WO2018131078A1 - Base station, terminal, radio communication system and radio communication method - Google Patents

Base station, terminal, radio communication system and radio communication method Download PDF

Info

Publication number
WO2018131078A1
WO2018131078A1 PCT/JP2017/000508 JP2017000508W WO2018131078A1 WO 2018131078 A1 WO2018131078 A1 WO 2018131078A1 JP 2017000508 W JP2017000508 W JP 2017000508W WO 2018131078 A1 WO2018131078 A1 WO 2018131078A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
base station
terminal
unit
control unit
Prior art date
Application number
PCT/JP2017/000508
Other languages
French (fr)
Japanese (ja)
Inventor
大出 高義
義博 河▲崎▼
孝斗 江崎
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2017/000508 priority Critical patent/WO2018131078A1/en
Publication of WO2018131078A1 publication Critical patent/WO2018131078A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to a base station, a terminal, a wireless communication system, and a wireless communication method.
  • a wireless communication system using OFDM Orthogonal Frequency Division Multiplexing
  • a terminal performs synchronization processing using a synchronization signal and a pilot signal (also referred to as a reference signal) from a base station, and performs selection of a cell in which the base station is defined. Thereafter, the terminal performs a random access procedure (radio line setting) for the base station based on the system information. As a result, a radio link between the base station and the terminal is established by random access.
  • OFDM Orthogonal Frequency Division Multiplexing
  • a system band is divided into a plurality of frequency bands, and radio resources are allocated to each frequency band.
  • the system band is one frequency band constituting the wireless communication system.
  • the system information includes radio resources, subcarrier intervals, symbol lengths, subframe lengths, and the like.
  • OFDM Frequency Division Multiple Access
  • the number of subcarriers, subcarrier interval, TTI (Transmission Time Interval), and number of symbols are the same in each frequency band.
  • TTI Transmission Time Interval
  • the symbol length, slot length, subframe length, and frame length are the same. Therefore, when OFDM is used, waveform shaping (filtering) is performed on the entire system band.
  • system information is the same within a system band. For this reason, the terminal performs synchronization processing with respect to the base station, and performs radio communication with the base station using the same system information notified in advance.
  • JP 2013-232910 A JP 2006-504367
  • the system band is divided into a plurality of frequency bands. Further, each frequency band is divided into a plurality of subcarrier groups (hereinafter referred to as SCG), and radio resources are allocated to each SCG.
  • the system band is one frequency band constituting the wireless communication system.
  • SCG may also be referred to as a cluster or a subcarrier block (SCB).
  • SCB subcarrier block
  • each SCG is composed of a plurality of subcarriers, and at least one of the number of subcarriers, subcarrier spacing, TTI, symbol length, and the like is different in each SCG. Therefore, when F-OFDM is used, waveform shaping (filtering) is performed for each SCG.
  • system information differs for each SCG.
  • the subcarrier interval and symbol length of the system information are different for each SCG.
  • the terminal since the synchronization timing differs for SCGs having different subcarrier intervals, symbol lengths, etc., the terminal cannot perform synchronization processing on the base station. As a result, the terminal cannot perform wireless communication with the base station.
  • the terminal performs a synchronization process for each SCG.
  • the wireless communication system includes a base station and a terminal that communicate using one system band.
  • the base station includes a radio network controller, a first controller, and a second controller.
  • the radio network controller allocates first and second subcarrier groups (hereinafter referred to as SCG) having different first and second symbol lengths of system information within the system band.
  • SCG first and second subcarrier groups
  • a 1st control part transmits the 1st signal for a terminal to synchronize in a 1st SCG to a terminal.
  • the second control unit transmits a second signal obtained by performing signal processing on the first signal so that the symbol length becomes the second symbol length.
  • the terminal can perform synchronization processing for each SCG.
  • FIG. 1 is a diagram illustrating an example of a wireless communication system.
  • FIG. 2 is a diagram illustrating an example of a base station when OFDM is used.
  • FIG. 3 is a diagram illustrating an example of a terminal when OFDM is used.
  • FIG. 4 is a diagram illustrating an example of a received signal processing unit when OFDM is used.
  • FIG. 5 is a diagram illustrating an example of a transmission signal processing unit when OFDM is used.
  • FIG. 6 is a diagram illustrating an example of a system band when OFDM is used.
  • FIG. 7 is a sequence showing an example of an operation at the time of setting a wireless line when using OFDM.
  • FIG. 8 is a diagram illustrating an example of a system band when F-OFDM is used in the wireless communication system according to the embodiment.
  • FIG. 9 is a diagram illustrating an example of each SCG when F-OFDM is used in the wireless communication system according to the embodiment.
  • FIG. 10 is a diagram illustrating an example of the OVSF code.
  • FIG. 11 is a diagram illustrating an example of a synchronization signal when the OVSF code is applied to LTE.
  • FIG. 12 is a diagram illustrating an example of the second synchronization signal in the time axis direction.
  • FIG. 13 is a diagram illustrating an example of the second synchronization signal in the subcarrier axis (frequency axis) direction.
  • FIG. 14 is a diagram illustrating an example of a terminal when F-OFDM is used in the wireless communication system according to the embodiment.
  • FIG. 10 is a diagram illustrating an example of the OVSF code.
  • FIG. 11 is a diagram illustrating an example of a synchronization signal when the OVSF code is applied to LTE.
  • FIG. 12 is a diagram illustrating an example of the second synchron
  • FIG. 15 is a diagram illustrating an example of a base station when F-OFDM is used in the wireless communication system according to the embodiment.
  • FIG. 16 is a diagram illustrating an example of a system information storage unit when F-OFDM is used in the wireless communication system according to the embodiment.
  • FIG. 17 is a diagram illustrating an example of a received signal processing unit when F-OFDM is used in the wireless communication system according to the embodiment.
  • FIG. 18 is a diagram illustrating an example of a transmission signal processing unit when F-OFDM is used in the wireless communication system according to the embodiment.
  • FIG. 19 is a diagram illustrating an example of a radio channel controller when F-OFDM is used in the radio communication system according to the embodiment.
  • FIG. 20 is a sequence illustrating an example of SCG addition processing as the operation of the wireless communication system according to the embodiment.
  • FIG. 21 is a sequence illustrating an example of the SCG change process as the operation of the wireless communication system according to the embodiment.
  • FIG. 22 is a flowchart illustrating an example of the SCG selection process as the operation of the wireless communication system according to the embodiment.
  • FIG. 23 is a diagram illustrating an example of a hardware configuration of the base station.
  • FIG. 24 is a diagram illustrating an example of a hardware configuration of the terminal.
  • F-OFDM Frtered-Orthogonal Frequency Division Multiplexing
  • OFDM Orthogonal Frequency Division Multiplexing
  • FIG. 1 is a diagram illustrating an example of a wireless communication system.
  • the wireless communication system includes a base station 100 and a terminal 200.
  • Base station 100 and terminal 200 perform wireless communication.
  • an MME (Mobility Management Entity) 41 an SGW (Serving Gateway) 42, and a PGW (Packet data network Gateway) 43 in LTE (Long Term Evolution) are provided.
  • the MME 41 is a gateway that performs network control.
  • the SGW 42 is a gateway that handles user data.
  • the PGW 43 is a gateway for connecting to an external Internet or the like.
  • the terminal 200 is, for example, a UE (User Equipment) in LTE.
  • the base station 100 is, for example, an eNB (evolved Node B) in LTE.
  • eNB evolved Node B
  • 5G the fifth generation mobile communication system
  • 5G adoption of New RAT (Radio Access Technology) as a new communication technology is being studied.
  • New RAT eNB is called 5GNB (5G base station) or gNB.
  • FIG. 2 is a diagram illustrating an example of the base station 100 when OFDM is used.
  • the base station 100 includes an antenna 101, a reception radio unit 102, a reception signal processing unit 103, a control signal extraction unit 104, a radio channel quality measurement unit 105, a radio channel control unit 106, a control signal generation unit 107, a system information storage unit 108, A transmission signal processing unit 109 and a transmission radio unit 110 are included.
  • the base station 100 includes a subcarrier generation unit 111, a pilot signal generation unit 112, and a synchronization signal generation unit 113.
  • the reception radio unit 102 operates under the control (dotted line in FIG. 2) from the radio line control unit 106.
  • Reception radio section 102 receives a signal transmitted from terminal 200 via antenna 101.
  • Reception radio section 102 amplifies the received signal and frequency-converts the amplified signal into a baseband signal.
  • Reception radio section 102 then outputs the frequency-converted signal to reception signal processing section 103.
  • the received signal processing unit 103 operates under the control (dotted line in FIG. 2) from the wireless line control unit 106.
  • the reception signal processing unit 103 receives the signal output from the reception wireless unit 102.
  • FIG. 4 is a diagram illustrating an example of a received signal processing unit when OFDM is used.
  • the received signal processing unit 103 includes an ADC (Analog to Digital Converter) 301, a CP (Cyclic Prefix) removal unit 302, an FFT (Fast Fourier Transform) unit 303, and a demodulation / decoding unit 304.
  • the CP is generally called a GI (Guard Interval) or a redundant part.
  • the ADC 301 converts the signal output from the reception wireless unit 102 into a digital signal. Then, the ADC 301 outputs the converted digital signal to the CP removal unit 302.
  • the CP removing unit 302 removes a CP (Cyclic Prefix) from the digital signal output from the ADC 301. Then, CP removing section 302 outputs the signal from which CP has been removed to FFT section 303.
  • CP Cyclic Prefix
  • the FFT unit 303 performs FFT on the signal output from the CP removal unit 302. As a result, the signal output from the CP removing unit 302 is converted from a time domain signal to a frequency domain signal. FFT section 303 outputs the signal subjected to the FFT to demodulation / decoding section 304.
  • the demodulation / decoding unit 304 demodulates the signal output from the FFT unit 303. Then, the demodulator / decoder 304 decodes the demodulated signal. Demodulation / decoding section 304 outputs the decoded signal.
  • the signal output from the received signal processing unit 103 includes a control signal and individual data (Dedicated data).
  • the control signal includes at least one of individual control information (Dedicated control information) and common control information (Common control information).
  • the individual data represents a data signal of the terminal 200.
  • Control signals and individual data are transmitted from the received signal processing unit 103 to the upper level.
  • the upper level corresponds to, for example, a MAC (Media Access Control) in LTE.
  • the control signal extraction unit 104 extracts a control signal from the signal output from the reception signal processing unit 103.
  • the control signal extraction unit 104 outputs the extracted control signal to the radio channel control unit 106.
  • the radio channel quality measurement unit 105 measures the radio channel quality based on the signal output from the received signal processing unit 103. Radio channel quality measurement section 105 then outputs the measured radio channel quality to radio channel control section 106 as uplink radio channel quality information.
  • the radio network controller 106 performs RRC (Radio Resource Control) layer processing based on the control signal output from the control signal extractor 104. That is, radio resource control is performed.
  • RRC Radio Resource Control
  • RRC is also called radio resource control or radio channel control.
  • Radio channel control unit 106 based on the downlink radio channel quality information included in the control signal output from the control signal extraction unit 104 and the uplink radio channel quality information output from the radio channel quality measurement unit 105, The scheduling described later is performed. Radio channel controller 106 outputs the scheduling result to control signal generator 107.
  • the control signal generation unit 107 generates a control signal based on the scheduling result output from the wireless line control unit 106.
  • the control signal generation unit 107 outputs the generated control signal to the transmission signal processing unit 109.
  • the pilot signal generator 112 generates a pilot signal sequence that represents a different pilot signal.
  • the pilot signal is, for example, a signal such as a reference signal (RS) in LTE.
  • Pilot signal generation section 112 outputs the generated pilot signal sequence to transmission signal processing section 109.
  • RS reference signal
  • the synchronization signal generator 113 generates a synchronization signal sequence that represents a different synchronization signal.
  • the synchronization signal generation unit 113 represents different synchronization signals by using the cell ID of the cell in which the base station 100 is defined and the slot number or subframe number used when transmitting the synchronization signal.
  • a synchronization signal train is generated.
  • the synchronization signal generation unit 113 outputs the generated synchronization signal sequence to the transmission signal processing unit 109.
  • the subcarrier generation unit 111 operates under the control (dotted line in FIG. 2) from the radio channel control unit 106.
  • the subcarrier generation unit 111 generates a subcarrier and outputs it to the transmission signal processing unit 109.
  • the transmission signal processing unit 109 operates under the control from the wireless line control unit 106 (dotted line in FIG. 2).
  • the transmission signal processing unit 109 is a data signal from the host, the control signal output from the control signal generation unit 107, the pilot signal sequence output from the pilot signal generation unit 112, and the synchronization signal generation unit 113.
  • the synchronization signal sequence and the subcarrier output from the subcarrier generation unit 111 are received.
  • FIG. 5 is a diagram illustrating an example of a transmission signal processing unit when OFDM is used.
  • the transmission signal processing unit 109 includes an encoding / modulation unit 401, a subcarrier mapping unit 402, and an IFFT (Inverse Fast Fourier Transform) unit 403.
  • the transmission signal processing unit 109 further includes a CP (Cyclic Prefix) adding unit 404 and a DAC (Digital to Analog Converter) 405.
  • CP Cyclic Prefix
  • DAC Digital to Analog Converter
  • the encoding / modulation unit 401 outputs the data signal from the higher level, the control signal output from the control signal generation unit 107, the pilot signal sequence output from the pilot signal generation unit 112, and the synchronization signal generation unit 113.
  • the synchronized signal sequence is encoded.
  • the encoding / modulating unit 401 modulates the encoded signal.
  • Encoding / modulating section 401 outputs the modulated signal to subcarrier mapping section 402.
  • the subcarrier mapping unit 402 receives the signal output from the encoding / modulation unit 401 and the subcarrier output from the subcarrier generation unit 111.
  • Subcarrier mapping section 402 maps the modulation symbol of the signal modulated by encoding / modulation section 401 to the subcarrier, or multiplies the modulation symbol and the subcarrier.
  • subcarrier mapping section 402 maps the generated synchronization signal as follows in the subframe in which the synchronization signal is transmitted.
  • the subcarrier mapping unit 402 generates 6RB (Resource Block) at the center of the system band used for communication in the subcarrier axis direction, and generates the last symbol or the second symbol from the end of the subframe in the time axis direction. Mapping the synchronized signal.
  • Subcarrier mapping section 402 outputs the mapped signal to IFFT section 403.
  • the IFFT unit 403 receives the signal output from the subcarrier mapping unit 402. Then, IFFT section 403 performs IFFT on the modulation symbol of the signal mapped by subcarrier mapping section 402. As a result, the symbol of the signal output from subcarrier mapping section 402 is converted from a modulation symbol in the frequency domain to an effective symbol in the time domain. IFFT section 403 outputs the signal subjected to IFFT to CP adding section 404.
  • CP adding section 404 generates an OFDM symbol by adding a CP (Cyclic Prefix) to the signal output from IFFT section 403.
  • CP adding section 404 converts the generated OFDM symbol into a predetermined radio frequency. Then, CP adding section 404 outputs the converted signal to DAC 405.
  • the DAC 405 converts the signal output from the CP adding unit 404 into an analog signal. Then, the DAC 405 outputs the converted analog signal to the transmission radio unit 110.
  • the transmission radio unit 110 operates under the control (dotted line in FIG. 2) from the radio line control unit 106.
  • Transmission radio section 110 transmits the signal output from transmission signal processing section 109 from antenna 101.
  • the system information storage unit 108 stores system information. System information will be described later.
  • FIG. 3 is a diagram illustrating an example of a terminal 200 when using OFDM.
  • the terminal 200 includes an antenna 201, a reception radio unit 202, a reception signal processing unit 203, a control signal extraction unit 204, a radio channel quality measurement unit 205, a radio channel control unit 206, a control signal generation unit 207, a system information storage unit 208, a transmission A signal processing unit 209 and a transmission radio unit 210 are included.
  • terminal 200 includes subcarrier generation section 211, pilot signal generation section 212, synchronization signal generation section 213, pilot signal extraction section 214, synchronization signal extraction section 215, and synchronization processing section 216.
  • the reception wireless unit 202 operates under the control from the wireless line control unit 206 (dotted line in FIG. 3).
  • the reception radio unit 202 receives a signal transmitted from the base station 100 via the antenna 201.
  • Reception radio section 202 amplifies the received signal and frequency-converts the amplified signal into a baseband signal. Then, reception radio section 202 outputs the frequency-converted signal to reception signal processing section 203.
  • the reception signal processing unit 203 operates under the control (dotted line in FIG. 3) from the wireless line control unit 206.
  • Reception signal processing section 203 demodulates the signal output from reception radio section 202 and decodes the demodulated signal.
  • the configuration of reception signal processing section 203 of terminal 200 is the same as the configuration of reception signal processing section 103 of base station 100, and thus detailed description thereof is omitted.
  • Reception signal processing section 203 outputs the decoded signal to control signal extraction section 204 and radio channel quality measurement section 205.
  • the signal output from the received signal processing unit 203 includes a control signal, a data signal, a synchronization signal sequence, a pilot signal sequence, and the like.
  • the control signal is a signal related to data transmission.
  • the control signal and the data signal are transmitted from the received signal processing unit 203 to the upper level.
  • the upper level corresponds to the MAC in LTE, for example.
  • the control signal extraction unit 204 extracts a control signal from the signal output from the reception signal processing unit 203.
  • the control signal extraction unit 204 outputs the extracted control signal to the radio channel control unit 206.
  • the synchronization signal extraction unit 215 extracts a synchronization signal sequence from the signal output from the reception signal processing unit 203.
  • the synchronization signal extraction unit 215 outputs the extracted synchronization signal sequence to the synchronization processing unit 216.
  • the pilot signal extraction unit 214 extracts a pilot signal sequence from the signal output from the reception signal processing unit 203. Pilot signal extraction section 214 outputs the extracted pilot signal sequence to radio channel quality measurement section 205 and synchronization processing section 216.
  • the terminal 200 does not know which base station (cell) the extracted synchronization signal sequence is the synchronization signal sequence transmitted from. Also, the terminal 200 does not grasp the transmission source base station (or cell, cell ID).
  • the synchronization signal generation unit 213 generates a plurality of synchronization signal sequences.
  • the synchronization signal generation unit 113 outputs the generated plurality of synchronization signal sequences to the synchronization processing unit 216.
  • the synchronization processing unit 216 compares the plurality of synchronization signal sequences generated by the synchronization signal generation unit 113 with the synchronization signal sequence extracted by the synchronization signal extraction unit 215. As a result of the comparison, the synchronization processing unit 216 specifies the synchronization signal sequence extracted by the synchronization signal extraction unit 215 from the plurality of synchronization signal sequences generated by the synchronization signal generation unit 113. That is, terminal 200 can perform synchronization processing that synchronizes in units of slots or subframes, using synchronization signal sequence by synchronization processing section 216.
  • the pilot signal generation unit 212 generates a plurality of pilot signal sequences.
  • the pilot signal generation unit 212 outputs the generated plurality of pilot signal sequences to the synchronization processing unit 216.
  • the synchronization processing unit 216 compares the plurality of pilot signal sequences generated by the pilot signal generation unit 212 with the pilot signal sequence extracted by the pilot signal extraction unit 214. As a result of the comparison, the synchronization processing unit 216 identifies the pilot signal sequence extracted by the pilot signal extraction unit 214 from the plurality of pilot signal sequences generated by the pilot signal generation unit 212. That is, terminal 200 can perform synchronization processing that is synchronized on a symbol-by-symbol basis when synchronization processing section 216 uses the pilot signal sequence.
  • terminal 200 performs the synchronization process using both the synchronization signal and the pilot, but may perform the synchronization process using one of the synchronization signal and the pilot signal.
  • Radio channel quality measuring section 205 measures the radio channel quality based on the pilot signal sequence output from pilot signal extracting section 214.
  • the radio channel quality represents at least one of reception power and reception quality.
  • the received power is, for example, reference signal received power (RSRP: Reference Signal Received Power) in LTE.
  • the reception quality is, for example, a reference signal reception quality (RSRQ) in LTE.
  • the radio channel quality measurement unit 205 outputs the measured radio channel quality to the radio channel control unit 206 as downlink radio channel quality information.
  • the radio network controller 206 performs RRC layer processing based on the control signal output from the control signal extractor 204. That is, radio resource control is performed.
  • Radio channel control section 206 outputs downlink radio channel quality information output from radio channel quality measurement section 205 to control signal generation section 207.
  • the control signal generator 207 generates a control signal based on the downlink radio channel quality information output from the radio channel controller 206. Then, the control signal generation unit 207 outputs the generated control signal to the transmission signal processing unit 209.
  • the subcarrier generation unit 211 operates by control from the wireless line control unit 206 (dotted line in FIG. 3).
  • the subcarrier generation unit 211 generates subcarriers and outputs them to the transmission signal processing unit 209.
  • the transmission signal processing unit 209 operates under the control from the wireless line control unit 206 (dotted line in FIG. 3).
  • the transmission signal processing unit 209 encodes the data signal from the host and the control signal output from the control signal generation unit 207, and modulates the encoded signal.
  • Transmission signal processing section 209 outputs the modulated signal to transmission radio section 210.
  • the configuration of transmission signal processing section 209 of terminal 200 is the same as the configuration of transmission signal processing section 109 of base station 100, detailed description thereof will be omitted.
  • the transmission radio unit 210 operates under the control from the radio line control unit 206 (dotted line in FIG. 3). Transmission radio section 210 transmits the signal output from transmission signal processing section 209 from antenna 201.
  • the system information storage unit 208 stores the system information notified to the terminal 200. System information will be described later.
  • the radio network controller 106 of the base station 100 performs scheduling.
  • the radio channel controller 106 of the base station 100 selects the terminal 200 that performs downlink data transmission based on the downlink radio channel quality information included in the control signal output from the control signal extractor 104. Also, the radio channel controller 106 of the base station 100 selects the terminal 200 that permits uplink data transmission based on the uplink radio channel quality information output from the radio channel quality measurement unit 105.
  • Scheduling methods include a Max CIR method selected from a terminal 200 having a high CIR (Carrier to Interference Ratio), and a proportional fairness method that assigns radio resources fairly to each terminal 200 based on radio channel quality. Further, as a scheduling method, there is a round robin method in which radio resources are evenly allocated to all terminals 200.
  • CIR Carrier to Interference Ratio
  • the radio network controller 106 of the base station 100 selects radio resources, modulation schemes, and coding rates to be used when transmitting data to the selected terminal 200.
  • Radio channel control section 106 outputs the selected radio resource, modulation scheme and coding rate to control signal generation section 107 as a result of scheduling.
  • the control signal generation unit 107 generates the radio resource, modulation scheme, and coding rate output from the radio channel control unit 106 as a control signal related to data transmission.
  • the control signal is notified from base station 100 to terminal 200.
  • the radio network controller 206 of the terminal 200 performs random access to the base station 100 using the system information notified in advance to the terminal 200 when the base station 100 selects a specified cell. Perform the procedure. As a result, the radio channel between the base station 100 and the terminal 200 is established by random access.
  • Random access is exemplified by contention-based random access (see TS36.300 for details) in which terminal 200 selects a random access preamble and notifies base station 100 based on system information on the premise of collision of preambles.
  • radio channel controller 206 of terminal 200 transmits a random access preamble
  • radio channel controller 106 of base station 100 receives the random access preamble transmitted from terminal 200.
  • the radio network controller 106 of the base station 100 generates a response signal for the random access preamble.
  • the radio network controller 106 of the base station 100 transmits the generated response signal to the terminal 200.
  • the radio channel between the base station 100 and the terminal 200 is established by random access.
  • random access is performed when performing handover to another frequency or another base station.
  • examples of random access include non-contention based random access (see TS36.300) in which a random access preamble to be used is given from the base station 100 to the terminal 200 in advance.
  • the radio network controller 106 of the base station 100 notifies the terminal 200 of the random access preamble in advance.
  • Radio channel controller 206 of terminal 200 transmits a random access preamble
  • radio channel controller 106 of base station 100 receives the random access preamble transmitted from terminal 200.
  • the radio network controller 106 of the base station 100 generates a response signal for the random access preamble.
  • the radio network controller 106 transmits the generated response signal to the terminal 200.
  • the radio channel between the base station 100 and the terminal 200 is established by random access.
  • the radio channel controller 106 of the base station 100 compares the first radio channel quality when connected to the terminal 200 with the second radio channel quality from other adjacent base stations. As a result of the comparison, the second radio channel quality is better than the first radio channel quality due to the degradation of the first radio channel quality. In this case, the radio network controller 106 of the base station 100 selects another base station as the HO destination base station. Subsequently, the radio network controller 106 of the base station 100 transmits a HO request to the selected base station. When receiving the dedicated preamble for the HO request from the selected base station, the radio network controller 106 of the base station 100 notifies the terminal 200 of the received dedicated preamble as HO control information.
  • the radio network controller 206 of the terminal 200 performs non-contention based random access using the dedicated preamble notified from the base station 100. Thereby, HO is implemented. That is, the base station that communicates with terminal 200 is switched from base station 100 to the selected base station.
  • FIG. 6 is a diagram illustrating an example of a system band when OFDM is used.
  • a system band is divided into a plurality of frequency bands, and radio resources are allocated to each frequency band.
  • the system band is one frequency band constituting the wireless communication system.
  • the system band is 20 MHz in LTE, for example.
  • Each frequency band is, for example, RB (Resource Brock) in LTE.
  • system information includes radio resources, subcarrier spacing, symbol length, subframe length, and the like.
  • OFDM Frequency Division Multiple Access
  • the number of subcarriers, subcarrier interval, TTI (Transmission Time Interval), and number of symbols are the same in each frequency band.
  • TTI Transmission Time Interval
  • the symbol length, slot length, subframe length, and frame length are the same. Therefore, when OFDM is used, waveform shaping (filtering) is performed on the entire system band.
  • the system information is the same within the system band.
  • terminal 200 performs synchronization processing on the base station and performs radio communication with base station 100 using the same system information notified in advance.
  • FIG. 7 is a sequence showing an example of an operation at the time of setting a wireless line when using OFDM.
  • the radio channel controller 106 of the base station 100 controls the pilot signal generator 112 and the synchronization signal generator 113 to generate a synchronization signal and a pilot signal.
  • the radio channel controller 106 of the base station 100 controls the transmission signal processor 109 and the transmission radio unit 110 to transmit the generated synchronization signal and pilot signal (step S10).
  • Radio channel control section 206 of terminal 200 controls reception radio section 202 and reception signal processing section 203 to receive the synchronization signal and pilot signal transmitted from base station 100.
  • Radio channel control section 206 of terminal 200 controls pilot signal generation section 212, synchronization signal generation section 213, pilot signal extraction section 214, synchronization signal extraction section 215, and synchronization processing section 216, and receives the received synchronization signal and pilot signal.
  • the synchronization processing may be performed at the time of cell selection, or may be performed at the time of cell reselection or handover.
  • the case of cell selection will be described.
  • the radio network controller 106 of the base station 100 notifies the terminal 200 of system information for the entire system band (step S12).
  • the system information of the entire system band is, for example, MIB (Master Information Block) or SIB (System Information Block) in 3GPP.
  • System information includes control information such as radio resources, subcarrier spacing, symbol length, subframe length, etc., cell ID, slot number, cell priority information, information for cell selection, and random access. Contains information.
  • the information included in the MIB or the SIB described in the W-CDMA specification or LTE specification defined in 3GPP may be included.
  • the radio network controller 206 of the terminal 200 receives the synchronization signal and pilot signal transmitted from each base station (step S13). At this time, radio channel control section 206 of terminal 200 controls pilot signal generation section 212, synchronization signal generation section 213, pilot signal extraction section 214, synchronization signal extraction section 215, and synchronization processing section 216, and receives the received synchronization signal. Then, synchronization processing is performed using the pilot signal.
  • the radio channel quality measurement unit 205 of the terminal 200 measures the radio channel quality based on the received pilot signal.
  • the radio channel quality represents at least one of reception power and reception quality.
  • the received power is, for example, reference signal received power (RSRP: Reference Signal Received Power) in LTE.
  • the reception quality is, for example, a reference signal reception quality (RSRQ) in LTE.
  • radio channel control unit 206 of terminal 200 selects a base station with the best radio channel quality or a cell in which the base station is defined from a plurality of base stations. A cell selection process is performed.
  • the radio channel control unit 206 of the terminal 200 selects a cell in which the base station 100 is defined based on the measured radio channel quality (step S14).
  • the radio network controller 206 of the terminal 200 performs a random access procedure on the base station 100 based on the system information notified from the base station 100 (step S15).
  • the radio channel controller 106 of the base station 100 sets a radio channel between itself and the terminal 200 by random access based on the system information (step S16).
  • the radio channel controller 106 of the base station 100 performs data transmission between itself and the terminal 200 using the radio channel between itself and the terminal 200 (step S17).
  • FIG. 8 is a diagram illustrating an example of a system band when F-OFDM is used in the wireless communication system according to the embodiment.
  • the system band is divided into a plurality of frequency bands within the same system band. Further, each frequency band is divided into a plurality of subcarrier groups (hereinafter referred to as SCG), and radio resources are allocated to each SCG.
  • SCG subcarrier groups
