WO2018131300A1 - Prepreg and fiber reinforced composite material - Google Patents

Prepreg and fiber reinforced composite material Download PDF

Info

Publication number
WO2018131300A1
WO2018131300A1 PCT/JP2017/042434 JP2017042434W WO2018131300A1 WO 2018131300 A1 WO2018131300 A1 WO 2018131300A1 JP 2017042434 W JP2017042434 W JP 2017042434W WO 2018131300 A1 WO2018131300 A1 WO 2018131300A1
Authority
WO
WIPO (PCT)
Prior art keywords
prepreg
epoxy resin
fiber
epoxy
resin composition
Prior art date
Application number
PCT/JP2017/042434
Other languages
French (fr)
Japanese (ja)
Inventor
小柳静恵
三角潤
坂田宏明
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2017562787A priority Critical patent/JPWO2018131300A1/en
Publication of WO2018131300A1 publication Critical patent/WO2018131300A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres

Definitions

  • the present invention relates to a prepreg in which a ladder-type silsesquioxane is introduced into a matrix resin and a fiber-reinforced composite material.
  • fiber reinforced composite materials using carbon fibers, aramid fibers, and the like as reinforcing fibers have been used for structural materials such as aircraft and automobiles, tennis rackets, golf shafts, fishing rods, etc. by utilizing their high specific strength and specific elastic modulus. It has been used for sports and general industrial applications.
  • a method of curing a prepreg which is a sheet-like intermediate material impregnated with an uncured matrix resin in a reinforcing fiber, or a liquid resin in a reinforcing fiber disposed in a mold.
  • a resin transfer molding method or the like is used in which an intermediate is obtained by pouring the resin to cure the intermediate.
  • the method using a prepreg has an advantage that it is easy to obtain a high-performance fiber-reinforced composite material because the orientation of the reinforcing fibers can be strictly controlled and the design freedom of the laminated structure is high.
  • a thermosetting resin is mainly used from the viewpoint of heat resistance and productivity, and an epoxy resin is preferably used from the viewpoint of mechanical properties such as adhesion to the reinforcing fiber.
  • a technique of adding an additive for making a material difficult to burn into a matrix resin a so-called flame retardant
  • a flame retardant a silicon compound, a halogen compound, a phosphorus compound, a metal hydroxide, a nitrogen compound, etc. are generally used.
  • a silicon compound is preferable because the obtained resin cured product has excellent heat resistance and elastic modulus. Has been used.
  • Patent Document 1 As an example of blending a silicon compound into a matrix resin, a technique of blending silica particles (Patent Document 1 and Patent Document 2) and a technique of blending a cage silsesquioxane (Patent Document 3) are disclosed. Moreover, the technique (patent document 4) which melt
  • Patent Document 1 and Patent Document 2 when the silica particles described in Patent Document 1 and Patent Document 2 are used, the silica particles have thixotropic properties, so that they thicken during curing, or separate and precipitate during curing, and the elongation of the matrix resin cured product. Sometimes became insufficient. Moreover, when the cage-type silsesquioxane described in Patent Document 3 is used, the effect of improving the elongation of the cured product of the matrix resin may be insufficient, and the blending amount is limited. In Patent Document 4, a wet method in which a matrix resin is dissolved in a solvent is used to reduce the viscosity at the time of preparing a prepreg.
  • the solvent volatilizes during curing and the volume of the fiber reinforced composite material shrinks and voids and cracks are generated due to the residual solvent. May be damaged.
  • the honeycomb material volatile components gasified in the honeycomb at the time of surface formation are sealed, and the volatile matter expands in the honeycomb without an outlet, which may be a factor that hinders adhesion between the surface material and the honeycomb core material.
  • it is required to produce a prepreg without using a solvent.
  • An object of the present invention is to solve the above-mentioned problems, that is, to provide a prepreg and a fiber-reinforced composite material having high flame retardancy and heat resistance without using a solvent and excellent in mechanical properties.
  • the present invention has the following configuration in order to solve the above problems. That is, a prepreg obtained by impregnating a reinforcing fiber with an epoxy resin composition containing at least the following components [A], [B], and [C], and the total amount of epoxy resin in the epoxy resin composition is 100 parts by mass. On the other hand, it is a prepreg containing 1 to 40 parts by mass of [A] and having a volatile content of 0.8% by mass or less.
  • [A] Ladder-type silsesquioxane having a structure represented by the formula (1)
  • the fiber-reinforced composite material of the present invention is a fiber-reinforced composite material obtained by curing the above prepreg.
  • the prepreg of the present invention includes the following components [A], [B], and [C].
  • the component [A] in the present invention is a ladder-type silsesquioxane, and flame retardancy and heat resistance are imparted by blending it with the epoxy resin composition.
  • the ratio of the substituent R having an epoxy ring structure to the substituent R in the formula (1) is 50 to 100%, more preferably 60 to 100%. More preferably, it is 75 to 100%.
  • the ratio (%) of the epoxy ring structure here means the number (number) of substituents R having an epoxy group in the constituent element [A] / the number of total substituents R in the constituent element [A] ⁇ 100 is required.
  • the proportion of the epoxy ring structure in the component [A] can also be determined by organic element analysis of the epoxy resin composition, ICP-MS (inductively coupled plasma mass spectrometry), or the like.
  • examples of the substituent R having an epoxy ring structure include ⁇ -glycidoxyethyl group, ⁇ -glycidoxypropyl group, ⁇ -glycidoxybutyl group and the like.
  • Such as an alkyl group of the number 3 or less carbon atoms substituted with a kill group Such as an alkyl group of the number 3 or less carbon atoms substituted with a kill group.
  • ⁇ -glycidoxyethyl group, ⁇ -glycidoxypropyl group, and ⁇ - (3,4-epoxycyclohexyl) ethyl group are preferable.
  • examples of the substituent R not containing an epoxy ring structure include a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group, and the like. Is mentioned.
  • examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, and an isobutyl group.
  • examples of the alkoxy group having 1 to 10 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.
  • examples of the aryl group include a phenyl group, a benzyl group, a tolyl group, and a naphthyl group.
  • the weight average molecular weight of the component [A] used in the present invention is preferably 1500 to 30000, more preferably 1500 to 15000, and still more preferably 2000 to 8000.
  • the weight average molecular weight of the component [A] is preferably 1500 to 30000, more preferably 1500 to 15000, and still more preferably 2000 to 8000.
  • the weight average molecular weight means a molecular weight in terms of polystyrene that can be determined by GPC (gel permeation chromatography).
  • the component [A] used in the present invention can be produced by, for example, the method described in JP-A-2007-9079.
  • the amount of the epoxy group contained can be controlled by blending trialkoxysilane having no epoxy ring structure and trialkoxysilane having an epoxy ring structure in a predetermined molar ratio, and performing cohydrolysis and cocondensation. it can.
  • the blending amount of the constituent element [A] is set to the constituent element [A] from the viewpoint that the obtained fiber-reinforced composite material exhibits flame retardancy, heat resistance and mechanical properties at a high level.
  • the total amount of the epoxy resin including the component [B] is required to be 1 to 40 parts by weight, preferably 5 to 30 parts by weight, and more preferably 10 to 20 parts by weight. .
  • Two or more types of components [A] may be used.
  • the component [B] used in the present invention is an epoxy resin other than the component [A], and is an epoxy resin having two or more epoxy groups in one molecule.
  • the glass transition temperature of a fiber-reinforced composite material obtained by heat-curing a fiber impregnated with a mixture with a curing agent described later is sufficiently high. Therefore, it is preferable.
  • the component [B] used in the present invention include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AD type epoxy resins, bisphenol S type epoxy resins, and other bisphenol type epoxy resins, tetrabromobisphenol A diglycidyl.
  • Brominated epoxy resins such as ether, epoxy resins having a biphenyl skeleton, epoxy resins having a naphthalene skeleton, epoxy resins having a dicyclopentadiene skeleton, novolac type epoxy resins such as phenol novolac type epoxy resins and cresol novolac type epoxy resins, N , N, O-triglycidyl-m-aminophenol, N, N, O-triglycidyl-p-aminophenol, N, N, O-triglycidyl-4-amino-3-methylphenol, etc.
  • Nophenol type epoxy resin N, N, N ′, N′-tetraglycidyl-4,4′-methylenedianiline, N, N, N ′, N′-tetraglycidyl-2,2′-diethyl-4, Examples thereof include diamine type epoxy resins such as 4′-methylenedianiline and N, N, N ′, N′-tetraglycidyl-m-xylylenediamine. These epoxy resins may be used alone or in combination of two or more.
  • the epoxy resin may be in any form from liquid to solid, crystalline or amorphous. Here, the liquid state has a melting point or glass transition temperature below room temperature.
  • the component [B] used in the present invention preferably contains a tri- or higher functional glycidylamine type epoxy resin from the viewpoint of improving heat resistance and mechanical properties.
  • trifunctional or more means that the number of epoxy rings in one molecule is 3 or more.
  • Examples of the tri- or higher functional glycidylamine type epoxy resin include diaminodiphenylmethane type, diaminodiphenyl ether type, diaminodiphenyl sulfone type, and aminophenol type epoxy resins.
  • diaminodiphenylmethane type diaminodiphenyl ether type
  • diaminodiphenyl sulfone type diaminodiphenyl sulfone type
  • aminophenol type epoxy resins at least one selected from the group consisting of diaminodiphenylmethane type and aminophenol type epoxy resins is particularly preferably used because of the good balance between processability when producing the prepreg, heat resistance and mechanical properties.
  • tetraglycidyldiaminodiphenylmethane is used as the diaminodiphenylmethane type epoxy resin
  • various isomers of triglycidyl-p-aminophenol, triglycidyl-m-aminophenol, and triglycidylaminocresol are used as the aminophenol type epoxy resin. It is done.
  • diaminodiphenylmethane type epoxy resins include ELM434 (manufactured by Sumitomo Chemical Co., Ltd.), “Araldite (registered trademark)” MY720, “Araldite (registered trademark)” MY721, “Araldite (registered trademark)” MY725, “Araldite” (Registered trademark) "MY9512", “Araldite (registered trademark)” MY9663 (manufactured by Huntsman Advanced Materials), “Epototo (registered trademark)” YH-434 (manufactured by Toto Kasei Co., Ltd.) and the like It is done.
  • ELM434 manufactured by Sumitomo Chemical Co., Ltd.
  • Aldite (registered trademark)” MY720 “Araldite (registered trademark)” MY721, “Araldite (registered trademark)” MY725, “Araldite” (Registered trademark) "MY9512", “Aral
  • ELM120 and ELM100 above, manufactured by Sumitomo Chemical Co., Ltd.
  • jER registered trademark
  • 630 manufactured by Mitsubishi Chemical Corporation
  • Araldite registered trademark
  • the epoxy resin composition used in the present invention includes an epoxy resin other than the constituent element [A] and the constituent element [B] as long as it does not significantly reduce heat resistance and mechanical properties.
  • an epoxy resin include a monoepoxy compound having only one epoxy group in one molecule.
  • the constituent element [C] used in the present invention refers to a material having a curing action of an epoxy resin, and is selected from amine compounds, acid anhydride compounds, phenol compounds, etc. that are usually used as a curing agent for epoxy resins.
  • the Such curing agents include diaminodiphenylsulfone, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, tetraethylenepentamine, dimethylbenzylamine, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, Examples thereof include maleic anhydride and tetrahydrophthalic anhydride.
  • 3,3'-diaminodiphenylsulfone and 4,4'-diaminodiphenylsulfone which are excellent in mechanical properties such as heat resistance and elastic modulus, and can obtain a cured product having a small linear expansion coefficient, should be used.
  • These curing agents may be used alone or in combination of two or more.
  • the curing agent can be used in either liquid or solid form.
  • the content of the component [C] is 10 to 100 parts by mass with respect to 100 parts by mass of the total amount of the epoxy resin including the component [A] and the component [B]. It is preferable from the viewpoint of ensuring, more preferably 25 to 100 parts by mass. From the viewpoint of satisfying mechanical properties such as sufficient curing speed when molding the prepreg, heat resistance and elongation of the molded product, and elastic modulus, the ratio of the amount of active hydrogen of the curing agent to the amount of epoxy groups in the epoxy resin composition is A stoichiometric amount of 0.5 to 1.5 equivalents is preferred. From the viewpoint of obtaining heat resistance, the amount is more preferably 0.8 to 1.2 equivalents, still more preferably 0.9 to 1.1 equivalents.
  • the amount of volatile components contained in the prepreg of the present invention needs to be 0.8% by mass or less when the mass of the prepreg is 100% by mass.
  • the amount of volatile components contained in the prepreg is calculated by the following method. First, a unidirectional prepreg is cut into 100 mm ⁇ 100 mm to obtain a test piece. After weighing this test piece (W1), the test piece placed on the aluminum plate is kept in a constant temperature bath set at 150 ° C. for 20 minutes. After allowing the test piece to cool to room temperature in a desiccator, it is weighed (W2) and the volatile content (W) is calculated from the following equation.
  • W (mass%) (W1-W2) ⁇ 100 / W1
  • the flame retardancy of the prepreg can be evaluated by a combustion test according to the ISO 5660 method using a corn calorimeter.
  • flame retardant evaluation include an average value of calorific value due to combustion per unit area (also referred to as average heat generation rate, AHRR; unit: kW / m 2 ), maximum calorific value due to combustion per unit area ( Maximum calorific value, also described as PHRR (unit: kW / m 2 ), total calorific value by combustion (also described as total calorific value, THR, unit: MJ / m 2 ), etc. Represents high flame retardancy.
  • thermoplastic resin soluble in the epoxy resin composition in order to control the tackiness of the resulting prepreg, to control the flowability of the resin when impregnating the epoxy resin composition into the reinforcing fiber, and to impart toughness to the resulting fiber-reinforced composite material, As [D], a thermoplastic resin soluble in the epoxy resin composition can be blended.
  • a thermoplastic resin in the epoxy resin composition By including a thermoplastic resin in the epoxy resin composition, the brittleness of the epoxy resin composition can be covered with the high toughness of the thermoplastic resin compared to the case where the epoxy resin composition or the thermoplastic resin is used alone, The molding difficulty of the thermoplastic resin can be covered with the epoxy resin composition, and a well-balanced base resin can be obtained.
  • thermoplastic resin that is soluble in the epoxy resin composition it is possible to obtain a fiber-reinforced composite material in which high toughness is obtained while avoiding a decrease in heat resistance of the fiber-reinforced composite material, and interlayer toughness is greatly improved. Can do.
  • thermoplastic resin is soluble in the epoxy resin composition. That is, when evaluating the change in viscosity when the epoxy resin composition to which the thermoplastic resin powder is added is held at a temperature lower than the glass transition temperature of the thermoplastic resin for several hours, for example, 2 hours, the initial viscosity is obtained. On the other hand, when an increase in viscosity of 10% or more is observed, it may be determined that the thermoplastic resin is soluble in the epoxy resin composition.
  • the thermoplastic resin may cause phase separation in the process of curing the prepreg, but the fiber reinforcement obtained by curing From the viewpoint of increasing the solvent resistance of the composite material, it is more preferable not to perform phase separation during the curing process. Further, from the viewpoint of improving the mechanical properties, solvent resistance, and the like of the obtained fiber-reinforced composite material, it is more preferable to dissolve and mix the thermoplastic resin in the epoxy resin composition in advance. It becomes easy to disperse
  • Such component [D] is selected from the group consisting of a carbon-carbon bond, an amide bond, an imide bond, an ester bond, an ether bond, a carbonate bond, a urethane bond, a thioether bond, a sulfone bond, and a carbonyl bond in the main chain.
  • a thermoplastic resin having a bonded bond is preferable.
  • the component [D] may have a partially crosslinked structure as long as it has thermoplasticity, and may be a crystalline resin or an amorphous resin. .
  • the component [D] is preferably contained in an amount of 1 to 40 parts by weight, more preferably 1 to 35 parts by weight, and still more preferably 2 to 2 parts by weight with respect to 100 parts by weight of the total epoxy resin in the epoxy resin composition. 30 parts by weight, most preferably 5 to 25 parts by weight.
  • the component [D] is contained in an amount of 1 to 40 parts by mass with respect to 100 parts by mass of the total amount of epoxy resins in the epoxy resin composition, a prepreg excellent in processability and handleability can be obtained.
  • the weight average molecular weight of the component [D] is preferably in the range of 4000 to 40000, more preferably 10,000 to 40000, and further preferably 15000 to 30000.
  • the average molecular weight of the component [D] is in the range of 4000 to 40000, a prepreg excellent in processability and handleability can be obtained.
  • the glass transition temperature of the constituent element [D] is at least 150 ° C. or more and 170 ° C. or more from the viewpoint that it is difficult to cause thermal deformation when used as a molded body. Is preferred.
  • the constituent element [D] include polycarbonate, polysulfone, polyetherimide, and polyethersulfone.
  • a hydroxyl group, a carboxyl group, an amino group, a thiol group, an acid anhydride or the like can react with the cationic polymerizable compound and is preferably used.
  • the component [D] having a hydroxyl group include polyvinyl acetal resins such as polyvinyl formal and polyvinyl butyral, polyvinyl alcohol, and phenoxy resins.
  • Examples of commercially available products of polysulfone include “UDEL (registered trademark)” P-1700, “UDEL (registered trademark)” P-3500, “Virantage (registered trademark)” VW-30500RP (manufactured by Solvay Advanced Polymers) and the like. Can be mentioned.
  • polyetherimides examples include “Ultem (registered trademark)” 1000, “Ultem (registered trademark)” 1010, “Ultem (registered trademark)” 1040 (manufactured by SABIC Japan LLC), and the like.
  • polyethersulfone products include “Sumika Excel (registered trademark)” PES3600P, “Sumika Excel (registered trademark)” PES5003P, “Sumika Excel (registered trademark)” PES5200P, “Sumika Excel (registered trademark)” PES7600P (and above) , Manufactured by Sumitomo Chemical Co., Ltd.), “Ultrason (registered trademark)” E2020P SR, “Ultrason (registered trademark)” E2021SR (above, manufactured by BASF), “Virantage (registered trademark)” VW-10700RP (Solvay Advanced Polymers) Etc.).
  • a copolymer oligomer of polyethersulfone and polyetherethersulfone as described in JP-T-2004-506789 can be mentioned.
