained. Since it is necessary to detect, measurement time becomes long.
 そこで、本発明は、対象物の内部に混入した異物の有無を非破壊で十分に高速で判定することができる異物検査装置および異物検査方法を提供することを目的とする。さらに本発明は、このような判定を活用して歩留まりを向上することができる製造装置を提供することも目的とする。 Therefore, an object of the present invention is to provide a foreign matter inspection apparatus and a foreign matter inspection method capable of determining the presence or absence of foreign matter mixed inside an object at a sufficiently high speed without causing destruction. It is another object of the present invention to provide a manufacturing apparatus that can improve the yield by utilizing such determination.
 上記目的を達成するため、本発明に基づく異物検査装置は、一括して保持された複数の対象物の全体を被覆するように光を照射するための光源と、前記光源から出射して前記複数の対象物のいずれかを透過した光を一括して受光してスペクトルを検出する検出部と、基準データを保持するための記憶部と、前記検出部で検出された光のスペクトルのデータおよび前記基準データに基づいて前記複数の対象物の少なくともいずれかに異物が含まれるか否かを判定する判定部とを備える。 In order to achieve the above object, a foreign matter inspection apparatus according to the present invention includes a light source for irradiating light so as to cover all of a plurality of objects held together, and a plurality of the light beams emitted from the light source. A detection unit that collectively receives light transmitted through any one of the objects and detects a spectrum, a storage unit for storing reference data, spectral data of light detected by the detection unit, and And a determination unit that determines whether or not a foreign object is included in at least one of the plurality of objects based on reference data.
 本発明によれば、複数の対象物の検査を一斉に行なうことができるので、対象物の内部に混入した異物の有無を非破壊で十分に高速で判定することができる。 According to the present invention, since a plurality of objects can be inspected at the same time, the presence or absence of foreign matter mixed in the object can be determined at a sufficiently high speed without destruction.
本発明に基づく実施の形態1における異物検査装置の概念図である。It is a conceptual diagram of the foreign material inspection apparatus in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における異物検査装置に備わる保持部の部分断面図である。It is a fragmentary sectional view of the holding | maintenance part with which the foreign material inspection apparatus in Embodiment 1 based on this invention is equipped. 本発明に基づく実施の形態1における異物検査装置に備わる保持部の透光部近傍の斜視図である。It is a perspective view of the translucent part vicinity of the holding | maintenance part with which the foreign material inspection apparatus in Embodiment 1 based on this invention is equipped. 本発明に基づく実施の形態1における異物検査装置の第1の変形例の保持部に対象物が載置されている状態での保持部近傍の断面図である。It is sectional drawing of the holding part vicinity in the state in which the target object is mounted in the holding part of the 1st modification of the foreign material inspection apparatus in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における異物検査装置の第1の変形例の保持部近傍の平面図である。It is a top view of the holding | maintenance part vicinity of the 1st modification of the foreign material inspection apparatus in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における異物検査装置の第2の変形例の保持部に対象物が載置されている状態での保持部近傍の断面図である。It is sectional drawing of the holding part vicinity in the state in which the target object is mounted in the holding part of the 2nd modification of the foreign material inspection apparatus in Embodiment 1 based on this invention. 2つの指標を算出してグラフにプロットすることで判定する例の説明図である。It is explanatory drawing of the example judged by calculating two indices and plotting on a graph. 本発明に基づく実施の形態1における異物検査装置において光学部材が拡散板である例を示す概念図である。It is a conceptual diagram which shows the example whose optical member is a diffusion plate in the foreign material inspection apparatus in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における異物検査装置に備わる光源の変形例を示す概念図である。It is a conceptual diagram which shows the modification of the light source with which the foreign material inspection apparatus in Embodiment 1 based on this invention is equipped. 本発明に基づく実施の形態2における異物検査装置の使用状況の説明図である。It is explanatory drawing of the usage condition of the foreign material inspection apparatus in Embodiment 2 based on this invention. 容器の中に対象物を積み重ねた状態の一例の斜視図である。It is a perspective view of an example in the state where the target object was piled up in the container. 容器の中に対象物がバラバラに入った状態の一例の斜視図である。It is a perspective view of an example in the state where the target object fell apart in the container. 本発明に基づく実施の形態3における異物検査装置の概念図である。It is a conceptual diagram of the foreign material inspection apparatus in Embodiment 3 based on this invention. 本発明に基づく実施の形態4における異物検査装置の概念図である。It is a conceptual diagram of the foreign material inspection apparatus in Embodiment 4 based on this invention. 本発明に基づく実施の形態4における異物検査装置の変形例の概念図である。It is a conceptual diagram of the modification of the foreign material inspection apparatus in Embodiment 4 based on this invention. 本発明に基づく実施の形態5における異物検査装置の概念図である。It is a conceptual diagram of the foreign material inspection apparatus in Embodiment 5 based on this invention. 本発明に基づく実施の形態6における異物検査装置に備わる保持部の断面図である。It is sectional drawing of the holding part with which the foreign material inspection apparatus in Embodiment 6 based on this invention is equipped. 本発明に基づく実施の形態7における異物検査装置の概念図である。It is a conceptual diagram of the foreign material inspection apparatus in Embodiment 7 based on this invention. 本発明に基づく実施の形態8における異物検査装置の概念図である。It is a conceptual diagram of the foreign material inspection apparatus in Embodiment 8 based on this invention. 本発明に基づく実施の形態9における異物検査方法のフローチャートである。It is a flowchart of the foreign material inspection method in Embodiment 9 based on this invention. 本発明に基づく実施の形態10における異物検査方法のフローチャートである。It is a flowchart of the foreign material inspection method in Embodiment 10 based on this invention. 本発明に基づく実施の形態11における製造装置の概念図である。It is a conceptual diagram of the manufacturing apparatus in Embodiment 11 based on this invention.
 (実施の形態1)
 図1~図7を参照して、本発明に基づく実施の形態1における異物検査装置について説明する。
(Embodiment 1)
With reference to FIGS. 1 to 7, a foreign substance inspection apparatus according to Embodiment 1 of the present invention will be described.
 本実施の形態における異物検査装置101は、一括して保持された複数の対象物1の全体を被覆するように光を照射するための光源6と、光源6から出射して複数の対象物1のいずれかを透過した光を一括して受光してスペクトルを検出する検出部7と、基準データ11を保持するための記憶部9と、検出部7で検出された光のスペクトルのデータおよび基準データ11に基づいて前複数の対象物1の少なくともいずれかに異物が含まれるか否かを判定する判定部10とを備える。さらに、異物検査装置101は、複数の対象物1を一括して保持するための保持部5を備える。 The foreign object inspection apparatus 101 according to the present embodiment includes a light source 6 for irradiating light so as to cover the entire plurality of objects 1 held together, and a plurality of objects 1 emitted from the light source 6. The detection unit 7 that collectively receives the light transmitted through any one of the above and detects the spectrum, the storage unit 9 for holding the reference data 11, the spectrum data of the light detected by the detection unit 7 and the reference And a determination unit 10 that determines whether or not a foreign object is included in at least one of the plurality of objects 1 based on the data 11. Furthermore, the foreign substance inspection apparatus 101 includes a holding unit 5 for holding a plurality of objects 1 at a time.
 (対象物)
 対象物1は、たとえば錠剤であってよい。対象物1は、扁平な形状であってよい。対象物1は、粉末を固めて固形に成形されたものであってよい。対象物1は、薬剤であってもよく、食品であってもよい。対象物1は、カプセルの内部に何らかの内容物を収めたものであってもよい。ここでいうカプセルは、ソフトカプセルであってもよい。
(Object)
The object 1 may be a tablet, for example. The object 1 may have a flat shape. The object 1 may be formed by solidifying a powder. The object 1 may be a medicine or a food. The object 1 may be something in which some content is contained in the capsule. The capsule here may be a soft capsule.
 検査によって異物として検出すべきものとしては、毛髪、虫などの有機物が想定される。樹脂片なども異物として検出すべきものに含めてもよい。図1などにおいては、説明の便宜のために対象物1も表示しているが、対象物1自体は、異物検査装置101の一部ではない。 * Organic substances such as hair and insects are assumed to be detected as foreign substances by inspection. A resin piece or the like may be included in what should be detected as a foreign object. In FIG. 1 and the like, the object 1 is also displayed for convenience of explanation, but the object 1 itself is not a part of the foreign matter inspection apparatus 101.
 (光源)
 光源6は光源本体6aと光調整部12とを備える。光源本体6aはハロゲンランプを備えていてよい。光源本体6aは複数個のハロゲンランプを備えていてよい。光源本体6aから出射する光の波長は、たとえば600nm以上2500nm以下であってよい。照射する光の波長は、この範囲内に限られないが、この波長域においては、対象物1を透過しやすく、かつ、紫外線を照射したときのように対象物1を損傷させることがないので、好ましい。さらに、光の波長は、たとえば800nm以上1600nm以下であってよい。照射する光の波長は、この範囲内に限られないが、光の波長の1600nm付近には、一般的なタブレットに多く含まれるスターチ、乳糖、結晶セルロースなどの大きな吸収ピークがあり、混入した異物によるスペクトルへの影響が覆い隠されてしまう。また、波長が短すぎたり長すぎたりすると光散乱、吸収などによる光損失が大きくなってしまう。そこで、本実施の形態では、照射する光の波長としては800nm以上1600nm以下であることが好ましい。本実施の形態では光源本体6aの一例としてハロゲンランプを挙げたが、光源本体6aの種類はこれに限らず他の種類のランプなどであってもよい。光源本体6aは、異物を検出できる波長の光を照射できる装置であればよく、たとえばタングステンランプ、蛍光体、LED、レーザのいずれかであってもよい。
(light source)
The light source 6 includes a light source body 6 a and a light adjustment unit 12. The light source body 6a may include a halogen lamp. The light source body 6a may include a plurality of halogen lamps. The wavelength of the light emitted from the light source body 6a may be, for example, not less than 600 nm and not more than 2500 nm. Although the wavelength of the light to irradiate is not limited to this range, in this wavelength range, it is easy to transmit through the object 1 and does not damage the object 1 as when irradiated with ultraviolet rays. ,preferable. Furthermore, the wavelength of light may be, for example, not less than 800 nm and not more than 1600 nm. The wavelength of the irradiated light is not limited to this range, but there are large absorption peaks such as starch, lactose, and crystalline cellulose contained in general tablets in the vicinity of 1600 nm of the wavelength of the light. The influence on the spectrum due to is hidden. Moreover, if the wavelength is too short or too long, light loss due to light scattering, absorption, etc. will increase. Therefore, in the present embodiment, the wavelength of light to be irradiated is preferably 800 nm or more and 1600 nm or less. In the present embodiment, a halogen lamp is used as an example of the light source body 6a. However, the type of the light source body 6a is not limited to this and may be other types of lamps. The light source body 6a only needs to be a device that can emit light having a wavelength that can detect foreign matter, and may be, for example, a tungsten lamp, a phosphor, an LED, or a laser.
 なお、光源6の個数、光の波長、光の強度などは、装置の構成や対象物1の種類などに応じて適宜選択される。本実施の形態では、1つの光源6を用いて1つの方向から光を対象物1に照射しているが、これに限るものではなく、2つ以上の光源を用いて異なる方向から同時に照射してもよい。 Note that the number of light sources 6, the wavelength of light, the intensity of light, and the like are appropriately selected according to the configuration of the apparatus, the type of the object 1, and the like. In the present embodiment, the object 1 is irradiated with light from one direction using one light source 6, but the present invention is not limited to this, and the light is irradiated simultaneously from different directions using two or more light sources. May be.
 図1に示すように、光源本体6aに対応して光源本体6aの下方に光調整部12が配置されていてもよい。光調整部12はたとえばレンズを含む。 As shown in FIG. 1, the light adjusting unit 12 may be disposed below the light source body 6a corresponding to the light source body 6a. The light adjustment unit 12 includes, for example, a lens.
 (減光手段)
 基準データを取得する際には、光路を遮るように減光手段を配置する。減光手段は、たとえば中性濃度フィルタである。
(Dimming means)
When acquiring the reference data, a dimming means is arranged so as to block the optical path. The dimming means is, for example, a neutral density filter.
 基準データ11の測定時と対象物1の測定時とでは、照射光量は同じであることが求められる。一般的に対象物1の透過光は微弱であるので、この透過光が適正な光量となるように光源6から出射する光量を大きく設定しておくと、基準データ11を得るために測定を行なう際に過大な光量が検出部7に入射してしまい、分光器のダイナミックレンジを超えてしまう。しかし光源6から出射する光量を小さく設定しすぎると、対象物1を測定する際に、対象物1を透過して得られる光が微弱すぎて、この光のスペクトルを検出するためには積算時間が長く必要となってしまう。本実施の形態では、この問題を解決するために、減光手段を用いている。減光手段として中性濃度フィルタを用いている。これにより、光源6の光量は大きく設定されたままであっても基準データを取得することができる。 The amount of irradiation light is required to be the same when measuring the reference data 11 and when measuring the object 1. In general, since the transmitted light of the object 1 is weak, if the light amount emitted from the light source 6 is set large so that the transmitted light becomes an appropriate light amount, measurement is performed to obtain the reference data 11. At that time, an excessive amount of light enters the detection unit 7 and exceeds the dynamic range of the spectrometer. However, if the amount of light emitted from the light source 6 is set too small, the light obtained through the target 1 is too weak when measuring the target 1, and an integration time is required to detect the spectrum of this light. Will be necessary for a long time. In the present embodiment, dimming means is used to solve this problem. A neutral density filter is used as the dimming means. Thereby, even if the light quantity of the light source 6 is set large, the reference data can be acquired.
 減光手段の減衰率(透過率)は、測定に使用する波長域内のいずれの波長においてもほぼ一定であることが好ましい。 The attenuation factor (transmittance) of the dimming means is preferably substantially constant at any wavelength within the wavelength range used for measurement.
 本実施の形態では、減光手段として光学濃度(OD:Optical density)が約3である中性濃度フィルタ(「NDフィルタ」ともいう。)を用いる。減光手段としては、中性濃度フィルタに限らず他のものを用いることとしてもよい。たとえば減光手段として中性濃度フィルタに代えて反射コーティングされた減光フィルタなどを用いることも考えられる。 In the present embodiment, a neutral density filter (also referred to as an “ND filter”) having an optical density (OD) of about 3 is used as a dimming means. The light reduction means is not limited to the neutral density filter, and other means may be used. For example, a neutral density filter may be used instead of the neutral density filter as a light reducing means.