  • the system band is one frequency band constituting the wireless communication system.
  • SCG may also be referred to as a cluster or a subcarrier block (SCB).
  • SCB subcarrier block
  • the system information includes radio resources, subcarrier intervals, symbol lengths, subframe lengths, and the like, as in the radio communication system using OFDM.
  • FIG. 9 is a diagram illustrating an example of each SCG when F-OFDM is used in the wireless communication system according to the embodiment.
  • each SCG is composed of a plurality of subcarriers, and at least one of the number of subcarriers, subcarrier spacing, TTI, symbol length, etc. is different in each SCG.
  • each of SCG1 to SCG3 has a different subcarrier interval and TTI. Therefore, when F-OFDM is used, waveform shaping (filtering) is performed for each SCG.
  • system information differs for each SCG.
  • the subcarrier interval and symbol length of the system information are different for each SCG.
  • terminal 200 cannot perform synchronization processing on base station 100 because the synchronization timing differs for SCGs having different subcarrier intervals, symbol lengths, and the like.
  • terminal 200 cannot perform wireless communication with base station 100. Therefore, in a wireless communication system using F-OFDM, it is desirable that a terminal can perform synchronization processing for each SCG.
  • base station 100 generates a synchronization signal and a pilot signal for each SCG.
  • the base station 100 when the base station 100 generates a synchronization signal and a pilot signal for each SCG, a large number of synchronization signal sequences are required. For example, when four SCGs are assigned to one cell that defines a base station and the number of cell IDs is 504, the synchronization signal and pilot signal are 2016 series.
  • the subcarrier interval is set by giving orthogonality to the subcarriers as in the case of using OFDM, but if the number of sequences is large, the orthogonality may be deteriorated. There is. When the orthogonality is deteriorated, there is a possibility that interference between the synchronization signals becomes large. That is, interference is given to other SCGs.
  • the second subcarrier interval is set to 2 n times (n is an integer) with respect to the first subcarrier interval.
  • the symbol length decreases in inverse proportion to the subcarrier interval. That is, the second symbol length is set to 1/2 n times the first symbol length.
  • the base station 100 multiplies the first symbol length synchronization signal and pilot signal by orthogonal codes such as OVSF (Orthogonal Variable Spreading Factor).
  • OVSF Orthogonal Variable Spreading Factor
  • FIG. 10 is a diagram showing an example of the OVSF code.
  • the code used depends on the spreading factor (SF).
  • SF spreading factor
  • FIG. 11 is a diagram illustrating an example of a synchronization signal when the OVSF code is applied to LTE.
  • PSS Primary Synchronization Signal
  • the second synchronization signal d′ u (n) is generated by multiplying the first synchronization signal du (n) by an OVSF code (hereinafter, spread code).
  • SSS Secondary Synchronization Signal
  • FIG. 12 is a diagram illustrating an example of the second synchronization signal d′ u (n) in the time axis direction.
  • the second synchronization signal d′ u (n) is generated so as to have a time interval T of the first synchronization signal du (n) in the time axis direction. That is, by setting the second subcarrier interval to twice the first subcarrier interval, the second symbol length is set to 1 ⁇ 2 times the first symbol length.
  • the time interval T when the terminal 200 receives the first synchronization signal du (n) can be made the same as that for the second synchronization signal d′ u (n), the device scale of the terminal 200 is increased. It can be simplified. The same applies to the pilot signal.
  • FIG. 13 is a diagram illustrating an example of the second synchronization signal d′ u (n) in the subcarrier axis (frequency axis) direction.
  • the second synchronization signal d′ u (n) is generated so as to have the frequency bandwidth W of the first synchronization signal du (n) in the frequency axis direction. That is, by setting the second subcarrier interval to 1 ⁇ 2 times the first subcarrier interval, the second symbol length is set to twice the first symbol length.
  • the frequency bandwidth W when the terminal 200 receives the first synchronization signal du (n) can be made the same as that of the second synchronization signal d′ u (n), the device scale of the terminal 200 is increased. Can be simplified. The same applies to the pilot signal.
  • FIG. 12 shows a method of widening the subcarrier interval
  • FIG. 13 shows a method of narrowing the subcarrier interval.
  • the synchronization signal and the pilot signal are arranged in the subcarrier axis (frequency axis) direction, when synchronizing in the time axis direction, the method of widening the subcarrier interval as shown in FIG. It is effective. That is, it is more effective to shorten the second symbol length based on the first symbol length.
  • the wireless communication system includes a multiple access method (Multiple Access) for changing system information by changing the subcarrier interval and the symbol length for each SCG, such as UF (Universal-Filtered) -OFDM. These are collectively called F-OFDM.
  • Multiple Access Multiple Access
  • UF Universal-Filtered
  • FIG. 14 is a diagram illustrating an example of a terminal 200 when F-OFDM is used in the wireless communication system according to the embodiment.
  • the terminal 200 includes a reception signal processing unit 203F, a radio channel control unit 206F, and a transmission signal processing unit 209F.
  • a plurality of SCGs that is, the P-SCG 10 and the S-SCGs 11 to 14 are assigned to the radio network controller 206F.
  • the reception signal processing unit 203F, the radio line control unit 206F, and the transmission signal processing unit 209F will be described later.
  • terminal 200 has antenna 201, reception radio section 202, control signal extraction section 204, radio channel quality measurement section 205, control signal generation section 207, system information storage section 208, transmission radio section. 210 and a subcarrier generation unit 212.
  • FIG. 15 is a diagram illustrating an example of the base station 100 when F-OFDM is used in the wireless communication system according to the embodiment.
  • the base station 100 includes a reception signal processing unit 103F, a radio channel control unit 106F, a system information storage unit 108F, and a transmission signal processing unit 109F.
  • a plurality of SCGs that is, P-SCG 10 and S-SCGs 11 to 14 are assigned to the radio network controller 106F.
  • the reception signal processing unit 103F, the radio channel control unit 106F, the system information storage unit 108F, and the transmission signal processing unit 109F will be described later.
  • base station 100 has antenna 101, reception radio section 102, control signal extraction section 104, radio channel quality measurement section 105, control signal generation section 107, transmission radio section 110, subcarrier generation. Part 112.
  • FIG. 16 is a diagram illustrating an example of a system information storage unit when F-OFDM is used in the wireless communication system according to the embodiment.
  • the system information storage unit 108F of the base station 100 stores a plurality of different SCG system information in association with the type of service.
  • a plurality of SCGs are divided into P (Primary) -SCG 10 which is a first SCG and S (Secondary) -SCGs 11 to 14 which are a plurality of second SCGs.
  • the P-SCG 10 corresponds to a center frequency bandwidth of 1.4 MHz in LTE, for example, and is also called T (Temporary) -SCG.
  • T Temporal
  • one S-SCG may be provided unless otherwise noted.
  • the types of services include basic services that realize existing functions such as broadband services, low-speed transmission services that transmit sensor output at low speed, and high-speed transmission services that transmit moving pictures at high speed. It is done.
  • the types of services include low-delay services that require low delay in in-vehicle communication and high-quality low-delay services that require high reliability when performing medical treatment remotely. .
  • the system information storage unit 108F stores the system information of the P-SCG 10 in association with the basic service described above.
  • the system information storage unit 108F stores the system information of the S-SCG 11 in association with the above-described low-speed transmission service.
  • the system information storage unit 108F stores the system information of the S-SCG 12 in association with the above-described high-speed transmission service.
  • the system information storage unit 108F stores the system information of the S-SCG 13 in association with the above-described low delay service.
  • the system information storage unit 108F stores the system information of the S-SCG 14 in association with the above-described high quality low delay service.
  • FIG. 17 is a diagram illustrating an example of a received signal processing unit when F-OFDM is used in the wireless communication system according to the embodiment.
  • the reception signal processing unit 103F of the base station 100 includes an ADC 301 and a plurality of reception signal processing systems 320 to 324.
  • Each of the plurality of received signal processing systems 320 to 324 includes a CP removing unit 302, an FFT unit 303, a demodulation / decoding unit 304, and a filter 310.
  • the ADC 301, the CP removing unit 302, the FFT unit 303, and the demodulation / decoding unit 304 have the same configuration as when OFDM is used.
  • the plurality of reception signal processing systems 320 to 324 are divided into a first reception signal processing system 320 and a plurality of second reception signal processing systems 321 to 324.
  • the first received signal processing system 320 is provided corresponding to the P-SCG10.
  • the plurality of second received signal processing systems 321 to 324 are provided corresponding to the plurality of S-SCGs 11 to 14, respectively.
  • the ADC 301 converts the signal output from the reception wireless unit 102 into a digital signal. Then, the ADC 301 outputs the converted digital signal to the plurality of received signal processing systems 320 to 324.
  • Each filter 310 of the plurality of received signal processing systems 320 to 324 passes a signal in a specific frequency band with respect to the signal output from the ADC 301, and attenuates signals in other frequency bands.
  • the signal that has passed through the filter 310 is output to the CP removal unit 302.
  • the CP removing unit 302 removes the CP from the digital signal output from the ADC 301. Then, CP removing section 302 outputs the signal from which CP has been removed to FFT section 303.
  • the FFT unit 303 performs FFT on the signal output from the CP removal unit 302. As a result, the signal output from the CP removing unit 302 is converted from a time domain signal to a frequency domain signal. FFT section 303 outputs the signal subjected to the FFT to demodulation / decoding section 304.
  • the demodulation / decoding unit 304 demodulates the signal output from the FFT unit 303. Then, the demodulator / decoder 304 decodes the demodulated signal. Demodulation / decoding section 304 outputs the decoded signal.
  • reception signal processing unit 203F of the terminal 200 it is sufficient that at least one reception signal processing system is provided.
  • FIG. 18 is a diagram illustrating an example of a transmission signal processing unit when F-OFDM is used in the wireless communication system according to the embodiment.
  • the transmission signal processing unit 109F of the base station 100 includes a plurality of transmission signal processing systems 420 to 424, a synthesis unit 411, and a DAC 405.
  • Each of the plurality of transmission signal processing systems 420 to 424 includes an encoding / modulation unit 401, a subcarrier mapping unit 402, an IFFT unit 403, a CP adding unit 404, and a filter 410.
  • Encoding / modulating section 401, subcarrier mapping section 402, IFFT section 403, CP adding section 404, and DAC 405 have the same configuration as when OFDM is used.
  • the plurality of transmission signal processing systems 420 to 424 are divided into a first transmission signal processing system 420 and a plurality of second transmission signal processing systems 421 to 424.
  • the first transmission signal processing system 420 is provided corresponding to the P-SCG 10.
  • the plurality of second transmission signal processing systems 421 to 424 are provided corresponding to the plurality of S-SCGs 11 to 14, respectively.
  • Each of the encoding / modulation units 401 of the plurality of transmission signal processing systems 420 to 424 receives a data signal from the host and the control signal output from the control signal generation unit 107. Also, the encoding / modulation unit 401 receives the pilot signal sequence output from the pilot signal generation unit 112 and the synchronization signal sequence output from the synchronization signal generation unit 113.
  • the encoding / modulation unit 401 outputs the data signal from the higher level, the control signal output from the control signal generation unit 107, the pilot signal sequence output from the pilot signal generation unit 112, and the synchronization signal generation unit 113.
  • the synchronized signal sequence is encoded.
  • the encoding / modulating unit 401 modulates the encoded signal.
  • Encoding / modulating section 401 outputs the modulated signal to subcarrier mapping section 402.
  • the subcarrier mapping unit 402 receives the signal output from the encoding / modulation unit 401 and the subcarrier output from the subcarrier generation unit 111. Then, subcarrier mapping section 402 maps the modulation symbol of the signal modulated by encoding / modulating section 401 to the subcarrier. Subcarrier mapping section 402 outputs the mapped signal to IFFT section 403.
  • the IFFT unit 403 receives the signal output from the subcarrier mapping unit 402. Then, IFFT section 403 performs IFFT on the modulation symbol of the signal mapped by subcarrier mapping section 402. As a result, the symbol of the signal output from subcarrier mapping section 402 is converted from a modulation symbol in the frequency domain to an effective symbol in the time domain. IFFT section 403 outputs the signal subjected to IFFT to CP adding section 404.
  • CP adding section 404 generates an OFDM symbol by adding a CP to the signal output from IFFT section 403.
  • CP adding section 404 converts the generated OFDM symbol into a predetermined radio frequency. Then, CP adding section 404 outputs the converted signal to filter 410.
  • the filter 410 allows a signal in a specific frequency band to pass through the signal output from the CP adding unit 404 and attenuates signals in other frequency bands.
  • the signal that has passed through the filter 410 is output to the synthesis unit 411.
  • the combining unit 411 combines the signals output from the filters 410 of the plurality of transmission signal processing systems 420 to 424.
  • the synthesized signal is output to the DAC 405.
  • the DAC 405 converts the signal output from the synthesis unit 411 into an analog signal. Then, the DAC 405 outputs the converted analog signal to the transmission radio unit 102.
  • the transmission signal processing unit 209F of the terminal 200 it is sufficient that at least one transmission signal processing system is provided.
  • FIG. 19 is a diagram illustrating an example of a radio channel controller when F-OFDM is used in the radio communication system according to the embodiment.
  • the radio network controller 106F of the base station 100 has a plurality of controllers.
  • the plurality of control units are provided for a plurality of SCGs assigned to each frequency band in the system band.
  • the first control unit among the plurality of control units is referred to as a P (Primary) -SCG control unit 610
  • the second control unit is referred to as an S (Secondary) -SCG control unit 620.
  • the S-SCG control unit 620 includes S-SCG control units 611 to 614.
  • the P-SCG control unit 610 is provided for the P-SCG 10 used for basic services.
  • the S-SCG control unit 611 is provided for the S-SCG 11 used for the low-speed transmission service.
  • the S-SCG control unit 612 is provided for the S-SCG 12 used for the high-speed transmission service.
  • the S-SCG control unit 613 is provided for the S-SCG 13 used for the low delay service.
  • the S-SCG control unit 614 is provided for the S-SCG 14 used for the high quality and low delay service.
  • FIG. 20 is a sequence illustrating an example of SCG addition processing as the operation of the wireless communication system according to the embodiment.
  • the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 controls the pilot signal generation unit 112 and the synchronization signal generation unit 113 so that the first synchronization signal and the first pilot signal in the P-SCG 10 are obtained. Generate.
  • the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 controls the transmission signal processing unit 109F and the transmission radio unit 110 to transmit the generated first synchronization signal and first pilot signal ( Step S100).
  • the radio channel control unit 206F of the terminal 200 controls the reception radio unit 202 and the reception signal processing unit 203F to receive the first synchronization signal and the first pilot signal transmitted from the base station 100.
  • Radio channel controller 206F of terminal 200 controls pilot signal generator 212, synchronization signal generator 213, pilot signal extractor 214, synchronization signal extractor 215, and synchronization processor 216 to receive the received first synchronization signal.
  • synchronization processing is performed using the first pilot signal (step S101).
  • the synchronization processing may be performed at the time of cell selection, or may be performed at the time of cell reselection or handover.
  • the case of cell selection will be described.
  • the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 notifies the terminal 200 of the system information of the P-SCG 10 (step S102).
  • the system information of the P-SCG 10 is, for example, a 3GPP MIB (Master Information Block), SIB (System Information Block), or the like.
  • System information includes control information such as radio resources, subcarrier spacing, symbol length, subframe length, etc., cell ID, slot number, cell priority information, information for cell selection, and random access. Contains information.
  • Radio channel control section 206F of terminal 200 controls reception radio section 202 and reception signal processing section 203F to receive the first synchronization signal and the first pilot signal transmitted from each base station (step S103). .
  • the radio channel controller 206F of the terminal 200 controls the pilot signal generator 212, the synchronization signal generator 213, the pilot signal extractor 214, the synchronization signal extractor 215, and the synchronization processor 216 to receive the received first
  • the synchronization processing is performed using the synchronization signal and the first pilot signal.
  • the radio channel quality measurement unit 205 of the terminal 200 measures the radio channel quality based on the received first pilot signal.
  • the radio channel quality represents at least one of reception power and reception quality.
  • the received power is, for example, reference signal received power (RSRP: Reference Signal Received Power) in LTE.
  • the reception quality is, for example, a reference signal reception quality (RSRQ) in LTE.
  • radio channel controller 206F of terminal 200 selects a base station with the best radio channel quality or a cell in which the base station is defined from a plurality of base stations. A cell selection process is performed.
  • the radio channel controller 206F of the terminal 200 selects a cell in which the base station 100 is defined based on the measured radio channel quality (step S104).
  • the radio network controller 206F of the terminal 200 performs a random access procedure on the base station 100 based on the system information of the P-SCG 10 notified from the base station 100 (step S105).
  • the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 sets a radio channel between the P-SCG control unit 610 and the terminal 200 by random access based on the system information of the P-SCG 10 ( Step S106).
  • the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 performs an optimal S-SCG based on the communication quality when the radio channel between the P-SCG control unit 610 and the terminal 200 is established.
  • the SCG selection process to select is performed (step S107). For example, in the SCG selection process, the S-SCG 14 is selected as the optimum S-SCG from the S-SCGs 11 to 14.
  • Examples of the communication quality include radio channel quality, CQI (Channel Quality Indicator), and QoS (Quality of Service).
  • QoS is set by the terminal 200.
  • the first symbol length included in the system information of P-SCG 10 and the second symbol length included in the system information of S-SCG 14 are different from each other. That is, by setting the second subcarrier interval to 2 n times the first subcarrier interval, the second symbol length is set to 1/2 n times the first symbol length. ing. Therefore, when the optimal S-SCG 14 is selected, the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 sends a system information transmission request for requesting transmission of system information of the S-SCG 14 to S. -It outputs to the SCG control part 614 (step S108).
  • the S-SCG control unit 614 of the radio channel control unit 106F of the base station 100 sends the system information of the S-SCG 14 to the P-SCG control unit 610. Output (step S109).
  • the system information of the S-SCG 14 is, for example, SIB in 3GPP.
  • the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 notifies the terminal 200 of the system information of the S-SCG 14 output from the S-SCG control unit 614 (step S110).
  • the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 controls the pilot signal generation unit 112 and the synchronization signal generation unit 113, so that the second synchronization signal and the second pilot in the S-SCG 14 are obtained. Generate a signal. For example, the P-SCG control unit 610 multiplies the first synchronization signal and the first pilot signal by an orthogonal code such as OVSF. Thereby, P-SCG control section 610 allows the second synchronization signal and the second synchronization signal obtained by spreading the first synchronization signal and the first pilot signal in the frequency axis direction so that the symbol length becomes 1/2 n times. A pilot signal is generated.
  • the first synchronization signal and the first pilot signal are subjected to signal processing (spreading processing) so that the symbol length becomes the second symbol length.
  • P-SCG control section 610 controls transmission signal processing section 109F and transmission radio section 110 to transmit the generated second synchronization signal and second pilot signal (step S111).
  • the radio channel controller 206F of the terminal 200 receives the second synchronization signal and the second pilot signal transmitted from the base station 100. At this time, the radio channel controller 206F of the terminal 200 controls the pilot signal generator 212, the synchronization signal generator 213, the pilot signal extractor 214, the synchronization signal extractor 215, and the synchronization processor 216 to receive the received second
  • the synchronization process is performed using the synchronization signal and the second pilot signal (step S112).
  • the radio network controller 206F uses the same frequency bandwidth as that of the P-SCG 10 (T-SCG) in the S-SCG 14 having different subcarrier intervals and symbol lengths, Synchronization processing can be performed using the pilot signal.
  • the radio channel controller 206F of the terminal 200 After performing the synchronization processing, the radio channel controller 206F of the terminal 200 performs a random access procedure on the base station 100 based on the system information of the S-SCG 14 notified from the base station 100 (step S113).
  • the S-SCG control unit 614 of the radio channel control unit 106F of the base station 100 sets a radio channel between the S-SCG control unit 614 and the terminal 200 by random access based on the system information of the S-SCG 14 ( Step S114).
  • the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 uses a radio channel between the P-SCG control unit 610 and the terminal 200 to connect between the P-SCG control unit 610 and the terminal 200.
  • Data transmission is performed (step S115).
  • the S-SCG control unit 614 of the radio channel control unit 106F of the base station 100 uses a radio channel between the S-SCG control unit 614 and the terminal 200 to connect between the S-SCG control unit 614 and the terminal 200.
  • Data transmission is performed (step S116).
  • FIG. 21 is a sequence illustrating an example of the SCG change process as the operation of the wireless communication system according to the embodiment.
  • the same steps S100 to S114 as in FIG. 20 are performed.
  • a wireless line is set between the S-SCG control unit 614 and the terminal 200.
  • the S-SCG control unit 614 of the radio channel control unit 106F of the base station 100 uses the radio channel between the S-SCG control unit 614 and the terminal 200, and Data transmission is performed between them (step S120).
  • the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 cancels the setting of the radio channel between the P-SCG control unit 610 and the terminal 200 (step S121).
  • the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 sends the system information of the P-SCG 10 to the terminal 200 when a situation occurs in which the system information of the P-SCG 10 is notified from the base station 100 to the terminal 200. (Step S122).
  • FIG. 22 is a flowchart illustrating an example of the SCG selection process as the operation of the wireless communication system according to the embodiment.
  • the S-SCGs 11 to 14 are the first to fourth S-SCGs. Also, the first to fourth S-SCGs are designated as S-SCGs 1 to 4, respectively. Therefore, in FIG. 23, the k-th S-SCG is S-SCGk. Let m be 4.
  • step S107 the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 selects S-SCGk by setting k to 1 (step S130).
  • the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 measures traffic volume, transmission rate, transmission delay, etc. when a radio channel is established between the P-SCG control unit 610 and the terminal 200. To do. At this time, P-SCG control section 610 calculates communication conditions in S-SCGk based on the measured traffic volume, transmission rate, transmission delay, and S-SCGk configuration (subcarrier interval and symbol length). (Step S131).
  • the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 determines whether or not the calculated communication condition satisfies the required communication condition in S-SCGk (step S132).
  • the traffic volume, transmission speed, transmission delay, and the like required for the above-described communication service are collectively referred to as required communication conditions.
  • the required communication conditions are different in each S-SCG.
  • the calculated communication condition does not satisfy the required communication condition in S-SCGk.
  • the calculated transmission rate is equal to or lower than the required transmission rate in S-SCGk, the calculated communication condition does not satisfy the required communication condition in S-SCGk.
  • the calculated transmission delay exceeds the reference transmission delay in S-SCGk, the calculated communication condition does not satisfy the required communication condition in S-SCGk.
  • the calculated communication condition satisfies the required communication condition in S-SCGk. If the calculated transmission rate is not less than or equal to the required transmission rate in S-SCGk, or if the calculated transmission delay does not exceed the reference transmission delay in S-SCGk, the calculated communication condition is the required communication in S-SCGk. The condition is met.
  • step S132 when the calculated communication condition satisfies the required communication condition in S-SCGk (step S132: YES), the P-SCG control unit 610 of the radio line control unit 106F of the base station 100 Let SCGk be the optimal S-SCG. That is, in the SCG selection process (step S107), S-SCGk is selected as the optimum S-SCG (step S133).
  • step S132 when the calculated communication condition does not satisfy the required communication condition in S-SCGk (step S132: NO), the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 sets k to 1 is incremented (step S134). At this time, the P-SCG control unit 610 determines whether k is m + 1 (step S135).
  • step S135 the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 performs step S131. That is, for the next S-SCGk, the processes after step S131 are performed.
  • step S135 the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 determines that the radio channel between the P-SCG control unit 610 and the terminal 200 Communication is performed by Alternatively, the communication conditions are changed and the processes after step S130 are performed. Alternatively, a handover (HO) is requested to an SCG configured by another base station.
  • HO handover
  • the radio communication system includes the base station 100 and the terminal 200 that communicate using one system band.
  • the base station 100 includes a wireless line control unit 106F.
  • Radio channel control section 106F allocates first and second subcarrier groups (P-SCG10, S-SCG11 to 14) having different first and second symbol lengths of system information within the system band.
  • the radio network controller 106F includes a first controller (P-SCG controller 610) and a second controller (S-SCG controller 620).
  • P-SCG control section 610 transmits a first signal for terminal 200 to synchronize to terminal 200 in the first subcarrier group (P-SCG10).
  • S-SCG control section 620 (in this case, S-SCG control section 614) provides terminal 200 with a second signal for terminal 200 to synchronize in the second subcarrier group (in this case, S-SCG14).
  • the second signal is a signal obtained by performing signal processing on the first signal so that the symbol length becomes the second symbol length.
  • the terminal 200 includes a control unit (wireless line control unit 206F).
  • Radio link control unit 206F synchronizes using the first signal transmitted from base station 100 in P-SCG10.
  • the radio network controller 206F synchronizes using the second signal transmitted from the base station 100 in the S-SCG 14.
  • the subcarrier interval is set to 2 n times (n is an integer) with respect to S-SCG.
  • the base station 100 multiplies the basic first signal (the first synchronization signal and the first pilot signal) by an orthogonal code (spreading code) such as OVSF.
  • the base station 100 spreads the first signal (the first synchronization signal and the first pilot signal) in the frequency axis direction so that the symbol length becomes 1/2 n times (the second signal (the first synchronization signal)). 2 synchronization signals and second pilot signal).
  • Base station 100 then transmits the second signal (second synchronization signal and second pilot signal) to terminal 200.
  • terminal 200 can receive the received second synchronization signal and second pilot signal with the same frequency bandwidth as P-SCG10 (T-SCG) even in S-SCGs having different subcarrier intervals and symbol lengths. Can be used for synchronization processing.
  • the number of signal sequences can be based on the number of cells (or cell IDs) rather than the number of SCGs. For example, when four SCGs are assigned to one cell that defines a base station and the number of cell IDs is 504, the synchronization signal and the pilot signal do not need to be 2016 sequences, and may be 504 sequences.
  • each component in the embodiment does not necessarily need to be physically configured as illustrated.
  • the specific form of distribution / integration of each part is not limited to the one shown in the figure, and all or a part thereof may be functionally or physically distributed / integrated in arbitrary units according to various loads and usage conditions. Can be configured.
  • each device is executed entirely or arbitrarily on a CPU (Central Processing Unit) (or a micro computer such as MPU (Micro Processing Unit) or MCU (Micro Controller Unit)). You may make it do.
  • Various processes may be executed in whole or in any part on a program that is analyzed and executed by a CPU (or a microcomputer such as an MPU or MCU) or hardware based on wired logic.
  • the base station 100 and the terminal 200 of the embodiment can be realized by the following hardware configuration, for example.
  • FIG. 23 is a diagram illustrating an example of a hardware configuration of the base station 100.
  • the base station 100 includes a processor 1001, a memory 1002, an RF (Radio Frequency) unit 1003, an antenna 1004, and a network interface (IF) 1005.
  • the processor 1001 include a CPU, a DSP (Digital Signal Processor), and an FPGA (Field Programmable Gate Array).
  • the memory 1002 include a RAM (Random Access Memory) such as SDRAM (Synchronous Dynamic Random Access Memory), a ROM (Read Only Memory), a flash memory, and the like.
  • the various processes performed in the base station 100 may be realized by the processor 1001 executing programs stored in various memories such as a nonvolatile storage medium. That is, a program corresponding to each process executed by each configuration may be recorded in the memory 1002, and each program may be executed by the processor 1001.
  • each configuration includes reception signal processing unit 103F, control signal extraction unit 104, radio channel quality measurement unit 105, radio channel control unit 106F, control signal generation unit 107, transmission signal processing unit 109F, and pilot signal generation unit 112. This corresponds to the synchronization signal generation unit 113.
  • the system information storage unit 108F is realized by the memory 1002.
  • the reception radio unit 102, the transmission radio unit 110, and the subcarrier generation unit 111 are realized by the RF unit 1003.
  • the antenna 101 is realized by the antenna 1004.
  • FIG. 24 is a diagram illustrating an example of a hardware configuration of the terminal 200.
  • the terminal 200 includes a processor 2001, a memory 2002, an RF unit 2003, and an antenna 2004.
  • Examples of the processor 2001 include a CPU, a DSP, and an FPGA.
  • Examples of the memory 2002 include RAM such as SDRAM, ROM, flash memory, and the like.
  • the various processes performed by the terminal 200 may be realized by the processor 2001 executing programs stored in various memories such as a nonvolatile storage medium. That is, a program corresponding to each process executed by each configuration may be recorded in the memory 2002, and each program may be executed by the processor 2001.
  • each configuration corresponds to the reception signal processing unit 203F, the control signal extraction unit 204, the radio channel quality measurement unit 205, the radio channel control unit 206F, the control signal generation unit 207, and the transmission signal processing unit 209F.
  • Each component corresponds to the pilot signal generation unit 212, the synchronization signal generation unit 213, the pilot signal extraction unit 214, the synchronization signal extraction unit 215, and the synchronization processing unit 216.
  • the system information storage unit 208 is realized by the memory 2002.
  • the reception radio unit 202, the transmission radio unit 210, and the subcarrier generation unit 211 are realized by the RF unit 2003.
  • the antenna 201 is realized by the antenna 2004.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A radio communication system comprises a base station and a terminal that use a single system band to perform communications. The base station comprises a radio channel control unit, a first control unit and a second control unit. The radio channel control unit allocates, in the system band, first and second subcarrier groups (which will be referred to as SCGs hereinafter) for which first and second symbol lengths in system information are different. The first control unit transmits in the first SCG a first signal for terminal synchronization to the terminal. The second control unit transmits in the second SCG a second signal obtained by signal-processing the first signal such that the symbol length becomes the second symbol length.