  • the oligomer refers to a polymer having a relatively low molecular weight in which about 10 to 100 finite number of monomers are bonded.
  • the epoxy resin composition used in the present invention includes components other than the constituent element [A], the constituent element [B], the constituent element [C], and the constituent element [D] as long as the object of the present invention is not impaired. May be included. Examples thereof include inorganic particles and organic particles as exemplified below, and curing accelerators, flame retardants, viscosity modifiers, light stabilizers, and the like.
  • thermoplastic resin particles particles mainly composed of a thermoplastic resin can be blended.
  • polyamide is most preferable.
  • polyamides polyamide 12, polyamide 6, polyamide 11, polyamide 66, polyamide 6/12 copolymer, and epoxy described in Example 1 of JP-A-1-104624 are used.
  • Polyamide semi-IPNed with a compound gives particularly good adhesive strength with an epoxy resin.
  • IPN is an abbreviation for interpenetrating polymer network, and is a kind of polymer blend.
  • the blend component polymer is a cross-linked polymer, and the different cross-linked polymers are partially or wholly entangled with each other to form a multi-network structure.
  • Semi-IPN is a structure in which a heavy network structure is formed by a bridge polymer and a linear polymer.
  • Semi-IPN thermoplastic resin particles can be obtained by, for example, reprecipitation after dissolving a thermoplastic resin and a thermosetting resin in a common solvent and mixing them uniformly. By using particles comprising an epoxy resin and semi-IPN polyamide, excellent heat resistance and impact resistance can be imparted to the prepreg.
  • thermoplastic resin particles may be spherical particles, non-spherical particles, or porous particles, but the spherical shape is superior in viscoelasticity because it does not deteriorate the flow characteristics of the resin, and there is no origin of stress concentration. This is a preferred embodiment in terms of giving high impact resistance.
  • Commercially available polyamide particles include SP-500, SP-10, TR-1, TR-2, 842P-48, 842P-80 (above, manufactured by Toray Industries, Inc.), “Orgasol (registered trademark)” 1002D. , 2001UD, 2001EXD, 2002D, 3202D, 3501D, 3502D, (manufactured by Arkema Co., Ltd.) and the like can be used. These polyamide particles may be used alone or in combination.
  • an inorganic filler such as a coupling agent, thermosetting resin particles, silica gel, carbon black, clay, carbon nanotubes, graphene, carbon particles, and metal powder is used as long as the effects of the present invention are not hindered. Etc. can be blended.
  • the physical properties of a fiber reinforced composite material have a strong correlation with the physical properties of the cured resin obtained by curing the matrix resin. Therefore, the physical properties of the cured resin are good when evaluating the physical properties of the fiber reinforced composite material.
  • Can be an indicator For example, it is known that the higher the elastic modulus of the cured resin, the higher the compressive strength of the corresponding fiber-reinforced composite material. It is known that it is difficult to become the starting point of destruction.
  • the cured resin is usually obtained by heating at 100 to 200 ° C. for 1 to 8 hours, depending on the type of curing agent and the coexisting epoxy.
  • molding may be carried out by providing two or more stages of holding temperatures.
  • phase separation structure is preferably a so-called sea-island structure or a bicontinuous structure.
  • component insoluble in the composition [B] such as crosslinked particles and inorganic particles in the composition, the above is preferably achieved with components other than the insoluble components.
  • the prepreg of the present invention is a composite material in which the epoxy resin composition is impregnated in a fiber material (referred to as a reinforced fiber in the composite material industry), and a fiber-reinforced composite material is obtained by curing this.
  • Examples of the reinforcing fiber used in the present invention include glass fiber, carbon fiber, graphite fiber, aramid fiber, boron fiber, alumina fiber, and silicon carbide fiber. Two or more kinds of these reinforcing fibers may be mixed and used, but it is preferable to use carbon fibers or graphite fibers in order to obtain a molded product that is lighter and more durable. In particular, in applications where there is a high demand for reducing the weight and strength of materials, carbon fibers are preferably used because of their excellent specific modulus and specific strength.
  • the carbon fiber preferably used in the present invention can be any type of carbon fiber depending on the application, but is a carbon fiber having a tensile modulus of at least 230 GPa from the viewpoint of impact resistance and weight reduction. It is preferable. From the viewpoint of strength, a carbon fiber having a tensile strength of preferably 4.4 to 6.5 GPa is preferably used because a composite material having high rigidity and mechanical strength can be obtained. Also, the tensile elongation is an important factor, and it is preferable that the carbon fiber is a high strength and high elongation carbon fiber of 1.7 to 2.3%. Therefore, the carbon fiber having the characteristics that the tensile modulus is at least 230 GPa, the tensile strength is at least 4.4 GPa, and the tensile elongation is at least 1.7% or more is most suitable.
  • Carbon fibers include “Torayca (registered trademark)” T700G-24K, “Torayca (registered trademark)” T300-3K, and “Torayca (registered trademark)” T700S-12K (Toray Industries, Inc.) (Manufactured by Co., Ltd.), “Torayca (registered trademark)” T800G-24K, “Torayca (registered trademark)” T800S-24K, and the like of 294 MPa.
  • the form and arrangement of the carbon fibers can be appropriately selected from long fibers and woven fabrics arranged in one direction.
  • It is preferably in the form of continuous fibers such as long fibers (fiber bundles) or woven fabrics arranged in one direction.
  • the term “long fiber” as used herein means a fiber strand having an average length of 10 mm or more.
  • it is desirable to use a long fiber or its woven fabric from the viewpoint of mechanical properties.
  • the carbon fiber bundle used in the present invention does not cause damage to the carbon fiber bundle at the time of twisting or impregnation treatment of the resin composition, and from the viewpoint of sufficiently impregnating the carbon fiber bundle with the resin composition, the single fiber fineness is It is preferably 0.2 to 2.0 dtex, more preferably 0.4 to 1.8 dtex.
  • the carbon fiber bundle used in the present invention has a number of filaments in the range of 2500 to 50000 from the viewpoint that the fiber arrangement does not meander and the resin is easily impregnated during prepreg production or molding. Preferably there is.
  • the number of filaments is more preferably in the range of 2800 to 40000.
  • the prepreg of the present invention is preferably prepared by a hot melt method because it easily adjusts the volatile matter.
  • the hot melt method is a method in which a reinforcing fiber is impregnated by reducing the viscosity by heating without using a solvent.
  • a method of directly impregnating a reinforcing fiber with a matrix resin whose viscosity has been reduced by heating, or a release paper sheet with a resin film once coated with a matrix resin on a release paper or the like is first prepared. There is a method in which the reinforcing fibers are overlapped from both sides or one side and heated and pressed to impregnate the reinforcing fibers with the matrix resin.
  • the basis weight of the reinforcing fiber is preferably 100 to 1000 g / m 2 .
  • the reinforcing fiber basis weight is less than 100 g / m 2, it is necessary to increase the number of laminated layers in order to obtain a predetermined thickness when molding the fiber reinforced composite material, and the laminating operation may be complicated.
  • the prepreg drapability tends to deteriorate.
  • the preferred fiber mass content is 40 to 90% by mass, more preferably 50 to 80% by mass. When the fiber mass content is in this range, it is preferable to suppress the generation of voids in the molded body and express the excellent mechanical properties of the reinforcing fiber.
  • it depends on the molding process it is also preferable from the viewpoint of obtaining a uniform molded body by controlling the curing heat generation of the resin when molding a large member.
  • the form of the prepreg of the present invention may be either a unidirectional prepreg or a woven prepreg.
  • the fiber-reinforced composite material of the present invention can be obtained by laminating the prepreg of the present invention in a predetermined form and then curing the resin by heating. It is preferable to apply pressure during molding from the viewpoint of suppressing voids and obtaining a uniform cured body.
  • a method for applying heat and pressure known methods such as an autoclave molding method, a press molding method, a bagging molding method, a wrapping tape method, and an internal pressure molding method can be used.
  • the glass transition temperature of the fiber reinforced composite material molded by the above method is preferably in the range of 100 to 250 ° C. from the viewpoint of the passability of the molded material after-treatment process. Particularly for aircraft applications, a temperature range of 170 to 250 ° C. is preferable because it can be used for high temperature members.
  • the glass transition temperature here is an intersection temperature value between a tangent in a glass state and a tangent in a transition state of a storage elastic modulus G ′ curve obtained by a dynamic viscoelasticity measuring apparatus.
  • the prepreg and the fiber-reinforced composite material of the present invention will be described more specifically with reference to examples.
  • Reinforcing fiber, resin raw material and resin cured product, prepreg, method for producing fiber reinforced composite material, flame retardancy of resin cured product, bending elastic modulus, bending deflection, volatile content contained in prepreg, fiber reinforcement The evaluation method of the glass transition temperature of the composite material is shown below.
  • the production environment and evaluation of the prepregs of the examples are performed in an atmosphere at a temperature of 25 ° C. ⁇ 2 ° C. and a relative humidity of 50% unless otherwise specified.
  • the mixture was gradually added at 50 to 55 ° C. and left to stir for 3 hours. After completion of the reaction, 150 g of methyl isobutyl ketone was added to the system, and further washed with 75 g of distilled water until the pH of the aqueous layer became neutral. Next, after washing twice with 80 g of distilled water, methyl isobutyl ketone was distilled off under reduced pressure to obtain the desired compound silsesquioxane (SQ-A). The weight average molecular weight of silsesquioxane (SQ-A) was 5,500.
  • silsesquioxane (ladder-type silsesquioxane in which 75% of the substituent R contains an epoxy ring structure)
  • a reaction vessel equipped with a stirrer and a thermometer 150 g of methyl isobutyl ketone, water
  • tetramethylammonium oxide tetramethylammonium hydroxide 28.6 mmol
  • 36.7 g of distilled water 32.7 g (218.0 mmol) of ethyltrimethoxysilane, ⁇ -glycidoxy 154.8 g (655.0 mmol) of propyltrimethoxysilane was gradually added at 50 to 55 ° C.
  • silsesquioxane (ladder-type silsesquioxane in which 60% of the substituent R contains an epoxy ring structure)
  • a reaction vessel equipped with a stirrer and a thermometer 150 g of methyl isobutyl ketone, water
  • tetramethylammonium oxide tetramethylammonium hydroxide 22.6 mmol
  • 29.0 g of distilled water 54.7 g (276.0 mmol) of phenyltrimethoxysilane, ⁇ -glycidoxy 97.8 g (414.0 mmol) of propyltrimethoxysilane was gradually added at 50 to 55 ° C.
  • silsesquioxane (ladder-type silsesquioxane in which 50% of the substituent R contains an epoxy ring structure)
  • a reaction vessel equipped with a stirrer and a thermometer 150 g of methyl isobutyl ketone, water
  • tetramethylammonium oxide tetramethylammonium hydroxide 20.0 mmol
  • 26.0 g of distilled water 46.4 g (309.0 mmol) of ethyltrimethoxysilane, ⁇ -glycidoxy 73.0 g (309.0 mmol) of propyltrimethoxysilane was gradually added at 50 to 55 ° C.
  • silsesquioxane (SQ-D) had a weight average molecular weight of 5,800.
  • a reaction vessel equipped with a thermometer, a stirrer and a back-flow cooler was charged with 150 g (1.1 mol) of methyltrimethoxysilane, 65 g of deionized water, 100 g of toluene, 200 g of n-propyl acetate and 2 g of concentrated hydrochloric acid at room temperature. Thereafter, the mixture was left stirring at 50 ° C. for 1 hour. Thereafter, the pH was adjusted to 8.0 with aqueous ammonia, and then the backflow cooler was replaced with a forward flow cooler. Next, the temperature is raised from 50 ° C. to 120 ° C.
  • Curing agent> -4,4'-diaminodiphenyl sulfone (Seika Cure S, manufactured by Wakayama Seika Kogyo Co., Ltd.).
  • a test piece of 10 cm ⁇ 10 cm ⁇ 1 mm was cut out from the cured epoxy resin, and flame retardancy was evaluated according to ISO 5660 using a cone calorimeter C3 (manufactured by Toyo Seiki).
  • the heater temperature was 750 ° C.
  • the heater radiation amount was 50 kW / m 2
  • the test time was 2 minutes.
  • a bending test is performed under the conditions of a crosshead speed of 2.5 mm / min, a span length of 40 mm, an indenter diameter of 10 mm, and a fulcrum diameter of 4 mm. The amount was measured.
  • the epoxy resin composition prepared in (1) was applied onto release paper using a knife coater to produce a resin film.
  • two resin films are stacked on both sides of the carbon fiber on a carbon fiber “Torayca (registered trademark)” T800G-24K manufactured by Toray Industries, Ltd., which is arranged in one direction in a sheet shape, at a temperature of 100 ° C. and an atmospheric pressure of 1
  • the resin was impregnated into the carbon fiber while being heated and pressurized at atmospheric pressure to obtain a unidirectional prepreg having a carbon fiber basis weight of 190 g / m 2 and a matrix resin content of 35.5% by mass.
  • W (mass%) (W1-W2) ⁇ 100 / W1 (6) Definition of 0 ° of fiber reinforced composite material As described in JIS K7017 (1999), the axis when the fiber direction of the unidirectional fiber reinforced composite material is defined as the axial direction and the axial direction is defined as the 0 ° axis. The orthogonal direction is defined as 90 °.
  • the intersection temperature value of the tangent in the glass state and the tangent in the transition state was defined as the glass transition temperature (° C.).
  • the measurement was performed at a heating rate of 5 ° C./min and a frequency of 1 Hz.
  • Example 1 As shown in Table 1, 10 parts by mass of silsesquioxane (SQ-A) as component [A], and 60 parts by mass of tetraglycidyldiaminodiphenylmethane (“SUMI Epoxy (registered trademark)” ELM434) as component [B] , 30 parts by mass of bisphenol A type epoxy resin (“jER (registered trademark)” 825), 45 parts by mass of 3,3′-diaminodiphenylsulfone as component [C], and polyethersulfone (D) as component [D]
  • the epoxy resin composition was prepared using 7 parts by weight of “SUMICA EXCEL (registered trademark)” PES5003P. According to the above (1) to (7), flame retardancy evaluation, mechanical evaluation, and prepreg of the cured resin The amount of volatile components contained in the fiber and the glass transition temperature of the fiber reinforced composite material were measured. The results are shown in Table 1.
  • Examples 2 to 14, Comparative Examples 1 to 5 Implemented except that the types and blending ratios (parts by mass) of the component [A], component [B], component [C] and component [D] used were changed as shown in Tables 1 to 3
  • the epoxy resin composition was prepared in the same manner as in Example 1, and the flame retardancy evaluation, mechanical property evaluation, volatile content contained in the prepreg, and the glass transition temperature of the fiber reinforced composite material were measured. The results are shown in Tables 1 to 3.
  • the resin varnish was impregnated into a sheet of carbon fibers arranged in one direction and dried by heating to prepare a prepreg, and the amount of volatile components contained in the prepreg was evaluated according to the above (5).
  • the results are shown in Table 3.
  • the obtained unidirectional prepreg was cut into a predetermined size, and six sheets were laminated in one direction, and then a vacuum bag was formed and cured using an autoclave at a temperature of 180 ° C. and a pressure of 6 kg / cm 2 for 2 hours. To obtain a unidirectional fiber reinforced composite material.
  • the component [A] is contained in the epoxy resin composition, and the total amount of the epoxy resin in the epoxy resin composition is 100 parts by mass.
  • the element [A] is contained in an amount of 1 to 40 parts by mass and the epoxy group structure is contained in 50 to 100% of the substituent R of the constituent element [A]
  • the resulting fiber-reinforced composite material is flame retardant and heat resistant. And it was found to be excellent in mechanical properties.
  • Comparative Example 1 when the ladder-type silsesquioxane was not contained, the heat resistance and flame retardancy of the fiber-reinforced composite material tended to decrease. Further, as shown in Comparative Examples 2 and 3, when the content of the constituent element [A] was larger than 40 parts by mass, although the heat resistance and flame retardancy were sufficient, the mechanical properties were lowered. Furthermore, as shown in Comparative Example 4, when the amount of substituents containing an epoxy ring is less than 50% of all substituents even if it contains ladder-type silseoxane, the resin viscosity is high and a resin plate of good quality is obtained. Cann't get. As shown in Comparative Example 5, when a non-ladder silsesquioxane was blended in the epoxy resin composition, the bending deflection amount tended to decrease.
  • Example 1 Comparative Example 6
  • the amount of volatile components contained in the prepreg tended to be high.
  • the fiber reinforced composite material obtained by curing the prepreg laminate of Comparative Example 6 had many voids and cracks, and it was difficult to evaluate the mechanical properties. It has been found that the prepreg of the present invention that can be produced without using a solvent can suppress the volume shrinkage at the time of curing the prepreg laminate and the generation of voids and cracks in the molded product due to the residual solvent.
  • a prepreg and a fiber reinforced composite material having high flame retardancy and heat resistance, and excellent mechanical properties.
  • aircraft primary structural materials such as main wings and fuselage , Tail beams, floor beams, flaps, ailerons, cowls, fairings, interior materials, and other secondary structural materials, rocket motor cases and satellite structural materials.
  • structural materials for moving bodies such as automobiles, ships, and railway vehicles, drive shafts, leaf springs, windmill blades, various turbines, pressure vessels, flywheels, paper rollers, roofing materials, cables, reinforcement bars
  • suitable for civil engineering and building material applications such as repair and reinforcement materials.
  • it is suitably used for golf shafts, fishing rods, tennis, badminton and squash rackets, hockey sticks, and ski pole applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

The purpose of the present invention is to provide a prepreg which has high flame resistance and heat resistance without using a solvent and for which a ladder-type silsesquioxane having excellent mechanical characteristics is introduced into a matrix resin; and a fiber reinforced composite material. For this purpose, the present invention provides a prepreg formed by impregnating reinforcing fibers with an epoxy resin composition which comprises at least components [A], [B], and [C], wherein the epoxy resin composition comprises 1 to 40 parts by mass of [A] with respect to a total of 100 parts by mass of an epoxy resin, and the amount of volatiles contained in the prepreg is 0.8 mass% or less. [A] A ladder-type silsesquioxane having a specific structure. [B] An epoxy resin having two or more epoxy groups per molecule. [C] A curing agent.