 フィルタによる光の戻り反射量を抑えることを重視する場合には、吸収型NDフィルタを用いてもよい。 If it is important to suppress the amount of light reflected back by the filter, an absorption ND filter may be used.
 使用する中性濃度フィルタは単一枚葉のものに限らず、複数枚が重なった構造のものであってもよい。複数枚の中性濃度フィルタを重ねることによって、所望のODとなるように調整することも考えられる。 The neutral density filter to be used is not limited to a single sheet, but may be a structure in which a plurality of sheets are stacked. It is also conceivable to adjust a desired OD by overlapping a plurality of neutral density filters.
 中性濃度フィルタは差込み式で光源6の出口に取り付けられ、着脱可能となっているものであってもよい。異なるODが求められる際には適宜異なるフィルタに交換することも考えられる。 The neutral density filter may be a plug-in type attached to the outlet of the light source 6 and detachable. When a different OD is required, it is possible to replace the filter with a different filter as appropriate.
 中性濃度フィルタは、理論的には光源6と検出部7との間のいずれかの位置に入れればよい。ただし、近赤外の波長には熱線が含まれており、光調整部12のレンズに耐熱性を持たせることよりも中性濃度フィルタに耐熱性を持たせることの方が安価で簡単に実現できるので、本実施の形態では、中性濃度フィルタにある程度の耐熱性を持たせることとし、光源6と光調整部12との間に中性濃度フィルタを配置している。このように配置することとすれば、光調整部12のレンズに求められる耐熱性の条件が緩和される。 Theoretically, the neutral density filter may be inserted at any position between the light source 6 and the detection unit 7. However, the near-infrared wavelength contains heat rays, and it is cheaper and easier to make the neutral density filter heat resistant than to make the lens of the light adjustment unit 12 heat resistant. Therefore, in the present embodiment, the neutral density filter is provided with a certain degree of heat resistance, and the neutral density filter is disposed between the light source 6 and the light adjusting unit 12. If it arrange | positions in this way, the heat resistant conditions calculated | required by the lens of the light adjustment part 12 will be eased.
 なお、光調整部12が設けられていない場合や、光調整部12が耐熱性を有する部材である場合には、中性濃度フィルタ8は検出部7の直前に配置したり、検出部7の入射口に取り付けたりしてもよい。異物検査装置101における検出部7の取付け位置によっては中性濃度フィルタ8の着脱が容易になるという利点がある。 When the light adjustment unit 12 is not provided or when the light adjustment unit 12 is a member having heat resistance, the neutral density filter 8 may be disposed immediately before the detection unit 7 or the detection unit 7 It may be attached to the entrance. There is an advantage that the neutral density filter 8 can be easily attached and detached depending on the attachment position of the detection unit 7 in the foreign matter inspection apparatus 101.
 (光調整部)
 光調整部12は、光源本体6aからの光の進行方向を調整する。既に述べたように、光調整部12はたとえばレンズを含む。対象物1の端の方に混入している異物であっても検知できるように、照射光は対象物1の全体を一括して被覆して照射される。光調整部12ではそのような照射が行なえるようにピントを合わせておく。ただし、光の照射領域が対象物1より大きすぎると照射した光のうち無駄になる部分が大きくなるので、照射領域は対象物1の投影面積よりやや大きい程度にする。照射領域の面積は、たとえば対象物1の投影面積の100.1%としてもよい。ここでいう「対象物1の投影面積」とは、対象物1を、光の照射方向に垂直な仮想的な面に投影して得られる面積のことである。
(Light adjustment part)
The light adjustment unit 12 adjusts the traveling direction of light from the light source body 6a. As already described, the light adjustment unit 12 includes, for example, a lens. The irradiation light is irradiated while covering the entire object 1 in a lump so that even foreign objects mixed in the end of the object 1 can be detected. The light adjustment unit 12 is focused so that such irradiation can be performed. However, if the light irradiation area is too larger than the object 1, the portion of the irradiated light that is wasted increases, so the irradiation area is set to be slightly larger than the projected area of the object 1. For example, the area of the irradiation region may be 100.1% of the projected area of the object 1. The “projected area of the object 1” here is an area obtained by projecting the object 1 onto a virtual plane perpendicular to the light irradiation direction.
 たとえば対象物1が打錠法によって製造されたタブレットである場合、タブレットの製造時に臼と杵とによって加圧された方向に沿って光を照射することが好ましい。一般的に、臼と杵とで成形する打錠法では、タブレットの外周面が硬くなっていて光が透過しにくくなる。そこで、外周面以外から光が入射するように照射することで、光の透過をより容易にすることができる。なお、光の照射方向はこれに限るものではなく、異物の検査状況に応じて適当な方向から照射することとしてもよい。 For example, when the object 1 is a tablet manufactured by a tableting method, it is preferable to irradiate light along a direction pressed by a mortar and a punch when the tablet is manufactured. In general, in the tableting method in which molding is performed with a mortar and a punch, the outer peripheral surface of the tablet is hard and light is difficult to transmit. Therefore, it is possible to facilitate the transmission of light by irradiating light so that it enters from other than the outer peripheral surface. In addition, the irradiation direction of light is not limited to this, and irradiation may be performed from an appropriate direction according to the inspection state of the foreign matter.
 光調整部12がレンズを含む場合、レンズはある程度の耐熱性を有することが好ましい。 When the light adjusting unit 12 includes a lens, the lens preferably has a certain degree of heat resistance.
 光調整部は、光源本体から出た後の光を、たとえば光ファイバからなるライトガイドによって所望の位置まで導くものであってもよい。光調整部は、このような導光手段の先端にレンズを配置した形態のものであってもよい。この場合は、導光手段の内部で光の損失が生じうるが、光の照射を対象物に近い位置から行ないやすくなるという利点がある。 The light adjusting unit may guide the light after coming out of the light source body to a desired position with a light guide made of, for example, an optical fiber. The light adjusting unit may have a configuration in which a lens is disposed at the tip of such a light guide. In this case, although light loss may occur inside the light guide means, there is an advantage that light irradiation can be easily performed from a position close to the object.
 また、光調整部12は、光を遮るシャッタを備えていてもよい。このようにシャッタを備えることとした場合、測定し終わった対象物1からの光が検出部7に入り込んでノイズとならないように、対象物の搬送に合わせてシャッタを閉じて光を遮断することができる。また、このようにシャッタを備えることとした場合、試料の交換などで一時的に光の照射を止めて何らかの作業を行ないたい場合にも、シャッタを閉ざすことにより、光源を点灯させ続けたまま外部には光の照射をしない状態を実現することができ、所望の作業が続行できるので、光源の立上げに要する時間を節約することができる。光源がたとえばハロゲンランプである場合には、ハロゲンランプの立上げに要する時間を節約することができ、効果的である。 The light adjusting unit 12 may include a shutter that blocks light. When the shutter is provided as described above, the shutter is closed to block the light in accordance with the conveyance of the object so that the light from the object 1 that has been measured does not enter the detection unit 7 and become noise. Can do. In addition, when the shutter is provided in this way, even when it is desired to temporarily stop light irradiation for sample exchange or the like to perform some work, the shutter is closed, and the light source is kept on and the external light is kept on. In this case, it is possible to realize a state in which light is not irradiated, and a desired operation can be continued, so that the time required for starting up the light source can be saved. When the light source is, for example, a halogen lamp, the time required for starting up the halogen lamp can be saved, which is effective.
 (保持部)
 保持部5は、複数の孔5aを有する。ここで示す例では、孔5aは透光部である。保持部5の部分断面図を図2に示す。保持部5の部分斜視図を図3に示す。孔5aは対象物1の外形より大きい。対象物1が円形である場合には、孔5aの内径は、対象物1の外径より大きい。この径の差はわずかなものであってよい。図2に示すように、保持部5は、第1部分5bと第2部分5cとを含む。第1部分5bは光を透過しない材料で形成されている。第2部分5cは光を透過する材料で形成されている。図2に示すように、第2部分5cの上側だけでなく下側にも第1部分5bが存在する。図2に示すように、第2部分5cは第1部分5bによって上下から挟み込まれていてもよい。第2部分5cは開口部5c1を有する。開口部5c1の径は、対象物1の外径より小さい。対象物1は、孔5aの内部において第2部分5cによって支持されうる。
(Holding part)
The holding part 5 has a plurality of holes 5a. In the example shown here, the hole 5a is a translucent part. A partial cross-sectional view of the holding portion 5 is shown in FIG. A partial perspective view of the holding portion 5 is shown in FIG. The hole 5 a is larger than the outer shape of the object 1. When the object 1 is circular, the inner diameter of the hole 5 a is larger than the outer diameter of the object 1. This difference in diameter may be slight. As shown in FIG. 2, the holding | maintenance part 5 contains the 1st part 5b and the 2nd part 5c. The first portion 5b is made of a material that does not transmit light. The second portion 5c is formed of a material that transmits light. As shown in FIG. 2, the first portion 5b exists not only on the upper side of the second portion 5c but also on the lower side. As shown in FIG. 2, the second portion 5c may be sandwiched from above and below by the first portion 5b. The second portion 5c has an opening 5c1. The diameter of the opening 5 c 1 is smaller than the outer diameter of the object 1. The object 1 can be supported by the second portion 5c inside the hole 5a.
 外部からの迷光が入り込まないよう、第1部分5bは、近赤外光に対して透過性が低くなっている。第1部分5bは、たとえば黒アルマイトのような透過性の低い材料を用いて部材を形成することによって実現できる。あるいは、第1部分5bは、他の材料で部材を形成した後でたとえば黒アルマイトのような透過性の低い材料でコーティングを行なうことによっても実現できる。保持部5は、複数の孔5aを有するので、保持部5は、複数の対象物1を同時に保持することができる。複数の対象物1は、光調整部12で一定の領域に向けられた光が一括して被覆できるような範囲に配列された状態で保持される。 The first portion 5b is less permeable to near infrared light so that stray light from the outside does not enter. The first portion 5b can be realized by forming a member using a material having low permeability such as black alumite. Alternatively, the first portion 5b can be realized by forming a member with another material and then coating with a material having low permeability such as black alumite. Since the holding part 5 has a plurality of holes 5a, the holding part 5 can hold a plurality of objects 1 at the same time. The plurality of objects 1 are held in a state where they are arranged in a range in which light directed to a certain region can be collectively covered by the light adjusting unit 12.
 ここで示す例では、保持部5が孔5aを有しており、対象物1を孔5aの内部に配置することによって保持しているが、これはあくまで一例である。対象物1を保持することができ、透過光を測定するために十分な程度に透過光の通り道を確保できるならば、孔に限らない。 In the example shown here, the holding part 5 has a hole 5a, and the object 1 is held by being placed inside the hole 5a, but this is only an example. The object 1 is not limited to the hole as long as the object 1 can be held and the passage of the transmitted light can be secured to a sufficient extent to measure the transmitted light.
 ここで示す例では、対象物1を支持するために第2部分5cが設けられ、かつ、第2部分5cは開口部5c1を有しているが、透過光をなるべく遮らないようにするために、開口部5c1の面積は対象物1が第2部分5cに接する面の表面積のたとえば90%であってよい。この比率は、90%に限らず、たとえば95%であってもよい。 In the example shown here, the second portion 5c is provided to support the object 1, and the second portion 5c has the opening 5c1, but in order to prevent the transmitted light from being blocked as much as possible. The area of the opening 5c1 may be, for example, 90% of the surface area of the surface where the object 1 is in contact with the second portion 5c. This ratio is not limited to 90%, and may be 95%, for example.
 ここで示す例においては、第2部分5cは、板状であるので「支持板」と呼んでもよい。なお、ここでは、第2部分5cが、透過光の波長に対する透明性を有する例を示した。この場合、第2部分5cは、光を透過する波長特性を有する透明部材を使用して形成してもよい。第2部分5cの材料としては、たとえば、石英ガラス、または、合成石英ガラスを採用することができる。第2部分5cが透明性を有する場合には、対象物を透過した光を効率よく利用することができる。 In the example shown here, the second portion 5c is plate-shaped and may be referred to as a “support plate”. Here, an example in which the second portion 5c has transparency with respect to the wavelength of the transmitted light is shown. In this case, the second portion 5c may be formed using a transparent member having a wavelength characteristic that transmits light. As a material of the second portion 5c, for example, quartz glass or synthetic quartz glass can be employed. When the 2nd part 5c has transparency, the light which permeate | transmitted the target object can be utilized efficiently.
 第2部分5cは透過光の波長に対して透明であることに限るものではない。第2部分5cは、半透明な構成、あるいは、不透明な構成とすることも可能である。第2部分5cに透光性を持たせない場合は、材料の選択の幅が広がるので、より対象物を保持しやすい材料を選択することができる。また、対象物の形状によっては、対象物1と保持部5との隙間を通過するノイズ光の割合が多くなることがあるが、第2部分5cが不透明であれば、そのようなノイズ光を遮断することができる。 The second portion 5c is not limited to being transparent with respect to the wavelength of transmitted light. The second portion 5c can be configured to be translucent or opaque. In the case where the second portion 5c is not light-transmitting, the selection range of the material is widened, so that a material that can easily hold the object can be selected. Further, depending on the shape of the object, the ratio of noise light passing through the gap between the object 1 and the holding unit 5 may increase. However, if the second portion 5c is opaque, such noise light may be emitted. Can be blocked.
 (検出部)
 保持部5の下方にはレンズ14が配置されている。保持部5に保持された対象物1を透過した光は、レンズ14によって集光され、検出部7に入射する。保持部5から検出部7までは光ファイバからなるライトガイドなどによって導光してもよい。
(Detection unit)
A lens 14 is disposed below the holding unit 5. The light transmitted through the object 1 held by the holding unit 5 is collected by the lens 14 and enters the detection unit 7. The light may be guided from the holding unit 5 to the detection unit 7 by a light guide made of an optical fiber.
 検出部7の入口に光を遮るためのシャッタを開閉自在の状態で配置してもよい。このようにすれば、測定し終わった対象物からの光が検出部7に入り込んでノイズとならないようにシャッタを閉じて光を遮断することができる。また、このようにシャッタを配置すれば、検出部7に強い光が入ることを一時的に防ぎたい場合などに光を遮ることができて好都合である。 A shutter for blocking light at the entrance of the detection unit 7 may be disposed in a freely openable / closable state. In this way, the light can be blocked by closing the shutter so that the light from the object that has been measured does not enter the detector 7 and become noise. In addition, if the shutter is arranged in this way, it is advantageous in that the light can be blocked when it is desired to temporarily prevent the strong light from entering the detection unit 7.
 検出部7には、たとえばポリクロメータ式の分光器を用いることとしてよい。ポリクロメータ式の分光器においては、各波長に分光するプリズムの先に受光素子が多数並んでおり、各波長光を同時に測定できる。ポリクロメータ式の分光器は、マルチチャンネル検出器とも呼ばれる。ポリクロメータ式の分光器は、測定時間が高速である利点を有する。 For the detection unit 7, for example, a polychromator type spectroscope may be used. In a polychromator type spectroscope, a large number of light receiving elements are arranged at the end of a prism that divides light into each wavelength, and light of each wavelength can be measured simultaneously. The polychromator type spectrometer is also called a multi-channel detector. The polychromator type spectrometer has the advantage of high measurement time.