Description

基地局、端末、無線通信システムおよび無線通信方法Base station, terminal, radio communication system and radio communication method
 本発明は、基地局、端末、無線通信システムおよび無線通信方法に関する。 The present invention relates to a base station, a terminal, a wireless communication system, and a wireless communication method.
 OFDM(Orthogonal Frequency Division Multiplexing)を用いる無線通信システムが知られている。OFDMを用いる無線通信システムにおいて、端末は、基地局からの同期信号およびパイロット信号(参照信号とも呼ばれる)を用いて同期処理を行ない、基地局が規定されているセルの選択を実施する。その後、端末は、システム情報に基づいて、基地局に対してランダムアクセスプロシジャ(無線回線設定)を行なう。その結果、ランダムアクセスにより基地局と端末との無線回線が確立する。 A wireless communication system using OFDM (Orthogonal Frequency Division Multiplexing) is known. In a wireless communication system using OFDM, a terminal performs synchronization processing using a synchronization signal and a pilot signal (also referred to as a reference signal) from a base station, and performs selection of a cell in which the base station is defined. Thereafter, the terminal performs a random access procedure (radio line setting) for the base station based on the system information. As a result, a radio link between the base station and the terminal is established by random access.
 OFDMを用いる無線通信システムでは、システム帯域が複数の周波数帯域に分割され、各周波数帯域に無線リソースが割り当てられる。システム帯域は、無線通信システムを構成する1つの周波数帯域である。上記システム情報は、無線リソース、サブキャリア間隔、シンボル長、サブフレーム長などを含む。OFDMを用いる場合、各周波数帯域において、サブキャリア数、サブキャリア間隔、TTI(Transmission Time Interval)、シンボル数が同じである。また、各周波数帯域において、シンボル長、スロット長、サブフレーム長、フレーム長が同じである。したがって、OFDMを用いる場合、システム帯域全体に対して波形成形(フィルタリング)が実施される。 In a radio communication system using OFDM, a system band is divided into a plurality of frequency bands, and radio resources are allocated to each frequency band. The system band is one frequency band constituting the wireless communication system. The system information includes radio resources, subcarrier intervals, symbol lengths, subframe lengths, and the like. When OFDM is used, the number of subcarriers, subcarrier interval, TTI (Transmission Time Interval), and number of symbols are the same in each frequency band. In each frequency band, the symbol length, slot length, subframe length, and frame length are the same. Therefore, when OFDM is used, waveform shaping (filtering) is performed on the entire system band.
 上述のように、OFDMを用いる無線通信システムでは、システム帯域内でシステム情報が同一である。このため、端末は、基地局に対して同期処理を行ない、事前に通知された同一のシステム情報を用いて、基地局と無線通信を行なう。 As described above, in a wireless communication system using OFDM, system information is the same within a system band. For this reason, the terminal performs synchronization processing with respect to the base station, and performs radio communication with the base station using the same system information notified in advance.
特開2013-232910号公報JP 2013-232910 A 特表2006-504367号公報JP 2006-504367
 近年では、F-OFDM(Filtered-Orthogonal Frequency Division Multiplexing)を用いる無線通信システムが検討されている。 In recent years, wireless communication systems using F-OFDM (Filtered-Orthogonal Frequency Division Multiplexing) have been studied.
 F-OFDMを用いる無線通信システムでは、システム帯域が複数の周波数帯域に分割される。さらに、各周波数帯域が複数のサブキャリアグループ(以下、SCGと記載する)に分割され、各SCGに無線リソースが割り当てられる。システム帯域は、無線通信システムを構成する1つの周波数帯域である。また、SCGは、クラスタ、または、サブキャリアブロック(SCB)とも呼ばれる場合がある。F-OFDMを用いる場合、各SCGは複数のサブキャリアで構成され、各SCGにおいて、サブキャリア数、サブキャリア間隔、TTI、シンボル長などの少なくとも1つが異なる。したがって、F-OFDMを用いる場合、SCG毎に波形成形(フィルタリング)が実施される。 In a wireless communication system using F-OFDM, the system band is divided into a plurality of frequency bands. Further, each frequency band is divided into a plurality of subcarrier groups (hereinafter referred to as SCG), and radio resources are allocated to each SCG. The system band is one frequency band constituting the wireless communication system. SCG may also be referred to as a cluster or a subcarrier block (SCB). When F-OFDM is used, each SCG is composed of a plurality of subcarriers, and at least one of the number of subcarriers, subcarrier spacing, TTI, symbol length, and the like is different in each SCG. Therefore, when F-OFDM is used, waveform shaping (filtering) is performed for each SCG.
 上述のように、F-OFDMを用いる無線通信システムでは、SCG毎にシステム情報が異なる。例えば、SCG毎にシステム情報のサブキャリア間隔やシンボル長などが異なる。この場合、端末は、サブキャリア間隔やシンボル長などが異なるSCGに対して同期のタイミングが異なるため、基地局に対して同期処理を行なうことができない。その結果、端末は、基地局と無線通信を行なうことができない。 As described above, in a wireless communication system using F-OFDM, system information differs for each SCG. For example, the subcarrier interval and symbol length of the system information are different for each SCG. In this case, since the synchronization timing differs for SCGs having different subcarrier intervals, symbol lengths, etc., the terminal cannot perform synchronization processing on the base station. As a result, the terminal cannot perform wireless communication with the base station.
 本願に開示の技術は、SCG毎に端末が同期処理を行なう。 In the technology disclosed in the present application, the terminal performs a synchronization process for each SCG.
 1つの態様では、無線通信システムは、1つのシステム帯域を用いて通信する基地局と端末とを含む。基地局は、無線回線制御部と、第1の制御部と、第2の制御部と、を有する。無線回線制御部は、システム帯域内にシステム情報の第1、第2のシンボル長がそれぞれ異なる第1、第2のサブキャリアグループ(以下、SCGと記載する)を割り当てる。第1の制御部は、第1のSCGにおいて、端末が同期するための第1の信号を端末に送信する。第2の制御部は、第2のSCGにおいて、シンボル長が第2のシンボル長となるように第1の信号を信号処理した第2の信号を送信する。 In one aspect, the wireless communication system includes a base station and a terminal that communicate using one system band. The base station includes a radio network controller, a first controller, and a second controller. The radio network controller allocates first and second subcarrier groups (hereinafter referred to as SCG) having different first and second symbol lengths of system information within the system band. A 1st control part transmits the 1st signal for a terminal to synchronize in a 1st SCG to a terminal. In the second SCG, the second control unit transmits a second signal obtained by performing signal processing on the first signal so that the symbol length becomes the second symbol length.
 1つの側面では、SCG毎に端末が同期処理を行なうことができる。 In one aspect, the terminal can perform synchronization processing for each SCG.
図1は、無線通信システムの一例を示す図である。FIG. 1 is a diagram illustrating an example of a wireless communication system. 図2は、OFDMを用いる場合の基地局の一例を示す図である。FIG. 2 is a diagram illustrating an example of a base station when OFDM is used. 図3は、OFDMを用いる場合の端末の一例を示す図である。FIG. 3 is a diagram illustrating an example of a terminal when OFDM is used. 図4は、OFDMを用いる場合の受信信号処理部の一例を示す図である。FIG. 4 is a diagram illustrating an example of a received signal processing unit when OFDM is used. 図5は、OFDMを用いる場合の送信信号処理部の一例を示す図である。FIG. 5 is a diagram illustrating an example of a transmission signal processing unit when OFDM is used. 図6は、OFDMを用いる場合のシステム帯域の一例を示す図である。FIG. 6 is a diagram illustrating an example of a system band when OFDM is used. 図7は、OFDMを用いる場合の無線回線設定時の動作の一例を示すシーケンスである。FIG. 7 is a sequence showing an example of an operation at the time of setting a wireless line when using OFDM. 図8は、実施例に係る無線通信システムにおいて、F-OFDMを用いる場合のシステム帯域の一例を示す図である。FIG. 8 is a diagram illustrating an example of a system band when F-OFDM is used in the wireless communication system according to the embodiment. 図9は、実施例に係る無線通信システムにおいて、F-OFDMを用いる場合の各SCGの一例を示す図である。FIG. 9 is a diagram illustrating an example of each SCG when F-OFDM is used in the wireless communication system according to the embodiment. 図10は、OVSFコードの一例を示す図である。FIG. 10 is a diagram illustrating an example of the OVSF code. 図11は、OVSFコードをLTEに適用した場合の同期信号の一例を示す図である。FIG. 11 is a diagram illustrating an example of a synchronization signal when the OVSF code is applied to LTE. 図12は、時間軸方向における第2の同期信号の一例を示す図である。FIG. 12 is a diagram illustrating an example of the second synchronization signal in the time axis direction. 図13は、サブキャリア軸(周波数軸)方向における第2の同期信号の一例を示す図である。FIG. 13 is a diagram illustrating an example of the second synchronization signal in the subcarrier axis (frequency axis) direction. 図14は、実施例に係る無線通信システムにおいて、F-OFDMを用いる場合の端末の一例を示す図である。FIG. 14 is a diagram illustrating an example of a terminal when F-OFDM is used in the wireless communication system according to the embodiment. 図15は、実施例に係る無線通信システムにおいて、F-OFDMを用いる場合の基地局の一例を示す図である。FIG. 15 is a diagram illustrating an example of a base station when F-OFDM is used in the wireless communication system according to the embodiment. 図16は、実施例に係る無線通信システムにおいて、F-OFDMを用いる場合のシステム情報記憶部の一例を示す図である。FIG. 16 is a diagram illustrating an example of a system information storage unit when F-OFDM is used in the wireless communication system according to the embodiment. 図17は、実施例に係る無線通信システムにおいて、F-OFDMを用いる場合の受信信号処理部の一例を示す図である。FIG. 17 is a diagram illustrating an example of a received signal processing unit when F-OFDM is used in the wireless communication system according to the embodiment. 図18は、実施例に係る無線通信システムにおいて、F-OFDMを用いる場合の送信信号処理部の一例を示す図である。FIG. 18 is a diagram illustrating an example of a transmission signal processing unit when F-OFDM is used in the wireless communication system according to the embodiment. 図19は、実施例に係る無線通信システムにおいて、F-OFDMを用いる場合の無線回線制御部の一例を示す図である。FIG. 19 is a diagram illustrating an example of a radio channel controller when F-OFDM is used in the radio communication system according to the embodiment. 図20は、実施例に係る無線通信システムの動作として、SCG追加処理の一例を示すシーケンスである。FIG. 20 is a sequence illustrating an example of SCG addition processing as the operation of the wireless communication system according to the embodiment. 図21は、実施例に係る無線通信システムの動作として、SCG変更処理の一例を示すシーケンスである。FIG. 21 is a sequence illustrating an example of the SCG change process as the operation of the wireless communication system according to the embodiment. 図22は、実施例に係る無線通信システムの動作として、SCG選択処理の一例を示すフローチャートである。FIG. 22 is a flowchart illustrating an example of the SCG selection process as the operation of the wireless communication system according to the embodiment. 図23は、基地局のハードウェア構成の一例を示す図である。FIG. 23 is a diagram illustrating an example of a hardware configuration of the base station. 図24は、端末のハードウェア構成の一例を示す図である。FIG. 24 is a diagram illustrating an example of a hardware configuration of the terminal.
 以下に、本願の開示する基地局、端末、無線通信システムおよび無線通信方法の実施例を、図面に基づいて詳細に説明する。なお、以下の実施例は開示の技術を限定するものではない。 Hereinafter, embodiments of a base station, a terminal, a wireless communication system, and a wireless communication method disclosed in the present application will be described in detail based on the drawings. The following examples do not limit the disclosed technology.
 実施例に係る無線通信システムでは、伝送形式として、F-OFDM(Filtered-Orthogonal Frequency Division Multiplexing)が用いられる。ここで、F-OFDMを用いる無線通信システムと、OFDMを用いる無線通信システムとの違いを説明するために、まず、OFDMを用いる無線通信システムについて説明する。その後に、実施例として、F-OFDMを用いる無線通信システムについて説明する。 In the wireless communication system according to the embodiment, F-OFDM (Filtered-Orthogonal Frequency Division Multiplexing) is used as a transmission format. Here, in order to explain the difference between a radio communication system using F-OFDM and a radio communication system using OFDM, first, a radio communication system using OFDM will be described. Thereafter, a wireless communication system using F-OFDM will be described as an embodiment.
 [1. OFDMを用いる無線通信システム]
 図1は、無線通信システムの一例を示す図である。無線通信システムは、基地局100と、端末200とを有する。
[1. Wireless communication system using OFDM]
FIG. 1 is a diagram illustrating an example of a wireless communication system. The wireless communication system includes a base station 100 and a terminal 200.
 基地局100および端末200は無線通信を行なう。基地局100の上位には、例えばLTE(Long Term Evolution)におけるMME(Mobility Management Entity)41、SGW(Serving Gateway)42、PGW(Packet data network Gateway)43が設けられている。MME41は、ネットワーク制御を行なうゲートウェイである。SGW42は、ユーザデータを扱うゲートウェイである。PGW43は、外部のインターネットなどに接続するためのゲートウェイである。 Base station 100 and terminal 200 perform wireless communication. Above the base station 100, for example, an MME (Mobility Management Entity) 41, an SGW (Serving Gateway) 42, and a PGW (Packet data network Gateway) 43 in LTE (Long Term Evolution) are provided. The MME 41 is a gateway that performs network control. The SGW 42 is a gateway that handles user data. The PGW 43 is a gateway for connecting to an external Internet or the like.
 端末200は、例えばLTEにおけるUE(User Equipment)である。基地局100は、例えばLTEにおけるeNB(evolved Node B)である。なお、3GPP(3rd Generation Partnership Project)では、第5世代移動通信システム(5G)が検討されている。5Gでは、新しい通信技術として、New RAT(Radio Access Technology)を採用することが検討されている。New RATでは、eNBは、5GNB(5Gの基地局)またはgNBと呼ばれている。 The terminal 200 is, for example, a UE (User Equipment) in LTE. The base station 100 is, for example, an eNB (evolved Node B) in LTE. In the 3GPP (3rd Generation Partnership Project), the fifth generation mobile communication system (5G) is being studied. In 5G, adoption of New RAT (Radio Access Technology) as a new communication technology is being studied. In New RAT, eNB is called 5GNB (5G base station) or gNB.
 [1.1 OFDMを用いる場合の基地局の構成]
 図2は、OFDMを用いる場合の基地局100の一例を示す図である。基地局100は、アンテナ101、受信無線部102、受信信号処理部103、制御信号抽出部104、無線回線品質測定部105、無線回線制御部106、制御信号生成部107、システム情報記憶部108、送信信号処理部109、送信無線部110を有する。また、基地局100は、サブキャリア生成部111、パイロット信号生成部112、同期信号生成部113を有する。
[1.1 Base station configuration when OFDM is used]
FIG. 2 is a diagram illustrating an example of the base station 100 when OFDM is used. The base station 100 includes an antenna 101, a reception radio unit 102, a reception signal processing unit 103, a control signal extraction unit 104, a radio channel quality measurement unit 105, a radio channel control unit 106, a control signal generation unit 107, a system information storage unit 108, A transmission signal processing unit 109 and a transmission radio unit 110 are included. In addition, the base station 100 includes a subcarrier generation unit 111, a pilot signal generation unit 112, and a synchronization signal generation unit 113.
 受信無線部102は、無線回線制御部106からの制御(図2中の点線)により動作する。受信無線部102は、端末200から送信された信号を、アンテナ101を介して受信する。受信無線部102は、受信した信号を増幅して、増幅した信号をベースバンド信号に周波数変換する。そして、受信無線部102は、周波数変換した信号を受信信号処理部103に出力する。 The reception radio unit 102 operates under the control (dotted line in FIG. 2) from the radio line control unit 106. Reception radio section 102 receives a signal transmitted from terminal 200 via antenna 101. Reception radio section 102 amplifies the received signal and frequency-converts the amplified signal into a baseband signal. Reception radio section 102 then outputs the frequency-converted signal to reception signal processing section 103.
 受信信号処理部103は、無線回線制御部106からの制御(図2中の点線)により動作する。受信信号処理部103は、受信無線部102から出力された信号を受け取る。 The received signal processing unit 103 operates under the control (dotted line in FIG. 2) from the wireless line control unit 106. The reception signal processing unit 103 receives the signal output from the reception wireless unit 102.
 図4は、OFDMを用いる場合の受信信号処理部の一例を示す図である。OFDMを用いる場合、受信信号処理部103は、ADC(Analog to Digital Converter)301、CP(Cyclic Prefix)除去部302、FFT(Fast Fourier Transform)部303、復調・復号部304を有する。CPは、一般的には、GI(Guard Interval)や冗長部と呼ばれている。 FIG. 4 is a diagram illustrating an example of a received signal processing unit when OFDM is used. When OFDM is used, the received signal processing unit 103 includes an ADC (Analog to Digital Converter) 301, a CP (Cyclic Prefix) removal unit 302, an FFT (Fast Fourier Transform) unit 303, and a demodulation / decoding unit 304. The CP is generally called a GI (Guard Interval) or a redundant part.
 ADC301は、受信無線部102から出力された信号をデジタル信号に変換する。そして、ADC301は、変換したデジタル信号をCP除去部302に出力する。 The ADC 301 converts the signal output from the reception wireless unit 102 into a digital signal. Then, the ADC 301 outputs the converted digital signal to the CP removal unit 302.
 CP除去部302は、ADC301から出力されたデジタル信号からCP(Cyclic Prefix)を除去する。そして、CP除去部302は、CPを除去した信号をFFT部303に出力する。 The CP removing unit 302 removes a CP (Cyclic Prefix) from the digital signal output from the ADC 301. Then, CP removing section 302 outputs the signal from which CP has been removed to FFT section 303.
 FFT部303は、CP除去部302から出力された信号に対して、FFTを行なう。これにより、CP除去部302から出力された信号が、時間領域の信号から、周波数領域の信号に変換される。FFT部303は、FFTが行なわれた信号を復調・復号部304に出力する。 The FFT unit 303 performs FFT on the signal output from the CP removal unit 302. As a result, the signal output from the CP removing unit 302 is converted from a time domain signal to a frequency domain signal. FFT section 303 outputs the signal subjected to the FFT to demodulation / decoding section 304.
 復調・復号部304は、FFT部303から出力された信号を復調する。そして、復調・復号部304は、復調後の信号を復号する。復調・復号部304は、復号が行なわれた信号を出力する。 The demodulation / decoding unit 304 demodulates the signal output from the FFT unit 303. Then, the demodulator / decoder 304 decodes the demodulated signal. Demodulation / decoding section 304 outputs the decoded signal.
 受信信号処理部103から出力された信号には、制御信号や個別データ(Dedicated data)が含まれる。制御信号は、個別制御情報(Dedicated control information)、共通制御情報(Common control information)の少なくとも1つを含む。個別データは、端末200のデータ信号を表す。制御信号や個別データは、受信信号処理部103から上位に伝送される。ここで、上位とは、例えばLTEにおけるMAC(Media Access Control)に相当する。 The signal output from the received signal processing unit 103 includes a control signal and individual data (Dedicated data). The control signal includes at least one of individual control information (Dedicated control information) and common control information (Common control information). The individual data represents a data signal of the terminal 200. Control signals and individual data are transmitted from the received signal processing unit 103 to the upper level. Here, the upper level corresponds to, for example, a MAC (Media Access Control) in LTE.
 図2に戻り、制御信号抽出部104は、受信信号処理部103から出力された信号から制御信号を抽出する。制御信号抽出部104は、抽出した制御信号を無線回線制御部106に出力する。 2, the control signal extraction unit 104 extracts a control signal from the signal output from the reception signal processing unit 103. The control signal extraction unit 104 outputs the extracted control signal to the radio channel control unit 106.
 無線回線品質測定部105は、受信信号処理部103から出力された信号に基づいて、無線回線品質を測定する。そして、無線回線品質測定部105は、測定した無線回線品質を上り無線回線品質情報として無線回線制御部106に出力する。 The radio channel quality measurement unit 105 measures the radio channel quality based on the signal output from the received signal processing unit 103. Radio channel quality measurement section 105 then outputs the measured radio channel quality to radio channel control section 106 as uplink radio channel quality information.
 無線回線制御部106は、制御信号抽出部104から出力された制御信号に基づいて、RRC(Radio Resource Control)層の処理を行なう。すなわち、無線リソースの制御が行なわれる。なお、RRCは無線リソース制御又は無線回線制御とも呼ばれている。 The radio network controller 106 performs RRC (Radio Resource Control) layer processing based on the control signal output from the control signal extractor 104. That is, radio resource control is performed. RRC is also called radio resource control or radio channel control.
 また、無線回線制御部106は、制御信号抽出部104から出力された制御信号に含まれる下り無線回線品質情報と、無線回線品質測定部105から出力された上り無線回線品質情報とに基づいて、後述のスケジューリングを実施する。無線回線制御部106は、スケジューリングの結果を制御信号生成部107に出力する。 Further, the radio channel control unit 106, based on the downlink radio channel quality information included in the control signal output from the control signal extraction unit 104 and the uplink radio channel quality information output from the radio channel quality measurement unit 105, The scheduling described later is performed. Radio channel controller 106 outputs the scheduling result to control signal generator 107.
 制御信号生成部107は、無線回線制御部106から出力されたスケジューリングの結果に基づいて制御信号を生成する。制御信号生成部107は、生成した制御信号を送信信号処理部109に出力する。 The control signal generation unit 107 generates a control signal based on the scheduling result output from the wireless line control unit 106. The control signal generation unit 107 outputs the generated control signal to the transmission signal processing unit 109.
 パイロット信号生成部112は、各々異なるパイロット信号を表すパイロット信号列を生成する。パイロット信号は、例えば、LTEにおける参照信号(RS;Reference Signal)などの信号である。パイロット信号生成部112は、生成したパイロット信号列を送信信号処理部109に出力する。 The pilot signal generator 112 generates a pilot signal sequence that represents a different pilot signal. The pilot signal is, for example, a signal such as a reference signal (RS) in LTE. Pilot signal generation section 112 outputs the generated pilot signal sequence to transmission signal processing section 109.
 同期信号生成部113は、各々異なる同期信号を表す同期信号列を生成する。例えば、LTEでは、同期信号生成部113は、基地局100が規定されているセルのセルIDと同期信号を伝送する際に用いるスロット番号またはサブフレーム番号とを用いて、各々異なる同期信号を表す同期信号列を生成する。同期信号生成部113は、生成した同期信号列を送信信号処理部109に出力する。 The synchronization signal generator 113 generates a synchronization signal sequence that represents a different synchronization signal. For example, in LTE, the synchronization signal generation unit 113 represents different synchronization signals by using the cell ID of the cell in which the base station 100 is defined and the slot number or subframe number used when transmitting the synchronization signal. A synchronization signal train is generated. The synchronization signal generation unit 113 outputs the generated synchronization signal sequence to the transmission signal processing unit 109.
 サブキャリア生成部111は、無線回線制御部106からの制御(図2中の点線)により動作する。サブキャリア生成部111は、サブキャリアを生成して送信信号処理部109に出力する。 The subcarrier generation unit 111 operates under the control (dotted line in FIG. 2) from the radio channel control unit 106. The subcarrier generation unit 111 generates a subcarrier and outputs it to the transmission signal processing unit 109.
 送信信号処理部109は、無線回線制御部106からの制御(図2中の点線)により動作する。送信信号処理部109は、上位からのデータ信号と、制御信号生成部107から出力された制御信号と、パイロット信号生成部112から出力されたパイロット信号列と、同期信号生成部113から出力された同期信号列と、サブキャリア生成部111から出力されたサブキャリアとを受け取る。 The transmission signal processing unit 109 operates under the control from the wireless line control unit 106 (dotted line in FIG. 2). The transmission signal processing unit 109 is a data signal from the host, the control signal output from the control signal generation unit 107, the pilot signal sequence output from the pilot signal generation unit 112, and the synchronization signal generation unit 113. The synchronization signal sequence and the subcarrier output from the subcarrier generation unit 111 are received.
 図5は、OFDMを用いる場合の送信信号処理部の一例を示す図である。OFDMを用いる場合、送信信号処理部109は、符号化・変調部401、サブキャリアマッピング部402、IFFT(Inverse Fast Fourier Transform)部403を有する。また、上記送信信号処理部109は、更に、CP(Cyclic Prefix)付加部404、DAC(Digital to Analog Converter)405を有する。 FIG. 5 is a diagram illustrating an example of a transmission signal processing unit when OFDM is used. When OFDM is used, the transmission signal processing unit 109 includes an encoding / modulation unit 401, a subcarrier mapping unit 402, and an IFFT (Inverse Fast Fourier Transform) unit 403. The transmission signal processing unit 109 further includes a CP (Cyclic Prefix) adding unit 404 and a DAC (Digital to Analog Converter) 405.
 符号化・変調部401は、上位からのデータ信号と、制御信号生成部107から出力された制御信号と、パイロット信号生成部112から出力されたパイロット信号列と、同期信号生成部113から出力された同期信号列とを符号化する。そして、符号化・変調部401は、符号化した信号を変調する。符号化・変調部401は、変調後の信号をサブキャリアマッピング部402に出力する。 The encoding / modulation unit 401 outputs the data signal from the higher level, the control signal output from the control signal generation unit 107, the pilot signal sequence output from the pilot signal generation unit 112, and the synchronization signal generation unit 113. The synchronized signal sequence is encoded. The encoding / modulating unit 401 modulates the encoded signal. Encoding / modulating section 401 outputs the modulated signal to subcarrier mapping section 402.
 サブキャリアマッピング部402は、符号化・変調部401から出力された信号と、サブキャリア生成部111から出力されたサブキャリアとを受け取る。そして、サブキャリアマッピング部402は、符号化・変調部401によって変調された信号の変調シンボルをサブキャリアにマッピングする、又は変調シンボルとサブキャリアを乗算する。例えば、FDD(Frequency Division Duplex、周波数分割複信)を用いるLTEでは、サブキャリアマッピング部402は、同期信号を送信するサブフレームにおいて、次のように、生成した同期信号をマッピングする。例えば、サブキャリアマッピング部402は、サブキャリア軸方向の通信に使用するシステム帯域の中心の6RB(Resource Block)で、時間軸方向のサブフレームの最後のシンボルまたは最後から2番目のシンボルに、生成した同期信号をマッピングする。サブキャリアマッピング部402は、マッピングした信号をIFFT部403に出力する。 The subcarrier mapping unit 402 receives the signal output from the encoding / modulation unit 401 and the subcarrier output from the subcarrier generation unit 111. Subcarrier mapping section 402 maps the modulation symbol of the signal modulated by encoding / modulation section 401 to the subcarrier, or multiplies the modulation symbol and the subcarrier. For example, in LTE using FDD (Frequency Division Duplex), subcarrier mapping section 402 maps the generated synchronization signal as follows in the subframe in which the synchronization signal is transmitted. For example, the subcarrier mapping unit 402 generates 6RB (Resource Block) at the center of the system band used for communication in the subcarrier axis direction, and generates the last symbol or the second symbol from the end of the subframe in the time axis direction. Mapping the synchronized signal. Subcarrier mapping section 402 outputs the mapped signal to IFFT section 403.
 IFFT部403は、サブキャリアマッピング部402から出力された信号を受け取る。そして、IFFT部403は、サブキャリアマッピング部402によってマッピングされた信号の変調シンボルに対して、IFFTを行なう。これにより、サブキャリアマッピング部402から出力された信号のシンボルが、周波数領域の変調シンボルから、時間領域の有効シンボルに変換される。IFFT部403は、IFFTが行なわれた信号をCP付加部404に出力する。 The IFFT unit 403 receives the signal output from the subcarrier mapping unit 402. Then, IFFT section 403 performs IFFT on the modulation symbol of the signal mapped by subcarrier mapping section 402. As a result, the symbol of the signal output from subcarrier mapping section 402 is converted from a modulation symbol in the frequency domain to an effective symbol in the time domain. IFFT section 403 outputs the signal subjected to IFFT to CP adding section 404.
 CP付加部404は、IFFT部403から出力された信号に対して、CP(Cyclic Prefix)を付加することにより、OFDMシンボルを生成する。CP付加部404は、生成したOFDMシンボルを、所定の無線周波数に変換する。そして、CP付加部404は、変換した信号をDAC405に出力する。 CP adding section 404 generates an OFDM symbol by adding a CP (Cyclic Prefix) to the signal output from IFFT section 403. CP adding section 404 converts the generated OFDM symbol into a predetermined radio frequency. Then, CP adding section 404 outputs the converted signal to DAC 405.
 DAC405は、CP付加部404から出力された信号をアナログ信号に変換する。そして、DAC405は、変換したアナログ信号を送信無線部110に出力する。 The DAC 405 converts the signal output from the CP adding unit 404 into an analog signal. Then, the DAC 405 outputs the converted analog signal to the transmission radio unit 110.
 図2に戻り、送信無線部110は、無線回線制御部106からの制御(図2中の点線)により動作する。送信無線部110は、送信信号処理部109から出力された信号をアンテナ101から送信する。 2, the transmission radio unit 110 operates under the control (dotted line in FIG. 2) from the radio line control unit 106. Transmission radio section 110 transmits the signal output from transmission signal processing section 109 from antenna 101.
 システム情報記憶部108は、システム情報を記憶する。システム情報については後述する。 The system information storage unit 108 stores system information. System information will be described later.
 [1.2 OFDMを用いる場合の端末の構成]
 図3は、OFDMを用いる場合の端末200の一例を示す図である。端末200は、アンテナ201、受信無線部202、受信信号処理部203、制御信号抽出部204、無線回線品質測定部205、無線回線制御部206、制御信号生成部207、システム情報記憶部208、送信信号処理部209、送信無線部210を有する。また、端末200は、サブキャリア生成部211、パイロット信号生成部212、同期信号生成部213、パイロット信号抽出部214、同期信号抽出部215、同期処理部216を有する。
[1.2 Terminal configuration when using OFDM]
FIG. 3 is a diagram illustrating an example of a terminal 200 when using OFDM. The terminal 200 includes an antenna 201, a reception radio unit 202, a reception signal processing unit 203, a control signal extraction unit 204, a radio channel quality measurement unit 205, a radio channel control unit 206, a control signal generation unit 207, a system information storage unit 208, a transmission A signal processing unit 209 and a transmission radio unit 210 are included. In addition, terminal 200 includes subcarrier generation section 211, pilot signal generation section 212, synchronization signal generation section 213, pilot signal extraction section 214, synchronization signal extraction section 215, and synchronization processing section 216.
 受信無線部202は、無線回線制御部206からの制御(図3中の点線)により動作する。受信無線部202は、基地局100から送信された信号を、アンテナ201を介して受信する。受信無線部202は、受信した信号を増幅して、増幅した信号をベースバンド信号に周波数変換する。そして、受信無線部202は、周波数変換した信号を受信信号処理部203に出力する。 The reception wireless unit 202 operates under the control from the wireless line control unit 206 (dotted line in FIG. 3). The reception radio unit 202 receives a signal transmitted from the base station 100 via the antenna 201. Reception radio section 202 amplifies the received signal and frequency-converts the amplified signal into a baseband signal. Then, reception radio section 202 outputs the frequency-converted signal to reception signal processing section 203.
