WO2018129856A1 - 一种高速数据传输降级方法、设备及*** - Google Patents

一种高速数据传输降级方法、设备及*** Download PDF

Info

Publication number
WO2018129856A1
WO2018129856A1 PCT/CN2017/088145 CN2017088145W WO2018129856A1 WO 2018129856 A1 WO2018129856 A1 WO 2018129856A1 CN 2017088145 W CN2017088145 W CN 2017088145W WO 2018129856 A1 WO2018129856 A1 WO 2018129856A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
side device
network side
degradation
mimo
Prior art date
Application number
PCT/CN2017/088145
Other languages
English (en)
French (fr)
Inventor
王洪跃
陈丽萍
任少丽
宗海涛
刘领军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17891183.0A priority Critical patent/EP3565300B1/en
Priority to US16/477,757 priority patent/US11258492B2/en
Priority to CN201780083212.2A priority patent/CN110169108B/zh
Publication of WO2018129856A1 publication Critical patent/WO2018129856A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications, and in particular, to a high-speed data transmission degradation method, device, and system.
  • the 3rd Generation Partnership Project (3GPP) standard introduces Carrier Aggregation (CA) and Multiple-Input Multiple-Output (MIMO) space-division multiplexing from Release 10 and continues to evolve. Aggregate more carriers and more independent traffic MIMO to form a high-speed data transmission mode. Terminal products follow the evolution of standards, and in high-speed data transmission mode, the rate of data transmission continues to rise. However, in the high-speed data transmission scenario, the power consumption of the terminal continues to increase, and the problem of heat becomes more and more serious.
  • CA Carrier Aggregation
  • MIMO Multiple-Input Multiple-Output
  • the test thermal power data shows that the terminal temperature will rise to about 53 °C within 10 minutes in extreme scenarios (for example, 3 carrier aggregation and 4 in 4 out MIMO), and reach 70 ° C ⁇ 80 ° C in about 1 hour. Left and right, the user of the terminal will be burned.
  • the scheme for thermal mitigation of the terminal is that when the terminal temperature rises to a critical value, the terminal performs thermal mitigation by turning off the CA/MIMO function, and abandons high-speed data transmission; after the heat is alleviated, the terminal turns on the CA/MIMO function again. Increase the rate.
  • the process terminal that turns on/off the CA/MIMO function first retreats the network and then re-accesses the network to restart the protocol stack or restart the terminal, which causes the terminal to drop the network, and thus the terminal user has poor communication experience;
  • re-entering the network needs to carry the UE capability and negotiate with the system side.
  • the frequent network re-entry allows the terminal and system-side capability negotiation signaling interaction load to increase.
  • the CA/MIMO function is completely disabled, and the high-speed data transmission is completely abandoned. The data transfer rate further reduces the end user experience.
  • the embodiment of the present invention provides a high-speed data transmission degradation method, device, and system.
  • the interaction load is low according to the terminal requirement, and the terminal always keeps the network resources degraded to ensure the data transmission rate of the terminal and improve. End user experience.
  • a high-speed data transmission degradation method including: a network-side device receiving a degradation request sent by a terminal in a high-speed data transmission mode, where the degradation request includes a CA degradation parameter, and/or a MIMO degradation parameter; and a CA degradation parameter Instructing the network side device to degrade the CA of the terminal, the MIMO degradation parameter is used to indicate the MIMO degradation of the terminal by the network side device; the network side device acquires the target degraded resource of the terminal according to the received degraded request, and the target degraded resource includes the network side device. At least one CA component carrier deactivated when the CA component carrier of the terminal is degraded, and/or the number of MIMO traffic flows reduced when the network side device degrades the MIMO to the terminal; the network side device degrades the target degraded resource.
  • the high-speed data transmission degradation method provided by the present application degrades the target degraded resource of the terminal according to the degraded request of the terminal; the degrading process satisfies the requirement of the terminal, and the terminal and the network side device only need one interaction to ensure the low interaction load, and at the same time
  • the target degraded resource is the CA component carrier of the terminal and/or the number of MIMO service flows. Degrading the primary carrier that does not involve the terminal ensures that the terminal is always in the network, which improves the experience of the end user well.
  • the degradation request when the downgrade request includes a CA degradation parameter, the degradation request may further include: identifier of the at least one CA component carrier.
  • the CA degrading parameter is used to instruct the network side device to deactivate the CA component carrier indicated by the identifier of the at least one CA component carrier included in the downgrade request; correspondingly, the target degraded resource obtained according to the CA degrading parameter includes the The CA component carrier indicated by the identity of the at least one CA component carrier.
  • the MIMO degradation parameter may be used to indicate that the network side device reduces the number of MIMO service flows of the terminal by a preset step size, and correspondingly, the target degraded resource obtained according to the MIMO degradation parameter includes a preset step size.
  • the degraded resource is determined by the terminal, including the deactivated CA component carrier and/or the reduced number of MIMO service flows, and the network side device is notified by the degradation request, so that the network side device performs resource degradation according to the requirement of the terminal. . Since the degraded resources determined by the terminal can better meet their own service requirements and capability requirements, the resource degradation process better satisfies the service and capability requirements of the terminal.
  • the downgrade request is only used to indicate that the network side device degrades the CA component carrier and/or the MIMO service flow of the terminal, and the network side device receives After the downgrade request sent by the terminal, it is determined to acquire the target degraded resource of the terminal.
  • a specific method for determining a target degradation resource is not specifically limited. The network side device determines the target degraded resource, and can better coordinate the resources of different terminals from the perspective of unified network management, thereby improving network reliability and resource utilization.
  • the content of the degradation parameter is defined, and the high-speed data transmission degradation method provided by the present application is better implemented.
  • the downgrade request is sent when the terminal detects that the temperature of the terminal is greater than or equal to the preset threshold; or the downgrade request is that the terminal is in the evaluation terminal.
  • the heat is transmitted when the heat is greater than or equal to the thermal endurance of the terminal; or the downgrade request is sent when the wireless channel quality is less than or equal to the preset threshold.
  • the conditions for the terminal to send the downgrade request may be configured according to actual requirements, which is not specifically limited in this application. Different conditions for sending a degraded request ensure the degraded requirements of the terminal in different scenarios.
  • the high speed data transmission degradation method provided by the application may further Including: determining whether the terminal has the ability to actively initiate a downgrade.
  • the determining, by the network side device, the target degraded resource of the terminal may be implemented as follows: if the terminal has the capability of actively initiating the degrading, the network side device acquires the target degraded resource of the terminal.
  • the terminal By judging whether the terminal has the ability to actively initiate the downgrade, it is used to be compatible with the historical terminal products, and avoids the situation that the previous terminal's message that is not capable of actively initiating the degradation is misjudged as a downgrade request and is degraded.
  • determining whether the terminal has the capability of actively initiating a degrading may be implemented as: determining a function in the capability indication message of the terminal Whether the 117th bit of the FeatureGroup indicators (FGI) cell is 1; if the 117th bit of the FGI cell in the capability indication message of the terminal is 1, the terminal has the capability of actively initiating the degradation; if the capability indication message of the terminal The 117th bit of the FGI cell is not 1, and the terminal does not have the ability to actively initiate the downgrade.
  • the capability of the terminal to actively initiate the degradation is clearly defined, which improves the achievability of the solution of the present application.
  • a second aspect provides a high-speed data transmission degradation method, including: a terminal in a high-speed data transmission mode sends a downgrade request to a network side device, the downgrade request includes a CA degradation parameter, and/or a MIMO degradation parameter; and the degradation request is used to indicate the network.
  • the side device degrades the target degraded resource of the terminal; the target degraded resource includes at least one CA component carrier of the terminal deactivated when the network side device degrades the CA of the terminal, and/or the MIMO reduced by the network side device to the MIMO degradation of the terminal
  • the terminal sends a downgrade request to the network side device, so that the network side device degrades the target degraded resource of the terminal; the degrading process satisfies the requirement of the terminal, and the terminal and the network side device only need to One interaction ensures that the interaction load is low, and the target degradation resource is the CA component carrier and/or the MIMO service flow of the terminal. Degrading the primary carrier that does not involve the terminal ensures that the terminal is always in the network, which improves the experience of the terminal user.
  • the terminal may determine the parameters carried in the degradation request in stages. For example, at the first moment set by the user, the degradation request carries the CA degradation parameter; at the second moment set by the user, the degradation request carries the MIMO degradation parameter; and at the third moment set by the user, the CA is carried in the degradation request.
  • Degradation parameters and MIMO degradation parameters are not necessarily user-defined, and there may be other configurations.
  • the terminal may alternately determine parameters carried in the degradation request. For example, when the terminal sends the downgrade request for the first time, it carries the CA downgrade parameter; when the terminal sends the downgrade request for the second time, it carries the MIMO degradation parameter; when the terminal sends the downgrade request for the third time, it carries the CA degradation parameter and the MIMO degradation parameter. When the terminal sends the downgrade request for the fourth time, it draws the CA downgrade parameter based on the first sent downgrade request, and so on.
  • the terminal when the terminal fails to implement the thermal mitigation of the final whole machine, the terminal can determine whether to continue the downgrade operation on the basis of evaluating the own device. For example, the terminal sends a degraded request for the first time, carries the CA degraded parameter and the MIMO degraded parameter, and reduces the heat of the terminal to a certain extent; at this time, the terminal can invoke the judging mechanism to determine whether to continue the degrading operation, for example, When the degrading operation is performed, the degrading request may be sent for the second time, carrying the CA degrading parameter and/or the MIMO degrading parameter, and then reducing the heat of the terminal to a certain degree, so that the judgment is repeatedly performed, and finally the heat of the terminal is alleviated.
  • the terminal sends a degraded request for the first time, carries the CA degraded parameter and the MIMO degraded parameter, and reduces the heat of the terminal to a certain extent; at this time, the terminal can invoke the judging mechanism to determine whether to continue the
  • the server acquires the downgrade request of the multi-terminal, and sends the suggestion information to the terminal on the basis of analyzing the downgrade request (downgrade parameter), It is recommended which parameters are carried in the downgrade request.
  • the terminal when the terminal has sufficient processing capability, it can intelligently analyze and determine which parameters are carried in the current degraded request, and can quickly implement the mitigation of the hot end of the terminal, and carry the parameter in the sent downgrade request. Thereby, the heat of the terminal whole machine is relieved intelligently and conveniently.
  • the terminal sends a downgrade request to the network side device, where the terminal may send the downgrade request to the network side device when the terminal detects that the temperature is greater than or equal to the preset threshold. Or, when the terminal determines that the heat is greater than or equal to the heat tolerance of the terminal, the terminal sends the device to the network side. Sending a downgrade request; or, when the terminal determines that the wireless channel quality is less than or equal to the preset threshold, the terminal sends a downgrade request to the network side device.
  • the conditions for the terminal to send the downgrade request may be configured according to actual requirements, which is not specifically limited in this application. Different conditions for sending a degraded request ensure the degraded requirements of the terminal in different scenarios.
  • the high speed data transmission degradation method provided by the application may further include: determining, by the terminal, the target Downgrade resources.
  • the degraded request may further include: an identifier of the at least one CA component carrier included in the target degraded resource; and correspondingly, the CA degraded parameter is used to indicate that the network side device is deactivated
  • the target degraded resource determined by the terminal includes the CA component carrier indicated by the identifier of the at least one CA component carrier included in the downgrade request.
  • the MIMO degradation parameter is used to indicate that the network side device reduces the number of MIMO service flows of the terminal by a preset step size, and the target degraded resource determined by the terminal includes a preset step flow.
  • the downgrade request is only used to indicate that the network side device degrades the CA component carrier and/or the MIMO service flow of the terminal, and the network side device receives After the downgrade request sent by the terminal, the network side device determines to obtain the target degraded resource of the terminal.
  • a specific method for determining a target degradation resource is not specifically limited. The network side device determines the target degraded resource, and can better coordinate the resources of different terminals from the perspective of unified network management, thereby improving network reliability and resource utilization.
  • the preset step size includes pre-degraded MIMO.
  • the high speed data transmission degradation method provided by the application may further include: the terminal to the network The side device sends a capability indication message of the terminal, where the 117th bit of the FGI cell in the capability indication message of the terminal is 1, and the 117th bit of the FGI cell in the capability indication message of the terminal is 1 for indicating that the terminal has the capability of actively initiating degradation. .
  • the capability of the terminal to actively initiate the degradation is clearly defined, which improves the achievability of the solution of the present application.
  • the network side device determines whether the terminal has the capability of actively initiating the degradation, and is used to be compatible with the previous generation terminal products, and avoids the situation that the previous terminal's message that is not capable of actively initiating the degradation is misjudged as a downgrade request and the error is degraded.
  • the embodiment of the present application provides a network side device, where the network side device can implement the function of the network side device in the foregoing method example, and the function can be implemented by using hardware or by executing corresponding software through hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the network side device includes a processor and a transceiver, and the processor is configured to support the network side device to perform a corresponding function in the foregoing method.
  • the transceiver is used to support communication between the network side device and other devices.
  • the network side device may also include a memory for coupling with the processor, which stores program instructions and data necessary for the network side device.
  • the embodiment of the present application provides a terminal, where the terminal can implement the function of the terminal in the foregoing method example, and the function can be implemented by using hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the terminal includes a processor and a transceiver, and the processor is configured to support the terminal to perform a corresponding function in the foregoing method.
  • the transceiver is used to support communication between the terminal and other devices.
  • the terminal can also include a memory for coupling with the processor that retains the program instructions and data necessary for the terminal.
  • an embodiment of the present application provides a computer storage medium for storing computer software instructions used by the network side device, which includes a program designed to perform the above aspects.
  • an embodiment of the present application provides a computer storage medium for storing computer software instructions used by the terminal, which includes a program designed to perform the above aspects.
  • the embodiment of the present application provides a communication system, including at least one terminal and a network side device described in the foregoing aspect.
  • the solution provided by the foregoing third aspect and the seventh aspect is used to implement the high-speed data transmission degradation method provided by the foregoing first aspect or the second aspect, and thus can achieve the same beneficial effects as the first aspect or the second aspect, where Repeatedly.
  • FIG. 1 is a schematic diagram of a communication network architecture provided by the prior art
  • FIG. 2 is a schematic structural diagram of a network side device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of a method for degrading a high-speed data transmission according to an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a method for degrading a high-speed data transmission according to an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an architecture for implementing the solution according to an embodiment of the present application.
  • Carrier aggregation was introduced from the 3GPP standard Release 10, and CA+MIMO products continue to pursue high speeds and upgrades to meet market demands.
  • the CAT rating of the terminal products is continuously upgraded, and the future is over 1G CAT16 grade products. Compared with the increase of the product rate, the appearance of the terminal product is smaller and thinner.
  • the control of CA and MIMO by the 3GPP standard is the single direction guidance of the network, and the terminal is passively executed.
  • the disadvantage of CA+MIMO in the single direction of the system side causes the UE to fail to perform services according to actual conditions.
  • the terminal In the high-rate mode, because the number of channels in the RF and baseband increases the burden on the related devices, the heat and power consumption problems are not alleviated, resulting in the terminal not being able to enjoy high-speed services, and causing the network capacity to be unscheduled according to the terminal conditions, resulting in resources. waste. In some scenarios, the terminal needs to downgrade the high-speed data transmission it uses to suit its needs.
  • the basic principle of the embodiment of the present invention is that the terminal sends a downgrade request to the network side device according to the requirements of the terminal, and the network side device obtains the degraded resource according to the request of the terminal and performs degradation.
  • the degradation degrades the resources of high-speed data transmission according to the requirements of the terminal, does not involve the primary link between the terminal and the network-side device, and the terminal and the network
  • the network side device only needs to interact once. Therefore, in high-speed data transmission, the interaction load is low according to the terminal requirements, and the resources of the terminal are always degraded in the network to ensure the data transmission rate of the terminal and improve the experience of the terminal user.
  • the network side device in the network side device described in this application, that is, in the communication system that communicates with the terminal, the network side device may be a base station, a core network device, or the like of the wireless network, with respect to the device on the other side of the user side.
  • network side devices may have different names, but they can all be understood as network side devices described in this application.
  • the type of the network side device is not specifically limited in this embodiment of the present application.
  • the terminal described in this application that is, the mobile communication device used by the user.
  • the terminal can be a mobile phone, a tablet computer, a notebook computer, an ultra-mobile personal computer (UMPC), a netbook, a personal digital assistant (PDA), an e-book, a mobile TV, a wearable device, a personal computer ( Personal Computer, PC) and more.
  • terminals may have different names, but they can all be understood as terminals described in this application.
  • the embodiment of the present application does not specifically limit the type of the terminal.
  • connection high-speed data transmission degradation method provided by the present application is applied to the communication network architecture shown in FIG. 1.
  • the communication network architecture includes at least one network side device 101, and a terminal 102 in a high speed data transmission mode in which the network side device 101 interacts to communicate.
  • FIG. 1 is merely an illustration of a communication network architecture by way of example.