 ポリクロメータには、受光素子とプリズムとを用いた方式のものや、CCDを用いた方式のものなどがある。ポリクロメータの種類は、検査装置の構成や測定するタブレットの種類、光の波長などに応じて適宜選択される。本実施の形態では、一例として、CCDよりも精度の良いInGaAs受光素子とプリズムとを組み合わせた方式を用いる。 Polychromators include those using a light receiving element and a prism, and those using a CCD. The type of polychromator is appropriately selected according to the configuration of the inspection apparatus, the type of tablet to be measured, the wavelength of light, and the like. In this embodiment, as an example, a system in which an InGaAs light receiving element and a prism, which are more accurate than a CCD, are combined is used.
 検出部7に備わる分光器は、受光した光のスペクトルを測定する。検出部7は、分光器を備えるとは限らない。検出部7は、たとえばフォトダイオード、フォトトランジスタ、アバランシェフォトダイオード、光電子倍増管のいずれかを備える構成であってもよい。検出部7における受光素子の個数、配置などは、異物検査装置の構成、測定すべき対象物の種類、用いられる光の波長などに応じて適宜選択される。 The spectroscope provided in the detector 7 measures the spectrum of the received light. The detection unit 7 does not necessarily include a spectroscope. The detection unit 7 may be configured to include any of a photodiode, a phototransistor, an avalanche photodiode, and a photomultiplier tube, for example. The number and arrangement of the light receiving elements in the detection unit 7 are appropriately selected according to the configuration of the foreign substance inspection apparatus, the type of the object to be measured, the wavelength of light used, and the like.
 (制御部)
 図1に示されるように、異物検査装置101は、制御部13を備えていてもよい。制御部13は、光源6、記憶部9、検出部7、搬送部などを制御する。光調整部12または検出部7にシャッタがついている場合は、制御部13によってシャッタの開閉も制御する構成となっていてもよい。制御部13による各処理は、中央演算装置(CPU:Central Processing Unit)によって実現されてもよい。
(Control part)
As shown in FIG. 1, the foreign substance inspection apparatus 101 may include a control unit 13. The control unit 13 controls the light source 6, the storage unit 9, the detection unit 7, the transport unit, and the like. When the light adjustment unit 12 or the detection unit 7 has a shutter, the control unit 13 may control the opening and closing of the shutter. Each process by the control part 13 may be implement | achieved by the central processing unit (CPU: Central Processing Unit).
 (判定部)
 判定部10は、透過光に基づき検出部7によって得られる対象物1の測定データと、記憶部9に格納されたデータとを参照して演算を行ない、対象物1の内部に、混入した異物が含まれているか否かを判定する。ここで示した例では、判定部10は制御部13とは別のものとして示したが、判定部10は制御部の一部として設けられていてもよい。制御部が判定部を兼ねていてもよい。
(Judgment part)
The determination unit 10 performs an operation with reference to the measurement data of the object 1 obtained by the detection unit 7 based on the transmitted light and the data stored in the storage unit 9, and foreign matter mixed in the object 1. Whether or not is included is determined. In the example shown here, the determination unit 10 is illustrated as being different from the control unit 13, but the determination unit 10 may be provided as a part of the control unit. The control unit may also serve as the determination unit.
 (記憶部)
 記憶部9は、検査に必要な情報を記憶するためのものである。記憶部9は、たとえば、検出部7による測定データを一時的に記憶するための領域、制御部が実行する各種プログラム、これらのプログラムにおいて使用されるデータを記憶するための領域、これらのプログラムがロードされる領域、および、これらプログラムが実行される際に使用される作業領域などを備えている。ここでいう各種プログラムとは、たとえば、判定を行なうためのプログラム、計算アルゴリズム、データベースなどである。記憶部9は、判定部10による判定のために用いられる基準データ11を保持することができる。
(Memory part)
The storage unit 9 is for storing information necessary for inspection. The storage unit 9 includes, for example, an area for temporarily storing measurement data from the detection unit 7, various programs executed by the control unit, an area for storing data used in these programs, and these programs. An area to be loaded and a work area used when these programs are executed are provided. Here, the various programs are, for example, a program for making a determination, a calculation algorithm, a database, and the like. The storage unit 9 can hold reference data 11 used for determination by the determination unit 10.
 (異物検査装置における作業の流れ)
 本実施の形態における異物検査装置101によって検査を行なう際の作業の流れについて説明する。
(Work flow in foreign object inspection equipment)
A flow of work when inspection is performed by the foreign object inspection apparatus 101 in the present embodiment will be described.
 検査を行なう前に予め、光調整部12のレンズは、保持部5に対象物1がある状態のときに照射光が対象物1を覆うようにピントを合わせておく。すなわち、照射光に垂直な面における対象物1の断面積の少なくとも100%を照射光が覆うようにピントを合わせておく。ただし、光の照射面積が対象物1より大きすぎると光の全体のうち無駄になる割合が大きくなるので、照射面積は対象物1よりやや大きい程度にする。ここでは合計の断面積の100.1%とする。 Prior to the inspection, the lens of the light adjusting unit 12 is previously focused so that the irradiation light covers the target 1 when the target 1 is in the holding unit 5. That is, the focus is adjusted so that the irradiation light covers at least 100% of the cross-sectional area of the object 1 in a plane perpendicular to the irradiation light. However, if the light irradiation area is too large compared to the object 1, the proportion of wasted light in the entire light increases, so the irradiation area is set to be slightly larger than the object 1. Here, it is 100.1% of the total cross-sectional area.
 光の照射時間、照射光量、分光器のスリット幅、積算時間、平均回数、設定温度、感度など人為的に変更できる測定条件は、対象物1の種類に応じて予め定められており、検査の間はこれらの条件を変更しないこととする。 Measurement conditions that can be artificially changed, such as the irradiation time of light, the amount of irradiation light, the slit width of the spectrometer, the integration time, the average number of times, the set temperature, and the sensitivity, are predetermined according to the type of the object 1 and We will not change these conditions during this period.
 測定位置に存在する保持部5には1つの対象物1が保持されており、1つの対象物1ごとに一定時間、光を照射する。光の照射時間は、対象物1の不適切な昇温を避ける程度の短い時間とする。本実施の形態では、照射時間は1回当たり0.8秒としている。 The holding unit 5 present at the measurement position holds one object 1 and irradiates light for each object 1 for a certain period of time. The light irradiation time is set to a time short enough to avoid inappropriate heating of the object 1. In the present embodiment, the irradiation time is 0.8 seconds per time.
 複数の保持部5に一斉に照射するのではなく1つの保持部5ごとに個別に照射することとすれば、別の保持部5からの迷光を防ぐことができる。光源6は、短時間の光照射が可能な光源であればよく、電気的制御の他にも、たとえばフラッシュタイプのランプやチョッパーなどを用いることとしてもよい。 If stray light from another holding unit 5 can be prevented by irradiating each holding unit 5 individually instead of irradiating a plurality of holding units 5 all at once. The light source 6 only needs to be a light source that can irradiate light for a short time. In addition to electrical control, for example, a flash-type lamp or chopper may be used.
 なお、本実施の形態では、対象物1の1個当たりに0.8秒という短時間の照射を行なっているが、照射時間はこれに限らない。光量を増やすと光が対象物1を透過しやすくなるので、対象物1の種類によっては照射時間を長くしてもよい。しかし、照射光には熱線が含まれているので、光を照射すると対象物1が昇温する。照射する光量を増やすほど、また照射時間が長くなるほど温度が上昇する。対象物1の種類によっては、加熱しすぎることによって成分が変質してしまう。対象物1が検査工程より前の乾燥工程などで既に加熱されて昇温している場合には、その温度を上限と設定する。なぜなら、前に行なわれる乾燥工程などでの温度は、対象物1の成分が変質する温度以下に保たれているのが一般的だからである。すなわち、照射時間と照射する光量によって定まる昇温の程度は、検査工程より前に行なわれる何らかの工程で生じる温度以下となるようにし、この条件を満たす範囲内で照射光量をなるべく大きくして測定時間を短縮することが好ましい。照射時間および照射光量の上限は対象物1の成分や構造などに依存して、適宜決定される。 In the present embodiment, irradiation is performed for a short time of 0.8 seconds per object 1, but the irradiation time is not limited to this. Increasing the amount of light makes it easier for light to pass through the object 1, so the irradiation time may be lengthened depending on the type of the object 1. However, since the irradiation light includes heat rays, the object 1 is heated when irradiated with light. The temperature rises as the amount of light to be irradiated is increased and the irradiation time is lengthened. Depending on the type of the object 1, the component is altered by being heated too much. In the case where the object 1 has already been heated and heated in a drying process or the like prior to the inspection process, the temperature is set as the upper limit. This is because the temperature in the drying step or the like performed before is generally kept below the temperature at which the components of the object 1 are altered. That is, the degree of temperature rise determined by the irradiation time and the amount of light to be irradiated is set to be equal to or lower than the temperature generated in any process performed before the inspection process, and the amount of irradiation light is made as large as possible within the range satisfying this condition, and the measurement time Is preferably shortened. The upper limit of the irradiation time and the irradiation light amount is appropriately determined depending on the component and structure of the object 1.
 なお、光の照射方向に対して垂直な方向に対象物1を搬送するだけでは不十分であり、搬送中に対象物1がぐらつかないよう対象物1を保持したり固定したりする機構が用いられることが好ましい。 Note that it is not sufficient to transport the target object 1 in a direction perpendicular to the light irradiation direction, and a mechanism for holding or fixing the target object 1 so that the target object 1 does not wobble during transport is used. It is preferred that
 本発明に基づく実施の形態1における異物検査装置にはさまざまな変形例が考えられる。第1の変形例として、保持部5は、たとえば図4および図5に示す構成であってもよい。この変形例においては、保持部5は、孔5aを有し、孔5aの内側に向かって突出する突起5eを備えている。図4は、保持部5に対象物1が載置されている状態の断面図であり、図5は、対象物1がない状態での保持部5近傍の平面図である。この例では、3つの突起5eが約120°ずつの等間隔で設けられている。突起5eの数は3以外であってもよい。突起5eの配置角度は等間隔でなくてもよい。 Various modifications can be considered for the foreign matter inspection apparatus according to the first embodiment of the present invention. As a first modification, the holding unit 5 may have a configuration shown in FIGS. 4 and 5, for example. In this modification, the holding part 5 has a hole 5a and includes a protrusion 5e protruding toward the inside of the hole 5a. FIG. 4 is a cross-sectional view of the state in which the object 1 is placed on the holding unit 5, and FIG. 5 is a plan view of the vicinity of the holding unit 5 without the object 1. In this example, the three protrusions 5e are provided at equal intervals of about 120 °. The number of protrusions 5e may be other than three. The arrangement angles of the protrusions 5e need not be equal.
 第2の変形例として、たとえば図6に示すような構成であってもよい。この例においては、保持部5は、第1部分5bと第2部分5cとレンズ5dとを含み、第2部分5cは開口部を有する。第2部分5cの開口部はすり鉢形状となっている。第2部分5cの開口部は、対象物1の形状がフィットするようなすり鉢形状となっていることが好ましい。 As a second modification, for example, a configuration as shown in FIG. 6 may be used. In this example, the holding part 5 includes a first part 5b, a second part 5c, and a lens 5d, and the second part 5c has an opening. The opening of the second portion 5c has a mortar shape. It is preferable that the opening part of the 2nd part 5c becomes a mortar shape that the shape of the target object 1 fits.
 まず、対象物1を検査する前に基準データ11を取得するための測定を行なう。基準データ11取得のための測定は、対象物1の検査を始める前に少なくとも1回は行なうことが必要である。この測定は、異物検査装置101を第1状態にして行なう。 First, before inspecting the object 1, a measurement for obtaining the reference data 11 is performed. The measurement for acquiring the reference data 11 needs to be performed at least once before the inspection of the object 1 is started. This measurement is performed with the foreign matter inspection apparatus 101 in the first state.
 なお、前回の基準データ11取得から時間が経過したときや、検査する対象物の種類を変更したときに基準データ11取得のための測定をやり直すか否かの判断は、ユーザが求める検査の厳密さや、検査装置の構成や測定する対象物の種類、光の波長などに応じて適宜選択される。本実施の形態では、検査する対象物の種類が同一であれば、基準データ11取得のための測定は、たとえば1日の中で、午前の検査開始前と、午後の検査の開始前に1回ずつ行なえばよいこととする。このときに使用するNDフィルタは対象物の種類に応じて決められたものを使用する。 It should be noted that when the time has elapsed since the previous acquisition of the reference data 11 or when the type of the object to be inspected is changed, it is determined whether or not the measurement for acquiring the reference data 11 is to be performed again. The selection is appropriately made according to the configuration of the inspection apparatus, the type of the object to be measured, the wavelength of light, and the like. In the present embodiment, if the types of objects to be inspected are the same, the measurement for obtaining the reference data 11 is performed, for example, 1 day before the start of the morning inspection and before the start of the afternoon inspection. You only have to do it once. The ND filter used at this time is determined according to the type of the object.
 (第1段階 基準データの測定)
 これは、異物検査装置101で基準データを取得するために事前に行なう測定である。
1.ODが3となるNDフィルタを、光源に取りつける。
2.対象物1が設置されていない保持部5を光の照射領域に配置する。工程1と工程2とはいずれを先に行なってもよい。
3.光源をオンにする。これにより、光がNDフィルタで減光されて光調整部12に入射する。
4.光調整部12からの光は検出部7に入射する。検出部7に備わる分光器で光のスペクトル(波長ごとの光の強度)を測定し、これを基準データ11として記憶部9に記憶する。基準データにおける光の強度をI0とする。
(1st step: Measurement of reference data)
This is a measurement performed in advance for acquiring the reference data by the foreign substance inspection apparatus 101.
1. An ND filter with an OD of 3 is attached to the light source.
2. The holding unit 5 on which the object 1 is not installed is arranged in the light irradiation region. Either step 1 or step 2 may be performed first.
3. Turn on the light source. Thereby, the light is attenuated by the ND filter and enters the light adjusting unit 12.
4). Light from the light adjustment unit 12 enters the detection unit 7. The spectrum of light (the intensity of light for each wavelength) is measured by a spectroscope provided in the detection unit 7 and stored in the storage unit 9 as reference data 11. The light intensity in the reference data is I0.
 (第2段階 対象物の測定)
 これは、異物検査装置101で実際に複数の対象物1の異物検査として行なう測定である。
5.対象物1の検査を開始する。保持部5に複数の対象物1を設置した状態で、保持部5を光の照射領域に配置する。このとき、保持部5の位置は、基準データの測定を行ったときの位置と同じにする。
6.複数の対象物1に光を照射する。
7.光は、複数の対象物1の内部を透過する。ここでいう「透過」には、対象物1の内部で散乱(多重散乱を含む。)しながら通り抜けることを含む。
8.複数の対象物1を透過した光はレンズ14で集光されて検出部7に入射する。
9.検出部7に備わる分光器で波長ごとの光の強度Iが測定される。測定結果を測定データとして記憶部9に記憶する。透過光には、対象物1の内部の情報が含まれる。
(Second stage measurement of target)
This is a measurement that is actually performed as a foreign object inspection of a plurality of objects 1 by the foreign object inspection apparatus 101.