 受信信号処理部203は、無線回線制御部206からの制御(図3中の点線)により動作する。受信信号処理部203は、受信無線部202から出力された信号を復調し、復調後の信号を復号する。ここで、端末200の受信信号処理部203の構成については、基地局100の受信信号処理部103の構成と同じであるため、詳細な説明を省略する。受信信号処理部203は、復号が行なわれた信号を、制御信号抽出部204、無線回線品質測定部205に出力する。 The reception signal processing unit 203 operates under the control (dotted line in FIG. 3) from the wireless line control unit 206. Reception signal processing section 203 demodulates the signal output from reception radio section 202 and decodes the demodulated signal. Here, the configuration of reception signal processing section 203 of terminal 200 is the same as the configuration of reception signal processing section 103 of base station 100, and thus detailed description thereof is omitted. Reception signal processing section 203 outputs the decoded signal to control signal extraction section 204 and radio channel quality measurement section 205.
 受信信号処理部203から出力された信号には、制御信号、データ信号、同期信号列、パイロット信号列などが含まれる。制御信号は、データ伝送に関する信号である。制御信号やデータ信号は、受信信号処理部203から上位に伝送される。ここで、上位とは、例えばLTEにおけるMACに相当する。 The signal output from the received signal processing unit 203 includes a control signal, a data signal, a synchronization signal sequence, a pilot signal sequence, and the like. The control signal is a signal related to data transmission. The control signal and the data signal are transmitted from the received signal processing unit 203 to the upper level. Here, the upper level corresponds to the MAC in LTE, for example.
 制御信号抽出部204は、受信信号処理部203から出力された信号から制御信号を抽出する。制御信号抽出部204は、抽出した制御信号を無線回線制御部206に出力する。 The control signal extraction unit 204 extracts a control signal from the signal output from the reception signal processing unit 203. The control signal extraction unit 204 outputs the extracted control signal to the radio channel control unit 206.
 同期信号抽出部215は、受信信号処理部203から出力された信号から同期信号列を抽出する。同期信号抽出部215は、抽出した同期信号列を同期処理部216に出力する。 The synchronization signal extraction unit 215 extracts a synchronization signal sequence from the signal output from the reception signal processing unit 203. The synchronization signal extraction unit 215 outputs the extracted synchronization signal sequence to the synchronization processing unit 216.
 パイロット信号抽出部214は、受信信号処理部203から出力された信号からパイロット信号列を抽出する。パイロット信号抽出部214は、抽出したパイロット信号列を無線回線品質測定部205、同期処理部216に出力する。 The pilot signal extraction unit 214 extracts a pilot signal sequence from the signal output from the reception signal processing unit 203. Pilot signal extraction section 214 outputs the extracted pilot signal sequence to radio channel quality measurement section 205 and synchronization processing section 216.
 ここで、セルが異なれば、セルIDは異なる。したがって、基地局100により生成される同期信号列も異なる。しかし、端末200は、抽出した同期信号列が、どの基地局(セル)から送信された同期信号列であるかを把握しているわけではない。また、端末200は、送信元の基地局(又はセル、セルID)を把握していない。 Here, if the cell is different, the cell ID is different. Therefore, the synchronization signal sequence generated by the base station 100 is also different. However, the terminal 200 does not know which base station (cell) the extracted synchronization signal sequence is the synchronization signal sequence transmitted from. Also, the terminal 200 does not grasp the transmission source base station (or cell, cell ID).
 そこで、同期信号生成部213は、複数の同期信号列を生成する。同期信号生成部113は、生成した複数の同期信号列を同期処理部216に出力する。 Therefore, the synchronization signal generation unit 213 generates a plurality of synchronization signal sequences. The synchronization signal generation unit 113 outputs the generated plurality of synchronization signal sequences to the synchronization processing unit 216.
 この場合、同期処理部216は、同期信号生成部113により生成された複数の同期信号列と、同期信号抽出部215により抽出された同期信号列とを比較する。比較の結果、同期処理部216は、同期信号生成部113により生成された複数の同期信号列の中から、同期信号抽出部215により抽出された同期信号列を特定する。すなわち、端末200は、同期処理部216が同期信号列を用いることにより、スロット単位またはサブフレーム単位で同期する同期処理を行なうことができる。 In this case, the synchronization processing unit 216 compares the plurality of synchronization signal sequences generated by the synchronization signal generation unit 113 with the synchronization signal sequence extracted by the synchronization signal extraction unit 215. As a result of the comparison, the synchronization processing unit 216 specifies the synchronization signal sequence extracted by the synchronization signal extraction unit 215 from the plurality of synchronization signal sequences generated by the synchronization signal generation unit 113. That is, terminal 200 can perform synchronization processing that synchronizes in units of slots or subframes, using synchronization signal sequence by synchronization processing section 216.
 また、パイロット信号生成部212は、複数のパイロット信号列を生成する。パイロット信号生成部212は、生成した複数のパイロット信号列を同期処理部216に出力する。 In addition, the pilot signal generation unit 212 generates a plurality of pilot signal sequences. The pilot signal generation unit 212 outputs the generated plurality of pilot signal sequences to the synchronization processing unit 216.
 この場合、同期処理部216は、パイロット信号生成部212により生成された複数のパイロット信号列と、パイロット信号抽出部214により抽出されたパイロット信号列とを比較する。比較の結果、同期処理部216は、パイロット信号生成部212により生成された複数のパイロット信号列の中から、パイロット信号抽出部214により抽出されたパイロット信号列を特定する。すなわち、端末200は、同期処理部216がパイロット信号列を用いることにより、シンボル単位で同期する同期処理を行なうことができる。 In this case, the synchronization processing unit 216 compares the plurality of pilot signal sequences generated by the pilot signal generation unit 212 with the pilot signal sequence extracted by the pilot signal extraction unit 214. As a result of the comparison, the synchronization processing unit 216 identifies the pilot signal sequence extracted by the pilot signal extraction unit 214 from the plurality of pilot signal sequences generated by the pilot signal generation unit 212. That is, terminal 200 can perform synchronization processing that is synchronized on a symbol-by-symbol basis when synchronization processing section 216 uses the pilot signal sequence.
 ここで、端末200は、同期信号とパイロットとの両方を用いて同期処理を行なっているが、同期信号とパイロット信号との一方を用いて同期処理を行なってもよい。 Here, terminal 200 performs the synchronization process using both the synchronization signal and the pilot, but may perform the synchronization process using one of the synchronization signal and the pilot signal.
 無線回線品質測定部205は、パイロット信号抽出部214から出力されたパイロット信号列に基づいて、無線回線品質を測定する。無線回線品質は、受信電力および受信品質の少なくとも1つを表す。受信電力は、例えばLTEにおける参照信号受信電力(RSRP:Reference Signal Received Power)である。受信品質は、例えばLTEにおける参照信号受信品質(RSRQ:Reference Signal Received Quality)である。無線回線品質測定部205は、測定した無線回線品質を下り無線回線品質情報として無線回線制御部206に出力する。 Radio channel quality measuring section 205 measures the radio channel quality based on the pilot signal sequence output from pilot signal extracting section 214. The radio channel quality represents at least one of reception power and reception quality. The received power is, for example, reference signal received power (RSRP: Reference Signal Received Power) in LTE. The reception quality is, for example, a reference signal reception quality (RSRQ) in LTE. The radio channel quality measurement unit 205 outputs the measured radio channel quality to the radio channel control unit 206 as downlink radio channel quality information.
 無線回線制御部206は、制御信号抽出部204から出力された制御信号に基づいて、RRC層の処理を行なう。すなわち、無線リソースの制御が行なわれる。また、無線回線制御部206は、無線回線品質測定部205から出力された下り無線回線品質情報を制御信号生成部207に出力する。 The radio network controller 206 performs RRC layer processing based on the control signal output from the control signal extractor 204. That is, radio resource control is performed. Radio channel control section 206 outputs downlink radio channel quality information output from radio channel quality measurement section 205 to control signal generation section 207.
 制御信号生成部207は、無線回線制御部206から出力された下り無線回線品質情報に基づいて、制御信号を生成する。そして、制御信号生成部207は、生成した制御信号を送信信号処理部209に出力する。 The control signal generator 207 generates a control signal based on the downlink radio channel quality information output from the radio channel controller 206. Then, the control signal generation unit 207 outputs the generated control signal to the transmission signal processing unit 209.
 サブキャリア生成部211は、無線回線制御部206からの制御(図3中の点線)により動作する。サブキャリア生成部211は、サブキャリアを生成して送信信号処理部209に出力する。 The subcarrier generation unit 211 operates by control from the wireless line control unit 206 (dotted line in FIG. 3). The subcarrier generation unit 211 generates subcarriers and outputs them to the transmission signal processing unit 209.
 送信信号処理部209は、無線回線制御部206からの制御(図3中の点線)により動作する。送信信号処理部209は、上位からのデータ信号と、制御信号生成部207から出力された制御信号とを符号化し、符号化した信号を変調する。送信信号処理部209は、変調後の信号を送信無線部210に出力する。ここで、端末200の送信信号処理部209の構成については、基地局100の送信信号処理部109の構成と同じであるため、詳細な説明を省略する。 The transmission signal processing unit 209 operates under the control from the wireless line control unit 206 (dotted line in FIG. 3). The transmission signal processing unit 209 encodes the data signal from the host and the control signal output from the control signal generation unit 207, and modulates the encoded signal. Transmission signal processing section 209 outputs the modulated signal to transmission radio section 210. Here, since the configuration of transmission signal processing section 209 of terminal 200 is the same as the configuration of transmission signal processing section 109 of base station 100, detailed description thereof will be omitted.
 送信無線部210は、無線回線制御部206からの制御(図3中の点線)により動作する。送信無線部210は、送信信号処理部209から出力された信号をアンテナ201から送信する。 The transmission radio unit 210 operates under the control from the radio line control unit 206 (dotted line in FIG. 3). Transmission radio section 210 transmits the signal output from transmission signal processing section 209 from antenna 201.
 システム情報記憶部208は、端末200に通知されたシステム情報を記憶する。システム情報については後述する。 The system information storage unit 208 stores the system information notified to the terminal 200. System information will be described later.
 [1.3 スケジューリングについて]
 基地局100の無線回線制御部106は、スケジューリングを行なう。
[1.3 About scheduling]
The radio network controller 106 of the base station 100 performs scheduling.
 例えば、基地局100の無線回線制御部106は、制御信号抽出部104から出力された制御信号に含まれる下り無線回線品質情報に基づいて、下りデータ伝送を行なう端末200を選択する。また、基地局100の無線回線制御部106は、無線回線品質測定部105から出力された上り無線回線品質情報に基づいて、上りデータ伝送を許可する端末200を選択する。 For example, the radio channel controller 106 of the base station 100 selects the terminal 200 that performs downlink data transmission based on the downlink radio channel quality information included in the control signal output from the control signal extractor 104. Also, the radio channel controller 106 of the base station 100 selects the terminal 200 that permits uplink data transmission based on the uplink radio channel quality information output from the radio channel quality measurement unit 105.
 スケジューリングの方法としては、CIR(Carrier to Interference Ratio)の高い端末200から選択するMax CIR法、無線回線品質を基に各端末200に公平に無線リソースを割り当てるプロポーショナル・フェアネス法があげられる。さらに、スケジューリングの方法としては、全ての端末200に均等に無線リソースを割り当てるラウンドロビン法などがあげられる。 Scheduling methods include a Max CIR method selected from a terminal 200 having a high CIR (Carrier to Interference Ratio), and a proportional fairness method that assigns radio resources fairly to each terminal 200 based on radio channel quality. Further, as a scheduling method, there is a round robin method in which radio resources are evenly allocated to all terminals 200.
 基地局100の無線回線制御部106は、選択した端末200に対して、データ伝送するときに用いる無線リソース、変調方式および符号化率を選択する。無線回線制御部106は、スケジューリングの結果として、選択した無線リソース、変調方式および符号化率を制御信号生成部107に出力する。制御信号生成部107は、無線回線制御部106から出力された無線リソース、変調方式および符号化率を、データ伝送に関する制御信号として生成する。その制御信号が基地局100から端末200に通知される。 The radio network controller 106 of the base station 100 selects radio resources, modulation schemes, and coding rates to be used when transmitting data to the selected terminal 200. Radio channel control section 106 outputs the selected radio resource, modulation scheme and coding rate to control signal generation section 107 as a result of scheduling. The control signal generation unit 107 generates the radio resource, modulation scheme, and coding rate output from the radio channel control unit 106 as a control signal related to data transmission. The control signal is notified from base station 100 to terminal 200.
 [1.4 無線回線確立(ランダムアクセス)について]
 例えば、端末200に電源が投入された場合、ユーザが端末200を移動させた場合、端末200において待ち受け状態が長くなった場合は、端末200は、セルの選択、または、セルの再選択を実施する。端末200の無線回線制御部206は、基地局100が規定されているセルの選択を実施したときに、端末200に事前に通知されているシステム情報を用いて、基地局100に対してランダムアクセスプロシジャを行なう。その結果、ランダムアクセスにより基地局100と端末200との無線回線が確立する。
[1.4 Establishing wireless connection (random access)]
For example, when the terminal 200 is turned on, when the user moves the terminal 200, or when the standby state becomes longer in the terminal 200, the terminal 200 performs cell selection or cell reselection. To do. The radio network controller 206 of the terminal 200 performs random access to the base station 100 using the system information notified in advance to the terminal 200 when the base station 100 selects a specified cell. Perform the procedure. As a result, the radio channel between the base station 100 and the terminal 200 is established by random access.
 ランダムアクセスとしては、システム情報を基に、プリアンブルの衝突を前提とし、端末200がランダムアクセスプリアンブルを選択して基地局100に通知するcontention based random access(詳細はTS36.300を参照)が例示される。この場合、端末200の無線回線制御部206は、ランダムアクセスプリアンブルを送信し、基地局100の無線回線制御部106は、端末200から送信されたランダムアクセスプリアンブルを受け取る。このとき、基地局100の無線回線制御部106は、ランダムアクセスプリアンブルに対する応答信号を生成する。基地局100の無線回線制御部106は、生成した応答信号を端末200に送信する。その結果、ランダムアクセスにより基地局100と端末200との無線回線が確立する。 Random access is exemplified by contention-based random access (see TS36.300 for details) in which terminal 200 selects a random access preamble and notifies base station 100 based on system information on the premise of collision of preambles. The In this case, radio channel controller 206 of terminal 200 transmits a random access preamble, and radio channel controller 106 of base station 100 receives the random access preamble transmitted from terminal 200. At this time, the radio network controller 106 of the base station 100 generates a response signal for the random access preamble. The radio network controller 106 of the base station 100 transmits the generated response signal to the terminal 200. As a result, the radio channel between the base station 100 and the terminal 200 is established by random access.
 また、他の周波数又は他の基地局へハンドオーバを実施する際にもランダムアクセスが実施される。この場合、ランダムアクセスとしては、使用されるランダムアクセスプリアンブルが基地局100から端末200に事前に与えられるnon-contention based random access(TS36.300を参照)が例示される。この場合、基地局100の無線回線制御部106は、ランダムアクセスプリアンブルを端末200に事前に通知している。端末200の無線回線制御部206は、ランダムアクセスプリアンブルを送信し、基地局100の無線回線制御部106は、端末200から送信されたランダムアクセスプリアンブルを受け取る。このとき、基地局100の無線回線制御部106は、ランダムアクセスプリアンブルに対する応答信号を生成する。無線回線制御部106は、生成した応答信号を端末200に送信する。その結果、ランダムアクセスにより基地局100と端末200との無線回線が確立する。 Also, random access is performed when performing handover to another frequency or another base station. In this case, examples of random access include non-contention based random access (see TS36.300) in which a random access preamble to be used is given from the base station 100 to the terminal 200 in advance. In this case, the radio network controller 106 of the base station 100 notifies the terminal 200 of the random access preamble in advance. Radio channel controller 206 of terminal 200 transmits a random access preamble, and radio channel controller 106 of base station 100 receives the random access preamble transmitted from terminal 200. At this time, the radio network controller 106 of the base station 100 generates a response signal for the random access preamble. The radio network controller 106 transmits the generated response signal to the terminal 200. As a result, the radio channel between the base station 100 and the terminal 200 is established by random access.
 [1.5 ハンドオーバについて]
 例えば、基地局100の無線回線制御部106は、端末200と接続しているときの第1の無線回線品質と、他の隣接する基地局からの第2の無線回線品質とを比較する。比較の結果、第1の無線回線品質の劣化により、第2の無線回線品質のほうが第1の無線回線品質よりも良好である。この場合、基地局100の無線回線制御部106は、他の基地局を、HO先の基地局として選択する。続いて、基地局100の無線回線制御部106は、選択した基地局に対してHO要求を送信する。基地局100の無線回線制御部106は、選択した基地局から、HO要求に対する個別プリアンブルを受信した場合、受信した個別プリアンブルをHO制御情報として端末200に通知する。端末200の無線回線制御部206は、基地局100から通知された個別プリアンブルを用いてnon-contention based random accessを実施する。これにより、HOが実施される。すなわち、端末200と通信を行なう基地局が、基地局100から、選択された基地局に切り替えられる。
[1.5 About handover]
For example, the radio channel controller 106 of the base station 100 compares the first radio channel quality when connected to the terminal 200 with the second radio channel quality from other adjacent base stations. As a result of the comparison, the second radio channel quality is better than the first radio channel quality due to the degradation of the first radio channel quality. In this case, the radio network controller 106 of the base station 100 selects another base station as the HO destination base station. Subsequently, the radio network controller 106 of the base station 100 transmits a HO request to the selected base station. When receiving the dedicated preamble for the HO request from the selected base station, the radio network controller 106 of the base station 100 notifies the terminal 200 of the received dedicated preamble as HO control information. The radio network controller 206 of the terminal 200 performs non-contention based random access using the dedicated preamble notified from the base station 100. Thereby, HO is implemented. That is, the base station that communicates with terminal 200 is switched from base station 100 to the selected base station.
 [1.6 システム情報について]
 図6は、OFDMを用いる場合のシステム帯域の一例を示す図である。OFDMを用いる無線通信システムでは、システム帯域が複数の周波数帯域に分割され、各周波数帯域に無線リソースが割り当てられる。システム帯域は、無線通信システムを構成する1つの周波数帯域である。システム帯域は、例えばLTEにおいては20MHzである。各周波数帯域は、例えばLTEにおけるRB(Resource Brock)である。
[1.6 About system information]
FIG. 6 is a diagram illustrating an example of a system band when OFDM is used. In a radio communication system using OFDM, a system band is divided into a plurality of frequency bands, and radio resources are allocated to each frequency band. The system band is one frequency band constituting the wireless communication system. The system band is 20 MHz in LTE, for example. Each frequency band is, for example, RB (Resource Brock) in LTE.
 OFDMを用いる無線通信システムでは、システム情報は、無線リソース、サブキャリア間隔、シンボル長、サブフレーム長などを含む。OFDMを用いる場合、各周波数帯域において、サブキャリア数、サブキャリア間隔、TTI(Transmission Time Interval)、シンボル数が同じである。また、各周波数帯域において、シンボル長、スロット長、サブフレーム長、フレーム長が同じである。したがって、OFDMを用いる場合、システム帯域全体に対して波形成形(フィルタリング)が実施される。 In a radio communication system using OFDM, system information includes radio resources, subcarrier spacing, symbol length, subframe length, and the like. When OFDM is used, the number of subcarriers, subcarrier interval, TTI (Transmission Time Interval), and number of symbols are the same in each frequency band. In each frequency band, the symbol length, slot length, subframe length, and frame length are the same. Therefore, when OFDM is used, waveform shaping (filtering) is performed on the entire system band.
 このように、OFDMを用いる無線通信システムでは、システム帯域内でシステム情報が同一である。このため、OFDMを用いる無線通信システムでは、端末200は、基地局に対して同期処理を行ない、事前に通知された同一のシステム情報を用いて、基地局100と無線通信を行なう。 Thus, in a wireless communication system using OFDM, the system information is the same within the system band. For this reason, in a radio communication system using OFDM, terminal 200 performs synchronization processing on the base station and performs radio communication with base station 100 using the same system information notified in advance.
 [1.7 同期処理について]
 図7は、OFDMを用いる場合の無線回線設定時の動作の一例を示すシーケンスである。
[1.7 About synchronization processing]
FIG. 7 is a sequence showing an example of an operation at the time of setting a wireless line when using OFDM.
 上述のように、基地局100の無線回線制御部106は、パイロット信号生成部112、同期信号生成部113を制御して、同期信号およびパイロット信号を生成する。基地局100の無線回線制御部106は、送信信号処理部109、送信無線部110を制御して、生成した同期信号およびパイロット信号を送信する(ステップS10)。端末200の無線回線制御部206は、受信無線部202、受信信号処理部203を制御して、基地局100から送信された同期信号およびパイロット信号を受信する。端末200の無線回線制御部206は、パイロット信号生成部212、同期信号生成部213、パイロット信号抽出部214、同期信号抽出部215、同期処理部216を制御して、受信した同期信号およびパイロット信号を用いて同期処理を行なう(ステップS11)。ここで、同期処理は、セル選択時に実施されてもよいし、セル再選択時やハンドオーバ時に実施されてもよい。以下、セル選択時の場合について説明する。 As described above, the radio channel controller 106 of the base station 100 controls the pilot signal generator 112 and the synchronization signal generator 113 to generate a synchronization signal and a pilot signal. The radio channel controller 106 of the base station 100 controls the transmission signal processor 109 and the transmission radio unit 110 to transmit the generated synchronization signal and pilot signal (step S10). Radio channel control section 206 of terminal 200 controls reception radio section 202 and reception signal processing section 203 to receive the synchronization signal and pilot signal transmitted from base station 100. Radio channel control section 206 of terminal 200 controls pilot signal generation section 212, synchronization signal generation section 213, pilot signal extraction section 214, synchronization signal extraction section 215, and synchronization processing section 216, and receives the received synchronization signal and pilot signal. Is used to perform synchronization processing (step S11). Here, the synchronization processing may be performed at the time of cell selection, or may be performed at the time of cell reselection or handover. Hereinafter, the case of cell selection will be described.
 まず、基地局100の無線回線制御部106は、システム帯域全体のシステム情報を端末200に通知する(ステップS12)。システム帯域全体のシステム情報は、例えば3GPPにおけるMIB(Master Information Block)、SIB(System Information Block)などである。システム情報は、無線リソース、サブキャリア間隔、シンボル長、サブフレーム長などの制御情報の他に、セルID、スロット番号、セル優先度を表す情報、セル選択のための情報、ランダムアクセスのための情報などを含む。なお、ここでは、具体的には示さないが、3GPPで規定されたW-CDMA仕様やLTE仕様に記載されている上記MIBや上記SIBに含まれる情報を含んでもよい。 First, the radio network controller 106 of the base station 100 notifies the terminal 200 of system information for the entire system band (step S12). The system information of the entire system band is, for example, MIB (Master Information Block) or SIB (System Information Block) in 3GPP. System information includes control information such as radio resources, subcarrier spacing, symbol length, subframe length, etc., cell ID, slot number, cell priority information, information for cell selection, and random access. Contains information. Although not specifically shown here, the information included in the MIB or the SIB described in the W-CDMA specification or LTE specification defined in 3GPP may be included.
 端末200の無線回線制御部206は、各基地局から送信された同期信号およびパイロット信号を受信する(ステップS13)。このとき、端末200の無線回線制御部206は、パイロット信号生成部212、同期信号生成部213、パイロット信号抽出部214、同期信号抽出部215、同期処理部216を制御して、受信した同期信号およびパイロット信号を用いて同期処理を行なう。 The radio network controller 206 of the terminal 200 receives the synchronization signal and pilot signal transmitted from each base station (step S13). At this time, radio channel control section 206 of terminal 200 controls pilot signal generation section 212, synchronization signal generation section 213, pilot signal extraction section 214, synchronization signal extraction section 215, and synchronization processing section 216, and receives the received synchronization signal. Then, synchronization processing is performed using the pilot signal.
 また、端末200の無線回線品質測定部205は、受信したパイロット信号に基づいて、無線回線品質を測定する。無線回線品質は、受信電力および受信品質の少なくとも1つを表す。受信電力は、例えばLTEにおける参照信号受信電力(RSRP:Reference Signal Received Power)である。受信品質は、例えばLTEにおける参照信号受信品質(RSRQ:Reference Signal Received Quality)である。端末200の無線回線制御部206は、測定した無線回線品質に基づいて、複数の基地局の中から、最も無線回線品質が良好な基地局、または、その基地局が規定されているセルを選択するセル選択処理を行なう。ここで、セル選択処理において、端末200の無線回線制御部206は、測定した無線回線品質に基づいて、基地局100が規定されているセルを選択したものとする(ステップS14)。 Also, the radio channel quality measurement unit 205 of the terminal 200 measures the radio channel quality based on the received pilot signal. The radio channel quality represents at least one of reception power and reception quality. The received power is, for example, reference signal received power (RSRP: Reference Signal Received Power) in LTE. The reception quality is, for example, a reference signal reception quality (RSRQ) in LTE. Based on the measured radio channel quality, radio channel control unit 206 of terminal 200 selects a base station with the best radio channel quality or a cell in which the base station is defined from a plurality of base stations. A cell selection process is performed. Here, in the cell selection process, it is assumed that the radio channel control unit 206 of the terminal 200 selects a cell in which the base station 100 is defined based on the measured radio channel quality (step S14).
 端末200の無線回線制御部206は、基地局100から通知されたシステム情報に基づいて、基地局100に対してランダムアクセスプロシジャを行なう(ステップS15)。基地局100の無線回線制御部106は、システム情報に基づくランダムアクセスにより、自身と端末200との間の無線回線の設定を行なう(ステップS16)。基地局100の無線回線制御部106は、自身と端末200との間の無線回線を用いて、自身と端末200との間のデータ伝送を行なう(ステップS17)。 The radio network controller 206 of the terminal 200 performs a random access procedure on the base station 100 based on the system information notified from the base station 100 (step S15). The radio channel controller 106 of the base station 100 sets a radio channel between itself and the terminal 200 by random access based on the system information (step S16). The radio channel controller 106 of the base station 100 performs data transmission between itself and the terminal 200 using the radio channel between itself and the terminal 200 (step S17).
 [2. F-OFDMを用いる無線通信システム(実施例)]
 次に、実施例に係る無線通信システムとして、F-OFDMを用いる無線通信システムについて説明する。ここで、実施例では、OFDMを用いる無線通信システムと同じ説明については省略する。
[2. Wireless communication system using F-OFDM (Example)]
Next, a radio communication system using F-OFDM will be described as a radio communication system according to the embodiment. Here, in the embodiment, the same description as the wireless communication system using OFDM is omitted.
 [2.1 システム情報について]
 図8は、実施例に係る無線通信システムにおいて、F-OFDMを用いる場合のシステム帯域の一例を示す図である。F-OFDMを用いる無線通信システムでは、同じシステム帯域内において、システム帯域が複数の周波数帯域に分割される。さらに、各周波数帯域が複数のサブキャリアグループ(以下、SCGと記載する)に分割され、各SCGに無線リソースが割り当てられる。システム帯域は、無線通信システムを構成する1つの周波数帯域である。また、SCGは、クラスタ、または、サブキャリアブロック(SCB)とも呼ばれる場合がある。
[2.1 About system information]
FIG. 8 is a diagram illustrating an example of a system band when F-OFDM is used in the wireless communication system according to the embodiment. In a wireless communication system using F-OFDM, the system band is divided into a plurality of frequency bands within the same system band. Further, each frequency band is divided into a plurality of subcarrier groups (hereinafter referred to as SCG), and radio resources are allocated to each SCG. The system band is one frequency band constituting the wireless communication system. SCG may also be referred to as a cluster or a subcarrier block (SCB).
 F-OFDMを用いる無線通信システムでは、OFDMを用いる無線通信システムと同様に、システム情報は、無線リソース、サブキャリア間隔、シンボル長、サブフレーム長などを含む。 In a radio communication system using F-OFDM, the system information includes radio resources, subcarrier intervals, symbol lengths, subframe lengths, and the like, as in the radio communication system using OFDM.
 図9は、実施例に係る無線通信システムにおいて、F-OFDMを用いる場合の各SCGの一例を示す図である。F-OFDMを用いる場合、各SCGは複数のサブキャリアで構成され、各SCGにおいて、サブキャリア数、サブキャリア間隔、TTI、シンボル長などの少なくとも1つが異なる。例えば、図9に示すように、SCG1~SCG3の各々は、サブキャリア間隔、TTIが異なる。したがって、F-OFDMを用いる場合、SCG毎に波形成形(フィルタリング)が実施される。 FIG. 9 is a diagram illustrating an example of each SCG when F-OFDM is used in the wireless communication system according to the embodiment. When F-OFDM is used, each SCG is composed of a plurality of subcarriers, and at least one of the number of subcarriers, subcarrier spacing, TTI, symbol length, etc. is different in each SCG. For example, as shown in FIG. 9, each of SCG1 to SCG3 has a different subcarrier interval and TTI. Therefore, when F-OFDM is used, waveform shaping (filtering) is performed for each SCG.
 このように、F-OFDMを用いる無線通信システムでは、SCG毎にシステム情報が異なる。例えば、SCG毎にシステム情報のサブキャリア間隔やシンボル長などが異なる。この場合、端末200は、サブキャリア間隔やシンボル長などが異なるSCGに対して同期のタイミングが異なるため、基地局100に対して同期処理を行なうことができない。その結果、端末200は、基地局100と無線通信を行なうことができない。したがって、F-OFDMを用いる無線通信システムでは、SCG毎に端末が同期処理を行なえることが望ましい。そのためには、F-OFDMを用いる無線通信システムでは、SCG毎に基地局100が同期信号およびパイロット信号を生成することが望ましい。 Thus, in a wireless communication system using F-OFDM, system information differs for each SCG. For example, the subcarrier interval and symbol length of the system information are different for each SCG. In this case, terminal 200 cannot perform synchronization processing on base station 100 because the synchronization timing differs for SCGs having different subcarrier intervals, symbol lengths, and the like. As a result, terminal 200 cannot perform wireless communication with base station 100. Therefore, in a wireless communication system using F-OFDM, it is desirable that a terminal can perform synchronization processing for each SCG. For this purpose, in a wireless communication system using F-OFDM, it is desirable that base station 100 generates a synchronization signal and a pilot signal for each SCG.
