WO2018128194A1 - 吸着走行装置 - Google Patents

吸着走行装置 Download PDF

Info

Publication number
WO2018128194A1
WO2018128194A1 PCT/JP2018/000132 JP2018000132W WO2018128194A1 WO 2018128194 A1 WO2018128194 A1 WO 2018128194A1 JP 2018000132 W JP2018000132 W JP 2018000132W WO 2018128194 A1 WO2018128194 A1 WO 2018128194A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption
traveling
suction
decompression chamber
sub
Prior art date
Application number
PCT/JP2018/000132
Other languages
English (en)
French (fr)
Inventor
大橋 俊夫
琢也 赤木
裕一 ▲高▼▲桜▼
明 岡部
Original Assignee
インダストリーネットワーク株式会社
株式会社ネクスコ東日本エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インダストリーネットワーク株式会社, 株式会社ネクスコ東日本エンジニアリング filed Critical インダストリーネットワーク株式会社
Priority to JP2018560411A priority Critical patent/JP6901502B2/ja
Priority to US16/476,265 priority patent/US11459041B2/en
Publication of WO2018128194A1 publication Critical patent/WO2018128194A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/06Endless track vehicles with tracks without ground wheels
    • B62D55/075Tracked vehicles for ascending or descending stairs, steep slopes or vertical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/24Tracks of continuously flexible type, e.g. rubber belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/26Ground engaging parts or elements
    • B62D55/265Ground engaging parts or elements having magnetic or pneumatic adhesion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/024Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces

Definitions

  • the present invention relates to an adsorption traveling device.
  • traveling devices that can run on the wall surfaces are desired.
  • a traveling device a plurality of suction holes having suction openings are provided on a wall surface side defined by a partition wall in an endless traveling zone (sometimes referred to as a crawler) formed of a soft elastic body.
  • an endless traveling zone sometimes referred to as a crawler
  • the adsorption traveling device described in Patent Document 1 has an open / close valve disposed between the decompression chamber and the adsorption chamber, and closes the open / close valve when the atmospheric pressure in the adsorption chamber becomes atmospheric pressure, and when the atmospheric pressure in the decompression chamber and the adsorption chamber is the same.
  • the on-off valve can be opened.
  • the opening / closing valve may not open due to the atmospheric pressure difference. In such a case, there is a problem that the on-off valve does not function and the adsorption force is reduced.
  • the adsorption traveling device described in Patent Document 2 can be sucked from the adsorption hole provided on the wall surface side of the endless traveling zone through the vent hole and the decompression chamber, and can be adsorbed on the wall surface to travel. It has become.
  • the adsorption hole is divided by a partition wall to form an adsorption chamber, but the endless traveling zone is a soft elastic body, and the partition wall is a simple rectangular parallelepiped and narrow in width. It has an easy structure, and when the partition wall is deformed, air leakage occurs between the wall surface. Then, there is a problem that the decompression chamber becomes atmospheric pressure (positive pressure) and the adsorptive power is significantly reduced.
  • the endless traveling zone described in Patent Document 2 is bonded to the timing belt with the soft elastic body as a raw material. Therefore, if there is a step on the wall surface, the endless traveling zone cannot follow the step shape and the gap There is a problem that the adsorbing power is reduced.
  • a plurality of suction traveling devices are connected in the traveling direction (vertical direction), or plural in the direction orthogonal to the traveling direction (horizontal direction). It cannot be connected. Therefore, the suction force cannot be complemented by a plurality of suction traveling devices, and there are cases where traveling cannot be performed depending on the state of the wall surface. In addition, there is a problem that one unit cannot carry (attach) a heavy object, and the work time becomes long, for example, when a maintenance inspection of a large area wall surface is performed.
  • an adsorption traveling device capable of maintaining a stable adsorption force
  • an adsorption traveling device capable of efficiently performing wall surface work even on a large wall surface or ceiling, or a large weight
  • the present invention also provides an adsorption traveling device that can be equipped with a working device.
  • An adsorption traveling device is an adsorption traveling device that adsorbs and travels on a traveling surface, and includes a first drive unit and a second drive unit having endless travel zones in which a plurality of adsorption holes are formed, and air suction.
  • a main decompression chamber that is decompressed by the apparatus, a sub decompression chamber that communicates with the main decompression chamber and is disposed in each of the first drive unit and the second drive unit, and on the placement side of the suction hole of the sub decompression chamber
  • a plurality of vent holes provided to communicate each of the sub-decompression chamber and the plurality of suction holes, and opening / closing means for releasing or closing each of the plurality of vent holes, Releases the vent holes when the air pressures of the plurality of adsorption chambers formed by the wall surfaces and the adsorption holes are the same as the atmospheric pressures of the sub-decompression chambers, Close the vent when the air pressure is higher And, upon closing the vent hole, the said vent hole, characterized in that the gap size that air pressure of the sub-vacuum chamber does not affect the pressure of the other of said suction chamber is formed.
  • the adsorption hole has an opening area on the sub-decompression chamber side smaller than an opening area on the wall surface side.
  • the adsorption traveling device of the present invention has an attachment member fixed to the bottom of the main decompression chamber on the wall surface side, and part of the attachment member includes the first drive unit and the second drive. It is preferable that the frame part which can attach a working apparatus etc. protrudes on the outer side of the part.
  • adsorption traveling device of the present invention a plurality of the adsorption traveling devices are connected in the traveling direction and / or in the direction orthogonal to the traveling direction by the attachment member and the connecting means fixed to the main decompression chamber. It is preferable.
  • the connecting means includes a connecting plate disposed between adjacent mounting members, and a hinge for connecting the mounting plate and the connecting plate.
  • the adsorption traveling device of the present invention includes an endless traveling zone in which a plurality of adsorption holes are formed, and an air suction device that sucks air on the suction hole side, and the endless traveling zone is on the traveling surface.
  • an adsorption traveling device that performs at least one of forward or reverse by adsorbing and holding the posture, and provided with opening / closing means for exerting or not exerting pressure reduction by the air suction device on the adsorption hole side
  • the opening / closing means opens when the suction hole side is not in communication with the external space, thereby depressurizing the suction hole, and has a slight gap when the suction hole side is in communication with the external space and is at atmospheric pressure.
  • it is configured to prevent the opening / closing means from being closed when the closed state returns to the non-communication state and the suction hole side is not depressurized.
  • the opening / closing means is disposed on the main body side facing the endless traveling belt, and a plurality of vent holes installed so as to communicate with the suction holes provided on the main body side. It is preferable that the valve body is configured to open and close each of the valve body and an elastic member that urges the valve body in a direction in which the vent hole is released.
  • the endless traveling zone has a two-layer structure of a power transmission belt to which traveling driving force is transmitted and a traveling zone of a soft elastic body, and the traveling zone has a length. It is preferable to be fixed to the power transmission belt in a compressed state.
  • the endless traveling band further includes an adsorption band in which a band member of a soft elastic body and a sliding tape are laminated on the sub-decompression chamber side of the power transmission belt.
  • the suction band is fixed to the center in the width direction of the endless travel band, and has a hole that can communicate with the vent hole and the suction hole. It is preferable that the sliding tape is arranged so as to slide in close contact with the outer shell surface of the sub-decompression chamber on the running surface side.
  • the outer shell surface includes a plurality of rollers arranged in the longitudinal direction, with a part of the outer peripheral surface protruding from the outer shell surface on both sides in the width direction across the suction belt. It is preferable that the roller is arranged to roll by the power transmission belt when traveling while adsorbing to the traveling surface.
  • FIG. 1 It is an appearance perspective view showing the adsorption traveling device concerning a 1st embodiment of the present invention. It is the perspective view which looked at the adsorption traveling device concerning a 1st embodiment of the present invention from the wall surface side, and is the figure which disassembled the endless traveling belt. It is sectional drawing which expands and shows a part of cross-sectional structure of the suction hole which the suction traveling apparatus shown in FIG.1 and FIG.2 has, (A) is the structure by the technique which this inventor created previously, (B) is The structure by embodiment of this invention is represented. It is a figure explaining the example of a structure of the opening-closing means which the adsorption
  • FIG. 2 has, and an effect
  • suction travel apparatus with which the attachment frame which concerns on the 2nd Embodiment of this invention was fixed is shown, (A) is the top view seen from the wall surface side, (B) is the front view seen from the front side. It is a figure which shows the adsorption
  • FIG. 6 is a cross-sectional view showing a state in which the second drive unit is adsorbed to a wall surface that is a running surface in the first endless running zone peripheral example.
  • FIG. 6 is a cross-sectional view showing the relationship between an endless travel zone and drive wheels in a peripheral example of a second endless travel zone that can be used in the suction travel device and other suction travel devices according to the first to fourth embodiments of the present invention. is there.
  • FIG. 6 is a partial cross-sectional view showing an enlarged configuration of a sub-decompression chamber portion in a peripheral example of a third endless traveling zone that can be used in the suction traveling device and other suction traveling devices according to the first to fourth embodiments of the present invention.
  • the suction traveling device 1 of the present invention is a device that can freely travel by being attracted to a wall surface of a vertical or steep slope, for example, a wall surface (glass) of a large building such as a building wall, an expressway overpass or a bridge pier.
  • This is a traveling device that can be suitably used for work such as maintenance inspection and cleaning.
  • FIG. 1 is an external perspective view showing an adsorption traveling device 1 according to the first embodiment.
  • the left side of the drawing is the left side
  • the right side is the right side
  • the front side of the paper surface is the upper side
  • the opposite side is the lower side or the wall surface side.
  • the traveling direction of the suction traveling device 1 is arbitrary, but here, the upper left direction in the figure will be referred to as the front or forward direction, and the opposite side will be described as the rear or backward direction.
  • the adsorption traveling device 1 includes a first drive unit 2 and a second drive unit 3 that are disposed at both left and right ends.
  • the 1st drive part 2 and the 2nd drive part 3 are the same structures, they are arrange
  • a blower motor unit 5 that is an air suction device is disposed above the decompression chamber 4.
  • the blower motor unit 5 is disposed at the left and right intermediate positions of the first drive unit 2 and the second drive unit 3, and is disposed at a substantially central portion of the entire adsorption traveling device 1. Further, the blower motor unit 5 is disposed at the center in the horizontal direction of the decompression chamber 4 so as to rise upward.
  • a gear box 6 is disposed on the rear side of the blower motor unit 5.
  • the gear box 6 is provided with a first motor 7 that applies a rotational driving force to the first driving unit 2 on the upper side and a second motor 8 that applies a rotational driving force to the second driving unit 3 on the lower side. .
  • the first motor 7 and the second motor 8 are so-called geared motors, and output power by decelerating the first drive unit 2 and the second drive unit 3 to appropriate rotational speeds.
  • the first motor 7 and the second motor 8 can be independently driven and controlled independently, so that the adsorption traveling device 1 can be moved forward or backward, or the traveling direction can be bent. Can be swiveled.
  • a sprocket 9 is fixed to the first motor 7 and a driving force is transmitted to the sprocket 11 on the driving wheel 10 side by a chain 12.
  • the sprocket 11 is fixed to the drive wheel 10 and rotates the drive wheel 10.
  • the sprocket 13 is fixed to the second motor 8 and the driving force is transmitted by the chain 12 to the sprocket 15 on the drive wheel 14 side.
  • the sprocket 15 is fixed to the drive wheel 14 and rotates the drive wheel 14.
