WO2018129925A1 - 仪表校验装置及使用其的校准方法 - Google Patents

仪表校验装置及使用其的校准方法 Download PDF

Info

Publication number
WO2018129925A1
WO2018129925A1 PCT/CN2017/098458 CN2017098458W WO2018129925A1 WO 2018129925 A1 WO2018129925 A1 WO 2018129925A1 CN 2017098458 W CN2017098458 W CN 2017098458W WO 2018129925 A1 WO2018129925 A1 WO 2018129925A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical quantity
unit
value
meter
verification device
Prior art date
Application number
PCT/CN2017/098458
Other languages
English (en)
French (fr)
Inventor
赵士春
董立军
刘宝琦
Original Assignee
北京康斯特仪表科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710017182.7A external-priority patent/CN106767989B/zh
Priority claimed from CN201720028892.5U external-priority patent/CN206583473U/zh
Application filed by 北京康斯特仪表科技股份有限公司 filed Critical 北京康斯特仪表科技股份有限公司
Priority to EP17891430.5A priority Critical patent/EP3569988B1/en
Priority to US16/476,473 priority patent/US11262229B2/en
Publication of WO2018129925A1 publication Critical patent/WO2018129925A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0047Organic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/127Calibration; base line adjustment; drift compensation

Definitions

  • the invention belongs to the technical field of industrial instrument and instrument detection and calibration, and particularly relates to a meter calibration device and a calibration method using the same.
  • calibration In the actual application of the industrial site, in order to ensure the accuracy of the instrument, it is usually necessary to test and calibrate the measured value or indication provided by the instrument device (referred to as "calibration", calibration).
  • the basic method of detecting calibration is to directly compare the measured value or indication value measured by the meter device with the standard value to determine whether the measured value of the meter device is accurate, and then perform calibration.
  • a univariate meter means that after a measured value of a single physical quantity is connected to the meter, the measured value of the measured physical quantity is directly displayed on the meter.
  • multivariate meters are required for measurement.
  • Direct comparison calibration is to simultaneously input multiple physical quantities to the instrument under test and a dedicated calibration device for comparison calibration.
  • multiple physical quantities pressure, temperature, electrical signals, etc.
  • the instrument under test and the dedicated calibration device use the built-in calculation logic to process the physical quantity and give the final test result, for example :
  • the flow calculator calculates flow information based on pressure (pressure difference), temperature, liquid density, orifice diameter, and so on.
  • the traditional direct comparison calibration method can only use the calibration device dedicated to the field in a certain field.
  • a flow-specific calibration device is used in the flow field
  • a valve-specific calibration device is used in testing the valve opening
  • a dedicated methane concentration calibration device is used in testing the methane concentration.
  • Users need to have a dedicated calibration device for each device, which not only brings inconvenience to the user, but also increases the cost of the user.
  • multiple dedicated calibration devices are not convenient to carry to the site at the same time or can not be used in the field, so many instruments are calibrated in the laboratory.
  • the multi-variable independent calibration is performed by simultaneously inputting a plurality of physical quantities to the instrument to be tested and a dedicated calibration device, and respectively calibrating the physical quantities of the input by the instrument to be tested and the calibration device. Since the instrument under test has to perform complex calculation on the input physical quantity and output the final measurement result, Although multivariate independent calibration can evaluate the error of each physical quantity, it cannot evaluate the overall error of the measured instrument (different physical quantities occupy different weights in the calculation), and must be done indirectly (manually) by borrowing an external computing system. However, it is difficult for an external computing system to implement a real-time accurate multivariate calculation process, which causes great inconvenience to the calibration process.
  • the present invention has been made to solve the above technical problems, and an object thereof is to provide a meter calibration device and a calibration method which are convenient, versatile, and suitable for multi-variable real-time measurement and calibration of instrument devices.
  • the present invention provides a meter verification apparatus including: a physical quantity input/output unit capable of inputting and outputting at least one first physical quantity; and a physical quantity measuring unit that measures at least one input from the physical quantity input/output unit a value of the first physical quantity; a physical quantity configuration unit that generates, by operation, a value of the at least one second physical quantity from a value of the at least one first physical quantity, or generates at least one part from a value of the at least one second physical quantity a value of a physical quantity; a display unit that displays at least a name and a value of the second physical quantity; a human-machine interaction unit configured to operate the meter verification device by the user; and a storage unit that stores the meter verification device Data required; and a control unit that controls such that the physical quantity to be measured is a second physical quantity and the meter verification apparatus is not required to generate and output a standard value of the at least one first physical quantity to achieve the measurement In the case where the first mode is performed,
  • the first physical quantity in the present invention refers to a physical quantity that the meter can directly detect or generate, such as pressure, temperature, humidity, voltage, current, and the like.
  • the second physical quantity in the present invention refers to a physical quantity that the meter cannot directly detect or generate, based on the first physical quantity, for example, by prescribed mathematics.
  • the physical quantity converted by the formula such as (meteorological) altitude value, air leakage per day and night, volume flow, methane concentration, valve opening, etc.
  • the present invention provides a calibration method for calibrating a calibrated meter, and calibrating the calibrated meter using the meter verification device, including: a physical quantity name indicating step, the user indicating a name of a physical quantity to be measured by the meter to be calibrated; a mode indication or judging step, wherein the user indicates the working mode or the meter checking device determines whether it is necessary to output a standard value of the at least one first physical quantity to perform calibration; the first mode performing step, specifying the first mode or determining Performing the first mode when it is not necessary to output a standard value of at least one first physical quantity; and performing a second mode execution step, when the second mode is specified or when it is determined that a standard value of at least one first physical quantity needs to be output Two modes.
  • Another object of the present invention is to provide a meter verification device suitable for real-time calibration of multivariables in the field, which is provided with a hand-held casing, and further includes the following electrically connected units: a physical quantity input and output unit, which is mounted on the casing, Capable of inputting and outputting at least one first physical quantity; the physical quantity inputting and outputting unit comprises at least one independent pressure input and output interface, at least one voltage current input/output interface, a temperature measuring interface and a humidity measuring interface; and a physical quantity measuring unit, the measuring quantity is The physical quantity inputting and outputting unit inputs a value of at least one first physical quantity; the physical quantity measuring unit includes a pressure measuring module, a voltage current measuring module, a temperature measuring module, and a humidity measuring module respectively electrically connected to each interface of the physical quantity inputting and output unit a physical quantity configuration unit that generates, by operation, a value of at least one second physical quantity from a value of the at least one first physical quantity, or generates a value of at least one
  • the above meter calibration device for on-site multivariable real-time measurement calibration is a gas pipeline interface.
  • the voltage current input/output interface is a terminal for electrical connection or a plug socket.
  • the first physical quantity refers to a physical quantity that the meter can directly detect or generate, including pressure, temperature, humidity, voltage, and current;
  • the second physical quantity refers to a meteorological height value, a daily air leakage amount, a volume flow rate, a methane concentration, and Valve opening.
  • the meter verification device the first physical quantity is pressure
  • the physical quantity measurement unit is a pressure measurement module that measures pressure.
  • the standard pressure A standard pressure supply unit that is connected to the display unit and displays and outputs the standard pressure supplied thereto to the outside.
  • the invention integrates a plurality of measurement modules, a physical quantity configuration unit capable of physical quantity conversion, and an input and output unit of physical quantities such as pressure and current, and can visually present the value of the final physical quantity in the meter verification device, and perform multivariate instrumentation. It is not necessary to carry out cumbersome manual conversion at each verification point during measurement and calibration, which is convenient and easy to use and highly efficient.
  • the invention integrates multiple interfaces and a plurality of unit modules on or in the hand-held casing, and is multi-purpose, easy to carry, convenient and easy to use, and suitable for field use.
  • the meter verification device of the invention can measure and calibrate various instruments or multi-variable meters with a universal instrument, and has strong versatility, can expand the application field of the general-purpose instrument and reduce the technical effect of the cost required for calibration.
  • the meter verification device of the invention can measure and calibrate multi-variable meters in real time, and has the technical effects of real-time calculation, real-time adjustment and real-time calibration.
  • the meter verification device of the invention adds a communication unit, so that it has its own remote communication function, eliminating the intermediate communication medium, and realizing intelligent interaction with the remote database through the network.
  • Fig. 1A is a view showing the external configuration of the meter verification device of the present invention.
  • Fig. 1B is a block diagram showing an overall configuration of a calibration apparatus according to an embodiment of the present invention.
  • Fig. 1C is a block diagram showing the overall configuration of a calibration apparatus according to another embodiment of the present invention.
  • Fig. 1D is a block diagram showing the overall configuration of a calibration apparatus according to an extended embodiment of the present invention.
  • FIG. 2 is a view showing an example of a formula editing interface in the human-machine interaction unit 70 according to the embodiment of the present invention.
  • FIG 3 is a schematic view showing the overall flow of a calibration method according to an embodiment of the present invention.
  • FIG. 4 is a flow chart showing measurement mode calibration in a calibration method according to an embodiment of the present invention.
  • Fig. 5 is a schematic diagram showing output mode calibration in a calibration method according to an embodiment of the present invention.
  • meter verification device and calibration method of the present invention will be described in detail below with reference to the accompanying drawings and specific embodiments. Further, the meter verification device and the calibration method of the present invention are not limited to the following embodiments, and various modifications can be made. In all embodiments, the same structural elements are denoted by the same reference numerals. In addition, the dimensional ratio of the drawings is for convenience of explanation, and is different from the actual ratio, and a part of the structure may be omitted from the drawings.
  • a meter verification apparatus 100 includes: a physical quantity input/output unit 10, a physical quantity measurement unit 20, a physical quantity configuration unit 30, a display unit 40, a control unit 60, a human-machine interaction unit 70, and a storage unit. 80.
  • the physical quantity input-output unit 10 is capable of inputting and outputting at least one first physical quantity.
  • the first physical quantity refers to a physical quantity that the meter can directly detect or generate, such as pressure, temperature, humidity, voltage, current, and the like.
  • the second physical quantity in the present invention refers to a physical quantity that the meter cannot directly detect or generate, based on the first physical quantity, for example, a physical quantity converted by a predetermined mathematical formula, such as (meteorological) altitude value, air leakage per day and night, volume Flow rate, methane concentration, valve opening, etc.
  • the meter verification device 100 includes a hand-held casing, and the physical quantity input-output unit 10 is mounted on the casing, and may include, for example, at least one pressure output interface 11 (for example, a gas pipeline interface). Output for pressure (connecting the calibrated meter), at least one voltage-current interface 14 (eg terminal for electrical connection or plug socket) for input or output of current or voltage, temperature interface 13 for mounting the temperature sensor, for mounting The humidity interface 14 of the humidity sensor, etc.; the pressure check also includes a standard pressure port 15 for mounting a standard pressure gauge.
  • the pressure output interface 11 for example, a gas pipeline interface
  • Output for pressure connecting the calibrated meter
  • at least one voltage-current interface 14 eg terminal for electrical connection or plug socket
  • temperature interface 13 for mounting the temperature sensor, for mounting The humidity interface 14 of the humidity sensor, etc.
  • the pressure check also includes a standard pressure port 15 for mounting a standard pressure gauge.
  • the physical quantity measuring unit 20 measures at least one first object input from the physical quantity input unit 10 The value of the measure.
  • the physical quantity measuring unit 20 may be mounted in the casing, for example, may include a pressure module 21 that measures pressure, a standard pressure module 25 that provides standard pressure, a voltage current module 24 that measures voltage and current, a temperature module 23 that measures temperature, and a humidity measurement. Humidity module 22 and so on.
  • the pressure module 21 is connected to the pressure port 11
  • the standard pressure module 25 is connected to the standard pressure port 15 , and is electrically connected to the display unit 40 .
  • the voltage current module 24 is connected to the voltage current interface 14 , and the temperature module 23 and the temperature interface 13 are connected.
  • the signal connection, the humidity module 22 is signally coupled to the humidity measurement interface 12.
  • the physical quantity configuration unit 30 may be mounted in the casing, and generate, by operation, a standard value of at least one second physical quantity from the value of the at least one first physical quantity, or generate a standard value of the at least one first physical quantity from the value of the at least one second physical quantity. .
  • the first physical quantity and the second physical quantity typically have a functional relationship.
  • a functional relationship shown by Equation 1 between the air pressure and the (meteorological) height value which is referred to as a conversion formula in the present invention.
  • H the potential height (m) above a certain mean sea level (below);
  • T 0 atmospheric thermodynamic temperature at an average sea level (288.15 K);
  • the conversion formula includes other physical quantities (such as atmospheric thermodynamic temperature) and constants (such as gravitational acceleration). Since the atmospheric thermodynamic temperature and the like at the mean sea level are relatively stable physical quantities, they appear as a fixed value in the conversion formula as constants such as gravitational acceleration, and they are referred to as environmental parameters and the like in the present invention.
  • the first physical quantity that can be obtained from the measurement by the conversion formula based on the function relationship The atmospheric pressure is generated as a (meteorological) height value of the second physical quantity.
  • the physical quantity configuration unit 30 may perform the above operation to convert at least one first physical quantity into at least one second physical quantity or convert at least one second physical quantity into at least one first, for example, based on a formula representing a relationship between the first physical quantity and the second physical quantity.
  • the conversion formula of the first physical quantity and the second physical quantity may be directly input from the outside by the user using the human-machine interaction unit 70 described below, or may be stored in the storage unit 80 described below in advance.
  • the relationship between the first physical quantity and the second physical quantity is not limited to the functional relationship as shown above, and may be other relationships such as a table of numbers. Such a table of numbers can be stored in the storage unit 80 in advance.