 しかし、SCG毎に基地局100が同期信号およびパイロット信号を生成する場合、同期信号系列が多数必要になる。例えば、基地局を規定する1セルに4個のSCGが割り当てられていて、セルIDの数が504である場合、同期信号およびパイロット信号は2016系列になる。 However, when the base station 100 generates a synchronization signal and a pilot signal for each SCG, a large number of synchronization signal sequences are required. For example, when four SCGs are assigned to one cell that defines a base station and the number of cell IDs is 504, the synchronization signal and pilot signal are 2016 series.
 また、F-OFDMを用いる場合、OFDMを用いる場合と同様に、サブキャリアに直交性を持たせることによりサブキャリア間隔が設定されているが、系列数が多い場合は直交性が劣化する可能性がある。直交性が劣化した場合、同期信号間の干渉が大きくなる可能性がある。すなわち、他のSCGに対して干渉を与えてしまう。 In addition, when F-OFDM is used, the subcarrier interval is set by giving orthogonality to the subcarriers as in the case of using OFDM, but if the number of sequences is large, the orthogonality may be deteriorated. There is. When the orthogonality is deteriorated, there is a possibility that interference between the synchronization signals becomes large. That is, interference is given to other SCGs.
 ここで、F-OFDMを用いる無線通信システムでは、例えば第2のサブキャリア間隔は第1のサブキャリア間隔に対して2倍(nは整数)に設定される。シンボル長はサブキャリア間隔に反比例して短くなる。すなわち、第2のシンボル長は第1のシンボル長に対して1/2倍に設定される。この場合、基地局100は、第1のシンボル長の同期信号およびパイロット信号に対して、例えばOVSF(Orthogonal Variable Spreading Factor)などの直交符号を乗算する。これにより、基地局100は、シンボル長が1/2倍となるように第1の同期信号および第1のパイロット信号を周波数軸方向に拡散した第2の同期信号および第2のパイロット信号を生成する。OVSFなどの直交符号を用いる場合、第2のシンボル長は、第1のシンボル長に対して1/2、1/4倍となり、サブキャリアに直交性を持たせることができる。したがって、他のSCGに対して干渉を与えずに済む。 Here, in the wireless communication system using F-OFDM, for example, the second subcarrier interval is set to 2 n times (n is an integer) with respect to the first subcarrier interval. The symbol length decreases in inverse proportion to the subcarrier interval. That is, the second symbol length is set to 1/2 n times the first symbol length. In this case, the base station 100 multiplies the first symbol length synchronization signal and pilot signal by orthogonal codes such as OVSF (Orthogonal Variable Spreading Factor). Thereby, the base station 100 transmits the second synchronization signal and the second pilot signal obtained by spreading the first synchronization signal and the first pilot signal in the frequency axis direction so that the symbol length becomes 1/2 n times. Generate. When an orthogonal code such as OVSF is used, the second symbol length is 1/2 or 1/4 times the first symbol length, and the subcarriers can be orthogonal. Therefore, it is not necessary to interfere with other SCGs.
 図10は、OVSFコードの一例を示す図である。OVSFコードにおいて、拡散率(SF)によって使用されるコードが異なる。例えば、拡散率が1である場合、OVSFコードとして、Channelization Code(以下Chと記載する)1.0=(1)が用いられる。拡散率が2である場合、OVSFコードとして、Ch2.0=(1,1)、Ch2.1=(1,-1)が用いられる。拡散率が「4」である場合、OVSFコードとして、Ch4.0=(1,1,1,1)、Ch4.1=(1,1,-1,-1)、Ch4.2=(1,-1,1,-1)、Ch4.3=(1,-1,-1,1)が用いられる。 FIG. 10 is a diagram showing an example of the OVSF code. In the OVSF code, the code used depends on the spreading factor (SF). For example, when the spreading factor is 1, Channelization Code (hereinafter referred to as Ch) 1.0 = (1) is used as the OVSF code. When the spreading factor is 2, Ch2.0 = (1,1) and Ch2.1 = (1, −1) are used as the OVSF code. When the spreading factor is “4”, as the OVSF code, Ch4.0 = (1,1,1,1), Ch4.1 = (1,1, −1, −1), Ch4.2 = (1 , -1,1, -1), Ch4.3 = (1, -1, -1,1) is used.
 図11は、OVSFコードをLTEに適用した場合の同期信号の一例を示す図である。ここで、LTEにおけるPSS(Primary Synchronization Signal)を例にして説明する。例えば、セルIDが2である場合、OVSFコードとして「Ch2.1=(1,-1)」が用いられる。この場合、第1の同期信号du(n)に対して、OVSFコード(以下、拡散コード)を乗算することにより、第2の同期信号d’u(n)が生成される。SSS(Secondary Synchronization Signal)の場合についても同様な対応となる。また、パイロット信号についても同様な対応となる。 FIG. 11 is a diagram illustrating an example of a synchronization signal when the OVSF code is applied to LTE. Here, an explanation will be given by taking PSS (Primary Synchronization Signal) in LTE as an example. For example, when the cell ID is 2, “Ch2.1 = (1, −1)” is used as the OVSF code. In this case, the second synchronization signal d′ u (n) is generated by multiplying the first synchronization signal du (n) by an OVSF code (hereinafter, spread code). The same applies to the case of SSS (Secondary Synchronization Signal). The same applies to the pilot signal.
 図12は、時間軸方向における第2の同期信号d’u(n)の一例を示す図である。例えば、第2の同期信号d’u(n)は、時間軸方向において、第1の同期信号du(n)の時間間隔Tとなるように生成される。すなわち、第2のサブキャリア間隔が第1のサブキャリア間隔に対して2倍に設定されることにより、第2のシンボル長が第1のシンボル長に対して1/2倍に設定される。この場合、端末200が第1の同期信号du(n)を受信する際の時間間隔Tを第2の同期信号d’u(n)に対しても同じにできるため、端末200の装置規模を簡素化できる。パイロット信号についても同様である。 FIG. 12 is a diagram illustrating an example of the second synchronization signal d′ u (n) in the time axis direction. For example, the second synchronization signal d′ u (n) is generated so as to have a time interval T of the first synchronization signal du (n) in the time axis direction. That is, by setting the second subcarrier interval to twice the first subcarrier interval, the second symbol length is set to ½ times the first symbol length. In this case, since the time interval T when the terminal 200 receives the first synchronization signal du (n) can be made the same as that for the second synchronization signal d′ u (n), the device scale of the terminal 200 is increased. It can be simplified. The same applies to the pilot signal.
 図13は、サブキャリア軸(周波数軸)方向における第2の同期信号d’u(n)の一例を示す図である。例えば、第2の同期信号d’u(n)は、周波数軸方向において、第1の同期信号du(n)の周波数帯域幅Wとなるように生成される。すなわち、第2のサブキャリア間隔が第1のサブキャリア間隔に対して1/2倍に設定されることにより、第2のシンボル長が第1のシンボル長に対して2倍に設定される。この場合、端末200が第1の同期信号du(n)を受信する際の周波数帯域幅Wを第2の同期信号d’u(n)に対しても同じにできるため、端末200の装置規模を簡素化できる。パイロット信号についても同様である。 FIG. 13 is a diagram illustrating an example of the second synchronization signal d′ u (n) in the subcarrier axis (frequency axis) direction. For example, the second synchronization signal d′ u (n) is generated so as to have the frequency bandwidth W of the first synchronization signal du (n) in the frequency axis direction. That is, by setting the second subcarrier interval to ½ times the first subcarrier interval, the second symbol length is set to twice the first symbol length. In this case, since the frequency bandwidth W when the terminal 200 receives the first synchronization signal du (n) can be made the same as that of the second synchronization signal d′ u (n), the device scale of the terminal 200 is increased. Can be simplified. The same applies to the pilot signal.
 上述のように、図12においては、サブキャリア間隔を広くしていく方法であり、図13においては、サブキャリア間隔を狭くする方法である。しかし、同期信号およびパイロット信号はサブキャリア軸(周波数軸)方向に配列されるため、時間軸方向において同期を取る場合は、図12に示すように、サブキャリア間隔を広くしていく方法のほうが効果的である。すなわち、第1のシンボル長を基準として、第2のシンボル長を短くするほうが効果的である。 As described above, FIG. 12 shows a method of widening the subcarrier interval, and FIG. 13 shows a method of narrowing the subcarrier interval. However, since the synchronization signal and the pilot signal are arranged in the subcarrier axis (frequency axis) direction, when synchronizing in the time axis direction, the method of widening the subcarrier interval as shown in FIG. It is effective. That is, it is more effective to shorten the second symbol length based on the first symbol length.
 なお、実施例に係る無線通信システムにおいて、UF(Universal-Filtered)-OFDMのように、SCG毎にサブキャリア間隔やシンボル長を可変させてシステム情報を変更する多元接続方法(Multiple Access)を含めて、F-OFDMと総称する。 In addition, the wireless communication system according to the embodiment includes a multiple access method (Multiple Access) for changing system information by changing the subcarrier interval and the symbol length for each SCG, such as UF (Universal-Filtered) -OFDM. These are collectively called F-OFDM.
 [2.2 F-OFDMを用いる場合の端末の構成]
 図14は、実施例に係る無線通信システムにおいて、F-OFDMを用いる場合の端末200の一例を示す図である。F-OFDMを用いる場合、端末200は、受信信号処理部203F、無線回線制御部206F、送信信号処理部209Fを有する。無線回線制御部206Fには、複数のSCG、すなわち、P-SCG10およびS-SCG11~14が割り当てられている。受信信号処理部203F、無線回線制御部206F、送信信号処理部209Fについては後述する。受信信号処理部203F、無線回線制御部206F、送信信号処理部209Fについては後述する。また、端末200は、OFDMを用いる場合と同様に、アンテナ201、受信無線部202、制御信号抽出部204、無線回線品質測定部205、制御信号生成部207、システム情報記憶部208、送信無線部210、サブキャリア生成部212を有する。
[2.2 Terminal configuration when F-OFDM is used]
FIG. 14 is a diagram illustrating an example of a terminal 200 when F-OFDM is used in the wireless communication system according to the embodiment. When F-OFDM is used, the terminal 200 includes a reception signal processing unit 203F, a radio channel control unit 206F, and a transmission signal processing unit 209F. A plurality of SCGs, that is, the P-SCG 10 and the S-SCGs 11 to 14 are assigned to the radio network controller 206F. The reception signal processing unit 203F, the radio line control unit 206F, and the transmission signal processing unit 209F will be described later. The reception signal processing unit 203F, the radio line control unit 206F, and the transmission signal processing unit 209F will be described later. Similarly to the case of using OFDM, terminal 200 has antenna 201, reception radio section 202, control signal extraction section 204, radio channel quality measurement section 205, control signal generation section 207, system information storage section 208, transmission radio section. 210 and a subcarrier generation unit 212.
 [2.3 F-OFDMを用いる場合の基地局の構成]
 図15は、実施例に係る無線通信システムにおいて、F-OFDMを用いる場合の基地局100の一例を示す図である。F-OFDMを用いる場合、基地局100は、受信信号処理部103F、無線回線制御部106F、システム情報記憶部108F、送信信号処理部109Fを有する。無線回線制御部106Fには、複数のSCG、すなわち、P-SCG10およびS-SCG11~14が割り当てられている。受信信号処理部103F、無線回線制御部106F、システム情報記憶部108F、送信信号処理部109Fについては後述する。また、基地局100は、OFDMを用いる場合と同様に、アンテナ101、受信無線部102、制御信号抽出部104、無線回線品質測定部105、制御信号生成部107、送信無線部110、サブキャリア生成部112を有する。
[2.3 Configuration of base station when F-OFDM is used]
FIG. 15 is a diagram illustrating an example of the base station 100 when F-OFDM is used in the wireless communication system according to the embodiment. When F-OFDM is used, the base station 100 includes a reception signal processing unit 103F, a radio channel control unit 106F, a system information storage unit 108F, and a transmission signal processing unit 109F. A plurality of SCGs, that is, P-SCG 10 and S-SCGs 11 to 14 are assigned to the radio network controller 106F. The reception signal processing unit 103F, the radio channel control unit 106F, the system information storage unit 108F, and the transmission signal processing unit 109F will be described later. Similarly to the case of using OFDM, base station 100 has antenna 101, reception radio section 102, control signal extraction section 104, radio channel quality measurement section 105, control signal generation section 107, transmission radio section 110, subcarrier generation. Part 112.
 図16は、実施例に係る無線通信システムにおいて、F-OFDMを用いる場合のシステム情報記憶部の一例を示す図である。基地局100のシステム情報記憶部108Fは、サービスの種類に対応付けて、各々異なる複数のSCGのシステム情報を記憶している。 FIG. 16 is a diagram illustrating an example of a system information storage unit when F-OFDM is used in the wireless communication system according to the embodiment. The system information storage unit 108F of the base station 100 stores a plurality of different SCG system information in association with the type of service.
 例えば、複数のSCGは、第1のSCGであるP(Primary)-SCG10と、複数の第2のSCGであるS(Secondary)-SCG11~14とに分けられる。P-SCG10は、例えばLTEにおける中心の周波数帯域幅1.4MHzに相当し、T(Temporary)-SCGとも呼ばれる。なお、以下では、断りのない限り、S-SCGは1つであってもよい。 For example, a plurality of SCGs are divided into P (Primary) -SCG 10 which is a first SCG and S (Secondary) -SCGs 11 to 14 which are a plurality of second SCGs. The P-SCG 10 corresponds to a center frequency bandwidth of 1.4 MHz in LTE, for example, and is also called T (Temporary) -SCG. In the following, one S-SCG may be provided unless otherwise noted.
 サービスの種類としては、ブロードバンドサービスのような既存機能を実現する基本サービスと、センサの出力を低速に伝送するような低速伝送サービスと、動画などを高速に伝送するような高速伝送サービスとが挙げられる。また、サービスの種類としては、車載通信で低遅延が要求されるような低遅延サービスと、遠隔で医療などを行なうときに高信頼性が要求されるような高品質低遅延サービスとが挙げられる。 The types of services include basic services that realize existing functions such as broadband services, low-speed transmission services that transmit sensor output at low speed, and high-speed transmission services that transmit moving pictures at high speed. It is done. The types of services include low-delay services that require low delay in in-vehicle communication and high-quality low-delay services that require high reliability when performing medical treatment remotely. .
 例えば、システム情報記憶部108Fは、上述の基本サービスを対応付けて、P-SCG10のシステム情報を記憶している。システム情報記憶部108Fは、上述の低速伝送サービスを対応付けて、S-SCG11のシステム情報を記憶している。システム情報記憶部108Fは、上述の高速伝送サービスを対応付けて、S-SCG12のシステム情報を記憶している。システム情報記憶部108Fは、上述の低遅延サービスを対応付けて、S-SCG13のシステム情報を記憶している。システム情報記憶部108Fは、上述の高品質低遅延サービスを対応付けて、S-SCG14のシステム情報を記憶している。 For example, the system information storage unit 108F stores the system information of the P-SCG 10 in association with the basic service described above. The system information storage unit 108F stores the system information of the S-SCG 11 in association with the above-described low-speed transmission service. The system information storage unit 108F stores the system information of the S-SCG 12 in association with the above-described high-speed transmission service. The system information storage unit 108F stores the system information of the S-SCG 13 in association with the above-described low delay service. The system information storage unit 108F stores the system information of the S-SCG 14 in association with the above-described high quality low delay service.
 図17は、実施例に係る無線通信システムにおいて、F-OFDMを用いる場合の受信信号処理部の一例を示す図である。F-OFDMを用いる場合、基地局100の受信信号処理部103Fは、ADC301、複数の受信信号処理系320~324を有する。複数の受信信号処理系320~324の各々は、CP除去部302、FFT部303、復調・復号部304、フィルタ310を有する。ADC301、CP除去部302、FFT部303、復調・復号部304は、OFDMを用いる場合と同じ構成である。 FIG. 17 is a diagram illustrating an example of a received signal processing unit when F-OFDM is used in the wireless communication system according to the embodiment. When F-OFDM is used, the reception signal processing unit 103F of the base station 100 includes an ADC 301 and a plurality of reception signal processing systems 320 to 324. Each of the plurality of received signal processing systems 320 to 324 includes a CP removing unit 302, an FFT unit 303, a demodulation / decoding unit 304, and a filter 310. The ADC 301, the CP removing unit 302, the FFT unit 303, and the demodulation / decoding unit 304 have the same configuration as when OFDM is used.
 複数の受信信号処理系320~324は、第1の受信信号処理系320と、複数の第2の受信信号処理系321~324とに分けられる。この場合、第1の受信信号処理系320は、P-SCG10に対応して設けられている。複数の第2の受信信号処理系321~324は、それぞれ、複数のS-SCG11~14に対応して設けられている。 The plurality of reception signal processing systems 320 to 324 are divided into a first reception signal processing system 320 and a plurality of second reception signal processing systems 321 to 324. In this case, the first received signal processing system 320 is provided corresponding to the P-SCG10. The plurality of second received signal processing systems 321 to 324 are provided corresponding to the plurality of S-SCGs 11 to 14, respectively.
 ADC301は、受信無線部102から出力された信号をデジタル信号に変換する。そして、ADC301は、変換したデジタル信号を複数の受信信号処理系320~324に出力する。 The ADC 301 converts the signal output from the reception wireless unit 102 into a digital signal. Then, the ADC 301 outputs the converted digital signal to the plurality of received signal processing systems 320 to 324.
 複数の受信信号処理系320~324の各々のフィルタ310は、ADC301から出力された信号に対して特定の周波数帯域の信号を通過させ、それ以外の周波数帯域の信号を減衰させる。フィルタ310を通過した信号は、CP除去部302に出力される。 Each filter 310 of the plurality of received signal processing systems 320 to 324 passes a signal in a specific frequency band with respect to the signal output from the ADC 301, and attenuates signals in other frequency bands. The signal that has passed through the filter 310 is output to the CP removal unit 302.
 CP除去部302は、ADC301から出力されたデジタル信号からCPを除去する。そして、CP除去部302は、CPを除去した信号をFFT部303に出力する。 The CP removing unit 302 removes the CP from the digital signal output from the ADC 301. Then, CP removing section 302 outputs the signal from which CP has been removed to FFT section 303.
 FFT部303は、CP除去部302から出力された信号に対して、FFTを行なう。これにより、CP除去部302から出力された信号が、時間領域の信号から、周波数領域の信号に変換される。FFT部303は、FFTが行なわれた信号を復調・復号部304に出力する。 The FFT unit 303 performs FFT on the signal output from the CP removal unit 302. As a result, the signal output from the CP removing unit 302 is converted from a time domain signal to a frequency domain signal. FFT section 303 outputs the signal subjected to the FFT to demodulation / decoding section 304.
 復調・復号部304は、FFT部303から出力された信号を復調する。そして、復調・復号部304は、復調後の信号を復号する。復調・復号部304は、復号が行なわれた信号を出力する。 The demodulation / decoding unit 304 demodulates the signal output from the FFT unit 303. Then, the demodulator / decoder 304 decodes the demodulated signal. Demodulation / decoding section 304 outputs the decoded signal.
 なお、端末200の受信信号処理部203Fの場合は、少なくとも1つの受信信号処理系が設けられていればよい。 In the case of the reception signal processing unit 203F of the terminal 200, it is sufficient that at least one reception signal processing system is provided.
 図18は、実施例に係る無線通信システムにおいて、F-OFDMを用いる場合の送信信号処理部の一例を示す図である。F-OFDMを用いる場合、基地局100の送信信号処理部109Fは、複数の送信信号処理系420~424、合成部411、DAC405を有する。複数の送信信号処理系420~424の各々は、符号化・変調部401、サブキャリアマッピング部402、IFFT部403、CP付加部404、フィルタ410を有する。符号化・変調部401、サブキャリアマッピング部402、IFFT部403、CP付加部404、DAC405は、OFDMを用いる場合と同じ構成である。 FIG. 18 is a diagram illustrating an example of a transmission signal processing unit when F-OFDM is used in the wireless communication system according to the embodiment. When F-OFDM is used, the transmission signal processing unit 109F of the base station 100 includes a plurality of transmission signal processing systems 420 to 424, a synthesis unit 411, and a DAC 405. Each of the plurality of transmission signal processing systems 420 to 424 includes an encoding / modulation unit 401, a subcarrier mapping unit 402, an IFFT unit 403, a CP adding unit 404, and a filter 410. Encoding / modulating section 401, subcarrier mapping section 402, IFFT section 403, CP adding section 404, and DAC 405 have the same configuration as when OFDM is used.
 複数の送信信号処理系420~424は、第1の送信信号処理系420と、複数の第2の送信信号処理系421~424とに分けられる。この場合、第1の送信信号処理系420は、P-SCG10に対応して設けられている。複数の第2の送信信号処理系421~424は、それぞれ、複数のS-SCG11~14に対応して設けられている。 The plurality of transmission signal processing systems 420 to 424 are divided into a first transmission signal processing system 420 and a plurality of second transmission signal processing systems 421 to 424. In this case, the first transmission signal processing system 420 is provided corresponding to the P-SCG 10. The plurality of second transmission signal processing systems 421 to 424 are provided corresponding to the plurality of S-SCGs 11 to 14, respectively.
 複数の送信信号処理系420~424の各々の符号化・変調部401は、上位からのデータ信号と、制御信号生成部107から出力された制御信号とを受け取る。また、符号化・変調部401は、パイロット信号生成部112から出力されたパイロット信号列と、同期信号生成部113から出力された同期信号列とを受け取る。 Each of the encoding / modulation units 401 of the plurality of transmission signal processing systems 420 to 424 receives a data signal from the host and the control signal output from the control signal generation unit 107. Also, the encoding / modulation unit 401 receives the pilot signal sequence output from the pilot signal generation unit 112 and the synchronization signal sequence output from the synchronization signal generation unit 113.
 符号化・変調部401は、上位からのデータ信号と、制御信号生成部107から出力された制御信号と、パイロット信号生成部112から出力されたパイロット信号列と、同期信号生成部113から出力された同期信号列とを符号化する。そして、符号化・変調部401は、符号化した信号を変調する。符号化・変調部401は、変調後の信号をサブキャリアマッピング部402に出力する。 The encoding / modulation unit 401 outputs the data signal from the higher level, the control signal output from the control signal generation unit 107, the pilot signal sequence output from the pilot signal generation unit 112, and the synchronization signal generation unit 113. The synchronized signal sequence is encoded. The encoding / modulating unit 401 modulates the encoded signal. Encoding / modulating section 401 outputs the modulated signal to subcarrier mapping section 402.
 サブキャリアマッピング部402は、符号化・変調部401から出力された信号と、サブキャリア生成部111から出力されたサブキャリアとを受け取る。そして、サブキャリアマッピング部402は、符号化・変調部401によって変調された信号の変調シンボルをサブキャリアにマッピングする。サブキャリアマッピング部402は、マッピングした信号をIFFT部403に出力する。 The subcarrier mapping unit 402 receives the signal output from the encoding / modulation unit 401 and the subcarrier output from the subcarrier generation unit 111. Then, subcarrier mapping section 402 maps the modulation symbol of the signal modulated by encoding / modulating section 401 to the subcarrier. Subcarrier mapping section 402 outputs the mapped signal to IFFT section 403.
 IFFT部403は、サブキャリアマッピング部402から出力された信号を受け取る。そして、IFFT部403は、サブキャリアマッピング部402によってマッピングされた信号の変調シンボルに対して、IFFTを行なう。これにより、サブキャリアマッピング部402から出力された信号のシンボルが、周波数領域の変調シンボルから、時間領域の有効シンボルに変換される。IFFT部403は、IFFTが行なわれた信号をCP付加部404に出力する。 The IFFT unit 403 receives the signal output from the subcarrier mapping unit 402. Then, IFFT section 403 performs IFFT on the modulation symbol of the signal mapped by subcarrier mapping section 402. As a result, the symbol of the signal output from subcarrier mapping section 402 is converted from a modulation symbol in the frequency domain to an effective symbol in the time domain. IFFT section 403 outputs the signal subjected to IFFT to CP adding section 404.
 CP付加部404は、IFFT部403から出力された信号に対して、CPを付加することにより、OFDMシンボルを生成する。CP付加部404は、生成したOFDMシンボルを、所定の無線周波数に変換する。そして、CP付加部404は、変換した信号をフィルタ410に出力する。 CP adding section 404 generates an OFDM symbol by adding a CP to the signal output from IFFT section 403. CP adding section 404 converts the generated OFDM symbol into a predetermined radio frequency. Then, CP adding section 404 outputs the converted signal to filter 410.
 フィルタ410は、CP付加部404から出力された信号に対して特定の周波数帯域の信号を通過させ、それ以外の周波数帯域の信号を減衰させる。フィルタ410を通過した信号は、合成部411に出力される。 The filter 410 allows a signal in a specific frequency band to pass through the signal output from the CP adding unit 404 and attenuates signals in other frequency bands. The signal that has passed through the filter 410 is output to the synthesis unit 411.
 合成部411は、複数の送信信号処理系420~424のフィルタ410から出力された信号を合成する。合成された信号はDAC405に出力される。 The combining unit 411 combines the signals output from the filters 410 of the plurality of transmission signal processing systems 420 to 424. The synthesized signal is output to the DAC 405.
 DAC405は、合成部411から出力された信号をアナログ信号に変換する。そして、DAC405は、変換したアナログ信号を送信無線部102に出力する。 The DAC 405 converts the signal output from the synthesis unit 411 into an analog signal. Then, the DAC 405 outputs the converted analog signal to the transmission radio unit 102.
 なお、端末200の送信信号処理部209Fの場合は、少なくとも1つの送信信号処理系が設けられていればよい。 In the case of the transmission signal processing unit 209F of the terminal 200, it is sufficient that at least one transmission signal processing system is provided.
 図19は、実施例に係る無線通信システムにおいて、F-OFDMを用いる場合の無線回線制御部の一例を示す図である。基地局100の無線回線制御部106Fは、複数の制御部を有する。複数の制御部は、システム帯域内の各周波数帯域に割り当てられた複数のSCGに対して設けられている。ここで、複数の制御部のうちの第1の制御部をP(Primary)-SCG制御部610と記載し、第2の制御部をS(Secondary)-SCG制御部620と記載する。S-SCG制御部620は、S-SCG制御部611~614を有する。 FIG. 19 is a diagram illustrating an example of a radio channel controller when F-OFDM is used in the radio communication system according to the embodiment. The radio network controller 106F of the base station 100 has a plurality of controllers. The plurality of control units are provided for a plurality of SCGs assigned to each frequency band in the system band. Here, the first control unit among the plurality of control units is referred to as a P (Primary) -SCG control unit 610, and the second control unit is referred to as an S (Secondary) -SCG control unit 620. The S-SCG control unit 620 includes S-SCG control units 611 to 614.
 P-SCG制御部610は、基本サービスに使用されるP-SCG10に対して設けられている。S-SCG制御部611は、低速伝送サービスに使用されるS-SCG11に対して設けられている。S-SCG制御部612は、高速伝送サービスに使用されるS-SCG12に対して設けられている。S-SCG制御部613は、低遅延サービスに使用されるS-SCG13に対して設けられている。S-SCG制御部614は、高品質低遅延サービスに使用されるS-SCG14に対して設けられている。 The P-SCG control unit 610 is provided for the P-SCG 10 used for basic services. The S-SCG control unit 611 is provided for the S-SCG 11 used for the low-speed transmission service. The S-SCG control unit 612 is provided for the S-SCG 12 used for the high-speed transmission service. The S-SCG control unit 613 is provided for the S-SCG 13 used for the low delay service. The S-SCG control unit 614 is provided for the S-SCG 14 used for the high quality and low delay service.
 [2.4 実施例に係る無線通信システムの動作]
 [2.4.1 SCG追加処理]
 図20は、実施例に係る無線通信システムの動作として、SCG追加処理の一例を示すシーケンスである。
[2.4 Operation of Radio Communication System According to Embodiment]
[2.4.1 SCG addition processing]
FIG. 20 is a sequence illustrating an example of SCG addition processing as the operation of the wireless communication system according to the embodiment.
 基地局100の無線回線制御部106FのP-SCG制御部610は、パイロット信号生成部112、同期信号生成部113を制御して、P-SCG10における第1の同期信号および第1のパイロット信号を生成する。基地局100の無線回線制御部106FのP-SCG制御部610は、送信信号処理部109F、送信無線部110を制御して、生成した第1の同期信号および第1のパイロット信号を送信する(ステップS100)。 The P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 controls the pilot signal generation unit 112 and the synchronization signal generation unit 113 so that the first synchronization signal and the first pilot signal in the P-SCG 10 are obtained. Generate. The P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 controls the transmission signal processing unit 109F and the transmission radio unit 110 to transmit the generated first synchronization signal and first pilot signal ( Step S100).
 端末200の無線回線制御部206Fは、受信無線部202、受信信号処理部203Fを制御して、基地局100から送信された第1の同期信号および第1のパイロット信号を受信する。端末200の無線回線制御部206Fは、パイロット信号生成部212、同期信号生成部213、パイロット信号抽出部214、同期信号抽出部215、同期処理部216を制御して、受信した第1の同期信号および第1のパイロット信号を用いて同期処理を行なう(ステップS101)。ここで、同期処理は、セル選択時に実施されてもよいし、セル再選択時やハンドオーバ時に実施されてもよい。以下、セル選択時の場合について説明する。 The radio channel control unit 206F of the terminal 200 controls the reception radio unit 202 and the reception signal processing unit 203F to receive the first synchronization signal and the first pilot signal transmitted from the base station 100. Radio channel controller 206F of terminal 200 controls pilot signal generator 212, synchronization signal generator 213, pilot signal extractor 214, synchronization signal extractor 215, and synchronization processor 216 to receive the received first synchronization signal. Then, synchronization processing is performed using the first pilot signal (step S101). Here, the synchronization processing may be performed at the time of cell selection, or may be performed at the time of cell reselection or handover. Hereinafter, the case of cell selection will be described.
 基地局100の無線回線制御部106FのP-SCG制御部610は、P-SCG10のシステム情報を端末200に通知する(ステップS102)。P-SCG10のシステム情報は、例えば3GPPにおけるMIB(Master Information Block)、SIB(System Information Block)などである。システム情報は、無線リソース、サブキャリア間隔、シンボル長、サブフレーム長などの制御情報の他に、セルID、スロット番号、セル優先度を表す情報、セル選択のための情報、ランダムアクセスのための情報などを含む。 The P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 notifies the terminal 200 of the system information of the P-SCG 10 (step S102). The system information of the P-SCG 10 is, for example, a 3GPP MIB (Master Information Block), SIB (System Information Block), or the like. System information includes control information such as radio resources, subcarrier spacing, symbol length, subframe length, etc., cell ID, slot number, cell priority information, information for cell selection, and random access. Contains information.
 端末200の無線回線制御部206Fは、受信無線部202、受信信号処理部203Fを制御して、各基地局から送信された第1の同期信号および第1のパイロット信号を受信する(ステップS103)。このとき、端末200の無線回線制御部206Fは、パイロット信号生成部212、同期信号生成部213、パイロット信号抽出部214、同期信号抽出部215、同期処理部216を制御して、受信した第1の同期信号および第1のパイロット信号を用いて同期処理を行なう。 Radio channel control section 206F of terminal 200 controls reception radio section 202 and reception signal processing section 203F to receive the first synchronization signal and the first pilot signal transmitted from each base station (step S103). . At this time, the radio channel controller 206F of the terminal 200 controls the pilot signal generator 212, the synchronization signal generator 213, the pilot signal extractor 214, the synchronization signal extractor 215, and the synchronization processor 216 to receive the received first The synchronization processing is performed using the synchronization signal and the first pilot signal.