Description

プリプレグおよび繊維強化複合材料Prepreg and fiber reinforced composites
 本発明は、マトリックス樹脂中にラダー型シルセスキオキサンを導入したプリプレグおよび繊維強化複合材料に関する。 The present invention relates to a prepreg in which a ladder-type silsesquioxane is introduced into a matrix resin and a fiber-reinforced composite material.
 近年、炭素繊維やアラミド繊維等を強化繊維として用いた繊維強化複合材料は、その高い比強度と比弾性率を利用して、航空機や自動車等の構造材料、テニスラケット、ゴルフシャフトおよび釣り竿等のスポーツ、および一般産業用途等に利用されてきた。繊推強化複合材料の製造方法には、強化繊維に未硬化のマトリックス樹脂を含浸したシート状中間材料であるプリプレグを用いてそれを硬化させる方法や、モールド中に配置した強化繊維に液状の樹脂を流し込んで中間体を得てそれを硬化させるレジン・トランスファー・モールディング法等が用いられている。これらの製造方法のうち、プリプレグを用いる方法は、強化繊維の配向を厳密に制御でき、また積層構成の設計自由度が高いことから高性能な繊維強化複合材料を得やすい利点がある。プリプレグに用いられるマトリックス樹脂としては、耐熱性や生産性の観点から主に熱硬化性樹脂が用いられ、なかでも強化繊維との接着性等の力学特性の観点からエポキシ樹脂が好ましく用いられる。 In recent years, fiber reinforced composite materials using carbon fibers, aramid fibers, and the like as reinforcing fibers have been used for structural materials such as aircraft and automobiles, tennis rackets, golf shafts, fishing rods, etc. by utilizing their high specific strength and specific elastic modulus. It has been used for sports and general industrial applications. There are two methods for producing a finely reinforced composite material: a method of curing a prepreg, which is a sheet-like intermediate material impregnated with an uncured matrix resin in a reinforcing fiber, or a liquid resin in a reinforcing fiber disposed in a mold. For example, a resin transfer molding method or the like is used in which an intermediate is obtained by pouring the resin to cure the intermediate. Among these production methods, the method using a prepreg has an advantage that it is easy to obtain a high-performance fiber-reinforced composite material because the orientation of the reinforcing fibers can be strictly controlled and the design freedom of the laminated structure is high. As the matrix resin used for the prepreg, a thermosetting resin is mainly used from the viewpoint of heat resistance and productivity, and an epoxy resin is preferably used from the viewpoint of mechanical properties such as adhesion to the reinforcing fiber.
 しかし、大抵のエポキシ樹脂は燃えやすく火災の原因となるため、特に航空機や車両等の構造材料においては、着火燃焼による事故を防ぐために難燃性のエポキシ樹脂が求められている。また電子・電気機器においても、内部からの発熱により筐体や部品が発火燃焼して事故に繋がるのを防ぐため、材料の難燃化が求められている。 However, since most epoxy resins are flammable and cause fires, flame retardant epoxy resins are required to prevent accidents caused by ignition and combustion, particularly in structural materials such as aircraft and vehicles. In addition, in electronic and electrical devices, in order to prevent cases and parts from being ignited and burned due to heat generated from the inside, leading to an accident, it is required to make the material flame-retardant.
 一般的に繊維強化複合材料を難燃化する手段として、マトリックス樹脂に材料を燃えにくくする添加剤、いわゆる難燃剤を添加する手法が有効であることが知られている。難燃剤として、ケイ素化合物、ハロゲン化合物、リン化合物、金属水酸化物、窒素化合物等が一般的に用いられるが、なかでもケイ素化合物は得られる樹脂硬化物の耐熱性や弾性率も優れることから好適に利用されている。マトリックス樹脂にケイ素化合物を配合する例として、シリカ粒子を配合する技術(特許文献1および特許文献2)や、かご型シルセスキオキサンを配合する技術(特許文献3)が開示されている。また、ラダー型シルセスキオキサンを配合した熱硬化性樹脂を溶剤に溶かしてプリプレグを作製する技術(特許文献4)が開示されている。 Generally, as a means for making a fiber reinforced composite material flame-retardant, it is known that a technique of adding an additive for making a material difficult to burn into a matrix resin, a so-called flame retardant, is effective. As a flame retardant, a silicon compound, a halogen compound, a phosphorus compound, a metal hydroxide, a nitrogen compound, etc. are generally used. Among these, a silicon compound is preferable because the obtained resin cured product has excellent heat resistance and elastic modulus. Has been used. As an example of blending a silicon compound into a matrix resin, a technique of blending silica particles (Patent Document 1 and Patent Document 2) and a technique of blending a cage silsesquioxane (Patent Document 3) are disclosed. Moreover, the technique (patent document 4) which melt | dissolves the thermosetting resin which mix | blended ladder type silsesquioxane in the solvent, and patent document 4 is disclosed.
特開2011-099094号公報JP 2011-099094 A 特開2014-141632号公報JP 2014-141632 A 特開2013-107986号公報JP 2013-107986 A 特開2004-256609号公報Japanese Patent Laid-Open No. 2004-256609
 しかし、特許文献1および特許文献2に記載されるシリカ粒子を用いた場合は、シリカ粒子がチキソトロピー性を有するため硬化時に増粘したり、硬化時に分離、析出しマトリックス樹脂の硬化物の伸度が不十分となったりすることがあった。また、特許文献3に記載されるかご型シルセスキオキサンを用いた場合は、マトリックス樹脂の硬化物の伸度向上効果が不十分となることがあり、配合量に制限があった。特許文献4では、プリプレグ作製時の低粘度化のためにマトリックス樹脂を溶剤に溶かすウェット法を用いている。この場合、無溶剤のホットメルト法と異なり、硬化時に溶剤が揮発して繊維強化複合材料の体積が収縮したり残留溶剤に起因するボイドやクラックが発生したりして、繊維強化複合材料の強度を損ねる場合があった。例えばハニカム材では表面形成時にハニカムの中にガス化した揮発分が密封され、それが出口のないハニカム中で膨張し、表面材とハニカム芯材との接着を阻害する要因となりえる。さらに環境への負荷の低減等も考慮すると、溶剤を使わずプリプレグを作製することが求められている。 However, when the silica particles described in Patent Document 1 and Patent Document 2 are used, the silica particles have thixotropic properties, so that they thicken during curing, or separate and precipitate during curing, and the elongation of the matrix resin cured product. Sometimes became insufficient. Moreover, when the cage-type silsesquioxane described in Patent Document 3 is used, the effect of improving the elongation of the cured product of the matrix resin may be insufficient, and the blending amount is limited. In Patent Document 4, a wet method in which a matrix resin is dissolved in a solvent is used to reduce the viscosity at the time of preparing a prepreg. In this case, unlike the solventless hot melt method, the solvent volatilizes during curing and the volume of the fiber reinforced composite material shrinks and voids and cracks are generated due to the residual solvent. May be damaged. For example, in the honeycomb material, volatile components gasified in the honeycomb at the time of surface formation are sealed, and the volatile matter expands in the honeycomb without an outlet, which may be a factor that hinders adhesion between the surface material and the honeycomb core material. Furthermore, considering the reduction of environmental load, it is required to produce a prepreg without using a solvent.
 本発明は上記の問題点を解決すること、すなわち溶剤を使わず高い難燃性、耐熱性を有し、かつ機械特性に優れたプリプレグおよび繊維強化複合材料を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems, that is, to provide a prepreg and a fiber-reinforced composite material having high flame retardancy and heat resistance without using a solvent and excellent in mechanical properties.
 本発明は、上記課題を解決するため次の構成を有する。すなわち、少なくとも次の構成要素[A]、[B]、[C]を含むエポキシ樹脂組成物を強化繊維に含浸させてなるプリプレグであって、エポキシ樹脂組成物中のエポキシ樹脂総量100質量部に対して[A]が1~40質量部含有されてなり、かつプリプレグに含まれる揮発分量が0.8質量%以下であるプリプレグである。
[A]式(1)で表される構造を有するラダー型シルセスキオキサン
The present invention has the following configuration in order to solve the above problems. That is, a prepreg obtained by impregnating a reinforcing fiber with an epoxy resin composition containing at least the following components [A], [B], and [C], and the total amount of epoxy resin in the epoxy resin composition is 100 parts by mass. On the other hand, it is a prepreg containing 1 to 40 parts by mass of [A] and having a volatile content of 0.8% by mass or less.
[A] Ladder-type silsesquioxane having a structure represented by the formula (1)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式(1)中、置換基Rの50~100%はエポキシ環構造を含む。またnは2以上の整数を表す。)
[B]1分子中に2個以上のエポキシ基を有するエポキシ樹脂
[C]硬化剤。
(In the formula (1), 50 to 100% of the substituent R contains an epoxy ring structure. N represents an integer of 2 or more.)
[B] Epoxy resin having two or more epoxy groups in one molecule [C] Curing agent.
 また、本発明の繊維強化複合材料は、上記のプリプレグを硬化させて得られる繊維強化複合材料である。 The fiber-reinforced composite material of the present invention is a fiber-reinforced composite material obtained by curing the above prepreg.
 本発明によれば、溶剤を使わず高い難燃性、耐熱性を有し、かつ機械特性に優れたプリプレグおよび繊維強化複合材料を得ることができる。 According to the present invention, it is possible to obtain a prepreg and a fiber reinforced composite material having high flame resistance and heat resistance without using a solvent and excellent in mechanical properties.
 本発明のプリプレグは、次の構成要素[A]、[B]、[C]を含む。
[A]:式(1)で表される骨格構造を有するラダー型シルセスキオキサン
The prepreg of the present invention includes the following components [A], [B], and [C].
[A]: Ladder type silsesquioxane having a skeleton structure represented by the formula (1)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(1)中、置換基Rの50~100%はエポキシ環構造を含む。またnは2以上の整数を表す。)
[B]:1分子中に2個以上のエポキシ基を有するエポキシ樹脂
[C]:硬化剤。
(In the formula (1), 50 to 100% of the substituent R contains an epoxy ring structure. N represents an integer of 2 or more.)
[B]: Epoxy resin having two or more epoxy groups in the molecule [C]: Curing agent.
 本発明における構成要素[A]はラダー型シルセスキオキサンであり、これをエポキシ樹脂組成物に配合することにより難燃性および耐熱性が付与される。 The component [A] in the present invention is a ladder-type silsesquioxane, and flame retardancy and heat resistance are imparted by blending it with the epoxy resin composition.
 本発明に用いる構成要素[A]において、式(1)中の置換基Rに占めるエポキシ環構造を有した置換基Rの割合は50~100%であり、より好ましくは60~100%であり、さらに好ましくは75~100%である。式(1)中の置換基Rに占めるエポキシ環構造を有した置換基Rの割合をこの範囲とすることで、エポキシ樹脂組成物の粘度が適切となり取扱性や成形性が向上し、得られる繊維強化複合材料の難燃性、耐熱性および機械特性を高いレベルで発現できる。ここでいうエポキシ環構造の割合(%)とは、構成要素[A]中のエポキシ基を有する置換基Rの数(個)/構成要素[A]の全置換基Rの数(個)×100で求められる。構成要素[A]中のエポキシ環構造の割合は、エポキシ樹脂組成物の有機元素分析やICP-MS(誘導結合プラズマ質量分析)等でも求めることができる。 In the component [A] used in the present invention, the ratio of the substituent R having an epoxy ring structure to the substituent R in the formula (1) is 50 to 100%, more preferably 60 to 100%. More preferably, it is 75 to 100%. By setting the ratio of the substituent R having an epoxy ring structure to the substituent R in the formula (1) within this range, the viscosity of the epoxy resin composition becomes appropriate, and handleability and moldability are improved and obtained. The flame retardant, heat resistance and mechanical properties of the fiber reinforced composite material can be expressed at a high level. The ratio (%) of the epoxy ring structure here means the number (number) of substituents R having an epoxy group in the constituent element [A] / the number of total substituents R in the constituent element [A] × 100 is required. The proportion of the epoxy ring structure in the component [A] can also be determined by organic element analysis of the epoxy resin composition, ICP-MS (inductively coupled plasma mass spectrometry), or the like.
 本発明で用いられる構成要素[A]において、エポキシ環構造を含む置換基Rの例としては、β-グリシドキシエチル基、γ-グリシドキシプロピル基、γ-グリシドキシブチル基等の炭素数4以下、好ましくは3以下のグリシドキシアルキル基、グリシジル基、β-(3,4-エポキシシクロヘキシル)エチル基、γ-(3,4-エポキシシクロヘキシル)プロピル基、β-(3,4-エポキシシクロヘプチル)エチル基、β-(3,4-エポキシシクロヘキシル)プロピル基、β-(3,4-エポキシシクロヘキシル)ブチル基、β-(3,4-エポキシシクロヘキシル)ペンチル基等のオキシラン基を持った炭素数5~8のシクロアルキル基で置換されたアルキル基等が挙げられ、好ましくはオキシラン基を持った炭素数5~8のシクロアルキル基で置換された炭素数3以下のアルキル基等が挙げられる。なかでも、β-グリシドキシエチル基、γ-グリシドキシプロピル基、β-(3,4-エポキシシクロヘキシル)エチル基が好ましい。 In the component [A] used in the present invention, examples of the substituent R having an epoxy ring structure include β-glycidoxyethyl group, γ-glycidoxypropyl group, γ-glycidoxybutyl group and the like. A glycidoxyalkyl group having 4 or less carbon atoms, preferably 3 or less, glycidyl group, β- (3,4-epoxycyclohexyl) ethyl group, γ- (3,4-epoxycyclohexyl) propyl group, β- (3, Oxiranes such as 4-epoxycycloheptyl) ethyl group, β- (3,4-epoxycyclohexyl) propyl group, β- (3,4-epoxycyclohexyl) butyl group, β- (3,4-epoxycyclohexyl) pentyl group And an alkyl group substituted with a cycloalkyl group having 5 to 8 carbon atoms having a group, and preferably a cycloalkyl group having 5 to 8 carbon atoms having an oxirane group. Such as an alkyl group of the number 3 or less carbon atoms substituted with a kill group. Of these, β-glycidoxyethyl group, γ-glycidoxypropyl group, and β- (3,4-epoxycyclohexyl) ethyl group are preferable.
 本発明で用いられる構成要素[A]において、エポキシ環構造を含まない置換基Rの例としては、水素原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、アリール基等が挙げられる。炭素数1~10のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基等が挙げられる。炭素数1~10のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。アリール基としては、フェニル基、ベンジル基、トリル基、ナフチル基等が挙げられる。 In the component [A] used in the present invention, examples of the substituent R not containing an epoxy ring structure include a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group, and the like. Is mentioned. Examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, and an isobutyl group. Examples of the alkoxy group having 1 to 10 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group. Examples of the aryl group include a phenyl group, a benzyl group, a tolyl group, and a naphthyl group.
 本発明で用いられる構成要素[A]の重量平均分子量は、1500~30000であることが好ましく、より好ましくは1500~15000、さらに好ましくは2000~8000である。構成要素[A]の重量平均分子量をこの範囲とすることで、十分な耐熱性や伸度が得られたり、構成要素[A]と構成要素[B]との相溶性が向上したり、さらにはマトリックス樹脂の強化繊維に対する含浸性が向上したりすることがある。ここで重量平均分子量とは、GPC(ゲルパーミエーションクロマトグラフィー)により求めることができるポリスチレン換算分子量のことをさす。 The weight average molecular weight of the component [A] used in the present invention is preferably 1500 to 30000, more preferably 1500 to 15000, and still more preferably 2000 to 8000. By setting the weight average molecular weight of the component [A] within this range, sufficient heat resistance and elongation can be obtained, compatibility between the component [A] and the component [B] can be improved, May improve the impregnation property of the matrix resin to the reinforcing fibers. Here, the weight average molecular weight means a molecular weight in terms of polystyrene that can be determined by GPC (gel permeation chromatography).
 本発明で用いられる構成要素[A]は、例えば、特開2007-9079号公報に記載の方法等により製造することができる。含有されるエポキシ基の量は、エポキシ環構造を持たないトリアルコキシシランとエポキシ環構造を有するトリアルコキシシランを、所定のモル比で配合し、共加水分解、共縮合することにより制御することができる。 The component [A] used in the present invention can be produced by, for example, the method described in JP-A-2007-9079. The amount of the epoxy group contained can be controlled by blending trialkoxysilane having no epoxy ring structure and trialkoxysilane having an epoxy ring structure in a predetermined molar ratio, and performing cohydrolysis and cocondensation. it can.
 本発明に用いられるエポキシ樹脂組成物において、得られる繊維強化複合材料の難燃性、耐熱性および機械特性を高いレベルで発現する点から、構成要素[A]の配合量は、構成要素[A]および構成要素[B]を含むエポキシ樹脂総量100質量部に対して、1~40質量部であることが必要であり、好ましくは5~30質量部、さらに好ましくは10~20質量部である。なお、2種類以上の構成要素[A]を用いることは差し支えない。 In the epoxy resin composition used in the present invention, the blending amount of the constituent element [A] is set to the constituent element [A] from the viewpoint that the obtained fiber-reinforced composite material exhibits flame retardancy, heat resistance and mechanical properties at a high level. ] And the total amount of the epoxy resin including the component [B] is required to be 1 to 40 parts by weight, preferably 5 to 30 parts by weight, and more preferably 10 to 20 parts by weight. . Two or more types of components [A] may be used.