5). The inspection of the object 1 is started. With the plurality of objects 1 installed on the holding unit 5, the holding unit 5 is arranged in the light irradiation region. At this time, the position of the holding unit 5 is the same as the position when the reference data is measured.
6). A plurality of objects 1 are irradiated with light.
7). The light passes through the plurality of objects 1. Here, “transmission” includes passing through the object 1 while being scattered (including multiple scattering).
8). The light transmitted through the plurality of objects 1 is collected by the lens 14 and enters the detection unit 7.
9. The spectroscope provided in the detection unit 7 measures the light intensity I for each wavelength. The measurement result is stored in the storage unit 9 as measurement data. The transmitted light includes information inside the object 1.
 (第3段階 異物混入有無の判定)
10.判定部10において、測定された光の強度を用いて、入射光と透過光の差から異物の情報を抽出するための換算を行なう。本実施の形態では、吸光度A1=log(I0/I)として波長ごとの吸光度を算出する。なお、対象物1がタブレットである場合、内部での光の散乱が大きいので厳密にはA1を吸光度とは呼べないが、ここでは便宜的にこのA1を吸光度と定義する。
11.判定部10が算出された吸光度A1から異物混入の有無を判定する。
(3rd stage: Judgment of foreign matter contamination)
10. The determination unit 10 performs conversion for extracting information on the foreign matter from the difference between the incident light and the transmitted light using the measured light intensity. In the present embodiment, the absorbance for each wavelength is calculated as absorbance A1 = log (I0 / I). Note that when the object 1 is a tablet, scattering of light inside is large, and therefore, A1 cannot be strictly called absorbance, but for convenience, this A1 is defined as absorbance.
11. The determination unit 10 determines the presence or absence of foreign matter from the calculated absorbance A1.
 本実施の形態では判別分析を用いる。具体的には、サンプルのクラス予測値や類似度を吸光度から算出する計算モデルを用いる。計算モデルの導出方法には、サポートベクターマシーン、パターン認識、マハラノビスの距離による分析、SIMCA(Soft Independent Modeling of Class Analogy)判別分析、正準判別分析法などがある。どういう種類の対象物の何を判定するかという目的に応じて最適な導出方法を選択して計算モデルを決定すればよい。 In this embodiment, discriminant analysis is used. Specifically, a calculation model for calculating the class predicted value and the similarity of the sample from the absorbance is used. The calculation model derivation method includes support vector machine, pattern recognition, Mahalanobis distance analysis, SIMCA (Soft Independent Modeling of Class Analysis) discriminant analysis, canonical discriminant analysis method and the like. The calculation model may be determined by selecting an optimum derivation method according to the purpose of what kind of object to be determined.
 ここではPLS-DA(Partial Linear Square―Discriminant Analysis)法によって対象物としてのタブレットに含まれる異物の特徴を求める計算モデルを導出し、この計算モデルを用いてタブレットの測定データから算出した値が、予め設定した基準値以上か否かによって異物混入の判別を行なう。算出を行なうための計算モデルは、照射される光の波長、タブレットの種類、検査装置の搬送部の構成などによって決定され、予め記憶部9に記憶されている。 Here, a calculation model for determining the characteristics of a foreign substance contained in a tablet as a target object is derived by the PLS-DA (Partial Linear Square-Discriminant Analysis) method, and the value calculated from the tablet measurement data using this calculation model is Foreign matter contamination is determined based on whether or not the reference value is greater than a preset reference value. A calculation model for performing the calculation is determined by the wavelength of light to be irradiated, the type of tablet, the configuration of the transport unit of the inspection apparatus, and the like, and is stored in the storage unit 9 in advance.
 判定部10は、検出部7での測定結果から求めた吸光度と、記憶部9に格納されたデータベースから読み出したタブレットの種類ごとの計算モデルを参照して、タブレットの特徴を示す指標を算出し、異物混入の有無の判定を行なう。 The determination unit 10 refers to the absorbance obtained from the measurement result in the detection unit 7 and the calculation model for each type of tablet read from the database stored in the storage unit 9 to calculate an index indicating the characteristics of the tablet. The presence / absence of foreign matter is determined.
 判定部10においては、タブレットの種類に応じて、リレーショナルデータベースや対応表による判定、あるいは、グラフによるプロットなどを適宜用いた判定が可能である。 The determination unit 10 can make a determination using a relational database or a correspondence table, or a plot using a graph as appropriate, depending on the type of tablet.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本実施の形態では、表1に示すように、正常なタブレットであるか毛髪が混入したタブレットとみなせるかを判別する指標として、予測値と偏値を算出する計算モデルを用いる。計算モデルから計算した予測値が0.5以上かつ偏値が0.5未満であれば「正常」、予測値が0.5未満かつ偏値が0.5未満であれば「毛髪が混入している」と判定できる。なお、予測値が0.5未満かつ偏値が0.5以上であった場合は、毛髪混入とは特定できないが、内部に虫が混入していたり、あるいは割れなどの何らかの異常が発生している可能性が高いとみなせる。この場合は、さらに他の計算モデルを使用して異常の種類を特定することもできる。たとえば正常なタブレットであるか虫が混入しているタブレットとみなせるかの指標を計算すれば、虫の混入の有無を検出できる。 In the present embodiment, as shown in Table 1, a calculation model for calculating a predicted value and a bias value is used as an index for determining whether the tablet is a normal tablet or a tablet mixed with hair. If the predicted value calculated from the calculation model is 0.5 or more and the bias value is less than 0.5, it is “normal”, and if the predicted value is less than 0.5 and the bias value is less than 0.5, “hair is mixed. Can be determined. In addition, when the predicted value is less than 0.5 and the deviation value is 0.5 or more, it cannot be specified that the hair is mixed, but insects are mixed inside or some abnormality such as cracking occurs. It can be considered that there is a high possibility. In this case, the type of abnormality can be specified using still another calculation model. For example, if an index indicating whether the tablet is a normal tablet or a tablet in which insects are mixed can be calculated, the presence or absence of insects can be detected.
 タブレットの種類によっては、図7に示すように、複数の指標を算出してグラフにプロットし、領域によって判定することもできる。図7では指標を2つ用いてそれぞれ判定値A、判定値Bを算出し、これらを用いてプロットしている。黒い丸でプロットされているように予め定めた基準直線より上であれば正常、白い丸でプロットされているように基準直線より下であれば異常と判断できる。なお、示した例では2次元プロットを行なっているが、2次元プロットに限らない。たとえば指標を3つ使って3次元プロットを行なって、予め正常なタブレットがプロットされることを確認している領域にプロットされるかどうかによって異物の混入を判定してもよい。 Depending on the type of tablet, as shown in FIG. 7, a plurality of indices can be calculated and plotted on a graph, and the determination can be made by region. In FIG. 7, the determination value A and the determination value B are calculated using two indices, respectively, and plotted using these. It can be judged normal if it is above a predetermined reference line as plotted by a black circle, and abnormal if it is below the reference line as plotted by a white circle. In the example shown, two-dimensional plotting is performed, but the present invention is not limited to two-dimensional plotting. For example, three-dimensional plotting may be performed using three indexes, and contamination of foreign matter may be determined based on whether or not the plotting is performed in an area where it is confirmed that a normal tablet is plotted in advance.
 指標をひとつ使って表1のように数値のみで判断するか、複数の指標を使って図7のようにプロットで判断するかは、タブレットの種類や、ユーザーがどの程度厳密に検査を行なうかによって適宜決定してよい。また、表1に示される基準値や図7に示される基準直線も同様に適宜決定してよい。 Whether to use only one index as shown in Table 1 or whether to use multiple indicators as a plot as shown in Fig. 7 depends on the type of tablet and how closely the user performs the inspection. May be determined as appropriate. Further, the reference values shown in Table 1 and the reference straight line shown in FIG.
 (異物を検出した場合)
12.異物混入と判定された対象物1あるいはこれを含むロットを廃棄する。本実施の形態では、1つの保持部5に複数の対象物1が保持された状態で検査が行なわれているので、異物混入という判定が出た場合は、通常、その1つの保持部5に保持されている全ての対象物1が廃棄されることが想定される。
(When a foreign object is detected)
12 The target object 1 determined to be contaminated with foreign matter or the lot including the same is discarded. In the present embodiment, since the inspection is performed in a state where a plurality of objects 1 are held by one holding unit 5, when it is determined that foreign matter is mixed, the holding unit 5 normally It is assumed that all objects 1 held are discarded.
 なお、異物混入の判定においては、異常であることはわかったもののその異常の原因が特定できないという状況もありうる。このような場合にも当該対象物1あるいはこれを含むロットを廃棄することが望ましい。たとえば異常であることはわかったものの、毛髪の混入なのか虫の混入なのかそれ以外なのか不明である場合がありうる。本実施の形態では、有機物の異物が混入していなくとも無機物の異物が混入している場合や、異物の混入がなくとも内部に割れなどの異常が発生している場合も、正常ではないという結果として検知できる可能性がある。 It should be noted that, in the determination of contamination, there may be a situation where the cause of the abnormality cannot be identified although it is known that the abnormality is present. Even in such a case, it is desirable to discard the target object 1 or a lot including the same. For example, although it is known to be abnormal, it may be unclear whether it is hair contamination, insect contamination, or otherwise. In the present embodiment, even if no organic foreign matter is mixed, even if an inorganic foreign matter is mixed, or if there is an abnormality such as a crack inside even if no foreign matter is mixed, it is not normal. It may be detected as a result.
 本実施の形態によれば、複数の対象物の検査を一斉に行なうことができるので、対象物の内部に混入した異物の有無を非破壊で十分に高速で判定することができる。本実施の形態は、大量の対象物を全数にわたって効率良く検査すべきときにも適用可能であるので、工場における検査に適している。 According to the present embodiment, since a plurality of objects can be inspected at the same time, the presence or absence of foreign matter mixed in the object can be determined at a sufficiently high speed without destruction. Since this embodiment can be applied when a large number of objects are to be efficiently inspected over the entire number, it is suitable for inspection in a factory.
 本実施の形態で図1に示したように、光源6は、光源本体6aと、光源本体6aから出射した光を透過または反射させることで複数の対象物1の全体を被覆する程度にまで拡大する光学部材としての光調整部12とを備え、光源本体6aから出射した光は光学部材としての光調整部12によって拡大された後で複数の対象物1に到達することが好ましい。本実施の形態では、光学部材が光調整部12である例を示したが、光学部材は光調整部12に限らない。たとえば図8に示すように、光学部材は拡散板15であってもよい。 As shown in FIG. 1 in the present embodiment, the light source 6 expands to such an extent that the light source main body 6a and the light emitted from the light source main body 6a are transmitted or reflected to cover the entire plurality of objects 1. It is preferable that the light adjusting unit 12 as an optical member is provided, and the light emitted from the light source body 6a reaches the plurality of objects 1 after being expanded by the light adjusting unit 12 as an optical member. In the present embodiment, an example in which the optical member is the light adjustment unit 12 has been described, but the optical member is not limited to the light adjustment unit 12. For example, as shown in FIG. 8, the optical member may be a diffusion plate 15.
 図9に示すように、光源6は、複数の光源素子6eを含み、各光源素子6eごとに個別に光調整部12を備える構成であってもよい。光源素子6eとは、たとえばハロゲンランプなどの電球であってよい。 As shown in FIG. 9, the light source 6 may include a plurality of light source elements 6e, and each light source element 6e may include a light adjusting unit 12 individually. The light source element 6e may be a light bulb such as a halogen lamp.
 本実施の形態で図1に示したように、異物検査装置101は、複数の対象物を保持するための保持部5を備え、保持部5は、複数の対象物1を2次元的に配列された状態で保持するためのトレイを備えるものであってよい。このように保持部5がトレイを備えることにより、複数の対象物1を一定個数ずつまとめて取り扱うことが容易となる。トレイは保持部5そのものであってもよく、保持部5の一部をなすものであってもよい。 As shown in FIG. 1 in the present embodiment, the foreign substance inspection apparatus 101 includes a holding unit 5 for holding a plurality of objects, and the holding unit 5 arranges the plurality of objects 1 two-dimensionally. It may be provided with a tray for holding it in a state in which it is placed. Since the holding unit 5 includes the tray in this way, it becomes easy to handle a plurality of objects 1 in a certain number. The tray may be the holding unit 5 itself, or may be a part of the holding unit 5.
 前記トレイは、複数の対象物1をマトリックス状に配列された状態で保持するためのものであってよい。このように、マトリックス状に配列された状態で保持されていれば、限られた面積で多数の対象物1を効率良く保持することができるので好ましい。 The tray may be for holding a plurality of objects 1 in a matrix array. As described above, it is preferable that a plurality of objects 1 are efficiently held in a limited area if they are held in a matrix arrangement.
 本実施の形態で示したように、光源6から出射する光の波長は、800nm以上1500nm以下であることが好ましい。さらには、光源6から出射する光の波長は、800nm以上1600nm以下であることが好ましい。理由は、光源に関する説明の中で述べたとおりである。 As shown in the present embodiment, the wavelength of light emitted from the light source 6 is preferably 800 nm or more and 1500 nm or less. Furthermore, the wavelength of light emitted from the light source 6 is preferably 800 nm or more and 1600 nm or less. The reason is as described in the explanation regarding the light source.
 本実施の形態で示したように、異物検査装置101は、複数の対象物を保持するための保持部5を備え、保持部5は、複数の対象物1に対応する数の透光部を有する部材と、前記透光部に対応する位置に複数の対象物1の各々を個別に配置したときに対象物1を下から支持するように前記透光部の内側領域の少なくとも一部を覆って延在する支え部とを備え、光源6から検出部7に向かう光は前記透光部を通過することが好ましい。ここでいう「透光部」とは、たとえば図2に示した孔5aのようなものであってもよい。孔5aは貫通孔である。ただし、透光部は、貫通孔とは限らず、とにかく光が通り抜けることができる部分であればよい。したがって、透光部は、たとえば何らかの部材同士の間の隙間であってもよい。透光部は、何らかの透光性部材が配置された部分であってもよい。何らかの透光性部材によって部分的にまたは完全に塞がれている部分であってもよい。透光部を有する部材の透光部以外の部分は、第1部分5bであってよい。ここでいう「支え部」とは、たとえば図2に示した第2部分5cが孔5aの内側に張り出した部分であってもよい。支え部はこのように全周にわたって張り出しているものとは限らず、1つ以上の突起が内側に向かって突出しているものであってもよい。支え部は、図4および図5に示した突起5eのようなものであってもよい。 As shown in the present embodiment, the foreign substance inspection apparatus 101 includes a holding unit 5 for holding a plurality of objects, and the holding unit 5 includes a number of light transmitting units corresponding to the plurality of objects 1. And covering at least a part of the inner region of the light-transmitting part so as to support the object 1 from below when each of the plurality of objects 1 is individually arranged at a position corresponding to the light-transmitting part. It is preferable that the light directed from the light source 6 toward the detection unit 7 passes through the light transmission unit. Here, the “translucent portion” may be, for example, the hole 5a shown in FIG. The hole 5a is a through hole. However, the translucent portion is not limited to the through hole, and may be a portion where light can pass through anyway. Therefore, the translucent part may be a gap between some members, for example. The translucent portion may be a portion where some translucent member is disposed. It may be a portion that is partially or completely blocked by some translucent member. The part other than the light transmitting part of the member having the light transmitting part may be the first part 5b. Here, the “supporting portion” may be, for example, a portion in which the second portion 5c shown in FIG. 2 protrudes inside the hole 5a. The support portion is not limited to projecting over the entire circumference in this way, and one or more projections may project inward. The support portion may be a projection 5e shown in FIGS.