 また、端末200の無線回線品質測定部205は、受信した第1のパイロット信号に基づいて、無線回線品質を測定する。無線回線品質は、受信電力および受信品質の少なくとも1つを表す。受信電力は、例えばLTEにおける参照信号受信電力(RSRP:Reference Signal Received Power)である。受信品質は、例えばLTEにおける参照信号受信品質(RSRQ:Reference Signal Received Quality)である。端末200の無線回線制御部206Fは、測定した無線回線品質に基づいて、複数の基地局の中から、最も無線回線品質が良好な基地局、または、その基地局が規定されているセルを選択するセル選択処理を行なう。ここで、セル選択処理において、端末200の無線回線制御部206Fは、測定した無線回線品質に基づいて、基地局100が規定されているセルを選択したものとする(ステップS104)。 Also, the radio channel quality measurement unit 205 of the terminal 200 measures the radio channel quality based on the received first pilot signal. The radio channel quality represents at least one of reception power and reception quality. The received power is, for example, reference signal received power (RSRP: Reference Signal Received Power) in LTE. The reception quality is, for example, a reference signal reception quality (RSRQ) in LTE. Based on the measured radio channel quality, radio channel controller 206F of terminal 200 selects a base station with the best radio channel quality or a cell in which the base station is defined from a plurality of base stations. A cell selection process is performed. Here, in the cell selection process, it is assumed that the radio channel controller 206F of the terminal 200 selects a cell in which the base station 100 is defined based on the measured radio channel quality (step S104).
 端末200の無線回線制御部206Fは、基地局100から通知されたP-SCG10のシステム情報に基づいて、基地局100に対してランダムアクセスプロシジャを行なう(ステップS105)。基地局100の無線回線制御部106FのP-SCG制御部610は、P-SCG10のシステム情報に基づくランダムアクセスにより、P-SCG制御部610と端末200との間の無線回線の設定を行なう(ステップS106)。 The radio network controller 206F of the terminal 200 performs a random access procedure on the base station 100 based on the system information of the P-SCG 10 notified from the base station 100 (step S105). The P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 sets a radio channel between the P-SCG control unit 610 and the terminal 200 by random access based on the system information of the P-SCG 10 ( Step S106).
 基地局100の無線回線制御部106FのP-SCG制御部610は、P-SCG制御部610と端末200との間の無線回線が確立したときの通信品質に基づいて、最適なS-SCGを選択するSCG選択処理を行なう(ステップS107)。例えば、SCG選択処理において、S-SCG11~14の中からS-SCG14が最適なS-SCGとして選択される。また、通信品質としては、無線回線品質、CQI(Channel Quality Indicator、無線回線品質指標)、QoS(Quality of Service)が例示される。QoSは端末200により設定される。 The P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 performs an optimal S-SCG based on the communication quality when the radio channel between the P-SCG control unit 610 and the terminal 200 is established. The SCG selection process to select is performed (step S107). For example, in the SCG selection process, the S-SCG 14 is selected as the optimum S-SCG from the S-SCGs 11 to 14. Examples of the communication quality include radio channel quality, CQI (Channel Quality Indicator), and QoS (Quality of Service). QoS is set by the terminal 200.
 例えば、P-SCG10のシステム情報に含まれる第1のシンボル長と、S-SCG14のシステム情報に含まれる第2のシンボル長とは、互いに異なる。すなわち、第2のサブキャリア間隔が第1のサブキャリア間隔に対して2倍に設定されることにより、第2のシンボル長が第1のシンボル長に対して1/2倍に設定されている。そのため、基地局100の無線回線制御部106FのP-SCG制御部610は、最適なS-SCG14を選択したときに、S-SCG14のシステム情報の送信を要求するためのシステム情報送信要求をS-SCG制御部614に出力する(ステップS108)。 For example, the first symbol length included in the system information of P-SCG 10 and the second symbol length included in the system information of S-SCG 14 are different from each other. That is, by setting the second subcarrier interval to 2 n times the first subcarrier interval, the second symbol length is set to 1/2 n times the first symbol length. ing. Therefore, when the optimal S-SCG 14 is selected, the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 sends a system information transmission request for requesting transmission of system information of the S-SCG 14 to S. -It outputs to the SCG control part 614 (step S108).
 基地局100の無線回線制御部106FのS-SCG制御部614は、P-SCG制御部610から出力されたシステム情報送信要求に応じて、S-SCG14のシステム情報をP-SCG制御部610に出力する(ステップS109)。S-SCG14のシステム情報は、例えば3GPPにおけるSIBなどである。基地局100の無線回線制御部106FのP-SCG制御部610は、S-SCG制御部614から出力されたS-SCG14のシステム情報を端末200に通知する(ステップS110)。 In response to the system information transmission request output from the P-SCG control unit 610, the S-SCG control unit 614 of the radio channel control unit 106F of the base station 100 sends the system information of the S-SCG 14 to the P-SCG control unit 610. Output (step S109). The system information of the S-SCG 14 is, for example, SIB in 3GPP. The P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 notifies the terminal 200 of the system information of the S-SCG 14 output from the S-SCG control unit 614 (step S110).
 また、基地局100の無線回線制御部106FのP-SCG制御部610は、パイロット信号生成部112、同期信号生成部113を制御して、S-SCG14における第2の同期信号および第2のパイロット信号を生成する。例えば、P-SCG制御部610は、第1の同期信号および第1のパイロット信号に対して、OVSFなどの直交符号を乗算する。これにより、P-SCG制御部610は、シンボル長が1/2倍となるように第1の同期信号および第1のパイロット信号を周波数軸方向に拡散した第2の同期信号および第2のパイロット信号を生成する。すなわち、シンボル長が第2のシンボル長となるように第1の同期信号および第1のパイロット信号が信号処理(拡散処理)される。P-SCG制御部610は、送信信号処理部109F、送信無線部110を制御して、生成した第2の同期信号および第2のパイロット信号を送信する(ステップS111)。 Further, the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 controls the pilot signal generation unit 112 and the synchronization signal generation unit 113, so that the second synchronization signal and the second pilot in the S-SCG 14 are obtained. Generate a signal. For example, the P-SCG control unit 610 multiplies the first synchronization signal and the first pilot signal by an orthogonal code such as OVSF. Thereby, P-SCG control section 610 allows the second synchronization signal and the second synchronization signal obtained by spreading the first synchronization signal and the first pilot signal in the frequency axis direction so that the symbol length becomes 1/2 n times. A pilot signal is generated. That is, the first synchronization signal and the first pilot signal are subjected to signal processing (spreading processing) so that the symbol length becomes the second symbol length. P-SCG control section 610 controls transmission signal processing section 109F and transmission radio section 110 to transmit the generated second synchronization signal and second pilot signal (step S111).
 端末200の無線回線制御部206Fは、基地局100から送信された第2の同期信号および第2のパイロット信号を受信する。このとき、端末200の無線回線制御部206Fは、パイロット信号生成部212、同期信号生成部213、パイロット信号抽出部214、同期信号抽出部215、同期処理部216を制御して、受信した第2の同期信号および第2のパイロット信号を用いて同期処理を行なう(ステップS112)。この場合、無線回線制御部206Fは、サブキャリア間隔やシンボル長が異なるS-SCG14においても、P-SCG10(T-SCG)と同じ周波数帯域幅で、受信した第2の同期信号および第2のパイロット信号を用いて同期処理を行なうことができる。 The radio channel controller 206F of the terminal 200 receives the second synchronization signal and the second pilot signal transmitted from the base station 100. At this time, the radio channel controller 206F of the terminal 200 controls the pilot signal generator 212, the synchronization signal generator 213, the pilot signal extractor 214, the synchronization signal extractor 215, and the synchronization processor 216 to receive the received second The synchronization process is performed using the synchronization signal and the second pilot signal (step S112). In this case, the radio network controller 206F uses the same frequency bandwidth as that of the P-SCG 10 (T-SCG) in the S-SCG 14 having different subcarrier intervals and symbol lengths, Synchronization processing can be performed using the pilot signal.
 端末200の無線回線制御部206Fは、同期処理を行なった後、基地局100から通知されたS-SCG14のシステム情報に基づいて、基地局100に対してランダムアクセスプロシジャを行なう(ステップS113)。基地局100の無線回線制御部106FのS-SCG制御部614は、S-SCG14のシステム情報に基づくランダムアクセスにより、S-SCG制御部614と端末200との間の無線回線の設定を行なう(ステップS114)。 After performing the synchronization processing, the radio channel controller 206F of the terminal 200 performs a random access procedure on the base station 100 based on the system information of the S-SCG 14 notified from the base station 100 (step S113). The S-SCG control unit 614 of the radio channel control unit 106F of the base station 100 sets a radio channel between the S-SCG control unit 614 and the terminal 200 by random access based on the system information of the S-SCG 14 ( Step S114).
 基地局100の無線回線制御部106FのP-SCG制御部610は、P-SCG制御部610と端末200との間の無線回線を用いて、P-SCG制御部610と端末200との間のデータ伝送を行なう(ステップS115)。基地局100の無線回線制御部106FのS-SCG制御部614は、S-SCG制御部614と端末200との間の無線回線を用いて、S-SCG制御部614と端末200との間でデータ伝送を行なう(ステップS116)。 The P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 uses a radio channel between the P-SCG control unit 610 and the terminal 200 to connect between the P-SCG control unit 610 and the terminal 200. Data transmission is performed (step S115). The S-SCG control unit 614 of the radio channel control unit 106F of the base station 100 uses a radio channel between the S-SCG control unit 614 and the terminal 200 to connect between the S-SCG control unit 614 and the terminal 200. Data transmission is performed (step S116).
 [2.4.2 SCG変更処理]
 図21は、実施例に係る無線通信システムの動作として、SCG変更処理の一例を示すシーケンスである。
[2.4.2 SCG change processing]
FIG. 21 is a sequence illustrating an example of the SCG change process as the operation of the wireless communication system according to the embodiment.
 まず、図20と同じステップS100~S114が行なわれる。このとき、S-SCG制御部614と端末200との間の無線回線の設定が行なわれている。この場合、基地局100の無線回線制御部106FのS-SCG制御部614は、S-SCG制御部614と端末200との間の無線回線を用いて、S-SCG制御部614と端末200との間でデータ伝送を行なう(ステップS120)。ここで、基地局100の無線回線制御部106FのP-SCG制御部610は、P-SCG制御部610と端末200との間の無線回線の設定を解除する(ステップS121)。基地局100の無線回線制御部106FのP-SCG制御部610は、P-SCG10のシステム情報を基地局100から端末200に通知する状況が生じた場合に、P-SCG10のシステム情報を端末200に通知する(ステップS122)。 First, the same steps S100 to S114 as in FIG. 20 are performed. At this time, a wireless line is set between the S-SCG control unit 614 and the terminal 200. In this case, the S-SCG control unit 614 of the radio channel control unit 106F of the base station 100 uses the radio channel between the S-SCG control unit 614 and the terminal 200, and Data transmission is performed between them (step S120). Here, the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 cancels the setting of the radio channel between the P-SCG control unit 610 and the terminal 200 (step S121). The P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 sends the system information of the P-SCG 10 to the terminal 200 when a situation occurs in which the system information of the P-SCG 10 is notified from the base station 100 to the terminal 200. (Step S122).
 [2.4.3 SCG選択処理]
 図22は、実施例に係る無線通信システムの動作として、SCG選択処理の一例を示すフローチャートである。
[2.4.3 SCG selection processing]
FIG. 22 is a flowchart illustrating an example of the SCG selection process as the operation of the wireless communication system according to the embodiment.
 ここで、S-SCG11~14を1番目から4番目までのS-SCGとする。また、1番目から4番目までのS-SCGをそれぞれS-SCG1~4とする。そこで、図23においては、k番目のS-SCGをS-SCGkとする。mを4とする。 Here, the S-SCGs 11 to 14 are the first to fourth S-SCGs. Also, the first to fourth S-SCGs are designated as S-SCGs 1 to 4, respectively. Therefore, in FIG. 23, the k-th S-SCG is S-SCGk. Let m be 4.
 SCG選択処理(ステップS107)において、まず、基地局100の無線回線制御部106FのP-SCG制御部610は、kを1に設定することにより、S-SCGkを選択する(ステップS130)。 In the SCG selection process (step S107), first, the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 selects S-SCGk by setting k to 1 (step S130).
 基地局100の無線回線制御部106FのP-SCG制御部610は、P-SCG制御部610と端末200との間の無線回線が確立したときに、トラフィック量、伝送速度、伝送遅延などの測定を行なう。このとき、P-SCG制御部610は、測定したトラフィック量、伝送速度、伝送遅延と、S-SCGkの構成(サブキャリア間隔やシンボル長)とに基づいて、S-SCGkにおける通信条件を算出する(ステップS131)。 The P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 measures traffic volume, transmission rate, transmission delay, etc. when a radio channel is established between the P-SCG control unit 610 and the terminal 200. To do. At this time, P-SCG control section 610 calculates communication conditions in S-SCGk based on the measured traffic volume, transmission rate, transmission delay, and S-SCGk configuration (subcarrier interval and symbol length). (Step S131).
 基地局100の無線回線制御部106FのP-SCG制御部610は、算出した通信条件がS-SCGkにおける所要通信条件を満たすか否かを判定する(ステップS132)。ここで、上述の通信サービスに要求されるトラフィック量、伝送速度、伝送遅延などを、所要通信条件と総称する。各S-SCGにおいて所要通信条件は異なる。 The P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 determines whether or not the calculated communication condition satisfies the required communication condition in S-SCGk (step S132). Here, the traffic volume, transmission speed, transmission delay, and the like required for the above-described communication service are collectively referred to as required communication conditions. The required communication conditions are different in each S-SCG.
 例えば、算出したトラフィック量が基準トラフィック量よりも高い場合、算出した通信条件がS-SCGkにおける所要通信条件を満たしていない。また、算出した伝送速度がS-SCGkにおける所要伝送速度以下である場合、算出した通信条件がS-SCGkにおける所要通信条件を満たしていない。また、算出した伝送遅延がS-SCGkにおける基準伝送遅延を超えている場合、算出した通信条件がS-SCGkにおける所要通信条件を満たしていない。 For example, when the calculated traffic volume is higher than the reference traffic volume, the calculated communication condition does not satisfy the required communication condition in S-SCGk. Further, when the calculated transmission rate is equal to or lower than the required transmission rate in S-SCGk, the calculated communication condition does not satisfy the required communication condition in S-SCGk. Further, when the calculated transmission delay exceeds the reference transmission delay in S-SCGk, the calculated communication condition does not satisfy the required communication condition in S-SCGk.
 一方、トラフィック量が基準トラフィック量以下である場合、算出した通信条件がS-SCGkにおける所要通信条件を満たしている。また、算出した伝送速度がS-SCGkにおける所要伝送速度以下ではない場合や、算出した伝送遅延がS-SCGkにおける基準伝送遅延を超えていない場合は、算出した通信条件がS-SCGkにおける所要通信条件を満たしている。 On the other hand, when the traffic volume is equal to or less than the reference traffic volume, the calculated communication condition satisfies the required communication condition in S-SCGk. If the calculated transmission rate is not less than or equal to the required transmission rate in S-SCGk, or if the calculated transmission delay does not exceed the reference transmission delay in S-SCGk, the calculated communication condition is the required communication in S-SCGk. The condition is met.
 そこで、判定の結果、算出した通信条件がS-SCGkにおける所要通信条件を満たしている場合(ステップS132:YES)、基地局100の無線回線制御部106FのP-SCG制御部610は、S-SCGkを最適なS-SCGとする。すなわち、SCG選択処理(ステップS107)において、S-SCGkが最適なS-SCGとして選択される(ステップS133)。 Therefore, as a result of the determination, when the calculated communication condition satisfies the required communication condition in S-SCGk (step S132: YES), the P-SCG control unit 610 of the radio line control unit 106F of the base station 100 Let SCGk be the optimal S-SCG. That is, in the SCG selection process (step S107), S-SCGk is selected as the optimum S-SCG (step S133).
 一方、判定の結果、算出した通信条件がS-SCGkにおける所要通信条件を満たしていない場合(ステップS132:NO)、基地局100の無線回線制御部106FのP-SCG制御部610は、kに1をインクリメントする(ステップS134)。このとき、P-SCG制御部610は、kがm+1であるか否かを判定する(ステップS135)。 On the other hand, as a result of the determination, when the calculated communication condition does not satisfy the required communication condition in S-SCGk (step S132: NO), the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 sets k to 1 is incremented (step S134). At this time, the P-SCG control unit 610 determines whether k is m + 1 (step S135).
 判定の結果、kがm+1ではない場合(ステップS135:NO)、基地局100の無線回線制御部106FのP-SCG制御部610は、ステップS131を行なう。すなわち、次のS-SCGkについて、ステップS131以降の処理を行なう。 As a result of the determination, if k is not m + 1 (step S135: NO), the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 performs step S131. That is, for the next S-SCGk, the processes after step S131 are performed.
 判定の結果、kがm+1である場合(ステップS135:NO)、基地局100の無線回線制御部106FのP-SCG制御部610は、P-SCG制御部610と端末200との間の無線回線により通信を行なう。または、通信条件を変更してステップS130以降の処理を行なう。または、他の基地局が構成するSCGへハンドオーバー(HO)を要求する。 As a result of the determination, if k is m + 1 (step S135: NO), the P-SCG control unit 610 of the radio channel control unit 106F of the base station 100 determines that the radio channel between the P-SCG control unit 610 and the terminal 200 Communication is performed by Alternatively, the communication conditions are changed and the processes after step S130 are performed. Alternatively, a handover (HO) is requested to an SCG configured by another base station.
 [2.5 実施例の効果]
 以上の説明により、実施例に係る無線通信システムは、1つのシステム帯域を用いて通信する基地局100と端末200とを有する。基地局100は、無線回線制御部106Fを有する。無線回線制御部106Fは、システム帯域内にシステム情報の第1、第2のシンボル長がそれぞれ異なる第1、第2のサブキャリアグループ(P-SCG10、S-SCG11~14)を割り当てる。無線回線制御部106Fは、第1の制御部(P-SCG制御部610)と、第2の制御部(S-SCG制御部620)とを有する。P-SCG制御部610は、第1のサブキャリアグループ(P-SCG10)において、端末200が同期するための第1の信号を端末200に送信する。S-SCG制御部620(この場合、S-SCG制御部614)は、第2のサブキャリアグループ(この場合、S-SCG14)において、端末200が同期するための第2の信号を端末200に送信する。第2の信号は、シンボル長が第2のシンボル長となるように第1の信号が信号処理された信号である。端末200は、制御部(無線回線制御部206F)を有する。無線回線制御部206Fは、P-SCG10において、基地局100から送信された第1の信号を用いて同期する。また、無線回線制御部206Fは、S-SCG14において、基地局100から送信された第2の信号を用いて同期する。これにより、実施例に係る無線通信システムでは、SCG毎に端末200が同期処理を行なうことができる。
[2.5 Effects of Example]
As described above, the radio communication system according to the embodiment includes the base station 100 and the terminal 200 that communicate using one system band. The base station 100 includes a wireless line control unit 106F. Radio channel control section 106F allocates first and second subcarrier groups (P-SCG10, S-SCG11 to 14) having different first and second symbol lengths of system information within the system band. The radio network controller 106F includes a first controller (P-SCG controller 610) and a second controller (S-SCG controller 620). P-SCG control section 610 transmits a first signal for terminal 200 to synchronize to terminal 200 in the first subcarrier group (P-SCG10). S-SCG control section 620 (in this case, S-SCG control section 614) provides terminal 200 with a second signal for terminal 200 to synchronize in the second subcarrier group (in this case, S-SCG14). Send. The second signal is a signal obtained by performing signal processing on the first signal so that the symbol length becomes the second symbol length. The terminal 200 includes a control unit (wireless line control unit 206F). Radio link control unit 206F synchronizes using the first signal transmitted from base station 100 in P-SCG10. In addition, the radio network controller 206F synchronizes using the second signal transmitted from the base station 100 in the S-SCG 14. Thereby, in the radio | wireless communications system based on an Example, the terminal 200 can perform a synchronization process for every SCG.
 例えば、F-OFDMを用いる無線通信システムでは、S-SCGに対してサブキャリア間隔が2倍(nは整数)に設定される。この場合、基地局100は、基礎となる第1の信号(第1の同期信号および第1のパイロット信号)に対して、OVSFなどの直交符号(拡散コード)を乗算する。これにより、基地局100は、シンボル長が1/2倍となるように第1の信号(第1の同期信号および第1のパイロット信号)を周波数軸方向に拡散した第2の信号(第2の同期信号および第2のパイロット信号)を生成する。そして、基地局100は、第2の信号(第2の同期信号および第2のパイロット信号)を端末200に送信する。これにより、端末200は、サブキャリア間隔やシンボル長が異なるS-SCGにおいても、P-SCG10(T-SCG)と同じ周波数帯域幅で、受信した第2の同期信号および第2のパイロット信号を用いて同期処理を行なうことができる。 For example, in a wireless communication system using F-OFDM, the subcarrier interval is set to 2 n times (n is an integer) with respect to S-SCG. In this case, the base station 100 multiplies the basic first signal (the first synchronization signal and the first pilot signal) by an orthogonal code (spreading code) such as OVSF. Thereby, the base station 100 spreads the first signal (the first synchronization signal and the first pilot signal) in the frequency axis direction so that the symbol length becomes 1/2 n times (the second signal (the first synchronization signal)). 2 synchronization signals and second pilot signal). Base station 100 then transmits the second signal (second synchronization signal and second pilot signal) to terminal 200. As a result, terminal 200 can receive the received second synchronization signal and second pilot signal with the same frequency bandwidth as P-SCG10 (T-SCG) even in S-SCGs having different subcarrier intervals and symbol lengths. Can be used for synchronization processing.
 また、F-OFDMを用いる無線通信システムでは、信号系列の数をSCGの数に基づくものではなく、セル(またはセルID)の数に基づくものとすることができる。例えば、基地局を規定する1セルに4個のSCGが割り当てられていて、セルIDの数が504である場合、同期信号およびパイロット信号は、2016系列も必要がなく、504系列でよい。 Also, in a wireless communication system using F-OFDM, the number of signal sequences can be based on the number of cells (or cell IDs) rather than the number of SCGs. For example, when four SCGs are assigned to one cell that defines a base station and the number of cell IDs is 504, the synchronization signal and the pilot signal do not need to be 2016 sequences, and may be 504 sequences.
 [他の実施例]
 実施例における各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各部の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
[Other embodiments]
Each component in the embodiment does not necessarily need to be physically configured as illustrated. In other words, the specific form of distribution / integration of each part is not limited to the one shown in the figure, and all or a part thereof may be functionally or physically distributed / integrated in arbitrary units according to various loads and usage conditions. Can be configured.
 さらに、各装置で行われる各種処理は、CPU(Central Processing Unit)(又はMPU(Micro Processing Unit)、MCU(Micro Controller Unit)等のマイクロ・コンピュータ)上で、その全部又は任意の一部を実行するようにしてもよい。また、各種処理は、CPU(又はMPU、MCU等のマイクロ・コンピュータ)で解析実行するプログラム上、又はワイヤードロジックによるハードウェア上で、その全部又は任意の一部を実行するようにしてもよい。 Furthermore, various processes performed by each device are executed entirely or arbitrarily on a CPU (Central Processing Unit) (or a micro computer such as MPU (Micro Processing Unit) or MCU (Micro Controller Unit)). You may make it do. Various processes may be executed in whole or in any part on a program that is analyzed and executed by a CPU (or a microcomputer such as an MPU or MCU) or hardware based on wired logic.
 実施例の基地局100および端末200は、例えば、次のようなハードウェア構成により実現することができる。 The base station 100 and the terminal 200 of the embodiment can be realized by the following hardware configuration, for example.
 図23は、基地局100のハードウェア構成の一例を示す図である。基地局100は、プロセッサ1001と、メモリ1002と、RF(Radio Frequency)部1003と、アンテナ1004と、ネットワークインターフェース(IF)1005とを有している。プロセッサ1001の一例としては、CPU、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)等が挙げられる。また、メモリ1002の一例としては、SDRAM(Synchronous Dynamic Random Access Memory)等のRAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等が挙げられる。 FIG. 23 is a diagram illustrating an example of a hardware configuration of the base station 100. The base station 100 includes a processor 1001, a memory 1002, an RF (Radio Frequency) unit 1003, an antenna 1004, and a network interface (IF) 1005. Examples of the processor 1001 include a CPU, a DSP (Digital Signal Processor), and an FPGA (Field Programmable Gate Array). Examples of the memory 1002 include a RAM (Random Access Memory) such as SDRAM (Synchronous Dynamic Random Access Memory), a ROM (Read Only Memory), a flash memory, and the like.
 そして、実施例の基地局100で行われる各種処理は、不揮発性記憶媒体などの各種メモリに格納されたプログラムをプロセッサ1001で実行することによって実現されてもよい。すなわち、各構成によって実行される各処理に対応するプログラムがメモリ1002に記録され、各プログラムがプロセッサ1001で実行されてもよい。ここで、各構成とは、受信信号処理部103F、制御信号抽出部104、無線回線品質測定部105、無線回線制御部106F、制御信号生成部107、送信信号処理部109F、パイロット信号生成部112、同期信号生成部113に相当する。また、システム情報記憶部108Fは、メモリ1002によって実現される。また、受信無線部102、送信無線部110、サブキャリア生成部111は、RF部1003によって実現される。また、アンテナ101は、アンテナ1004によって実現される。 The various processes performed in the base station 100 according to the embodiment may be realized by the processor 1001 executing programs stored in various memories such as a nonvolatile storage medium. That is, a program corresponding to each process executed by each configuration may be recorded in the memory 1002, and each program may be executed by the processor 1001. Here, each configuration includes reception signal processing unit 103F, control signal extraction unit 104, radio channel quality measurement unit 105, radio channel control unit 106F, control signal generation unit 107, transmission signal processing unit 109F, and pilot signal generation unit 112. This corresponds to the synchronization signal generation unit 113. The system information storage unit 108F is realized by the memory 1002. The reception radio unit 102, the transmission radio unit 110, and the subcarrier generation unit 111 are realized by the RF unit 1003. The antenna 101 is realized by the antenna 1004.
 なお、ここでは、実施例の基地局100で行われる各種処理が1つのプロセッサ1001によって実行されるものとしたが、これに限定されるものではなく、複数のプロセッサによって実行されてもよい。 In addition, although the various processes performed in the base station 100 of an Example shall be performed by the one processor 1001 here, it is not limited to this, You may perform by several processors.
 図24は、端末200のハードウェア構成の一例を示す図である。端末200は、プロセッサ2001と、メモリ2002と、RF部2003と、アンテナ2004とを有している。プロセッサ2001の一例としては、CPU、DSP、FPGA等が挙げられる。また、メモリ2002の一例としては、SDRAM等のRAM、ROM、フラッシュメモリ等が挙げられる。 FIG. 24 is a diagram illustrating an example of a hardware configuration of the terminal 200. As illustrated in FIG. The terminal 200 includes a processor 2001, a memory 2002, an RF unit 2003, and an antenna 2004. Examples of the processor 2001 include a CPU, a DSP, and an FPGA. Further, examples of the memory 2002 include RAM such as SDRAM, ROM, flash memory, and the like.
 そして、実施例の端末200で行われる各種処理は、不揮発性記憶媒体などの各種メモリに格納されたプログラムをプロセッサ2001で実行することによって実現されてもよい。すなわち、各構成によって実行される各処理に対応するプログラムがメモリ2002に記録され、各プログラムがプロセッサ2001で実行されてもよい。ここで、各構成とは、受信信号処理部203F、制御信号抽出部204、無線回線品質測定部205、無線回線制御部206F、制御信号生成部207、送信信号処理部209Fに相当する。また、各構成とは、パイロット信号生成部212、同期信号生成部213、パイロット信号抽出部214、同期信号抽出部215、同期処理部216に相当する。また、システム情報記憶部208は、メモリ2002によって実現される。また、受信無線部202、送信無線部210、サブキャリア生成部211は、RF部2003によって実現される。また、アンテナ201は、アンテナ2004によって実現される。 The various processes performed by the terminal 200 according to the embodiment may be realized by the processor 2001 executing programs stored in various memories such as a nonvolatile storage medium. That is, a program corresponding to each process executed by each configuration may be recorded in the memory 2002, and each program may be executed by the processor 2001. Here, each configuration corresponds to the reception signal processing unit 203F, the control signal extraction unit 204, the radio channel quality measurement unit 205, the radio channel control unit 206F, the control signal generation unit 207, and the transmission signal processing unit 209F. Each component corresponds to the pilot signal generation unit 212, the synchronization signal generation unit 213, the pilot signal extraction unit 214, the synchronization signal extraction unit 215, and the synchronization processing unit 216. Further, the system information storage unit 208 is realized by the memory 2002. In addition, the reception radio unit 202, the transmission radio unit 210, and the subcarrier generation unit 211 are realized by the RF unit 2003. The antenna 201 is realized by the antenna 2004.
 なお、ここでは、実施例の端末200で行われる各種処理が1つのプロセッサ2001によって実行されるものとしたが、これに限定されるものではなく、複数のプロセッサによって実行されてもよい。 In addition, although the various processes performed with the terminal 200 of an Example shall be performed by the one processor 2001 here, it is not limited to this, You may perform by several processors.
   1~3 SCG
  10 P-SCG
  11~14 S-SCG
  41 MME
  42 SGW
  43 PGW
 100 基地局
 101 アンテナ
 102 受信無線部
 103、103F 受信信号処理部
 104 制御信号抽出部
 105 無線回線品質測定部
 106、106F 無線回線制御部
 107 制御信号生成部
 108、108F システム情報記憶部
 109、109F 送信信号処理部
 110 送信無線部
 111 サブキャリア生成部
 112 パイロット信号生成部
 113 同期信号生成部
 200 端末
 201 アンテナ
 202 受信無線部
 203、203F 受信信号処理部
 204 制御信号抽出部
 205 無線回線品質測定部
 206、206F 無線回線制御部
 207 制御信号生成部
 208 システム情報記憶部
 209、209F 送信信号処理部
 210 送信無線部
 211 サブキャリア生成部
 212 パイロット信号生成部
 213 同期信号生成部
 214 パイロット信号抽出部
 215 同期信号抽出部
 216 同期処理部
 301 ADC
 302 CP除去部
 303 FFT部
 304 復調・復号部
 401 符号化・変調部
 402 サブキャリアマッピング部
 403 IFFT部
 404 CP付加部
 405 DAC
 610 P-SCG制御部
 611~614、620 S-SCG制御部
1001 プロセッサ
1002 メモリ
1003 RF部
1004 アンテナ
1005 ネットワークIF
2001 プロセッサ
2002 メモリ
2003 RF部
2004 アンテナ
1-3 SCG
10 P-SCG
11-14 S-SCG
41 MME
42 SGW
43 PGW
DESCRIPTION OF SYMBOLS 100 Base station 101 Antenna 102 Reception radio | wireless part 103, 103F Reception signal processing part 104 Control signal extraction part 105 Radio channel quality measurement part 106, 106F Radio channel control part 107 Control signal generation part 108, 108F System information storage part 109, 109F Transmission Signal processing unit 110 Transmission radio unit 111 Subcarrier generation unit 112 Pilot signal generation unit 113 Synchronization signal generation unit 200 Terminal 201 Antenna 202 Reception radio unit 203, 203F Reception signal processing unit 204 Control signal extraction unit 205 Radio channel quality measurement unit 206, 206F Radio link control unit 207 Control signal generation unit 208 System information storage unit 209, 209F Transmission signal processing unit 210 Transmission radio unit 211 Subcarrier generation unit 212 Pilot signal generation unit 213 Synchronization signal generation unit 214 Lot signal extracting section 215 synchronizing signal extracting section 216 synchronizing section 301 ADC
302 CP removing unit 303 FFT unit 304 Demodulating / decoding unit 401 Encoding / modulating unit 402 Subcarrier mapping unit 403 IFFT unit 404 CP adding unit 405 DAC
610 P-SCG control unit 611 to 614, 620 S-SCG control unit 1001 Processor 1002 Memory 1003 RF unit 1004 Antenna 1005 Network IF
2001 Processor 2002 Memory 2003 RF unit 2004 Antenna