  • the physical quantity configuration unit 30 can select a corresponding formula to perform an operation or convert a first physical quantity into a second physical quantity using a number table or the like, or convert the second physical quantity into a first physical quantity.
  • the display unit 40 can display at least the name and value of the second physical quantity based on the control of the control unit 60, and can also display the name and value of the first physical quantity, and the like.
  • the display unit 40 is mounted on the casing, and may be, for example, a commonly used display such as a liquid crystal display or an organic EL display.
  • An important feature of the present invention is that the meter verification device 100 includes the physical quantity configuration unit 30, and thus the display unit 40 is also capable of displaying a formula representing the relationship between the first physical quantity and the second physical quantity in the preferred embodiment of the present invention, and as follows It can also be used for the human-computer interaction unit 70 to input and edit formulas.
  • the control unit 60 transmits an instruction to the physical quantity configuring unit 30, the physical quantity measuring unit 20, the physical quantity input/output unit 10, and the like to control them.
  • Control unit 60 may include a microprocessor, digital signal processor, or other hardware processor.
  • the human-machine interaction unit 70 is used by the user to operate the meter verification device 100, such as indicating a physical quantity to be measured, indicating the start of measurement, and the like.
  • the meter verification device 100 includes a physical quantity configuration unit 30, and thus in the preferred embodiment of the present invention, the human-machine interaction unit 70 includes a formula editor that can input and edit a conversion formula of the first physical quantity and the second physical quantity. interface. Users can use the formula to edit the interface, create or edit the corresponding conversion formula, or select a formula that was previously stored or edited.
  • the human-machine interaction unit 70 may be a touch panel disposed on the display unit 40, at which time the user can input and edit a formula through, for example, the formula editing interface shown in FIG. 2.
  • the storage unit 80 is capable of storing at least a conversion formula of the first physical quantity and the second physical quantity input or edited via the human-machine interaction unit 70.
  • the storage unit 80 may also store the first in advance.
  • the operating state and environmental parameters and the like of the meter being calibrated may also be stored in the storage unit 80.
  • Storage unit 80 can be any known volatile and/or non-volatile memory that stores data and/or instructions.
  • the storage unit 80 may include, for example, a read only memory (ROM), a random access memory (RAM), a flash memory, a magnetic storage medium, an optical disk, an erasable programmable read only memory (EPROM), and a programmable read only memory (PROM).
  • ROM read only memory
  • RAM random access memory
  • EPROM erasable programmable read only memory
  • PROM programmable read only memory
  • the storage unit 80 can be non-mobile, mobile, or a combination of both.
  • the meter verification device can be expanded on the basis of FIG. 1B and FIG. 1C, and FIG. 1D shows an extended implementation manner based on FIG. 1B (the same can be extended on the basis of FIG. 1C), and the control unit 60 is also connected with
  • the communication unit 50 is connected to the remote database via a network.
  • the communication unit 50 completes the data interaction between the system and the remote database and has a remote communication function.
  • the implementation unit 50 may be a communication program integrated in the control unit 60.
  • the control unit is provided with a network interface to access the network, or may be a separate hardware module.
  • the communication unit 50 has a connection plug.
  • connection plug is used for coupling with the control unit to realize the mechanical connection and the electrical connection between the two, the network interface is connected to the network, and then accesses the database through the network, wherein the network is an Internet-based industrial Ethernet, It can also be another wireless network that supports Internet connection and can implement remote communication functions.
  • This extended embodiment integrates the communication unit 50 internally, so that the meter has its own remote communication function, eliminating the intermediate communication medium, and connecting to the remote database by simple setting as long as it accesses the network it supports.
  • the pre-stored basic information of the instrument to be calibrated such as the range, accuracy, ID number and manufacturer's information of the pressure gauge to be inspected
  • the historical calibration data of the instrument to be calibrated including the variable type and all calibration points
  • the indication value, indication error, etc.) and the calibration scheme including the automatic calibration procedure for performing the calibration operation, thereby automatically generating the calibration data of the variables of the calibrated instrument, and uploading the calibration data to the remote database in real time through the network.
  • the meter verification device can be further extended.
  • the control unit 60 is further connected with a photographing unit 90.
  • the photographing unit 90 is connected to the camera 91 mounted on the casing, and is implanted in the photographing unit 90.
  • Image recognition program The camera 91 is facing the front appearance of the calibration instrument, and can capture the data, model information and appearance features displayed on the dial of the instrument to be calibrated, and the captured photos are taken by the image recognition program in the shooting unit 90.
  • the image recognition is performed to obtain the model of the instrument to be calibrated and its basic information, such as the range, accuracy, number, and manufacturer of the meter, and then control the communication unit 50 to transmit to the remote database through the control unit 60.
  • control unit 60 performs control such that when the physical quantity to be measured is the second physical quantity and the meter verification apparatus 100 is not required to generate and output a standard value of at least one first physical quantity to implement the measurement, the execution is performed.
  • the second mode in a case where the physical quantity to be measured is the second physical quantity and the meter verification apparatus 100 is required to generate and output a standard value of at least one first physical quantity to implement the measurement, the second mode is performed.
  • Whether the standard value of the at least one first physical quantity needs to be output may be specified by the user via the human-machine interaction unit, or may be determined by the control unit 60, for example, according to the name or physical quantity input/output unit 10 of the second physical quantity indicated by the user.
  • the working state (for example, when there is no input of the first physical quantity in the meter verification device 100), the control unit 60 determines that it is necessary to output a standard value of at least one first physical quantity to complete the measurement, and the standard value of the at least one first physical quantity It can be obtained by performing an inverse function operation on the standard value of the second physical quantity set by the user.
  • the physical quantity measuring unit 20 is caused to measure the value of the at least one first physical quantity input from the physical quantity input-output unit 10 and related to the second physical quantity, so that the physical quantity configuring unit 30 receives the at least one first physical quantity from the input.
  • the value of the second physical quantity is generated, and the display unit 40 displays the name and standard value of the generated second physical quantity.
  • the physical quantity arranging unit 30 In the second mode, the physical quantity arranging unit 30 generates and outputs a standard value of the first physical quantity from the set standard value of the at least one second physical quantity, and causes the display unit 40 to display the name of the set second physical quantity. And standard values.
  • the set standard value of the at least one second physical quantity may be appropriately set by the user according to the measured value of the physical quantity to be measured (for example, the indication value of the calibrated meter), or may be automatically determined by the meter verification apparatus 100. Generated.
  • the first mode and the second mode can be similarly executed when the measured physical quantity is the first physical quantity. At this time, the conversion calculation of the first physical quantity and the second physical quantity may be omitted. This is self-evident.
  • This calibration method includes measurement mode calibration and output mode calibration.
  • the measurement mode calibration is performed in a case where the physical quantity to be measured by the meter to be calibrated is the second physical quantity and the standard value of at least one first physical quantity is not required to be generated and output to achieve calibration.
  • the output mode calibration is performed in a case where the physical quantity to be measured by the device to be calibrated is the second physical quantity and the standard value of at least one first physical quantity needs to be generated and output to be calibrated.
  • the multivariable meter is described as a calibrated meter, but the calibrated meter may also be a univariate meter. Further, when the meter to be calibrated is calibrated using the meter verification device 100 of the present invention, it is necessary to properly connect the meter verification device 100 to the meter to be calibrated. Since such a connection belongs to the prior art, a detailed description is omitted.
  • Fig. 3 is a schematic view showing the overall flow of the calibration method of the present invention.
  • the name of the second physical quantity to be measured by the meter to be calibrated is indicated by the user in step S1.
  • step S2 the operation mode of the meter verification device 100 is instructed by the user or automatically determined by the meter verification device 100 according to, for example, the name of the second physical quantity, whether it is necessary to generate and output a standard value of at least one first physical quantity.
  • the calibration when the measurement mode is indicated or determined to be that it is not necessary to output the standard value of the at least one first physical quantity, proceeds to step S3, where measurement mode calibration is started under the control of the control unit 60.
  • step S4 When the output mode is instructed in step S2 or it is determined that it is necessary to output the standard value of at least one first physical quantity, the process proceeds to step S4, at which the output mode calibration is started under the control of the control unit 60. After the end of any of the measurement mode calibration and the output mode calibration, the user instructs whether to end the calibration in step S5, the calibration ends in the case where the calibration is ended, and returns to step S1 to wait for the next time of the user if the calibration needs to be continued. Instructions.
  • the name of the second physical quantity to be measured by the meter to be calibrated is first indicated by the user, and then the user indicates or is automatically determined by the meter verification apparatus 100 whether it is necessary to generate and output at least one.
  • the case of the standard value of the first physical quantity but the present invention is not limited to the above embodiment. It may also be that after the user indicates the measurement mode calibration or the output mode calibration, the user then indicates the name of the second physical quantity to be measured by the instrument to be calibrated. In this case, it may also be after the user enters the measurement mode calibration or the output mode calibration, and then the user indicates the name of the second physical quantity to be measured by the instrument to be calibrated.
  • step S31 the conversion formula containing the name of the second physical quantity is searched in the storage unit 80 according to the name of the second physical quantity indicated by the user in the above step S1, and the search result and the search result are performed in step S32.
  • the formula editing interface of the human-machine interaction unit 70 is displayed on the display unit 40. At this time, if at least one conversion formula is stored in the storage unit, all conversion formulas are displayed on the formula editing interface for the user to select and edit. If no conversion formula is found, the formula editing interface prompts the user to enter a conversion formula.
  • step S33 the user selects, edits, or inputs a conversion formula through the formula editing interface, determines at least one first physical quantity corresponding to the second physical quantity to be input, and gives a confirmation indication after completion.
  • the user confirms the conversion formula to be used and at least one first physical quantity to be input the value of the at least one first physical quantity is input to the meter verification device 100 via the physical quantity input-output unit 10 in step S34.
  • step S35 the physical quantity measuring unit 20 is caused to measure the value of the at least one first physical quantity input from the physical quantity input-output unit 10 and related to the second physical quantity, and input the value of the measured at least one first physical quantity to the physical quantity.
  • Configuration unit 30 the physical quantity measuring unit 20 is caused to measure the value of the at least one first physical quantity input from the physical quantity input-output unit 10 and related to the second physical quantity, and input the value of the measured at least one first physical quantity to the physical quantity.
  • step S36 the physical quantity configuration unit 30 generates a value X of the second physical quantity from the measured value of the first physical quantity based on the conversion formula determined in step S33.
  • step S37 the generated value X of the second physical quantity (as the second physical quantity standard value for calibration) is displayed on the display unit 40 together with the name of the second physical quantity.
  • the user compares with the measured value R 0 of the second physical quantity measured by the calibrated meter to obtain a difference between the two. Based on the results of this comparison, calibration of the calibrated meter is performed.
  • the actual physical quantity (pressure, temperature, electrical signal, etc.) is input to the meter verification device 100 as a calibration device, and the corresponding multivariate conversion formula (for example, the function relationship created by the formula editing interface) is selected.
  • the physical quantity configuration unit calculates the standard value of the physical quantity measured by the measured instrument in real time according to the change of the input physical quantity, and displays the standard value in real time. Thereby, the real-time output value of the instrument to be tested can be compared with the standard value of the calibration device, thereby realizing the measurement mode calibration.
  • the calibration method of the present invention visually presents the value of the final physical quantity, and no complicated manual conversion is required at each verification point, which is convenient and easy to use, and has high efficiency.
  • the measurement and calibration of a plurality of multivariable meters can be performed by a general-purpose instrument, and the versatility is strong, and the technical effect of expanding the application field of the general-purpose instrument and reducing the cost required for calibration can be achieved.
  • Fig. 5 is a schematic diagram showing a calibration method in the output mode (i.e., detailed steps in step S4 of Fig. 3).
  • step S41 based on the name of the second physical quantity indicated by the user in the above step S1, the storage unit 80 searches for a conversion formula containing the name of the second physical quantity, and in step S42, the search result and The formula editing interface of the human-machine interaction unit 70 is displayed on the display unit 40.
  • the formula editing interface prompts the user to enter a conversion formula.
  • step S43 the user selects, edits, or inputs a conversion formula through the formula editing interface, determines at least one first physical quantity corresponding to the second physical quantity to be input, and gives a confirmation indication after completion.
  • step S44 the standard value R of the at least one second physical quantity is set by the user according to the measurement value range of the second physical quantity to be measured by the calibrated meter, or the meter verification apparatus 100 is automatically generated to generate the standard value R.
  • step S45 the control unit 60 causes the physical quantity configuration unit 30 to automatically generate from the standard value of at least one second physical quantity set by the user in step S44 or by the meter verification apparatus 100 based on the conversion formula confirmed in step S43.
  • the standard value R of the at least one second physical quantity generates a standard value of the first physical quantity.
  • step S46 the generated standard value of the first physical quantity is output to the calibrated meter so that the second physical quantity can be measured.
  • step S47 the standard value R of at least one second physical quantity set by the user or automatically generated by the meter verification device 100 is displayed on the display unit 40, and the user adjusts the calibrated meter based on the standard value of the first physical quantity.