  • Driven wheels 16 and 6 are disposed on the front sides of the first drive unit 2 and the second drive unit 3, respectively. In FIG. 1, the driven wheel 16 on the first drive unit 2 side is not shown, but is shown in FIG. 2 described later.
  • the driving wheels 10 and 14 and the driven wheels 16 and 16 are formed with convex portions and concave portions extending in the left and right directions on the outer periphery alternately in the circumferential direction (hereinafter referred to as “teeth shape”).
  • an endless traveling zone 20 is attached to the drive wheel 10 and the driven wheel 16.
  • another endless traveling belt 20 is mounted on the drive wheel 14 and the driven wheel 16.
  • a plurality of suction holes 21 are arranged in the endless traveling zones 20 and 20 in the long side direction. The suction holes 21 are formed at equal intervals over the entire circumference of the endless travel zones 20 and 20 and penetrate in the thickness direction.
  • FIG. 1 the structure of the suction hole 21 is simplified. The configuration of the suction hole 21 will be described in detail with reference to FIGS. 3 and 4.
  • the blower motor unit 5 includes a blower pump 23 that sucks air in the decompression chamber 4 and a blower motor 24 that rotates the blower pump 23 in the blower case 22.
  • An exhaust port 25 is formed on the side surface of the blower case 22 to discharge the air sucked from the decompression chamber 4 by the blower pump 23 to the outside.
  • a cooling fin 26 for the blower motor 24 is provided at the upper end of the blower motor unit 5.
  • the blower pump 23 has a well-known umbrella-type turbofan and sucks air from the decompression chamber 4 to decompress the decompression chamber 4.
  • Known blower pumps 23 and blower motors 24 can be employed. Note that the blower motor 24 may be provided with a cooling fan.
  • FIG. 2 is a perspective view of the adsorption traveling device 1 as seen from the wall surface side (downward side), and is an exploded view of the endless traveling zone 20.
  • the decompression chamber 4 is developed in a substantially H shape.
  • the decompression chamber portion 4 includes a central main decompression chamber portion 30 and a pair of sub decompression chamber portions 31 disposed on the left and right sides of the main decompression chamber portion 30.
  • the whole is developed in a substantially H shape.
  • An internal space of the main decompression chamber 30 is referred to as a main decompression chamber 32
  • an internal space of the sub decompression chamber 31 is referred to as a sub decompression chamber 33.
  • the main decompression chamber 32 and the sub decompression chamber 33 are communicated with each other through a hole (not shown).
  • the structures of the sub decompression chambers 31 on the left and right sides are the same.
  • the two sub decompression chamber portions 31, 31 are fixed to the left and right side walls of the main decompression chamber portion 30 so as to be integrated with each other.
  • a plurality of vent holes 35 that penetrate the bottom portion 34 are arranged at equal intervals in the front-rear direction.
  • the plurality of vent holes 35 are arranged in a larger number than the number of suction holes 21 provided in the bodyless traveling zone 20. That is, in any case during the driving of the bodyless traveling zone 20, the suction hole 21 and the vent hole 35 are arranged so that at least a part of each is in communication.
  • the gear box 6 is fixed to the rear wall 36 that is the side wall of the main decompression chamber 30, and the first motor 7 and the second motor 8 are mounted in the gear box 6 as described with reference to FIG. 1.
  • a drive wheel support plate 38 is fixed to the rear side of the outer side wall portion 37 of each sub decompression chamber portion 31, 31.
  • a drive wheel support plate 40 is fixed to the rear side of the inner side wall 39 of each sub decompression chamber 31, 31.
  • the drive wheels 10 and 14 are disposed between the drive wheel support plate 38 and the drive wheel support plate 40, respectively, and are rotatably supported by a ball bearing (not shown).
  • a tooth pattern is formed on the outer periphery of the drive wheels 10 and 14 as described above.
  • a driven wheel support plate 41 is fixed to the front side of the outer side wall 37 of each of the sub decompression chambers 31 and 31.
  • a driven wheel support plate 42 is fixed on the front side of the inner side wall 39 of each sub decompression chamber 31, 31.
  • the two driven wheels 16, 16 are disposed between the driven wheel support plate 41 and the driven wheel support plate 42, respectively, and are rotatably supported by a ball bearing (not shown).
  • a tooth pattern is formed on the outer periphery of the driven wheels 16 and 16.
  • each drive wheel support plate 38, 40 and each driven wheel support plate 41, 42 are provided with a long hole 43 for attaching to the sub decompression chamber 31 with a screw or the like (not shown). It has been.
  • the driving wheel support plates 38, 40 and the driven wheel support plates 41, 42 can be moved in the front-rear direction.
  • the driving wheels 10 and 14 and the driven wheels 16 and 16 are moved in the front-rear direction so that the endless traveling zones 20 and 20 can be adjusted to have appropriate tension.
  • Each of the endless traveling zones 20 and 20 is sandwiched between an outer driving wheel support plate 38 and an inner driving wheel maintenance plate 40, an outer driven wheel support plate 41 and an inner driven wheel support plate 42.
  • 14 and driven wheels 16 and 16 are position-regulated so as not to deviate.
  • the endless traveling belt 20 includes a timing belt 45, which is an example of an inner power transmission belt, and an outer traveling belt 46, which are laminated and fixed.
  • the thickness of the timing belt 45 is much thinner than the traveling belt 46 and is preferably formed of a soft elastic material.
  • a tooth shape is formed in which the convex portion and the concave portion extend in the left-right direction and are arranged adjacent to each other in the front-rear direction.
  • the teeth formed on the moving wheels 16 and 16 mesh with each other, and the rotation of the driving wheels 10 and 14 is converted into linear motion in the front-rear direction of the endless traveling zones 20 and 20 without slipping.
  • the suction hole 21 provided in the endless traveling belts 20 and 20 has a through hole 49 in the center thereof passing through the traveling belt 46 and the timing belt 45 and communicates with the vent hole 35 (see FIG. 3B). In FIG. 2, illustration of the through hole 49 is omitted.
  • the traveling zone 46 is formed of a porous semi-independent semi-open cell.
  • the semi-independent semi-open cell body is, for example, a porous material such as EPDM (ethylene propylene rubber) foamed material which is airtight but soft and elastic and easily compressible. Moreover, the thing with a large friction coefficient with respect to a wall surface and being hard to slip is preferable.
  • the timing belt 45 may be referred to as a cam belt or a cogto belt.
  • the traveling zone 46 is called a crawler in a heavy construction machine or the like.
  • the timing belt 45 slides on the bottom 34 of the sub decompression chamber 33.
  • FIG. 3 is an enlarged cross-sectional view showing a part of the cross-sectional configuration of the suction hole 21.
  • FIG. 3A is a configuration based on a technique previously created by the present inventor (hereinafter referred to as a conventional creation technique). ) Represents a configuration according to the present embodiment.
  • FIGS. 3A and 3B the same reference numerals are given to the same functional units for the purpose of comparison.
  • the endless traveling belt 20 according to the prior art is composed of a timing belt 45 and a traveling belt 46, and the suction hole 21 having the same opening area passes through the timing belt 45 and the traveling belt 46. is doing.
  • adsorption chamber 47 is a space constituted by the vent hole 35 and the wall surface W.
  • the suction hole 21 (suction chamber 47) has a two-stage hole configuration.
  • the suction hole 21 includes a rectangular suction recess 48 that is open to the wall surface W side, and the travel belt 46 and the timing belt 45 from the suction recess 48 to the sub decompression chamber 33. It is comprised with the through-hole 49 which penetrates.
  • the through-hole 49 is formed at the center of the suction recess 48 and is a flat square cube.
  • the columnar portion of the partition wall 50 on the side that contacts the wall surface W of the partition wall 50 has the same width as the conventional creation technique, and the columnar portion on the side of the sub decompression chamber 33 has a much larger cross-sectional area than the wall surface W side. It can be said that it is large.
  • the depth of the suction recess 48 may be deep if there is no gap with the wall surface W even when the travel zone 46 is compressed during travel.
  • suction recessed part 48 is made the same as the opening area of the adsorption hole 21 of a conventional creation technique, adsorption power will not fall.
  • the opening shape of the suction recess 48 may be a rectangle as shown in FIG. 2, and the through hole 49 may be a quadrangular prism or a cylinder.
  • 3B shows a simplified configuration of the vent hole 35, but in the present embodiment, the opening / closing means 55 that opens and closes the vent hole 35 communicating with the sub decompression chamber 33. (See FIG. 4).
  • the configuration of the vent hole 35 and the opening / closing means 55 will be described in detail with reference to FIG.
  • FIG. 4 is a diagram for explaining an example of the configuration of the opening / closing means 55 and its operation.
  • FIG. 4A is an explanatory diagram schematically showing the components.
  • FIG. 4A shows the pressures in the sub decompression chamber 33 and the adsorption chamber 47 together.
  • a state in which the pressure is negative with respect to the atmospheric pressure, (B) represents a state in which the adsorption chamber 47 is at atmospheric pressure (positive pressure) with respect to the sub-decompression chamber 33 having a negative pressure.
  • the bottom 34 of the sub decompression chamber 31 is provided with opening / closing means 55 that can open and close the vent hole 35 communicating with the adsorption chamber 47.
  • the opening / closing means 55 includes a valve body 58 disposed in a recess 57 dug down in a vertical direction from the lower surface 56 of the bottom portion 34, a substantially crank-shaped receiving plate 60 fixed to the upper surface 59 of the bottom portion 34, a valve
  • the coil spring 61 is an elastic member that constantly urges the body 58 toward the wall surface W side.
  • a base 63 serving as one end of the valve body is fixed to the bottom surface 62 in the recess 57, and the valve body 58 and the base 63 are connected by a hinge 64.
  • the valve body 58 can swing up and down about the hinge 64 as a rotation axis.
  • the receiving plate 60 has a receiving portion 66 that is bent upward from a base portion 65 that is fixed to the upper surface 59 of the bottom portion 34 and that protrudes over the vent hole 35.
  • the receiving portion 66 is provided with a guide shaft 67 that extends into the vent hole 35 and guides the coil spring 61 so as not to tilt.
  • a pad 68 is attached to the periphery of the vent hole 35 on the bottom surface 62 of the recess 57.
  • the pad 68 is formed of, for example, a sheet such as a semi-independent semi-continuous foam body having high compressibility like the traveling zone 46, and is intermittently provided with a gap at a certain interval or at a constant interval around the vent hole 35. Affixed to several places.
  • FIG. 4A shows that the traveling zone 46 is in close contact with the wall surface W and the adsorption chamber 47 is in an airtight state.
  • the suction chamber 47 is vacuum-sucked by the blower unit 5 (see FIG. 1) through the main decompression chamber 32 and the sub decompression chamber 33. Since the valve body 58 is pushed by the coil spring 61 so as to release the vent hole 35, the sub decompression chamber 33 and the suction chamber 47 are communicated with each other, and the internal pressure is the same. That is, the sub decompression chamber 33 and the adsorption chamber 47 are both negative with respect to the external atmospheric pressure.
  • FIG. 4B shows a case where there is a step 69 on the wall surface W, and the suction recess 48 has moved to this step position during traveling.
  • the presence of the step 69 creates a gap between the traveling zone 46 and the wall surface W, and the pressure in the adsorption chamber 47 becomes the same as the external atmospheric pressure.