Claims (10)

  1.  1つのシステム帯域を用いて通信する基地局と端末とを含む無線通信システムの基地局において、
     システム帯域内にシステム情報の第1、第2のシンボル長がそれぞれ異なる第1、第2のサブキャリアグループを割り当てる無線回線制御部と、
     前記第1のサブキャリアグループにおいて、端末が同期するための第1の信号を前記端末に送信する第1の制御部と、
     前記第2のサブキャリアグループにおいて、シンボル長が前記第2のシンボル長となるように前記第1の信号を信号処理した第2の信号を送信する第2の制御部と、
     を具備することを特徴とする基地局。
    In a base station of a wireless communication system including a base station and a terminal that communicate using one system band,
    A radio channel controller that allocates first and second subcarrier groups having different first and second symbol lengths of system information within a system band; and
    A first control unit that transmits, to the terminal, a first signal for synchronizing the terminal in the first subcarrier group;
    A second control unit that transmits a second signal obtained by performing signal processing on the first signal so that a symbol length is the second symbol length in the second subcarrier group;
    A base station comprising:
  2.  前記第2の制御部は、シンボル長が1/2倍(nは整数)となるように前記第1の信号を拡散した前記第2の信号を生成する、
     ことを特徴とする請求項1に記載の基地局。
    The second control unit generates the second signal obtained by spreading the first signal so that a symbol length is 1/2 n times (n is an integer).
    The base station according to claim 1.
  3.  前記第2の制御部は、前記第1の信号に対して直交符号を乗算して前記第2の信号を生成する、
     ことを特徴とする請求項2に記載の基地局。
    The second controller generates the second signal by multiplying the first signal by an orthogonal code.
    The base station according to claim 2.
  4.  前記第1、第2の信号の各々は、同期信号および参照信号の少なくとも1つを含む、
     ことを特徴とする請求項1に記載の基地局。
    Each of the first and second signals includes at least one of a synchronization signal and a reference signal.
    The base station according to claim 1.
  5.  前記第1の制御部は、前記第1のサブキャリアグループのシステム情報である第1のシステム情報に基づいて、前記第1の信号を用いて同期した前記端末との間の第1の無線回線の設定を行ない、前記第2のサブキャリアグループのシステム情報である第2のシステム情報を前記端末に通知し、
     前記第2の制御部は、前記端末に通知された前記第2のシステム情報に基づいて、前記第2の信号を用いて同期した前記端末との間の第2の無線回線の設定を行なう、
     ことを特徴とする請求項1に記載の基地局。
    The first control unit is configured to transmit a first wireless link with the terminal synchronized with the first signal based on first system information that is system information of the first subcarrier group. The second system information that is the system information of the second subcarrier group is notified to the terminal,
    The second control unit performs setting of a second wireless line with the terminal synchronized with the second signal based on the second system information notified to the terminal.
    The base station according to claim 1.
  6.  前記第1の制御部は、前記第2の無線回線が設定された場合、前記第1の無線回線の設定を解除する、
     ことを特徴とする請求項5に記載の基地局。
    The first control unit cancels the setting of the first wireless line when the second wireless line is set;
    The base station according to claim 5.
  7.  前記第2のサブキャリアグループは前記システム帯域内に複数割り当てられ、前記複数の第2のサブキャリアグループのシステム情報は前記第1のシステム情報と異なり、
     前記第1の制御部は、
     前記第1の無線回線が確立した後、前記複数の第2のサブキャリアグループのうちの1つの第2のサブキャリアグループを選択し、
     前記選択した第2のサブキャリアグループのシステム情報である前記第2のシステム情報を前記端末に通知する、
     ことを特徴とする請求項5に記載の基地局。
    A plurality of the second subcarrier groups are allocated within the system band, and system information of the plurality of second subcarrier groups is different from the first system information,
    The first controller is
    After establishing the first radio link, selecting one second subcarrier group of the plurality of second subcarrier groups;
    Notifying the terminal of the second system information which is system information of the selected second subcarrier group;
    The base station according to claim 5.
  8.  1つのシステム帯域を用いて通信する基地局と端末とを含む無線通信システムの端末において、
     システム帯域内にシステム情報の第1、第2のシンボル長がそれぞれ異なる第1、第2のサブキャリアグループを割り当てる無線回線制御部と、
     前記第1のサブキャリアグループにおいて、基地局から送信された第1の信号を用いて同期する第1の制御部と、
     前記第2のサブキャリアグループにおいて、前記基地局から送信され、かつ、シンボル長が前記第2のシンボル長となるように前記第1の信号を信号処理した第2の信号を用いて同期する第2の制御部と、
     を具備することを特徴とする端末。
    In a terminal of a wireless communication system including a base station and a terminal that communicate using one system band,
    A radio channel controller that allocates first and second subcarrier groups having different first and second symbol lengths of system information within a system band; and
    In the first subcarrier group, a first controller that synchronizes using a first signal transmitted from a base station;
    In the second subcarrier group, synchronization is performed using a second signal transmitted from the base station and subjected to signal processing on the first signal so that the symbol length becomes the second symbol length. Two control units;
    A terminal comprising:
  9.  1つのシステム帯域を用いて通信する基地局と端末とを含む無線通信システムにおいて、
     基地局と、
     端末と、
     を具備し、
     前記基地局は、
     システム帯域内にシステム情報の第1、第2のシンボル長がそれぞれ異なる第1、第2のサブキャリアグループを割り当てる無線回線制御部と、
     前記第1のサブキャリアグループにおいて、前記端末が同期するための第1の信号を前記端末に送信する第1の制御部と、
     前記第2のサブキャリアグループにおいて、シンボル長が前記第2のシンボル長となるように前記第1の信号を信号処理した第2の信号を送信する第2の制御部と、
     を具備し、
     前記端末は、
     前記第1のサブキャリアグループにおいて、前記基地局から送信された前記第1の信号を用いて同期する第3の制御部と、
     前記第2のサブキャリアグループにおいて、前記基地局から送信された前記第2の信号を用いて同期する第4の制御部と、
     を具備することを特徴とする無線通信システム。
    In a wireless communication system including a base station and a terminal that communicate using one system band,
    A base station,
    A terminal,
    Comprising
    The base station
    A radio channel controller that allocates first and second subcarrier groups having different first and second symbol lengths of system information within a system band; and
    A first control unit that transmits, to the terminal, a first signal for the terminal to synchronize in the first subcarrier group;
    A second control unit that transmits a second signal obtained by performing signal processing on the first signal so that a symbol length is the second symbol length in the second subcarrier group;
    Comprising
    The terminal
    A third controller that synchronizes using the first signal transmitted from the base station in the first subcarrier group;
    A fourth control unit that synchronizes using the second signal transmitted from the base station in the second subcarrier group;
    A wireless communication system comprising:
  10.  1つのシステム帯域を用いて通信する基地局と端末とを含む無線通信システムの無線通信方法において、
     基地局は、
     システム帯域内にシステム情報の第1、第2のシンボル長がそれぞれ異なる第1、第2のサブキャリアグループを割り当て、
     前記第1のサブキャリアグループにおいて、端末が同期するための第1の信号を前記端末に送信し、
     前記第2のサブキャリアグループにおいて、シンボル長が前記第2のシンボル長となるように前記第1の信号を信号処理した第2の信号を送信し、
     端末は、
     前記第1のサブキャリアグループにおいて、前記基地局から送信された前記第1の信号を用いて同期し、
     前記第2のサブキャリアグループにおいて、前記基地局から送信された前記第2の信号を用いて同期する、
     処理を実行することを特徴とする無線通信方法。
    In a radio communication method of a radio communication system including a base station and a terminal that communicate using one system band,
    The base station
    Assigning first and second subcarrier groups having different first and second symbol lengths of system information within the system band,
    In the first subcarrier group, the terminal transmits a first signal for synchronization to the terminal,
    In the second subcarrier group, a second signal obtained by performing signal processing on the first signal so that a symbol length becomes the second symbol length is transmitted,
    The terminal
    In the first subcarrier group, synchronize using the first signal transmitted from the base station,
    In the second subcarrier group, synchronize using the second signal transmitted from the base station,
    A wireless communication method characterized by executing processing.
PCT/JP2017/000508 2017-01-10 2017-01-10 Base station, terminal, radio communication system and radio communication method WO2018131078A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/000508 WO2018131078A1 (en) 2017-01-10 2017-01-10 Base station, terminal, radio communication system and radio communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/000508 WO2018131078A1 (en) 2017-01-10 2017-01-10 Base station, terminal, radio communication system and radio communication method