 本発明で用いられる構成要素[B]は、構成要素[A]以外のエポキシ樹脂であって、1分子中に2個以上のエポキシ基を有するエポキシ樹脂である。1分子中にエポキシ基を2個以上有するエポキシ樹脂の場合、後述する硬化剤との混合物を強化繊維に含浸させたものを加熱硬化して得られる繊維強化複合材料のガラス転移温度が十分高くなるため好ましい。本発明で用いられる構成要素[B]としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂、テトラブロモビスフェノールAジグリシジルエーテル等の臭素化エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂、ジシクロペンタジエン骨格を有するエポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、N,N,O-トリグリシジル-m-アミノフェノール、N,N,O-トリグリシジル-p-アミノフェノール、N,N,O-トリグリシジル-4-アミノ-3-メチルフェノール等のアミノフェノール型エポキシ樹脂、N,N,N’,N’-テトラグリシジル-4,4’-メチレンジアニリン、N,N,N’,N’-テトラグリシジル-2,2’-ジエチル-4,4’-メチレンジアニリン、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン等のジアミン型エポキシ樹脂を挙げることができる。これらのエポキシ樹脂は単独で用いてもよく、また2種類以上を混合して用いることも可能である。エポキシ樹脂としては液状から固形のいずれの形態、結晶性、非晶性のいずれでもよい。ここで液状とは、室温以下の融点もしくはガラス転移温度を有するものである。 The component [B] used in the present invention is an epoxy resin other than the component [A], and is an epoxy resin having two or more epoxy groups in one molecule. In the case of an epoxy resin having two or more epoxy groups in one molecule, the glass transition temperature of a fiber-reinforced composite material obtained by heat-curing a fiber impregnated with a mixture with a curing agent described later is sufficiently high. Therefore, it is preferable. Examples of the component [B] used in the present invention include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AD type epoxy resins, bisphenol S type epoxy resins, and other bisphenol type epoxy resins, tetrabromobisphenol A diglycidyl. Brominated epoxy resins such as ether, epoxy resins having a biphenyl skeleton, epoxy resins having a naphthalene skeleton, epoxy resins having a dicyclopentadiene skeleton, novolac type epoxy resins such as phenol novolac type epoxy resins and cresol novolac type epoxy resins, N , N, O-triglycidyl-m-aminophenol, N, N, O-triglycidyl-p-aminophenol, N, N, O-triglycidyl-4-amino-3-methylphenol, etc. Nophenol type epoxy resin, N, N, N ′, N′-tetraglycidyl-4,4′-methylenedianiline, N, N, N ′, N′-tetraglycidyl-2,2′-diethyl-4, Examples thereof include diamine type epoxy resins such as 4′-methylenedianiline and N, N, N ′, N′-tetraglycidyl-m-xylylenediamine. These epoxy resins may be used alone or in combination of two or more. The epoxy resin may be in any form from liquid to solid, crystalline or amorphous. Here, the liquid state has a melting point or glass transition temperature below room temperature.
 本発明で用いられる構成要素[B]は、耐熱性や力学特性を向上させる観点から、3官能以上のグリシジルアミン型エポキシ樹脂を含むことが好ましい。ここで、3官能以上とは、一分子中のエポキシ環の数が3個以上であることをいう。 The component [B] used in the present invention preferably contains a tri- or higher functional glycidylamine type epoxy resin from the viewpoint of improving heat resistance and mechanical properties. Here, trifunctional or more means that the number of epoxy rings in one molecule is 3 or more.
 3官能以上のグリシジルアミン型エポキシ樹脂としては、例えば、ジアミノジフェニルメタン型、ジアミノジフェニルエーテル型、ジアミノジフェニルスルホン型、アミノフェノール型等のエポキシ樹脂が挙げられる。なかでも、プリプレグを作製する際のプロセス性と、耐熱性や力学特性のバランスがよいことから、ジアミノジフェニルメタン型およびアミノフェノール型のエポキシ樹脂からなる群から選ばれる少なくとも1種が特に好ましく用いられる。 Examples of the tri- or higher functional glycidylamine type epoxy resin include diaminodiphenylmethane type, diaminodiphenyl ether type, diaminodiphenyl sulfone type, and aminophenol type epoxy resins. Among these, at least one selected from the group consisting of diaminodiphenylmethane type and aminophenol type epoxy resins is particularly preferably used because of the good balance between processability when producing the prepreg, heat resistance and mechanical properties.
 具体的には、ジアミノジフェニルメタン型エポキシ樹脂として、テトラグリシジルジアミノジフェニルメタン、アミノフェノール型エポキシ樹脂としてトリグリシジル-p-アミノフェノール、トリグリシジル-m-アミノフェノール、およびトリグリシジルアミノクレゾールの各種異性体が挙げられる。 Specifically, tetraglycidyldiaminodiphenylmethane is used as the diaminodiphenylmethane type epoxy resin, and various isomers of triglycidyl-p-aminophenol, triglycidyl-m-aminophenol, and triglycidylaminocresol are used as the aminophenol type epoxy resin. It is done.
 以下に構成要素[B]の市販品の例を挙げる。 The following are examples of commercially available components [B].
 ジアミノジフェニルメタン型エポキシ樹脂の市販品としては、ELM434(住友化学(株)製)、“アラルダイト(登録商標)”MY720、“アラルダイト(登録商標)”MY721、“アラルダイト(登録商標)”MY725、“アラルダイト(登録商標)”MY9512、“アラルダイト(登録商標)”MY9663(以上、ハンツマン・アドバンスト・マテリアルズ社製)、および“エポトート(登録商標)”YH―434(東都化成(株)製)等が挙げられる。 Commercially available diaminodiphenylmethane type epoxy resins include ELM434 (manufactured by Sumitomo Chemical Co., Ltd.), “Araldite (registered trademark)” MY720, “Araldite (registered trademark)” MY721, “Araldite (registered trademark)” MY725, “Araldite” (Registered trademark) "MY9512", "Araldite (registered trademark)" MY9663 (manufactured by Huntsman Advanced Materials), "Epototo (registered trademark)" YH-434 (manufactured by Toto Kasei Co., Ltd.) and the like It is done.
 アミノフェノール型エポキシ樹脂の市販品としては、ELM120やELM100(以上、住友化学(株)製)、“jER(登録商標)”630(三菱化学(株)製)、および“アラルダイト(登録商標)”MY0600、“アラルダイト(登録商標)”MY0610、“アラルダイト(登録商標)”MY0500、“アラルダイト(登録商標)”MY0510(以上、ハンツマン・アドバンスト・マテリアルズ社製)等が挙げられる。 Commercially available products of aminophenol type epoxy resins include ELM120 and ELM100 (above, manufactured by Sumitomo Chemical Co., Ltd.), “jER (registered trademark)” 630 (manufactured by Mitsubishi Chemical Corporation), and “Araldite (registered trademark)”. MY0600, “Araldite (registered trademark)” MY0610, “Araldite (registered trademark)” MY0500, “Araldite (registered trademark)” MY0510 (manufactured by Huntsman Advanced Materials).
 また、本発明で用いられるエポキシ樹脂組成物は、耐熱性や機械特性に対して著しい低下を及ぼさない範囲であれば、構成要素[A]、構成要素[B]以外のエポキシ樹脂を含んでいても良く、そのようなエポキシ樹脂としては、例えば1分子中に1個のみのエポキシ基を有するモノエポキシ化合物等が挙げられる。 In addition, the epoxy resin composition used in the present invention includes an epoxy resin other than the constituent element [A] and the constituent element [B] as long as it does not significantly reduce heat resistance and mechanical properties. Examples of such an epoxy resin include a monoepoxy compound having only one epoxy group in one molecule.
 本発明で用いられる構成要素[C]は、エポキシ樹脂の硬化作用を持つ材料をいい、通常エポキシ樹脂の硬化剤として使用されるアミン系化合物、酸無水物系化合物、フェノール系化合物等から選択される。このような硬化剤としては、ジアミノジフェニルスルホン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、テトラエチレンペンタミン、ジメチルベンジルアミン、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸等が挙げられる。航空宇宙用途の場合、耐熱性、弾性率等の機械特性に優れ、さらに線膨張係数の小さい硬化物が得られる3,3’-ジアミノジフェニルスルホンおよび4,4’-ジアミノジフェニルスルホンを用いることが好ましい。これらの硬化剤は単独で用いてもよく、また2種類以上を混合して用いることも可能である。硬化剤は液状、固形のいずれでも使用可能である。 The constituent element [C] used in the present invention refers to a material having a curing action of an epoxy resin, and is selected from amine compounds, acid anhydride compounds, phenol compounds, etc. that are usually used as a curing agent for epoxy resins. The Such curing agents include diaminodiphenylsulfone, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, tetraethylenepentamine, dimethylbenzylamine, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, Examples thereof include maleic anhydride and tetrahydrophthalic anhydride. For aerospace applications, 3,3'-diaminodiphenylsulfone and 4,4'-diaminodiphenylsulfone, which are excellent in mechanical properties such as heat resistance and elastic modulus, and can obtain a cured product having a small linear expansion coefficient, should be used. preferable. These curing agents may be used alone or in combination of two or more. The curing agent can be used in either liquid or solid form.
 構成要素[C]の含有量は、構成要素[A]および構成要素[B]を含むエポキシ樹脂総量100質量部に対して10~100質量部であることが、優れた耐熱性と機械特性を確保する点から好ましく、さらに好ましくは25~100質量部である。プリプレグを成形する際の十分な硬化速度、成形体の耐熱性や伸度、弾性率といった機械特性を満足させる観点から、エポキシ樹脂組成物中のエポキシ基量に対する硬化剤の活性水素量の比は化学量論的に0.5~1.5当量であることが好ましい。耐熱性を得るという観点から0.8~1.2当量であることがより好ましく、さらに好ましくは0.9~1.1当量である。 The content of the component [C] is 10 to 100 parts by mass with respect to 100 parts by mass of the total amount of the epoxy resin including the component [A] and the component [B]. It is preferable from the viewpoint of ensuring, more preferably 25 to 100 parts by mass. From the viewpoint of satisfying mechanical properties such as sufficient curing speed when molding the prepreg, heat resistance and elongation of the molded product, and elastic modulus, the ratio of the amount of active hydrogen of the curing agent to the amount of epoxy groups in the epoxy resin composition is A stoichiometric amount of 0.5 to 1.5 equivalents is preferred. From the viewpoint of obtaining heat resistance, the amount is more preferably 0.8 to 1.2 equivalents, still more preferably 0.9 to 1.1 equivalents.
 本発明のプリプレグに含まれる揮発分量は、プリプレグの質量を100質量%としたとき0.8質量%以下であることが必要である。プリプレグに含まれる揮発分量は次の方法で算出される。まず、一方向プリプレグを100mm×100mmに裁断し試験片とする。この試験片を秤量後(W1)、150℃に設定した恒温槽内にアルミニウム板に載せた試験片を静置した状態で20分間維持する。デシケーター中で試験片を室温まで放冷した後、秤量し(W2)次式より揮発分量(W)を計算する。
W(質量%)=(W1-W2)×100/W1
 プリプレグに含まれる揮発分量を0.8質量%以下とすることによって、プリプレグ積層体を硬化する際の体積収縮や、残留溶剤に起因する成形体中のボイドやクラックの発生を抑制することができ、得られる繊維強化複合材料の強度低下を抑制することができる。また、揮発分として含まれる水分量は、プリプレグに対して0.5質量%以下であることが好ましい。水分量が0.5質量%以下であると、プリプレグ積層体を硬化した際のボイド発生を抑えることができるので好ましい。水分量の測定は種々の方法があるが、カールフィッシャー法により測定することができる。
The amount of volatile components contained in the prepreg of the present invention needs to be 0.8% by mass or less when the mass of the prepreg is 100% by mass. The amount of volatile components contained in the prepreg is calculated by the following method. First, a unidirectional prepreg is cut into 100 mm × 100 mm to obtain a test piece. After weighing this test piece (W1), the test piece placed on the aluminum plate is kept in a constant temperature bath set at 150 ° C. for 20 minutes. After allowing the test piece to cool to room temperature in a desiccator, it is weighed (W2) and the volatile content (W) is calculated from the following equation.
W (mass%) = (W1-W2) × 100 / W1
By setting the amount of volatile matter contained in the prepreg to 0.8 mass% or less, volume shrinkage when curing the prepreg laminate and generation of voids and cracks in the molded product due to residual solvent can be suppressed. The strength reduction of the obtained fiber reinforced composite material can be suppressed. Moreover, it is preferable that the moisture content contained as a volatile matter is 0.5 mass% or less with respect to a prepreg. It is preferable for the water content to be 0.5% by mass or less because void generation when the prepreg laminate is cured can be suppressed. Although there are various methods for measuring the amount of water, it can be measured by the Karl Fischer method.
 プリプレグの難燃性はコーンカロリーメータを用いてのISO5660法に従った燃焼試験により評価できる。難燃性評価の例としては、単位面積当たりの燃焼による発熱量の平均値(平均発熱速度、AHRRとも記載する。単位:kW/m)、単位面積当たりの燃焼による発熱量の最大値(最大発熱量、PHRRとも記載する。単位:kW/m)、燃焼による総発熱量(総発熱量、THRとも記載する。単位:MJ/m)等が挙げられ、いずれも値が小さいほど難燃性が高いことを表す。 The flame retardancy of the prepreg can be evaluated by a combustion test according to the ISO 5660 method using a corn calorimeter. Examples of flame retardant evaluation include an average value of calorific value due to combustion per unit area (also referred to as average heat generation rate, AHRR; unit: kW / m 2 ), maximum calorific value due to combustion per unit area ( Maximum calorific value, also described as PHRR (unit: kW / m 2 ), total calorific value by combustion (also described as total calorific value, THR, unit: MJ / m 2 ), etc. Represents high flame retardancy.
 本発明においては、得られるプリプレグのタック性の制御、エポキシ樹脂組成物を強化繊維に含浸する際の樹脂の流動性の制御、および得られる繊維強化複合材料に靱性を付与するために、構成要素[D]としてエポキシ樹脂組成物中において可溶な熱可塑性樹脂を配合することができる。エポキシ樹脂組成物に熱可塑性樹脂を含ませることで、エポキシ樹脂組成物または熱可塑性樹脂を単独で用いた場合に比べ、エポキシ樹脂組成物の脆さを熱可塑性樹脂の高い靱性でカバーしたり、熱可塑性樹脂の成形困難性をエポキシ樹脂組成物でカバーしたりでき、バランスのとれたベース樹脂を得ることができる。さらに、エポキシ樹脂組成物に可溶な熱可塑性樹脂を含むことで、繊維強化複合材料の耐熱性低下を回避しつつ高い靭性が得られ、層間靭性が大幅に向上した繊維強化複合材料を得ることができる。 In the present invention, in order to control the tackiness of the resulting prepreg, to control the flowability of the resin when impregnating the epoxy resin composition into the reinforcing fiber, and to impart toughness to the resulting fiber-reinforced composite material, As [D], a thermoplastic resin soluble in the epoxy resin composition can be blended. By including a thermoplastic resin in the epoxy resin composition, the brittleness of the epoxy resin composition can be covered with the high toughness of the thermoplastic resin compared to the case where the epoxy resin composition or the thermoplastic resin is used alone, The molding difficulty of the thermoplastic resin can be covered with the epoxy resin composition, and a well-balanced base resin can be obtained. Furthermore, by including a thermoplastic resin that is soluble in the epoxy resin composition, it is possible to obtain a fiber-reinforced composite material in which high toughness is obtained while avoiding a decrease in heat resistance of the fiber-reinforced composite material, and interlayer toughness is greatly improved. Can do.
 ここで「エポキシ樹脂組成物中において可溶」とは、熱可塑性樹脂が加えられたエポキシ樹脂組成物を加熱または加熱撹拌したときに均一相をなす温度領域が存在することを指す。ここで、「均一相をなす」とは、目視で分離のない状態が得られることを指す。ある温度領域で均一相をなすのであれば、その温度領域以外、例えば室温で分離が起こっても構わない。またエポキシ樹脂組成物中において熱可塑性樹脂が可溶であることは、次の方法でも評価することができる。すなわち、熱可塑性樹脂の粉末が加えられたエポキシ樹脂組成物を熱可塑性樹脂のガラス転移温度より低い温度で数時間、例えば2時間等温保持したときの粘度の変化を評価したときに、初期粘度に対して10%以上粘度の増加が見られる場合、熱可塑性樹脂がエポキシ樹脂組成物に可溶であると判断してよい。 Here, “soluble in the epoxy resin composition” means that there is a temperature range in which a uniform phase is formed when the epoxy resin composition to which the thermoplastic resin is added is heated or heated and stirred. Here, “forming a homogeneous phase” means that a state without visual separation is obtained. As long as a uniform phase is formed in a certain temperature range, the separation may occur outside the temperature range, for example, at room temperature. In addition, it can be evaluated by the following method that the thermoplastic resin is soluble in the epoxy resin composition. That is, when evaluating the change in viscosity when the epoxy resin composition to which the thermoplastic resin powder is added is held at a temperature lower than the glass transition temperature of the thermoplastic resin for several hours, for example, 2 hours, the initial viscosity is obtained. On the other hand, when an increase in viscosity of 10% or more is observed, it may be determined that the thermoplastic resin is soluble in the epoxy resin composition.
 このように熱可塑性樹脂がエポキシ樹脂組成物に可溶な性質を有していれば、プリプレグを硬化させる過程で熱可塑性樹脂が相分離を起こしても構わないが、硬化させて得られる繊維強化複合材料の耐溶剤性を高める観点からは、硬化過程で相分離をしないことがより好ましい。また、得られる繊維強化複合材料の力学特性、耐溶剤性等を向上させる観点から、熱可塑性樹脂をあらかじめエポキシ樹脂組成物中に溶解させて混合することがより好ましい。溶解させて混合することで、エポキシ樹脂組成物中に均一に分散しやすくなる。 Thus, if the thermoplastic resin has a property soluble in the epoxy resin composition, the thermoplastic resin may cause phase separation in the process of curing the prepreg, but the fiber reinforcement obtained by curing From the viewpoint of increasing the solvent resistance of the composite material, it is more preferable not to perform phase separation during the curing process. Further, from the viewpoint of improving the mechanical properties, solvent resistance, and the like of the obtained fiber-reinforced composite material, it is more preferable to dissolve and mix the thermoplastic resin in the epoxy resin composition in advance. It becomes easy to disperse | distribute uniformly in an epoxy resin composition by making it melt | dissolve and mix.