  • the number of the network side device 101, the type of the network side device 101, the number of terminals, the type of the terminal, the type of the communication system, and the like, which are included in the communication network architecture, may be configured according to actual needs, and FIG. 1 is not specifically limited to this content.
  • the specific communication network architecture may be a Long Term Evolution (LTE) network, or a Universal Mobile Telecommunications System (UMTS) network, or other network.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • the type of network to which the solution of the present application is applied is not specifically limited.
  • FIG. 2 is a network side device according to an embodiment of the present application.
  • the network side device 20 may be the network side device 101 in the communication network architecture shown in FIG. 1.
  • the network side device 20 may include: a processor 201, a memory 202, and a transceiver 203.
  • the components of the network side device 20 will be specifically described below with reference to FIG. 2:
  • the memory 202 may be a volatile memory such as a random-access memory (RAM) or a non-volatile memory such as a read-only memory. , ROM), flash memory, hard disk drive (HDD) or solid-state drive (SSD); or a combination of the above types of memory for storing a program that implements the method of the present application Code, and configuration files.
  • RAM random-access memory
  • non-volatile memory such as a read-only memory. , ROM), flash memory, hard disk drive (HDD) or solid-state drive (SSD); or a combination of the above types of memory for storing a program that implements the method of the present application Code, and configuration files.
  • the processor 201 is a control center of the network side device 20, and may be a central processing unit (CPU), an application specific integrated circuit (ASIC), or configured to implement the implementation of the present application.
  • One or more integrated circuits such as one or more digital singular processors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • DSPs digital singular processors
  • FPGAs Field Programmable Gate Arrays
  • the processor 201 can be stored or executed by storing Software programs and/or modules within the storage 202, as well as recalling data stored in the memory 202, perform various functions of the network side device 20.
  • the transceiver 203 is used by the network side device 20 to interact with other units.
  • the transceiver 203 can be a transceiver antenna of the network side device 20.
  • the processor 201 performs the following functions by running or executing software programs and/or modules stored in the memory 202, and recalling data stored in the memory 202:
  • the degradation request includes a CA degradation parameter, and/or a MIMO degradation parameter
  • the CA degradation parameter is used to indicate that the network side device degrades the CA of the terminal
  • the MIMO degradation of the terminal is performed by the network side device, and the target degraded resource is obtained according to the received degraded request, where the target degraded resource includes at least one CA component carrier deactivated when the network side device degrades the CA component carrier of the terminal, And/or the number of MIMO service flows reduced when the network side device degrades the MIMO of the terminal; and the target degraded resources are degraded.
  • FIG. 3 provides a terminal according to an embodiment of the present application.
  • Terminal 30 can be terminal 102 in the communication network architecture shown in FIG.
  • the terminal 30 may include a processor 301, a memory 302, and a transceiver 303.
  • the components of the terminal 30 will be specifically described below with reference to FIG. 3:
  • the memory 302 may be a volatile memory such as a RAM; or a non-volatile memory such as a ROM, a flash memory, an HDD or an SSD; or a combination of the above types of memory for storing program code for implementing the method of the present application, and Configuration file.
  • the processor 301 is a control center of the terminal 30, and may be a CPU, an ASIC, or one or more integrated circuits configured to implement the embodiments of the present application, for example, one or more DSPs, or one or Multiple FPGAs.
  • the processor 301 can perform various functions of the terminal 30 by running or executing software programs and/or modules stored in the memory 302, as well as invoking data stored in the memory 302.
  • the transceiver 303 is used by the terminal 30 to interact with other units.
  • the transceiver 303 can be the transmit and receive antenna of the terminal 30.
  • the processor 301 performs the following functions by running or executing a software program and/or module stored in the memory 302, and calling data stored in the memory 302:
  • the downgrade request includes a CA downgrade parameter, and/or a MIMO downgrade parameter; the downgrade request is used to indicate that the network side device degrades the target degraded resource of the terminal; the target degraded resource includes the network side device.
  • At least one CA component carrier of the terminal deactivated when the CA of the terminal is degraded, and/or the number of MIMO service flows reduced when the network side device degrades the MIMO to the terminal; the support terminal 30 transmits on the resource after degrading the target degraded resource data.
  • the embodiment of the present application provides a high-speed data transmission degradation method, which is applied to interaction between a network side device and a terminal, and the method may include:
  • the terminal in the high speed data transmission mode sends a downgrade request to the network side device. That is, it can be understood that the terminal sends a downgrade request to the network side device, and the terminal currently has high speed data transmission. For ease of understanding, it is referred to as a terminal of a high speed data transmission mode.
  • the degradation request may include a CA degradation parameter, and/or a MIMO degradation parameter.
  • the downgrade request is used to indicate that the network side device degrades the target degraded resource of the terminal.
  • the target degraded resource may include the terminal that is deactivated when the network side device degrades the CA of the terminal. At least one CA component carrier, and/or a reduced number of MIMO traffic flows when the network side device degrades the MIMO to the terminal.
  • the content included in the target downgrade resource depends on the content of the downgrade request.
  • the degrading request includes a CA degrading parameter, where the target degraded resource includes at least one CA component carrier of the terminal that is deactivated when the network side device degrades the CA of the terminal, and the MIMO degradation parameter included in the degraded request determines that the target degraded resource includes the network side device. The number of MIMO traffic streams that are reduced when MIMO is degraded for the terminal.
  • the sending condition of the downgrade request may be configured according to an actual requirement, which is not specifically limited in this embodiment of the present application.
  • the following describes the conditions for the three terminals to send a downgrade request, but it is not a specific limitation on the conditions for the terminal to send a downgrade request.
  • the demotion request is sent when the terminal detects that the temperature of the terminal is greater than or equal to the preset threshold.
  • the terminal can detect its own temperature in real time or periodically, and its temperature reflects the heating condition of the terminal.
  • the terminal needs to perform heat mitigation.
  • the terminal sends a degradation request to degrade the high-speed data transmission mode to reduce the heat of the terminal.
  • the value of the preset threshold can be set according to the actual situation, which is not specifically limited.
  • Condition 2 The downgrade request is sent by the terminal when the heat of the evaluation terminal is greater than or equal to the heat tolerance of the terminal.
  • the terminal may detect its own heat in real time or periodically, and the heat may include temperature or other.
  • the terminal heat is greater than its heat tolerance, the terminal needs to perform heat mitigation, and the terminal sends a downgrade. Request to degrade the high speed data transfer mode to reduce the heat of the terminal.
  • the terminal can evaluate its own thermal endurance according to its own power consumption, temperature, battery power, and the like. It should be noted that the method for evaluating the thermal endurance of the terminal is not described in detail in the embodiments of the present application, and any method for evaluating the thermal endurance of the terminal can be applied thereto.
  • Condition 3 The downgrade request is sent by the terminal when its wireless channel quality is less than or equal to a preset threshold.
  • the terminal can monitor the quality of the wireless channel between the device and the device on the network side in real time or periodically.
  • the quality of the wireless channel of the terminal is less than or equal to the preset threshold, the terminal cannot bear the excessive rate.
  • Data transmission at this time, the terminal sends a downgrade request to degrade the high-speed data transmission mode to adapt to the network performance of the terminal and save network resources.
  • the preset threshold it can be set according to the actual situation, which is not specifically limited.
  • the embodiment of the present application is not specifically limited, and may be configured according to actual requirements.
  • the target degraded resource may be configured to be determined by the terminal before sending the degraded request, or the target degraded resource may be configured to be determined by the network side device after receiving the degraded request, where the embodiment of the present application degrades the target.
  • the executor of the resource is not specifically limited. The following describes the specific scheme when the target degraded resource is determined by the terminal or the network side device:
  • the target degraded resource is determined by the terminal, and the target degraded resource is determined by the terminal before sending the downgrade request.
  • the terminal may determine, according to the service parameter decision of the terminal, the at least one CA component carrier and/or the reduced MIMO stream number in the target degraded resource.
  • the service parameters of the terminal may include, but are not limited to, the service type, rate, bandwidth, frequency, channel quality, service importance, performance of the MIMO stream, and the like of each CA component carrier.
  • the service parameter is not a specific definition of the type of service parameter of the terminal used for the decision target to downgrade the resource.
  • the service parameters of the terminal for deciding the target degraded resource may be selected according to actual requirements, which is not specifically limited in this embodiment of the present application.
  • the corresponding relationship between the service parameter of the terminal and the target degraded resource is pre-stored in the system, and when the target degraded resource is determined, the target corresponding degraded resource can be determined by querying the preset correspondence.
  • the model is pre-modeled in the system to establish a model relationship between the service parameters of the terminal and the target degradation resource.
  • the service parameter of the terminal is taken as an input of a pre-established model, and the corresponding target degraded resource is determined as the output of the model.
  • the embodiment of the present application will not be described again, and any modeling method can be cited herein.
  • establishing a model relationship between the service parameter of the terminal and the target degraded resource can continuously update the learning during the running of the system, and the embodiment of the present application does not describe the update learning process, and any update learning process can be applied to this.
  • the foregoing example is a process of degrading resources according to a service parameter decision target of a terminal for deciding a resource for decision making, and is merely an example.
  • the specific method for degrading the resource according to the service parameter decision target of the terminal for degrading the resource for the decision target can be flexibly selected according to the actual requirement, which is not limited by the embodiment of the present application.
  • the process of downgrading resources according to the business parameter decision target of the terminal for degrading resources for the decision target is all within the protection scope of the present application.
  • the deactivated CA component carrier if the deactivated CA component carrier is determined, only the deactivated CA component carrier may be determined, and the sequence of the deactivated CA component carrier may also be determined.
  • the order of the component carriers is used to deactivate sequentially when degrading multiple times.
  • the terminal determines the target degraded resource before sending the downgrade request
  • the downgrade request may further include: the identifier of the at least one CA component carrier
  • the network side device receives the downgrade request
  • At least one of the target degraded resources may be acquired according to the degraded request.
  • the CA degraded parameter is used to instruct the network side device to deactivate the CA component carrier indicated by the identifier of the at least one CA component carrier included in the downgrade request
  • the target degraded resource also includes at least one CA component carrier included in the demotion request.
  • the identification indicates the CA component carrier.
  • the target degrading resource is determined by the terminal before the degraded request is sent.
  • the MIMO degrading parameter may be used to indicate that the network side device reduces the number of MIMO service flows of the terminal by a preset step. If the network side device receives the downgrade request, the number of the reduced MIMO service flows in the target degraded resource may be obtained according to the degraded request.
  • the target degraded resource includes the MIMO service flow with the preset step flow number.
  • the preset step size may be configured according to actual requirements, or a dynamic value related to the latest MIMO service flow number, which is not specifically limited in this embodiment of the present application.
  • the preset step size may include half of the number of MIMO traffic flows before the degradation.
  • the MIMO degradation parameter and/or the preset step size may be set by the user, and then the parameter set by the user is carried in the downgrade request and sent to the network on the server side. device.
  • the target degraded resource is determined by the terminal before sending the downgrade request, and the downgrade request is
  • the degraded request may further include the reduced number of MIMO flows, and when the network side device receives the degraded request, the network side device may obtain the reduced number of MIMO service flows in the target degraded resource according to the degraded request, and the target degraded resource at this time. Includes the reduced number of MIMO traffic flows in the downgrade request.
  • the terminal may further include the target degraded resource in the degraded request, so that the network side device can directly obtain the content of the target degraded resource when receiving the demotion request.
  • the embodiments of the present application are not enumerated for specific implementations.
  • the target degradation resource is determined by the network side device receiving the downgrade request.
  • the terminal of the high-speed data transmission requests the network-side device to downgrade its resources
  • the terminal sends a downgrade request to the network-side device
  • the target-downgraded resource is determined by the network-side device after receiving the degradation request. That is to say, the CA degraded parameter and/or the MIMO degraded parameter included in the degraded request sent by the terminal is only used to indicate that the network side device degrades the target degraded resource to the terminal, but the content of the specific target degraded resource is determined by the network side device. Determined after receiving the downgrade request.
  • the network side device may determine, according to the service parameter decision of the terminal, the at least one CA component carrier and/or the reduced MIMO stream number in the target degraded resource.
  • the network side device determines the target degraded resource according to the service parameter decision of the terminal, and may refer to the process of determining the target degraded resource according to the service parameter decision of the terminal in the first case. It will not be repeated here.
  • the determining that the target degraded resource is performed by the terminal or the network side device, the form of the downgrade request, and the content of the CA degraded parameter, the content and the form of the MIMO degradation parameter included in the downgrade request are not specifically implemented in the embodiments of the present application. Limited, can be configured according to actual needs. Any message sent by the terminal to the network side to indicate that the network side device degrades its resources may be referred to as a degraded request described in this application; where the terminal sends a signal to the network side indicating that the network side device deactivates the CA component carrier. The information may be referred to as the CA degradation parameter described in this application; any information sent by the terminal to the network side indicating that the network side device reduces its MIMO service flow may be referred to as the MIMO degradation parameter described in this application.
  • the parameters for degradation can usually be configured to a negative value.
  • the network side device receives the downgrade request sent by the terminal in the high speed data transmission mode.
  • the downgrade request received by the network side device in S402 that is, the downgrade request sent by the terminal in the high speed data transmission mode in S401.
  • the demotion request has been described in detail in S401, and will not be described here.
  • the network side device acquires a target degraded resource of the terminal according to the degraded request.
  • the target degradation resource includes at least one CA component carrier deactivated when the network side device degrades the CA component carrier of the terminal, and/or the number of MIMO service flows reduced when the network side device reduces the MIMO to the terminal.
  • the content of the target degraded resource has been described in detail in S401, and will not be described again here.
  • the process of acquiring the target degraded resource of the terminal according to the degraded request in the network device in S403 is different, and the following two situations are specifically described:
  • Case 1 corresponding to the first case in S401, the target is degraded by the terminal before sending the downgrade request Resources.
  • the degraded request when the degraded request includes a CA degraded parameter, the degraded request further includes an identifier of the at least one CA component carrier, and the network side device determines, according to the degraded request, that the target degraded resource includes the degraded request.
  • the MIMO degradation parameter when the MIMO degradation parameter is included in the degradation request, according to the network configuration, the MIMO degradation parameter may be explicitly defined, and the MIMO degradation parameter is defined to indicate that the network side device uses the MIMO service flow of the terminal.
  • the number decreases the preset step size, and the network side device determines, according to the degradation request, that the target degraded resource includes the MIMO service flow of the preset step flow number.
  • the degraded request further includes the reduced number of MIMO streams
  • the network side device determines, according to the degraded request, that the target degraded resource includes the degraded request. Reduced number of MIMO streams.
  • the terminal when the terminal determines the target degraded resource before sending the downgrade request, the terminal may further include the target degraded resource in the degraded request, and the network side device degrades the corresponding direct acquisition target when receiving the demotion request.
  • the content of the resources the embodiments of the present application are not enumerated for specific implementations.
  • Case 2 corresponds to the second case in S401, where the network side device determines the target degraded resource after receiving the downgrade request.
  • the network side device directly determines the target degraded resource in S403.
  • the determination process has been elaborated in S401, and details are not described herein.
  • the network side device degrades the target degraded resource.
  • the CA carrier component is degraded, that is, the CA carrier component is deactivated, and the process needs to cooperate with the terminal.
  • the network side device degrading a certain CA carrier component may include: the network side device sends a degraded indication to the terminal, where the degraded indication includes the carrier component 1, and the terminal receives the degraded indication. , the carrier component 1 is deactivated. Thereafter, the terminal ends the communication between the carrier component 1 and the network side device.
  • the above process of degrading the CA carrier component is merely an example and is not specifically limited.
  • the MIMO service flow is degraded, that is, the MIMO service flow is reduced.
  • the MIMO service flow of the terminal is directly reduced, so that the terminal works on the reserved MIMO service flow, that is, the MIMO service flow is degraded.
  • the foregoing process of degrading the MIMO service flow is merely illustrative and is not specifically limited.
  • the terminal transmits data on the resource after the target is demoted by the downgrade target.
  • the terminal transmits data to the network-side device on the resource after the target degraded resource is degraded, and the high-speed data transmission mode of the terminal is compared with the execution of S401.
  • Target downgrade resources are reduced by S405.
  • only the CA carrier component or the MIMO service flow number may be degraded, or the CA carrier component or the MIMO service flow may be alternately degraded in the process of performing S401 to S405 multiple times.
  • degrading the CA carrier component and The number of MIMO service flows.
  • the high-speed data transmission degradation method provided by the present application degrades the target degraded resource of the terminal according to the degraded request of the terminal; the degrading process satisfies the requirement of the terminal, and the terminal and the network side device only need one interaction to ensure the low interaction load, and at the same time