  • the sub decompression chamber 33 has a negative pressure with respect to the atmospheric pressure because the vacuum suction is continued. That is, the pressure in the adsorption chamber 47 is higher than the pressure in the sub decompression chamber 33.
  • this pressure difference becomes larger than the elastic force of the coil spring 61, the valve body 58 is pushed in the direction to close the vent hole 35.
  • the valve body 58 is in close contact with the bottom surface 62 of the recess 57 and closes the vent hole 35. To do. After that, even when the traveling zone 46 gets over the step 69 and the suction chamber 47 is blocked by the wall surface W, if the vent hole 35 is closed by the valve body 58, the atmospheric pressure in the suction chamber 47 is reduced in the sub decompression chamber 33. Since the state of higher than the atmospheric pressure is continued, the valve body 58 does not open, and no adsorption force is generated in the adsorption chamber 47.
  • pads 68 are provided intermittently around the periphery of the vent hole 35. With this pad 68, the valve body 58 forms a space 70 corresponding to the thickness of the pad 67 between the bottom surface 62 of the recess 57.
  • the traveling zone 46 passes over the step 69 and the suction chamber 47 is depressurized, the suction chamber 47 and the sub-decompression chamber 33 communicate with each other through the gap 70.
  • the valve body 58 is pushed in the direction of releasing the vent hole 35, and can return to the state shown in FIG. Since the gap 70 is small and the vacuum suction force is large, the suction force is ensured even in the state shown in FIG.
  • valve body 58 may be integrally connected to the coil spring 61 so that the valve body 58 moves following the deflection of the coil spring 61.
  • a protrusion may be provided on the valve body 58, or a protrusion may be provided on the bottom surface 62 of the recess 57.
  • a so-called ball valve in which the valve body 58 is a sphere may be configured, and a pad having the same function as the pad 68 may be provided at a contact portion between the vent hole 35 and the sphere.
  • FIG. 5A and 5B are explanatory views showing the configuration and operation of the endless traveling belt 20, wherein FIG. 5A is a perspective view showing a manufacturing method of the endless traveling belt 20, and FIG. 5B is a step view of the endless traveling belt 20 by the conventional creation technique.
  • the endless traveling belt 20 has a traveling belt 46 attached to the surface of the annular timing belt 45 opposite to the tooth profile forming surface.
  • the traveling belt 46 has a developed length as indicated by a two-dot chain line in the figure, and the timing belt 45 is compressed while being compressed in the length direction (arrow direction shown in the drawing) so as to obtain a compression rate of 50% to 80%. Glue it around. Both end portions 46 a and 46 b of the traveling belt 46 are brought into close contact with each other at the connection portion 71.
  • the traveling zone 46 is made of a porous semi-independent semi-continuous foam having flexibility, so that the bubble portion is mainly compressed. However, deformation of thickness and width due to compression is negligible. is there.
  • the timing belt 45 is held in a constant shape by a core (not shown).
  • the core is preferably provided with a frame portion that defines the position in the width direction of the timing belt 45 and the traveling belt 46.
  • the through hole 49 provided in the timing belt 45 (see FIG. 3 (B)) and the suction hole 21 provided in the traveling belt 46 may be opened before bonding by calculating the position based on the compression rate and correcting the position. It may be opened after bonding. As shown in FIG. 3, the through hole 49 passes through the timing belt 45 and the traveling belt 46, but a part of the through hole 49 is omitted in FIG.
  • FIGS. 5 (B) and 5 (C) the meaning of compressing and sticking the traveling belt 46 to the timing belt 45 will be described with reference to FIGS. 5 (B) and 5 (C).
  • the traveling zone 46 is formed of a semi-independent semi-continuous cell. Then, it is compressed and deformed so as to absorb the step of the stepped portion 72 of the wall surface W.
  • the traveling belt 46 of the conventional creation technique that is not compressed and stuck is pulled before and after the stepped portion 72, and a gap 73 is formed between the stepped portion 72.
  • the suction hole 21 of the traveling zone 46 reaches the stepped portion 72, air leakage occurs and the suction force decreases. Since the timing belt 45 is tensioned by the drive wheels 10 and 14 and the driven wheels 16 and 16, it hardly deforms.
  • the traveling zone 46 does not move to the stepped portion 72 even when pulled around the stepped portion 72, as shown in FIG.
  • the gap 73 hardly occurs because it follows and deforms. Therefore, even if the suction hole 21 of the traveling zone 46 reaches the stepped portion 72, air leakage does not occur and the suction force is maintained.
  • FIG. 5 represents the case where the adsorption traveling device 1 gets over the stepped portion 72, it is also effective when getting off the stepped portion 72 or when a plurality of stepped portions are continuous.
  • the adsorption traveling device 1 is assumed to be used as a preferable device when performing maintenance and inspection of wall surfaces (including glass surfaces) of large buildings such as building walls, highway overpasses, and piers. The Therefore, a device that performs the above operation is attached to the suction traveling device 1. Therefore, the adsorption traveling device 1 is provided with an attachment frame 75 as an attachment member for attaching these working devices.
  • the mounting frame 75 will be described with reference to FIG.
  • FIGS. 6A and 6B show the suction traveling device 1A according to the second embodiment to which the mounting frame 75 is fixed, where FIG. 6A is a plan view seen from the wall surface W side (lower side), and FIG. FIG.
  • an attachment frame 75 is attached to the adsorption traveling device 1A.
  • the attachment frame 75 is connected to the center beam portion 76 penetrating between the first drive portion 2 and the second drive portion 3 in the front-rear direction, and to both ends in the front-rear direction of the center beam portion 76, and the outer periphery of the suction traveling device 1A is connected. It is comprised by the frame part 77 arrange
  • the attachment frame 75 is fixed to the bottom 78 of the main decompression chamber 32 by a fixing screw 79 at the center beam portion 76. It should be noted that the airtightness of the main decompression chamber 30 is maintained at the fixing portion by the fixing screw 79 by packing or the like.
  • the attachment frame 75 is provided with escape holes 80 and 81 so as to allow the first drive unit 2 and the second drive unit to escape.
  • the attachment frame 75 is provided with a frame portion 77, and a plurality of hole portions 82 are provided so as to surround the entire circumference of the adsorption traveling device 1A.
  • These hole portions 82 are mounting holes for mounting devices for performing maintenance inspections or cleaning operations on the wall surfaces (including glass surfaces) of large buildings such as the building walls, highway overpasses, and piers described above.
  • the number, arrangement, and shape of the holes 82 can be arbitrarily changed depending on the device to be attached.
  • the hole part 82 can be used also as an attachment hole etc., such as a hinge 85 (refer FIG.
  • FIG. 6 The shape of the mounting frame 75 shown in FIG. 6 is an example, and can be freely changed depending on the method of use and the place of use.
  • This attachment frame 75 can be used for a suction traveling device other than the suction traveling device 1 according to the first embodiment. Next, connecting a plurality of the suction traveling devices 1A using the mounting frame 75 will be described with reference to FIGS.
  • FIG. 7 shows an example of a suction traveling device 1B according to a third embodiment, and shows an example in which a plurality of the suction traveling devices 1A are connected in the traveling direction (front-rear direction).
  • (A) is a plan view seen from the upper side
  • (B) is a side view seen from the right side of (A).
  • illustration of the hole 82 is omitted.
  • the adsorption traveling device 1B is described as an adsorption traveling device 1 (a), an adsorption traveling device 1 (b), and an adsorption traveling device 1 (c) in order from the front to the rear.
  • the wall surface W is a step surface W (b) having a reference surface W (a) and a step with respect to the reference surface W (a).
  • An attachment frame 75 is fixed to each of the suction traveling devices 1 (a), 1 (b), and 1 (c). Each suction traveling device is connected by a connecting means 83.
  • the connecting means 83 has a connecting plate 84 and two pairs of hinges 85.
  • the respective attachment frames 75 are connected by a hinge 85 via a connecting plate 84, and the adsorption traveling device 1 (b) and the adsorption traveling device 1 (c).
  • Each mounting frame 75 is connected by a hinge 85 via a connecting plate 84.
  • the connecting plate 84 can be bent by the hinge 85 following the stepped portion 72 of the wall surface W. It has become.
  • the adsorption traveling devices 1 (b) and 1 (c) adsorb the reference surface W (a), and the adsorption traveling device 1 (a) adsorbs the step surface W (b). ing.
  • the adsorption traveling device 1 (a) tries to get over the stepped portion 72
  • the adsorption traveling devices 1 (b) and 1 (c) travel while adsorbing the reference plane W (a). It is possible to get over the stepped portion 72 by pushing while supporting 1 (a).
  • the traveling zone 46 can be compressed as shown in FIG. 5 (C), so that air leakage is suppressed and the adsorption force is maintained and the stepped portion 72 is overcome and the stepped surface W (b) is adsorbed. It will be. Further, when the traveling direction is reverse and the adsorption traveling device 1 (c) descends the stepped portion 72 from the step surface W (b) to the reference surface W (a), the adsorption traveling device 1 (a). , 1 (b) can travel while adsorbing the stepped surface W (b), and can push down while supporting the adsorbing traveling device 1 (c) to lower the stepped portion 72. Since the traveling belt 46 can be compressed as shown in FIG. 5C, the adsorption traveling device 1 (c) reaches the reference plane W (a) while suppressing air leakage and maintaining the adsorption force.
  • the adsorption traveling device 1 (b) disposed in the middle can travel while being supported by the adsorption traveling devices 1 (a) and 1 (c). For example, even when the adsorption traveling device 1 (c) is at the rearmost end, the adsorption traveling devices 1 (a) and 1 (b) can adsorb and move the wall surface W.
  • FIG. 7 illustrates the case where three suction traveling devices 1 are connected, the suction traveling device 1B may be connected to two or more than three. In addition, even if the suction force decreases in one of the suction traveling devices 1 (a) to 1 (c), traveling can be performed with the other two suction forces.
  • the example of the plurality of attachment frames 75 can also be used for other suction traveling devices other than the suction traveling device 1 according to the first embodiment.
  • suction travel apparatus 1B is connected with the advancing direction (front-back direction), it is possible to connect two or more units
  • FIG. 8 is a diagram showing a suction traveling device 1C according to the fourth embodiment, in which a plurality of suction traveling devices 1A are connected in a traveling direction (front-rear direction) and a direction orthogonal to the traveling direction (left-right direction).
  • FIG. 8 illustration of the hole 82 (see FIG. 6) is omitted.
  • FIG. 8 illustrates an example in which two suction traveling devices 1A are connected in the traveling direction and the left-right direction, three or more units can be connected. Moreover, you may make it not connect with a running direction.
  • An attachment frame 75 is fixed to the suction traveling device 1A.
  • each adsorption traveling device 1A is connected via a hinge 85, even when there is a stepped portion (for example, a stepped portion 72 shown in FIG. 7B) on the wall surface W or a stepped portion in the left-right direction. The deviation can be made following the stepped portion. Since the adsorption traveling device 1C in which a plurality of units are connected in this way has an adsorption force of four units, for example, it can travel four times more weight than the case of only one unit and can travel vertically on the wall surface W. .
  • the examples of the plurality of attachment frames 75 can also be used for the suction traveling device and other suction traveling devices according to the first embodiment.
  • the other devices described above are attached using the hole 82 (see FIG. 6A) other than the attachment portion of the hinge 85. Is possible.