 このような構成要素[D]としては、主鎖に炭素-炭素結合、アミド結合、イミド結合、エステル結合、エーテル結合、カーボネート結合、ウレタン結合、チオエーテル結合、スルホン結合およびカルボニル結合からなる群から選ばれた結合を有する熱可塑性樹脂であることが好ましい。また、この構成要素[D]は、熱可塑性を有していれば部分的に架橋構造を有していても差し支えなく、結晶性の樹脂であっても非晶性の樹脂であってもよい。特に、ポリアミド、ポリカーボネート、ポリアセタール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリアリレート、ポリエステル、ポリアミドイミド、ポリイミド、ポリエーテルイミド、フェニルトリメチルインダン構造を有するポリイミド、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアラミド、ポリエーテルニトリルおよびポリベンズイミダゾールからなる群から選ばれた少なくとも1種の樹脂が好適である。 Such component [D] is selected from the group consisting of a carbon-carbon bond, an amide bond, an imide bond, an ester bond, an ether bond, a carbonate bond, a urethane bond, a thioether bond, a sulfone bond, and a carbonyl bond in the main chain. A thermoplastic resin having a bonded bond is preferable. The component [D] may have a partially crosslinked structure as long as it has thermoplasticity, and may be a crystalline resin or an amorphous resin. . Especially, polyamide, polycarbonate, polyacetal, polyphenylene oxide, polyphenylene sulfide, polyarylate, polyester, polyamideimide, polyimide, polyetherimide, polyimide with phenyltrimethylindane structure, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone At least one resin selected from the group consisting of polyaramid, polyethernitrile and polybenzimidazole is preferred.
 本発明において、構成要素[D]はエポキシ樹脂組成物中のエポキシ樹脂総量100質量部に対して1~40質量部含まれることが好ましく、より好ましくは1~35質量部、さらに好ましくは2~30質量部、最も好ましくは5~25質量部である。構成要素[D]がエポキシ樹脂組成物中のエポキシ樹脂総量100質量部に対して1~40質量部含まれることで、プロセス性や取扱性に優れたプリプレグを得ることができる。 In the present invention, the component [D] is preferably contained in an amount of 1 to 40 parts by weight, more preferably 1 to 35 parts by weight, and still more preferably 2 to 2 parts by weight with respect to 100 parts by weight of the total epoxy resin in the epoxy resin composition. 30 parts by weight, most preferably 5 to 25 parts by weight. When the component [D] is contained in an amount of 1 to 40 parts by mass with respect to 100 parts by mass of the total amount of epoxy resins in the epoxy resin composition, a prepreg excellent in processability and handleability can be obtained.
 構成要素[D]の重量平均分子量は、4000~40000の範囲にあることが好ましく、より好ましくは10000~40000、さらに好ましくは15000~30000である。構成要素[D]の平均分子量が4000~40000の範囲にある場合、プロセス性や取扱性に優れたプリプレグを得ることができる。 The weight average molecular weight of the component [D] is preferably in the range of 4000 to 40000, more preferably 10,000 to 40000, and further preferably 15000 to 30000. When the average molecular weight of the component [D] is in the range of 4000 to 40000, a prepreg excellent in processability and handleability can be obtained.
 さらに良好な耐熱性を得るためには、成形体として用いたときに熱変形を起こしにくいという観点から、構成要素[D]のガラス転移温度が少なくとも150℃以上であり、170℃以上であることが好ましい。かかる構成要素[D]としては、ポリカーボネート、ポリスルホン、ポリエーテルイミド、ポリエーテルスルホン等が挙げられる。 In order to obtain better heat resistance, the glass transition temperature of the constituent element [D] is at least 150 ° C. or more and 170 ° C. or more from the viewpoint that it is difficult to cause thermal deformation when used as a molded body. Is preferred. Examples of the constituent element [D] include polycarbonate, polysulfone, polyetherimide, and polyethersulfone.
 さらに、この構成要素[D]の末端官能基としては、水酸基、カルボキシル基、アミノ基、チオール基、酸無水物等のものがカチオン重合性化合物と反応することができ、好ましく用いられる。水酸基を有する構成要素[D]としては、ポリビニルホルマールやポリビニルブチラール等のポリビニルアセタール樹脂、ポリビニルアルコール、フェノキシ樹脂を挙げることができる。 Furthermore, as the terminal functional group of the constituent element [D], a hydroxyl group, a carboxyl group, an amino group, a thiol group, an acid anhydride or the like can react with the cationic polymerizable compound and is preferably used. Examples of the component [D] having a hydroxyl group include polyvinyl acetal resins such as polyvinyl formal and polyvinyl butyral, polyvinyl alcohol, and phenoxy resins.
 具体的には、ポリカーボネートの市販品としては、“パンライト(登録商標)”K1300Y(帝人化成(株)製)等が挙げられる。 Specifically, as a commercial product of polycarbonate, “Panlite (registered trademark)” K1300Y (manufactured by Teijin Chemicals Ltd.) and the like can be mentioned.
 ポリスルホンの市販品としては、“UDEL(登録商標)”P-1700、“UDEL(登録商標)”P-3500、“Virantage(登録商標)”VW-30500RP(以上、Solvay Advanced Polymers社製)等が挙げられる。 Examples of commercially available products of polysulfone include “UDEL (registered trademark)” P-1700, “UDEL (registered trademark)” P-3500, “Virantage (registered trademark)” VW-30500RP (manufactured by Solvay Advanced Polymers) and the like. Can be mentioned.
 ポリエーテルイミドの市販品としては、“ウルテム(登録商標)”1000、“ウルテム(登録商標)”1010、“ウルテム(登録商標)”1040(以上、SABICジャパン合同会社製)等が挙げられる。 Examples of commercially available polyetherimides include “Ultem (registered trademark)” 1000, “Ultem (registered trademark)” 1010, “Ultem (registered trademark)” 1040 (manufactured by SABIC Japan LLC), and the like.
 ポリエーテルスルホンの市販品としては、“スミカエクセル(登録商標)”PES3600P、“スミカエクセル(登録商標)”PES5003P、“スミカエクセル(登録商標)”PES5200P、“スミカエクセル(登録商標)”PES7600P(以上、住友化学工業(株)製)、“Ultrason(登録商標)”E2020P SR、“Ultrason(登録商標)”E2021SR(以上、BASF社製)、“Virantage(登録商標)”VW-10700RP(Solvay Advanced Polymers社製)等が挙げられる。 Commercially available polyethersulfone products include “Sumika Excel (registered trademark)” PES3600P, “Sumika Excel (registered trademark)” PES5003P, “Sumika Excel (registered trademark)” PES5200P, “Sumika Excel (registered trademark)” PES7600P (and above) , Manufactured by Sumitomo Chemical Co., Ltd.), "Ultrason (registered trademark)" E2020P SR, "Ultrason (registered trademark)" E2021SR (above, manufactured by BASF), "Virantage (registered trademark)" VW-10700RP (Solvay Advanced Polymers) Etc.).
 また、特表2004-506789号公報に記載されるようなポリエーテルスルホンとポリエーテルエーテルスルホンの共重合体オリゴマーが挙げられる。オリゴマーとは10個から100個程度の有限個のモノマーが結合した比較的分子量が低い重合体を指す。 In addition, a copolymer oligomer of polyethersulfone and polyetherethersulfone as described in JP-T-2004-506789 can be mentioned. The oligomer refers to a polymer having a relatively low molecular weight in which about 10 to 100 finite number of monomers are bonded.
 また、本発明で用いられるエポキシ樹脂組成物には、本発明の目的を阻害しない限りにおいて、構成要素[A]、構成要素[B]、構成要素[C]、構成要素[D]以外の成分を含んでいても良い。例えば、以下に例示するような無機粒子や有機粒子、また、硬化促進剤や難燃剤や粘度調整剤や光安定剤などが挙げられる。 In addition, the epoxy resin composition used in the present invention includes components other than the constituent element [A], the constituent element [B], the constituent element [C], and the constituent element [D] as long as the object of the present invention is not impaired. May be included. Examples thereof include inorganic particles and organic particles as exemplified below, and curing accelerators, flame retardants, viscosity modifiers, light stabilizers, and the like.
 本発明においては、得られる繊維強化複合材料の耐衝撃性を向上させるために、熱可塑性樹脂を主成分とする粒子を配合することもできる。熱可塑性樹脂粒子としてはポリアミドが最も好ましく、ポリアミドのなかでも、ポリアミド12、ポリアミド6、ポリアミド11、ポリアミド66、ポリアミド6/12共重合体、特開平1-104624号公報の実施例1記載のエポキシ化合物にてセミIPN化されたポリアミド(セミIPNポリアミド)は特に良好なエポキシ樹脂との接着強度を与える。ここで、IPNとは相互侵入高分子網目構造体(Interpenetrating Polymer Network)の略称で、ポリマーブレンドの一種である。ブレンド成分ポリマーが橋架けポリマーであって、それぞれの異種橋架けポリマーが部分的あるいは全体的に相互に絡み合って多重網目構造を形成しているものをいう。セミIPNとは、橋架けポリマーと直鎖状ポリマーによる重網目構造が形成されたものである。セミIPN化した熱可塑性樹脂粒子は、例えば熱可塑性樹脂と熱硬化性樹脂を共通溶媒に溶解させ、均一に混合した後、再沈等により得ることができる。エポキシ樹脂とセミIPN化したポリアミドからなる粒子を用いることにより、優れた耐熱性と耐衝撃性をプリプレグに付与することができる。これら熱可塑性樹脂粒子の形状としては、球状粒子でも非球状粒子でも、また多孔質粒子でもよいが、球状の方が樹脂の流動特性を低下させないため粘弾性に優れ、また応力集中の起点がなく、高い耐衝撃性を与えるという点で好ましい態様である。ポリアミド粒子の市販品としては、SP-500、SP-10、TR-1、TR-2、842P-48、842P-80(以上、東レ(株)製)、“オルガソール(登録商標)”1002D、2001UD、2001EXD、2002D、3202D、3501D,3502D、(以上、アルケマ(株)製)等を使用することができる。これらのポリアミド粒子は、単独で使用しても複数を併用してもよい。 In the present invention, in order to improve the impact resistance of the obtained fiber reinforced composite material, particles mainly composed of a thermoplastic resin can be blended. As the thermoplastic resin particles, polyamide is most preferable. Among polyamides, polyamide 12, polyamide 6, polyamide 11, polyamide 66, polyamide 6/12 copolymer, and epoxy described in Example 1 of JP-A-1-104624 are used. Polyamide semi-IPNed with a compound (semi-IPN polyamide) gives particularly good adhesive strength with an epoxy resin. Here, IPN is an abbreviation for interpenetrating polymer network, and is a kind of polymer blend. The blend component polymer is a cross-linked polymer, and the different cross-linked polymers are partially or wholly entangled with each other to form a multi-network structure. Semi-IPN is a structure in which a heavy network structure is formed by a bridge polymer and a linear polymer. Semi-IPN thermoplastic resin particles can be obtained by, for example, reprecipitation after dissolving a thermoplastic resin and a thermosetting resin in a common solvent and mixing them uniformly. By using particles comprising an epoxy resin and semi-IPN polyamide, excellent heat resistance and impact resistance can be imparted to the prepreg. The shape of these thermoplastic resin particles may be spherical particles, non-spherical particles, or porous particles, but the spherical shape is superior in viscoelasticity because it does not deteriorate the flow characteristics of the resin, and there is no origin of stress concentration. This is a preferred embodiment in terms of giving high impact resistance. Commercially available polyamide particles include SP-500, SP-10, TR-1, TR-2, 842P-48, 842P-80 (above, manufactured by Toray Industries, Inc.), “Orgasol (registered trademark)” 1002D. , 2001UD, 2001EXD, 2002D, 3202D, 3501D, 3502D, (manufactured by Arkema Co., Ltd.) and the like can be used. These polyamide particles may be used alone or in combination.
 本発明のプリプレグには、本発明の効果を妨げない範囲で、カップリング剤や、熱硬化性樹脂粒子、あるいはシリカゲル、カーボンブラック、クレー、カーボンナノチューブ、グラフェン、カーボン粒子、金属粉体といった無機フィラー等を配合することができる。 In the prepreg of the present invention, an inorganic filler such as a coupling agent, thermosetting resin particles, silica gel, carbon black, clay, carbon nanotubes, graphene, carbon particles, and metal powder is used as long as the effects of the present invention are not hindered. Etc. can be blended.
 一般的に繊維強化複合材料の物性は、そのマトリックス樹脂を硬化して得られる樹脂硬化物の物性と強い相関があるため、繊維強化複合材料の物性を評価するときに樹脂硬化物の物性がよい指標となり得る。例えば樹脂硬化物の弾性率が大きいほど、対応する繊維強化複合材料の圧縮強度が高くなることが知られており、樹脂硬化物の曲げ撓み量が大きいほど、樹脂が原因での繊維強化複合材料の破壊の起点となりにくいことが知られている。 Generally, the physical properties of a fiber reinforced composite material have a strong correlation with the physical properties of the cured resin obtained by curing the matrix resin. Therefore, the physical properties of the cured resin are good when evaluating the physical properties of the fiber reinforced composite material. Can be an indicator. For example, it is known that the higher the elastic modulus of the cured resin, the higher the compressive strength of the corresponding fiber-reinforced composite material. It is known that it is difficult to become the starting point of destruction.
 樹脂硬化物は、硬化剤の種類や共存させるエポキシ種にもよるが、通常100~200℃で1~8時間加熱することによって得られる。硬化の際、2段階以上の多段階の保持温度を設けて成形してもよい。硬化剤によって適切な硬化条件を選択することで、硬化時に構成要素[B]から相分離した相構造に起因するムラが発生しない硬化物が得られ、それに伴い高いレベルで難燃性と樹脂硬化物伸度が両立し、繊維強化複合材料とした場合であっても同様の効果や高い表面品位が発現することから好ましい。透過型電子顕微鏡による観察で、硬化物中で分離した相構造のサイズが1μm以下であれば、難燃性に加えて樹脂の開口モードでの靭性が高くなることから好ましい。相分離の構造は、いわゆる海島構造や共連続構造であることが好ましい。組成物中に架橋粒子や無機粒子などの構成要素[B]に対して不溶解な成分がある場合は、不溶解な成分以外の成分で上記が達成されることが好ましい。 The cured resin is usually obtained by heating at 100 to 200 ° C. for 1 to 8 hours, depending on the type of curing agent and the coexisting epoxy. At the time of curing, molding may be carried out by providing two or more stages of holding temperatures. By selecting appropriate curing conditions depending on the curing agent, a cured product that does not cause unevenness due to the phase structure phase-separated from the component [B] at the time of curing can be obtained, and accordingly flame retardancy and resin curing are achieved at a high level. Even when the material elongation is compatible and the fiber-reinforced composite material is used, the same effect and high surface quality are exhibited. When the size of the phase structure separated in the cured product is 1 μm or less as observed by a transmission electron microscope, it is preferable because the toughness in the opening mode of the resin is increased in addition to the flame retardancy. The phase separation structure is preferably a so-called sea-island structure or a bicontinuous structure. When there are components insoluble in the composition [B] such as crosslinked particles and inorganic particles in the composition, the above is preferably achieved with components other than the insoluble components.
 本発明のプリプレグは、前記エポキシ樹脂組成物が繊維材料(複合材料の業界では強化繊維と称される)に含浸された複合材料であり、これを硬化することで繊維強化複合材料が得られる。 The prepreg of the present invention is a composite material in which the epoxy resin composition is impregnated in a fiber material (referred to as a reinforced fiber in the composite material industry), and a fiber-reinforced composite material is obtained by curing this.
 本発明で用いられる強化繊維としては、ガラス繊維、炭素繊維、黒鉛繊維、アラミド繊維、ボロン繊維、アルミナ繊維および炭化ケイ素繊維等が挙げられる。これらの強化繊維を2種以上混合して用いても構わないが、より軽量で耐久性の高い成形品を得るために、炭素繊維や黒鉛繊維を用いることが好ましい。特に、材料の軽量化や高強度化の要求が高い用途においては、その優れた比弾性率と比強度のため、炭素繊維が好適に用いられる。 Examples of the reinforcing fiber used in the present invention include glass fiber, carbon fiber, graphite fiber, aramid fiber, boron fiber, alumina fiber, and silicon carbide fiber. Two or more kinds of these reinforcing fibers may be mixed and used, but it is preferable to use carbon fibers or graphite fibers in order to obtain a molded product that is lighter and more durable. In particular, in applications where there is a high demand for reducing the weight and strength of materials, carbon fibers are preferably used because of their excellent specific modulus and specific strength.
 本発明で好ましく用いられる炭素繊維は、用途に応じてあらゆる種類の炭素繊維を用いることが可能であるが、耐衝撃性や軽量化の観点から少なくとも230GPa以上の引張弾性率を有する炭素繊維であることが好ましい。また強度の観点からは、高い剛性および機械強度を有する複合材料が得られることから、引張強度が好ましくは4.4~6.5GPaの炭素繊維が用いられる。また、引張伸度も重要な要素であり、1.7~2.3%の高強度高伸度炭素繊維であることが好ましい。従って、引張弾性率が少なくとも230GPa以上であり、引張強度が少なくとも4.4GPa以上であり、引張伸度が少なくとも1.7%以上であるという特性を兼ね備えた炭素繊維が最も適している。 The carbon fiber preferably used in the present invention can be any type of carbon fiber depending on the application, but is a carbon fiber having a tensile modulus of at least 230 GPa from the viewpoint of impact resistance and weight reduction. It is preferable. From the viewpoint of strength, a carbon fiber having a tensile strength of preferably 4.4 to 6.5 GPa is preferably used because a composite material having high rigidity and mechanical strength can be obtained. Also, the tensile elongation is an important factor, and it is preferable that the carbon fiber is a high strength and high elongation carbon fiber of 1.7 to 2.3%. Therefore, the carbon fiber having the characteristics that the tensile modulus is at least 230 GPa, the tensile strength is at least 4.4 GPa, and the tensile elongation is at least 1.7% or more is most suitable.
 炭素繊維の市販品としては、引張弾性率が230MPaの“トレカ(登録商標)”T700G-24K、“トレカ(登録商標)”T300-3K、および“トレカ(登録商標)”T700S-12K(以上東レ(株)製)や294MPaの“トレカ(登録商標)”T800G-24K、“トレカ(登録商標)”T800S-24K等が挙げられる。 Commercially available carbon fibers include “Torayca (registered trademark)” T700G-24K, “Torayca (registered trademark)” T300-3K, and “Torayca (registered trademark)” T700S-12K (Toray Industries, Inc.) (Manufactured by Co., Ltd.), "Torayca (registered trademark)" T800G-24K, "Torayca (registered trademark)" T800S-24K, and the like of 294 MPa.
 炭素繊維の形態や配列については、一方向に引き揃えた長繊維や織物等から適宜選択できるが、軽量で耐久性がより高い水準にある炭素繊維強化複合材料を得るためには、炭素繊維が、一方向に引き揃えた長繊維(繊維束)や織物等連続繊維の形態であることが好ましい。ここでいう長繊維とは、繊維ストランドの平均長さが10mm以上のものをいう。なお、不織布であっても差し支えは無いが機械特性の観点からは長繊維またはその織物を用いることが望ましい。 The form and arrangement of the carbon fibers can be appropriately selected from long fibers and woven fabrics arranged in one direction. However, in order to obtain a carbon fiber reinforced composite material that is lighter and more durable, It is preferably in the form of continuous fibers such as long fibers (fiber bundles) or woven fabrics arranged in one direction. The term “long fiber” as used herein means a fiber strand having an average length of 10 mm or more. In addition, although there is no problem even if it is a nonwoven fabric, it is desirable to use a long fiber or its woven fabric from the viewpoint of mechanical properties.