  • the target degraded resource is the CA component carrier of the terminal and/or the number of MIMO service flows. Degrading the primary carrier that does not involve the terminal ensures that the terminal is always in the network, which improves the experience of the end user well.
  • the terminal evaluates whether the target service is degraded, whether the service requirement is satisfied, and if yes, the process ends. If not, the process of S401 to S405 may be repeatedly performed. The process of the next downgrade will not be repeated here.
  • the service requirements of the terminal may include, but are not limited to, a heat mitigation requirement, a channel quality requirement, and the like.
  • the device may be executed immediately after the S405, or may be executed after the S405 is waited for the preset duration, which is not specifically limited in this embodiment. .
  • the specific value of the preset duration may be configured according to actual requirements, which is not specifically limited in this embodiment of the present application.
  • the high-speed data transmission degradation method provided by the present application increases the information that the terminal has the ability to actively initiate the degradation, thereby avoiding the error degradation. Therefore, as shown in FIG. 5, the high speed data transmission degradation method provided by the present application may further include S406 before S401.
  • the terminal sends a capability indication message of the terminal to the network side device.
  • the capability indication message of the terminal includes indication information about whether the terminal has the capability of actively initiating degradation.
  • the indication information may include whether the 117th bit of the FGI cell in the capability indication message is 1, and is used to indicate whether the terminal has the capability of actively initiating the degradation.
  • the cell in the capability indication message of the terminal is used to indicate that the terminal has the capability to initiate the degrading, and the specific location in the cell may be configured according to actual requirements. Specific restrictions are made.
  • S406 is performed when the terminal accesses the communication network, and the embodiment of the present application does not require the time interval between S406 and S401.
  • the high speed data transmission degradation method provided by the present application may further include S407 before S403.
  • the network side device determines whether the terminal has the capability of actively initiating a degradation.
  • the network side device determines whether the terminal has the capability of actively initiating the degradation according to whether the terminal included in the capability indication message of the terminal has the indication information of the capability of actively initiating the degradation.
  • the network side device in S407 determines whether the terminal has the capability of actively initiating the degradation. Specifically, the network side device determines whether the 117th bit of the FGI cell in the capability indication message of the terminal is 1. If the 117th bit of the FGI cell in the capability indication message of the terminal is 1, the terminal is determined to be actively initiated. The ability to downgrade; if the 117th bit of the FGI cell in the capability indication message of the terminal is not 1, it is judged that the terminal does not have the ability to actively initiate the degradation.
  • S403 is performed; if it is determined in S407 that the terminal does not have the capability of actively initiating the degradation, the degradation request received in S402 is ignored.
  • the solution provided by the embodiment of the present application is introduced from the perspective of the interaction process between the network side device and the terminal.
  • the network side device and the terminal include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • Step 1 The UE is currently running in the CA+MIMO data transmission service state.
  • the UE thermal control module senses the power consumption and thermal condition of the UE, and evaluates the thermal tolerance of the whole device according to the UE's own situation (power consumption, temperature, battery power, etc.). When the UE can no longer withstand the CA+MIMO high-speed data transmission mode due to heat, Notify heats down the REQ to the MODEM.
  • Step 2 After receiving the Notify thermal mitigation REQ sent by the UE thermal control module, the MODEM learns that the UE initiates the thermal mitigation request, and the MODEM thermal mitigation decision module according to the current SCELLs service type, rate, bandwidth, frequency, channel quality CSI and service In the case of importance and MIMO flow, the SCELLs/MIMO stream layer of the degraded CA is started. Decision-making SCELLs that need to be downgraded, the number of downgraded SCELLs, the order of downgrading MIMO and SCELLs, etc.
  • the reported content may also include the number of degraded SCELLs or the sequence of the degraded MIMO stream and the SCELLs. These contents may be differently set by the Modem thermal mitigation decision module according to different UE hot conditions, so that the UE can be flexibly configured.
  • Step 4 If the MODEM thermal mitigation decision module initiates a degraded CA, the system side eNB (base station) receives the degraded CA request reported by the MODEM, according to the UE capability indication message UECapabilityInformation
  • the 117-bit break of the featureGroupIndRel10 cell indicates whether the UE has the initiative to initiate the degraded capability (featureGroupIndRel10, the 117th bit is equal to 1 and the UE has the initiative to initiate the degraded capability, otherwise the capability is not available), and the deactivate SCELLs (the component carrier reported by the UE) is deactivated. Component carrier.
  • the system-side eNB receives the degraded MIMO request reported by the MODEM, according to the UE capability indication message UECapabilityInformation, the 117 bit of the featureGroupIndRel 10 cell is broken, whether the UE has the initiative to initiate the degradation capability (featureGroupIndRel10 117) If the bit is equal to 1, the UE has the initiative to initiate the degraded capability, otherwise it does not have the capability. It performs the degraded MIMO processing and downgrades the current independent stream to the Rank/2 layer.
  • UECapabilityInformation the 117 bit of the featureGroupIndRel 10 cell is broken, whether the UE has the initiative to initiate the degradation capability (featureGroupIndRel10 117) If the bit is equal to 1, the UE has the initiative to initiate the degraded capability, otherwise it does not have the capability. It performs the degraded MIMO processing and downgrades the current independent stream to the Rank/2 layer.
  • Step 5 MODEM L 1/L2 completes the deactivation of the SCELLs/detects that the MIMO has been degraded, reports the UE thermal control module, and the Notify heat mitigation IND. After a period of time (the UE thermal control module can set the specific time), the UE heat is relieved. Then the process ends and the heat mitigation process jumps out. Otherwise, the UE thermal control module initiates a new round of downgrade CA/MIMO appeals and loops through.
  • the terminal and the network side device may negotiate or be configured as any one or a combination of any of the above three considerations.
  • MIMO MIMO is reduced to Rank/2 every time. In any step of the process, the heat is relieved, and the heat mitigation process is jumped out. Otherwise, Do the next step in the class until the heat is alleviated.
  • This feedback->evaluation->decision->executive thermal mitigation solution solves the mutual understanding between the UE and the network, and is a smooth, on-line communication experience with excellent thermal mitigation solutions.
  • the 3GPP protocol can be modified as follows. It should be noted that the present invention is only an example, and other modifications or modifications may be made, and the same can be considered as long as the purpose of the solution can be achieved.
  • the 117th bit of the 3GPP 36331 Feature group indicators: featureGroupIndRel10 can be added to determine whether the UE has the ability to initiate the degradation.
  • Protocol Addition 3 New CA and MIMO descriptions can be added to the 3GPP 36300 chapter 11.2 Activation/Deactivation Mechanism, such as the second paragraph below.
  • the UE When an SCELLs is deactivated, the UE does not need to receive the corresponding PDCCH or PDSCH, cannot transmit in the corresponding uplink, nor is it required to perform CQI measurements.
  • Protocol added point 4 Available for 3GPP 36213 Chapter 7.2 UE procedure for reporting Channel State Information (CSI).
  • CSI Channel State Information
  • the time and frequency resources that can be used by the UE to report CSI which consists of Channel Quality Indicator (CQI), precoding matrix indicator (PMI), prediction type indicator (PTI), CSI-RS resource indicator (CRI), and/ Or rank indication(RI) are controlled by the eNB.
  • CQI Channel Quality Indicator
  • PMI precoding matrix indicator
  • PTI prediction type indicator
  • CRI CSI-RS resource indicator
  • rank indication(RI) are controlled by the eNB.
  • featureGroupIndRel10bit 117 is set to 1
  • a UE reporting Rank -1means that UE hope the network to degrade MIMO,after network received the degrade information,it should degrade current MIMO layer to half .
  • the UE evaluates the power consumption and heat of the UE, and flexibly configures the working mode of the terminal.
  • the terminal and the system side know each other's situation, and the mitigation of the hotline is not achieved, and the communication experience is excellent. Through interaction, the system side knows the thermal power consumption and heat tolerance of the UE, thereby flexibly scheduling system resources and maximizing usage.
  • the embodiments of the present application may divide the function modules of the network side device and the terminal according to the foregoing method.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 6 is a schematic diagram showing a possible structure of the network side device involved in the foregoing embodiment.
  • the network side device 60 may include: a receiving unit 601, an obtaining unit 602, and a degradation unit 603.
  • the receiving unit 601 is configured to support the network side device 60 to perform the process S402 in FIG. 4 or FIG. 5;
  • the obtaining unit 602 is configured to support the network side device 60 to perform the process S403 in FIG. 4 or FIG. 5.
  • the degradation unit 603 is configured to support the network side device 60 to perform the process S404 in FIG. 4 or 5. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • the network side device 60 may further include a determining unit 604, configured to support the network side device 60 to perform the process S407 in FIG. 5.
  • FIG. 8 shows a possible structural diagram of the network side device involved in the above embodiment.
  • the network side device 80 may include a processing module 801 and a communication module 802. deal with The module 801 is configured to control and manage the actions of the network side device 80.
  • the processing module 801 is configured to support the network side device 80 to perform the process S402 in FIG. 4 or FIG. 5 through the communication module 801; the processing module 801 is configured to support the network side device 80 to perform the process S403 in FIG. 4 or FIG. 5 and S404.
  • the communication module 802 is also used to support communication of the network side device 80 with other network entities.
  • the network side device 80 may further include a storage module 803 for storing program codes and data of the network side device 80.
  • the processing module 801 may be the processor 201 in the physical structure of the network side device 20 shown in FIG. 2, and may be a processor or a controller. For example, it can be a CPU, a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure. Processor 801 can also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 802 can be the transceiver 203 in the physical structure of the network side device 20 shown in FIG.
  • the communication module 802 can be a communication port or a transceiver antenna, or can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 803 may be the memory 202 in the physical structure of the network side device 20 shown in FIG. 2.
  • the network side device 80 involved in FIG. 8 of the embodiment of the present application may be the network side device 20 shown in FIG. 2 .
  • FIG. 9 shows a possible structural diagram of the terminal involved in the above embodiment.
  • the terminal 90 may include a transmitting unit 901 and a transmitting unit 902.
  • the transmitting unit 901 is configured to support the terminal 90 to perform the process S401 in FIG. 4 or FIG. 5, the process S406 in FIG. 5;
  • the transmitting unit 902 is configured to support the terminal 90 to execute the process S405 in FIG. 4 or FIG. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 10 shows a possible structural diagram of the terminal involved in the above embodiment.
  • the terminal 100 may include: a processing module 1001 and a communication module 1002.
  • the processing module 1001 is configured to control and manage the actions of the terminal 100.
  • the processing module 1001 is configured to support the terminal 100 to perform the process S401 in FIG. 4 or FIG. 5 through the communication module 1002, and the processing module 1001 is used to support the terminal 100 to perform the process S405 in FIG. 4 or FIG.
  • the communication module 1002 is also used to support communication of the terminal 100 with other network entities.
  • the terminal 100 may further include a storage module 1003 for storing program codes and data of the terminal 100.
  • the processing module 1001 may be the processor 301 in the physical structure of the terminal 30 shown in FIG. 3, and may be a processor or a controller. For example, it can be a CPU, a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor 1001 may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 1002 may be the transceiver 303 in the physical structure of the terminal 30 shown in FIG. 3.
  • the communication module 1002 may be a communication port or a transceiver antenna, or may be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 1003 may be the memory 302 in the physical structure of the terminal 30 shown in FIG.
  • the terminal 100 involved in FIG. 10 of the embodiment of the present application may be the terminal 30 shown in FIG.
  • FIG. 11 is a schematic structural diagram of a mobile terminal according to an embodiment of the present invention, where the terminal includes a processor, a memory, an input device, a display device, a control device, and the like.
  • the terminal 1100 involved in FIG. 11 of the embodiment of the present application The structure of the terminal 30 shown in FIG. 3 may be the same, or have more internal components.
  • the method steps performed by the terminal shown in FIG. 3 may be performed by the mobile terminal shown in FIG.
  • the illustrated mobile terminal 1100 is merely an example, the actual product may have more or fewer components than those shown in FIG. 11, two or more components may be combined, or may be different Component configuration.
  • the mobile terminal shown in the figure can be used to perform the method as described in FIG. 4 or 5.
  • the mobile terminal 1100 includes an RF (Radio Frequency) circuit 110, a memory 120, an input unit 130, a display unit 140, a sensor 150, an audio circuit 160, and a WiFi (Wireless Fidelity) module 170. , processor 180, and power supply 190 and other components.
  • RF Radio Frequency
  • the RF circuit 110 can be used for transmitting and receiving information or during a call, and receiving and transmitting the signal. Specifically, after receiving the downlink information of the base station, the processor 180 processes the data. In addition, the uplink data is designed to be sent to the base station. Generally, the RF circuit includes, but is not limited to, an antenna, at least one amplifier, a transmitter 1101, a receiver 1102, a coupler, an LNA (Low Noise Amplifier), a duplexer, and the like. In addition, RF circuitry 110 can also communicate with the network and other devices via wireless communication. The wireless communication may use any communication standard or protocol, including but not limited to GSM (Global System of Mobile communication), GPRS (General Packet Radio Service), CDMA (Code Division Multiple Access). , Code Division Multiple Access), WCDMA (Wideband Code Division Multiple Access), LTE (Long Term Evolution), e-mail, SMS (Short Messaging Service), and the like.
  • GSM Global System of Mobile communication
  • GPRS General Packet
  • the memory 120 can be used to store software programs and modules, and the processor 180 executes various functional applications and data processing of the mobile terminal 100 by running software programs and modules stored in the memory 120.
  • the memory 120 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored. Data (such as audio data, phone book, etc.) created according to the use of the mobile terminal 100, and the like.
  • memory 120 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 130 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the mobile terminal 100.
  • the input unit 130 may include a touch panel 131 and other input devices 132.
  • the touch panel 131 also referred to as a touch screen, can collect touch operations on or near the user (such as a user using a finger, a stylus, or the like on the touch panel 131 or near the touch panel 131. Operation), and drive the corresponding connecting device according to a preset program.
  • the touch panel 131 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 180 is provided and can receive commands from the processor 180 and execute them.
  • the touch panel 131 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 130 may also include other input devices 132.
  • other input devices 132 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 140 can be used to display information input by the user or information provided to the user and various menus of the mobile terminal 100.
  • the display unit 140 may include a display panel 141, and optionally, an LCD (Liquid Crystal)
  • the display panel 141 is configured in the form of a display, a liquid crystal display, an OLED (Organic Light-Emitting Diode), or the like.
  • the touch panel 131 can cover the display panel 141. When the touch panel 131 detects a touch operation on or near the touch panel 131, the touch panel 131 transmits to the processor 180 to determine the type of the touch event, and then the processor 180 according to the touch event. The type provides a corresponding visual output on display panel 141.
  • the touch panel 131 and the display panel 141 are two independent components to implement the input and input functions of the mobile terminal 100 in FIG. 1 , in some embodiments, the touch panel 131 and the display panel 141 may be The input and output functions of the mobile terminal 100 are implemented by integration.
  • the mobile terminal 100 may also include at least one type of sensor 150, such as a fingerprint sensor, a light sensor, a motion sensor, and other sensors.
  • the fingerprint sensor is used to identify fingerprint information input by the user.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 141 according to the brightness of the ambient light, and the proximity sensor may close the display panel 141 and/or when the mobile terminal 100 moves to the ear. Backlighting.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • attitude of the mobile terminal such as horizontal and vertical screen switching, Related games, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for the gyroscope, barometer, hygrometer, thermometer, infrared sensor and other sensors that the mobile terminal 100 can also configure, This will not be repeated here.
  • the audio circuit 160, the speaker 161, and the microphone 162 can provide an audio interface between the user and the mobile terminal 100.
  • the audio circuit 160 can transmit the converted electrical data of the received audio data to the speaker 161 for conversion to the sound signal output by the speaker 161; on the other hand, the microphone 162 converts the collected sound signal into an electrical signal by the audio circuit 160. After receiving, it is converted into audio data, and the audio data is output to the RF circuit 108 for transmission to, for example, another mobile terminal, or the audio data is output to the memory 120 for further processing.
  • WiFi is a short-range wireless transmission technology
  • the mobile terminal 100 can help users to send and receive emails, browse web pages, and access streaming media through the WiFi module 170, which provides wireless broadband Internet access for users.
  • FIG. 1 shows the WiFi module 170, it can be understood that it does not belong to the essential configuration of the mobile terminal 100, and may be omitted as needed within the scope of not changing the essence of the invention.
  • the processor 180 is a control center of the mobile terminal 100 that connects various portions of the entire mobile terminal using various interfaces and lines, by running or executing software programs and/or modules stored in the memory 120, and recalling stored in the memory 120.
  • the processor 180 may include one or more processing units; preferably, the processor 180 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It can be understood that the above modem processor may not be integrated into the processor 180.
  • the mobile terminal 100 also includes a power source 190 (such as a battery) that supplies power to various components.
  • a power source 190 such as a battery
  • the power source can be logically coupled to the processor 180 through a power management system to manage functions such as charging, discharging, and power consumption through the power management system.
  • the mobile terminal 100 may further include a camera, a Bluetooth module, and the like, and details are not described herein again.
  • the network side device and the terminal provided in the embodiments of the present application may be used to implement the method implemented in the foregoing embodiments of the present application.
  • the network side device and the terminal provided in the embodiments of the present application may be used to implement the method implemented in the foregoing embodiments of the present application.
  • the parts related to the embodiment of the present application are shown, and the specific technical details are not disclosed. Please refer to the embodiments of the present application.
  • the embodiment of the present application provides a communication system, which may include the network side device illustrated in any one of the foregoing embodiments, and at least one terminal illustrated in any one of the foregoing embodiments.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in RAM, flash memory, ROM, Erasable Programmable ROM (EPROM), and electrically erasable programmable read only memory (Electrically EPROM).
  • EEPROM electrically erasable programmable read only memory
  • registers hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional unit described above is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform portions of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk. And other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种高速数据传输降级方法、设备及***,涉及通信领域,在高速数据传输中,按照终端需求实现交互负荷低、并保持终端始终在网的资源降级,以保障终端的数据传输速率及提高终端用户的体验。具体包括:网络侧设备接收高速数据传输模式的终端发送的降级请求;网络侧设备根据接收到的降级请求,获取终端的目标降级资源;网络侧设备对目标降级资源降级。本申请用于降级资源。