 支え部は、透明であってもよい。この構成を採用することにより、支え部が透過光を遮ってしまう度合を低くすることができ、効率良く検査を行なうことができる。図2に示した例においては、第2部分5cは透明であるが、このような構成であればよい。 The support part may be transparent. By adopting this configuration, the degree to which the support portion blocks the transmitted light can be reduced, and the inspection can be performed efficiently. In the example shown in FIG. 2, the second portion 5 c is transparent.
 なお、本発明による異物判定を行なう前または後で外観検査を追加的に行なってもよい。このように本実施の形態における異物検査装置にさらに外観検査を組み合わせることとすれば、より確実に異物を検出することができる。 It should be noted that the appearance inspection may be additionally performed before or after the foreign matter determination according to the present invention. As described above, if the appearance inspection is further combined with the foreign matter inspection apparatus in the present embodiment, the foreign matter can be detected more reliably.
 なお、記憶部9には、検査の結果と日時や温度などの検査データを記録しておいてもよい。たとえば他の装置の状況に関する記録、たとえば一定のスペースに出入りした人数および時刻、使用された材料、打錠機の洗浄タイミング、蛍光灯の破損事故などの有無などのデータを記録しておいてもよい。これらのデータと結合させて分析すれば、異物混入を防ぐための総合的なデータとして提示することができる。すなわち、異物混入の再発を防止する手段として活用することができる。 The storage unit 9 may record inspection results and inspection data such as date and temperature. For example, records concerning the status of other devices, such as the number and time of people entering and leaving a certain space, the materials used, the timing of washing the tablet press, the presence or absence of a fluorescent lamp breakage accident, etc. Good. If combined with these data and analyzed, they can be presented as comprehensive data for preventing foreign matter contamination. That is, it can be utilized as a means for preventing the recurrence of foreign matter contamination.
 (実施の形態2)
 図10を参照して、本発明に基づく実施の形態2における異物検査装置について説明する。本実施の形態における異物検査装置は、基本的な構成は、実施の形態1と同様であるが、保持部5の搬送の仕方に関しては、実施の形態1と異なる。本実施の形態における異物検査装置の使用状況の一例を説明するために、図10では、本実施の形態における異物検査装置以外の構成も含めて示されている。
(Embodiment 2)
With reference to FIG. 10, the foreign substance inspection apparatus in Embodiment 2 based on this invention is demonstrated. The basic configuration of the foreign substance inspection apparatus in the present embodiment is the same as that in the first embodiment, but the method of transporting the holding unit 5 is different from that in the first embodiment. In order to describe an example of the usage state of the foreign matter inspection apparatus in the present embodiment, FIG. 10 shows a configuration other than the foreign matter inspection apparatus in the present embodiment.
 個々の保持部5はトレイ状である。複数の保持部5が円形のロータ20の上に載っている。複数の保持部5はロータ20の外縁に沿って周方向に配列されている。ロータ20は、矢印91で示すように、断続的または連続的に回転する。新たな保持部5は、フィーダ21から供給されることによってロータ20上の空いているスペースに配置される。光源6は、光源本体6aと光調整部12とを含む。光源6は、ロータ20の上に配列された複数の保持部5のうちの1つに光を照射できるように配置されている。 The individual holding unit 5 has a tray shape. A plurality of holding portions 5 are placed on the circular rotor 20. The plurality of holding portions 5 are arranged in the circumferential direction along the outer edge of the rotor 20. The rotor 20 rotates intermittently or continuously as indicated by an arrow 91. The new holding unit 5 is arranged in a vacant space on the rotor 20 by being supplied from the feeder 21. The light source 6 includes a light source body 6 a and a light adjustment unit 12. The light source 6 is disposed so as to irradiate light to one of the plurality of holding units 5 arranged on the rotor 20.
 図10では、検出部7、判定部10、制御部13などは図示省略されている。光源6から光を照射して異物検査を行なった後、異物が検知されなかった保持部5は、OKシュート22から排出される。異物が検知された保持部5は、NGシュート23から排出される。 In FIG. 10, the detection unit 7, the determination unit 10, the control unit 13, and the like are not shown. After the foreign matter inspection is performed by irradiating light from the light source 6, the holding unit 5 in which no foreign matter is detected is discharged from the OK chute 22. The holding unit 5 in which the foreign matter is detected is discharged from the NG chute 23.
 本実施の形態では、円形のロータ16によって、次々と新たな保持部5が光源6による光の照射領域に搬入されるので、多数の保持部5を検査対象としたときでも、効率良く異物検査を行なうことができる。 In the present embodiment, since the new holding unit 5 is successively carried into the light irradiation area by the light source 6 by the circular rotor 16, even when a large number of holding units 5 are to be inspected, foreign object inspection can be performed efficiently. Can be performed.
 図10に示した例では、保持部5には対象物1がマトリックス状に配列されているが、図11に示すように、容器16の中に対象物1が積み重ねた状態で入っていてもよい。さらに図12に示すように、容器17の中に複数の対象物1がランダムに入った状態であってもよい。図12では、容器17は円筒形となっているが、容器17の形状は円筒形に限らず、たとえば上から見て四角形となる形状であってもよい。図12に示した例では複数の対象物1が積み重なっているが、積み重ねずに並べられた状態であってもよい。複数の対象物を並べる際には、複数の対象物は、ランダムに並べられていてもよく、規則正しく並べられていてもよい。たとえば複数の対象物が容器の中で互いに重ならない状態でマトリックス状に並べられていてもよい。このとき、容器の内部に対象物同士を隔てる仕切りはなくてもよく、対象物同士が接する状態であってもよい。保持部5の代わりにこれらの容器16,17を保持部とみなしてもよい。図12に示したように容器17の中に無造作に入れるだけでよい場合には、対象物1のハンドリングが容易となる。 In the example shown in FIG. 10, the objects 1 are arranged in a matrix in the holding unit 5, but as shown in FIG. 11, even if the objects 1 are stacked in the container 16. Good. Furthermore, as shown in FIG. 12, a plurality of objects 1 may be randomly placed in the container 17. In FIG. 12, the container 17 has a cylindrical shape, but the shape of the container 17 is not limited to the cylindrical shape, and may be, for example, a square shape when viewed from above. In the example illustrated in FIG. 12, the plurality of objects 1 are stacked, but may be arranged without being stacked. When arranging a plurality of objects, the plurality of objects may be arranged randomly or regularly. For example, a plurality of objects may be arranged in a matrix so as not to overlap each other in the container. At this time, there may be no partition which isolate | separates objects inside a container, and the state which objects contact may be sufficient. These containers 16 and 17 may be regarded as holding parts instead of the holding part 5. As shown in FIG. 12, in the case where it is only necessary to randomly put the container 17 in the container 17, the handling of the object 1 is facilitated.
 (実施の形態3)
 図13を参照して、本発明に基づく実施の形態3における異物検査装置について説明する。本実施の形態における異物検査装置102は、基本的な構成は、実施の形態1と同様であるが、保持部の構成に関しては、実施の形態1と異なる。本実施の形態では、保持部5に代えて保持部5eが用いられている。対象物1は一定個数ずつグループをなしている。保持部5eは複数のグループの対象物1を同時に配列できるように構成されている。光源6は、保持部5eの上の全ての対象物1に同時に光を照射するのではなく、保持部5eの上の1つのグループに属する対象物1の全てに向けて光を照射する。保持部5eが断続的または連続的に移動することによって、異なるグループが光源6による光の照射領域に配置される。保持部5eの位置をずらしていくことによって、最終的に全てのグループが光の照射を受けることができる。すなわち、保持部5eに配列された全ての対象物1の異物検査は、何回かに分けて光を照射されることによって行なわれる。
(Embodiment 3)
With reference to FIG. 13, the foreign substance inspection apparatus in Embodiment 3 based on this invention is demonstrated. The basic configuration of foreign object inspection apparatus 102 in the present embodiment is the same as that in the first embodiment, but the configuration of the holding unit is different from that in the first embodiment. In the present embodiment, a holding unit 5e is used instead of the holding unit 5. A certain number of objects 1 form a group. The holding unit 5e is configured so that a plurality of groups of objects 1 can be arranged simultaneously. The light source 6 does not irradiate all the objects 1 on the holding unit 5e with light at the same time, but irradiates light toward all the objects 1 belonging to one group on the holding unit 5e. By moving the holding part 5e intermittently or continuously, different groups are arranged in the light irradiation region of the light source 6. By shifting the position of the holding part 5e, finally all the groups can be irradiated with light. That is, the foreign matter inspection of all the objects 1 arranged in the holding unit 5e is performed by irradiating light several times.
 図13においては、判定部10、制御部13などは図示省略されている。
 本実施の形態では、1回の光の照射領域に配列可能な個数より多い個数の対象物1を一括して保持することができ、グループごとに分けて順次光の照射を行なっていくことができるので、多数の対象物1の検査を迅速に進めていくことに適している。
In FIG. 13, the determination unit 10, the control unit 13, and the like are not shown.
In the present embodiment, a larger number of objects 1 than can be arranged in a single light irradiation region can be collectively held, and light irradiation can be performed sequentially for each group. Therefore, it is suitable for promptly inspecting a large number of objects 1.
 (実施の形態4)
 図14を参照して、本発明に基づく実施の形態4における異物検査装置について説明する。本実施の形態における異物検査装置103は、基本的な構成は、実施の形態1と同様であるが、保持部の構成に関しては、実施の形態1と異なる。図14に示すように、本実施の形態では、保持部5に代えて保持部5fが用いられている。
(Embodiment 4)
With reference to FIG. 14, the foreign substance inspection apparatus in Embodiment 4 based on this invention is demonstrated. The foreign substance inspection apparatus 103 according to the present embodiment has the same basic configuration as that of the first embodiment, but differs from the first embodiment with respect to the configuration of the holding unit. As shown in FIG. 14, in the present embodiment, a holding unit 5 f is used instead of the holding unit 5.
 本実施の形態における異物検査装置103は、順次搬送されつつある複数の対象物1のうちの2個以上の対象物1を被覆するように光を照射するための光源6と、光源6から出射して前記2個以上の対象物1のいずれかを透過した光を一括して受光してスペクトルを検出する検出部7と、基準データ11を保持するための記憶部9と、検出部7で検出された光のスペクトルのデータおよび基準データ11に基づいて複数の対象物1の少なくともいずれかに異物が含まれるか否かを判定する判定部10とを備える。 The foreign substance inspection apparatus 103 according to the present embodiment emits light from a light source 6 for irradiating light so as to cover two or more objects 1 among a plurality of objects 1 being sequentially conveyed. Then, a detection unit 7 that collectively receives light transmitted through one of the two or more objects 1 to detect a spectrum, a storage unit 9 that holds reference data 11, and a detection unit 7 A determination unit that determines whether or not a foreign object is included in at least one of the plurality of objects based on the detected spectrum data of the light and the reference data.
 異物検査装置103は、複数の対象物1を順次搬送するための保持部5fを備える。保持部5fは、複数の対象物1を2次元的に配列された状態で保持して搬送するコンベアであることが好ましい。2次元的に配列された状態以外の状態としては、たとえば対象物1がコンベア上で一部が積み重なったりしてランダムな位置関係で載せられた状態が挙げられる。そのような状態であってもよいが、複数の対象物1は規則正しく2次元的に配列されていることが好ましい。保持部5fは、エンドレス状のコンベアであってもよい。 The foreign object inspection apparatus 103 includes a holding unit 5f for sequentially transporting the plurality of objects 1. The holding unit 5f is preferably a conveyor that holds and conveys the plurality of objects 1 in a two-dimensional array. As a state other than the two-dimensionally arranged state, for example, a state in which the object 1 is partly stacked on the conveyor and placed in a random positional relationship can be cited. Although it may be in such a state, it is preferable that the plurality of objects 1 are regularly and two-dimensionally arranged. The holding part 5f may be an endless conveyor.
 本実施の形態では、エンドレス状のコンベアである保持部5fの上に対象物1が複数列で配列された構成となっているが、図15に示す異物検査装置104のように、コンベアとして保持部5hを備えるものであってもよい。保持部5hでは対象物1は1列で配列されている。 In the present embodiment, the target objects 1 are arranged in a plurality of rows on a holding portion 5f that is an endless conveyor, but as a foreign object inspection apparatus 104 shown in FIG. The part 5h may be provided. In the holding unit 5h, the objects 1 are arranged in one row.
 本実施の形態では、コンベアによって搬送される対象物1を次々と検査することができるので、効率的である。 In the present embodiment, the objects 1 conveyed by the conveyor can be inspected one after another, which is efficient.
 (実施の形態5)
 図16を参照して、本発明に基づく実施の形態5における異物検査装置について説明する。実施の形態1などでは、保持部5の下方に集光手段としてレンズ14が配置されていたが、本実施の形態では、レンズ14の代わりに図16に示すようにリフレクタ18が配置されている。対象物1を透過した光は、リフレクタ18によって反射されつつ集光され、検出部7に入射する。
(Embodiment 5)
With reference to FIG. 16, the foreign substance inspection apparatus in Embodiment 5 based on this invention is demonstrated. In the first embodiment and the like, the lens 14 is arranged as the light collecting means below the holding unit 5. However, in the present embodiment, a reflector 18 is arranged instead of the lens 14 as shown in FIG. . The light transmitted through the object 1 is collected while being reflected by the reflector 18 and enters the detection unit 7.
 本実施の形態では、リフレクタ18の姿勢により所望の方向に光を集めることができるので、検出部7の設置位置の自由度を高めることができる。 In the present embodiment, the light can be collected in a desired direction depending on the attitude of the reflector 18, so that the degree of freedom of the installation position of the detection unit 7 can be increased.
 (実施の形態6)
 図17を参照して、本発明に基づく実施の形態6における異物検査装置について説明する。実施の形態1などでは、保持部5の下方に集光手段としてレンズ14が配置されていたが、本実施の形態では、レンズ14の代わりに図17に示すように孔5aの出口付近にレンズ5dが配置されている。レンズ5dは、対象物1の各々に対応するように個別に設けられている。レンズ5dは保持部5の一部であってよい。対象物1を透過した光は、レンズ5dによって集光され、検出部7に入射する。
(Embodiment 6)
With reference to FIG. 17, the foreign substance inspection apparatus in Embodiment 6 based on this invention is demonstrated. In the first embodiment and the like, the lens 14 is arranged as the light condensing means below the holding portion 5, but in this embodiment, a lens is provided near the exit of the hole 5a as shown in FIG. 5d is arranged. The lens 5d is individually provided so as to correspond to each of the objects 1. The lens 5 d may be a part of the holding unit 5. The light transmitted through the object 1 is collected by the lens 5 d and enters the detection unit 7.