  • the measured value R 0 of the measured second physical quantity is compared with the set standard value R of the second physical quantity to obtain a difference between the two. Based on the results of this comparison, calibration of the calibrated meter is performed.
  • a corresponding multivariate conversion formula for example, a functional relationship established by inverse function editing, is selected, and a certain part of the meter verification device 100 as a calibration device is selected.
  • a standard quantity output of physical quantity is connected to the input end of the meter.
  • the real-time output value of the measured instrument is compared with the nominal value, realizing the real-time measurement and calibration of the output value of the multivariable instrument— - Output mode calibration (for example, by comparing the standard pressure output value provided by the meter verification device 100 as a calibration device, comparing the real-time output value of the instrument to be measured with the standard value of the calibration device, and realizing the output mode Real-time measurement calibration).
  • Output mode calibration based on the measurement mode calibration method, implements a multivariate standard A quasi-device that not only performs multivariate standard measurements, but is also insufficient for multivariate standard output.
  • the multivariate standard measurement is obtained by multivariate standard measurement, and the multivariate standard output value is obtained by the adjustment control of the multivariate standard output.
  • the multi-variable standard output can be adjusted in real time, and the real-time calculation and calibration can be performed, so that the calibration method proposed by the present invention has the effects of real-time calculation, real-time adjustment, and real-time calibration as compared with the prior art.
  • the output mode calibration method visually presents the value of the final physical quantity, and no complicated manual conversion is required at each verification point, which is convenient, easy to use, and highly efficient.
  • the measurement and calibration of a plurality of meters or multi-variable meters can be performed by a universal meter verification device, which is highly versatile, and has the technical effect of being able to expand the application field of the universal meter verification device and reducing the cost required for calibration.
  • the pressure can be selected as the main variable.
  • the first physical quantity includes pressure
  • the physical quantity measuring unit 20 includes a pressure module 21 that measures pressure.
  • the meter verification device 100 further includes a standard pressure module 25 that provides a standard pressure
  • the standard pressure module 25 is connected to the standard pressure port 15 of the physical quantity input and output unit 10 (see FIG. 1C), and is electrically connected to the display unit 40, The standard pressure provided is displayed and output to the outside through the standard pressure port 15.
  • the standard pressure module 25 may include a pressure controller, a pressure generator, and a pressure line.
  • the pressure controller controls the pressure generated by the pressure generating unit based on the pressure in the pressure pipe measured by the pressure measuring module.
  • the physical quantity configuration unit 30 outputs the pressure to the external test equipment/system via the pressure pipe based on the pressure corresponding to the standard value (target pressure value) of the second physical quantity generated by the set pressure value.
  • the pressure generator described above may be disposed in the meter verification device 100 or external to the meter verification device 100.
  • the temperature module 23, the humidity module 22, and the current voltage module 24 may further include an on-off measurement module and a current output module.
  • the pressure module 21 and these modules may be external modules of the system, and are connected to the system through a flight line.
  • the system provides at least two air interface (A/B), each of which can be connected with any pressure or temperature measurement module, so that two pressure measurement, two temperature measurement and one pressure can be provided according to the needs of the system.
  • One-way temperature measurement mode the system preferably provides multi-channel air interface (A/B), each interface can be connected to any measurement module of the required measurement variable, so that Pressure measurement, temperature measurement, humidity measurement, current or voltage measurement can be provided according to the needs of the system.
  • Embodiment 1 Differential Pressure Flowmeter Application Example (Measurement Mode Calibration)
  • the differential pressure flowmeter is based on Bernoulli's equation and fluid continuity equation.
  • the throttle such as standard orifice, standard nozzle, long diameter nozzle, classic venturi mouth, Wenqiu A nozzle, etc.
  • a pressure difference is generated before and after it, and the differential pressure value is proportional to the square of the flow rate.
  • the standard orifice plate throttling device has the most extensive application due to its simple structure, low manufacturing cost, the most research and standardization.
  • the orifice flowmeter is calibrated by the meter verification device 100 of the present invention will be described.
  • the volume flow rate Q f satisfies Equation 2 between the differential pressure value ⁇ p before and after the orifice plate.
  • d inner diameter of the orifice plate under working conditions, mm;
  • swellable coefficient, dimensionless
  • ⁇ p differential pressure value before and after the orifice plate, Pa;
  • ⁇ 1 density of fluid under working conditions, kg/m 3 .
  • the differential pressure type flowmeter as the instrument to be measured is calibrated using the meter verification device 100.
  • ⁇ p differential pressure value before and after the orifice plate
  • Q f condition
  • the lower volume flow rate is the second physical quantity, and the remaining physical quantities can be obtained according to environmental parameters or the like, and may be stored in the meter verification device 100 in advance or may be input in the formula editing interface. For example, it can be the following data.
  • the meter calibration device 100 is connected to the differential pressure flowmeter as the instrument to be tested by a well-known pipeline. Thereafter, the user indicates the volume flow rate Q as the name of the second physical quantity to be measured by the meter to be calibrated, and the meter verification apparatus 100 performs measurement mode calibration according to the flowcharts shown in FIGS. 3 and 4, and when the fluid flows, the meter is calibrated.
  • the inspection device 100 detects the pressure before and after the orifice plate, and obtains the value of Q f as the second physical quantity by the above formula 2, and displays the numerical value on the display unit 40 for comparison with the measured value of the differential pressure flowmeter. Determine if there is an error in the differential pressure flow meter for calibration.
  • the calibration of the differential pressure flow meter can be performed in real time using the meter verification device 100 as a general-purpose meter, and real-time calculation can be realized not only in real-time calibration but also in the special calibration.
  • Flow meters also have the technical effect of being able to expand the field of application of general-purpose meters and reduce the cost of calibration.
  • the present invention is not limited to the above embodiment.
  • the meter calibration device 100 of the present invention can also directly measure the flow rate as a differential pressure flowmeter. Since it is possible to measure the flow rate instead of the dedicated differential pressure flowmeter, it has the technical effect of being able to expand the application field of the general-purpose instrument and reduce the cost required for the measurement.
  • Example 2 Application example of optical interference type methane concentration measuring device ((pressure) output mode calibration)
  • the optical interferometric methane analyzer is a portable instrument that quantitatively analyzes a gas component by measuring a change in refractive index of a gas.
  • the measurement range mainly includes (0 to 10)% CH 4 and (0 to 100)% CH 4 . (0 ⁇ 10)
  • the %CH 4 analyzer is used to measure the volume fraction of methane in the underground coal mine below 10% CH 4 .
  • the (0-100)%CH4 analyzer is used to measure the volume fraction of methane in the coal underground coal well above 10% CH4.
  • the measuring device is mainly composed of a circuit, an optical path, a gas path and the like.
  • the tester is tested using a pressure method.
  • the methane chamber and the air chamber of the measuring device are filled with air, the refractive index and the optical path are the same, and the interference fringes in the measuring device do not move.
  • the refractive index changes due to the change of the gas composition of the methane chamber, and the optical path of the methane chamber also changes, and the interference fringes move.
  • the amount of movement of the interference fringes is proportional to the methane volume fraction. By measuring this amount of movement, the methane volume fraction of the air can be measured.
  • the gas refractive index and optical path of the methane chamber also change when the pressure of the methane chamber is changed, and the interference fringes also move.
  • the amount of movement of the interference fringes is proportional to the pressure applied to the methane chamber.
  • the methane volume fraction and pressure causing the same amount of interference fringe movement are in accordance with the conversion relationship of Equation 3.
  • the methane concentration measuring device as the instrument to be measured is calibrated using the meter verification device 100.
  • x the methane volume fraction corresponding to the pressure P
  • P the first physical quantity which is the pressure value to be output which is inversely pushed out by the formula 3
  • t ambient temperature
  • the above formula 3 may be stored in advance in the meter verification device 100 or may be edited via the formula editing interface of the human-machine interaction unit 60.
  • the output mode calibration is performed in accordance with the flowcharts shown in FIGS. 3 and 5.
  • the user can manually input the value %CH 4 (percentage value) of the methane volume fraction x, and the meter verification device 100 automatically calculates P (pressure value) from x according to the above formula 3, and starts pressure output (automatic control).
  • P pressure value
  • the measured value or indication value of the meter to be calibrated is compared with the standard value output by the meter verification device 100, and then the error is evaluated on the instrument to be tested.
  • Error calculation formula: error (value expressed by the instrument) - (standard value).
  • error (value expressed by the instrument) - (standard value).
  • test data obtained by testing the optical interference type methane analyzer at an ambient temperature of 20 ° C is shown in Table 1 below.
  • the methane volume fraction (% CH 4 ) in the standard value is a value (second physical quantity) set by the meter verification device 100
  • the pressure (kPa) is a pressure value calculated by %CH 4 and a formula. , that is, the output value of the instrument to be tested
  • the indication value of the instrument to be tested (%CH 4 ) is the value of the instrument to be measured when the calculated pressure (kPa) is supplied to the instrument under test by the meter verification device 100
  • the indication error is the percentage of the difference between the standard value of the set methane volume fraction (%CH 4 ) and the indication of the meter being measured.
  • the optical interferometric methane analyzer can be evaluated for errors based on the test data for calibration.
  • the measurement and calibration of the optical interference type methane measuring instrument can be performed in real time, and the technical effect of real-time calculation, real-time adjustment, and real-time calibration can be achieved as compared with the prior art.
  • the calibration of the optical interferometric methane analyzer can be performed by the meter verification device 100 as a general-purpose meter, in particular, the calibration can be performed by the pressure generated and output by the meter verification device 100, and the general-purpose instrument can be expanded. Application areas and reduce the technical impact of the cost of calibration.
  • the present invention is not limited to the above embodiment, and the meter verification device 100 can be used when t is the first physical quantity, that is, the variable.
  • the invention has been implemented.
  • the physical quantity measuring unit 20 of the meter verification device 100 it is only necessary to provide a temperature measuring unit to detect the environmental temperature in real time.
  • the methane volume fraction x the case where the user inputs a percentage value thereof is described.
  • the present invention is not limited to the above embodiment, and may be controlled when the user instructs to start calibration of the methane analyzer as the instrument to be tested.
  • the unit 60 controls the meter verification device 100 to automatically generate a (pressure) output mode by sequentially generating a plurality of corresponding pressure values P in a range of, for example, (0 to 100)% CH 4 according to Equation 3 stored in advance.
  • Embodiment 3 Application example of valve position indicator ((current) output mode calibration)
  • the valve is a control component in the fluid delivery system, with functions such as cut-off, regulation, diversion, anti-backflow, regulation, shunt or overflow relief.
  • Valves for fluid control systems range from the simplest shut-off valves to the extremely complex self-control systems used in a wide variety of sizes and sizes. Valves can be used to control the flow of various types of fluids such as air, water, steam, various corrosive media, mud, oil, liquid metals, and radioactive media.
  • the valve position indicator is typically used with a valve to indicate valve opening (opening angle or percentage).
  • the valves in the automatic control system include an I/P converter (current/pressure converter), a drive air source, an actuator, a valve body, and the like.
  • the valve position indicator receives an external control signal, typically a current signal of (4 to 20) mA, to control the opening of the valve.
  • valve position indicator is calibrated by the meter verification device 100 of the present invention.
  • Equation 4 is satisfied between the valve opening d and the current C input to the valve.
  • I 0 % the lower limit (mA) of the valve input current signal
  • the meter calibration device 100 is used to perform the output mode calibration in accordance with the flowcharts shown in FIGS. 3 and 5, and the valve position indicator as the instrument to be tested is calibrated.
  • C current input to the valve, mA
  • d valve opening degree, degree
  • Valworx's 5299 was used as a test device.
  • the valve opening degree (degree) in the standard value is a value set by the meter verification device 100 (a standard value of the second physical quantity), and the current (mA) is a standard value of the valve opening degree set.
  • the current value calculated by the formula, that is, the output value of the instrument to be tested, the indication value (degree) of the instrument to be tested is that the current corresponding to the calculated current value is supplied to the instrument to be tested at the meter verification device 100.
  • the indication value of the measured instrument at the time, the indication error is the difference between the standard value of the set valve opening degree and the indication value of the measured instrument.
  • the valve opening degree as the standard value of the second physical quantity may be set by the user through the human-machine interaction unit, or the control unit 60 may control the upper and lower limits of the valve opening angle according to the pre-stored formula 4 by the meter verification device 100.
  • the range is automatically generated in order.
  • the valve position indicator drives the valve actuator and displays the current valve opening.
  • the valve indicator can be calibrated by comparing the calibrated output signal (standard signal) with the indicated angle of the valve being tested. According to the test data in Table 2, the valve position indicator can be evaluated for error for calibration.
  • the user only needs to store in advance in the meter verification device 100 or input a corresponding conversion formula before calibration, and set a standard value of the second physical quantity in the calibration process, so the operation is simple, and Compared with the traditional calibration, the value of the final physical quantity is more intuitive, and no complicated manual conversion is needed at each verification point, and the reusability is strong.
  • the user only needs to input the correct formula once, and does not need to repeat the input, and the work efficiency is high.
  • valve position indicator can be calibrated by the meter verification device 100 as a general-purpose meter, in particular, The calibration can be performed by using the current generated and output by the meter verification device 100, and has the technical effect of being able to expand the application field of the general-purpose instrument and reduce the cost required for calibration.
  • the meter calibration device and the calibration method of the invention integrate a measurement mode for multivariate, and can be widely applied to calibration of field instruments or industrial automation process instruments, and is suitable for industrial manufacturing and application.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种仪表校验装置(100)及使用其的校准方法。仪表校验装置(100)包括物理量输入输出单元(10)、物理量测量单元(20)、物理量配置单元(30)、显示单元(40)、人机交互单元(70)、存储单元(80)以及控制单元(60),能广泛地应用于现场多变量仪表的自动校准。