Description

一种高速数据传输降级方法、设备及***
本申请要求于2017年01月13日提交中国专利局、申请号为201710026100.5、发明名称为“一种终端降低功耗的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种高速数据传输降级方法、设备及***。
背景技术
随着通信技术的发展,对于数据传输的速率需求越来越高。第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)标准从Release 10引入载波聚合(Carrier Aggregation,CA)和多进多出(Multiple-Input Multiple-Output,MIMO)空分复用,并持续演进聚合更多的载波以及更多独立业务流的MIMO,构成高速数据传输模式。终端产品紧跟标准演进,在高速数据传输模式下,数据传输的速率不断攀升。但是,高速数传场景下,终端的功耗不断增加,热的问题越来越严重。测试热功耗数据显示,终端在极端场景下(例如,3载波聚合及4进4出MIMO下)10分钟之内外壳温度将升到53℃左右,大约1个小时左右达到70℃~80℃左右,将烫伤终端的使用者。
目前,对终端进行热缓解的方案,是当终端温升到临界值时,终端通过关闭CA/MIMO功能进行热缓解,放弃高速数据传输;在热得到缓解之后,终端再开启CA/MIMO功能以提高速率。
在该热缓解过程中,一方面,开启/关闭CA/MIMO功能的过程终端先退网再重新接入网以重启协议栈或重启终端才能实现,导致终端掉网,进而终端用户通信体验差;另一方面,重新入网需要携带UE能力并和***侧进行能力协商,频繁退网入网使终端和***侧能力协商信令交互负荷增加;关闭CA/MIMO功能完全放弃了高速数据传输,降低了终端的数据传输速率,进一步的降低了终端用户的体验。
发明内容
本申请实施例提供一种高速数据传输降级方法、设备及***,在高速数据传输中,按照终端需求实现交互负荷低、并保持终端始终在网的资源降级,以保障终端的数据传输速率及提高终端用户的体验。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种高速数据传输降级方法,包括:网络侧设备接收高速数据传输模式的终端发送的降级请求,该降级请求包括CA降级参数,和/或,MIMO降级参数;CA降级参数用于指示网络侧设备对终端的CA降级,MIMO降级参数用于指示网络侧设备对终端的MIMO降级;网络侧设备根据接收到的降级请求,获取终端的目标降级资源,目标降级资源包括网络侧设备对终端的CA分量载波降级时去激活的至少一个CA分量载波,和/或,网络侧设备对终端的MIMO降级时减少的MIMO业务流数;网络侧设备对目标降级资源降级。
通过本申请提供的高速数据传输降级方法,根据终端的降级请求对终端的目标降级资源降级;该降级过程满足了终端的需求,且终端与网络侧设备只需一次交互保证了交互负荷低,同时目标降级资源为终端的CA分量载波和/或MIMO业务流数,降级不涉及终端的主载波保证了终端始终在网,很好的提高了终端用户的体验。
结合第一方面,在一种可能的实现方式中,降级请求包括CA降级参数时,降级请求还可以包括:至少一个CA分量载波的标识。这时,CA降级参数用于指示网络侧设备去激活降级请求中包括的至少一个CA分量载波的标识指示的CA分量载波;对应的,根据CA降级参数获取的目标降级资源包括降级请求中包括的至少一个CA分量载波的标识指示的CA分量载波。降级请求包括所述MIMO降级参数时,MIMO降级参数可以用于指示网络侧设备将终端的MIMO业务流数降低预设步长,对应的,根据MIMO降级参数获取的目标降级资源包括预设步长流数的MIMO业务流。在该实现方式中,由终端确定降级的资源,包括去激活的CA分量载波和/或减少的MIMO业务流数,通过降级请求通知到网络侧设备,使得网络侧设备根据终端的需求进行资源降级。由于终端确定的降级资源可以更好的满足自身的业务需求以及能力需求,因此使得资源降级过程更好的满足了终端的业务及能力需求。
结合第一方面或上述任一种可能的实现方式,在一种可能的实现方式中,降级请求仅用于指示网络侧设备对终端的CA分量载波和/或MIMO业务流降级,网络侧设备接收到终端发送的降级请求后,确定获取终端的目标降级资源。具体的确定目标降级资源的方法本申请不具体限定。网络侧设备确定目标降级资源,可以从网络统一管理的角度,更好的协调不同终端的资源,提高了网络可靠性及资源利用率。
结合第一方面或上述任一种可能的实现方式,在一种可能的实现方式中,CA降级参数可以包括信道质量指示CQI=-1,MIMO降级参数包括秩Rank=-1,预设步长可以包括降级前MIMO业务流数的一半。在该实现方式中,定义了降级参数的内容,更好的实现了本申请提供的高速数据传输降级方法。
结合第一方面或上述任一种可能的实现方式,在一种可能的实现方式中,降级请求为终端检测到终端的温度大于或等于预设阈值时发送;或者,降级请求为终端在评估终端的发热大于或等于终端的热承受能力时发送;或者,降级请求为终端在其无线信道质量小于或等于预设门限时发送。当然,对于终端发送降级请求的条件,可以根据实际需求配置,本申请对此不进行具体限定。不同的发送降级请求的条件,保证了终端在不同场景下的降级需求。
结合第一方面或上述任一种可能的实现方式,在一种可能的实现方式中,在网络侧设备接收高速数据传输的终端发送的降级请求之后,本申请提供的高速数据传输降级方法还可以包括:判断终端是否具备主动发起降级的能力。网络侧设备确定终端的目标降级资源具体可以实现为:若终端具备主动发起降级的能力,网络侧设备获取终端的目标降级资源。通过判断终端是否具备主动发起降级的能力,用于兼容历代终端产品,避免不具备主动发起降级的能力的以往终端的消息误判为降级请求而误降级的情况发生。
结合第一方面或上述任一种可能的实现方式,在一种可能的实现方式中,判断终端是否具备主动发起降级的能力,具体可以实现为:判断终端的能力指示消息中功能 组指示(FeatureGroup indicators,FGI)信元的第117位是否为1;若终端的能力指示消息中FGI信元的第117位为1,则终端具备主动发起降级的能力;若终端的能力指示消息中FGI信元的第117位不为1,终端不具备主动发起降级的能力。在该实现方式中,对终端是否具备主动发起降级的能力进行了明确的定义,提高了本申请方案的可实现性。
第二方面,提供一种高速数据传输降级方法,包括:高速数据传输模式的终端向网络侧设备发送降级请求,降级请求包括CA降级参数,和/或,MIMO降级参数;降级请求用于指示网络侧设备对终端的目标降级资源降级;目标降级资源包括网络侧设备对终端的CA降级时去激活的终端的至少一个CA分量载波,和/或,网络侧设备对终端的MIMO降级时减少的MIMO业务流数;终端在降级目标降级资源后的资源上传输数据。
通过本申请提供的高速数据传输降级方法,终端通过向网络侧设备发送降级请求,使得网络侧设备对终端的目标降级资源降级;该降级过程满足了终端的需求,且终端与网络侧设备只需一次交互保证了交互负荷低,同时目标降级资源为终端的CA分量载波和/或MIMO业务流数,降级不涉及终端的主载波保证了终端始终在网,很好的提高了终端用户的体验。
进一步地,在一种可能的实现中,终端可分阶段确定降级请求中携带的参数。例如,在用户设定的第一时刻,降级请求中携带CA降级参数;在用户设定的第二时刻,降级请求中携带MIMO降级参数;在用户设定的第三时刻,降级请求中携带CA降级参数和MIMO降级参数。当然,不一定是用户设定,还可能有其它的配置形式。
进一步地,在一种可能的实现中,终端可交替确定降级请求中携带的参数。例如,在终端第一次发送降级请求时,携带CA降级参数;在终端第二次发送降级请求时,携带MIMO降级参数;在终端第三次发送降级请求时,携带CA降级参数和MIMO降级参数;在终端第四次发送降级请求时,借鉴第一次发送的降级请求,携带CA降级参数,如此重复。
进一步地,在一种可能的实现中,终端在未能实现最终整机的热缓解时,可在评估自身器件的基础上确定是否继续降级的操作。例如,终端第一次发送降级请求,携带CA降级参数和MIMO降级参数,将终端的热降低至一定的程度;此时,终端可调用判断机制确定是否要继续执行降级操作,例如在判断还要执行降级操作时,可第二次发送降级请求,携带CA降级参数和/或MIMO降级参数,再将终端的热降低至一定程度,如此重复判断执行,最终实现终端整机热的缓解。
进一步地,在一种可能的实现中,还可参考大数据或云计算的相关概念,服务器获取多终端的降级请求,在分析这些降级请求(降级参数)的基础上,向终端发送建议信息,建议其降级请求中携带何种参数。或者,在终端具有足够的处理能力时,可智能分析并确定当前的降级请求中携带何种参数能够快速的实现终端整机热的缓解,并在发送的降级请求中携带该种参数。由此,智慧化且便捷地实现终端整机热的缓解。
结合第二方面,在一种可能的实现方式中,终端向网络侧设备发送降级请求,具体可以实现为:终端检测到其温度大于或等于预设阈值时,终端向网络侧设备发送降级请求;或者,终端确定其发热大于或等于终端的热承受能力时,终端向网络侧设备 发送降级请求;或者,终端确定其无线信道质量小于或等于预设门限时,终端向网络侧设备发送降级请求。当然,对于终端发送降级请求的条件,可以根据实际需求配置,本申请对此不进行具体限定。不同的发送降级请求的条件,保证了终端在不同场景下的降级需求。
结合第二方面或上述任一种可能的实现方式,在一种可能的实现方式中,在终端向网络侧设备发送降级请求之前,本申请提供的高速数据传输降级方法还可以包括:终端确定目标降级资源。当由终端确定目标降级资源,降级请求包括CA降级参数时,降级请求还可以包括:目标降级资源中包括的至少一个CA分量载波的标识;相应的,CA降级参数用于指示网络侧设备去激活降级请求中包括的至少一个CA分量载波的标识指示的CA分量载波;终端确定的目标降级资源包括降级请求中包括的至少一个CA分量载波的标识指示的CA分量载波。当由终端确定目标降级资源,降级请求包括MIMO降级参数时,MIMO降级参数用于指示网络侧设备将终端的MIMO业务流数降低预设步长,终端确定的目标降级资源包括预设步长流数的MIMO业务流。
结合第二方面或上述任一种可能的实现方式,在一种可能的实现方式中,降级请求仅用于指示网络侧设备对终端的CA分量载波和/或MIMO业务流降级,网络侧设备接收到终端发送的降级请求后,由网络侧设备确定获取终端的目标降级资源。具体的确定目标降级资源的方法本申请不具体限定。网络侧设备确定目标降级资源,可以从网络统一管理的角度,更好的协调不同终端的资源,提高了网络可靠性及资源利用率。
结合第二方面或上述任一种可能的实现方式,在一种可能的实现方式中,CA降级参数包括CQI=-1,MIMO降级参数包括秩Rank=-1,预设步长包括降级前MIMO业务流数的一半。
结合第二方面或上述任一种可能的实现方式,在一种可能的实现方式中,在终端向网络侧设备发送降级请求之前,本申请提供的高速数据传输降级方法还可以包括:终端向网络侧设备发送终端的能力指示消息,终端的能力指示消息中FGI信元的第117位为1,终端的能力指示消息中FGI信元的第117位为1用于指示终端具备主动发起降级的能力。在该实现方式中,对终端是否具备主动发起降级的能力进行了明确的定义,提高了本申请方案的可实现性。网络侧设备判断终端是否具备主动发起降级的能力,用于兼容历代终端产品,避免不具备主动发起降级的能力的以往终端的消息误判为降级请求而误降级的情况发生
第三方面,本申请实施例提供了一种网络侧设备,该网络侧设备可以实现上述方法示例中的网络侧设备的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
结合第三方面,在一种可能的实现方式中,该网络侧设备的结构中包括处理器和收发器,该处理器被配置为支持该网络侧设备执行上述方法中相应的功能。该收发器用于支持该网络侧设备与其他设备之间的通信。该网络侧设备还可以包括存储器,该存储器用于与处理器耦合,其保存该网络侧设备必要的程序指令和数据。
第四方面,本申请实施例提供了一种终端,该终端可以实现上述方法示例中的终端的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
结合第四方面,在一种可能的实现方式中,该终端的结构中包括处理器和收发器,该处理器被配置为支持该终端执行上述方法中相应的功能。该收发器用于支持该终端与其他设备之间的通信。该终端还可以包括存储器,该存储器用于与处理器耦合,其保存该终端必要的程序指令和数据。
第五方面,本申请实施例提供了一种计算机存储介质,用于储存为上述网络侧设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第六方面,本申请实施例提供了一种计算机存储介质,用于储存为上述终端所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第七方面,本申请实施例提供了一种通信***,包括至少一个上述方面描述的终端及网络侧设备。
上述第三方面及第七方面提供的方案,用于实现上述第一方面或第二方面提供的高速数据传输降级方法,因此可以与第一方面或第二方面达到相同的有益效果,此处不再进行赘述。
附图说明
图1为现有技术提供的一种通信网络架构示意图;
图2为本申请实施例提供的一种网络侧设备的结构示意图;
图3为本申请实施例提供的一种终端的结构示意图;
图4为本申请实施例提供的一种高速数据传输降级方法的流程示意图;
图5为本申请实施例提供的一种高速数据传输降级方法的流程示意图;
图6为本申请实施例提供的一种网络侧设备的结构示意图;
图7为本申请实施例提供的一种网络侧设备的结构示意图;
图8为本申请实施例提供的一种网络侧设备的结构示意图;
图9为本申请实施例提供的一种终端的结构示意图;
图10为本申请实施例提供的一种终端的结构示意图;
图11为本申请实施例提供的一种终端的结构示意图;
图12为本申请实施例提供的一种实现本方案的架构的结构示意图。
具体实施方式
载波聚合从3GPP标准Release 10引入,此后CA+MIMO产品不断追求高速率并升级,以满足市场需求。终端产品CAT等级不断升级,未来是over 1G CAT16等级产品。相比产品速率的增加变大,终端产品外观却向更小、更薄发展;而3GPP标准对CA和MIMO的控制是网络单方向指导,终端被动执行。这种***侧单方向控制CA+MIMO的弊端造成UE无法根据实际情况做业务。高速率模式下,因为RF和基带的通道数增加了相关器件的负担,热和功耗的问题得不到缓解,造成终端无法享受高速服务,并造成网络容量无法根据终端情况做调度,造成资源浪费。在某些场景下,终端需对其所使用的高速数据传输降级,以适应自身的需求。
基于此,本发明实施例的基本原理是:终端根据自身需求向网络侧设备发送降级请求,网络侧设备根据终端的请求获取降级的资源并进行降级。该降级按照终端的需求降级了高速数据传输的资源,不涉及终端与网络侧设备间的主链路,并且终端与网 络侧设备只需一次交互。因此,在高速数据传输中,按照终端需求实现了交互负荷低、并保持终端始终在网的资源降级,以保障终端的数据传输速率及提高终端用户的体验。通过该方法,实现动态、主动、online控制CA和MIMO,带来极好的通信体验,并对***侧合理调度UE做出贡献,同时,对终端外观因功耗和热平缓缓解而带来全新的、更小更薄的设计基础。
需要说明的是,本申请中描述的网络侧设备,即与终端通信的通信***中相对于用户侧的另一侧的设备,网络侧设备可以为无线网络的基站、核心网设备等等。在不同制式的通信***中,网络侧设备可以有不同的称呼,但均可以理解为本申请中描述的网络侧设备。本申请实施例对于网络侧设备的类型也不进行具体限定。
还需要说明的是,本申请中描述的终端,即用户使用的移动通信设备。终端可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、上网本、个人数字助理(Personal Digital Assistant,PDA)、电子书、移动电视、穿戴设备、个人电脑(Personal Computer,PC)等等。在不同制式的通信***中,终端可以有不同的称呼,但均可以理解为本申请中描述的终端。本申请实施例对于终端的类型也不进行具体限定。
本申请提供的连接高速数据传输降级方法,应用于如图1所示的通信网络架构中。如图1所示,该通信网络架构中包括至少一个网络侧设备101,以及与网络侧设备101交互而进行通信的高速数据传输模式的终端102。
需要说明的是,图1仅仅是通过举例对通信网络架构的示意。对于通信网络架构中包括的网络侧设备101的数量、网络侧设备101的类型、终端数量、终端类型、通信***的类型等,均可以根据实际需求配置,图1并不是对此内容的具体限定。其具体的通信网络架构,可以为长期演进(Long Term Evolution,LTE)网络、或者通用移动通信***(Universal Mobile Telecommunications System,UMTS)网络,或者其他网络。对于本申请的方案所应用的网络的类型,不进行具体限定。
下面结合附图,对本申请的实施例进行具体阐述。
如图2所示,图2为本申请实施例提供一种网络侧设备。网络侧设备20可以为图1所示的通信网络架构中的网络侧设备101。如图2所示,网络侧设备20可以包括:处理器201、存储器202、收发器203。下面结合图2对网络侧设备20的各个构成部件进行具体的介绍:
存储器202,可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);或者非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);或者上述种类的存储器的组合,用于存储可实现本申请方法的程序代码、以及配置文件。
处理器201是网络侧设备20的控制中心,可以是一个中央处理器(central processing unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。处理器201可以通过运行或执行存储在存 储器202内的软件程序和/或模块,以及调用存储在存储器202内的数据,执行网络侧设备20的各种功能。
收发器203用于网络侧设备20与其他单元进行交互。示例性的,收发器203可以为网络侧设备20的收发天线。
具体的,处理器201通过运行或执行存储在存储器202内的软件程序和/或模块,以及调用存储在存储器202内的数据,执行如下功能:
通过收发器203接收高速数据传输模式的终端发送的降级请求,该降级请求包括CA降级参数,和/或,MIMO降级参数;CA降级参数用于指示网络侧设备对终端的CA降级,MIMO降级参数用于指示网络侧设备对终端的MIMO降级;根据接收到的降级请求,获取终端的目标降级资源,目标降级资源包括网络侧设备对终端的CA分量载波降级时去激活的至少一个CA分量载波,和/或,网络侧设备对终端的MIMO降级时减少的MIMO业务流数;对目标降级资源降级。
如图3所示,图3为本申请实施例提供一种终端。终端30可以为图1所示的通信网络架构中的终端102。如图3所示,终端30可以包括:处理器301、存储器302、收发器303。下面结合图3对终端30的各个构成部件进行具体的介绍:
存储器302,可以是易失性存储器,例如RAM;或者non-volatile memory,例如ROM,flash memory,HDD或SSD;或者上述种类的存储器的组合,用于存储可实现本申请方法的程序代码、以及配置文件。
处理器301是终端30的控制中心,可以是一个CPU,也可以是ASIC,或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个DSP,或,一个或者多个FPGA。处理器301可以通过运行或执行存储在存储器302内的软件程序和/或模块,以及调用存储在存储器302内的数据,执行终端30的各种功能。
收发器303用于终端30与其他单元进行交互。示例性的,收发器303可以为终端30的收发天线。
具体的,处理器301通过运行或执行存储在存储器302内的软件程序和/或模块,以及调用存储在存储器302内的数据,执行如下功能:
通过收发器303向网络侧设备发送降级请求,降级请求包括CA降级参数,和/或,MIMO降级参数;降级请求用于指示网络侧设备对终端的目标降级资源降级;目标降级资源包括网络侧设备对终端的CA降级时去激活的终端的至少一个CA分量载波,和/或,网络侧设备对终端的MIMO降级时减少的MIMO业务流数;支持终端30在降级目标降级资源后的资源上传输数据。
如图4所示,本申请实施例提供一种高速数据传输降级方法,应用于网络侧设备与终端的交互中,该方法可以包括:
S401、高速数据传输模式的终端向网络侧设备发送降级请求。即,可理解为终端向网络侧设备发送降级请求,该终端当前存在高速数据传输,为便于理解,将其称之为高速数据传输模式的终端。
其中,降级请求可以包括CA降级参数,和/或,MIMO降级参数。该降级请求用于指示网络侧设备对终端的目标降级资源降级。
具体的,目标降级资源可以包括网络侧设备对终端的CA降级时去激活的该终端 的至少一个CA分量载波,和/或,网络侧设备对终端的MIMO降级时减少的MIMO业务流数。
需要说明的是,目标降级资源包括的内容,取决于降级请求的内容。降级请求中包括CA降级参数决定了目标降级资源包括网络侧设备对终端的CA降级时去激活的该终端的至少一个CA分量载波,降级请求中包括MIMO降级参数决定了目标降级资源包括网络侧设备对终端的MIMO降级时减少的MIMO业务流数。
可选的,降级请求的发送条件,可以根据实际需求配置,本申请实施例对此不进行具体限定。下面示例三种终端发送降级请求的条件,但并不是对终端发送降级请求的条件的具体限定。
条件1、降级请求为终端检测到终端的温度大于或等于预设阈值时发送。
具体的,根据条件1,终端可以实时或者周期性的检测自身的温度,其温度反映了终端的发热情况。当终端检测到自身的温度大于或等于预设阈值时,说明终端需要进行热缓解,此时终端发送降级请求对高速数据传输模式降级,以降低终端的发热。对于预设阈值的取值,可以根据实际求设定,对此不进行具体限定。
条件2、降级请求为终端在评估终端的发热大于或等于终端的热承受能力时发送。
具体的,在条件2中,终端可以实时或者周期性的检测自身的发热,该发热可以包括温度或者其他,在终端发热大于其热承受能力时,说明终端需要进行热缓解,此时终端发送降级请求对高速数据传输模式降级,以降低终端的发热。示例性的,终端可以根据自身的功耗、温度、电池电量等评估自身的热承受能力。需要说明的是,对于终端热承受能力的评估过程,本申请实施例不进行赘述,任何评估终端热承受能力的方法均可以应用于此。
条件3、降级请求为终端在其无线信道质量小于或等于预设门限时发送。
具体的,在条件3中,终端可以实时或者周期性的监测其与网络侧设备之间的无线信道质量,在终端的无线信道质量小于或等于预设门限时,说明终端不能承载过高速率的数据传输,此时终端发送降级请求对高速数据传输模式降级,以适应终端的网络性能,节约网络资源。对于预设门限的取值,可以根据实际求设定,对此不进行具体限定。对于无线信道质量的评估参数以及监测方法,本申请实施例也不进行具体限定,可以根据实际需求配置。
可选的,在实际应用中,可以配置目标降级资源由终端在发送降级请求之前确定,或者,也可以配置目标降级资源由网络侧设备接收到降级请求后确定,本申请实施例对于确定目标降级资源的执行者不进行具体限定。下面分别描述目标降级资源由终端或者网络侧设备确定时的具体方案:
第一种情况、目标降级资源由终端确定,如目标降级资源由终端在发送降级请求前确定。
可选的,终端可以根据终端的业务参数决策确定出目标降级资源中的至少一个CA分量载波和/或减少的MIMO流数。
示例性的,终端的业务参数可以包括但不限于:每个CA分量载波的业务种类、速率、带宽、频点、信道质量、业务重要性、MIMO流的性能等。
需要说明的是,上述示例只是列举了一些可以用于决策目标降级资源的终端的业 务参数,并不是对用于决策目标降级资源的终端的业务参数的类型的具体限定。在实际应用中,可以根据实际需求选择用于决策目标降级资源的终端的业务参数,本申请实施例对此不进行具体限定。
进一步的,对于根据用于决策目标降级资源的终端的业务参数决策目标降级资源的过程,下面示例进行描述,但并不是对根据用于决策目标降级资源的终端的业务参数决策目标降级资源的过程的具体限定。
示例性的,在***中预存终端的业务参数与目标降级资源的对应关系,在确定目标降级资源时,查询预设的对应关系即可确定出目标降级资源。
示例性的,在***中预先建模,建立终端的业务参数与目标降级资源的模型关系。在确定目标降级资源时,将终端的业务参数作为预先建立的模型的输入,对应的目标降级资源则确定为模型的输出。对于建模过程本申请实施例不再进行赘述,凡是任一建模方法均可引用于此。进一步的,建立终端的业务参数与目标降级资源的模型关系可以在***运行过程中不断的更新学习,本申请实施例对于该更新学习过程也不进行赘述,凡是任一更新学习过程均可应用于此。
需要说明的是,上述示例根据用于决策目标降级资源的终端的业务参数决策目标降级资源的过程,仅为举例说明。在实际应用中,还可以灵活的根据实际需求选择根据用于决策目标降级资源的终端的业务参数决策目标降级资源的具体方法,本申请实施例对此不进行限定。凡是根据用于决策目标降级资源的终端的业务参数决策目标降级资源的过程,均属于本申请的保护范围。
可选的,在确定的目标降级资源的过程中,若确定去激活的CA分量载波,可以仅确定本次降级去激活的CA分量载波,还可以确定去激活的CA分量载波的顺序,该CA分量载波的顺序用于多次进行降级时依次去激活。
对应于上述第一种情况,由终端在发送降级请求前确定目标降级资源,降级请求在包括CA降级参数时,降级请求还可以包括:至少一个CA分量载波的标识,网络侧设备接收到降级请求时,即可根据降级请求获取到目标降级资源中的至少一个CA分量载波。此时,CA降级参数用于指示网络侧设备去激活降级请求中包括的至少一个CA分量载波的标识指示的CA分量载波;目标降级资源也就包括了为降级请求中包括的至少一个CA分量载波的标识指示的CA分量载波。
对应于上述第一种情况,由终端在发送降级请求前确定目标降级资源,降级请求在包括MIMO降级参数时,MIMO降级参数可以用于指示网络侧设备将终端的MIMO业务流数降低预设步长,网络侧设备接收到降级请求时,即可根据降级请求获取到目标降级资源中减少的MIMO业务流数,此时目标降级资源包括了预设步长流数的MIMO业务流。
需要说明的是,预设步长可以根据实际需求配置固定的值或者与最新的MIMO业务流数相关的动态的值,本申请实施例对此不进行具体限定。可选的,预设步长可以包括降级前MIMO业务流数的一半。可选地,在一种增进用户体验的方式中,MIMO降级参数和/或预设步长,可由用户自己设置,后将用户设置的参数携带在降级请求中,一并发送给服务器侧的网络设备。
对应于上述第一种情况,由终端在发送降级请求前确定目标降级资源,降级请求 在包括MIMO降级参数时,降级请求还可以包括减少的MIMO流数,网络侧设备接收到降级请求时,即可根据降级请求获取到目标降级资源中减少的MIMO业务流数,此时目标降级资源包括了降级请求中减少的MIMO业务流数。
当然,由终端在发送降级请求前确定目标降级资源时,终端还可以采用其他形式将目标降级资源包含于降级请求中,使得网络侧设备接收到降级请求时可以直接获取到目标降级资源的内容,本申请实施例对于具体实现不再一一列举。
第二种情况、目标降级资源由接收降级请求的网络侧设备确定。
例如,高速数据传输的终端在请求网络侧设备对其资源进行降级时,向网络侧设备发送降级请求,目标降级资源由网络侧设备接收到降级请求后确定。也就是说,终端发送的降级请求中包括的CA降级参数和/或MIMO降级参数,仅用于指示网络侧设备对终端的目标降级资源降级,但具体的目标降级资源的内容,由网络侧设备在接收到降级请求后确定。
可选的,网络侧设备可以根据终端的业务参数决策确定出目标降级资源中的至少一个CA分量载波和/或减少的MIMO流数。
需要说明的是,在第二种情况中网络侧设备根据终端的业务参数决策确定出目标降级资源的过程,可以参考上述第一种情况中终端根据终端的业务参数决策确定出目标降级资源的过程,此处不再进行赘述。
进一步可选的,无论确定目标降级资源由终端或网络侧设备执行,对于降级请求的形式,以及降级请求中包括的CA降级参数、MIMO降级参数的内容以及形式,本申请实施例均不进行具体限定,可以根据实际需求配置。凡是终端向网络侧发送的指示网络侧设备对其资源进行降级的消息,均可以称之为本申请描述的降级请求;凡是终端向网络侧发送的指示网络侧设备对其CA分量载波去激活的信息,均可以称之为本申请描述的CA降级参数;凡是终端向网络侧发送的指示网络侧设备对其MIMO业务流减少的信息,均可以称之为本申请描述的MIMO降级参数。
可选的,参考常规的参数配置,用于降级的参数通常可以配置为负数值。示例性的,CA降级参数包括CQI=-1,MIMO降级参数包括Rank=-1。其中,CQI=-1用于指示对CA载波分量降级,对于Rank=-1用于指示将MIMO业务流减小一半。
需要说明的是,上述示例只是对CA降级参数、MIMO降级参数的内容及形式的举例说明,并不构成对此的具体限定。
S402、网络侧设备接收高速数据传输模式的终端发送的降级请求。
其中,S402中网络侧设备接收的降级请求,即S401中高速数据传输模式的终端发送的降级请求。对于降级请求已经在S401中进行了详细说明,此处不再进行赘述。
S403、网络侧设备根据降级请求,获取终端的目标降级资源。
其中,目标降级资源包括网络侧设备对终端的CA分量载波降级时去激活的至少一个CA分量载波,和/或,网络侧设备对终端的MIMO降级时减少的MIMO业务流数。对于目标降级资源的内容,已经在S401中进行了详细说明,此处不再进行赘述。
具体的,对应于S401中的两种情况,S403中网络侧设备根据降级请求,获取终端的目标降级资源的过程有所不同,具体描述如下两种情况:
情况1、对应于S401中的第一种情况,由终端在发送降级请求前确定了目标降级 资源。
示例性的,在情况1中,当降级请求中包括了CA降级参数,降级请求中还包括了至少一个CA分量载波的标识,网络侧设备根据降级请求,确定出目标降级资源则包括降级请求中包括的至少一个CA分量载波的标识指示的CA分量载波。
示例性的,在情况1中,当降级请求中包括了MIMO降级参数时,根据网络配置,MIMO降级参数可以有明确的定义,定义了MIMO降级参数用于指示网络侧设备将终端的MIMO业务流数降低预设步长,网络侧设备根据降级请求,确定出目标降级资源则包括预设步长流数的MIMO业务流。
示例性的,在情况1中,当降级请求中包括了MIMO降级参数时,降级请求中还包括了减少的MIMO流数,网络侧设备根据降级请求,确定出目标降级资源则包括降级请求中的减少的MIMO流数。
当然,在情况1中,由终端在发送降级请求前确定目标降级资源时,终端还可以采用其他形式将目标降级资源包含于降级请求中,网络侧设备接收到降级请求时对应的直接获取目标降级资源的内容,本申请实施例对于具体实现不再一一列举。
情况2、对应于S401中的第二种情况,由网络侧设备在接收到降级请求后确定目标降级资源。
在情况2中,网络侧设备在S403中直接确定目标降级资源,对于确定过程在S401中已经进行了详细阐述,此处不再进行赘述。
S404、网络侧设备对目标降级资源降级。
具体的,当目标降级资源的内容不同时,S404中网络侧设备对目标降级资源降级的过程不同,详细描述为下述两种方案。
方案1、对CA载波分量降级。
其中,对CA载波分量降级,即去激活CA载波分量,该过程需终端配合。在方案1中,网络侧设备对某一CA载波分量(例如载波分量1)降级的过程具体可以包括:网络侧设备向终端发送降级指示,该降级指示包括载波分量1,终端收到降级指示后,将载波分量1去激活。之后,终端结束在载波分量1与网络侧设备的通信。上述对CA载波分量降级的过程仅为举例说明,不构成具体限定。
方案2、对MIMO业务流降级。
其中,对MIMO业务流降级,即减少MIMO业务流。在方案2中,网络侧设备将终端的MIMO业务流降级时,直接将终端的MIMO业务流减少,使得终端工作在保留的MIMO业务流上,即完成了对MIMO业务流降级。上述对MIMO业务流降级的过程仅为举例说明,并不构成具体限定。
S405、终端在降级目标降级资源后的资源上传输数据。
具体的,经过S404中网络侧设备对终端的目标降级资源降级后,终端则在降级了目标降级资源后的资源上向网络侧设备传输数据,此时终端的高速数据传输模式相比于执行S401至S405之前降低了目标降级资源。
可选的,在一次执行S401至S405的过程中,可以仅降级CA载波分量或者MIMO业务流数,也可以在多次执行S401至S405的过程中,交替降级降级CA载波分量或者MIMO业务流数,或者,在一次执行S401至S405的过程中,降级CA载波分量和 MIMO业务流数。
通过本申请提供的高速数据传输降级方法,根据终端的降级请求对终端的目标降级资源降级;该降级过程满足了终端的需求,且终端与网络侧设备只需一次交互保证了交互负荷低,同时目标降级资源为终端的CA分量载波和/或MIMO业务流数,降级不涉及终端的主载波保证了终端始终在网,很好的提高了终端用户的体验。
进一步的,在执行一次S401至S405的过程之后,终端评估降级了目标降级资源后,是否满足了自身的业务需求,若满足则结束流程,若不满足,则可重复执行S401至S405的过程,进行下一次降级的过程,此处不再进行赘述。
可选的,终端的业务需求可以包括但不限于热缓解需求、信道质量需求等等。可选的,终端评估降级了目标降级资源后,是否满足了自身的业务需求,可以在S405之后立即执行,也可以在S405之后等待预设时长后执行,本申请实施例对此不进行具体限定。
需要说明的是,对于预设时长的具体取值,可以根据实际需求配置,本申请实施例对此不进行具体限定。
进一步的,为了兼容历代终端产品,本申请提供的高速数据传输降级方法增加体现终端具备主动发起降级的能力的信息,避免误降级。因此,如图5所示,本申请提供的高速数据传输降级方法在S401之前,还可以包括S406。
S406、终端向网络侧设备发送终端的能力指示消息。
其中,终端的能力指示消息中包括终端是否具备主动发起降级的能力的指示信息。
示例性的,指示信息可以包括能力指示消息中FGI信元的第117位是否为1,用于指示终端是否具备主动发起降级的能力。
可选的,终端的能力指示消息中用于指示终端具备主动发起降级的能力的指示信息所属的信元,以及在信元中的具***置,可以根据实际需求配置,本申请实施例对此不进行具体限定。
需要说明的是,S406是终端接入通信网络时执行,本申请实施例对于S406与S401之间的时间间隔不做要求。
对应于S406,本申请提供的高速数据传输降级方法在S401之后S403之前还可以包括S407。
S407、网络侧设备判断终端是否具备主动发起降级的能力。
具体的,在S407中网络侧设备根据终端的能力指示消息中包括的终端是否具备主动发起降级的能力的指示信息,判断终端是否具备主动发起降级的能力。
示例性的,当指示信息包括能力指示消息中FGI信元的第117位是否为1,用于指示终端是否具备主动发起降级的能力时,S407中网络侧设备判断终端是否具备主动发起降级的能力,具体可以实现为:网络侧设备判断终端的能力指示消息中FGI信元的第117位是否为1,若终端的能力指示消息中FGI信元的第117位为1,则判断终端具备主动发起降级的能力;若终端的能力指示消息中FGI信元的第117位不为1,则判断终端不具备主动发起降级的能力。
进一步的,S407中若判断终端具备主动发起降级的能力,则执行S403;若S407中判断终端不具备主动发起降级的能力,则忽略S402中接收的降级请求。
上述主要从网络侧设备与终端的交互工作过程的角度对本申请实施例提供的方案进行了介绍。可以理解的是,网络侧设备和终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
示例性地,从更贴近产品实现的角度,进一步描述一个实施例如下,其架构示意图如图12所示:
第一步:UE当前在CA+MIMO数传业务状态运行。UE热控制模块感知UE整机功耗和热情况,根据UE的自身情况(功耗、温度、电池电量等)评估整机热承受能力。当UE因为热而不能再承受CA+MIMO高速数传模式时,Notify热缓解REQ给MODEM。
第二步:MODEM收到UE热控制模块发送的Notify热缓解REQ后,获知UE发起了热缓解诉求,MODEM热缓解决策模块根据目前SCELLs业务种类、速率、带宽、频点、信道质量CSI和业务重要性和MIMO流的情况,启动降级CA的SCELLs/MIMO流层数。决策出需要降级的SCELLs、降级SCELLs的个数、降级MIMO和SCELLs的先后顺序等。
第三步:若MODEM热缓解决策模块决策发起降级CA时,发送对应SCELLs的CQI=-1上报(根据表一:热缓解降级CA/MMO信息);若MODEM热缓解决策模块决策发起降级MIMO时,发送Rank=-1的上报(根据表一:热缓解降级CA/MMO信息)。上报的内容还可包括降级SCELLs的个数或降级MIMO流和SCELLs的先后顺序,这些内容可由Modem热缓解决策模块根据不同UE热情况做不同设置,便于UE灵活配置。