 本実施の形態では、対象物1を透過した光を、対象物1から近い位置でレンズ5dによって集光することができるので、対象物1を透過した光を効率良く検査に利用することができる。 In the present embodiment, since the light transmitted through the object 1 can be collected by the lens 5d at a position close to the object 1, the light transmitted through the object 1 can be efficiently used for inspection. .
 (実施の形態7)
 図18を参照して、本発明に基づく実施の形態7における異物検査装置について説明する。
(Embodiment 7)
With reference to FIG. 18, the foreign substance inspection apparatus in Embodiment 7 based on this invention is demonstrated.
 実施の形態1では、1つの光源6を用いて1方向から光を対象物1に照射している例を示したが、これに限るものではなく、2つ以上の光源を用いて異なる方向から照射してもよい。本実施の形態における異物検査装置105では、図18に示すように、光源6i,6jを用いて保持部5の一方の側から対象物1に向けて照射を行なう。保持部5の他方の側において、対象物1を透過してきた光がレンズ14によって検出部7に導かれる。光源6iは、光源本体6a1と光調整部12とを含む。光源6jは、光源本体6a2と光調整部12とを含む。本実施の形態では、保持部5の下方から上方に向けて光を透過させている。他の部分の構成、使用方法などについては、実施の形態1で説明したものと同様である。 In the first embodiment, an example in which light is applied to the object 1 from one direction using one light source 6 is shown. However, the present invention is not limited to this, and two or more light sources are used from different directions. It may be irradiated. In foreign object inspection apparatus 105 in the present embodiment, as shown in FIG. 18, irradiation is performed from one side of holding unit 5 toward target object 1 using light sources 6i and 6j. On the other side of the holding unit 5, the light transmitted through the object 1 is guided to the detection unit 7 by the lens 14. The light source 6 i includes a light source body 6 a 1 and a light adjustment unit 12. The light source 6j includes a light source body 6a2 and a light adjusting unit 12. In the present embodiment, light is transmitted from the lower side of the holding unit 5 toward the upper side. The configuration of other parts, the usage method, and the like are the same as those described in the first embodiment.
 本実施の形態における異物検査装置によっても、実施の形態1で説明したのと同様の効果を得ることができる。 The same effects as described in the first embodiment can be obtained also by the foreign substance inspection apparatus in the present embodiment.
 (実施の形態8)
 図19を参照して、本発明に基づく実施の形態8における異物検査装置について説明する。
(Embodiment 8)
With reference to FIG. 19, the foreign substance inspection apparatus in Embodiment 8 based on this invention is demonstrated.
 実施の形態1では、対象物1を透過した光を検出部7で受光していたが、透過光に限らず反射光を用いてもよい。本実施の形態における異物検査装置106では、図19に示すように、保持部5に複数の凹部が設けられており、各凹部の底面が、対象物1を透過してきた光を反射するような面として形成されている。光源6から複数の対象物1に光を照射することによって、各対象物1を透過した光が保持部5の凹部の底面で反射して対象物1を再び透過する。こうして各対象物1を透過して保持部5から遠ざかる向きに進行してきた光をレンズ14で集光し、検出部7で受光する。すなわち、本実施の形態における異物検査装置としては、複数の対象物1を保持するための保持部5を備え、保持部5は反射面を有し、複数の対象物1のいずれかを一旦透過した光の少なくとも一部は前記反射面によって反射して再度複数の対象物1のいずれかを透過してから検出部7に入射する。他の部分の構成、使用方法などについては、実施の形態1で説明したものと同様である。 In the first embodiment, the light transmitted through the object 1 is received by the detection unit 7, but not only the transmitted light but also reflected light may be used. In the foreign matter inspection apparatus 106 according to the present embodiment, as shown in FIG. 19, a plurality of concave portions are provided in the holding portion 5, and the bottom surface of each concave portion reflects light transmitted through the object 1. It is formed as a surface. By irradiating the plurality of objects 1 with light from the light source 6, the light transmitted through each object 1 is reflected by the bottom surface of the concave portion of the holding unit 5 and is transmitted again through the object 1. In this way, the light transmitted through each object 1 and traveling in the direction away from the holding unit 5 is collected by the lens 14 and received by the detection unit 7. In other words, the foreign matter inspection apparatus according to the present embodiment includes a holding unit 5 for holding a plurality of objects 1, and the holding unit 5 has a reflecting surface and temporarily transmits any one of the plurality of objects 1. At least a part of the light that has been reflected is reflected by the reflecting surface, passes through one of the plurality of objects 1 again, and then enters the detection unit 7. The configuration of other parts, the usage method, and the like are the same as those described in the first embodiment.
 本実施の形態における異物検査装置によっても、実施の形態1で説明したのと同様の効果を得ることができる。本実施の形態では、光は、対象物1の内部を2回透過した後で検出部7に到達するので、より高精度な検査を行なうことができる。 The same effects as described in the first embodiment can be obtained also by the foreign substance inspection apparatus in the present embodiment. In the present embodiment, since the light reaches the detection unit 7 after passing through the inside of the object 1 twice, a more accurate inspection can be performed.
 (実施の形態9)
 図1、図2および図20を参照しつつ、本発明に基づく実施の形態9における異物検査方法について説明する。本実施の形態における異物検査方法のフローチャートを図20に示す。この異物検査方法は、複数の対象物の少なくともいずれかに異物が混入しているか否かを判定する異物検査方法であって、前記複数の対象物を一括して保持する工程S1と、前記複数の対象物の全体を被覆するように光源から光を照射する工程S2と、前記光源からの光のうち前記複数の対象物のいずれかを少なくとも1回は透過した光を、検出部で一括して受光し、前記検出部で受光した光のスペクトルのデータを測定データとして検出する工程S3と、前記測定データおよび基準データに基づいて前記複数の対象物の少なくともいずれかに異物が混入しているか否かを判定する工程S4とを含む。
(Embodiment 9)
A foreign matter inspection method according to the ninth embodiment of the present invention will be described with reference to FIGS. FIG. 20 shows a flowchart of the foreign substance inspection method in this embodiment. This foreign matter inspection method is a foreign matter inspection method for determining whether or not foreign matter is mixed in at least one of a plurality of objects, and includes a step S1 of holding the plurality of objects collectively and the plurality of objects. A step of irradiating light from the light source so as to cover the whole of the object, and light that has transmitted at least once through the plurality of objects among the light from the light source is collectively collected by the detection unit Step S3 of detecting spectrum data of light received by the detection unit as measurement data, and whether foreign objects are mixed in at least one of the plurality of objects based on the measurement data and reference data Step S4 for determining whether or not.
 本実施の形態によれば、対象物1の内部に混入した異物の有無を非破壊で判定することができる。 According to the present embodiment, it is possible to determine the presence or absence of foreign matter mixed inside the object 1 in a nondestructive manner.
 (実施の形態10)
 図14および図21を参照しつつ、本発明に基づく実施の形態10における異物検査方法について説明する。本実施の形態における異物検査方法のフローチャートを図21に示す。この異物検査方法は、複数の対象物の少なくともいずれかに異物が混入しているか否かを判定する異物検査方法であって、前記複数の対象物を保持して順次搬送する工程S11と、順次搬送されつつある前記複数の対象物のうちの2個以上の対象物を被覆するように光源から光を照射する工程S12と、前記光源からの光のうち前記2個以上の対象物のいずれかを少なくとも1回は透過した光を、検出部で一括して受光し、前記検出部で受光した光のスペクトルのデータを測定データとして検出する工程S3と、前記測定データおよび基準データに基づいて前記複数の対象物の少なくともいずれかに異物が混入しているか否かを判定する工程S4とを含む。
(Embodiment 10)
With reference to FIG. 14 and FIG. 21, the foreign substance inspection method in Embodiment 10 based on this invention is demonstrated. FIG. 21 shows a flowchart of the foreign substance inspection method in this embodiment. This foreign matter inspection method is a foreign matter inspection method for determining whether or not foreign matter is mixed in at least one of a plurality of objects, and sequentially holds and sequentially transports the plurality of objects. Step S12 of irradiating light from a light source so as to cover two or more objects among the plurality of objects being conveyed, and any of the two or more objects among the light from the light source At least once, the detection unit collectively receives the light, and detects the spectrum data of the light received by the detection unit as measurement data, and based on the measurement data and the reference data, And step S4 for determining whether or not foreign matter is mixed in at least one of the plurality of objects.
 本実施の形態によれば、対象物1の内部に混入した異物の有無を非破壊で判定することができる。本実施の形態では、複数の対象物1の異物検査を迅速に行なっていくことができる。 According to the present embodiment, it is possible to determine the presence or absence of foreign matter mixed inside the object 1 in a nondestructive manner. In the present embodiment, foreign object inspection of a plurality of objects 1 can be performed quickly.
 (実施の形態11)
 図22を参照して、本発明に基づく実施の形態11における製造装置について説明する。本実施の形態における製造装置は、対象物1を製造するための装置であって、これまでに説明したいずれかの構成の異物検査装置を備える製造装置である。この製造装置を図22に示す。図22に示したものは、あくまで概念的なものであって、製造装置のレイアウトはこのようなものとは限らない。製造装置501は、対象物1を作製する作製部301を備え、さらに異物検査装置101を備える。作製部301で作製された対象物1は、異物検査装置101によって検査される。対象物1の異物検査装置101への搬送は、たとえば搬送装置302によって行なわれる。搬送装置302はカセットに収められた対象物1を搬送している。ここで示す搬送装置302はあくまで一例であり、このような形態のものとは限らない。
(Embodiment 11)
With reference to FIG. 22, the manufacturing apparatus in Embodiment 11 based on this invention is demonstrated. The manufacturing apparatus in this Embodiment is an apparatus for manufacturing the target object 1, Comprising: It is a manufacturing apparatus provided with the foreign material inspection apparatus of one of the structures demonstrated so far. This manufacturing apparatus is shown in FIG. What is shown in FIG. 22 is conceptual only, and the layout of the manufacturing apparatus is not necessarily such. The manufacturing apparatus 501 includes a production unit 301 that produces the object 1, and further includes a foreign substance inspection apparatus 101. The object 1 produced by the production unit 301 is inspected by the foreign substance inspection apparatus 101. The conveyance of the object 1 to the foreign matter inspection apparatus 101 is performed by, for example, the conveyance apparatus 302. The conveyance device 302 conveys the object 1 stored in the cassette. The conveyance device 302 shown here is merely an example, and is not limited to such a form.
 本実施の形態における製造装置によれば、異物検査装置101による検査を経て異物が混入していないと判断された対象物1のみが製造物として得られる。したがって、本実施の形態では、効率良く対象物を製造することができる。特に、対象物に異物の混入がある場合には適切に検出して不良品として排除することができるので、歩留まりを向上することができる。 According to the manufacturing apparatus in the present embodiment, only the object 1 that has been determined by the foreign substance inspection apparatus 101 to be free of foreign matters is obtained as a manufactured product. Therefore, in this Embodiment, a target object can be manufactured efficiently. In particular, when foreign matter is mixed in the object, it can be appropriately detected and eliminated as a defective product, so that the yield can be improved.
 なお、本実施の形態では、作製部301と異物検査装置101とがそれぞれ別個の筐体に収まった装置として示したが、これはあくまで概念的に一例を示したものであり、両者は一体化されて単一の筐体に収まっていてもよい。 In the present embodiment, the production unit 301 and the foreign substance inspection apparatus 101 are shown as apparatuses that are housed in separate housings. However, this is merely an example, and the two are integrated. And may be housed in a single housing.
 なお、これまでの各実施の形態では、対象物1としてタブレットすなわち錠剤を示しているが、錠剤の形態に限らず、散剤、顆粒剤、カプセル剤、フィルム剤にも適用することができる。対象物1は、たとえば、医薬品、薬品、食品、健康保持用摂取品などであってもよい。前記複数の対象物の各々は、薬品、医薬品、健康保持用摂取品、栄養剤、顆粒剤、散剤、フィルム剤、カプセル剤からなる群から選ばれたいずれかであってよい。 In each of the embodiments described so far, a tablet, that is, a tablet is shown as the target object 1. However, the present invention is not limited to a tablet form, and can be applied to a powder, a granule, a capsule, and a film. The object 1 may be, for example, a medicine, a drug, a food, a health maintenance intake, and the like. Each of the plurality of objects may be any one selected from the group consisting of medicines, pharmaceuticals, health maintenance intakes, nutrients, granules, powders, films, and capsules.
 各実施の形態では、判別分析の手法を用いているが、これに限らない。すなわち、照射される互いに異なる光の波長ごとに算出された吸光度を用いて異物混入を判別できる手法であれば、他の手法を用いてもよい。たとえば、正準判別分析法などの他の解析手法を用いてもよい。 In each embodiment, a discriminant analysis technique is used, but the present invention is not limited to this. In other words, any other method may be used as long as it is a method capable of discriminating contamination by using the absorbance calculated for the different wavelengths of light to be irradiated. For example, other analysis methods such as a canonical discriminant analysis method may be used.
 各実施の形態においては、複数の対象物1の各々は、打錠法によって製造されたものであり、光源6からの光は、前記打錠法による製造時に加圧される方向と同じ方向に沿って、複数の対象物1のいずれかを透過することが好ましい。この方向であれば光の透過率が良くなるからである。 In each embodiment, each of the plurality of objects 1 is manufactured by the tableting method, and the light from the light source 6 is in the same direction as the direction pressed during the manufacturing by the tableting method. It is preferable that any one of the plurality of objects 1 is transmitted along. This is because the light transmittance is improved in this direction.
 なお、上記実施の形態のうち複数を適宜組み合わせて採用してもよい。
 なお、今回開示した上記実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。
In addition, you may employ | adopt combining suitably two or more among the said embodiment.
In addition, the said embodiment disclosed this time is an illustration in all the points, Comprising: It is not restrictive. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 対象物、5,5e,5f,5h 保持部、5a 孔、5b 第1部分、5c 第2部分、5c1 開口部、6,6i,6j 光源、6a,6a1,6a2 光源本体、6e 光源素子、7 検出部、12 光調整部、14 レンズ、15 拡散板、16,17 容器、18 リフレクタ、20 ロータ、21 フィーダ、22 OKシュート、23 NGシュート、91 矢印、101,102,103,104,105,106 異物検査装置、301 作製部、302 搬送装置、501 製造装置。 1 object, 5, 5e, 5f, 5h holding part, 5a hole, 5b first part, 5c second part, 5c1 opening part, 6, 6i, 6j light source, 6a, 6a1, 6a2 light source body, 6e light source element, 7 detection unit, 12 light adjustment unit, 14 lens, 15 diffuser plate, 16, 17 container, 18 reflector, 20 rotor, 21 feeder, 22 OK chute, 23 NG chute, 91 arrow, 101, 102, 103, 104, 105 , 106 foreign matter inspection device, 301 production unit, 302 transport device, 501 manufacturing device.