Description

仪表校验装置及使用其的校准方法 技术领域
本发明属于工业仪表及仪表检测校准技术领域,具体涉及一种仪表校验装置及使用其的校准方法。
背景技术
工业现场的实际应用中,为了保证仪表(instrument)的准确性,通常要对仪表设备提供的测量值或示值进行检测校准(简称“校验”,calibration)。检测校准的基本方式是将仪表设备所测量的测量值或示值直接与标准值相比较,来确定仪表设备的测量值是否准确,进而实施校准。
关于仪表设备,在实际应用中主要有单变量仪表和多变量仪表。单变量仪表是指在单个物理量的测量值接入仪表后,在仪表上直接显示该被测物理量的测量值。但是,在一个***中往往存在多个变化的物理量,它们都会对***产生影响,此时需要使用多变量仪表进行测量。
对于这种多变量仪表的校准,目前普遍采用直接比较校准和多变量分离校准这两种校准方法。
直接比较校准,是将多个物理量同时输入给被测仪表和专用校准装置来进行比对校准。当多个物理量(压力、温度、电信号等)输入给被测仪表和专用校准装置后,被测仪表和专用校准装置使用内置的计算逻辑对物理量进行处理,并给出最终的测试结果,例如:流量计算仪会根据压力(压差)、温度、液体密度、孔板直径等计算出流量信息。
传统的直接比较校准方式,在某一领域只能使用该领域专用的校准装置。例如,在流量领域使用流量专用校准装置,在测试阀门开度时使用阀门专用校准装置,在测试甲烷浓度时使用专用的甲烷浓度校准装置。用户需要为每种设备都配备专用的校准装置,不仅给用户的使用带来不便,也增加了用户的成本。另外,多个专用校准装置不便于同时携带至现场或不能在现场使用,因此许多仪表都在实验室进行校准。
多变量独立校准,是将多个物理量同时输入给被测仪表和专用校准装置后,通过被测仪表和校准装置对输入的物理量分别进行比对来进行校准。由于被测仪表要对输入物理量进行复杂计算后输出最终测量结果,因此, 多变量独立校准虽然能够对每一个物理量进行误差评估,但无法对被测仪表进行整体误差评估(不同物理量在计算中占据权重不同),必须借用外部计算***来间接(手工)完成。然而,外部计算***很难实现实时准确多变量计算过程,会给校准过程带来很大不便。
发明内容
本发明是为了解决上述技术问题而完成的,其目的在于提供一种方便易用、通用性强、适用于仪表设备多变量实时测量校准的仪表校验装置和校准方法。
为了实现上述目的,本发明提供一种仪表校验装置,包括:物理量输入输出单元,其能够输入和输出至少一个第一物理量;物理量测量单元,其测量从所述物理量输入输出单元输入的至少一个第一物理量的值;物理量配置单元,其通过运算,从所述至少一个第一物理量的值生成所述至少一个第二物理量的值,或者从所述至少一个第二物理量的值生成至少一个第一物理量的值;显示单元,其至少显示所述第二物理量的名称和值;人机交互单元,用于用户对所述仪表校验装置进行操作;存储单元,其存储所述仪表校验装置所需的数据;以及控制单元,其进行控制,使得在要测量的物理量为第二物理量并且不需要所述仪表校验装置生成并输出所述至少一个第一物理量的标准值来实现该测量的情况下,执行第一模式,在要测量的物理量为第二物理量并且需要所述仪表校验装置生成并输出所述至少一个第一物理量的标准值来实现该测量的情况下,执行第二模式,在所述第一模式中,使所述物理量测量单元测量从所述物理量输入输出单元输入的、与所述第二物理量相关的至少一个第一物理量的值,使所述物理量配置单元从输入的所述至少一个第一物理量的值,生成所述第二物理量的值,并使所述显示单元显示所述第二物理量的名称和所生成的值,在所述第二模式中,所述物理量配置单元从设定的所述至少一个第二物理量的标准值,生成并从所述物理量输入输出单元输出所述第一物理量的标准值,并使所述显示单元显示所述第二物理量的名称和所设定的标准值。
本发明中的第一物理量是指:仪表能够直接检测或生成的物理量,例如压力、温度、湿度、电压、电流等。本发明中的第二物理量是指:仪表不能够直接检测或生成的物理量,基于第一物理量,例如通过规定的数学 公式换算出来的物理量,例如(气象)高度值、每昼夜空气泄漏量、体积流量、甲烷浓度、阀门开度等。
此外,本发明提供一种对被校准仪表进行校准的校准方法,使用上述仪表校验装置对被校准仪表进行校准,包括:物理量名称指示步骤,由用户指示待校准仪表要测量的物理量的名称;模式指示或判断步骤,由用户指示工作模式或者由所述仪表校验装置判断是否需要输出至少一个第一物理量的标准值来实施校准;第一模式执行步骤,在指定了第一模式或判断为不需要输出至少一个第一物理量的标准值时执行所述第一模式;以及第二模式执行步骤,在指定了第二模式或判断为需要输出至少一个第一物理量的标准值时执行所述第二模式。
本发明另一目的在于提供一种适于现场实时校准多变量的仪表校验装置,其设有手持式机壳,还包括以下电连接的单元:物理量输入输出单元,装配于机壳上,其能够输入和输出至少一个第一物理量;所述物理量输入输出单元包括各自独立的至少一个压力输入输出接口、至少一个电压电流输入输出接口、温度测量接口和湿度测量接口;物理量测量单元,其测量从所述物理量输入输出单元输入的至少一个第一物理量的值;所述物理量测量单元包括分别与物理量输入输出单元中各接口电连接的压力测量模块、电压电流测量模块、温度测量模块和湿度测量模块;物理量配置单元,其通过运算,从所述至少一个第一物理量的值生成至少一个第二物理量的值,或者从至少一个第二物理量的值生成至少一个第一物理量的值;显示单元,装配于机壳上,其至少显示所述第二物理量的名称和值;人机交互单元,装配于机壳上,用于用户对所述仪表校验装置进行操作;存储单元,其存储所述仪表校验装置所需的数据;以及控制单元,对物理量输入输出单元、物理量测量单元、物理量配置单元和显示单元进行控制。
以上用于现场多变量实时测量校准的仪表校验装置,所述压力输入输出接口为气体管路接口。所述电压电流输入输出接口为电连接用端子或插头插座。所述第一物理量是指仪表能够直接检测或生成的物理量,包括压力、温度、湿度、电压和电流;所述第二物理量是指气象高度值、每昼夜空气泄漏量、体积流量、甲烷浓度和阀门开度。
特别的,该仪表校验装置,所述第一物理量为压力,所述物理量测量单元为测量压力的压力测量模块。此模式下,还包括用于提供标准压力的 标准压力提供单元,所述标准压力提供单元与显示单元连接,将其所提供的标准压力显示并输出到外部。
采用以上设计,本发明的有益技术效果体现在:
A.本发明在仪表校验装置中集成了多种测量模块、能够进行物理量转换的物理量配置单元以及压力、电流等物理量的输入输出单元,并能够直观呈现最终物理量的值,在进行多变量仪表的测量、校准时在每个检定点不必进行繁琐的人为转换,方便易用,具有高效性。
B.本发明在手持式外壳上或内部集成了多种接口和多个单元模块,一机多用,易于携带,方便易用,适于现场使用。
C.本发明的仪表校验装置能够用一种通用仪表进行多种仪表或多变量仪表的测量、校准,通用性强,能够扩展通用仪表的应用领域并降低校准所需成本的技术效果。
D.本发明的仪表校验装置能够实时进行多变量仪表的测量、校准,具有能够实现实时计算、实时调节、实时校准的技术效果。
E.本发明的仪表校验装置增加通信单元,使得其自带远程通信功能,省去了中间通信媒介,可通过网络实现与远程数据库的智能互动。
附图说明
图1A是表示本发明仪表校验装置的外部结构图。
图1B是表示本发明一实施方式的校准装置的整体结构框图。
图1C是表示本发明另一实施方式的校准装置的整体结构框图。
图1D是表示本发明扩展实施方式的校准装置的整体结构框图。
图2是表示本发明一实施方式的人机交互单元70中的公式编辑界面的一个例子的图。
图3是是表示本发明一实施方式的校准方法的总流程的示意图。
图4是表示本发明一实施方式的校准方法中的测量模式校准的流程图。
图5是表示本发明一实施方式的校准方法中的输出模式校准的示意图。
附图标记的说明:
100…仪表校验装置;
10…物理量输入输出单元、11—压力输出接口、12—湿度接口、13—温度接口、14—电流电压接口、15—标准压力接口;
20…物理量测量单元、21—压力模块、22—湿度模块、23—温度模块、24—电流电压模块、25—标准压力模块;
30…物理量配置单元;40…显示单元;50…通信单元;60…控制单元;70…人机交互单元;80…存储单元;
90…拍摄单元、91—摄像头。
具体实施方式
以下结合附图和具体实施例,对本发明仪表校验装置及校准方法进行详细说明。另外,本发明的仪表校验装置及校准方法不限于以下的实施方式,可以进行各种变形来实施。在所有实施方式中,相同的结构要件附带相同符号进行说明。另外,附图的尺寸比例为了便于进行说明,与实际的比例不同,有时结构的一部分从附图中省略。
参见图1B,本发明的一实施方式的仪表校验装置100包括:物理量输入输出单元10、物理量测量单元20、物理量配置单元30、显示单元40、控制单元60、人机交互单元70和存储单元80。
物理量输入输出单元10能够输入和输出至少一个第一物理量。此处,第一物理量是指:仪表能够直接检测或生成的物理量,例如压力、温度、湿度、电压、电流等。本发明中的第二物理量是指:仪表不能够直接检测或生成的物理量,基于第一物理量,例如通过规定的数学公式换算出来的物理量,例如(气象)高度值、每昼夜空气泄漏量、体积流量、甲烷浓度、阀门开度等。
继续结合参见图1A和图1C,仪表校验装置100包括手持式机壳,物理量输入输出单元10装配于机壳上,例如可以包括各自独立的至少一个压力输出接口11(例如气体管路接口)用于压力的输出(连接被校准仪表)、至少一个电压电流接口14(例如电连接用端子或插头插座)用于电流或电压的输入输出、用于安装温度传感器的温度接口13、用于安装湿度传感器的湿度接口14等;压力校验时还包括用于安装标准压力表的标准压力接口15。
物理量测量单元20测量从物理量输入单元10输入的至少一个第一物 理量的值。物理量测量单元20可装配于机壳内,例如可以包括测量压力的压力模块21以及提供标准压力的标准压力模块25、测量电压和电流的电压电流模块24、测量温度的温度模块23、和测量湿度的湿度模块22等。压力模块21与压力接口11信号连接,标准压力模块25与标准压力接口15气路连接,并与显示单元40电连接,电压电流模块24与电压电流接口14信号连接,温度模块23与温度接口13信号连接,湿度模块22与湿度测量接口12信号连接。
物理量配置单元30可装配于机壳内,通过运算,从至少一个第一物理量的值生成至少一个第二物理量的标准值,或者从至少一个第二物理量的值生成至少一个第一物理量的标准值。
第一物理量与第二物理量通常具有函数关系。例如,气压与(气象)高度值之间存在式1所示的函数关系,在本发明中称之为转换公式。
Figure PCTCN2017098458-appb-000001
其中,
H:平均海平面以上(以下)某处的位势高度(m);
P:在H处的大气压力(hPa);
p0:平均海平面处的标准大气压力(1013.25hPa);
T0:平均海平面处的大气热力学温度(288.15K);
L:对流层内大气温度的垂直梯度(-0.0065K/m);
g0:标准重力加速度(9.80665m/s2);
R:干空气比气体常数(287.05287J/K*kg);
在上述式1中,P为作为第一物理量的大气压力,H为作为第二物理量的(气象)高度。该转换公式中除了包括第一物理量和第二物理量,还包括其他物理量(例如大气热力学温度)和常数(例如重力加速度)。由于平均海平面处的大气热力学温度等是较稳定的物理量,在该转换公式中它们与重力加速度等常数一样是作为一个固定值出现的,在本发明中将它们称为环境参数等。
通过基于该函数关系的转换公式,能够从测量得到的作为第一物理量 的大气压生成作为第二物理量的(气象)高度值。物理量配置单元30,例如可基于表示第一物理量与第二物理量的关系的公式,进行上述运算来将至少一个第一物理量转换为至少一个第二物理量或将至少一个第二物理量转换为至少一个第一物理量。
此处,第一物理量与第二物理量的转换公式,例如可以利用下述人机交互单元70由用户直接从外部输入,也可以预先存储于下述存储单元80中。当然,第一物理量与第二物理量的关系不限于如上所示的函数关系,也可以是其他关系,例如数表。这样的数表可以预先存储于存储单元80中。基于用户的指示,在控制单元60的控制下,物理量配置单元30能够选择相应的公式进行运算或使用数表等将第一物理量转换成第二物理量,或者将第二物理量转换成第一物理量。