  • the adsorption traveling devices 1, 1 ⁇ / b> A, 1 ⁇ / b> B, and 1 ⁇ / b> C that adsorb and travel on the wall surface W that is the traveling surface described above have the endless traveling zone 20 in which a plurality of adsorption holes 21 partitioned by the partition wall 50 are formed.
  • the opening / closing means 55 releases the vent hole 21 when the pressure in the plurality of suction chambers 47 formed by the wall surface W and the suction hole 21 is the same as the pressure in the sub-decompression chamber 33, and the pressure in the suction chamber 47 is sub-depressurized.
  • the air pressure is higher than the pressure in the chamber 33, the air vent 21 is closed, and when the air vent 21 is closed, the air pressure in the sub decompression chamber 33 does not affect the air pressure in the other adsorption chambers 47.
  • a gap 70 having a size is formed.
  • the vent hole 35 communicating with the adsorption chamber 47 and the sub decompression chamber 33 can be opened or closed by the opening / closing means 55.
  • the opening / closing means 55 closes the vent hole 35 and the atmospheric pressure in the sub decompression chamber 33 is reduced. Prevents approaching atmospheric pressure.
  • the suction force can be recovered by opening and closing the vent hole 35 by the opening / closing means 55.
  • the suction hole 21 has an opening area on the sub-decompression chamber 33 side smaller than an opening area on the wall surface W side.
  • the partition wall 50 has a larger cross-sectional area on the sub-decompression chamber 33 side and a smaller cross-sectional area on the wall surface W side. If it does in this way, the air leak of the adsorption
  • the adsorption traveling device 1 ⁇ / b> A has an attachment frame 75 fixed to the bottom portion 78 on the wall surface W side of the main decompression chamber 31, and a part of the attachment frame 75 is the first drive unit 2 and the second drive unit 3.
  • a frame part 77 to which a working device or the like can be attached projects outside.
  • a work device such as a cleaning device can be easily attached to the suction traveling device 1A.
  • the adsorption traveling device 1A can connect a plurality of attachment frames 75 fixed to the main decompression chamber 31 in the traveling direction and / or the direction orthogonal to the traveling direction by the connecting means 83.
  • Connecting the attachment frame 75 fixed to the main decompression chamber portion 31 by the connecting means 83 means connecting a plurality of the suction traveling devices 1 (1A) by the connecting means 83, and is connected in the traveling direction.
  • the traveling apparatus 1B and the adsorption traveling apparatus 1C connected in the direction orthogonal to the traveling direction can be configured.
  • the adsorption traveling device 1 is configured in a multiple configuration, so that wall surface work can be efficiently performed even on a wall surface with a large area, and the adsorption force and traveling can be compared with the case where the adsorption traveling device 1 is a single unit.
  • the force (driving force) increases in proportion to the number of vehicles, and the vehicle can travel with the working device having a weight corresponding to the number of vehicles.
  • the connecting means 83 includes a connecting plate 84 disposed between adjacent mounting frames 75 and a hinge 85 that connects the mounting frame 75 and the connecting plate 84. If comprised in this way, since the connection board
  • the endless traveling belt 20 in which the several adsorption hole 21 was formed, and the blower motor unit 5 which is an air suction device which suck
  • the suction traveling devices 1, 1A, 1B, and 1C that are attracted to the wall surface W and hold the posture and rotate to perform at least one of forward and reverse, the decompression by the blower motor unit 5 is exerted on or exerted on the suction hole 21 side.
  • the opening / closing means 55 is provided to prevent the suction hole 21 from being opened, and when the suction hole 21 side is not in communication with the external space, the valve body 58 is opened to decompress the suction hole 21 and the suction hole 21 side is in communication with the external space.
  • the valve body 58 is closed with a slight gap 70 so that the opening / closing means 83 is kept closed when the valve is returned to the non-communication state. And it will be, and to prevent the adsorption hole 21 side is no longer reduced pressure.
  • the vent hole 35 can be opened or closed by the opening / closing means 55.
  • the suction force can be recovered by opening and closing the vent hole 35 by the opening / closing means 55.
  • suction traveling apparatus 1, 1A, 1B, 1C which can suppress the fluctuation
  • the opening / closing means 83 is arranged on the main body side (sub-decompression chamber 33 side) where the endless traveling belt 20 is opposed, and each of the plurality of vent holes 35 installed so as to communicate with the suction holes 21 provided on the main body side.
  • the valve body 58 is opened and closed, and the coil spring 61 is an elastic member that biases the valve body 58 in the direction in which the vent hole 35 is released.
  • the opening / closing means in addition to the opening / closing means 83, the air pressure in the suction chamber 47 and the decompression chamber 33 can be detected by a sensor, and the vent hole 35 can be opened or closed by an actuator or the like.
  • the opening / closing means 55 is composed of the valve body 58 and the coil spring 61, so that the weight can be reduced. If the elastic force of the coil spring 61 is appropriately set, complicated control is unnecessary. It is.
  • the endless traveling belt 20 has a two-layer structure of a timing belt 45 to which traveling driving force is transmitted and a traveling belt 46 of a soft elastic body, and the timing belt 45 is compressed in the length direction. It is stuck to. Since the traveling zone 46 is formed of a porous soft elastic body, it can be easily compressed. In this way, when the stepped portion 72 is present on the wall surface W, the traveling zone 46 is deformed following the stepped portion 72, so that almost no gap 73 is generated between the stepped portion 72 and the traveling zone 46. Therefore, even if the suction hole 21 of the traveling band 46 reaches the stepped portion 72, air leakage does not occur and the suction force can be maintained.
  • the wall surface work can be efficiently performed even on a wall surface or a ceiling having a large area while maintaining a stable suction force, or a work having a large weight. It is possible to realize the adsorption traveling devices 1, 1A, 1B, and 1C on which the devices can be mounted. Furthermore, by devising the configuration of the endless traveling zone 20, it is possible to realize the adsorption traveling device 1 having a higher adsorption force.
  • a configuration example in which the endless traveling zone 20 and its periphery of the suction traveling device 1 according to the first embodiment described in FIGS. 1 to 5 is devised is referred to as a first endless traveling zone peripheral example, and the first endless traveling zone is illustrated.
  • FIGS. 9 to 12 show another configuration example of the suction traveling device 1 including the endless traveling zone 20A of the same type as the endless traveling zone 20 in the peripheral example as a second endless traveling zone peripheral example and a third endless traveling zone peripheral example. The description will be given with reference.
  • FIG. 9 is a view showing an example of the vicinity of the first endless traveling zone, and is a cross-sectional view showing a state in which the endless traveling zone 20A is attached to the sub-decompression chamber 31, and the endless traveling zone 20A is arranged in the width direction (left-right direction).
  • the cut surface is shown in FIG.
  • the illustrated endless traveling zone 20A represents the second drive unit 3 side, and the first drive unit 2 side has the same configuration, and therefore the illustration is omitted.
  • the endless traveling zone 20A has the same configuration over the entire circumference, in FIG. 9, the lower side is described with reference numerals, and the upper reference numerals are omitted.
  • the endless traveling belt 20A is composed of a traveling belt 46 and a timing belt 45 that is a power transmission belt.
  • the endless traveling belt 20 ⁇ / b> A has an adsorption belt 51 in which a belt-like member 52 and a sliding tape 53 are laminated on the side (referred to as the inner side) of the timing belt 45 that contacts the sub-decompression chamber 31.
  • the suction band 51 is embedded and fixed inside a groove 45 ⁇ / b> C provided over the entire circumference in the running direction inside the timing belt 45.
  • the groove 45 ⁇ / b> C is formed substantially at the center in the width direction of the timing belt 45.
  • a tooth profile 45 ⁇ / b> A that meshes with the tooth profile 17 of the drive wheel 14 is formed on both sides in the width direction across the suction belt 51 of the timing belt 45.
  • the belt-like member 52 is formed of the same soft elastic material as the traveling belt 46, and the sliding tape 53 is a thin tape formed of a material having a small friction coefficient and excellent sliding durability. Although illustration is omitted, the sliding tape 53 may be attached to the upper surface 31A and the lower surface 31B of the sub-decompression chamber 31 so as to reduce the friction between the timing belt 45 and the sub-decompression chamber 31.
  • a hole 54 communicating with the adsorption hole 21 provided in the traveling band 46 and the vent hole 35 provided in the sub decompression chamber 31 is formed.
  • the adsorption band 51 has a thickness protruding from the top of the tooth profile 45 ⁇ / b> A of the timing belt 45, and the sliding tape 53 contacts the upper surface 31 ⁇ / b> A and the lower surface 31 ⁇ / b> B that constitute the outer shell surface of the sub decompression chamber 31.
  • the outer side wall portion 37 of the sub decompression chamber portion 31 has a guide portion 37A extending vertically from the upper surface 31A and the lower surface 31B, and the inner side wall portion 39 is a guide extending vertically from the upper surface 31A and the lower surface 31B. It has a portion 39A.
  • the guide portions 37A and 39A prevent the endless traveling zone 20A from meandering during suction traveling.
  • the guide portions 37A and 39A may be formed over the entire length in the front-rear direction of the sub decompression chamber portion 31, or may be formed only on the front side and the rear side.
  • FIG. 10 is a cross-sectional view showing a state in which the second drive unit 3 is adsorbed to the wall surface W, which is the traveling surface, in the vicinity of the first endless traveling zone. Since the first drive unit 2 has the same configuration and operation as the second drive unit 3, the illustration is omitted.
  • the endless traveling zone 20 ⁇ / b> A is adsorbed to the wall surface W by setting the sub decompression chamber 33 to a negative pressure.
  • the belt-like member 52 is compressed by the adsorbing force, and the sliding tape 53 is in close contact with the lower surface 31B of the sub decompression chamber 31 to eliminate air leakage between the endless traveling belt 20A and the sub decompression chamber 31.
  • the adsorption band 51 preferably has a thickness such that the top of the tooth profile 45A of the timing belt 45 contacts the lower surface 31B of the sub-decompression chamber 31 when adsorbed to the wall surface W, but there may be a slight gap. Since no suction force acts on the upper surface 31A side of the sub-decompression chamber 31, the suction band 51 contacts the upper surface 31A of the sub-decompression chamber 31, and the top of the tooth profile 45A of the timing belt 45 is connected to the upper surface 31A of the sub-decompression unit 31. There is a gap between them.
  • the guide portions 37 ⁇ / b> A and 39 ⁇ / b> A are provided in the sub decompression chamber 31.
  • guides are provided to the drive wheels 10 and 14 and the driven wheels 16. It is good also as a structure which provides a part. Below, the drive wheel 14 is illustrated and demonstrated.
  • FIG. 11 is a cross-sectional view showing the relationship between the endless travel zone 20A and the drive wheels 14 in the second endless travel zone peripheral example.
  • the endless traveling zone 20A shown in FIG. 11 is the same as the configuration shown and described in FIGS. 9 and 10 and will not be described in detail, but an adsorption zone 51 is fixed at the center in the width direction.
  • the drive wheel 14 is divided into drive wheel portions 14A and 14B with an adsorption band 51 interposed therebetween.
  • the drive wheel portions 14A and 14B are connected by a shaft 18.
  • a tooth profile 17 is formed on the outer periphery of each of the drive wheel portions 14 ⁇ / b> A and 14 ⁇ / b> B, and the tooth profile 17 meshes with a tooth profile 45 ⁇ / b> A of the timing belt 45. Since the endless traveling zone 20A has the suction zone 51, the drive wheel 14 is divided into a drive wheel portion 14A and a drive wheel portion 14B so that the tooth profile 17 does not interfere with the suction zone 51.
  • the drive wheel portion 14A has a guide portion 19A whose diameter is expanded to a position where the left side end surface intersects the thickness direction of the endless travel zone 20A, and the right end surface of the drive wheel 14B is that of the endless travel zone 20A. It has a guide portion 19B whose diameter has been expanded to a position that intersects the thickness direction.
  • the guide portions 19A and 19B prevent the endless traveling belt 20A from meandering during suction traveling.
  • the guide portions 19A and 19B are similarly provided on the driving wheel 10 and the driven wheel 16.
  • the provision of the guide portions 37A and 39A in the sub decompression chamber 31 and the provision of the guide portions 19A and 19B in the driving wheels 10 and 14 and the driven wheel 16 are the same as those in the first embodiment described above (see FIGS. 1 and 2). Can also be adapted. Moreover, it is good also as a structure provided with both guide part 37A, 39A and guide part 19A, 19B, and you may make it provide either one. Note that one or both of the configuration in which the driving wheel portion is divided and the configuration in which the guide portion is provided can be used for the suction traveling device and other suction traveling devices according to the first to fourth embodiments.
  • the endless traveling belt 20A is located on the sub decompression chamber 31 side (sub decompression chamber portion 33 side) of the timing belt 45 that is a power transmission belt.
  • the suction band 51 is fixed to the central portion in the width direction of the endless traveling band 20A, and
  • the sliding tape 53 has a lower surface that is an outer shell surface on the traveling surface side of the sub-decompression chamber portion 33 when traveling while adsorbing to the wall surface W that is a traveling surface. It arrange
  • the adsorption band 51 is in close contact with the periphery of the vent hole 35 on the lower surface 31B of the sub-decompression chamber 31, so that the endless travel zone 20A and the sub-decompression chamber are Therefore, it is possible to suppress the occurrence of air leakage between the first and second members 31 and realize the suction traveling device 1 having higher suction power.
  • the adsorption band 51 is fixed to the lower surface 31 ⁇ / b> B of the sub decompression chamber 33 at the position where the adsorption band 51 shown in FIG. 9 is disposed.
  • a groove corresponding to the groove 45C shown in FIG. 9 is formed in the timing belt 45 so that the suction band 51 can pass through the groove.
  • the adsorbing band 51 fixes the band-shaped member 52 to the sub-decompression chamber 31 side so that the sliding tape 53 slides on the groove bottom surface of the timing belt 45.
  • the drive wheel 14 does not have to be divided into the drive wheel portions 14A and 14B. The same applies to the drive wheel 10 and the driven wheel 16.
  • FIG. 12 is a partial cross-sectional view showing, in an enlarged manner, the configuration of the sub-decompression chamber 31 in the peripheral example of the third endless traveling zone.
  • the endless traveling zone 20A illustrates the same configuration as that of the second embodiment described above.
  • a roller unit 74 is embedded in the bottom end 34 of the sub decompression chamber 31 on the endless traveling belt 20A side.
  • the roller unit 74 includes a roller frame 74A and a plurality of rollers 74B that are rotatably supported by the roller frame 74A.
  • the roller unit 74 is disposed along the length direction (front-rear direction) of the sub-decompression chamber 31 on both sides in the width direction across the suction band 51.
  • the roller unit 74 is embedded in a recess 34 ⁇ / b> A provided in the bottom 34 of the sub decompression chamber 31. A part of the outer peripheral surface of the roller 74B protrudes from the lower surface 31B of the sub decompression chamber portion 31, and is arranged in a row in the running direction. Therefore, when the suction band 51 is compressed by being attracted to the wall surface W, the roller 74B comes into contact with the top of the tooth profile 45A of the timing belt 45.
  • the roller 74 ⁇ / b> B is arranged to roll by the timing belt 45 when traveling while adsorbing to the wall surface W.
  • the roller 74B is disposed between the sub decompression chamber 31 and the endless traveling zone 20A. Therefore, by providing the suction band 51, it is possible to reduce the friction load that increases as the suction force increases, and to reduce the travel loss.
  • roller unit 74 is disposed on the lower surface 31B side of the sub decompression chamber 31 in addition to the lower surface 31B side. In this way, it is possible to further reduce the frictional resistance between the sub decompression chamber 31 and the endless traveling zone 20 during traveling.
  • FIG. 12 illustrates a configuration in which the suction band 51 is provided
  • the roller unit 74 can be adapted to a configuration in which the suction band 51 is not provided.
  • a negative pressure is generated between the sub decompression chamber 33 and the wall surface W by the blower unit 5 via the main decompression chamber 32.
  • the blower unit 5 may be directly sucked from the sub decompression chamber 33 via the piping without going through the main decompression chamber 32.
  • the volume of the sub-decompression chamber 33 is reduced, it is possible to further increase the suction force.
  • the sub decompression chamber 31 supports the endless travel zones 20 and 20A, for example, a member that supports the endless travel zones 20 and 20A may be attached to the sub decompression chamber 31.
  • a conventional decompression chamber portion (referred to as a second decompression chamber portion) having a small volume is further housed in the sub-decompression chamber portion 31 and is directly sucked by the blower unit 5 through a pipe. Also good.
  • the second decompression chamber portion is provided with a vent hole communicating with the vent hole 35 provided in the sub decompression chamber portion 31 and is fixed to the sub decompression chamber portion 31.
  • the sub-decompression chamber 31 functions as a support for the endless travel zones 20 and 20A.
  • FIG. 13 is an explanatory diagram schematically showing an example of the arrangement of the vent holes 35 provided in the sub-decompression chamber 31 of the adsorption traveling device 1 according to the first embodiment.
  • the endless travel zones 20 and 20A move in the direction of the arrow in the drawing along the sub-decompression chamber 31 during adsorption travel. That is, the through hole 49 constituting the suction hole 21 also moves.
  • the through hole 49 must always communicate with the vent hole 35. Therefore, as shown in FIG. 13, the vent holes 49 are long holes, and the pitch is shifted in two rows so that the through holes 49 can always communicate with the vent holes 35 at any position.
  • the shape of the air holes 35 may be rectangular or may be arranged in three rows and can be freely set.
  • the vent holes 35 and the through-holes 49 can be communicated with each other at any location.
  • the configuration in which the air holes are arranged with the pitch shifted can be used for the suction traveling devices and other suction traveling devices according to the first to fourth embodiments.
  • the present invention is not limited to the above-described embodiment and examples of the endless traveling zone and the like, and modifications, improvements and the like within the scope that can achieve the object of the present invention are included in the present invention.
  • a sensor for detecting the state of the wall surface W and a computer on the adsorption traveling device 1 of the present embodiment so that the wall surface W can self-run by a program.
  • a communication device on the suction traveling device 1 and perform traveling control wirelessly or by wire.
  • a hook or the like may be provided on the suction traveling device 1 so that a fall prevention cable can be attached.
  • the rate of compressing the traveling zone 46 in the length direction is 50% to 80%.
  • the range may be 80% to 95%, preferably 40%. It is ⁇ 95%, more preferably 50% to 90%, and most preferably 60% to 80%.
  • each of the suction traveling devices 1 (1A) is connected by the connecting plate 84 and the hinge 85, but a plurality of units may be connected by one mounting frame 75.
  • the connecting plate 84 may be attached using the driving wheel support plates 38 and 40 and the driven wheel support plates 41 and 42 without providing the frame 75.
  • the vertical or steep slope wall W is targeted, but the present invention can be applied to all other surfaces such as a ceiling surface and a horizontal plane over which a dangerous suspension bridge passes. .
  • the number of decompression chambers may be one or three or more.
  • the partial configurations and parts shown in the peripheral examples of the adsorption traveling devices 1, 1A, 1B, 1C and the first to third endless traveling zones according to the first to fourth embodiments are different from those of the other embodiments. It is possible to divert as appropriate, and it can also be used (diverted) to other adsorption traveling devices.
  • the suction hole 21, the vent hole 35, the suction chamber 47, the suction recess 48, and the through hole 49 are formed as a plane quadrangular cube, but the plane shape is other than an ellipse, a sphere, a triangle, or the like. A three-dimensional space may be used. Further, although the above-described embodiment has two drive units (first drive unit 2 and second drive unit 3), it may have one drive unit or three or more drive units.
  • the timing belt 45 is employed as the power transmission belt.
  • the power transmission belt may be a belt having a flat surface having no unevenness (tooth shape).
  • the drive wheels 10 and 14 and the driven wheels 16 and 16 may be provided with uneven tooth patterns, or may be friction wheels without uneven tooth patterns.
  • gap (open / close means), 74 ... roller unit, 75 ... mounting frame (attachment member), 78 ... bottom, 83 ... connecting means, 84 ... Connecting plate, 85 ... Hinge, 74B ... Roller, W ... Wall (traveling surface)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Robotics (AREA)
  • Cleaning In General (AREA)
  • Manipulator (AREA)

Abstract

本発明の吸着走行装置1は、メイン減圧室32と、メイン減圧室32に連通し第1駆動部2および第2駆動部3それぞれに配置されるサブ減圧室33と、サブ減圧室33の吸着孔21の配置側に設けられ、サブ減圧室33と複数の吸着孔21の各々を連通する複数の通気孔35と、複数の通気孔35の各々を解放したり閉鎖したりする開閉手段55と、を有し、開閉手段55は、壁面Wと吸着孔21で形成される複数の吸着室47の気圧がサブ減圧室33の気圧と同じであるときに通気孔35を解放し、吸着室47の気圧がサブ減圧室33の気圧よりも高くなるときに通気孔35を閉鎖する。通気孔35を閉鎖した際に、通気孔35にはサブ減圧室33の気圧が他の吸着室47の気圧に影響しない程度の大きさの隙間70が形成されることを特徴とする。 本発明の吸着走行装置1によれば、壁面などへの安定した吸着力を維持できる吸着走行装置を実現することができる。

Description

吸着走行装置
 本発明は、吸着走行装置に関する。
 ビルの壁や高速道路の高架、橋脚など、大型建造物の壁面(ガラス面を含む。)の保守点検や洗浄などの作業をするためには、壁面を自走できる走行装置が望まれている。このような走行装置としては、軟弾性体で形成された無端走行帯(クローラと呼ばれることがある。)に区画壁で区画された壁面側に吸着開口を有する複数の吸着孔を設け、この吸着孔から壁面を真空吸引することで走行装置を壁面に吸着させて走行する吸着走行装置というものがある(たとえば、特許文献1および特許文献2参照)。
米国特許出願公開第2015/0375814号明細書 特開平2-14982号公報
 特許文献1に記載の吸着走行装置は、減圧室と吸着室の間に開閉弁を配置し、吸着室内の気圧が大気圧になるときには開閉弁を閉じ、減圧室内と吸着室内の気圧が同じときには開閉弁を開けるようになっている。しかし、吸着室内の気圧が減圧室内の気圧よりも高いと、その気圧差によって開閉弁が開かなくなってしまうことがある。このような場合、開閉弁が機能しなくなり吸着力が低下するという課題がある。
 また、特許文献2に記載の吸着走行装置は、無端走行帯の壁面側に設けられた吸着孔から、通気孔および減圧室を介して真空吸引し、壁面に吸着して走行することが可能になっている。吸着孔は区画壁によって区画されて吸着室を構成しているが、無端走行帯は軟弾性体であり、しかも区画壁が単純な直方体で幅が狭いため、強い吸着力によって座屈変変形しやすい構造となっていて、区画壁が変形すると壁面との間で空気漏れが発生する。すると、減圧室が大気圧(正圧)となり吸着力が著しく低下してしまうという課題がある。
 また、特許文献2に記載の無端走行帯は、軟弾性体を原材料のままでタイミングベルトに接着されているため、壁面に段差などがあると、段差形状に無端走行帯が追従できずに隙間ができてしまい吸着力が低下してしまうという課題がある。
 また、特許文献1および特許文献2に記載の吸着走行装置は、この吸着走行装置を進行方向(縦方向)に複数台連結したり、進行方向に対して直交する方向(横方向)に複数台連結したりすることができない。したがって、複数台の吸着走行装置で吸着力を補完しあうことができず壁面の状態によっては走行できない場合が発生する。また、1台では重量物の運搬(取付け)ができないことや、広い面積の壁面の保守点検を行う場合など作業時間が長くなってしまうという課題もある。
 そこで、本発明は、従来の吸着走行装置(上記特許文献記載の吸着走行装置を含む)が持つ課題の少なくとも一つを解決するためになされたものである。たとえば、安定した吸着力を維持できる吸着走行装置を提供したり、面積の広い壁面や天井などであっても壁面作業を効率的に行うことができる吸着走行装置を提供したり、または重量が大きい作業用装置を搭載できるようになる吸着走行装置を提供したりするものである。
 [1]本発明の吸着走行装置は、走行面に吸着して走行する吸着走行装置において、複数の吸着孔が形成された無端走行帯を有する第1駆動部および第2駆動部と、空気吸引装置によって減圧されるメイン減圧室と、該メイン減圧室に連通し前記第1駆動部および前記第2駆動部それぞれに配置されるサブ減圧室と、前記サブ減圧室の前記吸着孔の配置側に設けられ、前記サブ減圧室と複数の前記吸着孔の各々を連通する複数の通気孔と、複数の前記通気孔の各々を解放したり閉鎖したりする開閉手段と、を有し、前記開閉手段は、前記壁面と前記吸着孔で形成される複数の前記吸着室の気圧が前記サブ減圧室の気圧と同じであるときに前記通気孔を解放し、前記吸着室の気圧が前記サブ減圧室の気圧よりも高くなるときに前記通気孔を閉鎖し、前記通気孔を閉鎖した際に、前記通気孔には前記サブ減圧室の気圧が他の前記吸着室の気圧に影響しない程度の大きさの隙間が形成されることを特徴とする。
 [2]本発明の吸着走行装置においては、前記吸着孔は、前記サブ減圧室側の開口面積が前記壁面側の開口面積よりも小さいことが好ましい。
 [3]本発明の吸着走行装置においては、前記メイン減圧室部の前記壁面側の底部に固定される取付け部材を有し、前記取付け部材の一部は前記第1駆動部および前記第2駆動部の外側に作業用装置などを取り付け可能な枠部が突設していることが好ましい。
 [4]本発明の吸着走行装置においては、前記吸着走行装置が、前記メイン減圧室に固定された前記取付け部材及び連結手段によって走行方向または/および走行方向に直交する方向に複数連結されていることが好ましい。
 [5]本発明の吸着走行装置においては、前記連結手段は、隣接する前記取付け部材の間に配置される連結板と、前記取付け板と前記連結板とを連結するヒンジを有することが好ましい。
 [6]本発明の吸着走行装置は、複数の吸着孔が形成された無端走行帯と、前記吸着孔側の空気を吸入する空気吸引装置と、を有し、前記無端走行帯が走行面に吸着し姿勢を保持すると共に回転することで前進または後進の少なくとも一方を行う吸着走行装置において、前記空気吸引装置による減圧を前記吸着孔側に及ぼしたり、及ぼさなかったりするための開閉手段を設け、前記開閉手段は、前記吸着孔側が外部空間と連通しない状態時には開くことで、前記吸着孔を減圧し、前記吸着孔側が外部空間と連通し大気圧となっている状態時には、わずかな隙間を有しつつ閉じることで前記連通しない状態に復帰したときに、前記開閉手段が閉じた状態を継続してしまい、前記吸着孔側が減圧されなくなることを防ぐように構成されていることを特徴とする。
 [7]本発明の吸着走行装置においては、前記開閉手段は、前記無端走行帯が対向する本体側に配置され、前記本体側に設けられる前記吸着孔と連通可能に設置される複数の通気孔の各々を解放したり閉鎖したりする弁体と、前記通気孔が解放される方向に前記弁体を付勢する弾性部材と、から構成されていることが好ましい。
 [8]本発明の吸着走行装置においては、前記無端走行帯は、走行駆動力が伝達される動力伝達ベルトと軟弾性体の走行帯との2層構造を有し、前記走行帯が長さ方向に圧縮した状態で前記動力伝達ベルトに固着されていることが好ましい。
 [9]本発明の吸着走行装置においては、前記無端走行帯は、前記動力伝達ベルトの前記サブ減圧室部側に軟弾性体の帯状部材と摺動テープとが積層された吸着帯をさらに有し、前記吸着帯は、前記無端走行帯の幅方向中央部に固定され、かつ前記通気孔と前記吸着孔とに連通可能な孔を有し、前記走行面に吸着して走行する際に、前記摺動テープは前記サブ減圧室の前記走行面側の外殻面に密接しつつ摺動するように配置されていることが好ましい。
 [10]本発明の吸着走行装置においては、前記外殻面には、前記吸着帯を挟んで幅方向両側に外周面の一部が前記外殻面より突出する複数のローラが長手方向に配列されており、前記走行面に吸着して走行する際に、前記ローラは前記動力伝達ベルトによって転動するように配置されていることが好ましい。
本発明の第1の実施の形態に係る吸着走行装置を示す外観斜視図である。 本発明の第1の実施の形態に係る吸着走行装置を壁面側から見た斜視図で、無端走行帯を分解した図である。 図1および図2に示す吸着走行装置が有する吸着孔の断面構成の一部を拡大して示す断面図であり、(A)は本発明者が従前に創作した技術による構成、(B)は本発明の実施の形態による構成を表している。 図1および図2に示す吸着走行装置が有する開閉手段の構成の1例および作用を説明する図で、構成要素を模式的に表す説明図である。 図1および図2に示す吸着走行装置が有する無端走行帯の構成および作用を示す説明図であり、(A)は無端走行帯の製造方法を示す斜視図、(B)は本発明者が従前に創作した技術による無端走行帯が段差のある壁面を走行する状態、(C)は本発明の実施の形態による無端走行帯が段差のある壁面を走行する状態を示す部分断面図である。 本発明の第2の実施の形態に係る取付け枠が固定された吸着走行装置を示し、(A)は壁面側から見た平面図、(B)は前方側から見た正面図である。 本発明の第3の実施の形態に係る吸着走行装置を示し、走行方向(前後方向)に複数台連結された例を示す図で、(A)は上方側から見た平面図、(B)は(A)の左方側から見た側面図である。 本発明の第4の実施の形態に係る吸着走行装置を走行方向(前後方向)および走行方向に直交する方向(左右方向)に複数台連結した例を示す平面図である。 本発明の第1~第4の実施の形態に係る吸着走行装置や他の吸着走行装置に使用可能な第1の無端走行帯周辺例で、無端走行帯がサブ減圧室部31に装着された状態を示す断面図である。 第1の無端走行帯周辺例において、第2駆動部が走行面である壁面に吸着した状態を示す断面図である。 本発明の第1~第4の実施の形態に係る吸着走行装置や他の吸着走行装置に使用可能な第2の無端走行帯周辺例で、無端走行帯と駆動輪の関係を示す断面図である。 本発明の第1~第4の実施の形態に係る吸着走行装置や他の吸着走行装置に使用可能な第3の無端走行帯周辺例で、サブ減圧室部の構成を拡大して示す部分断面図である。 サブ減圧室部に設けられる通気孔の配列を模式的に示す説明図である。
 以下、本発明の実施の形態に係る吸着走行装置1について、図1~図8を参照して説明する。本発明の吸着走行装置1は、垂直もしくは急斜面の壁面などに吸着して自在に走行可能な装置であって、たとえば、ビルの壁や高速道路の高架、橋脚など、大型建造物の壁面(ガラス面を含む)の保守点検や洗浄などの作業に好適に使用可能な走行装置である。
 [第1の実施の形態]
 図1は、第1の実施の形態に係る吸着走行装置1を示す外観斜視図である。なお、以下に説明する図面は、図1において、図示左側を左方、右側を右方、紙面の表側を上方、その反対側を下方または壁面側と表し説明する。なお、吸着走行装置1の走行方向は自在であるが、ここでは、図示左上方向を前方または前進方向とし、その逆側を後方または後進方向と表し説明する。図1に示すように、吸着走行装置1は、左右両端に配置される第1駆動部2および第2駆動部3を有している。第1駆動部2と第2駆動部3は、同じ構成であるが、減圧室部4を挟んで対向するように配置されている。
 減圧室部4の上方には、空気吸引装置であるブロワモータユニット5が配置されている。ブロワモータユニット5は、第1駆動部2と第2駆動部3の左右の中間位置に配置され、吸着走行装置1の全体の略中央部に配置されている。また、ブロワモータユニット5は、減圧室部4の水平方向の中央部に、かつ上方に立ち上がるように配置されている。ブロワモータユニット5の後方側には、ギヤボックス6が配置されている。ギヤボックス6内には、上方側に第1駆動部2に回転駆動力を与える第1モータ7と、下方側に第2駆動部3に回転駆動力を与える第2モータ8とを備えている。第1モータ7および第2モータ8は、いわゆるギヤードモータであって、第1駆動部2と第2駆動部3に対して適切な回転速度に減速して動力を出力する。なお、第1モータ7と第2モータ8は、各々独立して自在に駆動制御することが可能となっているので、吸着走行装置1を前進させたり後進させたり、あるいは、進行方向を曲げたり、旋回させたりすることができる。
 第1モータ7にはスプロケット9が軸固定されていて、駆動輪10側のスプロケット11にチェーン12によって駆動力が伝達される。スプロケット11は、駆動輪10に軸固定されていて駆動輪10を回転させる。第2駆動部3側においても、第2モータ8にはスプロケット13が軸固定されていて、駆動輪14側のスプロケット15にチェーン12によって駆動力が伝達される。スプロケット15は、駆動輪14に軸固定され駆動輪14を回転させる。第1駆動部2および第2駆動部3のそれぞれ前方側には従動輪16、6が配置されている。図1では、第1駆動部2側の従動輪16の図示は省略しているが後述する図2に示している。駆動輪10,14と従動輪16、16は、外周にそれぞれが左右に伸びる凸部と凹部が周方向に交互に形成されている(以下「歯型」と記載)。第1駆動部2側において、駆動輪10と従動輪16には、無端走行帯20が装着されている。また、第2駆動部3側において、駆動輪14と従動輪16には他の無端走行帯20が装着されている。無端走行帯20,20には、長辺方向に複数の吸着孔21が配置されている。吸着孔21は、無端走行帯20,20の全周に亘って同じ大きさで等間隔に形成され、厚み方向に貫通している。なお、図1では、吸着孔21の構成を簡略化して表している。吸着孔21の構成は、図3および図4を参照して詳しく説明する。
 ブロワモータユニット5は、ブロワケース22内に減圧室部4の空気を吸引するブロワポンプ23と、ブロワポンプ23を回転するブロワモータ24を内蔵している。ブロワケース22の側面には、ブロワポンプ23によって減圧室部4から吸引された空気を外部に排出する排気口25が形成されている。また、ブロワモータユニット5の上端部には、ブロワモータ24の冷却用フィン26が設けられている。ブロワポンプ23は、周知の傘型ターボファンを有し減圧室部4内から空気を吸引して減圧室部4を減圧するものである。ブロワポンプ23およびブロワモータ24は、周知のものを採用することが可能である。なお、ブラワモータ24に冷却用ファンを設けるようにしてもよい。
 次に、第1駆動部2、第2駆動部3および無端走行帯20について図1及び図2を参照しながら説明する。
 図2は、吸着走行装置1を壁面側(下方側)から見た斜視図で、無端走行帯20を分解して表した図である。減圧室部4は、略H字状に展開されている。減圧室部4は、中央部のメイン減圧室部30と、メイン減圧室部30の左右両側に配置される1対のサブ減圧室部31とから構成されている。これによって図2に示すように、全体として略H字状に展開されている。メイン減圧室部30の内部空間をメイン減圧室32とし、サブ減圧室部31の内部空間をサブ減圧室33とする。メイン減圧室32とサブ減圧室33は、不図示の孔によって連通されている。左右両側のサブ減圧室部31,31の構成は同じである。2か所のサブ減圧室部31,31は、それぞれメイン減圧室部30の左右両側の側壁に一体となるよう固定されている。各サブ減圧室部31,31には、底部34を貫通する複数の通気孔35が前後方向に等間隔で配列されている。複数の通気孔35は、同じ長さ(距離)で比較した場合、無体走行帯20に設けられた吸着孔21の数よりも多く配列されている。すなわち、無体走行帯20の駆動途中のどんな場合においても、吸着孔21と通気孔35は少なくともそれぞれの一部が連通するように配置されている。
 ギヤボックス6は、メイン減圧室部30の側壁である後方壁部36に固定され、図1において説明したように第1モータ7および第2モータ8がギヤボックス6内に取り付けられている。図1および図2に示すように、第1駆動部2および第2駆動部3において、各サブ減圧室部31,31の外側側壁部37の後方側には、駆動輪支持板38が固定されている。また、各サブ減圧室部31,31の内側側壁部39の後方側には、駆動輪支持板40が固定されている。駆動輪10、14は、それぞれ駆動輪支持板38と駆動輪支持板40の間に配置され、不図示のボールベアリングなどで回転可能に支持されている。駆動輪10,14の外周には、上述のように歯型が形成されている。
 一方、各サブ減圧室部31,31の外側側壁部37の前方側には、従動輪支持板41が固定されている。また、各サブ減圧室部31,31の内側側壁部39の前方側には、従動輪支持板42が固定されている。二つの従動輪16,16は、それぞれ従動輪支持板41と従動輪支持板42の間に配置され、不図示のボールベアリングなどで回転可能に支持されている。従動輪16、16の外周には歯型が形成されている。図1、図2に示すように、各駆動輪支持板38,40および各従動輪支持板41,42には、サブ減圧室部31に不図示のねじなどで取付けるための長孔43が設けられている。この長孔43によって、各駆動輪支持板38,40および各従動輪支持板41,42を前後方向に移動させることができる。このことによって駆動輪10,14および従動輪16,16を前後方向に移動させて、各無端走行帯20,20を適切なテンションとなるように調整可能にしている。また、各無端走行帯20,20は、外側の駆動輪支持板38と内側の駆動輪維持板40、外側の従動輪支持板41と内側の従動輪支持板42とで挟まれ、駆動輪10,14および従動輪16,16から逸脱しないように位置規制されている。
 図2に示すように、無端走行帯20は、内側の動力伝達ベルトの1例であるタイミングベルト45と外側の走行帯46とが積層および固着されている。タイミングベルト45の厚みは走行帯46よりもはるかに薄く、軟弾性材料で形成されることが好ましい。タイミングベルト45の内側には、凸部と凹部がそれぞれ左右方向に伸び、かつ前後方向に隣接して配設される形状となる歯型が形成され、この歯型と駆動輪10,14および従動輪16,16に形成された歯型とが歯合して、滑りなく駆動輪10,14の回転を無端走行帯20,20の前後方向の直線運動に変換する。無端走行帯20,20に設けられた吸着孔21は、その中心部分の貫通孔49が走行帯46およびタイミングベルト45を貫通し、通気孔35に連通する(図3(B)参照)。なお、図2では、貫通孔49の図示を省略している。走行帯46は、多孔質の半独立半連続気泡体によって形成されている。半独立半連続気泡体とは、たとえば、EPDM(エチレンプロピレンゴム)の発泡体などのように多孔質ながら気密性を有し、軟弾性を有していて圧縮しやすい材質のものをいう。また、壁面に対して摩擦係数が大きく滑りにくいものが好ましい。なお、タイミングベルト45は、カムベルトやコグトベルトなどと呼称されることがある。また、走行帯46は建設用重機などではクローラなどと呼称される。タイミングベルト45は、サブ減圧室33の底部34を摺動する。次に、無端走行帯20に設けられる吸着孔21の構成について図3を参照して説明する。
 図3は、吸着孔21の断面構成の一部を拡大して示す断面図であり、(A)は本発明者が従前に創作した技術による構成(以下、従前創作技術という。)、(B)は本実施の形態による構成を表している。なお、図3(A),(B)は、対比して説明するために同じ機能部には同じ符号を付している。図3(A)に示すように、従来技術による無端走行帯20は、タイミングベルト45と走行帯46とから構成され、タイミングベルト45と走行帯46とを同じ開口面積を有する吸着孔21が貫通している。走行帯46において、隣接する吸着孔21の間は区画壁50で仕切られている(図2も参照する)。サブ減圧室33の底部34には、吸着孔21に連通する通気孔35が設けられている。区画壁50は、前後方向に幅が狭い直方体である。吸着室47は、通気孔35と壁面Wとで構成される空間である。サブ減圧室33(吸着室47)を減圧すると、走行帯46は壁面Wに吸着され区画壁50は上下方向に圧縮される。前述したように、走行帯46は、軟弾性を有し圧縮されやすい材質で形成されているため、壁面Wを吸着したとき、上下方向の圧縮力によって、図3(A)において二点鎖線(50a)で表すように座屈変形しやすい。なお、変形後の形状は、誇張して表してある。このように、区画壁50が変形すると、壁面Wと走行帯46との間で空気漏れが発生することがあり吸着力が不安定になる。そこで、本実施の形態では、図3(B)に示すように、吸着孔21(吸着室47)を2段孔構成としている。
 図3(B)に示すように、吸着孔21は、壁面W側に開口する上方から見て四角形状の吸着凹部48と、吸着凹部48から走行帯46およびタイミングベルト45をサブ減圧室33まで貫通する貫通孔49とで構成されている。貫通孔49は吸着凹部48の中心部に形成され、平面四角形状の立方体とされている。言い換えれば、区画壁50の壁面Wに接触する側の区画壁50の柱状部は、従前創作技術と同じ幅の形状とし、サブ減圧室33側の柱状部は壁面W側よりも断面積をはるかに大きくしているといえる。このようにすれば、壁面Wを強く吸着しても区画壁50はほとんど座屈変形することがない。吸着凹部48の深さは、走行帯46が走行中に圧縮された状態でも、壁面Wとの隙間ができなければ深くてもよい。なお、吸着凹部48の開口面積を従前創作技術の吸着孔21の開口面積と同じにすれば、吸着力が低下することはない。ここで、吸着凹部48の開口形状は、図2に示すように長方形とし、貫通孔49を四角柱や円筒にしてもよい。タイミングベルト45の内側面に形成される凹凸(歯型)は、壁面Wを吸着したときに圧縮され、貫通孔49の周囲は気密性を有する。なお、図3(B)は、通気孔35の構成を簡略化して表しているが、本実施の形態では、サブ減圧室33に連通する通気孔35を解放したり閉鎖したりする開閉手段55(図4参照)が配設されている。次に、通気孔35および開閉手段55の構成について図4を参照して詳しく説明する。
 図4は、開閉手段55の構成の1例およびその作用を説明する図で、構成要素を模式的に表した説明図であり、(A)はサブ減圧室33と吸着室47の圧力が共に大気圧に対して負圧になっている状態、(B)はサブ減圧室33が負圧であることに対して吸着室47が大気圧(正圧)になっている状態を表している。図4(A)に示すように、サブ減圧室部31の底部34には、吸着室47と連通する通気孔35を開けたり閉めたりすることが可能な開閉手段55が配置されている。開閉手段55は、底部34の下面56から上下方向に向かって掘り下げられた凹部57内に配置される弁体58と、底部34の上面59に固定された略クランク形状の受け板60と、弁体58を壁面W側に常に付勢する弾性部材であるコイルばね61とから構成されている。
 弁体58は、凹部57内の底面62に弁体の一端部となる基部63が固定され、弁体58と基部63とはヒンジ64で連結されている。弁体58は、ヒンジ64を回転軸として上下方向に搖動可能である。受け板60は、底部34の上面59に固定される基部65から上方に折り曲げられ通気孔35上に張り出された受け部66を有している。受け部66には、通気孔35内に延び、コイルばね61が傾かないように案内する案内軸67が立てられている。コイルばね61は、一方の端部が受け部66に当接し、他方の端部が弁体58を壁面W側に付勢している。なお、凹部57の底面62には、通気孔35の周縁にパッド68が貼着されている。このパッド68は、たとえば、走行帯46と同じように圧縮性が高い半独立半連続気泡体などのシートで形成され、通気孔35の周囲に1個所または一定間隔の隙間を有して間欠的に複数個所貼着される。
 図4(A)は、走行帯46が壁面Wに密接し、吸着室47が気密状態であることを表している。吸着室47は、メイン減圧室32およびサブ減圧室33を介してブロワユニット5(図1参照)によって真空吸引される。弁体58は、コイルばね61によって通気孔35を解放するように押されているのでサブ減圧室33と吸着室47とは連通され、内部圧力は同じとなる。つまり、サブ減圧室33と吸着室47は外部の大気圧に対して共に負圧となっている。コイルばね61の弾性力は、サブ減圧室33内と吸着室47内の気圧が同じときにはたわみが解放され、弁体58が通気孔35を開く。なお、この状態のとき、弁体58はタイミングベルト45には接触しないように寸法が設定されている。続いて、弁体58が、通気孔35を閉鎖する場合について図4(B)を参照して説明する。なお、図4(B)に記載する構成要素は、図4(A)と同じなので、構成要素の説明は省略する。