Claims (15)

  1.  一括して保持された複数の対象物の全体を被覆するように光を照射するための光源と、
     前記光源から出射して前記複数の対象物のいずれかを透過した光を一括して受光してスペクトルを検出する検出部と、
     基準データを保持するための記憶部と、
     前記検出部で検出された光のスペクトルのデータおよび前記基準データに基づいて前記複数の対象物の少なくともいずれかに異物が含まれるか否かを判定する判定部とを備える、異物検査装置。
    A light source for irradiating light so as to cover the whole of a plurality of objects held together;
    A detector that collectively receives light emitted from the light source and transmitted through any of the plurality of objects, and detects a spectrum;
    A storage unit for storing reference data;
    A foreign matter inspection apparatus comprising: a determination unit that determines whether or not at least one of the plurality of objects includes foreign matter based on light spectrum data detected by the detection unit and the reference data.
  2.  順次搬送されつつある複数の対象物のうちの2個以上の対象物を被覆するように光を照射するための光源と、
     前記光源から出射して前記2個以上の対象物のいずれかを透過した光を一括して受光してスペクトルを検出する検出部と、
     基準データを保持するための記憶部と、
     前記検出部で検出された光のスペクトルのデータおよび前記基準データに基づいて前記複数の対象物の少なくともいずれかに異物が含まれるか否かを判定する判定部とを備える、異物検査装置。
    A light source for irradiating light so as to cover two or more of the plurality of objects being sequentially conveyed;
    A detector for detecting a spectrum by collectively receiving light emitted from the light source and transmitted through any of the two or more objects;
    A storage unit for storing reference data;
    A foreign matter inspection apparatus comprising: a determination unit that determines whether or not at least one of the plurality of objects includes foreign matter based on light spectrum data detected by the detection unit and the reference data.
  3.  前記光源は、光源本体と、前記光源本体から出射した光を透過または反射させることで前記複数の対象物の全体を被覆する程度にまで拡大する光学部材とを備え、前記光源本体から出射した光は前記光学部材によって拡大された後で前記複数の対象物に到達する、請求項1または2に記載の異物検査装置。 The light source includes a light source body and an optical member that expands to a degree that covers all of the plurality of objects by transmitting or reflecting the light emitted from the light source body, and the light emitted from the light source body The foreign object inspection apparatus according to claim 1, wherein the object reaches the plurality of objects after being enlarged by the optical member.
  4.  前記複数の対象物を保持するための保持部を備え、前記保持部は、前記複数の対象物を2次元的に配列された状態で保持するためのトレイを備える、請求項1から3のいずれかに記載の異物検査装置。 The holding unit for holding the plurality of objects, and the holding unit includes a tray for holding the plurality of objects in a two-dimensional array. The foreign substance inspection apparatus according to Crab.
  5.  前記トレイは、前記複数の対象物をマトリックス状に配列された状態で保持するためのものである、請求項4に記載の異物検査装置。 The foreign object inspection apparatus according to claim 4, wherein the tray is used for holding the plurality of objects in a matrix array.
  6.  前記複数の対象物を保持するための保持部を備え、前記保持部は、前記複数の対象物を2次元的に配列された状態で保持して搬送するコンベアである、請求項1から3のいずれかに記載の異物検査装置。 The holding part for holding the plurality of objects is provided, and the holding part is a conveyor that holds and conveys the plurality of objects in a two-dimensional array. The foreign matter inspection apparatus according to any one of the above.
  7.  前記光源から出射する光の波長は、600nm以上2500nm以下である、請求項1から6のいずれかに記載の異物検査装置。 The foreign substance inspection apparatus according to any one of claims 1 to 6, wherein a wavelength of light emitted from the light source is not less than 600 nm and not more than 2500 nm.
  8.  前記光源から出射する光の波長は、800nm以上1600nm以下である、請求項1から6のいずれかに記載の異物検査装置。 The foreign matter inspection apparatus according to any one of claims 1 to 6, wherein a wavelength of light emitted from the light source is not less than 800 nm and not more than 1600 nm.
  9.  前記複数の対象物を保持するための保持部を備え、前記保持部は、前記複数の対象物に対応する数の透光部を有する部材と、前記透光部に対応する位置に前記複数の対象物の各々を個別に配置したときに前記対象物を下から支持するように前記透光部の内側領域の少なくとも一部を覆って延在する支え部とを備え、前記光源から前記検出部に向かう光は前記透光部を通過する、請求項1から8のいずれかに記載の異物検査装置。 A holding unit configured to hold the plurality of objects, wherein the holding unit includes a member having a number of light-transmitting parts corresponding to the plurality of objects, and the plurality of objects at positions corresponding to the light-transmitting parts; A support portion that extends over at least a part of an inner region of the translucent portion so as to support the object from below when each of the objects is individually disposed, and from the light source to the detection portion The foreign object inspection apparatus according to claim 1, wherein the light traveling toward the light passes through the translucent part.
  10.  前記複数の対象物を保持するための保持部を備え、前記保持部は反射面を有し、前記複数の対象物のいずれかを一旦透過した光の少なくとも一部は前記反射面によって反射して再度前記複数の対象物のいずれかを透過してから前記検出部に入射する、請求項1から8のいずれかに記載の異物検査装置。 A holding unit configured to hold the plurality of objects; the holding unit includes a reflecting surface; and at least part of the light that has once transmitted through the plurality of objects is reflected by the reflecting surface. The foreign matter inspection apparatus according to claim 1, wherein the foreign matter inspection apparatus transmits again one of the plurality of objects and then enters the detection unit.
  11.  前記複数の対象物の各々は、薬品、医薬品、健康保持用摂取品、栄養剤、顆粒剤、散剤、フィルム剤、カプセル剤からなる群から選ばれたいずれかである、請求項1から10のいずれかに記載の異物検査装置。 Each of the plurality of objects is any one selected from the group consisting of a medicine, a pharmaceutical, a health maintenance intake, a nutrient, a granule, a powder, a film, and a capsule. The foreign matter inspection apparatus according to any one of the above.
  12.  前記複数の対象物の各々は、打錠法によって製造されたものであり、前記光源からの光は、前記打錠法による製造時に加圧される方向と同じ方向に沿って、前記複数の対象物のいずれかを透過する、請求項1から11のいずれかに記載の異物検査装置。 Each of the plurality of objects is manufactured by a tableting method, and the light from the light source is aligned with the same direction as the direction pressed during manufacturing by the tableting method. The foreign matter inspection device according to claim 1, wherein the foreign matter inspection device transmits any of the objects.
  13.  複数の対象物の少なくともいずれかに異物が混入しているか否かを判定する異物検査方法であって、
     前記複数の対象物を一括して保持する工程と、
     前記複数の対象物の全体を被覆するように光源から光を照射する工程と、
     前記光源からの光のうち前記複数の対象物のいずれかを少なくとも1回は透過した光を、検出部で一括して受光し、前記検出部で受光した光のスペクトルのデータを測定データとして検出する工程と、
     前記測定データおよび基準データに基づいて前記複数の対象物の少なくともいずれかに異物が混入しているか否かを判定する工程とを含む、異物検査方法。
    A foreign matter inspection method for determining whether foreign matter is mixed in at least one of a plurality of objects,
    Holding the plurality of objects together;
    Irradiating light from a light source so as to cover the whole of the plurality of objects;
    Of the light from the light source, the light that has passed through any one of the plurality of objects at least once is collectively received by the detection unit, and the spectrum data of the light received by the detection unit is detected as measurement data. And a process of
    A foreign matter inspection method including determining whether foreign matter is mixed in at least one of the plurality of objects based on the measurement data and the reference data.
  14.  複数の対象物の少なくともいずれかに異物が混入しているか否かを判定する異物検査方法であって、
     前記複数の対象物を保持して順次搬送する工程と、
     順次搬送されつつある前記複数の対象物のうちの2個以上の対象物を被覆するように光源から光を照射する工程と、
     前記光源からの光のうち前記2個以上の対象物のいずれかを少なくとも1回は透過した光を、検出部で一括して受光し、前記検出部で受光した光のスペクトルのデータを測定データとして検出する工程と、
     前記測定データおよび基準データに基づいて前記複数の対象物の少なくともいずれかに異物が混入しているか否かを判定する工程とを含む、異物検査方法。
    A foreign matter inspection method for determining whether foreign matter is mixed in at least one of a plurality of objects,
    Holding and sequentially transporting the plurality of objects;
    Irradiating light from a light source so as to cover two or more of the plurality of objects being sequentially conveyed;
    The light transmitted through at least one of the two or more objects among the light from the light source is collectively received by the detection unit, and the spectrum data of the light received by the detection unit is measured data. Detecting as
    A foreign matter inspection method including determining whether foreign matter is mixed in at least one of the plurality of objects based on the measurement data and the reference data.
  15.  前記複数の対象物を製造するための装置であって、請求項1から12のいずれかに記載の異物検査装置を備える、製造装置。 An apparatus for manufacturing the plurality of objects, the manufacturing apparatus including the foreign matter inspection apparatus according to any one of claims 1 to 12.
PCT/JP2017/045967 2017-01-17 2017-12-21 Foreign matter detection device, foreign matter detection method and manufacturing device WO2018135232A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018563236A JPWO2018135232A1 (en) 2017-01-17 2017-12-21 Foreign matter inspection device, foreign matter inspection method, and manufacturing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017005839 2017-01-17
JP2017-005839 2017-01-17