显示单元40基于控制单元60的控制,至少能够显示第二物理量的名称和值,也可以显示第一物理量的名称和值等。显示单元40装配于机壳上,例如可以是液晶显示屏、有机EL显示屏等常用的显示屏。本发明的一个重要特征在于仪表校验装置100包括物理量配置单元30,因此在本发明的优选实施方式中显示单元40还能够显示表示第一物理量与第二物理量的关系的公式,并且如下文所述,还能够用于人机交互单元70进行公式的输入和编辑。
控制单元60对物理量配置单元30、物理量测量单元20、物理量输入输出单元10等发送指令,以对它们进行控制。控制单元60可以包括微处理器、数字信号处理器或其它硬件处理器。
人机交互单元70用于用户对仪表校验装置100进行操作,例如指示要测量的物理量、指示测量的开始等。本发明的一个重要特征在于仪表校验装置100包括物理量配置单元30,因此在本发明的优选实施方式中人机交互单元70包括可输入和编辑第一物理量与第二物理量的转换公式的公式编辑界面。用户可通过该公式编辑界面,新建或编辑相应的转换公式,或者选择之前存储或编辑过的公式。人机交互单元70可以是配置在显示单元40的触摸板,此时用户能够通过例如图2所示的公式编辑界面进行公式的输入和编辑。
存储单元80至少能够存储经由人机交互单元70输入或编辑的第一物理量与第二物理量的转换公式。当然,存储单元80中也可以预先存储第一 物理量与第二物理量的转换公式,以及常用的系数,如圆周率、重力加速度等。此外,存储单元80中还可以存储关于被校准仪表的工作状态和环境参数等。
存储单元80可以为存储数据和/或指令的任何已知的易失性和/或非易失性存储器。存储单元80可以包括诸如只读存储器(ROM)、随机存取存储器(RAM)、闪存、磁存储介质、光盘、可擦除可编程只读存储器(EPROM)、和可编程只读存储器(PROM)。存储单元80可以为非移动式、移动式或两者结合的。
本发明中,仪表校验装置可在图1B和图1C基础上扩展,图1D显示了在图1B基础上的扩展实施方式(同理可以在图1C基础上扩展),控制单元60还连接有通信单元50,通信单元通过网络连接到远程数据库。通信单元50完成***与远程数据库之间的数据交互,具有远程通信功能。从实现形式上,控制单元50可以是一段集成于控制单元60中的通信程序,此时控制单元设置有网络接口以接入网络,也可以是独立的硬件模块,例如,通信单元50具有连接插头和网络接口,连接插头用于与控制单元进行耦接以实现两者的机械连接和电连接,网络接口连接到网络中,再通过网络接入数据库,其中,网络为基于Internet的工业以太网,也可以是支持Internet连接的其他无线网络,可以实现远程通信功能。
仪表校验装置该扩展实施方式将通信单元50集成在内部,使得该仪表自带远程通信功能,省去了中间通信媒介,只要接入其所支持的网络,通过简单设置就能连接到远程数据库,这样可以实时从数据库下载预存储的待校准仪表基本信息(例如被检压力仪表的量程、精度、ID编号和制造厂等信息)、待校准仪表的历史校准数据(包括变量种类、所有校准点的示值、示值误差等)和校准方案(包括实施校准操作的自动校准程序),从而实现被校准仪表各变量校准数据的自动生成,并将校准数据通过网络实时上传至远程数据库。
本发明中,仪表校验装置还可进一步扩展,仍以图1D为例说明:控制单元60还连接有拍摄单元90,拍摄单元90连接装配于机壳上的摄像头91,拍摄单元90中植入图像识别程序。该摄像头91正对待校准仪表的正面外观,可以拍摄到该待校准仪表的表盘上显示的数据、型号信息及其外观特征,所拍摄的照片经拍摄单元90中的图像识别程序对所拍摄的照片进 行图像识别,从而获取该待校准仪表的型号及其基本信息,例如:仪表的量程、精度、编号和制造厂等信息,再通过控制单元60控制通信单元50传送至远程数据库。
在本发明中,控制单元60进行控制,使得在要测量的物理量为第二物理量并且不需要仪表校验装置100生成并输出至少一个第一物理量的标准值来实现该测量的情况下,执行第一模式,在要测量的物理量为第二物理量并且需要仪表校验装置100生成并输出至少一个第一物理量的标准值来实现该测量的情况下,执行第二模式。
关于是否需要输出至少一个第一物理量的标准值,可以由用户经由人机交互单元进行指定,也可以由控制单元60来进行判断,例如根据用户指示的第二物理量的名称或者物理量输入输出单元10的工作状态(例如仪表校验装置100中没有任一个第一物理量的输入时),控制单元60判断为需要输出至少一个第一物理量的标准值来完成测量,该至少一个第一物理量的标准值可以通过由用户设定的第二物理量的标准值进行反函数运算而得出。
在所述第一模式中,使物理量测量单元20测量从物理量输入输出单元10输入的、与第二物理量相关的至少一个第一物理量的值,使物理量配置单元30从输入的至少一个第一物理量的值,生成第二物理量的标准值,并使显示单元40显示所生成的第二物理量的名称和标准值。
在所述第二模式中,使物理量配置单元30从设定的至少一个第二物理量的标准值,生成并输出第一物理量的标准值,并使显示单元40显示设定的第二物理量的名称和标准值。此处,设定的至少一个第二物理量的标准值,可以由用户根据要测量的物理量的测量值(例如被校准仪表的示值)等适当进行设定,也可以由仪表校验装置100自动地生成。
以上,以被测物理量为第二物理量的情况为例进行了说明,但是当被测物理量为第一物理量时,同样可以执行上述第一模式和第二模式。此时,只要省略第一物理量和第二物理量的转换计算即可。这是不言而喻的。
参照图2对人机交互单元60的公式编辑界面的一个例子进行说明。在该公式编辑界面中提供对公式进行新建、编辑、选择以及删除的功能。在编辑公式时,可以选择相应的物理量、环境参数和系数、以及与线性的、非线性或其它运算方式的组合对应的运算符号(例如图2中所示的“exp”、 “log”等)等进行编辑。
以下,参照图3~图5,以被校准仪表要测量的物理量为第二物理量的情况为例,说明使用本实施方式的仪表校验装置100对被校准仪表进行校准的校准方法。该校准方法包括测量模式校准和输出模式校准。在被校准仪表要测量的物理量为第二物理量并且不需要生成并输出至少一个第一物理量的标准值来实现校准的情况下,执行测量模式校准。在被校准设备要测量的物理量为第二物理量并且需要生成并输出至少一个第一物理量的标准值来校准的情况下,执行输出模式校准。此处,以多变量仪表作为被校准仪表进行说明,但是该被校准仪表也可以为单变量仪表。另外,在使用本发明的仪表校验装置100对被校准仪表进行校准时,需要将仪表校验装置100与被校准仪表进行适当的连接。由于这样的连接属于现有技术,故省略具体说明。
图3是表示本发明的校准方法的总流程的示意图。首先,在步骤S1中由用户指示待校准仪表要测量的第二物理量的名称。接着,在步骤S2中,由用户指示仪表校验装置100的工作模式或者由仪表校验装置100根据例如上述第二物理量的名称自动判断是否需要生成并输出至少一个第一物理量的标准值来实现校准,当指示了测量模式或判断为不需要输出至少一个第一物理量的标准值时,进入步骤S3,在该步骤S3在控制单元60的控制下开始执行测量模式校准。当在步骤S2中指示了输出模式或判断为需要输出至少一个第一物理量的标准值时,进入步骤S4,在该步骤S4在控制单元60的控制下开始执行输出模式校准。在测量模式校准和输出模式校准的任一个结束后,在步骤S5中由用户指示是否结束校准,在指示结束校准的情况下校准结束,在需要继续校准的情况下返回步骤S1等待用户的下一次指示。
在图3所示的上述总流程中,说明了在首先由用户指示待校准仪表要测量的第二物理量的名称,之后由用户指示或者由仪表校验装置100自动判断是否需要生成并输出至少一个第一物理量的标准值的情况,但是本发明并不限于上述实施方式。也可以是先由用户指示测量模式校准或输出模式校准之后,再由用户指示待校准仪表要测量的第二物理量的名称。在该情况下,也可以是在进入了测量模式校准或输出模式校准之后,再由用户指示待校准仪表要测量的第二物理量的名称。
图4是测量模式下的校准方法的流程图(即图3的步骤S3中的详细步骤)。图4所示,首先在步骤S31中,根据用户在上述步骤S1中指示的第二物理量的名称,在存储单元80中搜索包含第二物理量的名称的转换公式,在步骤S32中将搜索结果以及人机交互单元70的公式编辑界面显示于显示单元40。此时,如果存储单元中存储有至少一个转换公式,则在公式编辑界面显示所有的转换公式供用户选择和编辑。如果没有搜索到任何转换公式,则显示公式编辑界面提示用户输入转换公式。在步骤S33中,由用户通过公式编辑界面选择、编辑或输入转换公式,确定要输入的与第二物理量对应的至少一个第一物理量,完成后给出确认指示。当用户确认了要使用的转换公式及要输入的至少一个第一物理量后,在步骤S34中,将所述至少一个第一物理量的值经由物理量输入输出单元10输入到仪表校验装置100中。
在步骤S35中,使物理量测量单元20测量从物理量输入输出单元10输入的、与第二物理量相关的至少一个第一物理量的值,并将该测量得到的至少一个第一物理量的值输入到物理量配置单元30。
在步骤S36中,物理量配置单元30基于在步骤S33中确定的转换公式,从测量得到的第一物理量的值,生成第二物理量的值X。
在步骤S37中,将生成的第二物理量的值X(作为校准用的第二物理量标准值)与第二物理量的名称一起显示于显示单元40。由用户与被校准仪表测量得到的第二物理量的测量值R0进行比较,得到二者之间的差值。根据该比较的结果,进行被校准仪表的校准。
在上述测量模式校准中,将实际物理量(压力、温度、电信号等)输入给作为校准装置的仪表校验装置100,选择相应的多变量转换公式(例如通过公式编辑界面创建的函数关系),物理量配置单元根据输入物理量的变化实时计算被测仪表所测量的物理量的标准值,并将该标准值进行实时显示。由此能够使被测仪表的实时输出量值与校准装置的标准量值相比较,从而实现了测量模式校准。
与传统校准相比,本发明的校准方法直观呈现最终物理量的值,在每个检定点不必再进行繁琐的人为转换,方便易用,具有高效性。
并且,能够用一种通用仪表进行多种多变量仪表的测量、校准,通用性强,具有能够扩展通用仪表的应用领域并降低校准所需成本的技术效果。
图5是表示输出模式下的校准方法的示意图(即图3的步骤S4中的详细步骤)。如图5所示,在步骤S41中,根据用户在上述步骤S1中指示的第二物理量的名称,在存储单元80中搜索包含第二物理量的名称的转换公式,在步骤S42中将搜索结果以及人机交互单元70的公式编辑界面显示于显示单元40。此时,如果存储单元中存储有至少一个转换公式,则在公式编辑界面显示所有的转换公式供用户选择和编辑。如果没有搜索到任何转换公式,则显示公式编辑界面提示用户输入转换公式。在步骤S43中,由用户通过公式编辑界面选择、编辑或输入转换公式,确定要输入的与第二物理量对应的至少一个第一物理量,完成后给出确认指示。在步骤S44中,由用户根据被校准仪表要测量的第二物理量的测量值范围设定所述至少一个第二物理量的标准值R,或者指示仪表校验装置100自动生成该标准值R。
在步骤S45中,控制单元60使物理量配置单元30基于在步骤S43中确认的转换公式,从在步骤S44中由用户设定的至少一个第二物理量的标准值或由仪表校验装置100自动生成的至少一个第二物理量的标准值R,生成第一物理量的标准值。
在步骤S46中,对被校准仪表输出该生成的第一物理量的标准值,使其能够测量所述第二物理量。接着,在步骤S47中,将由用户设定或由仪表校验装置100自动生成的至少一个第二物理量的标准值R显示于显示单元40,由用户将被校准仪表基于该第一物理量的标准值测量出的第二物理量的测量值R0与设定的第二物理量的标准值R进行比较,得到二者之间的差值。根据该比较的结果,进行被校准仪表的校准。
在输出模式校准中,针对被校准仪表所要测量的某第二物理量,选择相应的多变量转换公式(例如由反函数编辑建立的函数关系),将作为校准装置的仪表校验装置100的某第一物理量的标准量输出,接入仪表输入端,通过该标准量输出值的改变,使被测仪表的实时输出量值与名义值相比较,实现了多变量仪表输出量值的实时测量校准——输出模式校准(例如:通过作为校准装置的仪表校验装置100提供的标准压力输出值的改变,进行被测仪表的实时输出量值与校准装置的标准量值的比较,实现了输出模式的实时测量校准)。
输出模式校准,在测量模式校准方法的基础上,实现了一种多变量标 准装置,其不仅能够进行多变量标准测量,还不够进行多变量标准输出。通过多变量标准测量,得到多变量标准测量值,通过多变量标准输出的调节控制,得到多变量标准输出值。
在输出模式校准中,能够实时调节多变量标准输出,进行实时计算校准,从而使本发明提出的校准方法,与现有技术相比,具有了实时计算、实时调节、实时校准的效果。