Figure PCTCN2017088145-appb-000001
表(一)热缓解降级CA/MMO上报信息
第四步:若MODEM热缓解决策模块决策发起降级CA,***侧eNB(基站)收到MODEM上报的降级CA诉求时,根据UE能力指示消息UECapabilityInformation中 featureGroupIndRel10信元的117位断是否UE具备主动发起降级能力(featureGroupIndRel10第117位等于1则UE具备主动发起降级能力,否则不具备该能力),下发deactivate SCELLs(UE上报的分量载波)去激活指定的分量载波。若MODEM热缓解决策模块决策发起降级MIMO,***侧eNB收到MODEM上报的降级MIMO诉求时,根据UE能力指示消息UECapabilityInformation中featureGroupIndRel 10信元的117位断是否UE具备主动发起降级能力(featureGroupIndRel10第117位等于1则UE具备主动发起降级能力,否则不具备该能力)做降级MIMO处理,把目前的独立流降级为Rank/2层。
第五步:MODEM L 1/L2完成SCELLs的去激活/检测到MIMO已经降级,上报UE热控制模块,Notify热缓解IND,经过一段时间(UE热控制模块可设置具体时间)UE热得到缓解,则流程结束,跳出热缓解流程。否则,UE热控制模块再发起新一轮降级CA/MIMO诉求,并循环执行。
在上述的方案中,还可以进行如下考量:(1)决策是否分阶段降级,(2)决策是否CA/MIMO交替交集,(3)阶段降级后重新评估以决定后续是否降级。即,终端和网络侧设备可协商或被配置为上述三种考量中的任意一种或任意几种的组合。在降级CA时,降级指定CQI=-1的分量载波,在降级MIMO时,每次把MIMO降至Rank/2,其中,过程中的任何一步,热得到了缓解,则跳出热缓解流程,否则做下一步循环阶级,直到整机热得到缓解。这种反馈->评估->决策->执行的热缓解方案解做到了UE和网络的互相知道,是平滑式的、Online的通信体验极佳的热缓解方案。
在本方案实现的一种考量中,可对3GPP协议进行如下修改。需要说明的是,本处仅是示例,还可有其它的修改形式或修改方式,对此只要能同样实现本方案的目的,均可视为一致。
协议新增点1:如表二所示,可增加3GPP 36331Feature group indicators:featureGroupIndRel10第117位,用于判断UE是否具备主动发起降级的能力。
Figure PCTCN2017088145-appb-000002
表二
协议新增点2:如表三所示,可对3GPP 36213Chapter 7.2.3Channel Quality Indicator(CQI)definition新增CQI=-1的定义。UE上报CQI=-1告知***侧进行降CA SCELLs;***侧收到后,启动deactivate SCELLs流程。
Figure PCTCN2017088145-appb-000003
表三
协议新增点3:可对3GPP 36300chapter 11.2Activation/Deactivation Mechanism新增降CA和降MIMO描述,例如下述第二段。
11.2Activation/Deactivation Mechanism
To enable reasonable UE battery consumption when CA is configured,an activation/deactivation mechanism of SCELLss is supported(i.e.activation/deactivation does not apply to PCell).
If featureGroupIndRel10bit 117is set to 1,A UE reporting CQI=-1means that UE hope the network to deactivate the Cell,after network received the degrade information,it should deactivate corresponding SCELLs.
When an SCELLs is deactivated,the UE does not need to receive the corresponding PDCCH or PDSCH,cannot transmit in the corresponding uplink,nor is it required to perform CQI measurements.
协议新增点4:可对3GPP 36213Chapter 7.2UE procedure for reporting Channel State Information(CSI).
The time and frequency resources that can be used by the UE to report CSI which consists of Channel Quality Indicator(CQI),precoding matrix indicator(PMI),precoding type indicator(PTI),CSI-RS resource indicator(CRI),and/or rank indication(RI)are controlled by the eNB.If featureGroupIndRel10bit 117is set to 1,A UE reporting Rank=-1means that UE hope the network to degrade MIMO,after network received the degrade information,it should degrade current MIMO layer to half.
基于上述,通过终端评估UE功耗和热,灵活配置终端工作模式,打通终端和***侧互相知道双方状况,实现不掉线热的缓解,通信体验极好。通过交互,***侧知道了UE的热功耗和热承受能力,从而灵活调度***资源,并最大化使用。
本申请实施例可以根据上述方法示例对网络侧设备和终端进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图6示出了上述实施例中所涉及的网络侧设备的一种可能的结构示意图。网络侧设备60可以包括:接收单元601,获取单元602,降级单元603。接收单元601用于支持网络侧设备60执行图4或图5中的过程S402;获取单元602用于支持网络侧设备60执行图4或图5中的过程S403。降级单元603用于支持网络侧设备60执行图4或图5中的过程S404。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
可选的,如图7所示,网络侧设备60还可以包括判断单元604,用于支持网络侧设备60执行图5中的过程S407。
在采用集成的单元的情况下,图8示出了上述实施例中所涉及的网络侧设备的一种可能的结构示意图。网络侧设备80可以包括:处理模块801、通信模块802。处理 模块801用于对网络侧设备80的动作进行控制管理。例如,处理模块801用于支持网络侧设备80通过通信模块801执行图4图或图5中的过程S402;处理模块801用于支持网络侧设备80执行图4图或图5中的过程S403及S404。通信模块802还用于支持网络侧设备80与其他网络实体的通信。网络侧设备80还可以包括存储模块803,用于存储网络侧设备80的程序代码和数据。
其中,处理模块801可以为图2所示的网络侧设备20的实体结构中的处理器201,可以是处理器或控制器。例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器801也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块802可以为图2所示的网络侧设备20的实体结构中的收发器203,通信模块802可以是通信端口或者收发天线,或者可以是收发器、收发电路或通信接口等。存储模块803可以是图2所示的网络侧设备20的实体结构中的存储器202。
当处理模块801为处理器,通信模块802为收发器,存储模块803为存储器时,本申请实施例图8所涉及的网络侧设备80可以为图2所示的网络侧设备20。
在采用对应各个功能划分各个功能模块的情况下,图9示出了上述实施例中所涉及的终端的一种可能的结构示意图。终端90可以包括:发送单元901,传输单元902。发送单元901用于支持终端90执行图4或图5中的过程S401,图5中的过程S406;传输单元902用于支持终端90执行图4或图5中的过程S405。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图10示出了上述实施例中所涉及的终端的一种可能的结构示意图。终端100可以包括:处理模块1001、通信模块1002。处理模块1001用于对终端100的动作进行控制管理。例如,处理模块1001用于支持终端100通过通信模块1002执行图4或图5中的过程S401,处理模块1001用于支持终端100执行图4或图5中的过程S405。通信模块1002还用于支持终端100与其他网络实体的通信。终端100还可以包括存储模块1003,用于存储终端100的程序代码和数据。
其中,处理模块1001可以为图3所示的终端30的实体结构中的处理器301,可以是处理器或控制器。例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器1001也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1002可以为图3所示的终端30的实体结构中的收发器303,通信模块1002可以是通信端口或者收发天线,或者可以是收发器、收发电路或通信接口等。存储模块1003可以是图3所示的终端30的实体结构中的存储器302。
当处理模块1001为处理器,通信模块1002为收发器,存储模块1003为存储器时,本申请实施例图10所涉及的终端100可以为图3所示的终端30。
如图11所示,图11为本发明实施例提供的一种移动终端的结构示意图,该终端包括处理器、存储器、输入设备、显示设备、操控器件等。本申请实施例图11所涉及的终端1100 可以与图3所示的终端30的结构相同,或具有更多内部组成器件,图3所示的终端所执行的方法步骤,图11所示的移动终端均可执行。应该理解的是,图示移动终端1100仅是一个范例,实际产品可以具有比图11中所示出的更过的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置。该图所示的移动终端可用于执行如图4或图5所述的方法。图11中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。如图所示,该移动终端1100包括、RF(Radio Frequency,射频)电路110、存储器120、输入单元130、显示单元140、传感器150、音频电路160、WiFi(wireless fidelity,无线保真)模块170、处理器180、以及电源190等部件。下面对各构成部件进行具体介绍:
RF电路110可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器180处理;另外,将设计上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、发射器1101、接收器1102、耦合器、LNA(Low Noise Amplifier,低噪声放大器)、双工器等。此外,RF电路110还可以通过无线通信与网络和其它设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于GSM(Global System of Mobile communication,全球移动通讯***)、GPRS(General Packet Radio Service,通用分组无线服务)、CDMA(Code Division Multiple Access,码分多址)、WCDMA(Wideband Code Division Multiple Access,宽带码分多址)、LTE(Long Term Evolution,长期演进)、电子邮件、SMS(Short Messaging Service,短消息服务)等。
存储器120可用于存储软件程序以及模块,处理器180通过运行存储在存储器120的软件程序以及模块,从而执行移动终端100的各种功能应用以及数据处理。存储器120可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序(比如声音播放功能、图象播放功能等)等;存储数据区可存储根据移动终端100的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其它易失性固态存储器件。
输入单元130可用于接收输入的数字或字符信息,以及产生与移动终端100的用户设置以及功能控制有关的键信号输入。具体地,输入单元130可包括触控面板131以及其它输入设备132。触控面板131,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板131上或在触控面板131附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板131可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器180,并能接收处理器180发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板131。除了触控面板131,输入单元130还可以包括其它输入设备132。具体地,其它输入设备132可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元140可用于显示由用户输入的信息或提供给用户的信息以及移动终端100的各种菜单。显示单元140可包括显示面板141,可选的,可以采用LCD(Liquid Crystal  Display,液晶显示器)、OLED(Organic Light-Emitting Diode,有机发光二极管)等形式来配置显示面板141。进一步的,触控面板131可覆盖显示面板141,当触控面板131检测到在其上或附近的触摸操作后,传送给处理器180以确定触摸事件的类型,随后处理器180根据触摸事件的类型在显示面板141上提供相应的视觉输出。虽然在图1中,触控面板131与显示面板141是作为两个独立的部件来实现移动终端100的输入和输入功能,但是在某些实施例中,可以将触控面板131与显示面板141集成而实现移动终端100的输入和输出功能。
移动终端100还可包括至少一种传感器150,比如指纹传感器、光传感器、运动传感器以及其它传感器。具体地,指纹传感器用于识别用户输入的指纹信息。光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板141的亮度,接近传感器可在移动终端100移动到耳边时,关闭显示面板141和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别移动终端姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于移动终端100还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其它传感器,在此不再赘述。
音频电路160、扬声器161,麦克风162可提供用户与移动终端100之间的音频接口。音频电路160可将接收到的音频数据转换后的电信号,传输到扬声器161,由扬声器161转换为声音信号输出;另一方面,麦克风162将收集的声音信号转换为电信号,由音频电路160接收后转换为音频数据,再将音频数据输出至RF电路108以发送给比如另一移动终端,或者将音频数据输出至存储器120以便进一步处理。
WiFi属于短距离无线传输技术,移动终端100通过WiFi模块170可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图1示出了WiFi模块170,但是可以理解的是,其并不属于移动终端100的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器180是移动终端100的控制中心,利用各种接口和线路连接整个移动终端的各个部分,通过运行或执行存储在存储器120内的软件程序和/或模块,以及调用存储在存储器120内的数据,执行移动终端100的各种功能和处理数据,从而对移动终端进行整体监控。可选的,处理器180可包括一个或多个处理单元;优选的,处理器180可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器180中。
移动终端100还包括给各个部件供电的电源190(比如电池),优选的,电源可以通过电源管理***与处理器180逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗等功能。
尽管未示出,移动终端100还可以包括摄像头、蓝牙模块等,在此不再赘述。
如前述,本申请实施例提供的网络侧设备、终端可以用于实施上述本申请各实施例实现的方法,为了便于说明,仅示出了与本申请实施例相关的部分,具体技术细节未揭示的,请参照本申请各实施例。
进一步的,本申请实施例提供一种通信***,该通信***可以包括上述任一实施例示意的网络侧设备,及至少一个上述任一实施例示意的终端。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘 等各种可以存储程序代码的介质。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (36)

  1. 一种高速数据传输降级方法,其特征在于,包括:
    网络侧设备接收高速数据传输模式的终端发送的降级请求,所述降级请求包括载波聚合CA降级参数,和/或,多进多出MIMO降级参数;所述CA降级参数用于指示网络侧设备对所述终端的CA降级,所述MIMO降级参数用于指示所述网络侧设备对所述终端的MIMO降级;
    所述网络侧设备根据所述降级请求,获取所述终端的目标降级资源;其中,所述目标降级资源包括所述网络侧设备对所述终端的CA分量载波降级时去激活的至少一个CA分量载波,和/或,所述网络侧设备对所述终端的MIMO降级时减少的MIMO业务流数;
    所述网络侧设备对所述目标降级资源降级。
  2. 根据权利要求1所述的方法,其特征在于,
    所述降级请求包括所述CA降级参数时,所述降级请求还包括:所述至少一个CA分量载波的标识;所述CA降级参数用于指示所述网络侧设备去激活所述降级请求中包括的所述至少一个CA分量载波的标识指示的CA分量载波;所述目标降级资源包括所述降级请求中包括的所述至少一个CA分量载波的标识指示的CA分量载波;或者,
    所述降级请求包括所述MIMO降级参数时,所述MIMO降级参数用于指示所述网络侧设备将所述终端的MIMO业务流数降低预设步长,所述终端的目标降级资源包括所述预设步长流数的MIMO业务流。
  3. 根据权利要求1或2所述的方法,其特征在于,所述CA降级参数包括信道质量指示CQI=-1,和/或,所述MIMO降级参数包括秩Rank=-1,和/或,所述预设步长包括降级前MIMO业务流数的一半。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述降级请求为所述终端检测到所述终端的温度大于或等于预设阈值时发送;或者,所述降级请求为所述终端在评估所述终端的发热大于或等于所述终端的热承受能力时发送;或者,所述降级请求为所述终端在其无线信道质量小于或等于预设门限时发送。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,在所述网络侧设备接收高速数据传输的终端发送的降级请求之后,所述方法还包括:
    判断所述终端是否具备主动发起降级的能力;
    所述网络侧设备获取所述终端的目标降级资源,包括:若所述终端具备主动发起降级的能力,所述网络侧设备获取所述终端的目标降级资源。
  6. 根据权利要求5所述的方法,其特征在于,所述判断所述终端是否具备主动发起降级的能力,包括:
    判断所述终端的能力指示消息中功能组指示FGI信元的第117位是否为1;
    若所述终端的能力指示消息中所述FGI信元的第117位为1,所述终端具备主动发起降级的能力;若所述终端的能力指示消息中所述FGI信元的第117位不为1,所述终端不具备主动发起降级的能力。
  7. 一种高速数据传输降级方法,其特征在于,包括:
    高速数据传输模式的终端向网络侧设备发送降级请求,所述降级请求包括载波聚合CA降级参数,和/或,多进多出MIMO降级参数;所述降级请求用于指示所述网络侧设 备对所述终端的目标降级资源降级;所述目标降级资源包括所述网络侧设备对所述终端的CA降级时去激活的所述终端的至少一个CA分量载波,和/或,所述网络侧设备对所述终端的MIMO降级时减少的MIMO业务流数;
    所述终端在降级所述目标降级资源后的资源上传输数据。
  8. 根据权利要求7所述的方法,其特征在于,所述终端向网络侧设备发送降级请求,包括如下至少一种情况:
    所述终端检测到所述终端的温度大于或等于预设阈值时,所述终端向网络侧设备发送所述降级请求;
    所述终端确定其发热大于或等于所述终端的热承受能力时,所述终端向网络侧设备发送所述降级请求;
    所述终端确定其无线信道质量小于或等于预设门限时,所述终端向网络侧设备发送所述降级请求。
  9. 根据权利要求7或8所述的方法,其特征在于,在所述终端向网络侧设备发送降级请求之前,所述方法还包括:所述终端确定所述目标降级资源;
    所述降级请求包括所述CA降级参数时,所述降级请求还包括:所述目标降级资源中包括的至少一个CA分量载波的标识;所述CA降级参数用于指示所述网络侧设备去激活所述降级请求中包括的所述至少一个CA分量载波的标识指示的CA分量载波;所述目标降级资源包括所述降级请求中包括的所述至少一个CA分量载波的标识指示的CA分量载波;和/或,
    所述降级请求包括所述MIMO降级参数时,所述MIMO降级参数用于指示所述网络侧设备将所述终端的MIMO业务流数降低预设步长,所述终端的目标降级资源包括所述预设步长流数的MIMO业务流。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述CA降级参数包括信道质量指示CQI=-1,所述MIMO降级参数包括秩Rank=-1,所述预设步长包括降级前MIMO业务流数的一半。
  11. 根据权利要求7-10任一项所述的方法,其特征在于,在所述终端向网络侧设备发送降级请求之前,所述方法还包括:
    所述终端向所述网络侧设备发送所述终端的能力指示消息,所述能力指示消息用于指示所述终端具备主动发起降级的能力。
  12. 一种网络侧设备,其特征在于,包括:
    接收单元,用于接收高速数据传输模式的终端发送的降级请求,所述降级请求包括载波聚合CA降级参数,和/或,多进多出MIMO降级参数;所述CA降级参数用于指示网络侧设备对所述终端的CA降级,所述MIMO降级参数用于指示所述网络侧设备对所述终端的MIMO降级;
    获取单元,用于所述网络侧设备根据所述降级请求,获取所述终端的目标降级资源;其中,所述目标降级资源包括所述网络侧设备对所述终端的CA分量载波降级时去激活的至少一个CA分量载波,和/或,所述网络侧设备对所述终端的MIMO降级时减少的MIMO业务流数;
    降级单元,用于所述网络侧设备对所述目标降级资源降级。
  13. 根据权利要求12所述的网络侧设备,其特征在于,
    所述降级请求包括所述CA降级参数时,所述降级请求还包括:所述至少一个CA分量载波的标识;所述CA降级参数用于指示所述网络侧设备去激活所述降级请求中包括的所述至少一个CA分量载波的标识指示的CA分量载波;所述目标降级资源包括所述降级请求中包括的所述至少一个CA分量载波的标识指示的CA分量载波;
    所述降级请求包括所述MIMO降级参数时,所述MIMO降级参数用于指示所述网络侧设备将所述终端的MIMO业务流数降低预设步长,所述终端的目标降级资源包括所述预设步长流数的MIMO业务流。
  14. 根据权利要求12或13所述的网络侧设备,其特征在于,所述CA降级参数包括信道质量指示CQI=-1,所述MIMO降级参数包括秩Rank=-1,所述预设步长包括降级前MIMO业务流数的一半。
  15. 根据权利要求12-14任一项所述的网络侧设备,其特征在于,所述降级请求为所述终端检测到所述终端的温度大于或等于预设阈值时发送;或者,所述降级请求为所述终端在评估所述终端的发热大于或等于所述终端的热承受能力时发送;或者,所述降级请求为所述终端在其无线信道质量小于或等于预设门限时发送。
  16. 根据权利要求12-15任一项所述的网络侧设备,其特征在于,所述网络侧设备还包括:
    判断单元,用于在所述接收单元接收所述高速数据传输的终端发送的降级请求之后,判断所述终端是否具备主动发起降级的能力;
    所述获取单元具体用于,若所述判断单元判断所述终端具备主动发起降级的能力,获取所述终端的目标降级资源。
  17. 根据权利要求16所述的网络侧设备,其特征在于,所述判断单元具体用于:
    判断所述终端的能力指示消息中功能组指示FGI信元的第117位是否为1;
    若所述终端的能力指示消息中所述FGI信元的第117位为1,所述终端具备主动发起降级的能力;若所述终端的能力指示消息中所述FGI信元的第117位不为1,所述终端不具备主动发起降级的能力。
  18. 一种终端,其特征在于,所述终端为高速数据传输模式的终端,所述终端包括:
    发送单元,用于向网络侧设备发送降级请求,所述降级请求包括载波聚合CA降级参数,和/或,多进多出MIMO降级参数;所述降级请求用于指示所述网络侧设备对所述终端的目标降级资源降级;所述目标降级资源包括所述网络侧设备对所述终端的CA降级时去激活的所述终端的至少一个CA分量载波,和/或,所述网络侧设备对所述终端的MIMO降级时减少的MIMO业务流数;
    传输单元,用于在降级所述目标降级资源后的资源上传输数据。
  19. 根据权利要求18所述的终端,其特征在于,所述发送单元具体用于:
    检测到所述终端的温度大于或等于预设阈值时,向网络侧设备发送所述降级请求;或者,
    确定所述终端的发热大于或等于所述终端的热承受能力时,向网络侧设备发送所述降级请求;或者,
    确定所述终端的无线信道质量小于或等于预设门限时,向网络侧设备发送所述降级 请求。
  20. 根据权利要求18或19所述的终端,其特征在于,所述终端还包括确定单元,用于:
    在所述发送单元向所述网络侧设备发送降级请求之前,确定所述目标降级资源;
    所述降级请求包括所述CA降级参数时,所述降级请求还包括:所述目标降级资源中包括的至少一个CA分量载波的标识;所述CA降级参数用于指示所述网络侧设备去激活所述降级请求中包括的所述至少一个CA分量载波的标识指示的CA分量载波;所述目标降级资源包括所述降级请求中包括的所述至少一个CA分量载波的标识指示的CA分量载波;
    所述降级请求包括所述MIMO降级参数时,所述MIMO降级参数用于指示所述网络侧设备将所述终端的MIMO业务流数降低预设步长,所述终端的目标降级资源包括所述预设步长流数的MIMO业务流。
  21. 根据权利要求18-20任一项所述的终端,其特征在于,所述CA降级参数包括信道质量指示CQI=-1,所述MIMO降级参数包括秩Rank=-1,所述预设步长包括降级前MIMO业务流数的一半。
  22. 根据权利要求18-21任一项所述的终端,其特征在于,所述发送单元还用于:
    在向所述网络侧设备发送所述降级请求之前,向所述网络侧设备发送所述终端的能力指示消息,所述能力指示信息用于指示所述终端具备主动发起降级的能力。
  23. 一种网络侧设备,其特征在于,包括处理器、存储器、接收器,所述存储器用于存储计算机执行指令;
    所述接收器用于,接收高速数据传输模式的终端发送的降级请求,所述降级请求包括载波聚合CA降级参数,和/或,多进多出MIMO降级参数;所述CA降级参数用于指示网络侧设备对所述终端的CA降级,所述MIMO降级参数用于指示所述网络侧设备对所述终端的MIMO降级;
    所述处理器用于,根据所述降级请求,获取所述终端的目标降级资源;其中,所述目标降级资源包括所述网络侧设备对所述终端的CA分量载波降级时去激活的至少一个CA分量载波,和/或,所述网络侧设备对所述终端的MIMO降级时减少的MIMO业务流数;所述网络侧设备对所述目标降级资源降级。
  24. 根据权利要求23所述的网络侧设备,其特征在于,
    所述降级请求包括所述CA降级参数时,所述降级请求还包括:所述至少一个CA分量载波的标识;所述CA降级参数用于指示所述网络侧设备去激活所述降级请求中包括的所述至少一个CA分量载波的标识指示的CA分量载波;所述目标降级资源包括所述降级请求中包括的所述至少一个CA分量载波的标识指示的CA分量载波;或者,
    所述降级请求包括所述MIMO降级参数时,所述MIMO降级参数用于指示所述网络侧设备将所述终端的MIMO业务流数降低预设步长,所述终端的目标降级资源包括所述预设步长流数的MIMO业务流。
  25. 根据权利要求23或24所述的网络侧设备,其特征在于,所述CA降级参数包括信道质量指示CQI=-1,和/或,所述MIMO降级参数包括秩Rank=-1,和/或,所述预设步长包括降级前MIMO业务流数的一半。
  26. 根据权利要求23-25任一所述的网络侧设备,其特征在于,所述降级请求为所述终端检测到所述终端的温度大于或等于预设阈值时发送;或者,所述降级请求为所述终端在评估所述终端的发热大于或等于所述终端的热承受能力时发送;或者,所述降级请求为所述终端在其无线信道质量小于或等于预设门限时发送。
  27. 根据权利要求23-26任一所述的网络侧设备,其特征在于,在所述接收器接收高速数据传输的终端发送的降级请求之后,所述处理器还用于,判断所述终端是否具备主动发起降级的能力;
    所述处理器获取所述终端的目标降级资源具体为,若所述终端具备主动发起降级的能力,所述处理器获取所述终端的目标降级资源。
  28. 根据权利要求27所述的网络侧设备,其特征在于,所述处理器判断所述终端是否具备主动发起降级的能力,包括:
    所述处理器判断所述终端的能力指示消息中功能组指示FGI信元的第117位是否为1;若所述终端的能力指示消息中所述FGI信元的第117位为1,所述终端具备主动发起降级的能力;若所述终端的能力指示消息中所述FGI信元的第117位不为1,所述终端不具备主动发起降级的能力。
  29. 一种终端,其特征在于,包括处理器、存储器、发送器、接收器;所述存储器用于存储计算机执行指令,
    所述发送器用于,向网络侧设备发送降级请求,所述降级请求包括载波聚合CA降级参数,和/或,多进多出MIMO降级参数;所述降级请求用于指示所述网络侧设备对所述终端的目标降级资源降级;所述目标降级资源包括所述网络侧设备对所述终端的CA降级时去激活的所述终端的至少一个CA分量载波,和/或,所述网络侧设备对所述终端的MIMO降级时减少的MIMO业务流数;
    所述处理器用于,调用所述存储器存储的计算机执行指令,指示所述发送器和接收器在降级所述目标降级资源后的资源上传输数据。。
  30. 根据权利要求29所述的方法,其特征在于,所述发送器向网络侧设备发送降级请求,包括如下至少一种情况:
    所述处理器检测到所述终端的温度大于或等于预设阈值时,指示所述发送器向网络侧设备发送所述降级请求;
    所述处理器确定其发热大于或等于所述终端的热承受能力时,指示所述发送器向网络侧设备发送所述降级请求;
    所述处理器确定其无线信道质量小于或等于预设门限时,指示所述发送器向网络侧设备发送所述降级请求。
  31. 根据权利要求29或30所述的方法,其特征在于,所述发送器向网络侧设备发送降级请求之前,所述处理器还用于确定所述目标降级资源;
    若所述处理器确定降级请求包括所述CA降级参数时,所述降级请求还包括:所述目标降级资源中包括的至少一个CA分量载波的标识;所述CA降级参数用于指示所述网络侧设备去激活所述降级请求中包括的所述至少一个CA分量载波的标识指示的CA分量载波;所述目标降级资源包括所述降级请求中包括的所述至少一个CA分量载波的标识指示的CA分量载波;和/或,
    若所述处理器确定降级请求包括所述MIMO降级参数时,所述MIMO降级参数用于指示所述网络侧设备将所述终端的MIMO业务流数降低预设步长,所述终端的目标降级资源包括所述预设步长流数的MIMO业务流。
  32. 根据权利要求29-31任一所述的方法,其特征在于,所述CA降级参数包括信道质量指示CQI=-1,和/或,所述MIMO降级参数包括秩Rank=-1,和/或,所述预设步长包括降级前MIMO业务流数的一半。
  33. 根据权利要求29-32任一项所述的方法,其特征在于,所述发送器向网络侧设备发送降级请求之前,还用于,向所述网络侧设备发送所述终端的能力指示消息,所述能力指示消息用于指示所述终端具备主动发起降级的能力。
  34. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当其在网络侧设备上运行时,使得所述网络设备执行如权利要求1-6任一项所述的方法。
  35. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当其在终端上运行时,使得所述网络设备执行如权利要求7-11任一项所述的方法。
  36. 一种通信***,其特征在于,包括:
    如权利要求12-17任一项或者权利要求23-28任一所述的网络侧设备;
    至少一个如权利要求18-22任一项或者权利要求29-32任一所述的终端。
PCT/CN2017/088145 2017-01-13 2017-06-13 一种高速数据传输降级方法、设备及*** WO2018129856A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17891183.0A EP3565300B1 (en) 2017-01-13 2017-06-13 Method, device and system for high-speed data transmission degrading
US16/477,757 US11258492B2 (en) 2017-01-13 2017-06-13 High-speed data transmission degradation method, device, and system
CN201780083212.2A CN110169108B (zh) 2017-01-13 2017-06-13 一种高速数据传输降级方法、设备及***

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710026100.5 2017-01-13
CN201710026100 2017-01-13

Publications (1)

Publication Number Publication Date
WO2018129856A1 true WO2018129856A1 (zh) 2018-07-19

Family

ID=62839770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088145 WO2018129856A1 (zh) 2017-01-13 2017-06-13 一种高速数据传输降级方法、设备及***

Country Status (4)

Country Link
US (1) US11258492B2 (zh)
EP (1) EP3565300B1 (zh)
CN (1) CN110169108B (zh)
WO (1) WO2018129856A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3883301A4 (en) * 2018-12-14 2022-03-16 Huawei Technologies Co., Ltd. PROCEDURE FOR SWITCHING BETWEEN MODES IN A WIFI NETWORK AND TERMINAL

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4009714A1 (en) * 2020-12-04 2022-06-08 Nokia Technologies Oy Battery aware carrier activation
CN117157705A (zh) * 2022-03-15 2023-12-01 华为技术有限公司 数据处理方法和装置
CN115665792B (zh) * 2022-12-22 2023-04-07 灿芯技术(深圳)有限公司 一种新型的WiFi多用户无线通信技术性能测试方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7583630B2 (en) * 2004-06-28 2009-09-01 Samsung Electronics Co., Ltd. Method and system for providing mobile station control of data transmission rates in a wireless network
CN102017493A (zh) * 2008-02-25 2011-04-13 爱立信电话股份有限公司 减轻移动通信***中移动装置过载状况
CN102123507A (zh) * 2010-01-08 2011-07-13 中兴通讯股份有限公司 一种载波聚合***中载波的使用方法和装置
CN105472634A (zh) * 2014-08-20 2016-04-06 中兴通讯股份有限公司 载波聚合小区处理方法、装置、终端及基站

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101587676B1 (ko) * 2008-04-25 2016-01-21 인터디지탈 패튼 홀딩스, 인크 이동 통신 네트워크에서의 셀 재선택을 위한 방법 및 장치
TWI419580B (zh) * 2009-04-15 2013-12-11 Htc Corp 處理關於量測能力的方法及其相關通訊裝置
US9351244B2 (en) * 2010-02-04 2016-05-24 Telefonaktiebolaget Lm Ericsson (Publ) Prioritization of energy over system throughput in a wireless communications system
CN104365038B (zh) * 2012-06-09 2018-02-09 苹果公司 具有载波聚合能力的无线通信设备中的rf链管理
WO2014027941A1 (en) * 2012-08-13 2014-02-20 Telefonaktiebolaget L M Ericsson (Publ) Enhancing uplink measurements for positioning by adaptively using multi-antenna systems
CN103347293A (zh) 2013-07-11 2013-10-09 北京大学 一种移动通信基站***中天线自适应节能方法
US9572040B2 (en) * 2013-10-22 2017-02-14 Acer Incorporated Unlicensed spectrum sharing method, base station using the same, and user equipment using the same
US9479315B2 (en) * 2013-12-16 2016-10-25 Apple Inc. System and method for user equipment initiated management of carrier aggregation
KR102326701B1 (ko) * 2014-05-28 2021-11-16 엘지전자 주식회사 Mimo 수신기가 mimo 송신기와의 통신을 위한 파라미터를 결정하는 방법
US10405278B2 (en) * 2014-10-31 2019-09-03 Qualcomm Incorporated Low power scheduling
US20170019306A1 (en) * 2015-07-15 2017-01-19 Qualcomm Incorporated Techniques for supporting definitions for reduced numbers of spatial streams
CN106231662B (zh) 2016-09-30 2019-08-20 维沃移动通信有限公司 一种终端天线的切换控制方法及终端
US11234119B2 (en) * 2017-01-10 2022-01-25 Futurewei Technologies, Inc. System and method for updating user equipment capability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7583630B2 (en) * 2004-06-28 2009-09-01 Samsung Electronics Co., Ltd. Method and system for providing mobile station control of data transmission rates in a wireless network
CN102017493A (zh) * 2008-02-25 2011-04-13 爱立信电话股份有限公司 减轻移动通信***中移动装置过载状况
CN102123507A (zh) * 2010-01-08 2011-07-13 中兴通讯股份有限公司 一种载波聚合***中载波的使用方法和装置
CN105472634A (zh) * 2014-08-20 2016-04-06 中兴通讯股份有限公司 载波聚合小区处理方法、装置、终端及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3565300A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3883301A4 (en) * 2018-12-14 2022-03-16 Huawei Technologies Co., Ltd. PROCEDURE FOR SWITCHING BETWEEN MODES IN A WIFI NETWORK AND TERMINAL
US11882521B2 (en) 2018-12-14 2024-01-23 Huawei Technologies Co., Ltd. Mode switching method in Wi-Fi network and terminal device

Also Published As

Publication number Publication date
CN110169108B (zh) 2022-04-22
US11258492B2 (en) 2022-02-22
EP3565300B1 (en) 2021-08-11
US20190363768A1 (en) 2019-11-28
EP3565300A1 (en) 2019-11-06
CN110169108A (zh) 2019-08-23
EP3565300A4 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
KR102666697B1 (ko) 빔 지시 방법, 장치, 장비 및 매체
KR102495173B1 (ko) 다운링크 채널의 수신 방법, 송신 방법, 단말 및 기지국
KR102542288B1 (ko) 정보 리포팅 방법, 단말 및 네트워크 기기
JP7227382B2 (ja) アンテナパネル制御方法、端末機器及びネットワーク側機器
CA3063224C (en) Measurement configuration method and related product
JP7073583B2 (ja) Csi処理ユニット及びリソースの処理方法、装置並びにシステム
WO2018129856A1 (zh) 一种高速数据传输降级方法、设备及***
CN112187437B (zh) 带宽部分bwp的激活方法及相关产品
WO2022127682A1 (zh) 天线切换方法及装置
WO2018082693A1 (zh) Csi上报方法、装置以及设备
CN112583544B (zh) 确定源参考信号信息的方法和通信设备
WO2018059387A1 (zh) 一种数据传输的方法、相关装置以及***
KR20220087539A (ko) 정보 전송 방법 및 장비
WO2019036851A1 (zh) 一种信道状态信息测量及反馈方法及相关产品
WO2021109954A1 (zh) 波束失败恢复方法、终端及网络侧设备
KR102591574B1 (ko) 하향 링크 제어 정보의 수신 방법, 전송 방법, 단말 및 네트워크측 장치
WO2016023201A1 (zh) 一种并发业务的处理方法及终端
WO2020119697A1 (zh) Csi测量方法及装置
WO2019149161A1 (zh) 一种功率控制方法、相关装置及产品
WO2018177049A1 (zh) 数据传输方法、终端设备和网络设备
TWI774045B (zh) 行動通訊裝置及多卡連線管理方法
JP7307802B2 (ja) Pucchの送信方法、受信方法、端末及びネットワーク側機器
WO2019000365A1 (zh) 数据传输方法及相关产品
US11368961B2 (en) Processing method for secondary cell state transition and communication device
WO2021227855A1 (zh) 一种数据处理方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017891183

Country of ref document: EP

Effective date: 20190729