 本発明で用いられる炭素繊維束は、撚糸時や樹脂組成物の含浸処理工程において炭素繊維束の損傷を起こさず、かつ炭素繊維束に樹脂組成物を充分に含浸させる観点から、単繊維繊度は0.2~2.0dtexであることが好ましく、より好ましくは0.4~1.8dtexである。 The carbon fiber bundle used in the present invention does not cause damage to the carbon fiber bundle at the time of twisting or impregnation treatment of the resin composition, and from the viewpoint of sufficiently impregnating the carbon fiber bundle with the resin composition, the single fiber fineness is It is preferably 0.2 to 2.0 dtex, more preferably 0.4 to 1.8 dtex.
 また、本発明で用いられる炭素繊維束は、繊維配列が蛇行せず、プリプレグ作製時あるいは成形時に樹脂含浸がしやすいという観点から、一つの繊維束中のフィラメント数が2500~50000本の範囲であることが好ましい。フィラメント数は、より好ましくは2800~40000本の範囲である。 In addition, the carbon fiber bundle used in the present invention has a number of filaments in the range of 2500 to 50000 from the viewpoint that the fiber arrangement does not meander and the resin is easily impregnated during prepreg production or molding. Preferably there is. The number of filaments is more preferably in the range of 2800 to 40000.
 本発明のプリプレグは揮発分の調整がしやすいことからホットメルト法で作製されることが好ましい。ホットメルト法とは、溶媒を用いずに、加熱により低粘度化し強化繊維に含浸させる方法である。ホットメルト法には、加熱により低粘度化したマトリックス樹脂を直接強化繊維に含浸する方法、または、一旦マトリックス樹脂を離型紙等の上に塗布した樹脂フィルム付きの離型紙シートをまず作製し、次いで、これを強化繊維の両側あるいは片側から重ねて、加熱加圧してマトリックス樹脂を強化繊維に含浸させる方法等がある。 The prepreg of the present invention is preferably prepared by a hot melt method because it easily adjusts the volatile matter. The hot melt method is a method in which a reinforcing fiber is impregnated by reducing the viscosity by heating without using a solvent. In the hot melt method, a method of directly impregnating a reinforcing fiber with a matrix resin whose viscosity has been reduced by heating, or a release paper sheet with a resin film once coated with a matrix resin on a release paper or the like is first prepared. There is a method in which the reinforcing fibers are overlapped from both sides or one side and heated and pressed to impregnate the reinforcing fibers with the matrix resin.
 本発明のプリプレグにおいては、強化繊維の目付が100~1000g/mであることが好ましい。強化繊維目付が100g/m未満では、繊維強化複合材料を成形する際に所定の厚みを得るために積層枚数を多くする必要があり、積層作業が煩雑になることがある。一方、1000g/mを超える場合は、プリプレグのドレープ性が悪くなる傾向がある。また好ましい繊維質量含有率は40~90質量%であり、より好ましくは50~80質量%である。繊維質量含有率がこの範囲にあると、成形体中のボイド発生を抑え、強化繊維の優れた機械特性を発現するために好ましい。また、成形プロセスに依存するが大型部材を成形する際に、樹脂の硬化発熱を制御し均一な成形体を得る観点からも好ましい。 In the prepreg of the present invention, the basis weight of the reinforcing fiber is preferably 100 to 1000 g / m 2 . When the reinforcing fiber basis weight is less than 100 g / m 2, it is necessary to increase the number of laminated layers in order to obtain a predetermined thickness when molding the fiber reinforced composite material, and the laminating operation may be complicated. On the other hand, when it exceeds 1000 g / m 2 , the prepreg drapability tends to deteriorate. The preferred fiber mass content is 40 to 90% by mass, more preferably 50 to 80% by mass. When the fiber mass content is in this range, it is preferable to suppress the generation of voids in the molded body and express the excellent mechanical properties of the reinforcing fiber. Although it depends on the molding process, it is also preferable from the viewpoint of obtaining a uniform molded body by controlling the curing heat generation of the resin when molding a large member.
 本発明のプリプレグの形態は、一方向プリプレグ、織物プリプレグのいずれでもよい。 The form of the prepreg of the present invention may be either a unidirectional prepreg or a woven prepreg.
 本発明の繊維強化複合材料は、前記本発明のプリプレグを所定の形態で積層した後、加熱して樹脂を硬化させることにより得ることができる。ボイドを抑制し均一な硬化体を得る観点から成形中に加圧することが好ましい。ここで、熱および圧力を付与する方法としては、オートクレーブ成形法、プレス成形法、バッギング成形法、ラッピングテープ法、内圧成形法等公知の方法を用いることができる。 The fiber-reinforced composite material of the present invention can be obtained by laminating the prepreg of the present invention in a predetermined form and then curing the resin by heating. It is preferable to apply pressure during molding from the viewpoint of suppressing voids and obtaining a uniform cured body. Here, as a method for applying heat and pressure, known methods such as an autoclave molding method, a press molding method, a bagging molding method, a wrapping tape method, and an internal pressure molding method can be used.
 上記方法により成形された繊維強化複合材料のガラス転移温度は、100~250℃の範囲であることが成形された材料の後処理工程の通過性の観点から好ましい。特に航空機用途であれば、170~250℃の範囲であれば、高温になる部材にも使用することが可能となるために好ましい。ここでいうガラス転移温度とは、動的粘弾性測定装置により求まる貯蔵弾性率G’曲線のガラス状態での接線と転移状態での接線との交点温度値である。 The glass transition temperature of the fiber reinforced composite material molded by the above method is preferably in the range of 100 to 250 ° C. from the viewpoint of the passability of the molded material after-treatment process. Particularly for aircraft applications, a temperature range of 170 to 250 ° C. is preferable because it can be used for high temperature members. The glass transition temperature here is an intersection temperature value between a tangent in a glass state and a tangent in a transition state of a storage elastic modulus G ′ curve obtained by a dynamic viscoelasticity measuring apparatus.
 以下、実施例によって、本発明のプリプレグおよび繊維強化複合材料についてより具体的に説明する。実施例で用いた強化繊維、樹脂原料および樹脂硬化物、プリプレグ、繊維強化複合材料の作製方法、樹脂硬化物の難燃性、曲げ弾性率、曲げ撓み量、プリプレグに含まれる揮発分量、繊維強化複合材料のガラス転移温度の評価方法を次に示す。実施例のプリプレグの作製環境と評価は、特に断りのない限り、温度25℃±2℃、相対湿度50%の雰囲気で行ったものである。 Hereinafter, the prepreg and the fiber-reinforced composite material of the present invention will be described more specifically with reference to examples. Reinforcing fiber, resin raw material and resin cured product, prepreg, method for producing fiber reinforced composite material, flame retardancy of resin cured product, bending elastic modulus, bending deflection, volatile content contained in prepreg, fiber reinforcement The evaluation method of the glass transition temperature of the composite material is shown below. The production environment and evaluation of the prepregs of the examples are performed in an atmosphere at a temperature of 25 ° C. ± 2 ° C. and a relative humidity of 50% unless otherwise specified.
 [炭素繊維(強化繊維)]
・“トレカ(登録商標)”T800G-24K(フィラメント数24,000本、引張強度5.9GPa、引張弾性率294GPa、引張伸度2.0%の炭素繊維、東レ(株)製)。
[Carbon fiber (reinforced fiber)]
"Torayca (registered trademark)" T800G-24K (carbon fiber with 24,000 filaments, tensile strength 5.9 GPa, tensile elastic modulus 294 GPa, tensile elongation 2.0%, manufactured by Toray Industries, Inc.)
 [樹脂原料]
 <構成要素[A]:ラダー型シルセスキオキサン>
特開2007-9079号公報に記載の方法を参照して合成した。
・シルセスキオキサン(SQ-A)(置換基Rの100%がエポキシ環構造を含むラダー型シルセスキオキサン)の合成
 撹拌機および温度計を設置した反応容器に、メチルイソブチルケトン150g、水酸化テトラメチルアンモニウムの20%水溶液9.2g(水酸化テトラメチルアンモニウム20.0mmol)、蒸留水26.0gを仕込んだ後、γ-グリシドキシプロピルトリメトキシシラン146.5g(620.0mmol)を50~55℃で徐々に加え、3時間撹拌放置した。反応終了後、系内にメチルイソブチルケトン150gを加え、さらに75gの蒸留水で水層のpHが中性になるまで水洗した。次に80gの蒸留水で2回水洗後、減圧下でメチルイソブチルケトンを留去して目的の化合物シルセスキオキサン(SQ-A)を得た。シルセスキオキサン(SQ-A)の重量平均分子量は5,500であった。
・シルセスキオキサン(SQ-B)(置換基Rの75%がエポキシ環構造を含むラダー型シルセスキオキサン)の合成
 撹拌機および温度計を設置した反応容器に、メチルイソブチルケトン150g、水酸化テトラメチルアンモニウムの20%水溶液13.0g(水酸化テトラメチルアンモニウム28.6mmol)、蒸留水36.7gを仕込んだ後、エチルトリメトキシシラン32.7g(218.0mmol)、γ-グリシドキシプロピルトリメトキシシラン154.8g(655.0mmol)を50~55℃で徐々に加え、3時間撹拌放置した。反応終了後、系内にメチルイソブチルケトン150gを加え、さらに75gの蒸留水で水層のpHが中性になるまで水洗した。次に80gの蒸留水で2回水洗後、減圧下でメチルイソブチルケトンを留去して目的の化合物シルセスキオキサン(SQ-B)を得た。シルセスキオキサン(SQ-B)の重量平均分子量は5,700であった。
・シルセスキオキサン(SQ-C)(置換基Rの60%がエポキシ環構造を含むラダー型シルセスキオキサン)の合成
 撹拌機および温度計を設置した反応容器に、メチルイソブチルケトン150g、水酸化テトラメチルアンモニウムの20%水溶液10.3g(水酸化テトラメチルアンモニウム22.6mmol)、蒸留水29.0gを仕込んだ後、フェニルトリメトキシシラン54.7g(276.0mmol)、γ-グリシドキシプロピルトリメトキシシラン97.8g(414.0mmol)を50~55℃で徐々に加え、3時間撹拌放置した。反応終了後、系内にメチルイソブチルケトン150gを加え、さらに75gの蒸留水で水層のpHが中性になるまで水洗した。次に80gの蒸留水で2回水洗後、減圧下でメチルイソブチルケトンを留去して目的の化合物シルセスキオキサン(SQ-C)を得た。シルセスキオキサン(SQ-C)の重量平均分子量は5,200であった。
・シルセスキオキサン(SQ-D)(置換基Rの50%がエポキシ環構造を含むラダー型シルセスキオキサン)の合成
 撹拌機および温度計を設置した反応容器に、メチルイソブチルケトン150g、水酸化テトラメチルアンモニウムの20%水溶液9.2g(水酸化テトラメチルアンモニウム20.0mmol)、蒸留水26.0gを仕込んだ後、エチルトリメトキシシラン46.4g(309.0mmol)、γ-グリシドキシプロピルトリメトキシシラン73.0g(309.0mmol)を50~55℃で徐々に加え、3時間撹拌放置した。反応終了後、系内にメチルイソブチルケトン150gを加え、さらに60gの蒸留水で水層のpHが中性になるまで水洗した。次に80gの蒸留水で2回水洗後、減圧下でメチルイソブチルケトンを留去して目的の化合物シルセスキオキサン(SQ-D)を得た。シルセスキオキサン(SQ-D)の重量平均分子量は5,800であった。
[Resin raw materials]
<Constituent element [A]: Ladder type silsesquioxane>
The synthesis was performed with reference to the method described in JP-A-2007-9079.
Synthesis of silsesquioxane (SQ-A) (ladder-type silsesquioxane in which 100% of the substituent R contains an epoxy ring structure) In a reaction vessel equipped with a stirrer and a thermometer, 150 g of methyl isobutyl ketone, water After charging 9.2 g of a 20% aqueous solution of tetramethylammonium oxide (20.0 mmol of tetramethylammonium hydroxide) and 26.0 g of distilled water, 146.5 g (620.0 mmol) of γ-glycidoxypropyltrimethoxysilane was added. The mixture was gradually added at 50 to 55 ° C. and left to stir for 3 hours. After completion of the reaction, 150 g of methyl isobutyl ketone was added to the system, and further washed with 75 g of distilled water until the pH of the aqueous layer became neutral. Next, after washing twice with 80 g of distilled water, methyl isobutyl ketone was distilled off under reduced pressure to obtain the desired compound silsesquioxane (SQ-A). The weight average molecular weight of silsesquioxane (SQ-A) was 5,500.
Synthesis of silsesquioxane (SQ-B) (ladder-type silsesquioxane in which 75% of the substituent R contains an epoxy ring structure) In a reaction vessel equipped with a stirrer and a thermometer, 150 g of methyl isobutyl ketone, water After charging 13.0 g of a 20% aqueous solution of tetramethylammonium oxide (tetramethylammonium hydroxide 28.6 mmol) and 36.7 g of distilled water, 32.7 g (218.0 mmol) of ethyltrimethoxysilane, γ-glycidoxy 154.8 g (655.0 mmol) of propyltrimethoxysilane was gradually added at 50 to 55 ° C. and left to stir for 3 hours. After completion of the reaction, 150 g of methyl isobutyl ketone was added to the system, and further washed with 75 g of distilled water until the pH of the aqueous layer became neutral. Next, after washing twice with 80 g of distilled water, methyl isobutyl ketone was distilled off under reduced pressure to obtain the desired compound silsesquioxane (SQ-B). The weight average molecular weight of silsesquioxane (SQ-B) was 5,700.
Synthesis of silsesquioxane (SQ-C) (ladder-type silsesquioxane in which 60% of the substituent R contains an epoxy ring structure) In a reaction vessel equipped with a stirrer and a thermometer, 150 g of methyl isobutyl ketone, water After charging 10.3 g of a 20% aqueous solution of tetramethylammonium oxide (tetramethylammonium hydroxide 22.6 mmol) and 29.0 g of distilled water, 54.7 g (276.0 mmol) of phenyltrimethoxysilane, γ-glycidoxy 97.8 g (414.0 mmol) of propyltrimethoxysilane was gradually added at 50 to 55 ° C. and left to stir for 3 hours. After completion of the reaction, 150 g of methyl isobutyl ketone was added to the system, and further washed with 75 g of distilled water until the pH of the aqueous layer became neutral. Next, after washing twice with 80 g of distilled water, methyl isobutyl ketone was distilled off under reduced pressure to obtain the desired compound silsesquioxane (SQ-C). The weight average molecular weight of silsesquioxane (SQ-C) was 5,200.
Synthesis of silsesquioxane (SQ-D) (ladder-type silsesquioxane in which 50% of the substituent R contains an epoxy ring structure) In a reaction vessel equipped with a stirrer and a thermometer, 150 g of methyl isobutyl ketone, water After charging 9.2 g of a 20% aqueous solution of tetramethylammonium oxide (tetramethylammonium hydroxide 20.0 mmol) and 26.0 g of distilled water, 46.4 g (309.0 mmol) of ethyltrimethoxysilane, γ-glycidoxy 73.0 g (309.0 mmol) of propyltrimethoxysilane was gradually added at 50 to 55 ° C. and left to stir for 3 hours. After completion of the reaction, 150 g of methyl isobutyl ketone was added to the system, and further washed with 60 g of distilled water until the pH of the aqueous layer became neutral. Next, after washing twice with 80 g of distilled water, methyl isobutyl ketone was distilled off under reduced pressure to obtain the desired compound silsesquioxane (SQ-D). Silsesquioxane (SQ-D) had a weight average molecular weight of 5,800.
 <構成要素[A]以外のシルセスキオキサン>
・シルセスキオキサン(i)
 温度計、撹拌機および逆流冷却機を備えた反応容器に、メチルトリメトキシシラン150g(1.1mol)、脱イオン水65g、トルエン100g、酢酸n-プロピル200g、濃塩酸2gを室温下で仕込んだ後、50℃で1時間撹拌放置した。その後アンモニア水でpH8.0に調整し、続いて逆流冷却機を順流冷却機に取り替えた。次に温度を50℃から120℃まで3時間かけて、水および溶剤の共沸物を系外に除去しながら昇温し、さら120℃で3時間脱水を行って目的とするシルセスキオキサン(置換基Rとしてエポキシ環構造を含まない)を含む溶液を得た。この溶液の固形分は45%であり、またこのシルセスキオキサンの重量平均分子量は10,000であった。
・かご型シルセスキオキサン“Glycidyl POSS(登録商標)”Cage Mixture(EP0409、Hybrid Plastics製)。
<Silsesquioxane other than component [A]>
Silsesquioxane (i)
A reaction vessel equipped with a thermometer, a stirrer and a back-flow cooler was charged with 150 g (1.1 mol) of methyltrimethoxysilane, 65 g of deionized water, 100 g of toluene, 200 g of n-propyl acetate and 2 g of concentrated hydrochloric acid at room temperature. Thereafter, the mixture was left stirring at 50 ° C. for 1 hour. Thereafter, the pH was adjusted to 8.0 with aqueous ammonia, and then the backflow cooler was replaced with a forward flow cooler. Next, the temperature is raised from 50 ° C. to 120 ° C. over 3 hours while removing the azeotrope of water and solvent from the system, and dehydration is further performed at 120 ° C. for 3 hours to achieve the desired silsesquioxane. A solution containing (without the epoxy ring structure as substituent R) was obtained. The solid content of this solution was 45%, and the weight average molecular weight of this silsesquioxane was 10,000.
-Cage-type silsesquioxane "Glycidyl POSS (registered trademark)" Cage Mixture (EP0409, manufactured by Hybrid Plastics).
 <構成要素[B]:1分子中に2個以上のエポキシ基を有するエポキシ樹脂>
・テトラグリシジルジアミノジフェニルメタン(“スミエポキシ(登録商標)”ELM434、住友化学(株)製)
・トリグリシジル-m-アミノフェノール(“アラルダイト(登録商標)”MY0600、ハンツマン・アドバンスト・マテリアルズ社製)
・ビスフェノールA型エポキシ樹脂(“jER(登録商標)”825、三菱化学(株)製)。
<Component [B]: Epoxy resin having two or more epoxy groups in one molecule>
Tetraglycidyldiaminodiphenylmethane (“SUMI Epoxy (registered trademark)” ELM434, manufactured by Sumitomo Chemical Co., Ltd.)
Triglycidyl-m-aminophenol ("Araldite (registered trademark)" MY0600, manufactured by Huntsman Advanced Materials)
-Bisphenol A type epoxy resin ("jER (registered trademark)" 825, manufactured by Mitsubishi Chemical Corporation).
 <構成要素[C]:硬化剤>
・4,4’-ジアミノジフェニルスルホン(セイカキュアS、和歌山精化工業(株)製)。
<Constituent element [C]: Curing agent>
-4,4'-diaminodiphenyl sulfone (Seika Cure S, manufactured by Wakayama Seika Kogyo Co., Ltd.).
 <構成要素[D]:熱可塑性樹脂>
・“スミカエクセル(登録商標)”PES5003P(ポリエーテルスルホン、住友化学(株)製)
・“Virantage (登録商標)”VW-10700RP(ポリエーテルスルホン、Solvay Advanced Polymers(株)製)
・“Ultem(登録商標)”1040(ポリエーテルイミド、SABICイノベーティブプラスチックス(株)製)。
<Component [D]: Thermoplastic resin>
・ "Sumika Excel (registered trademark)" PES5003P (polyethersulfone, manufactured by Sumitomo Chemical Co., Ltd.)