与上述测量模式校准同样,与传统校准相比,输出模式的校准方法直观呈现最终物理量的值,在每个检定点不必再进行繁琐的人为转换,方便易用,具有高效性。
并且,能够用一种通用仪表校验装置进行多种仪表或多变量仪表的测量、校准,通用性强,具有能够扩展通用仪表校验装置的应用领域并降低校准所需成本的技术效果。
仪表校验装置100的多个物理量的配置中,可以选择压力为主变量。在该情况下,第一物理量包括压力,物理量测量单元20包括测量压力的压力模块21。仪表校验装置100还包括提供标准压力的标准压力模块25,标准压力模块25与物理量输入输出单元10的标准压力接口15气路连接(参见图1C),且与显示单元40电连接,将其所提供的标准压力显示并通过标准压力接口15输出到外部。标准压力模块25可以包括压力控制器、压力发生器和压力管道,在输出模式校准中,压力控制器基于由压力测量模块测量出的压力管道内的压力,将压力发生单元发生的压力控制成与物理量配置单元30基于设定的压力值生成的第二物理量的标准值(目标压力值)相应的压力,将该压力经由压力管道输出到外部测试设备/***。上述压力发生器既可以设置在仪表校验装置100中,也可以设置在仪表校验装置100的外部。
此外,物理量测量单元20增设的温度模块23、湿度模块22、电流电压模块24(参见图1C),还可增设通断测量模块以及电流输出模块。压力模块21与这些模块都可以是本***的外接模块,通过航插线与本***进行连接。本***至少提供了两路航插接口(A/B),每个接口都可以任意外接压力或温度测量模块,这样就可以根据***的需要,提供两路压力测量、两路温度测量、一路压力一路温度测量的模式;本***最好提供多路航插接口(A/B),每个接口都可以任意外接所需测量变量的测量模块,这样就 可以根据***的需要,提供压力测量、温度测量、湿度测量、电流或电压测量等模式。
以下,对本发明的具体实施例进行说明。
实施例1:差压式流量计应用例(测量模式校准)
差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量的平方成正比。在差压式流量计中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛的应用。以下,对利用本发明的仪表校验装置100来校准孔板流量计的情况进行说明。
体积流量Qf与孔板前后的差压值Δp之间满足式2。
Figure PCTCN2017098458-appb-000002
Qf:工况下的体积流量,m3/s;
c:流出系数,无量纲;
β:d/D,无量纲;
d:工况下孔板内径,mm;
D:工况上下游管道内径,mm;
ε:可膨胀系数,无量纲;
Δp:孔板前后的差压值,Pa;
ρ1:工况下流体的密度,kg/m3
在本实施例中,使用仪表校验装置100对作为被测仪表的差压式流量计进行校准。此时,Δp(孔板前后的差压值)为第一物理量,本实施例中例如通过设置两个压力检测模块来测量孔板前后的压力来得出它们的压力差值,Qf(工况下的体积流量)为第二物理量,其余的物理量可根据环境参数等得到,既可以预先存储在仪表校验装置100中,也可以在公式编辑界面中输入。例如可为如下数据。
c:0.606209;
β:0.542035;
d:0.044417m;
D:0.08194489m;
ε:1.000000;
ρ1:911.9927kg/m3
将这些数据代入到上述(式2)中,可得出
Figure PCTCN2017098458-appb-000003
(cm3/s)。在进行校准时,通过公知的管路将仪表校验装置100与作为被测仪表的差压式流量计连接在一起。之后,由用户指示作为待校准仪表要测量的第二物理量的名称的体积流量Q,仪表校验装置100按照图3和图4所示的流程图实施测量模式校准,在流体流动时,仪表校验装置100检测出孔板前后的压力,利用上述式2得到作为第二物理量的Qf的数值,将该数值显示于显示单元40,用于与差压式流量计的测量值进行比较,从而判断差压式流量计是否存在误差,以进行校准。
在本实施例中,能够利用作为通用仪表的仪表校验装置100实时进行差压式流量计的校准,与现有技术相比,不仅能够实现实时计算实时校准,因为能够省去专用的校准用流量计,还具有能够扩展通用仪表的应用领域并降低校准所需成本的技术效果。
在实施例中,说明了使用仪表校验装置100对作为被测仪表的差压式流量计进行校准的情况,然而本发明并不限于上述实施方式。除了对作为被测仪表的差压式流量计进行校准,本发明仪表校验装置100还能够作为差压式流量计来直接测量流量,这是不言而喻的。由于能够代替专用的差压式流量计来测量流量,具有能够扩展通用仪表的应用领域并降低测量所需成本的技术效果。
实施例2:光干涉式甲烷浓度测定器的应用例((压力)输出模式校准)
光干涉式甲烷测定器,是通过测量气体折射率的变化对气体成分进行定量分析的携带式仪器,测量范围主要有(0~10)%CH4和(0~100)%CH4两种。(0~10)%CH4测定器用于测量煤矿井下空气中甲烷的体积分数低于10%CH4的场所。(0~100)%CH4测定器用于测量煤矿井下空气中甲烷的体积分数高于10%CH4的场所。测定器主要由电路、光路、气路等***组成。
测定器的检定采用压力法。根据测定器的工作原理,被测环境中没有甲烷气体时,测定器的甲烷室与空气室均充入的是空气,折射率和光程相同,测定器中的干涉条纹不产生移动。当被测环境有甲烷气体时,由于甲烷室的气体成分变化,折射率发生改变,甲烷室的光程也随之变化,干涉条纹便发生移动。干涉条纹的移动量与甲烷体积分数成比例。测量这个移动量,便可测量出空气的甲烷体积分数。当甲烷室与空气室同样充入的是空气,改变甲烷室的压力时,甲烷室的气体折射率和光程同样要发生变化,干涉条纹也要移动。干涉条纹的移动量与施加于甲烷室的压力成比例。在一定的温度条件下,引起相同干涉条纹移动量的甲烷体积分数和压力符合式3的换算关系。
P=x·1.7665·(273+t)…(式3)
其中,x:对应压力P的甲烷体积分数,%CH4
P:在环境温度t时,对应测定器甲烷体积分数x%CH4点的压力值,Pa;
t:环境温度,℃。
在本实施例中,使用仪表校验装置100对作为被测仪表的甲烷浓度测定器进行校准。此时,x(对应压力P的甲烷体积分数)为第二物理量,P为通过式3反推出来的需要输出的压力值即第一物理量,t(环境温度)为参数或第一物理量。上述式3既可以预先存储在仪表校验装置100中,也可以经由人机交互单元60的公式编辑界面进行编辑。
在用仪表校验装置100进行校准时,按照图3和图5所示的流程图实施输出模式校准。用户可以手动键入甲烷体积分数x的值%CH4(百分比值),仪表校验装置100根据上述式3从x自动计算出P(压力值),并开始进行压力输出(自动控制)。当压力稳定后,将被校准仪表的测量值或示值与仪表校验装置100输出的标准值进行比较,进而对被测仪表进行误差评估。
误差计算公式:误差=(被测仪表示值)-(标准值)。示值误差的允许范围参见《JJG 677-2006光干涉式甲烷测定器》、《JJG 1040-2008数字式光干涉甲烷测定器检定仪》。
以下表1中表示了在环境温度为20℃时对光干涉式甲烷测定器进行测试而得到的测试数据。
【表1】
Figure PCTCN2017098458-appb-000004
在表1中,标准值中的甲烷体积分数(%CH4)为通过仪表校验装置100设定的值(第二物理量),压力(kPa)为通过%CH4和公式计算出的压力值,即对被测仪表的输出值;被测仪表的示值(%CH4)为在仪表校验装置100将计算出的压力(kPa)提供给被测仪表时的被测仪表的示值,示值误差为设定的甲烷体积分数(%CH4)的标准值与被测仪表的示值之间差的百分比。根据测试数据可对光干涉式甲烷测定器进行误差评估,从而进行校准。
在该实施例2中,能够实时进行光干涉式甲烷测定器的测量、校准,与现有技术相比,具有能够实现实时计算、实时调节、实时校准的技术效果。此外,因为能够用作为通用仪表的仪表校验装置100来进行光干涉式甲烷测定器的校准,尤其是能够利用仪表校验装置100生成并输出的压力来实施校准,还具有能够扩展通用仪表的应用领域并降低校准所需成本的技术效果。
在实施例2中,对环境温度为20℃,即t为参数的情况进行了说明,然而本发明并不限于上述实施方式,在t为第一物理量即变量时也能够用仪表校验装置100来实施本发明。此时,作为仪表校验装置100的物理量测量单元20,只要设置温度测量单元来实时检测环境温度即可。关于甲烷体积分数x,对用户键入其百分比值的情况进行了说明,然而本发明并不限于上述实施方式,也可以在用户指示了开始对作为被测仪表的甲烷测定 器进行校准时,由控制单元60控制仪表校验装置100根据预先存储的式3在例如(0~100)%CH4的范围内自动地依次生成多个对应的压力值P来执行(压力)输出模式。
实施例3:阀门位置指示器的应用例((电流)输出模式校准)
阀门是流体输送***中的控制部件,具有截止、调节、导流、防止逆流、稳压、分流或溢流泄压等功能。用于流体控制***的阀门,从最简单的截止阀到极为复杂的自控***中所用的各种阀门,其品种和规格相当繁多。阀门可用于控制空气、水、蒸汽、各种腐蚀性介质、泥浆、油品、液态金属和放射性介质等各种类型流体的流动。
阀门位置指示器通常与阀门一起使用,用于指示阀门开度(打开角度或百分比)。自动控制***中的阀门包括I/P转换器(电流/压力转换器)、驱动气源、执行机构、阀体等。阀门位置指示器接收外部控制信号,一般为(4~20)mA的电流信号,从而控制阀门的开度。
以下,对利用本发明的仪表校验装置100来校准阀门位置指示器的情况进行说明。
阀门开度d与输入到阀门的电流C之间满足式4。
Figure PCTCN2017098458-appb-000005
其中,d:阀门开度(度);
C:输入到阀门的电流(mA);
I0%:阀门输入电流信号的下限(mA);
I100%:阀门输入电流信号的上限(mA);
d0%:阀门打开角度的下限(度);
d100%:阀门打开角度的上限(度)。
在本实施例中,使用仪表校验装置100按照图3和图5所示的流程图实施输出模式校准,对作为被测仪表的阀门位置指示器进行校准。此时,C(输入到阀门的电流,mA)为第一物理量,由仪表校验装置100产生并输出,d(阀门开度,度)为第二物理量,其余的物理量可根据环境参数等得到,既可以预先存储在仪表校验装置100中,也可以在人机交互单元的公式编辑界面中输入。在本实施例中以Valworx公司的5299作为测试设备。
【表2】
Figure PCTCN2017098458-appb-000006
在表2中,标准值中的阀门开度(度)为通过仪表校验装置100设定的值(第二物理量的标准值),电流(mA)为通过设定的阀门开度的标准值和公式计算出的电流值,即对被测仪表的输出值,被测仪表的示值(度)为在仪表校验装置100将与所述计算出的电流值对应的电流提供给被测仪表时的被测仪表的示值,示值误差为设定的阀门开度的标准值与被测仪表的示值之间差值。作为第二物理量的标准值的阀门开度,既可以由用户通过人机交互单元进行设定,也可以由控制单元60控制仪表校验装置100根据预先存储的式4在阀门打开角度的上下限的范围内自动地依次生成。
由此,可以很容易推算出阀位指示器的输入电流与打开角度的关系,当仪表校验装置100输出相应的电流信号时,阀位指示器就会驱动阀门执行机构并显示当前的阀门打开角度,通过校准的输出信号(标准信号)与被测试阀门的指示角度进行比较,即可对阀门指示器进行校准测试。根据表2中的测试数据可对阀门位置指示器进行误差评估,从而进行校准。
在上述实施例3中,用户只需预先存储在仪表校验装置100中存储或者在校准前输入相应的转换公式,在校准过程设定第二物理量的标准值即可,因此,操作简单,与传统校准相比更加直观呈现最终物理量的值,在每个检定点不必再进行繁琐的人为转换,并且可复用性强,用户只要输入一次正确的公式即可,不必重复输入,工作效率高。此外,因为能够用作为通用仪表的仪表校验装置100来进行阀门位置指示器的校准,尤其是能 够利用仪表校验装置100生成并输出的电流来实施校准,还具有能够扩展通用仪表的应用领域并降低校准所需成本的技术效果。
在上述实施方式的说明中,仅是列举了具体实施方式中的一种或几种,其中各部件的结构、连接方式等都并不限定于此,凡是在本发明技术方案的基础上进行的等同变换和改进,均属于本发明公开范围。
工业应用性
本发明的仪表校验装置和校准方法集成有针对多变量的测量模式,可以广泛地应用于现场仪表或工业自动化过程仪表的校准,适于工业制造和应用。