Publications (1)

Publication Number Publication Date
WO2018131078A1 true WO2018131078A1 (en) 2018-07-19

Family

ID=62839364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000508 WO2018131078A1 (en) 2017-01-10 2017-01-10 Base station, terminal, radio communication system and radio communication method

Country Status (1)

Country Link
WO (1) WO2018131078A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11196062A (en) * 1997-12-26 1999-07-21 Jisedai Digital Television Hoso System Kenkyusho Ofdm receiver
JP2004349889A (en) * 2003-05-20 2004-12-09 Intelligent Cosmos Research Institute Transmission device and communication system
WO2016068072A1 (en) * 2014-10-31 2016-05-06 三菱電機株式会社 Communication system
JP2016134854A (en) * 2015-01-21 2016-07-25 株式会社国際電気通信基礎技術研究所 Radio communication apparatus and radio communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11196062A (en) * 1997-12-26 1999-07-21 Jisedai Digital Television Hoso System Kenkyusho Ofdm receiver
JP2004349889A (en) * 2003-05-20 2004-12-09 Intelligent Cosmos Research Institute Transmission device and communication system
WO2016068072A1 (en) * 2014-10-31 2016-05-06 三菱電機株式会社 Communication system
JP2016134854A (en) * 2015-01-21 2016-07-25 株式会社国際電気通信基礎技術研究所 Radio communication apparatus and radio communication system

Similar Documents

Publication Publication Date Title
US11985680B2 (en) Modulation order adaptation for partial subframes
JP6793682B2 (en) Communication systems and communication methods for machine type communication
EP3780873B1 (en) Terminal apparatus, base station apparatus, and communication methods
JP6386197B2 (en) Clear channel assessment procedure on master and slave devices
RU2762797C2 (en) Terminal device, base station device, communication method and integrated circuit
US10645591B2 (en) Wireless communication system, communication terminal, base station and method for cell control
AU2019209166B2 (en) Demodulation reference signal and phase rotation for sub-physical resource block allocation with two tone modulation
CN114513859A (en) Communication method and device in wireless communication system
JP2019216295A (en) Base station device, terminal device, and communication method
JP2020031250A (en) Terminal device, base station device, communication method, and integrated circuit
JP2019534623A (en) Subcarrier spacing selection for synchronization signals
JP6340653B2 (en) Terminal apparatus, base station apparatus, and communication method
RU2752005C2 (en) Terminal device, base station device, communication method, and integrated circuit
IL265644A (en) Terminal apparatus, base station apparatus, communication method, and integrated circuit
CN110326225A (en) Terminal installation, base station apparatus and communication means
WO2018131078A1 (en) Base station, terminal, radio communication system and radio communication method
WO2019244609A1 (en) Terminal device, base station apparatus, method, and integrated circuit
EP3487240B1 (en) Efficient wireless communication with reduced overhead signaling
US20220078777A1 (en) Assigning time domain resources to fragmented orthogonal frequency division multiplexing (ofdm) symbols
WO2018127980A1 (en) Base station, terminal, wireless communication system, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP