WO2018130195A1 - 橡胶组合物及加工方法和应用,及该应用的生产方法 - Google Patents

橡胶组合物及加工方法和应用,及该应用的生产方法 Download PDF

Info

Publication number
WO2018130195A1
WO2018130195A1 PCT/CN2018/072367 CN2018072367W WO2018130195A1 WO 2018130195 A1 WO2018130195 A1 WO 2018130195A1 CN 2018072367 W CN2018072367 W CN 2018072367W WO 2018130195 A1 WO2018130195 A1 WO 2018130195A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
parts
vulcanization
rubber composition
crosslinking agent
Prior art date
Application number
PCT/CN2018/072367
Other languages
English (en)
French (fr)
Inventor
徐涛
傅智盛
吴安洋
Original Assignee
杭州星庐科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810020839.XA external-priority patent/CN108314851B/zh
Application filed by 杭州星庐科技有限公司 filed Critical 杭州星庐科技有限公司
Priority to US16/477,654 priority Critical patent/US20190359805A1/en
Publication of WO2018130195A1 publication Critical patent/WO2018130195A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/005Methods for mixing in batches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7461Combinations of dissimilar mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion

Definitions

  • the invention belongs to the technical field of rubber, and particularly relates to a rubber composition reinforced by white carbon black and a processing method thereof, and a rubber product and a production method using the rubber composition.
  • White carbon black is the most commonly used light color filler with good reinforcing properties. Ethylene-propylene rubber reinforced with white carbon black tends to have good tear resistance, high adhesion strength, resistance to slippery, abrasion and health. The characteristics of small heat can be used to produce waterproof rubber coils, conveyor belts, plastic runways, washing machine door seals, rubber rollers, rubber stoppers, rubber stoppers, inner tubes, tire treads, tire sidewalls, air-conditioning hoses and other rubber products. However, it is weaker than ethylene-propylene rubber products reinforced by carbon black in terms of resilience and compression set resistance. Sulfur vulcanization and peroxide vulcanization are the two most commonly used vulcanization systems for ethylene-propylene rubber.
  • peroxide vulcanization can make vulcanizates have better heat resistance, aging resistance, resilience and compression set resistance.
  • the mechanical strength will be weaker than the sulfur vulcanized rubber compound. Therefore, how to obtain better aging resistance, resilience, mechanical properties and compression set resistance of rubber products reinforced by silica in a peroxide-based vulcanization system is a problem to be solved.
  • Ethylene-propylene rubber is a synthetic rubber with saturated molecular chain. It can be divided into two major categories: ethylene-propylene rubber and EPDM rubber. Both of them have good aging resistance. They are commonly used in ethylene-propylene rubber products. It is EPDM rubber, but because EPDM rubber contains a third monomer, the molecular chain contains double bonds, and the ethylene-propylene rubber molecular chain is completely saturated, so the ethylene-propylene rubber has more excellent resistance to aging. Sex, therefore, in the case of high requirements for aging resistance, it is a common technical solution to improve the aging resistance of EPDM by using ethylene propylene diene rubber together. However, the mechanical strength of the binary ethylene propylene rubber is low, which will affect the overall physical and mechanical properties.
  • Diethylene propylene rubber is a copolymer of ethylene and propylene and belongs to the copolymer of ethylene and ⁇ -olefin.
  • Ethylene and ⁇ -olefin copolymers are polymers containing only hydrocarbon elements and saturated molecular chains.
  • the common types of carbon atoms in such polymers are generally classified into primary, secondary and tertiary carbons, while tertiary carbons are the most It is easy to be trapped by hydrogen to form free radicals, so the ratio of tertiary carbon atoms to all carbon atoms is generally considered to be a major factor affecting the aging resistance of ethylene and ⁇ -olefin copolymers. The lower the ratio, the better the aging resistance.
  • the ratio can be expressed by the degree of branching.
  • a diethylene propylene rubber having a propylene content of 60% by weight can be calculated to contain 200 propylene units per 1000 carbon atoms, that is, 200 tertiary carbon atoms or 200.
  • One methyl branch so its degree of branching is 200 branches / 1000 carbons.
  • Ethylene ethylene propylene rubber generally has a weight percentage of 40% to 65% or 40% to 60%, so its branching degree is generally 117 to 200 branches/1000 carbons or 133 to 200 branches/ This degree of branching can be considered to be higher than other common ethylene and alpha-olefin copolymers in the 1000 carbon range.
  • the ⁇ -olefin in the common ethylene and ⁇ -olefin copolymer may be an ⁇ -olefin having a carbon number of not less than 4 in addition to propylene, and may be selected from a C 4 - C 20 ⁇ -olefin. It is usually selected from the group consisting of 1-butene, 1-hexene and 1-octene. If the degree of branching of the copolymer of ethylene and ⁇ -olefin is too low, the melting point and crystallinity are too high, and it is not suitable for use as a rubber component.
  • a polyolefin obtained by copolymerizing ethylene with 1-butene or ethylene and 1-octene may be referred to as a polyolefin plastomer or a polyolefin elastomer according to the degree of crystallinity and melting point, and a part of the polyolefin is elastic. Due to its proper crystallinity and melting point, it can be used well with ethylene propylene rubber and has a low degree of branching. It is considered to be an ideal material for improving the aging resistance of ethylene propylene rubber.
  • the polyolefin elastomer commonly used in rubber products is generally ethylene.
  • the octene weight percentage is generally not higher than 45%, more commonly not higher than 40%, the corresponding degree of branching is generally not higher than 56 branches / 1000 carbon, The more commonly used degree of branching is not higher than 50 branches/1000 carbons, which is much lower than the degree of branching of ethylene dipropylene rubber, so it has excellent aging resistance and good physical and mechanical properties.
  • the copolymer of ethylene and ⁇ -olefin may be peroxide cross-linking or irradiation cross-linking, both of which are mainly obtained by capturing tertiary carbon.
  • a hydrogen atom forms a tertiary carbon radical, and then forms a carbon-carbon crosslink by radical bonding, but a copolymer of ethylene and 1-octene (hereinafter referred to as POE) has fewer tertiary carbon atoms and is attached to a tertiary carbon atom.
  • Chain length, large steric hindrance, difficulty in radical reaction, resulting in difficulty in crosslinking, affecting processing efficiency and product performance, such as compression set resistance is unsatisfactory.
  • the present invention provides a rubber composition and a processing method thereof, which partially or completely replace ethylene-propylene rubber with a branched polyethylene having a branching degree of not less than 50 branches/1000 carbons. It can be applied to rubber products mainly reinforced by silica, and can obtain good heat resistance, compression set resistance and mechanical strength under the peroxide vulcanization system, and the defects of the prior art can be improved.
  • a rubber composition comprising: a rubber matrix and an essential component, the rubber matrix comprising: a content of branched polyethylene a: 0 ⁇ a ⁇ 100 parts; the content of the binary ethylene propylene rubber and the ethylene propylene diene rubber b: 0 ⁇ b ⁇ 100 parts; the essential component comprises: 1 to 10 parts of the crosslinking agent, based on 100 parts by weight of the rubber matrix, white
  • the carbon black is 15 to 80 parts, wherein the branching degree of the branched polyethylene is not less than 50 branches/1000 carbons, the weight average molecular weight is not less than 50,000, and the Mooney viscosity is ML (1+4) 125 ° C. Not less than 2.
  • Branched polyethylene in the prior art means, in addition to a branched ethylene homopolymer, a branched saturated vinyl copolymer, such as an ethylene- ⁇ -olefin copolymer, which may be POE, although POE performs well in physical and mechanical properties and aging resistance, but cross-linking performance is not good, although the branched polyethylene of the present invention can contain both branched ethylene homopolymer and POE, but a better choice It is a branched polyethylene having a high proportion of branched polyethylene or a branched ethylene homopolymer. In a preferred embodiment of the invention, the branched polyethylene contains only branched ethylene homopolymer.
  • the branched polyethylene used is a branched ethylene homopolymer unless otherwise specified.
  • the branched polyethylene used in the present invention is a kind of ethylene homopolymer having a branching degree of not less than 50 branches/1000 carbons, and can be called Branched Polyethylene or Branched PE.
  • the synthesis method is mainly composed of a late transition metal catalyst.
  • the homopolymerization of ethylene is catalyzed by a "chain walking mechanism", and the preferred late transition metal catalyst may be one of ( ⁇ -diimine) nickel/palladium catalysts.
  • the nature of the chain walking mechanism refers to the late transition metal catalyst.
  • the ( ⁇ -diimine) nickel/palladium catalyst is more likely to undergo ⁇ -hydrogen elimination reaction and re-insertion reaction in the process of catalyzing olefin polymerization, thereby causing branching.
  • Branched chains of such branched polyethylenes may have different numbers of carbon atoms, specifically 1 to 6, or more carbon atoms.
  • the production cost of the ( ⁇ -diimine) nickel catalyst is significantly lower than that of the ( ⁇ -diimine) palladium catalyst, and the ( ⁇ -diimine) nickel catalyst catalyzes the high rate of ethylene polymerization and high activity, and is more suitable for industrial applications. Therefore, the branched polyethylene prepared by the ethylene polymerization of the ( ⁇ -diimine) nickel catalyst is preferred in the present invention.
  • the degree of branching of the branched polyethylene used in the present invention is preferably 50 to 130 branches/1000 carbons, further preferably 60 to 130 branches/1000 carbons, further preferably 60 to 116 branches/1000.
  • a carbon, the degree of branching between POE and ethylene-propylene rubber, is a new technical solution that is different from the prior art, and can have excellent aging resistance and good cross-linking performance.
  • Cross-linking performance includes factors such as crosslink density and cross-linking rate, which is the specific performance of the cross-linking ability of the rubber matrix during processing.
  • the branched polyethylene used in the present invention preferably has a methyl branch content of 40% or more or 50% or more, and has a certain similarity with the structure of the ethylene propylene diene rubber.
  • the degree of branching (tertiary carbon atom content) and the steric hindrance around the tertiary carbon atom are the two main factors affecting the cross-linking ability of the saturated polyolefin.
  • the branched polyethylene used in the present invention is low in degree of branching relative to the ethylene propylene rubber, and since the branched polyethylene has a branch having a carbon number of not less than 2, the branched polycondensation used in the present invention
  • the steric hindrance around the tertiary carbon atom of ethylene is theoretically larger than that of ethylene propylene rubber. It can be judged by combining two factors that the crosslinking ability of the branched polyethylene used in the present invention should be weaker than that of the ethylene propylene rubber.
  • EPDM rubber In EPDM rubber. However, the actual cross-linking ability of the partially branched polyethylene used in the present invention is close to that of EPDM rubber, and may even be equal to or better than EPDM rubber. This means that the rubber composition of the present invention can obtain a good aging resistance, can also not weaken the crosslinking ability, and can even have excellent crosslinking performance to achieve an unexpected beneficial effect.
  • secondary branched structure refers to a structure in which branches are further branched. This is also known as "branch-on-branch" during chain walking. Because of the low steric hindrance around the tertiary carbon atoms of the secondary branches, cross-linking reactions are more likely to occur. Having a secondary branched structure is a distinct distinction between the branched polyethylene used in the preferred embodiment of the invention and the prior art ethylene dipropylene rubber or the conventional ethylene- ⁇ -olefin copolymer.
  • the vinyl copolymer refers to a copolymer of ethylene and a branched ⁇ -olefin, and has a secondary branched structure, wherein the branched ⁇ -olefin may be selected from the group consisting of isobutylene and 3-methyl-1- Butylene, 4-methyl-1-pentene, 3-methyl-1-pentene, 2-methyl-1-heptene, 3-methyl-1-heptene, 4-methyl-1- The heptene, 5-methyl-1-heptene, 6-methyl-1-heptene, and the like, the comonomer may also contain a common linear alpha-olefin.
  • branched polyethylene prepared by the ( ⁇ -diimine) nickel catalyst is difficult to exist in the secondary branched structure, and at least it is difficult to sufficiently distinguish it.
  • the technical solution of the present invention is also to analyze the branched polycondensation.
  • the structure of ethylene provides a new idea.
  • the cross-linking point of the branched polyethylene can be generated on the tertiary chain of the main chain during the peroxide crosslinking process. It can also be produced on the branched tertiary carbon of the secondary structure, so the rubber network formed by the cross-linking of the branched polyethylene has a richer CC connecting segment between the main chains than the ethylene-propylene rubber. The length can effectively avoid stress concentration and help to obtain better mechanical properties.
  • a further technical solution is that, in 100 parts by weight, the content of branched polyethylene in the rubber matrix is a: 10 ⁇ a ⁇ 100 parts; the content of binary ethylene propylene rubber and ethylene propylene diene rubber is b: 0 ⁇ b ⁇ 90 parts; the branched polyethylene is an ethylene homopolymer having a degree of branching of 60 to 130 branches/1000 carbons, a weight average molecular weight of 66,000 to 518,000, and a Mooney viscosity ML (1+4) ) 125 ° C is 6 ⁇ 102.
  • the content of the branched polyethylene in the 100 parts by weight of the rubber matrix is a: 10 ⁇ a ⁇ 100 parts; the content of the binary ethylene propylene rubber and the EPDM rubber is b: 0 ⁇ b ⁇ 90 parts
  • the branched polyethylene is an ethylene homopolymer having a degree of branching of 70 to 116 branches/1000 carbons, a weight average molecular weight of 201,000 to 436,000, and a Mooney viscosity of ML (1+4) 125 ° C. It is 23 to 101.
  • the content of the branched polyethylene in the 100 parts by weight of the rubber matrix is a: 10 ⁇ a ⁇ 100 parts; the content of the binary ethylene propylene rubber and the EPDM rubber is b: 0 ⁇ b ⁇ 90 parts
  • the branched polyethylene is an ethylene homopolymer having a degree of branching of 80 to 105 branches/1000 carbons, a weight average molecular weight of 250,000 to 40,600, and a Mooney viscosity of ML (1+4) of 125 ° C. It is 40 to 95.
  • a further technical solution is that, in 100 parts by weight, the content of the branched polyethylene in the rubber matrix is a: 10 ⁇ a ⁇ 100 parts; the content of the binary ethylene propylene rubber and the EPDM rubber is b: 0 ⁇ B ⁇ 90 parts; the branched polyethylene is an ethylene homopolymer having a degree of branching of 80 to 105 branches/1000 carbons, a weight average molecular weight of 268,000 to 356,000, and a Mooney viscosity ML (1+) 4) 125 ° C is 42 ⁇ 80.
  • the third monomer of the ethylene propylene diene monomer is preferably a diene monomer, specifically selected from the group consisting of 5-ethylidene-2-norbornene and 5-vinyl-2-nor Borneene, dicyclopentadiene, 1,4-hexadiene, 1,5-hexadiene, 1,4-pentadiene, 2-methyl-1,4-pentadiene, 3-methyl- 1,4-Hexadiene, 4-methyl-1,4-hexadiene, 1,9-decadiene, 5-methylene-2-norbornene, 5-pentylene-2-nor Borbornene, 1,5-cyclooctadiene, 1,4-cyclooctadiene, and the like.
  • a diene monomer specifically selected from the group consisting of 5-ethylidene-2-norbornene and 5-vinyl-2-nor Borneene, dicyclopentadiene, 1,4-hexadiene
  • the ethylene propylene rubber may contain two or more kinds of diene monomers at the same time, such as 5-ethylidene-2-norbornene and 5-vinyl-2-norbornene.
  • the functional group of the diene monomer can play the same role as the intrinsic co-crosslinking agent in the peroxide vulcanization, thereby improving the crosslinking efficiency. This helps to reduce the amount and residual amount of crosslinker and co-crosslinker required and the cost of adding them.
  • the weight specific gravity of the diene monomer to the ethylene propylene rubber is preferably from 1% to 14%, more preferably from 3% to 10%, still more preferably from 4% to 7%.
  • the crosslinking agent comprises at least one of a peroxide crosslinking agent and a sulfur
  • the peroxide crosslinking agent comprises di-tert-butyl peroxide, dicumyl peroxide, Tert-butyl cumyl peroxide, 1,1-di-tert-butyl peroxide-3,3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-di(tert-butyl) Base oxidized) hexane, 2,5-dimethyl-2,5-di(tert-butylperoxy)hexyne-3, bis(tert-butylperoxyisopropyl)benzene, 2,5-di At least one of methyl-2,5-bis(benzoyl peroxy)hexane, tert-butyl peroxybenzoate, and t-butylperoxy-2-ethylhexyl carbonate.
  • the essential component contains 2 to 7 parts of a crosslinking agent and 30 to 60 parts of white carbon black based on 100 parts by weight of the rubber base.
  • the white carbon black is at least one of a precipitation method white carbon black and a fumed silica
  • the precipitation method white carbon black is a highly dispersible precipitation method white carbon black.
  • transparent white carbon black may be used, and the particle diameter is preferably 10 to 50 nm, and more preferably 15 to 30 nm.
  • the rubber composition further comprises an auxiliary component, which comprises: 0.2 to 10 parts of a co-crosslinking agent, 20 to 120 parts of an inorganic filler, and a plasticizer, based on 100 parts by weight of the rubber matrix. 2 to 130 parts, stabilizer 1 to 3 parts, metal oxide 2 to 20 parts, surface modifier 1 to 20 parts, coloring agent 1 to 10 parts, vulcanization accelerator 0 to 3 parts, binder 0 to 20 Share.
  • an auxiliary component which comprises: 0.2 to 10 parts of a co-crosslinking agent, 20 to 120 parts of an inorganic filler, and a plasticizer, based on 100 parts by weight of the rubber matrix. 2 to 130 parts, stabilizer 1 to 3 parts, metal oxide 2 to 20 parts, surface modifier 1 to 20 parts, coloring agent 1 to 10 parts, vulcanization accelerator 0 to 3 parts, binder 0 to 20 Share.
  • the stabilizer comprises 2,2,4-trimethyl-1,2-dihydroquinoline polymer (RD), 6-ethoxy-2,2,4-trimethyl At least one of -1,2-dihydroquinoline (AW) and 2-mercaptobenzimidazole (MB).
  • RD 2,2,4-trimethyl-1,2-dihydroquinoline polymer
  • AW 6-ethoxy-2,2,4-trimethyl
  • MB 2-mercaptobenzimidazole
  • the co-crosslinking agent comprises triallyl cyanurate, triallyl isocyanurate, ethylene glycol dimethacrylate, ethyl dimethacrylate, and dimethyl Triethyl acrylate, triallyl trimellitate, trimethylolpropane trimethacrylate, ethylene glycol dimethacrylate, N, N'-m-phenylene bismaleimide At least one of N,N'-bis-indenyl acetonone, 1,2-polybutadiene, a metal salt of an unsaturated carboxylic acid, and sulfur.
  • the unsaturated carboxylic acid metal salt contains at least one of zinc acrylate, zinc methacrylate, and magnesium methacrylate.
  • the plasticizer comprises at least one of pine tar, engine oil, naphthenic oil, paraffin oil, coumarone, RX-80, stearic acid, and paraffin wax.
  • stearic acid can also act as an active agent in sulfur-sulfur-based systems, and can form soluble salts with some metal oxides, thereby increasing the activation of metal oxides on promoters.
  • the rational use of plasticizers can increase the flexibility of the compound and the plasticity suitable for process operation.
  • an adhesion promoter such as pine tar, coumarone, RX-80, liquid polyisobutylene or the like.
  • the metal oxide comprises at least one of zinc oxide, magnesium oxide, and calcium oxide.
  • the inorganic filler comprises at least one of calcium carbonate, talc, calcined clay, magnesium silicate, magnesium carbonate, and barium sulfate.
  • the surface modifier comprises polyethylene glycol, diphenyl silicon glycol, triethanolamine, vinyl tris(2-methoxyethoxy)silane having a molecular weight of 2000 or 3400 or 4000. (A-172), at least one of ⁇ -glycidoxypropyltrimethoxysilane (A-187) and ⁇ -mercaptopropyltrimethoxysilane (A-189).
  • the colorant comprises at least one of titanium dioxide, indigo blue, indocyanine green, and carbon black.
  • the vulcanization accelerator comprises 2-thiol benzothiazole, dibenzothiazyl disulfide, tetramethyl thiuram monosulfide, tetramethyl thiuram disulfide, tetrazyl disulfide Kethiram, N-cyclohexyl-2-benzothiazolyl sulfenamide, N,N-dicyclohexyl-2-benzothiazolyl sulfenamide, bismaleimide, ethylene thiourea At least one of them.
  • the binder comprises at least one of a resorcinol donor and a methylene donor.
  • the resorcinol donor may be selected from the group consisting of resorcinol (adhesive R), binder RS, binder RS-11, binder R-80, binder RL, binder binder At least one of PF, binder PE, binder RK, binder RH; the methylene donor may be selected from hexamethylenetetramine (HMTA), binder H-80, binder A, at least one of the binder RA, the binder AB-30, the binder Rq, the binder RC, the binder CS963, and the binder CS964.
  • HMTA hexamethylenetetramine
  • the adhesive may also be selected from a triazine adhesive, and the specific commercial grade may be selected from at least one of the adhesive TAR, the adhesive TZ, the adhesive AIR-1, and the adhesive AIR-101.
  • One type, preferably at least one of the binder AIR-1 and the binder AIR-101, can partially replace the above-mentioned resorcinol donor binder, and has the advantages of good adhesion and relatively environmental protection.
  • the rubber composition in order to improve the viscosity of the rubber compound, may further comprise a tackifier, wherein the plasticizer is pine tar, coumarone resin, RX-80, and liquid polyisobutylene.
  • a tackifier wherein the plasticizer is pine tar, coumarone resin, RX-80, and liquid polyisobutylene.
  • a commonly used tackifier such as a phenol resin, a modified alkyl phenol resin, or an alkyl phenol-acetylene resin, and the tackifier is generally not more than 30 parts by weight, further preferably not more than 10 parts by weight, based on 100 parts by weight of the rubber base. It is further preferably not more than 5 parts by weight.
  • crosslinking agent the co-crosslinking agent and the vulcanization accelerator involved in the rubber composition provided by the present invention all belong to a crosslinking system.
  • the rubber composition of the present invention may be present in the form of an uncrosslinked rubber compound, and may be present in the form of a vulcanized rubber after further crosslinking reaction.
  • Vulcanized rubber can also be referred to simply as vulcanizate.
  • the present invention also provides a method of processing the above rubber composition, the processing method comprising the steps of:
  • Rubber kneading First, the rubber composition other than the cross-linking system is sequentially added to the internal mixer for mixing by weight, and then added to the cross-linking system, uniformly kneaded, and discharged to obtain a rubber compound. The rubber compound is thinned on the open mill and then placed under the sheet to be vulcanized.
  • the crosslinking system comprises a crosslinking agent, and may further comprise at least one of a co-crosslinking agent and a vulcanization accelerator;
  • Vulcanization The rubber compound is filled into the cavity of the mold, and after being vulcanized by vulcanization on a flat vulcanizer, the vulcanized rubber is obtained by demolding.
  • the present invention also provides a rubber pellet for a plastic track surface layer, the rubber compound used comprising the above rubber composition.
  • the invention also provides a method for producing rubber particles for a plastic track surface layer, the production method comprising the following steps:
  • Rubber kneading First, the rubber composition components other than the cross-linking system are sequentially added to an internal mixer in terms of parts by weight, and then kneaded, and then added to the cross-linking system, uniformly kneaded, and discharged to obtain a rubber compound to be mixed. Use, the rubber compound is thinned on the open mill, the next piece, parked for 20 hours, refining, triangle bag on the open mill, adjust the roll distance, the next piece.
  • the crosslinking system comprises a crosslinking agent, and may further comprise at least one of a co-crosslinking agent and a vulcanization accelerator;
  • Extrusion and vulcanization The extrusion vulcanization process should adopt an evacuation extruder, and after the extrusion, a salt bath vulcanization process is adopted;
  • the present invention also provides an insulating layer or sheathing layer for a cable, the compound used comprising the above rubber composition.
  • the invention also provides a method for producing an insulating layer or a sheath layer rubber for a cable, and the production process steps are as follows:
  • Rubber kneading First, the rubber composition components other than the cross-linking system are sequentially added to an internal mixer in terms of parts by weight, and then kneaded, and then added to the cross-linking system, uniformly kneaded, and discharged to obtain a rubber compound to be mixed. The mixture is thinly passed on the open mill, the lower piece is left for 20 hours, and the refining is carried out. The triangle package is set on the open mill to adjust the roll distance and the lower piece.
  • the cross-linking system contains a crosslinking agent. At least one of a co-crosslinking agent and a vulcanization accelerator may also be included;
  • the present invention also provides a high temperature resistant conveyor belt having at least one layer of the working surface covering rubber and the non-working surface covering rubber comprising the rubber composition provided by the present invention.
  • the invention also provides a method for producing a high temperature resistant conveyor belt, wherein the working surface covering glue comprises the above rubber composition, and the production method comprises the following steps:
  • (1) kneading the components of the rubber composition other than the cross-linking system are sequentially added to an internal mixer according to parts by weight, and then kneaded, and then added to the cross-linking system, uniformly kneaded, and discharged, to obtain a kneaded rubber to be used.
  • the crosslinking system comprises a crosslinking agent, and may further comprise at least one of a co-crosslinking agent and a vulcanization accelerator;
  • the film is closely attached to the preformed adhesive tape strip blank on the forming machine to form a strip of the high temperature resistant conveyor belt, and then rolled up and then vulcanized;
  • the present invention also provides a waterproofing membrane comprising the above rubber composition.
  • the present invention also provides a method of producing a waterproof membrane, the production method comprising the following steps:
  • (1) kneading the components of the rubber composition other than the cross-linking system are sequentially added to an internal mixer according to parts by weight, and then kneaded, and then added to the cross-linking system, uniformly kneaded, and discharged, to obtain a kneaded rubber to be used.
  • the block rubber is fed into an open mill and kneaded to obtain a film with a smooth and uniform surface, which is cooled to below 50 ° C to be discharged and stacked.
  • the crosslinking system comprises a crosslinking agent, and may further comprise at least one of a co-crosslinking agent and a vulcanization accelerator;
  • Hot-smelting the film is uniformly heated on the open mill, smoothed and evenly rolled into a roll;
  • vulcanization the coiled material is placed in a vulcanization kettle for vulcanization;
  • Rewinding re-opening the vulcanized coil, taking out the release liner layer, and then rewinding and packaging into a product.
  • the present invention also provides a rubber stopper comprising the above rubber composition.
  • the invention also provides a method of producing a rubber stopper comprising the following steps:
  • the rubber composition components other than the cross-linking system are sequentially added to an internal mixer in terms of parts by weight, and kneaded, and then added to the cross-linking system to be uniformly kneaded and discharged.
  • the rubber compound is opened and compressed on an open mill, and then parked for use, the crosslinking system comprises a crosslinking agent, and may further comprise at least one of a crosslinking agent and a vulcanization accelerator;
  • vulcanization vulcanizing the extruded rubber by an injection molding vulcanizer
  • Post-treatment punching, cleaning and silicidation, obtaining finished products, packaging and storage.
  • the present invention also provides a rubber roller comprising the above rubber composition.
  • the invention also provides a method of producing a rubber roller comprising the following production steps:
  • Rubber mixing setting the temperature of the internal mixer and the rotation speed of the rotor, and adding the components other than the crosslinking system in the rubber composition to the internal mixer for mixing; then adding the crosslinking system, mixing and arranging gum.
  • the crosslinking system comprises a crosslinking agent, and may further comprise at least one of a co-crosslinking agent and a vulcanization accelerator. The rubber compound is thinned in the open mill, parked and tested;
  • Post-treatment The vulcanized rubber roller is rough-processed on a lathe, and then finished on a grinding machine for inspection and inspection to obtain a finished product.
  • the present invention also provides an inner tube having a rubber composition comprising the above rubber composition.
  • the invention also provides a method for producing a inner tube, comprising the steps of: first kneading rubber, filtering and parking; then extruding through an extruder, cutting according to the length required by the process, sticking the valve, splicing After parking; then inflated and shaped, steam vulcanized, cooled, inspected, trimmed to get the finished product.
  • the present invention also provides a tire comprising at least one of a rubber for a sidewall and a rubber for a tread comprising the above rubber composition.
  • a further technical solution is a rubber composition for a tread or a side wall in which the content of the branched polyethylene is not less than 70 parts by weight in 100 parts by weight of the rubber base.
  • the tire provided by the present invention is preferably used as a force tire.
  • the tires can be non-motorized tires such as bicycle tires, trolley tires, animal tires, and electric tires.
  • it can be preferably used as a white or colored bicycle tire.
  • the rubber composition of the present invention can be used as a side wall rubber, and a tire can be produced by a usual method. That is, the kneaded rubber is subjected to extrusion processing in accordance with the sidewall shape of the tire design, and is molded together with other tire members by a usual method on a tire molding machine to form an unvulcanized tire. The unvulcanized tire is heated and pressurized in a vulcanizer to obtain a tire.
  • the rubber composition of the present invention can be used as a tread rubber, and a tire can be produced by a usual method. That is, the kneaded rubber is subjected to extrusion processing in accordance with the tread shape of the tire design, and is molded together with other tire members by a usual method on a tire molding machine to form an unvulcanized tire. The unvulcanized tire is heated and pressurized in a vulcanizer to obtain a tire.
  • the steel wire or fiber skeleton used in the above tires is preferably a surface treated with a type which can be well bonded to a non-polar rubber.
  • the surface treatment can be carried out by soaking the RFL impregnation system.
  • the present invention also provides an air-conditioning hose comprising, in order from the inside to the outside, a barrier layer, an inner rubber layer, a braid layer and an outer rubber layer; wherein the rubber compound used in the inner rubber layer comprises the rubber composition.
  • the invention also provides a method for producing an air-conditioning hose, comprising the steps of: extruding a nylon layer on a hose mold core rod, and coating a nylon layer on the core rod to form a barrier layer, and then in a core with a barrier layer
  • the inner rubber layer is extruded on the rod, and the outer surface of the inner rubber layer is woven, which is a braid layer, and then the outer rubber layer is extruded on the braid layer, which is a semi-finished air-conditioning hose, and the semi-finished rubber tube is vulcanized, and the core rod is Take out and get the finished hose.
  • the present invention also provides a catheter characterized in that the compound used comprises the above rubber composition.
  • the catheter provided by the present invention is suitable for use as a medical catheter or a food catheter.
  • the present invention also provides a method of producing the above-mentioned catheter, characterized in that the molding method is extrusion molding or compression molding, and the vulcanization method is selected from the group consisting of compression vulcanization or high temperature steam vulcanization.
  • the molding method is preferably an extrusion molding method, and the high-temperature steam vulcanization process is suitable for a peroxide crosslinking system, and the peroxide is preferably bis(2,4-dichlorobenzoyl peroxide) or 2,5-dimethyl-2 peroxide. Further, 5-di(tert-butylperoxy)hexane, the peroxide addition form is more preferably a paste.
  • the vulcanization system in the rubber composition of the hose can be selected from a radiation crosslinking system, and the vulcanization method selects a radiation crosslinking process, when a small amount of peroxidation is contained.
  • the object such as DCP
  • the speed of radiation crosslinking can be significantly accelerated.
  • the invention has the beneficial effects that since the molecular structure of the branched polyethylene is completely saturated, the heat aging resistance is similar to that of the ethylene propylene rubber, which is superior to the EPDM rubber, and can be used.
  • the oxide system is vulcanized.
  • the branched polyethylene has more branches in its molecular structure, and the length of the branch has a certain length and length distribution, and a proper number of secondary branched structures exist, in the process of peroxide crosslinking, branching
  • the cross-linking point of polyethylene can be produced on the tertiary chain of the main chain or on the branched tertiary carbon of the secondary structure, so the rubber network formed by crosslinking of the branched polyethylene by peroxide cross-links with ethylene-propylene rubber.
  • the main chain there is a richer CC link segment length, which can effectively avoid stress concentration and help to obtain better mechanical properties.
  • the white carbon black used in the examples of the present invention is a fumed silica or a precipitated silica, and for applications where transparency and electrical insulation are not critical, precipitated silica is preferred, and further preferably highly dispersed.
  • Sex precipitated silica unless otherwise specified, the ordinary precipitation method used in the examples is Solverodi zeosil142, and the highly dispersible silica is Solvay zeosil 165N. .
  • the crosslinking system contains a crosslinking agent, and may further contain at least one of a co-crosslinking agent and a vulcanization accelerator.
  • the Mooney viscosity ML (1+4) of the ethylene-propylene rubber used is preferably 20 to 45, more preferably 40 to 45, and preferably 50 to 60%.
  • the Mooney viscosity ML (1+4) of the ethylene propylene diene rubber used is preferably 20 to 100, more preferably 40 to 80, preferably ethylene, 50% to 75%, and the third monomer is 5-ethylene. 2-norbornene, 5-vinyl-2-norbornene or dicyclopentadiene, the third monomer content being from 1% to 7%.
  • the ethylene-propylene rubber and the ethylene-propylene diene rubber selected from the rubber base have a Mooney viscosity ML (1+4) of 125 ° C, preferably 40 to 80, and an ethylene content of preferably 45% to 75%.
  • the branched polyethylene used can be obtained by catalyzing the homopolymerization of ethylene by a ( ⁇ -diimine) nickel catalyst under the action of a cocatalyst.
  • the structure, synthesis method and method for preparing branched polyethylene by using the ( ⁇ -diimine) nickel catalyst are disclosed in the prior art, and can be used but are not limited to the following documents: CN102827312A, CN101812145A, CN101531725A, CN104926962A, US6103658, US6660677.
  • the selected branched polyethylene is characterized by a branching degree of 60 to 130 branches/1000 carbons, a weight average molecular weight of 66,000 to 518,000, and a Mooney viscosity of ML (1+4) of 125 ° C of 6 to 102. .
  • the degree of branching is measured by nuclear magnetic resonance spectroscopy, and the molar percentages of various branches are measured by nuclear magnetic carbon spectroscopy.
  • Hardness test According to the national standard GB/T 531.1-2008, the test is carried out with a hardness tester, and the test temperature is room temperature;
  • tear strength test in accordance with the national standard GB/T529-2008, using an electronic tensile test machine for testing, the tensile speed is 500mm / min, the test temperature is 23 ⁇ 2 ° C, the sample is a rectangular sample;
  • compression permanent deformation test in accordance with the national standard GB/T7759-1996, using a compression permanent deformation device for testing, type B, the compression is 25%, the test temperature is 70 ° C;
  • Mooney viscosity test in accordance with the national standard GB/T1232.1-2000, with Mooney viscosity meter for testing, the test temperature is 125 ° C, preheat 1 minute, test 4 minutes;
  • test conditions are 150 ° C ⁇ 72h;
  • the vulcanization conditions of the following Examples 1 to 18 and Comparative Examples 1 to 3 were as follows: temperature: 160 ° C; pressure: 16 MPa; time was Tc90 + 2 min.
  • the branched polyethylene used was numbered PER-4.
  • Rubber mixing set the temperature of the mixer to 90 ° C, the rotor speed is 50 rpm, add 70 parts of EPDM rubber and 30 parts of branched polyethylene pre-pressed for 90 seconds; add 40 parts of white Carbon black, kneading for 3 minutes; then adding 2 parts of cross-linking agent dicumyl peroxide (DCP), mixing for 2 minutes and then discharging the glue.
  • DCP cross-linking agent dicumyl peroxide
  • the branched polyethylene used was numbered PER-4.
  • Rubber mixing set the temperature of the internal mixer to 90 ° C, the rotor speed to 50 rpm, add 50 parts of EPDM rubber and 50 parts of branched polyethylene pre-pressed for 90 seconds; add 40 parts of white Carbon black, kneading for 3 minutes; then adding 2 parts of cross-linking agent dicumyl peroxide (DCP), mixing for 2 minutes and then discharging the glue.
  • DCP cross-linking agent dicumyl peroxide
  • the branched polyethylene used was numbered PER-4.
  • Rubber mixing set the temperature of the internal mixer to 90 ° C, the rotor rotation speed is 50 rev / min, add 100 parts of branched polyethylene pre-pressure mixing for 90 seconds; add 40 parts of white carbon black, mix for 3 minutes; Then, 2 parts of cross-linking agent dicumyl peroxide (DCP) was added, and after 2 minutes of mixing, the gum was discharged.
  • DCP cross-linking agent dicumyl peroxide
  • the branched polyethylene used was numbered PER-4.
  • Rubber mixing set the temperature of the internal mixer to 90 ° C, the rotor rotation speed is 50 rev / min, add 100 parts of branched polyethylene pre-pressure mixing for 90 seconds; add 40 parts of white carbon black, mix for 3 minutes; Then, 2 parts of a cross-linking agent, dicumyl peroxide (DCP) and 0.2 parts of a cross-linking agent, sulfur were added, and the mixture was kneaded for 2 minutes and then discharged. The mixture was thinly spread on the open mill, and the roll was adjusted to obtain a sheet thickness of about 2.5 mm and parked for 20 hours. Refining, three times on the open mill triangle, adjust the roller distance to 2.5mm, the next piece.
  • DCP dicumyl peroxide
  • Rubber mixing set the temperature of the mixer to 90 ° C, the rotor speed is 50 rpm, add 100 parts of EPDM rubber for 90 seconds, add 40 parts of silica, and mix for 3 minutes. Then, 2 parts of cross-linking agent dicumyl peroxide (DCP) was added, and after 2 minutes of mixing, the gum was discharged. The mixture was thinly spread on the open mill, and the roll was adjusted to obtain a sheet thickness of about 2.5 mm and parked for 20 hours. Refining, three times on the open mill triangle, adjust the roller distance to 2.5mm, the next piece.
  • DCP dicumyl peroxide
  • the branched polyethylene used was numbered PER-5.
  • Rubber mixing set the temperature of the internal mixer to 90 ° C, the rotor speed is 50 rpm, add 90 parts of EPDM rubber and 10 parts of branched polyethylene for 90 seconds; 40 parts of white Carbon black, mixing for 3 minutes; then adding 3 parts of cross-linking agent dicumyl peroxide (DCP) and 1 part of the cross-linking agent triallyl isocyanurate (TAIC), mixing for 2 minutes gum.
  • DCP dicumyl peroxide
  • TAIC cross-linking agent triallyl isocyanurate
  • the branched polyethylene used was numbered PER-5.
  • Rubber mixing set the temperature of the internal mixer to 90 ° C, the rotor speed is 50 rpm, add 20 parts of ethylene propylene diene rubber, 50 parts of ethylene propylene diene monomer and 30 parts of branched polyethylene pre-pressure mixing. 90 seconds; add 40 parts of silica, mix for 3 minutes; then add 3 parts of cross-linking dicumyl peroxide (DCP) and 1 part of cross-linking agent triallyl isocyanurate (TAIC) ), after 2 minutes of mixing, the glue is discharged. The mixture was thinly spread on the open mill, and the roll was adjusted to obtain a sheet thickness of about 2.5 mm and parked for 20 hours. Refining, three times on the open mill triangle, adjust the roller distance to 2.5mm, the next piece.
  • DCP cross-linking dicumyl peroxide
  • TAIC cross-linking agent triallyl isocyanurate
  • the branched polyethylene used was numbered PER-5.
  • Rubber mixing set the temperature of the internal mixer to 90 ° C, the rotor speed is 50 rpm, add 20 parts of EPDM rubber and 80 parts of branched polyethylene pre-pressed for 90 seconds; add 40 parts of white Carbon black, mixing for 3 minutes; then adding 3 parts of cross-linking agent dicumyl peroxide (DCP) and 1 part of the cross-linking agent triallyl isocyanurate (TAIC), mixing for 2 minutes gum.
  • DCP dicumyl peroxide
  • TAIC cross-linking agent triallyl isocyanurate
  • the branched polyethylene used was numbered PER-5.
  • Rubber mixing set the temperature of the internal mixer to 90 ° C, the rotor rotation speed is 50 rev / min, add 100 parts of branched polyethylene pre-pressure mixing for 90 seconds; add 40 parts of white carbon black, mix for 3 minutes; Then, 3 parts of a cross-linking agent, dicumyl peroxide (DCP) and 1 part of a cross-linking agent, triallyl isocyanurate (TAIC), were added, and the mixture was kneaded for 2 minutes and then discharged. The mixture was thinly spread on the open mill, and the roll was adjusted to obtain a sheet thickness of about 2.5 mm and parked for 20 hours. Refining, three times on the open mill triangle, adjust the roller distance to 2.5mm, the next piece.
  • DCP dicumyl peroxide
  • TAIC triallyl isocyanurate
  • Rubber mixing set the temperature of the mixer to 90 ° C, the rotor speed is 50 rpm, add 100 parts of EPDM rubber for 90 seconds, add 40 parts of silica, and mix for 3 minutes. Then, 3 parts of cross-linking agent dicumyl peroxide (DCP) and 1 part of cross-linking agent triallyl isocyanurate (TAIC) were added, and the mixture was kneaded for 2 minutes and then discharged. The mixture was thinly spread on the open mill, and the roll was adjusted to obtain a sheet thickness of about 2.5 mm and parked for 20 hours. Refining, three times on the open mill triangle, adjust the roller distance to 2.5mm, the next piece.
  • DCP dicumyl peroxide
  • TAIC cross-linking agent triallyl isocyanurate
  • the branched polyethylene used was numbered PER-9.
  • Rubber mixing set the temperature of the internal mixer to 100 ° C, the rotor speed to 50 rpm, add 90 parts of EPDM rubber and 10 parts of branched polyethylene for 90 seconds premixing; add 5 parts of oxidation Zinc, 1 part stearic acid, 3 parts polyethylene glycol PEG4000, 2 parts vinyl tris(2-methoxyethoxy) silane (A-172) and 1 part antioxidant 2,2,4-trimethyl Base-1,2-dihydroquinoline polymer (RD), kneaded for 2 minutes; then add 60 parts of white carbon black, 20 parts of calcined clay and 20 parts of paraffin oil SUNPAR 2280 to the compound, and knead for 3 minutes; 4 parts of cross-linking agent dicumyl peroxide (DCP) and 1 part of the cross-linking agent triallyl isocyanurate (TAIC) were added, and the mixture was kneaded for 2 minutes and then discharged.
  • the rubber compound was thinly spread on an open mill to obtain
  • the branched polyethylene used was numbered PER-8.
  • Rubber mixing set the temperature of the internal mixer to 100 ° C, the rotor speed to 50 rpm, add 80 parts of ethylene propylene diene monomer and 20 parts of branched polyethylene for 90 seconds; add 5 parts of oxidation Zinc, 1 part stearic acid, 3 parts polyethylene glycol PEG4000, 2 parts vinyl tris(2-methoxyethoxy) silane (A-172) and 1 part antioxidant 2,2,4-trimethyl Base-1,2-dihydroquinoline polymer (RD), kneaded for 2 minutes; then add 60 parts of silica, 20 parts of calcined clay and 20 parts of paraffin oil SUNPAR 2280 to the compound, and knead for 3 minutes; 4 parts of cross-linking agent dicumyl peroxide (DCP) and 1 part of the cross-linking agent triallyl isocyanurate (TAIC) were added, and the mixture was kneaded for 2 minutes and then discharged.
  • the rubber compound was thinly spread on an open
  • the branched polyethylene used was numbered PER-7.
  • Rubber mixing set the temperature of the internal mixer to 100 ° C, the rotor speed is 50 rpm, add 20 parts of ethylene propylene diene rubber, 30 parts of ethylene propylene diene rubber and 50 parts of polyethylene pre-pressure mixing 90 seconds; add 5 parts of zinc oxide, 1 part of stearic acid, 3 parts of polyethylene glycol PEG4000, 2 parts of vinyltris(2-methoxyethoxy)silane (A-172) and 1 part of antioxidant 2 , 2,4-trimethyl-1,2-dihydroquinoline polymer (RD), kneaded for 2 minutes; then add 60 parts of silica, 20 parts of calcined clay and 20 parts of paraffin oil SUNPAR2280 to the compound.
  • the branched polyethylene used was numbered PER-7.
  • Rubber mixing set the temperature of the internal mixer to 100 ° C, the rotor speed to 50 rpm, add 100 parts of branched polyethylene pre-pressed and kneaded for 90 seconds; add 5 parts of zinc oxide, 1 part of stearic acid, 3 parts of polyethylene glycol PEG4000, 2 parts of vinyltris(2-methoxyethoxy)silane (A-172) and 1 part of antioxidant 2,2,4-trimethyl-1,2-dihydrogenation Quinoline polymer (RD), kneaded for 2 minutes; then add 60 parts of silica, 20 parts of calcined clay, 10 parts of titanium dioxide and 20 parts of paraffin oil SUNPAR 2280 to the compound, knead for 3 minutes; finally add 4 parts
  • the cross-linking agent dicumyl peroxide (DCP), 1 part of the cross-linking agent triallyl isocyanurate (TAIC) and 0.3 parts of the cross-linking agent sulfur were mixed for 2 minutes and then discharged.
  • the branched polyethylenes used were numbered PER-1 and PER-7.
  • Rubber mixing set the temperature of the internal mixer to 100 ° C, the rotor speed to 50 rpm, add 70 parts of PER-7 and 30 parts of PER-1 pre-pressing for 90 seconds; add 10 parts of zinc oxide, 2 Parts stearic acid, 2 parts polyethylene glycol PEG4000, 1 part vinyl tris(2-methoxyethoxy) silane (A-172) and 1 part antioxidant 2,2,4-trimethyl-1 , 2-dihydroquinoline polymer (RD), kneaded for 2 minutes; then add 10 parts of titanium dioxide, 15 parts of white carbon, 60 parts of calcined clay, 40 parts of aluminum silicate and 120 parts of paraffin oil to the compound.
  • the branched polyethylene used was numbered PER-4.
  • Rubber mixing set the temperature of the internal mixer to 100 ° C, the rotor speed is 50 rpm, add 100 parts of branched polyethylene pre-pressed and kneaded for 90 seconds; add 20 parts of zinc oxide, 2 parts of stearic acid, 5 parts polyethylene glycol PEG4000, 2 parts vinyl tris(2-methoxyethoxy)silane (A-172) and 1 part antioxidant 2,2,4-trimethyl-1,2-dihydrogenation Quinoline polymer (RD), kneaded for 2 minutes; then add 40 parts of silica, 80 parts of talc and 20 parts of paraffin oil SUNPAR2280 to the compound, knead for 3 minutes; finally add 5 parts of cross-linking agent peroxidation Dicumyl (DCP) and 2 parts of the cross-linking agent, triallyl isocyanurate (TAIC), were mixed for 2 minutes and then discharged.
  • the rubber compound was thinly spread on an open mill to obtain a sheet having a thickness of about 2.5 mm
  • the branched polyethylenes used were numbered PER-3 and PER-6.
  • Rubber mixing set the temperature of the internal mixer to 100 ° C, the rotor speed to 50 rpm, add 80 parts of PER-6 and 20 parts of PER-3 pre-pressure mixing for 90 seconds; add 10 parts of zinc oxide, 2 Stearic acid, 10 parts polyethylene glycol PEG4000, 3 parts vinyl tris(2-methoxyethoxy)silane (A-172) and 1 part antioxidant 2,2,4-trimethyl-1 , 2-dihydroquinoline polymer (RD), kneaded for 2 minutes; then add 80 parts of silica, 50 parts of calcined clay and 50 parts of paraffin oil SUNPAR 2280 to the compound, knead for 3 minutes; finally add 10 parts Cross-linking agent dicumyl peroxide (DCP), 2 parts of cross-linking agent triallyl isocyanurate (TAIC) and 8 parts of 1,2-polybutadiene, after 2 minutes of mixing .
  • DCP cross-linking agent dicumyl peroxide
  • TAIC cross-
  • the branched polyethylene used was numbered PER-6.
  • Rubber mixing set the temperature of the internal mixer to 100 ° C, the rotor rotation speed is 50 rpm, add 100 parts of branched polyethylene pre-pressure mixing for 90 seconds; add 10 parts of zinc oxide, 2 parts of stearic acid, 5 parts polyethylene glycol PEG4000, 2 parts vinyl tris(2-methoxyethoxy)silane (A-172) and 1 part antioxidant 2,2,4-trimethyl-1,2-dihydrogenation Quinoline polymer (RD), kneaded for 2 minutes; then add 5 parts of iron oxide red, 60 parts of silica, 70 parts of calcined clay, 50 parts of calcium carbonate and 55 parts of paraffin oil SUNPAR 2280 in the compound, mixing 3 Minute; finally add 6 parts of cross-linking agent dicumyl peroxide (DCP), 2 parts of cross-linking agent N, N'-m-phenylene bismaleimide (HVA-2) and 0.3 parts of sulfur, mixed After 2 minutes of smelting, the glue is discharged.
  • DCP
  • the branched polyethylene used was numbered PER-5.
  • Rubber mixing set the temperature of the internal mixer to 100 ° C, the rotor speed to 50 rpm, add 100 parts of PER-5 pre-pressure mixing for 90 seconds; add 5 parts of zinc oxide, 1 part of stearic acid, 2 Polyethylene glycol PEG4000, 1 part vinyltris(2-methoxyethoxy)silane (A-172) and 1 part antioxidant 2,2,4-trimethyl-1,2-dihydroquine
  • the porphyrin polymer (RD) was kneaded for 2 minutes; then 10 parts of titanium dioxide, 40 parts of silica, 40 parts of calcined clay and 70 parts of paraffin oil SUNPAR 2280 were added to the compound, and kneaded for 3 minutes;
  • the rubber compound was thinly spread on an open mill to obtain a sheet having a thickness of about 2.5
  • the branched polyethylene used was numbered PER-4.
  • Rubber mixing set the temperature of the internal mixer to 100 ° C, the rotor speed to 50 rpm, add 100 parts of PER-4 pre-pressure mixing for 90 seconds; add 5 parts of zinc oxide, 0.5 parts of stearic acid and 2 Part of vinyl tris(2-methoxyethoxy)silane (A-172), kneaded for 2 minutes; then add 4 parts of iron oxide red, 60 parts of silica, 50 parts of calcium carbonate and 30 to the compound. Part 300# paraffin oil, kneaded for 3 minutes; finally added 4 parts of cross-linking agent dicumyl peroxide (DCP), and kneaded for 2 minutes and then discharged.
  • the rubber compound was thinly spread on an open mill to obtain a sheet having a thickness of about 2.5 mm and parked for 20 hours. Refining, three times on the open mill triangle, adjust the roller distance to 2.5mm, the next piece.
  • a high-voltage insulating sheathing compound, the branched polyethylene used is numbered PER-4.
  • Vulcanization process steam vulcanization, 155 ° C ⁇ 40 minutes, immersed in water.
  • Performance test hardness: 71; tensile strength: 14.7 MPa; elongation at break: 566%; volume resistivity: 2.5 ⁇ 10 ⁇ 15; 150 ° C ⁇ 72 h after hot air aging: hardness: 78; tensile strength retention : 76%; elongation at break retention: 78%.
  • the high temperature resistant conveyor belt is provided with a cored tensile canvas between the working surface covering rubber and the non-working surface covering rubber, which makes them a solid whole through molding and vulcanization process.
  • the above rubber mixture is placed in a screw extruder for hot refining, and then supplied to a calender for calendering to be used.
  • the thickness of the film is controlled to be 4.5 to 12 mm when the film is rolled. After being good, keep warm for use.
  • the film is closely attached to the pre-formed adhesive canvas strip on the molding machine to form a strip of the high temperature resistant conveyor belt, and then vulcanized after being rolled up for 4 hours.
  • the formed conveyor belt blank was placed in a flat vulcanizing machine for stage vulcanization, and the vulcanization time per plate was 25 minutes, the vulcanization pressure was 2.5 MPa, and the vulcanization temperature was 160 °C.
  • the block rubber is fed into the open mill for mixing, the temperature of the control roller is between 85 and 95 ° C, and the roll distance is controlled to be less than 1 mm, and the thin pass is not less than four times until the surface of the rubber compound is smooth and shiny. Then turn the head and further mix it, make the thin pass no less than four times, adjust the roll distance to not more than 8mm, mix it three times, and obtain the evenly mixed rubber piece with the thickness below 8mm, and cool it to below 50 °C.
  • vulcanization the rolled material is placed in a vulcanization kettle for vulcanization treatment, the temperature of the vulcanization kettle is controlled between 155 and 165 ° C, the pressure is between 20 and 50 MPa, and the vulcanization is for 25 to 30 minutes;
  • Rewinding re-opening the vulcanized coil, taking out the release liner layer, and then rewinding and packaging into a product.
  • a plastic rubber track surface layer is made of red rubber particles, and the production process steps are as follows:
  • Rubber mixing set the temperature of the internal mixer to 100 ° C, the rotor speed is 50 rpm, add 100 parts of branched polyethylene PER-8 pre-pressure mixing for 90 seconds; add 10 parts of zinc oxide, 2 parts of hard Fatty acid, 5 parts polyethylene glycol PEG4000, 2 parts vinyltris(2-methoxyethoxy)silane (A-172) and 1 part antioxidant 2,2,4-trimethyl-1,2 - a dihydroquinoline polymer (RD), kneaded for 2 minutes; then 5 parts of iron oxide red, 60 parts of silica, 70 parts of calcined clay, 50 parts of calcium carbonate and 55 parts of paraffin oil SUNPAR 2280 were added to the compound.
  • RD dihydroquinoline polymer
  • the extrusion vulcanization process should adopt vacuum pumping extruder.
  • the temperature of the extruder is set to 100 °C
  • the screw temperature is 75 °C
  • the head pressure should be controlled at 23 MPa
  • the extruder speed is 25 rpm.
  • Min using salt bath vulcanization process, the temperature of the spray section is 240 ° C
  • the temperature of the dipping section is 220 ° C
  • the temperature of the dipping section is 220 ° C
  • the transmission speed is 40 m / min
  • the cooling section temperature is 25 ° C.
  • a rubber plug, the molding vulcanization production process comprises the following steps:
  • Rubber mixing set the temperature of the internal mixer to 80 ° C, the rotor speed to 50 rpm, add 100 parts of branched polyethylene PER-4 and 3 parts of zinc oxide pre-pressure mixing for 90 seconds; Add 50 parts of barium sulfate, 10 parts of titanium dioxide, 35 parts of highly dispersible white carbon and 2 parts of petrolatum, mix for 3 minutes; finally add 3 parts of crosslinker bis(tert-butylperoxyisopropyl)benzene, 1 part of the cross-linking agent TAIC, after 2 minutes of mixing, the glue was discharged.
  • the rubber compound was opened and rolled on an open mill with a roll temperature of 60 ° C, and the mixture was allowed to stand for 20 hours. The rubber compound was opened and compressed on an open mill, and then parked for use;
  • vulcanization the calendered rubber is placed in a mold, and is subjected to mold vulcanization at a temperature of 160 ° C, a pressure of 15 MPa, a time of 25 minutes, and after a predetermined curing time, demolding is cooled;
  • Post-treatment punching, cleaning and silicidation, obtaining finished products, packaging and storage.
  • a rubber roller whose production processing steps are as follows:
  • vulcanization tank vulcanization the rubberized rubber roller is sent to the vulcanization tank, after closing the tank door, steam is vulcanized into the vulcanization tank, and the compressed air valve is opened while steam is introduced, and the compressed air is passed to vulcanize.
  • the pressure in the tank reaches 4.5 to 5 atmospheres in 0.5 hours; the vulcanization procedure is: firstly heat up to 70-80 ° C, keep warm for 2 hours; then heat up to 100-110 ° C, keep warm for 0.5 hours; then heat up to 120-130 ° C, keep warm 0.5 hours; further increase to 135 ⁇ 140 ° C, heat 8 ⁇ 10 hours.
  • the exhaust valve is opened, the pressure drops, and when the pressure gauge pointer points to zero, the safety pin is opened, and the steam is discharged from the pin hole, and the vulcanization tank is half-opened to lower the temperature until the temperature in the tank is lower than 60 ° C or Pull out the rubber roller when it is equivalent to room temperature;
  • the vulcanized rubber roller is rough-processed on a lathe, and then finished on a grinding machine for inspection and inspection to obtain a finished product.
  • Rubber mixing set the temperature of the internal mixer to 100 ° C, the rotor speed to 50 rpm, add 100 parts of branched polyethylene PER-5 pre-pressure mixing for 90 seconds; add 5 parts of zinc oxide, 1 part of hard Fatty acid, 5 parts of polyethylene glycol PEG4000 and 2 parts of vinyltris(2-methoxyethoxy)silane (A-172), kneaded for 2 minutes; then add 40 parts of white carbon black to the compound.
  • a bicycle tire, the processing steps of the sidewall rubber are as follows:
  • Rubber mixing set the temperature of the internal mixer to 90 ° C, the rotor speed to 50 rpm, add 100 parts of branched polyethylene PER-5 pre-pressure mixing for 90 seconds; then add 5 parts of zinc oxide, 1 part Stearic acid, 2 parts of polyethylene glycol PEG4000 and 2 parts of vinyltris(2-methoxyethoxy)silane (A-172), kneaded for 2 minutes; then add 30 parts of highly dispersible white carbon, 30 parts of calcium carbonate, 5 parts of coumarone resin and 10 parts of paraffin oil SUNPAR 2280, mixed for 3 minutes; then added 4 parts of cross-linking agent dicumyl peroxide (DCP), 1.5 parts of cross-linking agent N, N' - M-phenylene bismaleimide (HVA-2) and 0.3 parts of a cross-linking agent sulfur, which were kneaded for 2 minutes and then discharged.
  • DCP cross-linking agent dicumyl peroxide
  • HVA-2 cross-link
  • Extrusion molding The qualified rubber compound is extruded through an extruder to obtain a rubber member having a side wall shape to be used.
  • a bicycle tire, the processing steps of the tread rubber are as follows:
  • Rubber mixing set the temperature of the internal mixer to 90 ° C, the rotor rotation speed is 50 rpm, add 80 parts of PER-7 and 20 parts of PER-1 pre-pressure mixing for 90 seconds; then add 10 parts of zinc oxide, 2 parts stearic acid, 2 parts polyethylene glycol PEG4000 and 1 part antioxidant 2,2,4-trimethyl-1,2-dihydroquinoline polymer (RD), kneaded for 2 minutes; then added 20 Part of high dispersibility silica, 40 parts of light calcium carbonate, 5 parts of coumarone resin and 10 parts of paraffin oil SUNPAR2280, mixing for 3 minutes; then adding 4 parts of crosslinker di-tert-butylperoxy cumene (BIPB), 1.5 parts of the cross-linking agent triallyl isocyanurate (TAIC) and 3 parts of zinc methacrylate were mixed for 2 minutes and then discharged.
  • the rubber compound is opened on the open mill and then placed, parked, and tested;
  • Tread extrusion using a cold feed extrusion process, extruding into a tread semi-finished product through an extruder.
  • a color tire tire, the processing steps of the tread rubber are as follows:
  • Rubber mixing set the temperature of the internal mixer to 90 ° C, the rotor speed is 50 rpm, add 100 parts of PER-12 pre-pressure mixing for 90 seconds; then add 10 parts of zinc oxide, 2 parts of stearic acid, 2 parts of polyethylene glycol PEG4000, 2 parts of coumarone resin, 2 parts of Escorez-1102 tackifying resin and 1 part of antioxidant RD, kneaded for 2 minutes; then add 2 parts of yellow masterbatch, 20 parts of highly disperse white Carbon black, 40 parts of light calcium carbonate and 10 parts of paraffin oil SUNPAR2280, mixed for 3 minutes; then added 4 parts of cross-linking agent bis-tert-butylperoxy isopropylbenzene (BIPB), 1.5 parts of cross-linking agent triene Propyl isocyanurate (TAIC) and 3 parts of zinc methacrylate were mixed for 2 minutes and then discharged.
  • the rubber compound is opened on the open mill and then placed, parked, and tested;
  • Tread extrusion using a cold feed extrusion process, extruding into a tread semi-finished product through an extruder.
  • a bicycle tire, the processing steps of the sidewall rubber are as follows:
  • Rubber mixing set the temperature of the internal mixer to 90 ° C, the rotor speed to 50 rpm, add 100 parts of branched polyethylene PER-12 pre-pressure mixing for 90 seconds; then add 5 parts of zinc oxide, 1 part Stearic acid, 2 parts of polyethylene glycol PEG4000 and 2 parts of vinyltris(2-methoxyethoxy)silane (A-172), kneaded for 2 minutes; then add 30 parts of highly dispersible white carbon, 30 parts of calcium carbonate, 5 parts of coumarone resin and 10 parts of paraffin oil SUNPAR 2280, mixed for 3 minutes; then added 4 parts of cross-linking agent dicumyl peroxide (DCP), 1.5 parts of cross-linking agent N, N' - M-phenylene bismaleimide (HVA-2) and 0.3 parts of a cross-linking agent sulfur, which were kneaded for 2 minutes and then discharged.
  • DCP cross-linking agent dicumyl peroxide
  • HVA-2 cross-link
  • Extrusion molding The qualified rubber compound is extruded through an extruder to obtain a rubber member having a side wall shape to be used.
  • Inner rubber layer rubber mixing one-stage mixing: set the temperature of the internal mixer to 80 ° C, the rotor rotation speed is 50 rpm, and add 100 parts of branched polyethylene PER-3 pre-pressing and kneading for 90 seconds; Parts of zinc oxide, 1 part stearic acid, 2 parts of polyethylene glycol PEG4000 and 2 parts of vinyl tris(2-methoxyethoxy)silane (A-172), kneaded for 2 minutes; then in the compound Add 30 parts of white carbon black, 3 parts of RS and 15 parts of liquid polyisobutylene, mix for 3 minutes, and disperse the glue; two-stage mixing: set the temperature of the internal mixer to 80 ° C, the rotor speed is 50 rev / min, the master will be Add the glue to the internal mixer, add 10 parts of AB-30, mix for 2 minutes; finally add 4 parts of cross-linking agent dicumyl peroxide (DCP) and 2 parts of cross-linking agent N, N'-
  • the hose mold core rod is passed through a PPA (polyphthalamide) extruder, and the PPA raw material is extruded on the core rod, and the PPA is coated on the core rod to form a barrier layer;
  • the inner rubber layer is woven, the fiber reinforced layer is woven, and the outer rubber layer is extruded;
  • Vulcanization using a cloth vulcanization process, the temperature is 165 ° C, the steam pressure is 1 MPa, the vulcanization time is 25 minutes, and then the cloth is uncoated, cored off, and cut off. Get the air conditioning hose.
  • a medical catheter adopting an extrusion molding and high-temperature steam vulcanization production process, which comprises the following steps:
  • Rubber mixing set the temperature of the internal mixer to 80 ° C, the rotor speed to 50 rpm, add 100 parts of branched polyethylene PER-12 pre-pressure mixing for 90 seconds; then add 30 parts of transparent in the rubber White carbon black (Suzhou Dongwu Chemical TS3), 10 parts of colorless paraffin oil, mixed for 3 minutes; finally added 4 parts of cross-linking agent 2,5-dimethyl-2,5-di(tert-butylperoxide) Hexane (paste, 50% active ingredient), 1 part of the cross-linking agent TAIC, and the mixture was kneaded for 2 minutes and then discharged.
  • the rubber compound was opened on a mill with a roll temperature of 60 ° C and left for 20 hours for use;
  • Post-treatment cleaning, obtaining finished products, packaging and storage.
  • a white door and window sealing strip whose production process is as follows:
  • the internal temperature of the mixer should be set to 80 ° C, the rotor speed should be 50 rpm, 100 parts of branched polyethylene PER-11 pre-pressed and kneaded for 90 seconds; 5 parts of zinc oxide and 1 part of hard Fatty acid, 5 parts calcium oxide, 2 parts polyethylene glycol PEG4000 and 2 parts vinyltris(2-methoxyethoxy)silane (A-172), kneaded for 1 minute; then add 50 to the compound Parts of silica, 50 parts of calcium carbonate, 60 parts of paraffin oil SUNPAR2280, mixing for 3 minutes; finally adding 4 parts of cross-linking agent bis-tert-butylperoxy isopropylbenzene (BIPB), 1.5 parts of cross-linking agent triene Propyl isocyanurate (TAIC) and 0.3 parts of sulfur, after 2 minutes of mixing, the rubber is discharged, the rubber is automatically cut into a twin-screw extruder and extruded into pieces, and then
  • Extrusion and vulcanization uses a vacuum extruder.
  • the temperature of the extruder is set at 90-100 °C, the screw temperature is 70-80 °C, and the head pressure should be controlled at 15-20 MPa.
  • Machine speed 25 ⁇ 30 rev / min using salt bath vulcanization process, spray section temperature 250 ° C, dip wheel section temperature 220 ° C, dipping section temperature 220 ° C, transmission speed 35-45 m / min, cooling section temperature 25 to 30 ° C.
  • a plastic rubber track surface layer is made of red rubber particles, and the branched polyethylene used is PER-10, and the remaining composition formula and processing technology are the same as those in the embodiment 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种橡胶组合物及其加工方法,以及利用该组合物加工白炭黑补强橡胶制品的应用,橡胶组合物包括:橡胶基体和必要组份,橡胶基体包含:支化聚乙烯的含量a:0<a≤100份;二元乙丙橡胶和三元乙丙橡胶的含量b:0≤b<100份;必要组份包含:交联剂1-10份,白炭黑15-80份。该橡胶组合物可用于生产高压绝缘护套胶料、耐高温输送带、防水卷材、塑胶跑道表层用橡胶粒、胶塞、胶辊、内胎、轮胎胎面、轮胎胎侧、空调胶管内胶层。

Description

橡胶组合物及加工方法和应用,及该应用的生产方法 技术领域
本发明属于橡胶技术领域,具体涉及一种通过白炭黑补强的橡胶组合物及其加工方法,以及应用该橡胶组合物的橡胶制品及生产方法。
背景技术
白炭黑是目前最常用的具有较好的补强性的浅色填料,采用白炭黑补强的乙丙橡胶往往具有抗撕裂性能好、粘着强度高、抗湿滑、耐磨及生热小的特点,可以用来生产防水卷材、输送带、塑胶跑道、洗衣机门封、胶辊、胶塞、胶塞、内胎、轮胎胎面、轮胎胎侧、空调胶管等多种橡胶制品,但在回弹性、抗压缩永久变形性等方面弱于通过炭黑补强的乙丙橡胶制品。硫磺硫化和过氧化物硫化是乙丙橡胶最常用的两种硫化体系,采用过氧化物硫化可以使硫化胶具有更好的耐热性、耐老化性、回弹性以及抗压缩永久变形性能等优点,但是在力学强度上会弱于硫黄硫化的胶料。所以如何使通过白炭黑补强的橡胶制品在以过氧化物为主的硫化体系下获得较好的耐老化性、回弹性、力学性能以及抗压缩永久变形是一个需要解决的问题。
乙丙橡胶是一种分子主链饱和的合成橡胶,可分为二元乙丙橡胶和三元乙丙橡胶两大类,两者都具有很好的耐老化性,乙丙橡胶类制品中常用的是三元乙丙橡胶,但是由于三元乙丙橡胶含有第三单体,分子链含有双键,而二元乙丙橡胶分子链完全饱和,所以二元乙丙橡胶具有更加优异的耐老化性,因此在对耐老化性能有较高要求的场合,通过并用二元乙丙橡胶来改善三元乙丙橡胶的耐老化性是一种常见的技术方案。但二元乙丙橡胶的力学强度偏低,会影响整体的物理机械性能。
二元乙丙橡胶是一种乙烯与丙烯的共聚物,属于乙烯与α-烯烃共聚物。乙烯与α-烯烃共聚物是只含碳氢元素且分子链饱和的聚合物,此类聚合物中常见的碳原子类型一般可分为伯碳、仲碳、叔碳,而叔碳原子是最容易被夺氢而形成自由基的,所以叔碳原子占所有碳原子的比例一般被认为是影响乙烯与α-烯烃共聚物耐老化性的主要因素,该比例越低则耐老化性越好,该比例可用支化度来表述,例如丙烯重量百分含量为60%的二元乙丙橡胶,可计算得到其每1000个碳原子中包含200个丙烯单元,即有200个叔碳原子或者200个甲基支链,因此其支化度是200个支链/1000个碳。二元乙丙橡胶的乙烯重量百分含量一般在40%~65%或者40%~60%,故其支化度一般在117~200个支链/1000个碳或者133~200个支链/1000个碳的区间内,该支化度可以认为高于其它常见的乙烯与α-烯烃共聚物。
现有技术中,常见的乙烯与α-烯烃共聚物中的α-烯烃除了选用丙烯外,还可以选用碳原子数不小于4的α-烯烃,可以选自C 4-C 20的α-烯烃,通常选自1-丁烯、1-己烯和1-辛烯。若乙烯与α-烯烃共聚物的支化度偏低,则熔点和结晶度过高,不适合作为橡胶组份使用,若支化度偏高,则α-烯烃的含量较高,这会导致工艺难度和原料成本偏高,可操作性和经济性较低。现有技术中,乙烯与1-丁烯或者乙烯与1-辛烯共聚得到的聚烯烃根据结晶度和熔点的高低,可以被称为聚烯烃塑性体或者聚烯烃弹性体,其中部分聚烯烃弹性体牌号由于结晶度与熔点适当,可以与乙丙橡胶良好并用,且支化度较低,被视为是一种改善乙丙橡胶 耐老化性的理想材料,在一定程度上可以替代乙丙橡胶使用。由于相对于乙烯与1-丁烯共聚物,乙烯与1-辛烯共聚物分子链更柔软、更具橡胶弹性和良好的物理机械性能,所以目前橡胶制品中常用的聚烯烃弹性体一般为乙烯和1-辛烯的共聚物,其辛烯重量百分含量一般不高于45%,更常用的不高于40%,对应的支化度一般不高于56个支链/1000个碳,更常用的支化度不高于50个支链/1000个碳,远低于二元乙丙橡胶的支化度,因此其具有非常优异的耐老化性,而且物理机械性能良好。
橡胶一般需要交联后使用,在乙丙橡胶常用的交联方式中,适合乙烯与α-烯烃共聚物的可以是过氧化物交联或辐照交联,两者主要都是通过夺取叔碳氢原子,形成叔碳自由基,再通过自由基结合形成碳碳交联,但是乙烯和1-辛烯的共聚物(以下简称POE)的叔碳原子较少,且和叔碳原子相连的支链长,空间位阻大,较难发生自由基反应,导致交联困难,影响加工效率和制品性能,比如抗压缩永久变形性难以令人满意。
所以目前需要一种更好的技术方案,可以改善乙丙橡胶的耐老化性能,同时可以具备较好的物理机械性能和交联表现,并且有望针对橡胶制品所需的特定功能性指标(如抗压缩永久变形性等)有良好表现。
发明内容
针对现有技术中存在的问题,本发明提供一种橡胶组合物及其加工方法,用支化度不低于50个支链/1000个碳的支化聚乙烯部分或者全部替代乙丙橡胶,将其应用在主要通过白炭黑补强的橡胶制品上,可以在过氧化物硫化体系下,同时获得良好的耐热性、抗压缩永久变形性和力学强度,改善现有技术的缺陷。
为了实现上述目的,本发明采用以下技术方案:提供一种橡胶组合物,所述橡胶组合物包括:橡胶基体和必要组分,所述橡胶基体包含:支化聚乙烯的含量a:0<a≤100份;二元乙丙橡胶和三元乙丙橡胶的含量b:0≤b<100份;以100重量份橡胶基体计,所述必要组分包含:交联剂1~10份,白炭黑为15~80份,其中,支化聚乙烯的支化度不低于50个支链/1000个碳,重均分子量不低于5万,门尼粘度ML(1+4)125℃不低于2。
“支化聚乙烯”在现有技术中除了指有支链的乙烯均聚物外,也可以指有支链的饱和乙烯基共聚物,常用的如乙烯-α-烯烃共聚物,其可以是POE,尽管POE在物理机械性能和耐老化性上表现良好,但是交联表现不佳,所以虽然本发明所述支化聚乙烯可以同时包含支化乙烯均聚物和POE,但较好的选择是支化聚乙烯高比例包含或者仅包含支化乙烯均聚物,本发明优选的技术方案是支化聚乙烯中仅包含支化乙烯均聚物。
在对本发明技术方案的进一步阐述中,如无特殊说明,则所采用的支化聚乙烯均为支化乙烯均聚物。
本发明所用支化聚乙烯是一类支化度不低于50个支链/1000个碳的乙烯均聚物,可称为Branched Polyethylene或者Branched PE,目前它的合成方法主要由后过渡金属催化剂基于“链行走机理”催化乙烯均聚得到,优选的后过渡金属催化剂可以为(α-二亚胺)镍/钯催化剂的其中一种。其链行走机理的本质是指后过渡金属催化剂,如(α-二亚胺)镍/钯催化剂在 催化烯烃聚合过程中较为容易发生β-氢消除反应和再***反应,从而导致支链产生。这类支化聚乙烯基于主链的支链可以具有不同碳原子数,具体可以是1~6个,或者更多的碳原子。
(α-二亚胺)镍催化剂的生产成本明显低于(α-二亚胺)钯催化剂,而且(α-二亚胺)镍催化剂催化乙烯聚合的速率高且活性高,更加适合工业化应用,所以本发明优选通过(α-二亚胺)镍催化剂催化乙烯聚合制备的支化聚乙烯。
本发明所用的支化聚乙烯的支化度优选为50~130个支链/1000个碳,进一步优选为60~130个支链/1000个碳,进一步优选为60~116个支链/1000个碳,支化度介于POE与二元乙丙橡胶之间,是一种区别于现有技术的全新技术方案,可以兼具优异的耐老化性和良好的交联表现。
交联表现包括交联密度和交联速率等因素,是橡胶基体的交联能力在加工过程中的具体表现。
本发明所用的支化聚乙烯优选具有40%以上或者50%以上的甲基支链含量,与二元乙丙橡胶的结构具有一定的相似性。就交联能力而言,支化度(叔碳原子含量)以及叔碳原子周围的空间位阻是影响饱和聚烯烃的交联能力的两个主要因素。相对于二元乙丙橡胶,本发明所用的支化聚乙烯在支化度上偏低,而且由于支化聚乙烯存在碳原子数不低于2的支链,所以本发明所用的支化聚乙烯的叔碳原子周围的空间位阻理论上要大于二元乙丙橡胶,综合两个因素可以判断,本发明所用的支化聚乙烯的交联能力应该弱于二元乙丙橡胶,更加弱于三元乙丙橡胶。但是本发明采用的部分支化聚乙烯的实际交联能力接近三元乙丙橡胶,甚至可以等同或优于三元乙丙橡胶。这意味着本发明的橡胶组合物在可以获得良好的耐老化性的同时,还可以不弱化交联能力,甚至可以具有优异的交联表现,达到意想不到的有益效果。
这或许可以被解释为本发明优选的技术方案中采用的支化聚乙烯上可能存在数量适当的二级支链结构,所谓二级支链结构是指支链上进一步存在支链的结构,在链行走过程中产生,这种结构也被称为“branch-on-branch”,因为二级支链的叔碳原子周围空间位阻低,更容易发生交联反应。具有二级支链结构是本发明优选的技术方案中所用的支化聚乙烯与现有技术中的二元乙丙橡胶或常见的乙烯-α-烯烃共聚物的明显区别。
利用空间位阻较低的二级支链结构来改善饱和聚烯烃弹性体交联能力是一种的新的技术方案。在本发明的技术方案下,当橡胶基体中包含带有二级支链结构的乙烯基共聚物或者其他饱和碳氢聚合物,也被认为在本发明的技术保护范围内。所述乙烯基共聚物是指乙烯与带有支链的α-烯烃的共聚物,具备二级支链结构,其中带有支链的α-烯烃可以选自异丁烯、3-甲基-1-丁烯、4-甲基-1-戊烯、3-甲基-1-戊烯、2-甲基-1-庚烯、3-甲基-1-庚烯、4-甲基-1-庚烯、5-甲基-1-庚烯、6-甲基-1-庚烯等,共聚单体还可以同时包含常见的直链α-烯烃。
现有技术中普遍认为通过(α-二亚胺)镍催化剂制备的支化聚乙烯是难以存在二级支链结构的,至少是难以充分辨别的,本发明的技术方案也为分析支化聚乙烯的结构提供了一种新的思路。
相对于乙丙橡胶而言,当支化聚乙烯有数量适当的二级支链结构时,在过氧化物交联过程中,支化聚乙烯的交联点可以在主链叔碳上产生,也可以在二级结构的支链叔碳上产生,所以支化聚乙烯通过过氧化物交联所形成的橡胶网络与乙丙橡胶相比,主链之间具有更为丰富的C-C连接链段长度,可以有效避免应力集中,有利于获得更好的力学性能。另一方面,更好的交联能力可以有效提高交联密度,并且支化聚乙烯的分子量分布接近2,窄于一般的乙丙橡胶,所以也有望获得更好的抗压缩永久变形性能。
进一步的技术方案是,以100重量份计,所述橡胶基体中支化聚乙烯的含量a:10≤a≤100份;二元乙丙橡胶与三元乙丙橡胶的含量b:0≤b≤90份;所述支化聚乙烯为乙烯均聚物,其支化度为60~130个支链/1000个碳,重均分子量为6.6万~51.8万,门尼粘度ML(1+4)125℃为6~102。
进一步的技术方案是,所述100重量份橡胶基体中支化聚乙烯的含量a:10≤a≤100份;二元乙丙橡胶与三元乙丙橡胶的含量b:0≤b≤90份;所述支化聚乙烯为乙烯均聚物,其支化度为70~116个支链/1000个碳,重均分子量为20.1万~43.6万,门尼粘度ML(1+4)125℃为23~101。
进一步的技术方案是,所述100重量份橡胶基体中支化聚乙烯的含量a:10≤a≤100份;二元乙丙橡胶与三元乙丙橡胶的含量b:0≤b≤90份;所述支化聚乙烯为乙烯均聚物,其支化度为80~105个支链/1000个碳,重均分子量为25.0万~40.06万,门尼粘度ML(1+4)125℃为40~95。
进一步的技术方案是,以100重量份计,所述橡胶基体中支化聚乙烯的含量为a:10≤a≤100份;二元乙丙橡胶与三元乙丙橡胶的含量b:0≤b≤90份;所述支化聚乙烯为乙烯均聚物,其支化度为80~105个支链/1000个碳,重均分子量为26.8万~35.6万,门尼粘度ML(1+4)125℃为42~80。
进一步的技术方案是,所述三元乙丙橡胶的第三单体优选为二烯类单体,具体可选自5-亚乙基-2-降冰片烯、5-乙烯基-2-降冰片烯、双环戊二烯、1,4-己二烯、1,5-己二烯、1,4-戊二烯、2-甲基-1,4-戊二烯、3-甲基-1,4-己二烯、4-甲基-1,4-己二烯、1,9-癸二烯、5-亚甲基-2-降冰片烯、5-亚戊基-2-降冰片烯、1,5-环辛二烯、1,4-环辛二烯等。特殊的,乙丙橡胶可以同时包含两种及以上的二烯类单体,如同时包含5-亚乙基-2-降冰片烯、5-乙烯基-2-降冰片烯。二烯单体的官能团在过氧化物硫化中可以起到固有助交联剂一样的作用,提高交联效率。这有助于降低所需交联剂和助交联剂的用量和残留量以及添加它们所需的成本。二烯类单体占乙丙橡胶的重量比重优选为1%~14%,进一步优选为3%~10%,进一步优选为4%~7%。
进一步的技术方案是,所述交联剂包含过氧化物交联剂和硫磺中的至少一种,所述过氧化物交联剂包含二叔丁基过氧化物、二枯基过氧化物、叔丁基枯基过氧化物、1,1-二叔丁基过氧化物-3,3,5-三甲基环己烷、2,5-二甲基-2,5-二(叔丁基过氧化)己烷、2,5-二甲基-2,5-二 (叔丁基过氧化)己炔-3、双(叔丁基过氧化异丙基)苯、2,5-二甲基-2,5-二(苯甲酰过氧化)己烷、过氧化苯甲酸叔丁酯、叔丁基过氧化-2-乙基己基碳酸酯中的至少一种。
进一步的技术方案是,以100重量份橡胶基体计,所述必要组份中包含交联剂2~7份,白炭黑30~60份。
进一步的技术方案是,所述白炭黑为沉淀法白炭黑、气相法白炭黑中的至少一种,所述沉淀法白炭黑为高分散性沉淀法白炭黑。对于透明度有要求的橡胶制品,还可以选用透明白炭黑,粒径优选为10~50nm,进一步优选为15~30nm。
进一步的技术方案是,所述橡胶组合物还包括辅助成分,以100重量份橡胶基体计,所述辅助成分包含:助交联剂0.2~10份,无机填充剂20~120份,增塑剂2~130份,稳定剂1~3份,金属氧化物2~20份,表面改性剂1~20份,着色剂1~10份,硫化促进剂0~3份,粘合剂0~20份。
进一步的技术方案是,所述稳定剂包含2,2,4-三甲基-1,2-二氢化喹啉聚合体(RD)、6-乙氧基-2,2,4-三甲基-1,2-二氢化喹啉(AW)、2-巯基苯并咪唑(MB)中的至少一种。
进一步的技术方案是,所述助交联剂包含三烯丙基氰脲酸酯、三烯丙基异氰脲酸酯、乙二醇二甲基丙烯酸酯、二甲基丙烯酸乙酯、二甲基丙烯酸三乙二酯、偏苯三酸三烯丙酯、三甲基丙烯酸三羟甲基丙烷酯、双甲基丙烯酸乙二醇酯、N,N’-间苯撑双马来酰亚胺、N,N’-双亚糠基丙酮、1,2-聚丁二烯、不饱和羧酸金属盐和硫磺中的至少一种。所述不饱和羧酸金属盐包含丙烯酸锌、甲基丙烯酸锌、甲基丙烯酸镁中的至少一种。
进一步的技术方案是,所述增塑剂包含松焦油、机油、环烷油、石蜡油、古马隆、RX-80、硬脂酸、石蜡中的至少一种。其中,硬脂酸也可以在硫黄硫化为主的体系中作为活性剂的作用,能与一些金属氧化物形成可溶性盐,从而增加金属氧化物对促进剂的活化作用。合理使用增塑剂可以提高胶料的弹性和适合工艺操作的可塑性。为了提高粘性,还可优选采用有增粘作用的助剂,如松焦油、古马隆、RX-80、液态聚异丁烯等。
进一步的技术方案是,所述金属氧化物包含氧化锌、氧化镁、氧化钙的至少一种。
进一步的技术方案是,所述无机填充剂包含碳酸钙、滑石粉、煅烧陶土、硅酸镁、碳酸镁、硫酸钡中的至少一种。
进一步的技术方案是,所述表面改性剂包含分子量为2000或3400或4000的聚乙二醇、二苯基硅二醇、三乙醇胺、乙烯基三(2-甲氧基乙氧基)硅烷(A-172)、γ-缩水甘油醚氧丙基三甲氧基硅烷(A-187)、γ-巯基丙基三甲氧基硅烷(A-189)中的至少一种。
进一步的技术方案是,所述着色剂包含钛白粉、酞青兰、酞青绿、炭黑中的至少一种。
进一步的技术方案是,所述硫化促进剂包含2-硫醇基苯并噻唑、二硫化二苯并噻唑、一硫化四甲基秋兰姆、二硫化四甲基秋兰姆、二硫化四乙基秋兰姆、N-环己基-2-苯并噻唑基次磺酰胺、N,N-二环己基-2-苯噻唑基次磺酰胺、双马来酰亚胺、亚乙基硫脲中的至少一种。
进一步的技术方案是,所述粘合剂包含间苯二酚给予体和亚甲基给予体中的至少一种。间苯二酚给予体可以选自间苯二酚(粘合剂R)、粘合剂RS、粘合剂RS-11、粘合剂R-80、粘合剂RL、粘合剂粘合剂PF、粘合剂PE、粘合剂RK、粘合剂RH中的至少一种;亚甲基给予体可以选自六亚甲基四胺(HMTA)、粘合剂H-80、粘合剂A、粘合剂RA、粘合剂AB-30、 粘合剂Rq、粘合剂RC、粘合剂CS963、粘合剂CS964中的至少一种。
进一步的技术方案是粘合剂还可以选自三嗪粘合剂,具体商用牌号可选自粘合剂TAR、粘合剂TZ、粘合剂AIR-1、粘合剂AIR-101中的至少一种,优选粘合剂AIR-1、粘合剂AIR-101中的至少一种,可部分替代上述间苯二酚给予体粘合剂,具有粘合性能好且相对环保的优势。
在本发明的实施方式中,为了改善胶料的粘性,橡胶组合物可以进一步包含增粘剂,前述增塑剂中的是松焦油、古马隆树脂、RX-80、液态聚异丁烯同时具有增粘剂的作用,其中液态古马隆树脂相比固态古马隆树脂具有更好的增粘效果,增粘剂还可以选自C5石油树脂、C9石油树脂、氢化松香、萜烯树脂、烷基酚醛树脂、改性烷基酚醛树脂、烷基苯酚-乙炔树脂等常用增粘剂,以100重量份橡胶基体计,增粘剂的用量一般不超过30重量份,进一步优选不超过10重量份,进一步优选不超过5重量份。
本发明提供的橡胶组合物中涉及的交联剂、助交联剂和硫化促进剂均属于交联体系。
本发明的橡胶组合物可以以未交联的混炼胶的形式存在,在进一步发生交联反应之后可以以硫化橡胶的形式存在。硫化橡胶也可以简称为硫化胶。
本发明还提供一种加工上述橡胶组合物的方法,该加工方法包括以下步骤:
(1)橡胶混炼:首先将除交联体系以外的橡胶组合物按重量份依次添加到密炼机中进行混炼,然后加入交联体系经混炼均匀后排出,得到混炼胶,将混炼胶在开炼机上薄通后下片,停放待硫化。所述交联体系包含交联剂,还可以包含助交联剂和硫化促进剂中的至少一种;
(2)硫化:将混炼胶填入模具的模腔,在平板硫化机上加压硫化后,脱模即可得到硫化橡胶。
本发明还提供一种塑胶跑道表层用橡胶粒,其所用胶料包含上述橡胶组合物。
本发明还提供一种生产塑胶跑道表层用橡胶粒的方法,该生产方法包含的步骤如下:
(1)橡胶混炼:首先将除交联体系以外的橡胶组合物成分按照重量份依次添加到密炼机中进行混炼,然后加入交联体系经混炼均匀后排出,得到混炼胶待用,将混炼胶在开炼机上薄通,下片,停放20小时,返炼,在开炼机上打三角包,调整辊距、下片。其中,所述交联体系包含交联剂,还可以包含助交联剂和硫化促进剂中的至少一种;
(2)挤出和硫化:挤出硫化工艺宜采用抽真空挤出机,挤出后采用盐浴硫化工艺;
(3)冷却、干燥、剪切、造粒、包装。
本发明还提供一种电缆用绝缘层或护套层胶料,其所用胶料包含上述橡胶组合物。
本发明还提供一种生产电缆用绝缘层或护套层胶料的方法,其生产工艺步骤如下:
(1)橡胶混炼:首先将除交联体系以外的橡胶组合物成分按照重量份依次添加到密炼机中进行混炼,然后加入交联体系经混炼均匀后排出,得到混炼胶待用,将混炼胶在开炼机上薄通,下片,停放20小时,返炼,在开炼机上打三角包,调整辊距、下片,其中,所述交联体系包含交联剂,还可以包含助交联剂和硫化促进剂中的至少一种;
(2)造粒:将混炼胶投入挤出机,挤出剪切造粒,包装。
本发明还提供一种耐高温输送带,其工作面覆盖胶和非工作面覆盖胶的至少一层包含本发明提供的橡胶组合物。
本发明还提供一种生产耐高温输送带的方法,其工作面覆盖胶包含上述橡胶组合物,该生产方法包含的步骤如下:
(1)混炼:将除交联体系以外的橡胶组合物成分按照重量份依次添加到密炼机中进行 混炼,然后加入交联体系经混炼均匀后排出,得到混炼胶待用,其中,所述交联体系包含交联剂,还可以包含助交联剂和硫化促进剂中的至少一种;
(2)压延工艺:将以上混炼胶放到螺杆挤出机中热炼,然后供到压延机中进行压延出片待用;
(3)成型工艺:胶片在成型机上和预先成型好的贴胶帆布带坯紧密地贴合在一起成型为耐高温输送带的带坯,然后卷起停放以后再硫化;
(4)硫化工艺:将上述成型好的输送带带坯放到平板硫化机中进行分段硫化;
(5)修整、检验:硫化结束后进行修整、检验,然后包装入库。
本发明还提供一种防水卷材,所用胶料包含上述橡胶组合物。
本发明还提供一种生产防水卷材的方法,该生产方法包含的步骤如下:
(1)混炼:将除交联体系以外的橡胶组合物成分按照重量份依次添加到密炼机中进行混炼,然后加入交联体系经混炼均匀后排出,得到混炼胶待用,将块状胶料送入开炼机中混炼,得到表面光滑均一有光泽的胶片,冷却至50℃以下出片、堆放。其中,所述交联体系包含交联剂,还可以包含助交联剂和硫化促进剂中的至少一种;
(2)热炼:将混合均匀的胶片在开炼机上进行热炼,光滑均匀后初步成卷;
(3)压延:将经热炼初步成卷的胶料片放入压延机上,按成品厚度要求调节辊距进行压延,获得符合成品厚度规格要求的半成品卷材;
(4)收卷:按成品卷材的规格长度要求,夹设隔离衬垫层、将半成品卷材整理成卷;
(5)硫化:将整理成卷的卷材放入硫化釜中进行硫化处理;
(6)复卷:将经硫化后的卷材重新打开、取出隔离衬垫层后再复卷、包装成产品。
本发明还提供一种胶塞,其所用胶料包含上述橡胶组合物。
本发明还提供一种生产胶塞的方法,其包含以下步骤:
(1)橡胶混炼:首先,将除交联体系以外的橡胶组合物成分按照重量份依次添加到密炼机中进行混炼,然后加入交联体系经混炼均匀后排出。将混炼胶在开炼机上开炼压片,然后停放待用,交联体系包含交联剂,还可以包含助交联剂和硫化促进剂中的至少一种;
(2)挤出:将混炼胶通过挤出机挤出成条状,停放待用;
(3)硫化:将挤出后的胶料通过注射成型硫化机硫化;
(4)后处理:冲边、清洗硅化、得到成品,包装入库。
本发明还提供一种胶辊,其所用胶料包含上述橡胶组合物。
本发明还提供一种生产胶辊的方法,其包含如下生产步骤:
(1)橡胶混炼:设置密炼机温度和转子转速,将所用橡胶组合物中除交联体系以外的组分依次加入到密炼机中混炼;然后加入交联体系,混炼后排胶。其中,所述交联体系包含交联剂,还可以包含助交联剂和硫化促进剂中的至少一种。将混炼胶在开炼机薄通下片,停放和检测;
(2)缠绕包胶:将混炼胶投入螺杆挤出机,挤出工艺要求的厚度和宽度的胶片,待胶片均匀一致后启动旋转包布机,将胶片缠绕在准备好的金属辊芯上,逐层缠绕包胶,直到包胶单边厚度达到规定厚度,然后在胶面上缠绕尼龙水布2~3层,得到包胶完毕的胶辊;
(3)硫化罐硫化,将包胶完毕的胶辊送入硫化罐,进行蒸汽硫化,硫化结束后将胶辊拉出;
(4)后处理:将硫化好的胶辊在车床上粗加工,再在磨床上精加工,检验,得到成品。
本发明还提供一种内胎,其胎体所用胶料包含上述橡胶组合物。
本发明还提供一种生产内胎的方法,其特征在于,包含以下步骤:首先混炼橡胶,滤胶并停放;然后通过挤出机挤出,并按工艺要求的长度裁断,贴气门嘴,拼接后停放;然后充气定型,蒸汽硫化,冷却后,检查,修边得到成品。
本发明还提供一种轮胎,其胎侧所用胶料和胎面所用胶料中的至少一种包含上述橡胶组合物。
进一步的技术方案是,用于胎面或胎侧的橡胶组合物,其100重量份橡胶基体中,支化聚乙烯的含量不低于70重量份。
本发明所提供的轮胎优选作为力车胎。其中力车胎可以是自行车胎、手推车胎、畜力车胎、电动车胎等非机动车胎。尤其是可以优选作为白色或者彩色的自行车胎。
可以使用本发明的橡胶组合物作为胎侧胶,通过通常的方法制造轮胎。即,将混炼胶按照轮胎设计的胎侧形状进行挤出加工,在轮胎成型机上用通常的方法与其他的轮胎构件一起成型,形成未硫化轮胎。通过在硫化机中对该未硫化轮胎进行加热加压,得到轮胎。
可以使用本发明的橡胶组合物作为胎面胶,通过通常的方法制造轮胎。即,将混炼胶按照轮胎设计的胎面形状进行挤出加工,在轮胎成型机上用通常的方法与其他的轮胎构件一起成型,形成未硫化轮胎。通过在硫化机中对该未硫化轮胎进行加热加压,得到轮胎。
上述轮胎所用钢丝或纤维骨架优选表面经过处理的,可以与非极性橡胶良好粘合的品种。表面处理可以采用浸泡RFL浸渍体系的方式。
本发明还提供一种空调胶管,其由内到外依次包括阻隔层、内胶层、编织层以及外胶层;其中,所述内胶层所用胶料包含上述橡胶组合物。
本发明还提供一种生产空调胶管的方法,其包含以下步骤:在胶管模具芯棒上挤出尼龙层,并使得尼龙层包覆在芯棒以形成阻隔层,然后在带有阻隔层的芯棒上挤出内胶层,并在内胶层外表面进行编织,即为编织层,然后在编织层上挤出外胶层,即为半成品空调胶管,将半成品胶管硫化后,并将芯棒取出,即得到成品胶管。
本发明还提供一种导管,其特征在于,所用胶料包含上述橡胶组合物。
本发明提供的导管适用于作为医用导管或食品用导管使用。
本发明还提供一种生产上述导管的方法,其特征在于,成型方式为挤出成型或模压成型,硫化方式选自模压硫化或高温蒸汽硫化。成型方式优选挤出成型方式,高温蒸汽硫化工艺适用于过氧化物交联体系,过氧化物优选为过氧化双(2,4-二氯苯甲酰)或2,5-二甲基-2,5-二(叔丁基过氧化)己烷,过氧化物添加形态进一步优选为膏状。如果为了减少化学助剂的用量,使产品更加适用于医用领域或者食品领域,胶管的橡胶组合物中的硫化体系可以选用辐射交联体系,硫化方式选择辐射交联工艺,当含有少量的过氧化物(如DCP)时,可以明显加快辐射交联速度。
本发明与现有技术相比,其有益效果是,由于支化聚乙烯的分子结构完全饱和,耐热老化性能与二元乙丙橡胶类似,优于三元乙丙橡胶,并且都可以使用过氧化物体系硫化。而且由于支化聚乙烯的分子结构上具有较多的支链,且支链长度存在一定的长短分布,并且有数量适当的二级支链结构存在,在过氧化物交联过程中,支化聚乙烯的交联点可以在主链叔碳上产生,也可以在二级结构的支链叔碳上产生,所以支化聚乙烯通过过氧化物交联所形成的橡胶网络与乙丙橡胶相比,主链之间具有更为丰富的C-C连接链段长度,可以有效避免应力集中,有利于获得更好的力学性能。另一方面,更好的交联能力可以有效提高交联密度,并且支化聚乙烯的分子量分布接近2,窄于一般的乙丙橡胶,所以也有望获得更好的抗压缩永久变形性能。
具体实施方式
下面给出实施例以对本发明做进一步说明,但不是用来限制本发明的范围,该领域的技术熟练人员根据发明内容对本发明做出的一些非本质的改进和调整仍属于本发明的保护范围。
为了更清楚的叙述本发明的实施方式,下面对本发明所涉及到的材料做个定义。
本发明的实施例中采用的白炭黑为气相法白炭黑或沉淀法白炭黑,对于透明性和电绝缘性要求不高的应用场合,优选为沉淀法白炭黑,进一步优选高分散性沉淀法白炭黑,如无特殊注明,则在实施例中采用的普通沉淀法白炭黑为索尔维罗地亚zeosil142,高分散性白炭黑牌号为索尔维罗地亚zeosil165N。
交联体系包含交联剂,还可以包含助交联剂和硫化促进剂中的至少一种。
所用二元乙丙橡胶的门尼粘度ML(1+4)125℃优选20~45,进一步优选40~45,乙烯含量优选50%~60%。
所用三元乙丙橡胶的门尼粘度ML(1+4)125℃优选20~100,进一步优选40~80,乙烯含量优选,50%~75%,第三单体为5-亚乙基-2-降冰片烯、5-乙烯基-2-降冰片烯或双环戊二烯,第三单体含量为1%~7%。
在本发明中橡胶基体选用的二元乙丙橡胶和三元乙丙橡胶的门尼粘度ML(1+4)125℃优先40~80,乙烯含量优选45%~75%。
所用支化聚乙烯可通过(α-二亚胺)镍催化剂在助催化剂的作用下催化乙烯均聚得到。所用(α-二亚胺)镍催化剂的结构、合成方法及通过其制备支化聚乙烯的方法是公开的现有技术,可以采用但不限于以下文献:CN102827312A、CN101812145A、CN101531725A、CN104926962A、US6103658、US6660677。
所选用的支化聚乙烯特征为:支化度为60~130个支链/1000个碳、重均分子量为6.6万~51.8万,门尼粘度ML(1+4)125℃为6~102。其中,支化度通过核磁氢谱测得,各种支链摩尔百分含量通过核磁碳谱测得。
具体如下表:
Figure PCTCN2018072367-appb-000001
Figure PCTCN2018072367-appb-000002
橡胶性能测试方法:
1、硬度测试:按照国标GB/T 531.1-2008,用硬度测试仪进行测试,测试温度为室温;
2、拉伸强度、断裂伸长率性能测试:按照国标GB/T528-2009,用电子拉力试验机进行测试,拉伸速度为500mm/min,测试温度为23±2℃,试样为2型哑铃状试样;
3、撕裂强度测试:按照国标GB/T529-2008,用电子拉力试验机进行测试,拉伸速度为500mm/min,测试温度为23±2℃,试样为直角形试样;
4、压缩永久变形测试:按照国标GB/T7759-1996,用压缩永久变形装置进行测试,B型式样,压缩量为25%,测试温度为70℃;
5、门尼粘度测试:按照国标GB/T1232.1-2000,用门尼粘度仪进行测试,测试温度为125℃,预热1分钟,测试4分钟;
6、热空气加速老化试验:按照国标GB/T3512-2001,在热老化试验箱中进行,试验条件为150℃×72h;
7、正硫化时间Tc90测试:按照国标GB/T16584-1996,在无转子硫化仪中进行,试验温度为160℃。
以下实施例1~18以及对照例1~3的硫化条件统一为:温度:160℃;压力:16MPa;时间为Tc90+2min。
其具体的实施例如下所示:
实施例1:
采用的支化聚乙烯编号为PER-4。
加工步骤如下:
(1)橡胶混炼:设置密炼机温度为90℃,转子转速为50转/分钟,加入70份三元乙丙橡胶和30份支化聚乙烯预压混炼90秒;加入40份白炭黑,混炼3分钟;然后加入2份交联剂过氧化二异丙苯(DCP),混炼2分钟后排胶。将混炼胶在开炼机上薄通,调大辊距得到2.5mm左右厚度的薄片下片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)硫化后停放16小时后进行各项测试。
实施例2:
采用的支化聚乙烯编号为PER-4。
加工步骤如下:
(1)橡胶混炼:设置密炼机温度为90℃,转子转速为50转/分钟,加入50份三元乙丙橡胶和50份支化聚乙烯预压混炼90秒;加入40份白炭黑,混炼3分钟;然后加入2份交联剂过氧化二异丙苯(DCP),混炼2分钟后排胶。将混炼胶在开炼机上薄通,调大辊距得到2.5mm左右厚度的薄片下片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)硫化后停放16小时后进行各项测试。
实施例3:
采用的支化聚乙烯编号为PER-4。
加工步骤如下:
(1)橡胶混炼:设置密炼机温度为90℃,转子转速为50转/分钟,加入100份支化聚乙烯预压混炼90秒;加入40份白炭黑,混炼3分钟;然后加入2份交联剂过氧化二异丙苯 (DCP),混炼2分钟后排胶。将混炼胶在开炼机上薄通,调大辊距得到2.5mm左右厚度的薄片下片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)硫化后停放16小时后进行各项测试。
实施例4:
采用的支化聚乙烯编号为PER-4。
加工步骤如下:
(1)橡胶混炼:设置密炼机温度为90℃,转子转速为50转/分钟,加入100份支化聚乙烯预压混炼90秒;加入40份白炭黑,混炼3分钟;然后加入2份交联剂过氧化二异丙苯(DCP)和0.2份助交联剂硫磺,混炼2分钟后排胶。将混炼胶在开炼机上薄通,调大辊距得到2.5mm左右厚度的薄片下片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)硫化后停放16小时后进行各项测试。
对照例1:
加工步骤如下:
(1)橡胶混炼:设置密炼机温度为90℃,转子转速为50转/分钟,加入100份三元乙丙橡胶预压混炼90秒;加入40份白炭黑,混炼3分钟;然后加入2份交联剂过氧化二异丙苯(DCP),混炼2分钟后排胶。将混炼胶在开炼机上薄通,调大辊距得到2.5mm左右厚度的薄片下片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)硫化后停放16小时后进行各项测试。
实施例5:
采用的支化聚乙烯编号为PER-5。
加工步骤如下:
(1)橡胶混炼:设置密炼机温度为90℃,转子转速为50转/分钟,加入90份三元乙丙橡胶和10份支化聚乙烯预压混炼90秒;加入40份白炭黑,混炼3分钟;然后加入3份交联剂过氧化二异丙苯(DCP)和1份助交联剂三烯丙基异氰脲酸酯(TAIC),混炼2分钟后排胶。将混炼胶在开炼机上薄通,调大辊距得到2.5mm左右厚度的薄片下片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)硫化后停放16小时后进行各项测试。
实施例6:
采用的支化聚乙烯编号为PER-5。
加工步骤如下:
(1)橡胶混炼:设置密炼机温度为90℃,转子转速为50转/分钟,加入20份二元乙丙橡胶、50份三元乙丙橡胶和30份支化聚乙烯预压混炼90秒;加入40份白炭黑,混炼3分钟;然后加入3份交联剂过氧化二异丙苯(DCP)和1份助交联剂三烯丙基异氰脲酸酯(TAIC),混炼2分钟后排胶。将混炼胶在开炼机上薄通,调大辊距得到2.5mm左右厚度的薄片下片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)硫化后停放16小时后进行各项测试。
实施例7:
采用的支化聚乙烯编号为PER-5。
加工步骤如下:
(1)橡胶混炼:设置密炼机温度为90℃,转子转速为50转/分钟,加入20份三元乙丙橡胶和80份支化聚乙烯预压混炼90秒;加入40份白炭黑,混炼3分钟;然后加入3份交联剂过氧化二异丙苯(DCP)和1份助交联剂三烯丙基异氰脲酸酯(TAIC),混炼2分钟后排胶。将混炼胶在开炼机上薄通,调大辊距得到2.5mm左右厚度的薄片下片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)硫化后停放16小时后进行各项测试。
实施例8:
采用的支化聚乙烯编号为PER-5。
加工步骤如下:
(1)橡胶混炼:设置密炼机温度为90℃,转子转速为50转/分钟,加入100份支化聚乙烯预压混炼90秒;加入40份白炭黑,混炼3分钟;然后加入3份交联剂过氧化二异丙苯(DCP)和1份助交联剂三烯丙基异氰脲酸酯(TAIC),混炼2分钟后排胶。将混炼胶在开炼机上薄通,调大辊距得到2.5mm左右厚度的薄片下片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)硫化后停放16小时后进行各项测试。
对照例2:
加工步骤如下:
(1)橡胶混炼:设置密炼机温度为90℃,转子转速为50转/分钟,加入100份三元乙丙橡胶预压混炼90秒;加入40份白炭黑,混炼3分钟;然后加入3份交联剂过氧化二异丙苯(DCP)和1份助交联剂三烯丙基异氰脲酸酯(TAIC),混炼2分钟后排胶。将混炼胶在开炼机上薄通,调大辊距得到2.5mm左右厚度的薄片下片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)硫化后停放16小时后进行各项测试。
Figure PCTCN2018072367-appb-000003
性能测试数据分析:
通过实施例1~3和对照例1的对比以及实施例5~8和对照例2的对比,可以发现随着支化聚乙烯替换乙丙橡胶的比重升高,所得硫化胶的拉伸强度和撕裂强度均有明显提高,说明采用含有支化聚乙烯的橡胶组合物可以获得更好的力学性能。
实施例9:
采用的支化聚乙烯编号为PER-9。
加工步骤如下:
(1)橡胶混炼:设置密炼机温度为100℃,转子转速为50转/分钟,加入90份三元乙丙橡胶和10份支化聚乙烯预压混炼90秒;加入5份氧化锌、1份硬脂酸、3份聚乙二醇PEG4000、2份乙烯基三(2-甲氧基乙氧基)硅烷(A-172)和1份防老剂2,2,4-三甲基-1,2-二氢化喹啉聚合体(RD),混炼2分钟;然后在胶料中加入60份白炭黑、20份煅烧陶土和20份石蜡油SUNPAR2280,混炼3分钟;最后加入4份交联剂过氧化二异丙苯(DCP)和1份助交联剂三烯丙基异氰脲酸酯(TAIC),混炼2分钟后排胶。将混炼胶在开炼机上薄通,得到2.5mm左右厚度的薄片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)硫化后停放16小时后进行各项测试。
实施例10:
采用的支化聚乙烯编号为PER-8。
加工步骤如下:
(1)橡胶混炼:设置密炼机温度为100℃,转子转速为50转/分钟,加入80份三元乙丙橡胶和20份支化聚乙烯预压混炼90秒;加入5份氧化锌、1份硬脂酸、3份聚乙二醇PEG4000、2份乙烯基三(2-甲氧基乙氧基)硅烷(A-172)和1份防老剂2,2,4-三甲基-1,2- 二氢化喹啉聚合体(RD),混炼2分钟;然后在胶料中加入60份白炭黑、20份煅烧陶土和20份石蜡油SUNPAR2280,混炼3分钟;最后加入4份交联剂过氧化二异丙苯(DCP)和1份助交联剂三烯丙基异氰脲酸酯(TAIC),混炼2分钟后排胶。将混炼胶在开炼机上薄通,得到2.5mm左右厚度的薄片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)硫化后停放16小时后进行各项测试。
实施例11:
采用的支化聚乙烯编号为PER-7。
加工步骤如下:
(1)橡胶混炼:设置密炼机温度为100℃,转子转速为50转/分钟,加入20份二元乙丙橡胶、30份三元乙丙橡胶和50支化聚乙烯预压混炼90秒;加入5份氧化锌、1份硬脂酸、3份聚乙二醇PEG4000、2份乙烯基三(2-甲氧基乙氧基)硅烷(A-172)和1份防老剂2,2,4-三甲基-1,2-二氢化喹啉聚合体(RD),混炼2分钟;然后在胶料中加入60份白炭黑、20份煅烧陶土和20份石蜡油SUNPAR2280,混炼3分钟;最后加入3份交联剂过氧化二异丙苯(DCP)、1份交联剂硫磺、1份N-环已基-2-苯并噻唑次磺酰胺(CZ)和0.8份二硫化四甲基秋兰姆(TMTD),混炼2分钟后排胶。将混炼胶在开炼机上薄通,得到2.5mm左右厚度的薄片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)硫化后停放16小时后进行各项测试。
实施例12:
采用的支化聚乙烯编号为PER-7。
加工步骤如下:
(1)橡胶混炼:设置密炼机温度为100℃,转子转速为50转/分钟,加入100份支化聚乙烯预压混炼90秒;加入5份氧化锌、1份硬脂酸、3份聚乙二醇PEG4000、2份乙烯基三(2-甲氧基乙氧基)硅烷(A-172)和1份防老剂2,2,4-三甲基-1,2-二氢化喹啉聚合体(RD),混炼2分钟;然后在胶料中加入60份白炭黑、20份煅烧陶土、10份钛白粉和20份石蜡油SUNPAR2280,混炼3分钟;最后加入4份交联剂过氧化二异丙苯(DCP)、1份助交联剂三烯丙基异氰脲酸酯(TAIC)和0.3份助交联剂硫磺,混炼2分钟后排胶。将混炼胶在开炼机上薄通,得到2.5mm左右厚度的薄片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)硫化后停放16小时后进行各项测试。
实施例13:
采用的支化聚乙烯编号为PER-1和PER-7。
加工步骤如下:
(1)橡胶混炼:设置密炼机温度为100℃,转子转速为50转/分钟,加入70份PER-7和30份PER-1预压混炼90秒;加入10份氧化锌、2份硬脂酸、2份聚乙二醇PEG4000、1份乙烯基三(2-甲氧基乙氧基)硅烷(A-172)和1份防老剂2,2,4-三甲基-1,2-二氢化喹啉聚合体(RD),混炼2分钟;然后在胶料中加入10份钛白粉、15份白炭黑、60份煅烧陶土、40份硅酸铝和120份石蜡油SUNPAR2280,混炼3分钟;最后加入8份交联剂过氧化二异丙苯(DCP)、2份助交联剂三烯丙基异氰脲酸酯(TAIC)和8份1,2-聚丁二烯,混炼2分钟后排胶。将混炼胶在开炼机上薄通,得到2.5mm左右厚度的薄片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)硫化后停放16小时后进行各项测试。
实施例14:
采用的支化聚乙烯编号为PER-4。
加工步骤如下:
(1)橡胶混炼:设置密炼机温度为100℃,转子转速为50转/分钟,加入100份支化聚 乙烯预压混炼90秒;加入20份氧化锌、2份硬脂酸、5份聚乙二醇PEG4000、2份乙烯基三(2-甲氧基乙氧基)硅烷(A-172)和1份防老剂2,2,4-三甲基-1,2-二氢化喹啉聚合体(RD),混炼2分钟;然后在胶料中加入40份白炭黑、80份滑石粉和20份石蜡油SUNPAR2280,混炼3分钟;最后加入5份交联剂过氧化二异丙苯(DCP)和2份助交联剂三烯丙基异氰脲酸酯(TAIC),混炼2分钟后排胶。将混炼胶在开炼机上薄通,得到2.5mm左右厚度的薄片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)硫化后停放16小时后进行各项测试。
实施例15:
采用的支化聚乙烯编号为PER-3和PER-6。
加工步骤如下:
(1)橡胶混炼:设置密炼机温度为100℃,转子转速为50转/分钟,加入80份PER-6和20份PER-3预压混炼90秒;加入10份氧化锌、2份硬脂酸、10份聚乙二醇PEG4000、3份乙烯基三(2-甲氧基乙氧基)硅烷(A-172)和1份防老剂2,2,4-三甲基-1,2-二氢化喹啉聚合体(RD),混炼2分钟;然后在胶料中加入80份白炭黑、50份煅烧陶土和50份石蜡油SUNPAR2280,混炼3分钟;最后加入10份交联剂过氧化二异丙苯(DCP)、2份助交联剂三烯丙基异氰脲酸酯(TAIC)和8份1,2-聚丁二烯,混炼2分钟后排胶。将混炼胶在开炼机上薄通,得到2.5mm左右厚度的薄片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)硫化后停放16小时后进行各项测试。
实施例16:
采用的支化聚乙烯编号为PER-6。
加工步骤如下:
(1)橡胶混炼:设置密炼机温度为100℃,转子转速为50转/分钟,加入100份支化聚乙烯预压混炼90秒;加入10份氧化锌、2份硬脂酸、5份聚乙二醇PEG4000、2份乙烯基三(2-甲氧基乙氧基)硅烷(A-172)和1份防老剂2,2,4-三甲基-1,2-二氢化喹啉聚合体(RD),混炼2分钟;然后在胶料中加入5份氧化铁红、60份白炭黑、70份煅烧陶土、50份碳酸钙和55份石蜡油SUNPAR2280,混炼3分钟;最后加入6份交联剂过氧化二异丙苯(DCP)、2份助交联剂N,N’-间苯撑双马来酰亚胺(HVA-2)和0.3份硫磺,混炼2分钟后排胶。将混炼胶在开炼机上薄通,得到2.5mm左右厚度的薄片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)硫化后停放16小时后进行各项测试。
实施例17:
采用的支化聚乙烯编号为PER-5。
加工步骤如下:
(1)橡胶混炼:设置密炼机温度为100℃,转子转速为50转/分钟,加入100份PER-5预压混炼90秒;加入5份氧化锌、1份硬脂酸、2份聚乙二醇PEG4000、1份乙烯基三(2-甲氧基乙氧基)硅烷(A-172)和1份防老剂2,2,4-三甲基-1,2-二氢化喹啉聚合体(RD),混炼2分钟;然后在胶料中加入10份钛白粉、40份白炭黑、40份煅烧陶土和70份石蜡油SUNPAR2280,混炼3分钟;最后加入6份交联剂过氧化二异丙苯(DCP)和2份助交联剂三烯丙基异氰脲酸酯(TAIC),混炼2分钟后排胶。将混炼胶在开炼机上薄通,得到2.5mm左右厚度的薄片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)硫化后停放16小时后进行各项测试。
实施例18
采用的支化聚乙烯编号为PER-4。
加工步骤如下:
(1)橡胶混炼:设置密炼机温度为100℃,转子转速为50转/分钟,加入100份PER-4预压混炼90秒;加入5份氧化锌、0.5份硬脂酸和2份乙烯基三(2-甲氧基乙氧基)硅烷(A-172),混炼2分钟;然后在胶料中加入4份氧化铁红、60份白炭黑、50份碳酸钙和30份300#石蜡油,混炼3分钟;最后加入4份交联剂过氧化二异丙苯(DCP),混炼2分钟后排胶。将混炼胶在开炼机上薄通,得到2.5mm左右厚度的薄片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)硫化后停放16小时后进行各项测试。
Figure PCTCN2018072367-appb-000004
性能测试数据分析:
通过实施例9~12和对照例3的对比可以发现,随着支化聚乙烯替换乙丙橡胶的比重升高,所得硫化胶不仅在拉伸强度和撕裂强度方面均有明显提高,而且压缩永久变形变小,说明含有支化聚乙烯的橡胶组合物也非常适用于要求压缩永久变形变较小的应用场合,如胶辊、胶板、洗衣机门封、洗衣机窗用水封环等。
实施例19:
一种高压绝缘护套胶料,所采用的支化聚乙烯编号为PER-4。
得到该胶料混炼胶的步骤如下:
(1)混炼:设置密炼机温度为100℃,转子转速为50转/分钟,加入100份PER-4预压混炼90秒;加入5份氧化锌、0.5份硬脂酸和2份乙烯基三(2-甲氧基乙氧基)硅烷(A-172),混炼2分钟;然后在胶料中加入4份氧化铁红、60份白炭黑、50份碳酸钙和30份300#石蜡油,混炼3分钟;最后加入4份交联剂过氧化二异丙苯(DCP),混炼2分钟后排胶。将混炼胶在开炼机上薄通,得到2.5mm左右厚度的薄片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)造粒:将混炼胶投入挤出机,挤出剪切造粒,包装。
硫化及性能测试:
硫化工艺:蒸汽硫化,155℃×40分钟,浸入水中。
性能测试:硬度:71;拉伸强度:14.7MPa;断裂伸长率:566%;体积电阻率:2.5×10^15;150℃×72h热空气老化后:硬度:78;拉伸强度保持率:76%;断裂伸长率保持率:78%。
实施例20:
一种耐高温输送带生产工艺步骤如下:
该耐高温输送带采用在工作面覆盖胶与非工作面覆盖胶之间设有带芯抗拉体帆布,通过 成型和硫化工艺使它们成为一个牢固的整体。
本发明实施例所述的工作面覆盖胶其组成和配比按份数计:
(1)橡胶混炼工艺:
设置密炼机温度为100℃,转子转速为50转/分钟,加入100份支化聚乙烯PER-5预压混炼90秒;加入5份氧化锌、1份硬脂酸、3份聚乙二醇PEG4000、2份乙烯基三(2-甲氧基乙氧基)硅烷(A-172)和1份防老剂2,2,4-三甲基-1,2-二氢化喹啉聚合体(RD),混炼2分钟;然后在胶料中加入10份钛白粉、60份白炭黑、20份煅烧陶土和20份石蜡油SUNPAR2280,混炼3分钟;最后加入4份交联剂过氧化二异丙苯(DCP)、1份助交联剂三烯丙基异氰脲酸酯(TAIC)和0.3份助交联剂硫磺,混炼2分钟后排胶。
(2)压延工艺:
将以上混炼胶放到螺杆挤出机中热炼,然后供到压延机中进行压延出片待用。压延出片时胶片厚度控制在4.5~12mm。出好后保温待用。
(3)成型工艺:
胶片在成型机上和预先成型好的贴胶帆布带坯紧密地贴合在一起成型为耐高温输送带的带坯,然后卷起4小时以后再硫化。
(4)硫化工艺:
将上述成型好的输送带带坯放到平板硫化机中进行分段硫化,每板硫化时间为25分钟,硫化压力为2.5MPa,硫化温度为160℃。
实施例21:
一种防水卷材生产工艺步骤如下:
(1)混炼:设置密炼机温度为100℃,转子转速为50转/分钟,加入100份支化聚乙烯PER-6预压混炼90秒;加入10份氧化锌、1份硬脂酸、3份聚乙二醇PEG4000、2份乙烯基三(2-甲氧基乙氧基)硅烷(A-172)和1份防老剂2,2,4-三甲基-1,2-二氢化喹啉聚合体(RD),混炼2分钟;然后在胶料中加入10份钛白粉、60份白炭黑、20份煅烧陶土和20份石蜡油SUNPAR2280,混炼3分钟;最后加入4份交联剂过氧化二异丙苯(DCP)、1份助交联剂三烯丙基异氰脲酸酯(TAIC)和0.3份助交联剂硫磺,混炼2分钟后排胶。将块状胶料送入开炼机中混炼,控制辊温在85至95℃之间,并控制辊距小于1mm、薄通不少于四次,直至胶料表面光滑均一有光泽为止,再掉头进一步混炼,薄通不少于四次,再将辊距调整至不超过8mm,混炼三遍,获得厚度在8mm以下的混合均匀的胶料***,冷却至50℃以下出片、堆放;
(2)热炼:将混合均匀的胶料***在开炼机上进行热炼,控制辊温在85至95℃之间,辊距在6mm以下,直至胶料片光滑均匀后初步成卷;
(3)压延:将经热炼初步成卷的胶料片放入压延机上,按成品厚度要求调节辊距进行压延,获得符合成品厚度规格要求的半成品卷材;
(4)收卷:按成品卷材的规格长度要求,夹设隔离衬垫层、将半成品卷材整理成卷;
(5)硫化:将整理成卷的卷材放入硫化釜中进行硫化处理,控制硫化釜温度在155~165℃之间、压力在20~50MPa之间、硫化25至30分钟;
(6)复卷:将经硫化后的卷材重新打开、取出隔离衬垫层后再复卷、包装成产品。
实施例22:
一种塑胶跑道表层用红色橡胶粒,其生产工艺步骤如下:
(1)橡胶混炼:设置密炼机温度为100℃,转子转速为50转/分钟,加入100份支化聚乙烯PER-8预压混炼90秒;加入10份氧化锌、2份硬脂酸、5份聚乙二醇PEG4000、2份乙烯基三(2-甲氧基乙氧基)硅烷(A-172)和1份防老剂2,2,4-三甲基-1,2-二氢化喹啉聚合体(RD),混炼2分钟;然后在胶料中加入5份氧化铁红、60份白炭黑、70份煅烧陶土、50份碳酸钙和55份石蜡油SUNPAR2280,混炼3分钟;最后加入6份交联剂过氧化二异丙苯(DCP)、2份助交联剂N,N’-间苯撑双马来酰亚胺(HVA-2)和0.3份硫磺,混炼2分钟 后排胶。将混炼胶在开炼机上薄通,得到2.5mm左右厚度的薄片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)挤出和硫化:挤出硫化工艺宜采用抽真空挤出机,挤出机温度设置机头100℃,螺杆温度75℃,机头压力应控制在23MPa,挤出机转速25转/min,采用盐浴硫化工艺,喷淋段温度240℃,浸轮段温度220℃,浸压段温度在220℃,传动速度在40米/min,冷却段温度25℃。
(3)干燥、剪切、造粒、包装。
实施例23
一种胶塞,其模压硫化生产工艺包含以下步骤:
(1)橡胶混炼:设置密炼机温度为80℃,转子转速为50转/分钟,加入100份支化聚乙烯PER-4和3份氧化锌预压混炼90秒;然后在胶料中加入50份硫酸钡、10份钛白粉、35份高分散性白炭黑和2份凡士林,混炼3分钟;最后加入3份交联剂双(叔丁基过氧化异丙基)苯、1份助交联剂TAIC,混炼2分钟后排胶。将混炼胶在辊温为60℃的开炼机上开炼下片,停放20小时,将混炼胶在开炼机上开炼压片,然后停放待用;
(2)压延:将混炼胶在压延机上压延预成型后,冷却;
(3)硫化:将压延后的胶料放入模具,进行模压硫化,温度为160℃,压力为15MPa,时间25分钟,到预定硫化时间后,脱模冷却;
(4)后处理:冲边、清洗硅化、得到成品,包装入库。
实施例24
一种胶辊,其生产加工步骤如下:
(1)混炼:设置密炼机温度为100℃,转子转速为50转/分钟,加入100份支化聚乙烯PER-4预压混炼90秒;加入20份氧化锌、2份硬脂酸、5份聚乙二醇PEG4000、2份乙烯基三(2-甲氧基乙氧基)硅烷(A-172)和1份防老剂2,2,4-三甲基-1,2-二氢化喹啉聚合体(RD),混炼2分钟;然后在胶料中加入40份白炭黑、80份滑石粉和20份石蜡油SUNPAR2280,混炼3分钟;最后加入5份交联剂过氧化二异丙苯(DCP)和2份助交联剂三烯丙基异氰脲酸酯(TAIC),混炼2分钟后排胶。将混炼胶在开炼机上薄通,得到2.5mm左右厚度的薄片,停放20小时。返炼,在开炼机上打三角包3次,调整辊距至2.5mm,下片。
(2)缠绕包胶:将混炼胶投入螺杆挤出机,挤出工艺要求的厚度和宽度的胶片,待胶片均匀一致后启动旋转包布机,将胶片缠绕在准备好的金属辊芯上,逐层缠绕包胶,直到包胶单边厚度达到规定厚度,然后在胶面上缠绕尼龙水布2~3层,得到包胶完毕的胶辊。
(3)硫化罐硫化,将包胶完毕的胶辊送入硫化罐,关闭罐门后,往硫化罐中通入蒸汽进行硫化,通入蒸汽的同时打开压缩空气阀门,通入压缩空气使硫化罐内压力在0.5小时内达到4.5~5大气压;硫化程序为:首先升温到70~80℃,保温2小时;再升温到100~110℃,保温0.5小时;再升温到120~130℃,保温0.5小时;再升温到135~140℃,保温8~10小时。硫化结束,开排气阀,压力下降,等压力表指针指到零时,打开保险销,等销孔内排出蒸汽飘动,半开硫化罐,让温度下降,待罐内温度低于60℃或与室温相当时,将胶辊拉出;
(4)将硫化好的胶辊在车床上粗加工,再在磨床上精加工,检验,得到成品。
实施例25
一种内胎,其生产工艺步骤如下:
(1)橡胶混炼:设置密炼机温度为100℃,转子转速为50转/分钟,加入100份支化聚乙烯PER-5预压混炼90秒;加入5份氧化锌、1份硬脂酸、5份聚乙二醇PEG4000和2份乙烯基三(2-甲氧基乙氧基)硅烷(A-172),混炼2分钟;然后在胶料中加入40份白炭黑、20份煅烧陶土和10份石蜡油SUNPAR2280,混炼3分钟;最后加入4份交联剂过氧化二异丙苯(DCP)和2份助交联剂N,N’-间苯撑双马来酰亚胺(HVA-2),混炼2分钟后排胶。滤胶后将混炼胶在开炼机上开炼薄通,停放20小时。
(2)挤出:挤出机温度设为85℃,口型温度设为115℃,输送带的速度与挤出速度匹配。装气门嘴。
(3)接头:采用接头机接头,之后停放。
(4)充气定型及硫化:第一次充气至70%,停15秒;第二次充气至定型尺寸。硫化温度为180℃,蒸汽压力为0.9MPa,硫化时间为8分钟。硫化结束后,取出,冷却。
(5)检查、修边、得到内胎成品。
实施例26:
一种力车轮胎,其胎侧胶的加工步骤如下:
(1)橡胶混炼:设置密炼机温度为90℃,转子转速为50转/分钟,加入100份支化聚乙烯PER-5预压混炼90秒;然后加入5份氧化锌、1份硬脂酸、2份聚乙二醇PEG4000和2份乙烯基三(2-甲氧基乙氧基)硅烷(A-172),混炼2分钟;然后加入30份高分散性白炭黑、30份碳酸钙、5份古马隆树脂和10份石蜡油SUNPAR2280,混炼3分钟;然后加入4份交联剂过氧化二异丙苯(DCP)、1.5份助交联剂N,N’-间苯撑双马来酰亚胺(HVA-2)和0.3份助交联剂硫磺,混炼2分钟后排胶。将混炼胶在开炼机上开炼后下片,停放,检测;
(2)挤出成型:将检测合格的混炼胶通过挤出机挤出成型,得到胎侧形状的橡胶件待用。
实施例27:
一种力车轮胎,其胎面胶的加工步骤如下:
(1)橡胶混炼:设置密炼机温度为90℃,转子转速为50转/分钟,加入80份PER-7和20份PER-1预压混炼90秒;然后加入10份氧化锌、2份硬脂酸、2份聚乙二醇PEG4000和1份防老剂2,2,4-三甲基-1,2-二氢化喹啉聚合体(RD),混炼2分钟;然后加入20份高分散性白炭黑、40份轻质碳酸钙、5份古马隆树脂和10份石蜡油SUNPAR2280,混炼3分钟;然后加入4份交联剂双叔丁基过氧化异丙基苯(BIPB)、1.5份助交联剂三烯丙基异氰脲酸酯(TAIC)和3份甲基丙烯酸锌,混炼2分钟后排胶。将混炼胶在开炼机上开炼后下片,停放,检测;
(2)将检测合格的混炼胶压延成合适的厚度,割条待用;
(3)胎面挤出:采用冷喂料挤出工艺,通过挤出机挤出成胎面半成品。
实施例28:
一种彩色力车轮胎,其胎面胶的加工步骤如下:
(1)橡胶混炼:设置密炼机温度为90℃,转子转速为50转/分钟,加入100份PER-12预压混炼90秒;然后加入10份氧化锌、2份硬脂酸、2份聚乙二醇PEG4000、2份古马隆树脂、2份Escorez-1102增粘树脂和1份防老剂RD,混炼2分钟;然后加入2份黄色色母粒、20份高分散性白炭黑、40份轻质碳酸钙和10份石蜡油SUNPAR2280,混炼3分钟;然后加入4份交联剂双叔丁基过氧化异丙基苯(BIPB)、1.5份助交联剂三烯丙基异氰脲酸酯(TAIC)和3份甲基丙烯酸锌,混炼2分钟后排胶。将混炼胶在开炼机上开炼后下片,停放,检测;
(2)将检测合格的混炼胶压延成合适的厚度,割条待用;
(3)胎面挤出:采用冷喂料挤出工艺,通过挤出机挤出成胎面半成品。
实施例29:
一种力车轮胎,其胎侧胶的加工步骤如下:
(1)橡胶混炼:设置密炼机温度为90℃,转子转速为50转/分钟,加入100份支化聚乙烯PER-12预压混炼90秒;然后加入5份氧化锌、1份硬脂酸、2份聚乙二醇PEG4000和2份乙烯基三(2-甲氧基乙氧基)硅烷(A-172),混炼2分钟;然后加入30份高分散性白炭黑、30份碳酸钙、5份古马隆树脂和10份石蜡油SUNPAR2280,混炼3分钟;然后加入4份交联剂过氧化二异丙苯(DCP)、1.5份助交联剂N,N’-间苯撑双马来酰亚胺(HVA-2)和0.3份助交联剂硫磺,混炼2分钟后排胶。将混炼胶在开炼机上开炼后下片,停放,检测;
(2)挤出成型:将检测合格的混炼胶通过挤出机挤出成型,得到胎侧形状的橡胶件待用。
实施例30
一种空调胶管,其生产工艺步骤如下:
(1)内胶层橡胶混炼:一段混炼:设置密炼机温度为80℃,转子转速为50转/分钟,加入100份支化聚乙烯PER-3预压混炼90秒;加入5份氧化锌、1份硬脂酸、2份聚乙二醇PEG4000和2份乙烯基三(2-甲氧基乙氧基)硅烷(A-172),混炼2分钟;然后在胶料中加入30份白炭黑、3份RS和15份液体聚异丁烯,混炼3分钟,排胶;二段混炼:设置密炼机温度为80℃,转子转速为50转/分钟,将母炼胶加入密炼机中,加入10份AB-30,混炼2分钟;最后加入4份交联剂过氧化二异丙苯(DCP)和2份助交联剂N,N’-间苯撑双马来酰亚胺(HVA-2),混炼2分钟后排胶。将混炼胶在开炼机上开炼下片,停放待用;
(2)挤出及成型将胶管模具芯棒通过PPA(聚邻苯二甲酰胺)挤出机,并在芯棒上挤出PPA原料,并使得PPA包覆在芯棒上形成阻隔层;挤出内胶层,编织纤维增强层,再挤出外胶层;
(3)硫化:采用包布硫化工艺,温度为165℃,蒸汽压力1MPa,硫化时间25分钟,然后解布、脱芯、截断。得到空调胶管。
实施例31:
一种医用导管,采用挤出成型和高温蒸汽硫化生产工艺,具体包含以下步骤:
(1)橡胶混炼:设置密炼机温度为80℃,转子转速为50转/分钟,加入100份支化聚乙烯PER-12预压混炼90秒;然后在胶料中加入30份透明白炭黑(苏州东吴化学TS3)、10份无色石蜡油,混炼3分钟;最后加入4份交联剂2,5-二甲基-2,5-二(叔丁基过氧化)己烷(膏状,有效成分50%)、1份助交联剂TAIC,混炼2分钟后排胶。将混炼胶在辊温为60℃的开炼机上开炼下片,停放20小时,待用;
(2)挤出:将混炼胶在挤出机上挤出成型,挤出机转速为50r/min,机头温度为90℃;
(3)交联:将挤出后的胶料先进行高温蒸汽硫化,温度170℃,时间10min,二段硫化为160℃下4小时;
(4)后处理:清洗、得到成品,包装入库。
实施例32
一种白色门窗密封条,其生产工艺如下:
(1)混炼:将设置密炼机温度为80℃,转子转速为50转/分钟,加入100份支化聚乙烯PER-11预压混炼90秒;加入5份氧化锌、1份硬脂酸、5份氧化钙、2份聚乙二醇PEG4000和2份乙烯基三(2-甲氧基乙氧基)硅烷(A-172),混炼1分钟;然后在胶料中加入50份白炭黑、50份碳酸钙、60份石蜡油SUNPAR2280,混炼3分钟;最后加入4份交联剂双叔丁基过氧化异丙基苯(BIPB)、1.5份助交联剂三烯丙基异氰脲酸酯(TAIC)和0.3份硫磺, 混炼2分钟后排胶,将混炼胶自动下料到双螺杆挤出机挤出成片,继续在胶片冷却机进行冷却,混炼胶降温到室温条件下自动下料到托盘包装成型。
(2)挤出及硫化:挤出硫化工艺采用抽真空挤出机,挤出机温度设置机头90~100℃,螺杆温度70~80℃,机头压力应控制在15~20MPa,挤出机转速25~30转/min,采用盐浴硫化工艺,喷淋段温度250℃,浸轮段温度220℃,浸压段温度在220℃,传动速度在35~45米/min,冷却段温度25~30℃。
(3)冷却、修整、裁断,得到成品。
实施例34
一种塑胶跑道表层用红色橡胶粒,其所用支化聚乙烯为PER-10,其余组合物配方以及加工工艺与实施例22一致。

Claims (35)

  1. 一种橡胶组合物,其特征在于,所述橡胶组合物包括:橡胶基体和必要组分,所述橡胶基体包含:支化聚乙烯的含量a:0<a≤100份;二元乙丙橡胶和三元乙丙橡胶的含量b:0≤b<100份;以100重量份橡胶基体计,所述必要组分包含:交联剂1~10份,白炭黑为15~80份,其中支化聚乙烯包含乙烯均聚物,其支化度不低于50个支链/1000个碳,重均分子量不低于5万,门尼粘度ML(1+4)125℃不低于2。
  2. 根据权利要求1所述的橡胶组合物,其特征在于,以100重量份计,所述橡胶基体中支化聚乙烯的含量为a:10≤a≤100份;二元乙丙橡胶与三元乙丙橡胶的含量b:0≤b≤90份;所述支化聚乙烯是乙烯均聚物,其支化度为60~130个支链/1000个碳,重均分子量为6.6万~51.8万,门尼粘度ML(1+4)125℃为6~102;
  3. 根据权利要求1所述的橡胶组合物,其特征在于,所述交联剂包含过氧化物交联剂和硫磺中的至少一种,所述过氧化物交联剂包含二叔丁基过氧化物、二枯基过氧化物、叔丁基枯基过氧化物、1,1-二叔丁基过氧化物-3,3,5-三甲基环己烷、2,5-二甲基-2,5-二(叔丁基过氧化)己烷、2,5-二甲基-2,5-二(叔丁基过氧化)己炔-3、双(叔丁基过氧化异丙基)苯、2,5-二甲基-2,5-二(苯甲酰过氧化)己烷、过氧化苯甲酸叔丁酯、叔丁基过氧化-2-乙基己基碳酸酯中的至少一种。
  4. 根据权利要求1所述的橡胶组合物,其特征在于,以100重量份橡胶基体计,所述必要组份中包含交联剂2~7份,白炭黑30~60 份。
  5. 根据权利要求1所述的橡胶组合物,其特征在于,所述白炭黑为沉淀法白炭黑、气相法白炭黑中的至少一种,所述沉淀法白炭黑为高分散性沉淀法白炭黑。
  6. 根据权利要求1所述的橡胶组合物,其特征在于,所述橡胶组合物还包括辅助成分,以100重量份橡胶基体计,所述辅助成分包含:助交联剂0.2~10份,无机填充剂20~120份,增塑剂2~130份,稳定剂1~3份,金属氧化物2~20份,表面改性剂1~20份,着色剂1~10份,硫化促进剂0~3份,粘合剂0~20份。
  7. 根据权利要求6所述的橡胶组合物,其特征在于,所述稳定剂包含2,2,4-三甲基-1,2-二氢化喹啉聚合体、6-乙氧基-2,2,4-三甲基-1,2-二氢化喹啉、2-巯基苯并咪唑中的至少一种。
  8. 根据权利要求6所述的橡胶组合物,其特征在于,所述助交联剂包含三烯丙基氰脲酸酯、三烯丙基异氰脲酸酯、乙二醇二甲基丙烯酸酯、二甲基丙烯酸乙酯、二甲基丙烯酸三乙二酯、偏苯三酸三烯丙酯、三甲基丙烯酸三羟甲基丙烷酯、双甲基丙烯酸乙二醇酯、N,N’-间苯撑双马来酰亚胺、N,N’-双亚糠基丙酮、1,2-聚丁二烯、不饱和羧酸金属盐和硫磺中的至少一种。
  9. 根据权利要求6所述的橡胶组合物,其特征在于,所述增塑剂包含松焦油、机油、环烷油、石蜡油、古马隆、RX-80、硬脂酸、石蜡中的至少一种。
  10. 根据权利要求6所述的橡胶组合物,其特征在于,所述金属氧化物包含氧化锌、氧化镁、氧化钙中的至少一种。
  11. 根据权利要求6所述的橡胶组合物,其特征在于,所述无机填充剂包含碳酸钙、滑石粉、煅烧陶土、硅酸镁、碳酸镁、硫酸钡中的至少一种。
  12. 根据权利要求6所述的橡胶组合物,其特征在于,所述表面改性剂包含分子量为2000或3400或4000的聚乙二醇、二苯基硅二醇、三乙醇胺、乙烯基三(2-甲氧基乙氧基)硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷、γ-巯基丙基三甲氧基硅烷中的至少一种。
  13. 根据权利要求6所述的橡胶组合物,其特征在于,所述着色剂包含氧化铁红、钛白粉、酞青兰、酞青绿、炭黑中的至少一种。
  14. 根据权利要求6所述的橡胶组合物,其特征在于,所述硫化促进剂包含2-硫醇基苯并噻唑、二硫化二苯并噻唑、一硫化四甲基秋兰姆、二硫化四甲基秋兰姆、二硫化四乙基秋兰姆、N-环己基-2-苯并噻唑基次磺酰胺、N,N-二环己基-2-苯噻唑基次磺酰胺、双马来酰亚胺、亚乙基硫脲中的至少一种。
  15. 根据权利要求6所述的橡胶组合物,其特征在于,所述粘合剂包含间苯二酚给予体和亚甲基给予体中的至少一种。
  16. 一种加工权利要求1~15中任一所述橡胶组合物的方法,其特征在于,该加工方法包括以下步骤:
    步骤a、橡胶混炼:首先将除交联体系以外的橡胶组合物按重量份依次添加到密炼机中进行混炼,然后加入交联体系经混炼均匀后排出,得到混炼胶,将混炼胶在开炼机上薄通后下片,停放待硫化。其中,所述交联体系包含交联剂,还可以包含助交联剂和硫化促进剂中的至少一种;
    步骤b、硫化:将混炼胶填入模具的模腔,在平板硫化机上加压硫化后,脱模即可得到硫化橡胶。
  17. 一种塑胶跑道表层用橡胶粒,其特征在于,所述塑胶跑道表层用橡胶粒所用胶料包含权利要求1~15任一所述的橡胶组合物。
  18. 一种生产权利要求17所述塑胶跑道表层用橡胶粒的方法,其特征在于,生产方法包含的步骤如下:
    (1)橡胶混炼:首先将除交联体系以外的橡胶组合物成分按照重量份依次添加到密炼机中进行混炼,然后加入交联体系经混炼均匀后排出,得到混炼胶待用,将混炼胶在开炼机上薄通,下片,停放20小时,返炼,在开炼机上打三角包,调整辊距、下片,其中,所述交联体系包含交联剂,还可以包含助交联剂和硫化促进剂中的至少一种;
    (2)挤出和硫化:挤出硫化工艺宜采用抽真空挤出机,挤出后采用盐浴硫化工艺;
    (3)冷却、干燥、剪切、造粒、包装。
  19. 一种电缆用绝缘层或护套层胶料,其特征在于,所用胶料包含权利要求1~15任一所述的橡胶组合物。
  20. 一种生产权利要求19所述电缆用绝缘层或护套层胶料的方法,其特征在于,生产方法包含的步骤如下:
    (1)橡胶混炼:首先将除交联体系以外的橡胶组合物成分按照重量份依次添加到密炼机中进行混炼,然后加入交联体系经混炼均匀后排出,得到混炼胶待用,将混炼胶在开炼机上薄通,下片,停放20小时,返炼,在开炼机上打三角包,调整辊距、下片,其中,所述交联体系包含交联剂,还可以包含助交联剂和硫化促进剂中的至少一种;
    (2)造粒:将混炼胶投入挤出机,挤出剪切造粒,包装。
  21. 一种耐高温输送带,其特征在于,所用工作面覆盖胶和非工作面覆盖胶的至少一层包含权利要求1~15任一所述的橡胶组合物。
  22. 一种生产权利要求21所述耐高温输送带的方法,其特征在于,生产方法包含的步骤如下:
    (1)混炼:将除交联体系以外的橡胶组合物成分按照重量份依次添加到密炼机中进行混炼,然后加入交联体系经混炼均匀后排出,得到混炼胶待用,其中,所述交联体系包含交联剂,还可以包含助交联剂和硫化促进剂中的至少一种;
    (2)压延工艺:将以上混炼胶放到螺杆挤出机中热炼,然后供到压延机中进行压延出片待用;
    (3)成型工艺:胶片在成型机上和预先成型好的贴胶帆布带坯紧密地贴合在一起成型为耐高温阻燃输送带的带坯,然后卷起停放后再硫化;
    (4)硫化工艺:将上述成型好的输送带带坯放到平板硫化机中进行分段硫化;
    (5)修整、检验:硫化后进行修整、检验,然后包装入库。
  23. 一种防水卷材,其特征在于,所用胶料包含权利要求1~15任一所述的橡胶组合物。
  24. 一种生产权利要求23所述防水卷材的方法,其特征在于,生产方法包含的步骤如下:
    (1)混炼:将除交联体系以外的橡胶组合物成分按照重量份依次添加到密炼机中进行混炼,然后加入交联体系经混炼均匀后排出,得到混炼胶待用,将块状胶料送入开炼机中混炼,得到表面光滑均一有光泽的胶片,冷却至50℃以下出片、堆放,其中,所述交联体系包含交联剂,还可以包含助交联剂和硫化促进剂中的至少一种;
    (2)热炼:将混合均匀的胶片在开炼机上进行热炼,光滑均匀后初步成卷;
    (3)压延:将经热炼初步成卷的胶料片放入压延机上,按成品厚度要求调节辊距进行压延,获得符合成品厚度规格要求的半成品卷材;
    (4)收卷:按成品卷材的规格长度要求,夹设隔离衬垫层、将半成品卷材整理成卷;
    (5)硫化:将整理成卷的卷材放入硫化釜中进行硫化处理;
    (6)复卷:将经硫化后的卷材重新打开、取出隔离衬垫层后再复卷、包装成产品。
  25. 一种胶塞,其特征在于,所用胶料包含权利要求1~15任一所述橡胶组合物。
  26. 一种生产权利要求25所述胶塞的方法,其特征在于,包含以下步骤:
    (1)橡胶混炼:首先,将除交联体系以外的橡胶组合物成分按照重量份依次添加到密炼机中进行混炼,然后加入交联体系经混炼均匀后排出,将混炼胶在开炼机上开炼压片,然后停放待用,所述交联体系包含交联剂,还可以包含助交联剂和硫化促进剂中的至少一种;
    (2)挤出:将混炼胶通过挤出机挤出成条状,停放待用;
    (3)硫化:将挤出后的胶料通过注射成型硫化机硫化;
    (4)后处理:冲边、清洗硅化、得到成品,包装入库。
  27. 一种胶辊,其特征在于,所用胶料包含权利要求1~15任一所述橡胶组合物。
  28. 一种生产权利要求27所述胶辊的方法,其特征在于,包含如下工艺步骤:
    (1)橡胶混炼:设置密炼机温度和转子转速,将所用橡胶组合物中除交联体系以外的组分依次加入到密炼机中混炼;然后加入交联体系,混炼后排胶,其中,所述交联体系包含交联剂,还可以包含助交联剂和硫化促进剂中的至少一种,将混炼胶在开炼机薄通下片,停放和检测;
    (2)缠绕包胶:将混炼胶投入螺杆挤出机,挤出工艺要求的厚度和宽度的胶片,待胶片均匀一致后启动旋转包布机,将胶片缠绕在准备好的金属辊芯上,逐层缠绕包胶,直到包胶单边厚度达到规定厚度,然后在胶面上缠绕尼龙水布2~3层,得到包胶完毕的胶辊。
    (3)硫化罐硫化,将包胶完毕的胶辊送入硫化罐,进行蒸汽硫化,硫化结束后将胶辊拉出;
    (4)后处理:将硫化好的胶辊在车床上粗加工,再在磨床上精加工,检验,得到成品。
  29. 一种内胎,其特征在于,其胎体所用胶料包含权利要求1~15任一所述橡胶组合物。
  30. 一种生产权利要求29所述内胎的方法,其特征在于,包含以下步骤:首先混炼橡胶,滤胶并停放;然后通过挤出机挤出,并按工艺要求的长度裁断,贴气门嘴,拼接后停放;然后充气定型,蒸汽硫化,冷却后,检查,修边得到成品。
  31. 一种轮胎,其特征在于,所述轮胎的胎侧所用的胶料和胎面所用的胶料中至少一种包含权利要求1~15中任一所述橡胶组合物。
  32. 根据权利要求31所述的轮胎,其特征在于,所述轮胎为力车胎。
  33. 一种空调胶管,其特征在于,所述胶管由内到外依次包括阻隔层、内胶层、编织层以及外胶层;其中,所述内胶层所用胶料包含权利要求1~15中任一所述橡胶组合物。
  34. 一种生产权利要求33所述空调胶管的方法,其特征在于,生产方法包含以下步骤:在胶管模具芯棒上挤出尼龙层,并使得尼龙层包覆在芯棒以形成阻隔层,然后在带有阻隔层的芯棒上挤出内胶层,并在内胶层外表面进行编织,即为编织层,然后在编织层上挤出外胶层,即为半成品空调胶管,将半成品胶管硫化后,并将芯棒取出,即得到成品胶管。
  35. 一种导管,其特征在于,所用胶料包含权利要求1~15任一所述橡胶组合物,所述导管为医用导管或食品用导管。
PCT/CN2018/072367 2017-01-13 2018-01-12 橡胶组合物及加工方法和应用,及该应用的生产方法 WO2018130195A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/477,654 US20190359805A1 (en) 2017-01-13 2018-01-12 Rubber composite, processing method, applications, manufacturing method for the applications

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710025137.6 2017-01-13
CN201710025137 2017-01-13
CN201810020839.X 2018-01-10
CN201810020839.XA CN108314851B (zh) 2017-01-13 2018-01-10 橡胶组合物及加工方法和应用,及该应用的生产方法

Publications (1)

Publication Number Publication Date
WO2018130195A1 true WO2018130195A1 (zh) 2018-07-19

Family

ID=62839303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072367 WO2018130195A1 (zh) 2017-01-13 2018-01-12 橡胶组合物及加工方法和应用,及该应用的生产方法

Country Status (1)

Country Link
WO (1) WO2018130195A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110744740A (zh) * 2019-10-28 2020-02-04 万力轮胎股份有限公司 一种橡胶地板自动化制备***和制备方法
CN112159565A (zh) * 2020-09-25 2021-01-01 河北友联橡胶制品有限公司 一种耐高温热水的橡胶配置方法
CN112852028A (zh) * 2021-01-15 2021-05-28 河北皋端建材科技有限公司 一种运动地板用热塑性弹性体组合物及其制备方法
CN112895504A (zh) * 2021-01-15 2021-06-04 江苏彩阳环保科技有限公司 一种基于网格芳纶氟橡胶布的高温黏合定型制备工艺
CN112920515A (zh) * 2021-01-29 2021-06-08 厦门麦丰密封件有限公司 一种epdm密封件的制备工艺及其制品
CN113603945A (zh) * 2021-08-12 2021-11-05 中铁工程装备集团有限公司 耐油耐热耐磨损的橡胶材料及制法和在盾构机密封中应用
CN113789139A (zh) * 2021-10-12 2021-12-14 际华三五三七有限责任公司 防白变型鞋面布与围条橡胶的高效粘合物及其制作方法与应用
CN114539682A (zh) * 2022-03-30 2022-05-27 盘锦大奔金蚁橡胶制品有限公司 一种氯锌阻燃耐高温输送带及制备方法
CN114770999A (zh) * 2022-04-29 2022-07-22 陕西特种橡胶制品有限公司 钠冷堆主设备通道门用c型密封圈的制备方法
CN115304868A (zh) * 2021-05-07 2022-11-08 宣城新润发高分子科技有限公司 一种环保无害化处理的阻燃橡胶地板及其制备方法
CN115709618A (zh) * 2022-11-23 2023-02-24 广饶吉星轮胎有限公司 一种轮胎及轮胎制造方法
CN116120749A (zh) * 2023-02-27 2023-05-16 昆山力普电子橡胶有限公司 一种用于表带氟硅胶材料及其制备方法
CN117384431A (zh) * 2023-12-08 2024-01-12 衡水唯禹防水工程技术有限公司 一种缓膨型遇水膨胀橡胶材料及其制备方法
CN117757163A (zh) * 2023-12-22 2024-03-26 济南天齐特种平带有限公司 一种高速织机用橡胶卷取材料的制备方法
CN117887152A (zh) * 2024-03-14 2024-04-16 潍坊顺福昌橡塑有限公司 一种轮胎带束层橡胶组合物及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001057101A1 (en) * 2000-02-02 2001-08-09 E.I. Dupont De Nemours And Company Process for production of polyolefins
CN103980596A (zh) * 2014-05-13 2014-08-13 浙江大学 一种聚乙烯橡胶及其加工方法
CN105622803A (zh) * 2014-11-17 2016-06-01 中国科学院化学研究所 一种无规超支化聚乙烯的新用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001057101A1 (en) * 2000-02-02 2001-08-09 E.I. Dupont De Nemours And Company Process for production of polyolefins
CN103980596A (zh) * 2014-05-13 2014-08-13 浙江大学 一种聚乙烯橡胶及其加工方法
CN105622803A (zh) * 2014-11-17 2016-06-01 中国科学院化学研究所 一种无规超支化聚乙烯的新用途

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110744740A (zh) * 2019-10-28 2020-02-04 万力轮胎股份有限公司 一种橡胶地板自动化制备***和制备方法
CN112159565A (zh) * 2020-09-25 2021-01-01 河北友联橡胶制品有限公司 一种耐高温热水的橡胶配置方法
CN112852028A (zh) * 2021-01-15 2021-05-28 河北皋端建材科技有限公司 一种运动地板用热塑性弹性体组合物及其制备方法
CN112895504A (zh) * 2021-01-15 2021-06-04 江苏彩阳环保科技有限公司 一种基于网格芳纶氟橡胶布的高温黏合定型制备工艺
CN112852028B (zh) * 2021-01-15 2023-07-04 河北皋端建材科技有限公司 一种运动地板用热塑性弹性体组合物及其制备方法
CN112920515B (zh) * 2021-01-29 2023-06-23 厦门麦丰密封件有限公司 一种epdm密封件的制备工艺及其制品
CN112920515A (zh) * 2021-01-29 2021-06-08 厦门麦丰密封件有限公司 一种epdm密封件的制备工艺及其制品
CN115304868A (zh) * 2021-05-07 2022-11-08 宣城新润发高分子科技有限公司 一种环保无害化处理的阻燃橡胶地板及其制备方法
CN113603945A (zh) * 2021-08-12 2021-11-05 中铁工程装备集团有限公司 耐油耐热耐磨损的橡胶材料及制法和在盾构机密封中应用
CN113603945B (zh) * 2021-08-12 2023-08-04 中铁工程装备集团有限公司 耐油耐热耐磨损的橡胶材料及制法和在盾构机密封中应用
CN113789139B (zh) * 2021-10-12 2023-09-19 际华制鞋工业有限公司 防白变型鞋面布与围条橡胶的高效粘合物及其制作方法与应用
CN113789139A (zh) * 2021-10-12 2021-12-14 际华三五三七有限责任公司 防白变型鞋面布与围条橡胶的高效粘合物及其制作方法与应用
CN114539682A (zh) * 2022-03-30 2022-05-27 盘锦大奔金蚁橡胶制品有限公司 一种氯锌阻燃耐高温输送带及制备方法
CN114770999A (zh) * 2022-04-29 2022-07-22 陕西特种橡胶制品有限公司 钠冷堆主设备通道门用c型密封圈的制备方法
CN114770999B (zh) * 2022-04-29 2024-04-26 陕西特种橡胶制品有限公司 钠冷堆主设备通道门用c型密封圈的制备方法
CN115709618A (zh) * 2022-11-23 2023-02-24 广饶吉星轮胎有限公司 一种轮胎及轮胎制造方法
CN116120749A (zh) * 2023-02-27 2023-05-16 昆山力普电子橡胶有限公司 一种用于表带氟硅胶材料及其制备方法
CN116120749B (zh) * 2023-02-27 2023-12-05 昆山力普电子橡胶有限公司 一种用于表带氟硅胶材料及其制备方法
CN117384431A (zh) * 2023-12-08 2024-01-12 衡水唯禹防水工程技术有限公司 一种缓膨型遇水膨胀橡胶材料及其制备方法
CN117384431B (zh) * 2023-12-08 2024-02-13 衡水唯禹防水工程技术有限公司 一种缓膨型遇水膨胀橡胶材料及其制备方法
CN117757163A (zh) * 2023-12-22 2024-03-26 济南天齐特种平带有限公司 一种高速织机用橡胶卷取材料的制备方法
CN117757163B (zh) * 2023-12-22 2024-07-02 济南天齐特种平带有限公司 一种高速织机用橡胶卷取材料的制备方法
CN117887152A (zh) * 2024-03-14 2024-04-16 潍坊顺福昌橡塑有限公司 一种轮胎带束层橡胶组合物及其制备方法

Similar Documents

Publication Publication Date Title
WO2018130195A1 (zh) 橡胶组合物及加工方法和应用,及该应用的生产方法
WO2018130194A1 (zh) 橡胶组合物及加工方法,及应用其的橡胶制品和生产方法
CN108314851B (zh) 橡胶组合物及加工方法和应用,及该应用的生产方法
CN108314850B (zh) 橡胶组合物及加工方法,及应用其的橡胶制品和生产方法
WO2018130197A1 (zh) 橡胶组合物及加工方法与应用,及生产阻燃制品的方法
JP7118450B2 (ja) ゴム組成物および加工方法、並びにそれを用いたゴムベルト、ゴムローラおよび製造方法
JP7250341B2 (ja) ゴム組成物、それを用いた老化防止ゴム製品および製造方法
WO2020011004A1 (zh) 一种耐老化的极性橡胶组合物及加工方法与应用
WO2018130188A1 (zh) 橡胶组合物及加工方法,及应用其的胶带、胶辊及生产方法
WO2018130196A1 (zh) 橡胶组合物,及在发泡制品的应用和生产方法
WO2020011005A1 (zh) 含氯橡胶组合物及其应用和制备方法
JP7157464B2 (ja) ゴム組成物および加工方法、並びにそれを用いたゴムホースおよび製造方法
WO2018130199A1 (zh) 橡胶组合物及加工方法,及应用其的胶管和生产方法
CN108299743B (zh) 橡胶组合物及加工方法与应用,及生产阻燃制品的方法
WO2018130189A1 (zh) 橡胶组合物及加工方法,及应用其的输送带和生产方法
WO2018130192A1 (zh) 橡胶组合物,及应用其的耐老化橡胶制品和生产方法
WO2018130187A1 (zh) 橡胶组合物及加工方法与应用,及生产高强度橡胶制品的方法
CN108299739B (zh) 橡胶组合物及加工方法,及应用其的输送带和生产方法
WO2018130198A1 (zh) 橡胶组合物及加工方法,及应用其的耐制动液制品及生产方法
CN108314848B (zh) 橡胶组合物及加工方法,及应用其的耐制动液制品及生产方法
WO2018130191A1 (zh) 光交联的橡胶组合物及应用,与该应用的生产方法
WO2018130186A1 (zh) 橡胶组合物及加工方法,及应用其的密封件及生产方法
CN108299740B (zh) 橡胶组合物及加工方法,及应用其的高强度制品和生产方法
CN108314852B (zh) 橡胶组合物及加工方法与应用,及生产高强度橡胶制品的方法
WO2018130193A1 (zh) 橡胶组合物及加工方法与应用,及包含其的电容器用密封件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18738446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18738446

Country of ref document: EP

Kind code of ref document: A1