Claims (23)

  1. 一种仪表校验装置,包括:
    物理量输入输出单元,其能够输入和输出至少一个第一物理量;
    物理量测量单元,其测量从所述物理量输入输出单元输入的至少一个第一物理量的值;
    物理量配置单元,其通过运算,从所述至少一个第一物理量的值生成所述至少一个第二物理量的值,或者从所述至少一个第二物理量的值生成至少一个第一物理量的值;
    显示单元,其至少显示所述第二物理量的名称和值;
    人机交互单元,用于用户对所述仪表校验装置进行操作;
    存储单元,其存储所述仪表校验装置所需的数据;以及
    控制单元,其进行控制,使得在要测量的物理量为第二物理量并且不需要所述仪表校验装置生成并输出所述至少一个第一物理量的标准值来实现该测量的情况下,执行第一模式,在要测量的物理量为第二物理量并且需要所述仪表校验装置生成并输出所述至少一个第一物理量的标准值来实现该测量的情况下,执行第二模式,
    在所述第一模式中,使所述物理量测量单元测量从所述物理量输入输出单元输入的、与所述第二物理量相关的至少一个第一物理量的值,使所述物理量配置单元从输入的所述至少一个第一物理量的值,生成所述第二物理量的值,并使所述显示单元显示所述第二物理量的名称和所生成的值,
    在所述第二模式中,所述物理量配置单元从设定的所述至少一个第二物理量的标准值,生成并从所述物理量输入输出单元输出所述第一物理量的标准值,并使所述显示单元显示所述第二物理量的名称和所设定的标准值。
  2. 如权利要求1所述的仪表校验装置,其中,所述物理量配置单元基于能够将所述至少一个第一物理量转换为所述至少一个第二物理量或将所述至少一个第二物理量转换为所述至少一个第一物理量的转换公式,进行所述运算。
  3. 如权利要求2所述的仪表校验装置,其中,所述人机交互单元包括可输入和编辑所述公式的公式编辑界面,所述物理量配置单元基于用户通过所述人机交互单元所确定的所述转换公式进行所述运算。
  4. 如权利要求3所述的仪表校验装置,其中:
    所述存储单元能够预先存储所述转换公式,并能够存储用户输入或编辑的所述转换公式,
    所述物理量配置单元能够根据用户从所述人机交互单元输入的所述至少一个第二物理量的名称,从所述存储单元读取包括所述至少一个第二物理量的名称的所述转换公式,
    用户基于读取的所述转换公式,通过所述人机交互单元进行所述公式的编辑和/或选择。
  5. 如权利要求1-4的任一项所述的仪表校验装置,其中:
    所述第一物理量包括压力,
    所述物理量测量单元包括测量压力的压力测量模块。
  6. 如权利要求5所述的仪表校验装置,其中:
    还包括用于提供标准压力的标准压力提供单元,
    在所述第二模式中,将所述标准压力提供单元所提供的标准压力输出到外部。
  7. 一种对被校准仪表进行校准的校准方法,使用权利要求1至6中任一项所述的仪表校验装置对被校准仪表进行校准,所述校准方法包括:
    物理量名称指示步骤,由用户指示待校准仪表要测量的物理量的名称;
    模式指示或判断步骤,由用户指示工作模式或者由所述仪表校验装置判断是否需要输出至少一个第一物理量的标准值来实施校准;
    第一模式执行步骤,在指定了第一模式或判断为不需要输出至少一个第一物理量的标准值时执行所述第一模式;以及
    第二模式执行步骤,在指定了第二模式或判断为需要输出至少一个第一物理量的标准值时执行所述第二模式。
  8. 如权利要求7所述的校准方法,其中,所述第一模式执行步骤包括以下步骤:
    第一物理量输入步骤,当用户确定了要测量的第二物理量和要使用的转换公式后,通过所述物理量输入输出单元将与所述第二物理量相关的至少一个第一物理量的值输入到仪表校验装置中;
    第一物理量测量步骤,测量所输入的与所述第二物理量相关的至少一个第一物理量的值;
    第二物理量生成步骤,基于所述转换公式,从测量得到的所述至少一个第一物理量的值,生成所述第二物理量的值;和
    显示步骤,将生成的所述第二物理量的值与所述第二物理量的名称一起显示于显示单元。
  9. 如权利要求7所述的校准方法,其中,所述第二模式执行步骤包括以下步骤:
    第二物理量标准值生成步骤,当用户确定了要测量的第二物理量和要使用的转换公式后,由用户设定或者指示所述仪表校验装置自动生成所述第二物理量的标准值;
    第一物理量标准值生成步骤,基于用户所确定的转换公式,从在第二物理量的标准值生成步骤中生成的所述第二物理量的标准值生成第一物理量的标准值;
    第一物理量标准值输出步骤,对被校准仪表输出在第一物理量标准值生成步骤所生成的第一物理量的标准值;
    显示步骤,将所生成的所述第二物理量的标准值与所述第二物理量的名称一起显示于显示单元。
  10. 如权利要求8或9所述的校准方法,还包括:
    转换公式搜索步骤,根据用户指示的物理量的名称,在所述存储单元中搜索包含所述物理量的名称的转换公式,将所述转换公式搜索的搜索结果以及公式编辑界面显示于显示单元;
    转换公式确定步骤:由用户通过公式编辑界面选择、编辑或输入转换公式,并确定要使用的转换公式。
  11. 一种仪表校验装置,用于多变量的现场实时测量校准,该装置设有手持式机壳,还包括以下电连接的单元:
    物理量输入输出单元,装配于机壳上,其能够输入和输出至少一个第一物理量;所述物理量输入输出单元包括各自独立的至少一个压力接口、至少一个电流电压接口、温度接口和湿度接口;
    物理量测量单元,装配于机壳内,其测量从所述物理量输入输出单元输入的至少一个第一物理量的值;所述物理量测量单元包括分别与物理量输入输出单元中各接口电连接的压力模块、电流电压模块、温度模块和湿度模块;
    物理量配置单元,其通过运算,从所述至少一个第一物理量的值生成至少一个第二物理量的值,或者从至少一个第二物理量的值生成至少一个第一物理量的值;
    显示单元,装配于机壳上,其至少显示所述第二物理量的名称和值;
    人机交互单元,为配置在显示单元的触摸板,用于用户对所述仪表校验装置进行操作;
    存储单元,其存储所述仪表校验装置所需的数据;以及
    控制单元,对物理量输入输出单元、物理量测量单元、物理量配置单元和显示单元进行控制。
  12. 如权利要求11所述的仪表校验装置,其中,所述压力接口为气体管路接口。
  13. 如权利要求11所述的仪表校验装置,其中,所述电流电压接口为电连接用端子或插头插座。
  14. 如权利要求11至13任一项所述的仪表校验装置,其中,所述第一物理量是指仪表能够直接检测或生成的物理量,包括压力、温度、湿度、电压和电流;所述第二物理量是指气象高度值、每昼夜空气泄漏量、体积流量、甲烷浓度和阀门开度。
  15. 如权利要求11-13的任一项所述的仪表校验装置,其中,所述第一物理量为压力,所述物理量测量单元为测量压力的压力模块。
  16. 如权利要求15所述的仪表校验装置,其中,物理量测量单元还包括用于提供标准压力的标准压力模块(25),物理量输入输出单元还包括用于输出标准压力的标准压力接口(15),标准压力接口与标准压力模块气路连接,所述标准压力模块(25)与显示单元(40)电连接,将其所提供的标准压力显示并通过标准压力接口(15)输出到外部。
  17. 如权利要求14所述的仪表校验装置,其中:所述控制单元使得在要测量的物理量为第二物理量并且不需要所述仪表校验装置生成并输出所述至少一个第一物理量的标准值来实现该测量的情况下,执行第一模式,在要测量的物理量为第二物理量并且需要所述仪表校验装置生成并输出所述至少一个第一物理量的标准值来实现该测量的情况下,执行第二模式;
    在所述第一模式中,使所述物理量测量单元测量从所述物理量输入输出单元输入的、与所述第二物理量相关的至少一个第一物理量的值,使所述物理量配置单元从输入的所述至少一个第一物理量的值,生成所述第二物理量的值,并使所述显示单元显示所述第二物理量的名称和所生成的值,
    在所述第二模式中,所述物理量配置单元从设定的所述至少一个第二物理量的标准值,生成并从所述物理量输入输出单元输出所述第一物理量 的标准值,并使所述显示单元显示所述第二物理量的名称和所设定的标准值。
  18. 如权利要求17所述的仪表校验装置,其中:
    所述物理量配置单元基于能够将所述至少一个第一物理量转换为所述至少一个第二物理量或将所述至少一个第二物理量转换为所述至少一个第一物理量的转换公式,进行所述运算。
  19. 如权利要求18所述的仪表校验装置,其中:
    所述人机交互单元包括可输入和编辑所述公式的公式编辑界面,
    所述物理量配置单元基于用户通过所述人机交互单元所确定的所述转换公式进行所述运算。
  20. 如权利要求19所述的仪表校验装置,其中:
    所述存储单元能够预先存储所述转换公式,并能够存储用户输入或编辑的所述转换公式,
    所述物理量配置单元能够根据用户从所述人机交互单元输入的所述至少一个第二物理量的名称,从所述存储单元读取包括所述至少一个第二物理量的名称的所述转换公式,
    用户基于读取的所述转换公式,通过所述人机交互单元进行所述公式的编辑和/或选择。
  21. 如权利要求1至6中任一项或11至20中任一项所述的仪表校验装置,其中:还包括有与控制单元(60)连接的通信单元(50),通信单元通过网络连接到远程数据库。
  22. 如权利要求21所述的仪表校验装置,其中:通信单元(50)为集成于控制单元(60)中的通信程序,控制单元设置有接入网络的网络接口;或,通信单元(50)是独立的硬件模块,具有连接插头和网络接口,连接插头与控制单元耦接,网络接口连接到网络。
  23. 如权利要求21或22所述的仪表校验装置,其中:还包括有与控制单元(60)连接的拍摄单元(90),拍摄单元连接装配于机壳上的摄像头(91),拍摄单元中植入图像识别程序。
PCT/CN2017/098458 2017-01-10 2017-08-22 仪表校验装置及使用其的校准方法 WO2018129925A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17891430.5A EP3569988B1 (en) 2017-01-10 2017-08-22 Instrument calibration device and calibration method using same
US16/476,473 US11262229B2 (en) 2017-01-10 2017-08-22 Instrument calibration device and calibration method using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710017182.7 2017-01-10
CN201710017182.7A CN106767989B (zh) 2017-01-10 2017-01-10 仪表装置及使用其的校准方法
CN201720028892.5U CN206583473U (zh) 2017-01-10 2017-01-10 多变量实时测量校准仪表装置
CN201720028892.5 2017-01-10

Publications (1)

Publication Number Publication Date
WO2018129925A1 true WO2018129925A1 (zh) 2018-07-19

Family

ID=62839323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098458 WO2018129925A1 (zh) 2017-01-10 2017-08-22 仪表校验装置及使用其的校准方法

Country Status (3)

Country Link
US (1) US11262229B2 (zh)
EP (1) EP3569988B1 (zh)
WO (1) WO2018129925A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113686373A (zh) * 2021-08-20 2021-11-23 四川九洲电器集团有限责任公司 一种仪器仪表计量检定方法、设备、终端、可读存储介质
CN115180012A (zh) * 2022-08-22 2022-10-14 合肥中科九衡科技有限公司 一种云台扫描式甲烷检测仪运输装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10696906B2 (en) 2017-09-29 2020-06-30 Marathon Petroleum Company Lp Tower bottoms coke catching device
US12000720B2 (en) 2018-09-10 2024-06-04 Marathon Petroleum Company Lp Product inventory monitoring
US11975316B2 (en) 2019-05-09 2024-05-07 Marathon Petroleum Company Lp Methods and reforming systems for re-dispersing platinum on reforming catalyst
CA3109675A1 (en) 2020-02-19 2021-08-19 Marathon Petroleum Company Lp Low sulfur fuel oil blends for stability enhancement and associated methods
CN112858726A (zh) * 2021-01-21 2021-05-28 中国计量科学研究院 一种高转速标准装置
US11905468B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US20220268694A1 (en) 2021-02-25 2022-08-25 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11702600B2 (en) 2021-02-25 2023-07-18 Marathon Petroleum Company Lp Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers
US11898109B2 (en) 2021-02-25 2024-02-13 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11692141B2 (en) 2021-10-10 2023-07-04 Marathon Petroleum Company Lp Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive
CA3188122A1 (en) 2022-01-31 2023-07-31 Marathon Petroleum Company Lp Systems and methods for reducing rendered fats pour point

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2036278U (zh) * 1988-04-26 1989-04-19 华奇平 便携式仪表校验仪
JP3483632B2 (ja) * 1994-11-04 2004-01-06 リーダー電子株式会社 多機能測定器
CN2695936Y (zh) * 2004-05-31 2005-04-27 孙立红 智能温度仪表校验仪
CN103090918A (zh) * 2011-10-27 2013-05-08 上海科洋科技发展有限公司 一体化质量型平衡流量计及其一体化实流标定方法
CN204788450U (zh) * 2015-07-20 2015-11-18 河南省计量科学研究院 一种工业安全在线仪表校验仪校准用的标准装置
CN106767989A (zh) * 2017-01-10 2017-05-31 北京康斯特仪表科技股份有限公司 仪表装置及使用其的校准方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6594602B1 (en) * 1999-04-23 2003-07-15 Halliburton Energy Services, Inc. Methods of calibrating pressure and temperature transducers and associated apparatus
US7628054B2 (en) * 2006-11-09 2009-12-08 Abbott Medical Optics Inc. Calibration utility for non-linear measurement system
EP3069351B1 (en) 2013-11-13 2021-05-19 Fluke Corporation Profiles for streamlining calibration test
US9851019B2 (en) * 2014-08-29 2017-12-26 Fluke Corporation Device and method for valve signature testing
US9892514B2 (en) * 2014-10-10 2018-02-13 Facebook, Inc. Post-manufacture camera calibration
KR101606497B1 (ko) 2015-02-26 2016-03-25 충남대학교산학협력단 유량함수 내장형 질량유량계 교정방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2036278U (zh) * 1988-04-26 1989-04-19 华奇平 便携式仪表校验仪
JP3483632B2 (ja) * 1994-11-04 2004-01-06 リーダー電子株式会社 多機能測定器
CN2695936Y (zh) * 2004-05-31 2005-04-27 孙立红 智能温度仪表校验仪
CN103090918A (zh) * 2011-10-27 2013-05-08 上海科洋科技发展有限公司 一体化质量型平衡流量计及其一体化实流标定方法
CN204788450U (zh) * 2015-07-20 2015-11-18 河南省计量科学研究院 一种工业安全在线仪表校验仪校准用的标准装置
CN106767989A (zh) * 2017-01-10 2017-05-31 北京康斯特仪表科技股份有限公司 仪表装置及使用其的校准方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3569988A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113686373A (zh) * 2021-08-20 2021-11-23 四川九洲电器集团有限责任公司 一种仪器仪表计量检定方法、设备、终端、可读存储介质
CN115180012A (zh) * 2022-08-22 2022-10-14 合肥中科九衡科技有限公司 一种云台扫描式甲烷检测仪运输装置
CN115180012B (zh) * 2022-08-22 2023-03-24 合肥中科九衡科技有限公司 一种云台扫描式甲烷检测仪运输装置

Also Published As

Publication number Publication date
US11262229B2 (en) 2022-03-01
US20200319012A1 (en) 2020-10-08
EP3569988A1 (en) 2019-11-20
EP3569988A4 (en) 2020-11-04
EP3569988B1 (en) 2023-04-26

Similar Documents

Publication Publication Date Title
WO2018129925A1 (zh) 仪表校验装置及使用其的校准方法
CN106767989B (zh) 仪表装置及使用其的校准方法
RU2513812C2 (ru) Система, способ и считываемый компьютером носитель для вычисления расходов скважин, создаваемых электропогружными насосами
CN103149121B (zh) 一种非常规天然气含量自动测量仪及测量方法
CN205506640U (zh) 原位土壤渗透系数测量试验装置
US9429493B2 (en) Manifold assembly for a portable leak tester
CN202522295U (zh) 在低温介质的大流量下校准涡轮流量计的***
CN102998720A (zh) 一种双流法标定探空仪湿度动态响应特性的方法及装置
CN104568078A (zh) 一种现场校准地面液压试验器的方法
CN104729974B (zh) 一种考虑温度效应的气测孔隙度测量方法
CN104766513B (zh) 一种压力信号流量测量装置以及流量测量方法
CN115265724A (zh) 一种液位计现场校准装置及获得校准结果的方法
KR101606057B1 (ko) 에너지 표시 가정용 가스미터 및 가스량 측정방법
CN111289064A (zh) 一种加氢机计量性能的在线校准装置及方法
CN104748903B (zh) 液气转换测压装置和实验用带同步电测数显的测压装置
CN102879037A (zh) 一种瓦斯抽放综合参数测定仪的校验装置
CN206583473U (zh) 多变量实时测量校准仪表装置
US6490919B2 (en) Well water level measurement and display apparatus
CN205262537U (zh) 一种测量不规则固体体积的装置
CN212082398U (zh) 静力水准仪标定调试装置
CN204680277U (zh) 一种具备教学效果流量数显的活塞式动量实验仪
CN108254034A (zh) 一种新型油气水分相流量在线计量装置及其计量方法
CN113670626B (zh) 研究环境因素中的气泡对流量测量影响的试验装置
CN202814452U (zh) 瓦斯抽放综合参数测定仪的校验装置
CN205449211U (zh) 沼气工程产气量测试***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017891430

Country of ref document: EP

Effective date: 20190812