"Virantage (registered trademark)" VW-10700RP (polyethersulfone, manufactured by Solvay Advanced Polymers)
"Ultem (registered trademark)" 1040 (polyetherimide, manufactured by SABIC Innovative Plastics).
 (1)エポキシ樹脂組成物の調製方法
 混練装置中に、構成要素[A]、構成要素[B]、および構成要素[D]を投入後、加熱混練を行い、構成要素[D]を溶解させた。次いで100℃以下の温度まで降温し、構成要素[C]を加えて撹拌し、エポキシ樹脂組成物を得た。
(1) Preparation method of epoxy resin composition Into a kneading apparatus, the constituent element [A], the constituent element [B], and the constituent element [D] are added and then heated and kneaded to dissolve the constituent element [D]. It was. Next, the temperature was lowered to 100 ° C. or lower, and the component [C] was added and stirred to obtain an epoxy resin composition.
 (2)樹脂硬化物の難燃性評価
 (1)で調製したエポキシ樹脂組成物を真空中で脱泡した後、1mm厚の“テフロン(登録商標)”製スペーサーにより厚み1mmになるように設定したモールド中で、熱風乾燥機中で30℃から速度1.5℃/分で昇温し、180℃で2時間加熱硬化した後、30℃まで速度2.5℃/分で降温して、厚さ1mmのエポキシ樹脂硬化物を得た。エポキシ樹脂硬化物から10cm×10cm×1mmの試験片を切り出し、コーンカロリーメータ C3(東洋精機製)を用いてISO5660に従って難燃性の評価を実施した。ヒーター温度は750℃、ヒーター輻射量は50kW/m、試験時間は2分間とした。サンプルフォルダーを試料室にセット後、試料室内の酸素濃度が安定した時点で、サンプルとヒーター間の遮蔽板を取り除き、加熱と同時に発熱速度(kW/m)を測定し、試験時間である2分間の試料単位面積あたりの平均発熱速度(kW/m)を算出した。
(2) Flame Retardancy Evaluation of Cured Resin Product After defoaming the epoxy resin composition prepared in (1) in a vacuum, the thickness is set to 1 mm with a 1 mm thick “Teflon (registered trademark)” spacer. In the molded mold, the temperature was raised from 30 ° C. at a rate of 1.5 ° C./min in a hot air dryer, heated and cured at 180 ° C. for 2 hours, and then lowered to 30 ° C. at a rate of 2.5 ° C./min. An epoxy resin cured product having a thickness of 1 mm was obtained. A test piece of 10 cm × 10 cm × 1 mm was cut out from the cured epoxy resin, and flame retardancy was evaluated according to ISO 5660 using a cone calorimeter C3 (manufactured by Toyo Seiki). The heater temperature was 750 ° C., the heater radiation amount was 50 kW / m 2 , and the test time was 2 minutes. After the sample folder is set in the sample chamber, when the oxygen concentration in the sample chamber is stabilized, the shielding plate between the sample and the heater is removed, and the heating rate (kW / m 2 ) is measured simultaneously with the heating. The average heat release rate (kW / m 2 ) per unit area of the sample per minute was calculated.
 (3)樹脂硬化物の機械特性評価
 (1)で調製したエポキシ樹脂組成物を真空中で脱泡した後、2mm厚の“テフロン(登録商標)”製スペーサーにより厚み2mmになるように設定したモールド中で、熱風乾燥機中で30℃から速度1.5℃/分で昇温し、180℃で2時間加熱硬化した後、30℃まで速度2.5℃/分で降温して、厚さ2mmのエポキシ樹脂硬化物を得た。エポキシ樹脂硬化物から10mm×60mmの試験片を切り出し、3点曲げ試験をJIS K7171(2006)に基づいて行い機械特性を評価した。インストロン5565万能試験機(インストロン社製)を用いて、クロスヘッドスピード2.5mm/min、スパン長40mm、圧子径10mm、支点径4mmの条件で曲げ試験を行い、曲げ弾性率と曲げ撓み量を測定した。
(3) Evaluation of mechanical properties of cured resin The epoxy resin composition prepared in (1) was defoamed in a vacuum, and then set to 2 mm thick with a 2 mm thick “Teflon (registered trademark)” spacer. In the mold, the temperature was increased from 30 ° C. at a rate of 1.5 ° C./min in a hot air dryer, heated and cured at 180 ° C. for 2 hours, and then decreased to 30 ° C. at a rate of 2.5 ° C./min. An epoxy resin cured product having a thickness of 2 mm was obtained. A 10 mm × 60 mm test piece was cut out from the cured epoxy resin, and a three-point bending test was performed based on JIS K7171 (2006) to evaluate mechanical properties. Using an Instron 5565 universal testing machine (manufactured by Instron), a bending test is performed under the conditions of a crosshead speed of 2.5 mm / min, a span length of 40 mm, an indenter diameter of 10 mm, and a fulcrum diameter of 4 mm. The amount was measured.
 (4)ホットメルト法によるプリプレグの作製
 (1)で調製したエポキシ樹脂組成物を、ナイフコーターを用いて離型紙上に塗布して樹脂フィルムを作製した。次に、シート状に一方向に配列させた東レ(株)製、炭素繊維“トレカ(登録商標)”T800G-24Kに、樹脂フィルム2枚を炭素繊維の両面から重ね、温度100℃、気圧1気圧で加熱加圧しながら樹脂を炭素繊維に含浸させ、炭素繊維の目付が190g/m、マトリックス樹脂含有率が35.5質量%の一方向プリプレグを得た。
(4) Production of Prepreg by Hot Melt Method The epoxy resin composition prepared in (1) was applied onto release paper using a knife coater to produce a resin film. Next, two resin films are stacked on both sides of the carbon fiber on a carbon fiber “Torayca (registered trademark)” T800G-24K manufactured by Toray Industries, Ltd., which is arranged in one direction in a sheet shape, at a temperature of 100 ° C. and an atmospheric pressure of 1 The resin was impregnated into the carbon fiber while being heated and pressurized at atmospheric pressure to obtain a unidirectional prepreg having a carbon fiber basis weight of 190 g / m 2 and a matrix resin content of 35.5% by mass.
 (5)プリプレグに含まれる揮発分量評価
 (4)で作製した一方向プリプレグを100mm×100mmに裁断し試験片とした。この試験片を秤量後(W1)、150℃に設定した恒温槽内にアルミニウム板に載せた試験片を静置した状態で20分間維持し、デシケーター中で室温まで放冷後、試験片を秤量した(W2)。次式より揮発分量(W)を計算した。測定数はn=5とし、平均値を揮発分量とした。
W(質量%)=(W1-W2)×100/W1
 (6)繊維強化複合材料の0°の定義
 JIS K7017(1999)に記載されているとおり、一方向繊維強化複合材料の繊維方向を軸方向とし、軸方向を0°軸と定義したときの軸直交方向を90°と定義する。
(5) Evaluation of amount of volatile components contained in prepreg The unidirectional prepreg produced in (4) was cut into 100 mm × 100 mm to obtain test pieces. After weighing this test piece (W1), the test piece placed on the aluminum plate was kept still in a thermostat set at 150 ° C. for 20 minutes, allowed to cool to room temperature in a desiccator, and then weighed. (W2). The volatile content (W) was calculated from the following equation. The number of measurements was n = 5, and the average value was the volatile content.
W (mass%) = (W1-W2) × 100 / W1
(6) Definition of 0 ° of fiber reinforced composite material As described in JIS K7017 (1999), the axis when the fiber direction of the unidirectional fiber reinforced composite material is defined as the axial direction and the axial direction is defined as the 0 ° axis. The orthogonal direction is defined as 90 °.
 (7)繊維強化複合材料のガラス転移温度測定
 一方向プリプレグを所定の大きさにカットし、一方向に6枚積層した後、真空バッグを行い、オートクレーブを用いて、温度180℃、圧力6kg/cm、2時間で硬化させ、一方向繊維強化複合材料を得た。この一方向強化材から0°方向を試験片の長さ方向として、長さ60mm、幅12.7mmの試験片を切り出し、動的粘弾性測定装置(ARES、ティーエイ・インスツルメント社製)を用いたねじりDMA測定によりガラス転移温度を算出した。貯蔵弾性率G’曲線において、ガラス状態での接線と転移状態での接線との交点温度値をガラス転移温度(℃)とした。ここで、昇温速度5℃/分、周波数1Hzで測定した。
(7) Measurement of glass transition temperature of fiber reinforced composite material After cutting a unidirectional prepreg into a predetermined size and laminating six sheets in one direction, a vacuum bag is formed, and an autoclave is used, at a temperature of 180 ° C. and a pressure of 6 kg / It was cured in cm 2 for 2 hours to obtain a unidirectional fiber reinforced composite material. A test piece having a length of 60 mm and a width of 12.7 mm is cut out from this unidirectional reinforcing material with the direction of 0 ° being the length direction of the test piece, and a dynamic viscoelasticity measuring apparatus (ARES, manufactured by TI Instruments Inc.) is used. The glass transition temperature was calculated by the torsional DMA measurement used. In the storage elastic modulus G ′ curve, the intersection temperature value of the tangent in the glass state and the tangent in the transition state was defined as the glass transition temperature (° C.). Here, the measurement was performed at a heating rate of 5 ° C./min and a frequency of 1 Hz.
 (実施例1)
 表1に示すとおり、構成要素[A]として、シルセスキオキサン(SQ-A)を10質量部、構成要素[B]としてテトラグリシジルジアミノジフェニルメタン(“スミエポキシ(登録商標)”ELM434)60質量部、ビスフェノールA型エポキシ樹脂(“jER(登録商標)”825)30質量部、構成要素[C]として、3,3’-ジアミノジフェニルスルホン45質量部、構成要素[D]として、ポリエーテルスルホン(“スミカエクセル(登録商標)”PES5003P)7質量部を用いて、エポキシ樹脂組成物の調製を行い、上記(1)~(7)に従い、樹脂硬化物の難燃性評価、機械性評価、プリプレグに含まれる揮発分量評価、繊維強化複合材料のガラス転移温度測定を行った。結果を表1に示す。
Example 1
As shown in Table 1, 10 parts by mass of silsesquioxane (SQ-A) as component [A], and 60 parts by mass of tetraglycidyldiaminodiphenylmethane (“SUMI Epoxy (registered trademark)” ELM434) as component [B] , 30 parts by mass of bisphenol A type epoxy resin (“jER (registered trademark)” 825), 45 parts by mass of 3,3′-diaminodiphenylsulfone as component [C], and polyethersulfone (D) as component [D] The epoxy resin composition was prepared using 7 parts by weight of “SUMICA EXCEL (registered trademark)” PES5003P. According to the above (1) to (7), flame retardancy evaluation, mechanical evaluation, and prepreg of the cured resin The amount of volatile components contained in the fiber and the glass transition temperature of the fiber reinforced composite material were measured. The results are shown in Table 1.
 (実施例2~14、比較例1~5)
 用いる構成要素[A]、構成要素[B]、構成要素[C]および構成要素[D]の種類及び配合比(質量部)を表1~表3に示すように変更したこと以外は、実施例1と同様にエポキシ樹脂組成物の調製を行い、樹脂硬化物の難燃性評価、機械特性評価、プリプレグに含まれる揮発分量評価、繊維強化複合材料のガラス転移温度測定を行った。結果を表1~表3に示す。
(Examples 2 to 14, Comparative Examples 1 to 5)
Implemented except that the types and blending ratios (parts by mass) of the component [A], component [B], component [C] and component [D] used were changed as shown in Tables 1 to 3 The epoxy resin composition was prepared in the same manner as in Example 1, and the flame retardancy evaluation, mechanical property evaluation, volatile content contained in the prepreg, and the glass transition temperature of the fiber reinforced composite material were measured. The results are shown in Tables 1 to 3.
 (比較例6)
 表3に示すとおり、構成要素[A]として、シルセスキオキサン(SQ-A)を10質量部、構成要素[B]としてテトラグリシジルジアミノジフェニルメタン(“スミエポキシ(登録商標)”ELM434)60質量部、ビスフェノールA型エポキシ樹脂(“jER(登録商標)”825)30質量部、構成要素[C]として、3,3’-ジアミノジフェニルスルホン45質量部、構成要素[D]として、ポリエーテルスルホン(“スミカエクセル(登録商標)”PES5003P)7質量部を用いて、エポキシ樹脂組成物の調製を行った後、溶剤としてメチルエチルケトン50質量部を配合した樹脂ワニスを調整した。この樹脂ワニスをシート状に一方向に配列させた炭素繊維に含浸させ、加熱乾燥させることでプリプレグを作製し、上記(5)に従い、プリプレグに含まれる揮発分量評価を行った。結果を表3に示す。また、得られた一方向プリプレグを所定の大きさにカットし、一方向に6枚積層した後、真空バッグを行い、オートクレーブを用いて、温度180℃、圧力6kg/cm、2時間で硬化させ、一方向繊維強化複合材料を得た。
(Comparative Example 6)
As shown in Table 3, 10 parts by mass of silsesquioxane (SQ-A) as component [A], and 60 parts by mass of tetraglycidyldiaminodiphenylmethane (“Sumiepoxy (registered trademark)” ELM434) as component [B] , 30 parts by mass of bisphenol A type epoxy resin (“jER (registered trademark)” 825), 45 parts by mass of 3,3′-diaminodiphenylsulfone as component [C], and polyethersulfone (D) as component [D] After preparing an epoxy resin composition using 7 parts by weight of “SUMICA EXCEL (registered trademark)” PES5003P, a resin varnish containing 50 parts by weight of methyl ethyl ketone as a solvent was prepared. The resin varnish was impregnated into a sheet of carbon fibers arranged in one direction and dried by heating to prepare a prepreg, and the amount of volatile components contained in the prepreg was evaluated according to the above (5). The results are shown in Table 3. In addition, the obtained unidirectional prepreg was cut into a predetermined size, and six sheets were laminated in one direction, and then a vacuum bag was formed and cured using an autoclave at a temperature of 180 ° C. and a pressure of 6 kg / cm 2 for 2 hours. To obtain a unidirectional fiber reinforced composite material.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例1~14と、比較例1~5の比較から、エポキシ樹脂組成物中に構成要素[A]が含有されていて、かつエポキシ樹脂組成物中のエポキシ樹脂総量100質量部に対して構成要素[A]が1~40質量部含有されてなり、構成要素[A]の置換基Rの50~100%にエポキシ環構造を含む場合、得られる繊維強化複合材料は難燃性および耐熱性および機械特性に優れることがわかった。 From the comparison between Examples 1 to 14 and Comparative Examples 1 to 5, the component [A] is contained in the epoxy resin composition, and the total amount of the epoxy resin in the epoxy resin composition is 100 parts by mass. When the element [A] is contained in an amount of 1 to 40 parts by mass and the epoxy group structure is contained in 50 to 100% of the substituent R of the constituent element [A], the resulting fiber-reinforced composite material is flame retardant and heat resistant. And it was found to be excellent in mechanical properties.
 一方、比較例1に示すようにラダー型シルセスキオキサンが含有されていないと繊維強化複合材料の耐熱性および難燃性が低下する傾向を示した。また、比較例2、3に示すように構成要素[A]の含有量が40質量部より大きい場合は、耐熱性と難燃性は十分であるものの機械特性の低下が見られた。さらに、比較例4に示すようにラダー型シルセオキサンを含有していてもエポキシ環を含む置換基の量が全置換基の50%より小さい場合、樹脂の粘度が高く、良好な品位の樹脂板を得ることができなかった。比較例5に示すように、ラダー型でないシルセスキオキサンをエポキシ樹脂組成物中に配合した場合、曲げ撓み量が低下する傾向を示した。 On the other hand, as shown in Comparative Example 1, when the ladder-type silsesquioxane was not contained, the heat resistance and flame retardancy of the fiber-reinforced composite material tended to decrease. Further, as shown in Comparative Examples 2 and 3, when the content of the constituent element [A] was larger than 40 parts by mass, although the heat resistance and flame retardancy were sufficient, the mechanical properties were lowered. Furthermore, as shown in Comparative Example 4, when the amount of substituents containing an epoxy ring is less than 50% of all substituents even if it contains ladder-type silseoxane, the resin viscosity is high and a resin plate of good quality is obtained. Couldn't get. As shown in Comparative Example 5, when a non-ladder silsesquioxane was blended in the epoxy resin composition, the bending deflection amount tended to decrease.
 また、実施例1と比較例6の比較から、プレプレグをウェット法で作製した場合、プリプレグに含まれる揮発分量が高い傾向を示した。比較例6のプリプレグ積層体を硬化して得られた繊維強化複合材料にはボイドやクラックが多く見られ、力学特性を評価するのが困難なレベルであった。溶剤を使わず作製できる本発明のプリプレグは、プリプレグ積層体を硬化する際の体積収縮や、残留溶剤に起因する成形体中のボイドやクラックの発生を抑制することができることがわかった。 Further, from the comparison between Example 1 and Comparative Example 6, when the prepreg was produced by a wet method, the amount of volatile components contained in the prepreg tended to be high. The fiber reinforced composite material obtained by curing the prepreg laminate of Comparative Example 6 had many voids and cracks, and it was difficult to evaluate the mechanical properties. It has been found that the prepreg of the present invention that can be produced without using a solvent can suppress the volume shrinkage at the time of curing the prepreg laminate and the generation of voids and cracks in the molded product due to the residual solvent.
 本発明によれば、高い難燃性と耐熱性を有するとともに、機械特性に優れたプリプレグおよび繊維強化複合材料を得ることができ、例えば、航空宇宙用途では主翼、胴体等の航空機一次構造材用途、尾翼、フロアビーム、フラップ、エルロン、カウル、フェアリングおよび内装材等の二次構造材用途、ロケットモーターケースおよび人工衛星構造材用途等に好適に用いられる。また、一般産業用途では、自動車、船舶および鉄道車両等の移動体の構造材、ドライブシャフト、板バネ、風車ブレード、各種タービン、圧力容器、フライホイール、製紙用ローラ、屋根材、ケーブル、補強筋、および補修補強材料等の土木・建築材料用途等に好適に用いられる。さらにスポーツ用途では、ゴルフシャフト、釣り竿、テニス、バトミントンおよびスカッシュ等のラケット用途、ホッケー等のスティック用途、およびスキーポール用途等に好適に用いられる。 According to the present invention, it is possible to obtain a prepreg and a fiber reinforced composite material having high flame retardancy and heat resistance, and excellent mechanical properties. For example, in aerospace applications, the use of aircraft primary structural materials such as main wings and fuselage , Tail beams, floor beams, flaps, ailerons, cowls, fairings, interior materials, and other secondary structural materials, rocket motor cases and satellite structural materials. In general industrial applications, structural materials for moving bodies such as automobiles, ships, and railway vehicles, drive shafts, leaf springs, windmill blades, various turbines, pressure vessels, flywheels, paper rollers, roofing materials, cables, reinforcement bars And suitable for civil engineering and building material applications such as repair and reinforcement materials. Furthermore, in sports applications, it is suitably used for golf shafts, fishing rods, tennis, badminton and squash rackets, hockey sticks, and ski pole applications.
 
 本出願は、2017年1月10日出願の日本国特許出願、特願2017-1599に基づくものであり、その内容はここに参照として取り込まれる。

This application is based on Japanese Patent Application No. 2017-1599 filed on Jan. 10, 2017, the contents of which are incorporated herein by reference.

Claims (8)

  1. 少なくとも次の構成要素[A]、[B]、[C]を含むエポキシ樹脂組成物を強化繊維に含浸させてなるプリプレグであって、エポキシ樹脂組成物中のエポキシ樹脂総量100質量部に対して[A]が1~40質量部含有されてなり、かつプリプレグに含まれる揮発分量がプリプレグ質量の0.8質量%以下であるプリプレグ。
    [A]式(1)で表される骨格構造を有するラダー型シルセスキオキサン
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、置換基Rの50~100%はエポキシ環構造を含む。またnは2以上の整数を表す。)
    [B]1分子中に2個以上のエポキシ基を有するエポキシ樹脂
    [C]硬化剤
    A prepreg obtained by impregnating a reinforcing fiber with an epoxy resin composition containing at least the following components [A], [B], and [C], with respect to 100 parts by mass of the total amount of epoxy resins in the epoxy resin composition A prepreg containing 1 to 40 parts by mass of [A] and having a volatile content in the prepreg of 0.8% by mass or less of the prepreg mass.
    [A] Ladder type silsesquioxane having a skeleton structure represented by the formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), 50 to 100% of the substituent R contains an epoxy ring structure. N represents an integer of 2 or more.)
    [B] Epoxy resin having two or more epoxy groups in one molecule [C] Curing agent
  2. 構成要素[B]として3官能以上のグリシジルアミン型エポキシ樹脂を含む請求項1に記載のプリプレグ。 The prepreg according to claim 1, comprising a tri- or higher functional glycidylamine type epoxy resin as the component [B].
  3. 構成要素[B]としてテトラグリシジルジアミノジフェニルメタンおよびトリグリシジルアミノフェノールからなる群から選ばれる少なくとも1種を含む請求項1または2に記載のプリプレグ。 The prepreg according to claim 1 or 2, comprising at least one selected from the group consisting of tetraglycidyldiaminodiphenylmethane and triglycidylaminophenol as the constituent element [B].
  4. 構成要素[A]において置換基Rの60~100%がエポキシ環構造を含む構造である請求項1~3のいずれかに記載のプリプレグ。 The prepreg according to any one of claims 1 to 3, wherein in the constituent element [A], 60 to 100% of the substituent R has a structure containing an epoxy ring structure.
  5. 更にエポキシ樹脂組成物中に構成要素[D]を含む請求項1~4のいずれかに記載のプリプレグ。
    [D]エポキシ樹脂組成物中において可溶な熱可塑性樹脂
    The prepreg according to any one of claims 1 to 4, further comprising a constituent element [D] in the epoxy resin composition.
    [D] Thermoplastic resin soluble in epoxy resin composition
  6. 強化繊維にホットメルト法によりエポキシ樹脂組成物を含浸して得られる請求項1~5のいずれかに記載のプリプレグ。 The prepreg according to any one of claims 1 to 5, obtained by impregnating a reinforcing fiber with an epoxy resin composition by a hot melt method.
  7. 強化繊維が炭素繊維である請求項1~6のいずれかに記載のプリプレグ。 The prepreg according to any one of claims 1 to 6, wherein the reinforcing fibers are carbon fibers.
  8. 請求項1~7のいずれかに記載のプリプレグを硬化して得られる繊維強化複合材料。 A fiber-reinforced composite material obtained by curing the prepreg according to any one of claims 1 to 7.
PCT/JP2017/042434 2017-01-10 2017-11-27 Prepreg and fiber reinforced composite material WO2018131300A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017562787A JPWO2018131300A1 (en) 2017-01-10 2017-11-27 Prepreg and fiber reinforced composites

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-001599 2017-01-10
JP2017001599 2017-01-10

Publications (1)

Publication Number Publication Date
WO2018131300A1 true WO2018131300A1 (en) 2018-07-19

Family

ID=62840013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042434 WO2018131300A1 (en) 2017-01-10 2017-11-27 Prepreg and fiber reinforced composite material

Country Status (2)

Country Link
JP (1) JPWO2018131300A1 (en)
WO (1) WO2018131300A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112143169A (en) * 2020-06-30 2020-12-29 西北工业大学 High-silica fiber reinforced reactive silsesquioxane modified hybrid phenolic composite material and preparation method thereof
JP2021001245A (en) * 2019-06-20 2021-01-07 三菱ケミカル株式会社 Fiber-reinforced epoxy resin composite material and fiber-reinforced plastic
CN115093674A (en) * 2022-06-10 2022-09-23 佛山萤鹤新材料有限公司 Modified epoxy resin for LED packaging and preparation method thereof
EP4108713A1 (en) * 2021-06-23 2022-12-28 Toray Advanced Composites Prepreg with low volatile content
CN117462763A (en) * 2023-12-27 2024-01-30 中国科学院空间应用工程与技术中心 Silicon nitride fiber reinforced polyether-ether-ketone composite material, preparation method and application

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04161435A (en) * 1990-10-24 1992-06-04 Kansai Paint Co Ltd Curable silicone resin composition for glass fiber and cured product thereof
JPH06240024A (en) * 1992-03-30 1994-08-30 Toray Ind Inc Prepreg and composite material
JP2000191807A (en) * 1998-12-24 2000-07-11 Mitsubishi Rayon Co Ltd Tow prepreg and preparation thereof
JP2001288333A (en) * 2000-04-05 2001-10-16 Hitachi Ltd Epoxy resin composite material and device using the same
JP2004043696A (en) * 2002-07-15 2004-02-12 Nippon Kayaku Co Ltd Epoxy group-containing silicon compound and composition
WO2004072150A1 (en) * 2003-02-12 2004-08-26 Nippon Kayaku Kabushiki Kaisha Silicon compound containing epoxy group and thermosetting resin composition
JP2004256609A (en) * 2003-02-25 2004-09-16 Nippon Kayaku Co Ltd Epoxy group-having silicon compound, method for producing the same and thermosetting resin composition
JP2004346144A (en) * 2003-05-21 2004-12-09 Nippon Kayaku Co Ltd Silicon compound having epoxy group and thermosetting resin composition
JP2007002192A (en) * 2005-06-27 2007-01-11 Nippon Kayaku Co Ltd Underfill material for semiconductor device
JP2011057736A (en) * 2009-09-07 2011-03-24 Toho Tenax Co Ltd Epoxy resin composition and prepreg using the same
JP2014043542A (en) * 2012-07-31 2014-03-13 Toray Ind Inc Prepreg and carbon-fiber-reinforced composite material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04161435A (en) * 1990-10-24 1992-06-04 Kansai Paint Co Ltd Curable silicone resin composition for glass fiber and cured product thereof
JPH06240024A (en) * 1992-03-30 1994-08-30 Toray Ind Inc Prepreg and composite material
JP2000191807A (en) * 1998-12-24 2000-07-11 Mitsubishi Rayon Co Ltd Tow prepreg and preparation thereof
JP2001288333A (en) * 2000-04-05 2001-10-16 Hitachi Ltd Epoxy resin composite material and device using the same
JP2004043696A (en) * 2002-07-15 2004-02-12 Nippon Kayaku Co Ltd Epoxy group-containing silicon compound and composition
WO2004072150A1 (en) * 2003-02-12 2004-08-26 Nippon Kayaku Kabushiki Kaisha Silicon compound containing epoxy group and thermosetting resin composition
JP2004256609A (en) * 2003-02-25 2004-09-16 Nippon Kayaku Co Ltd Epoxy group-having silicon compound, method for producing the same and thermosetting resin composition
JP2004346144A (en) * 2003-05-21 2004-12-09 Nippon Kayaku Co Ltd Silicon compound having epoxy group and thermosetting resin composition
JP2007002192A (en) * 2005-06-27 2007-01-11 Nippon Kayaku Co Ltd Underfill material for semiconductor device
JP2011057736A (en) * 2009-09-07 2011-03-24 Toho Tenax Co Ltd Epoxy resin composition and prepreg using the same
JP2014043542A (en) * 2012-07-31 2014-03-13 Toray Ind Inc Prepreg and carbon-fiber-reinforced composite material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021001245A (en) * 2019-06-20 2021-01-07 三菱ケミカル株式会社 Fiber-reinforced epoxy resin composite material and fiber-reinforced plastic
CN112143169A (en) * 2020-06-30 2020-12-29 西北工业大学 High-silica fiber reinforced reactive silsesquioxane modified hybrid phenolic composite material and preparation method thereof
EP4108713A1 (en) * 2021-06-23 2022-12-28 Toray Advanced Composites Prepreg with low volatile content
WO2022268712A1 (en) * 2021-06-23 2022-12-29 Toray Advanced Composites Prepreg with low volatile content
CN115093674A (en) * 2022-06-10 2022-09-23 佛山萤鹤新材料有限公司 Modified epoxy resin for LED packaging and preparation method thereof
CN117462763A (en) * 2023-12-27 2024-01-30 中国科学院空间应用工程与技术中心 Silicon nitride fiber reinforced polyether-ether-ketone composite material, preparation method and application

Also Published As

Publication number Publication date
JPWO2018131300A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
JP4811532B2 (en) Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
JP5003827B2 (en) Epoxy resin composition for carbon fiber reinforced composite material, prepreg and carbon fiber reinforced composite material
WO2018131300A1 (en) Prepreg and fiber reinforced composite material
JP5800031B2 (en) Epoxy resin composition, prepreg and carbon fiber reinforced composite material
JP6812794B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP6052426B2 (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
WO2012039456A1 (en) Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
KR20100133963A (en) Epoxy resin composition, prepreg, abd fiber-reinforced composite material
RU2736820C2 (en) Epoxy resin composition, prepreg and composite material reinforced with carbon fiber
CN108291010B (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP6497027B2 (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
JP7200928B2 (en) Thermosetting resin compositions, prepregs and fiber-reinforced composites
JPWO2018173716A1 (en) Epoxy resin composition, prepreg and carbon fiber reinforced composite material
CN114621560A (en) Thermosetting resin composition, prepreg, fiber-reinforced plastic molded article, and method for producing same
JP2016132709A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP6710972B2 (en) Epoxy resin composition, prepreg, cured resin and fiber reinforced composite material
WO2016136052A1 (en) Epoxy resin composition, cured epoxy resin product, prepreg, and fiber-reinforced composite material
CN107949593B (en) Epoxy resin composition, epoxy resin cured product, prepreg, and fiber-reinforced composite material
JP2012067190A (en) Epoxy resin composition for fiber reinforced composite material, prepreg, and fiber reinforced composite material
JP2016132708A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP6555006B2 (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
JP5447059B2 (en) Epoxy resin composition for carbon fiber reinforced composite material, prepreg and carbon fiber reinforced composite material
JP2022553124A (en) Flame retardant composition, prepreg and fiber reinforced composite
JP2018012798A (en) Epoxy resin composition, prepreg, resin cured product and fiber-reinforced composite material
WO2018131580A1 (en) Epoxy resin composition, epoxy resin cured product, prepreg, fiber-reinforced composite material, block copolymer and method for producing same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017562787

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892021

Country of ref document: EP

Kind code of ref document: A1