Publications (1)

Publication Number Publication Date
WO2018135232A1 true WO2018135232A1 (en) 2018-07-26

Family

ID=62907940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045967 WO2018135232A1 (en) 2017-01-17 2017-12-21 Foreign matter detection device, foreign matter detection method and manufacturing device

Country Status (2)

Country Link
JP (1) JPWO2018135232A1 (en)
WO (1) WO2018135232A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021183070A (en) * 2020-05-22 2021-12-02 株式会社湯山製作所 Tablet identification support device
JP2022040949A (en) * 2020-08-31 2022-03-11 アンリツ株式会社 Article inspection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7199697B2 (en) * 2018-11-16 2023-01-06 株式会社Ps&T Inspection device, inspection method, program, recording medium and powder molding manufacturing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001785A1 (en) * 2006-06-26 2008-01-03 Toshiba Solutions Corporation Specimen inspecting apparatus, and specimen inspecting method
JP2011191129A (en) * 2010-03-12 2011-09-29 Hitachi Information & Control Solutions Ltd Tablet inspection device, tablet packaging apparatus, tablet inspection method, and tablet packaging method
JP2014174146A (en) * 2013-03-13 2014-09-22 Seiko Epson Corp Sample inspection device
JP2014174082A (en) * 2013-03-12 2014-09-22 Seiko Epson Corp Sample inspection device
JP2014215177A (en) * 2013-04-25 2014-11-17 住友電気工業株式会社 Inspection device and inspection method
JP2016050935A (en) * 2014-08-29 2016-04-11 キヤノン株式会社 Inspection device and inspection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001785A1 (en) * 2006-06-26 2008-01-03 Toshiba Solutions Corporation Specimen inspecting apparatus, and specimen inspecting method
JP2011191129A (en) * 2010-03-12 2011-09-29 Hitachi Information & Control Solutions Ltd Tablet inspection device, tablet packaging apparatus, tablet inspection method, and tablet packaging method
JP2014174082A (en) * 2013-03-12 2014-09-22 Seiko Epson Corp Sample inspection device
JP2014174146A (en) * 2013-03-13 2014-09-22 Seiko Epson Corp Sample inspection device
JP2014215177A (en) * 2013-04-25 2014-11-17 住友電気工業株式会社 Inspection device and inspection method
JP2016050935A (en) * 2014-08-29 2016-04-11 キヤノン株式会社 Inspection device and inspection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021183070A (en) * 2020-05-22 2021-12-02 株式会社湯山製作所 Tablet identification support device
JP2022040949A (en) * 2020-08-31 2022-03-11 アンリツ株式会社 Article inspection device
JP7325390B2 (en) 2020-08-31 2023-08-14 アンリツ株式会社 Article inspection device

Also Published As

Publication number Publication date
JPWO2018135232A1 (en) 2019-12-26

Similar Documents

Publication Publication Date Title
EP2831565B1 (en) Optical analyzer for identification of materials using reflectance spectroscopy
WO2018135232A1 (en) Foreign matter detection device, foreign matter detection method and manufacturing device
US6137581A (en) Measurement apparatus for measuring internal quality of object
US10274489B2 (en) Assessing assay analysis development
US5258825A (en) Optical compositional analyzer apparatus and method for detection of ash in wheat and milled wheat products
JP4018842B2 (en) Target internal quality measuring device
JP6246376B2 (en) Nephelometric turbidimeter and method for detection of contamination of a nephelometric turbidimeter sample cuvette
EP3527969A2 (en) Optical analyzer for identification of materials using transmission spectroscopy
JP2016528496A (en) Spectrometer system and method, spectroscopic analysis device and method
JP6549988B2 (en) Optical sample measuring apparatus and method of using the sample measuring apparatus
CA2840564A1 (en) Drug inspection device and drug inspection method
EP3210677B1 (en) Method and apparatus for the detection of acrylamide precursors in raw potatoes
US20060263461A1 (en) Tablets press
WO2004059300A1 (en) Fruit-vegetable quality evaluation device
WO2018135233A1 (en) Foreign matter detection device, foreign matter detection method and manufacturing device
JP2007232733A (en) Object internal quality measuring device
JP2015014527A (en) Abnormality detection device and abnormality detection method
KR20060037266A (en) Method and device for the quantitative analysis of solutions and dispersions using near infra-red spectroscopy
JP3923011B2 (en) Fruit and vegetable quality evaluation equipment
JP6832947B2 (en) Methods and equipment for detecting the presence of mycotoxins in cereals
JP6595662B1 (en) Inspection device and PTP packaging machine
WO2018135231A1 (en) Foreign matter detection device, foreign matter detection method and manufacturing device
JP2007232743A (en) Object internal quality measuring device
JP4192012B2 (en) Quality evaluation equipment and quality measurement equipment
JPH0843299A (en) Optical measuring apparatus for component analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018563236

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892464

Country of ref document: EP

Kind code of ref document: A1