 図4(B)は、壁面Wに段差69があり、走行中にこの段差位置に吸着凹部48が移動してきた場合を表している。このような場合、段差69があることによって走行帯46と壁面Wとの間に隙間が生じ、吸着室47の気圧は外部の大気圧と同じになる。サブ減圧室33は、真空吸引を継続しているので大気圧に対して負圧である。つまり、サブ減圧室33の気圧よりも吸着室47の気圧の方が高くなる。この気圧差がコイルばね61の弾性力よりも大きくなると弁体58は通気孔35を閉じる方向に押され、パッド68がなければ弁体58は凹部57の底面62に密接し通気孔35を閉鎖する。その後、走行帯46が段差69を乗り越え、吸着室47が、壁面Wによって塞がれても、弁体58によって通気孔35が閉鎖されていると、吸着室47の気圧がサブ減圧室33の気圧より高いという状態が継続されるので弁体58が開くことはなく、この吸着室47には吸着力が発生しない。
 本実施の形態では、通気孔35の周縁に間欠状にパッド68が設けられている。このパッド68によって弁体58は凹部57の底面62との間にパッド67の厚み分の隙間70となる領域ができる。走行帯46が段差69を乗り越え吸着室47が減圧されていくと、この隙間70によって吸着室47とサブ減圧室33とが連通しているので、サブ減圧室33の気圧と吸着室47の気圧は同じになり、弁体58は通気孔35を解放する方向に押され、図4(A)に示す状態に復帰することが可能となる。なお、隙間70は、小さく真空吸引力が大きいことから、図4(B)に示す状態時においても吸着力は確保される。なお、図4に示した開閉手段55は1例であって、その構成はこれに限らない。たとえば、弁体58をコイルばね61と一体に連結して、コイルばね61のたわみに弁体58が追従して動くようにしてもよい。また、パッド68に替えて、弁体58に突起を設けたり、凹部57の底面62に突起を設けたりしてもよい。また、弁体58を球体とした、いわゆるボール弁を構成し、通気孔35と球体との接触部に上記パッド68と同じ機能を有するパッドを設けるようにしてもよい。開閉手段55を設けることによって、壁面Wに凹凸がある場合や壁面Wにごみが付着している場合など、部分的に、サブ減圧室33の気圧<吸着室47の気圧となるような場合に有効である。
 続いて、壁面Wに段差などがある場合に走行を可能にする無端走行帯20について図5を参照して説明する。
 図5は、無端走行帯20の構成および作用を示す説明図であり、(A)は無端走行帯20の製造方法を示す斜視図、(B)は従前創作技術による無端走行帯20が段差のある壁面を走行する状態、(C)は本実施の形態による無端走行帯20が段差のある壁面を走行する状態を示す部分断面図である。図5(A)に示すように、無端走行帯20は、環状のタイミングベルト45の歯形形成面とは反対側の面に走行帯46が貼着されている。走行帯46は、図中に二点鎖線で表したような展開長さを有し、50%~80%の圧縮率となるように長さ方向(図示矢印方向)に圧縮しながらタイミングベルト45に巻きつけるようにして接着する。走行帯46の両端部46a、46bは、接続部71において密着される。走行帯46は、前述したように柔軟性を有し多孔質の半独立半連続気泡体によって形成されているので主として気泡部分が圧縮されるが、圧縮による厚みおよび幅の変形は無視できる程度である。タイミングベルト45は、不図示の中子などで形状を一定に保持される。中子には、タイミングベルト45と走行帯46の幅方向位置を規定する枠部を設けることが好ましい。タイミングベルト45に設けられる貫通孔49(図3(B)参照)、走行帯46に設けられる吸着孔21は、圧縮率を基に計算して位置補正し接着前に開けておいてもよく、接着後に開けるようにしてもよい。なお、貫通孔49は、図3に示すように、タイミングベルト45および走行帯46を貫通しているが、図5(A)では、その一部を省略して図示している。
 次に、図5(B)および図5(C)を参照して、走行帯46を圧縮してタイミングベルト45に貼着する意味について説明する。図5(B)に示すように、吸着走行装置1の進行方向(図示矢印で示す)の壁面Wに段差部72がある場合、走行帯46は半独立半連続気泡体で形成されているので、壁面Wの段差部72の段差を吸収するように圧縮変形される。この際、圧縮貼着されていない従前創作技術の走行帯46は、段差部72の前後で引っ張られて段差部72との間に隙間73が生じる。段差部72に走行帯46の吸着孔21が達すると空気漏れが発生し吸着力が低下する。なお、タイミングベルト45には、駆動輪10,14と従動輪16,16によってテンションがかけられているので、ほとんど変形しない。
 走行帯46が圧縮されてタイミングベルト45に貼着されている本実施の形態では、図5(C)に示すように、段差部72の前後で引っ張られても走行帯46は段差部72に追従して変形するため隙間73がほとんど発生しない。したがって、段差部72に走行帯46の吸着孔21が達しても空気漏れが発生することがなく吸着力を維持する。なお、図5では、吸着走行装置1が段差部72を乗越える場合を表しているが、段差部72を降りる場合や、複数の段差部が連続する場合などにも有効である。
 吸着走行装置1は、ビルの壁や高速道路の高架、橋脚など、大型建造物の壁面(ガラス面を含む)の保守点検や洗浄などの作業をする際に好ましい装置として用いられることが想定される。したがって、吸着走行装置1には、上記作業を行う装置が取り付けられる。そこで、吸着走行装置1には、これら作業用の装置を取り付けるための取付け部材としての取付け枠75が設けられている。この取付け枠75について図6を参照して説明する。
 [第2の実施の形態]
 図6は、取付け枠75が固定された第2の実施の形態に係る吸着走行装置1Aを示し、(A)は壁面W側(下方側)から見た平面図、(B)は前方側から見た正面図である。図6(A),(B)に示すように、吸着走行装置1Aには、取付け枠75が取り付けられている。取付け枠75は、第1駆動部2と第2駆動部3の間を前後方向に貫通する中心梁部76と、中心梁部76の前後方向両端部に接続され、吸着走行装置1Aの外周を取り巻くように配置される枠部77で構成されている。取付け枠75は、中心梁部76においてメイン減圧室部32の底部78に固定ネジ79によって固定されている。なお、固定ネジ79による固定部には、パッキンなどによってメイン減圧室部30の気密性を保持するようにしている。
 取付け枠75は、第1駆動部2および第2駆動部それぞれを逃がすように逃げ孔部80,81が設けられている。取付け枠75には枠部77が設けられていて、吸着走行装置1Aの全周を取り巻くように複数の孔部82が設けられている。これら孔部82は、前述したビルの壁や高速道路の高架、橋脚など、大型建造物の壁面(ガラス面を含む)を保守点検あるいは洗浄などの作業をするための装置を取り付けるための取付け孔であって、孔部82の数、配列および孔形状は、取付け対象の装置によって任意に変更することが可能である。また、孔部82は、図7,8を参照して後述する複数の吸着走行装置1B,1Cを連結する場合のヒンジ85(図7参照)などの取付け孔などとしても使用可能である。図6に記載の取付け枠75の形状は1例であって、使用方法および使用場所によって自在に変更可能である。この取付け枠75は、第1の実施の形態に係る吸着走行装置1以外の吸着走行装置に使用可能なものである。次に、上記取付け枠75を用いて吸着走行装置1Aを複数台連結することについて図7および図8を参照して説明する。
 [第3の実施の形態]
 図7は、第3の実施の形態に係る吸着走行装置1Bを示し、上記吸着走行装置1Aが走行方向(前後方向)に複数台連結される例を示す図で、図7では1例として3連の場合を表し、(A)は上方側から見た平面図、(B)は(A)の右方側から見た側面図である。図7(A)では、孔部82(図6参照)の図示を省略している。図7(A),(B)において、吸着走行装置1Bを前方から後方に向かって順に吸着走行装置1(a)、吸着走行装置1(b)、吸着走行装置1(c)と記載する。壁面Wは、基準面をW(a)とし、基準面W(a)に対して段差がある段差面W(b)とする。吸着走行装置1(a),1(b),1(c)それぞれには、取付け枠75が固定されている。各吸着走行装置は、連結手段83によって連結されている。連結手段83は、連結板84と2対のヒンジ85とを有している。吸着走行装置1(a)と吸着走行装置1(b)は、連結板84を介して各々の取付け枠75がヒンジ85で連結され、吸着走行装置1(b)と吸着走行装置1(c)は、連結板84を介して各々の取付け枠75をヒンジ85で連結している。
 吸着走行装置1(a),1(b),1(c)は、それぞれヒンジ85を介して連結されているので、壁面Wの段差部72に追従して連結板84がヒンジ85で折れ曲がり可能となっている。図7(B)に示す例では、吸着走行装置1(b),1(c)は基準面W(a)を吸着し、吸着走行装置1(a)は段差面W(b)を吸着している。ここで、吸着走行装置1(a)が段差部72を乗越えようとするとき、吸着走行装置1(b),1(c)が基準面W(a)を吸着して走行し、吸着走行装置1(a)を支えながら押動して段差部72を乗越えさせることができる。吸着走行装置1(a)は、走行帯46が、図5(C)に示すように圧縮可能なので空気漏れを抑え吸着力を維持しながら段差部72を乗り越え段差面W(b)を吸着することとなる。また、走行方向が逆の場合であって、吸着走行装置1(c)が段差部72を段差面W(b)から基準面W(a)に降りる場合には、吸着走行装置1(a),1(b)が段差面W(b)を吸着して走行し、吸着走行装置1(c)を支えながら押動して段差部72を下降させることができる。吸着走行装置1(c)は、走行帯46が、図5(C)に示すように圧縮可能なので空気漏れを抑え吸着力を維持しながら基準面W(a)に到達する。
 また、中間に配置される吸着走行装置1(b)は、吸着走行装置1(a),1(c)によって支えられながら走行することができる。たとえば、吸着走行装置1(c)が最後端にある場合においても、吸着走行装置1(a),1(b)が壁面Wを吸着して走行させることができる。図7では、吸着走行装置1が、3台連結した場合を例示しているが、吸着走行装置1Bは、2台連結または3台以上の連結としてもよい。また、吸着走行装置1(a)~1(c)の一つに吸着力の低下が生じても他の2つの吸着力によって走行が可能となる。この複数の取付け枠75の例も、第1の実施の形態に係る吸着走行装置1以外の他の吸着走行装置に使用可能なものである。なお、図7では、吸着走行装置1Bを進行方向(前後方向)に連結しているが、進行方向に対して直交方向に複数台連結することが可能である。そのことについて図8を参照して説明する。
 [第4の実施の形態]
 図8は、第4の実施の形態に係る吸着走行装置1Cを示す図で、吸着走行装置1Aを走行方向(前後方向)および走行方向に直交する方向(左右方向)に複数台連結した例を示す平面図である。なお、図8は、孔部82(図6参照)の図示を省略している。図8では、吸着走行装置1Aが進行方向および左右方向に2台ずつ連結された例を図示しているが、それぞれ3台以上連結することが可能である。また、走行方向には連結しないようにしてもよい。吸着走行装置1Aには、取付け枠75が固定されている。隣接する吸着走行装置1Aは、連結板84を介して各々の取付け枠75がヒンジ85で連結されている。各吸着走行装置1Aは、それぞれヒンジ85を介して連結されているので、壁面Wの段差部(たとえば、図7(B)に示す段差部72など)や左右方向に段差部がある場合においても、その段差部に追従して偏倚可能となっている。このように複数台が連結された吸着走行装置1Cは、4台分の吸着力があるので、たとえば、1台だけの場合に対して4倍の重量を搭載して壁面Wを垂直に走行できる。この複数の取付け枠75の例も、第1の実施の形態に係る吸着走行装置や他の吸着走行装置に使用可能なものである。なお、図7および図8に示す多連の吸着走行装置1B,1Cでは、ヒンジ85の取付け部以外の孔部82(図6(A)参照)を利用して前述した他の装置を取り付けることが可能である。
 以上説明した走行面である壁面Wに吸着して走行する吸着走行装置1,1A,1B,1Cは、区画壁50で仕切られた複数の吸着孔21が形成された無端走行帯20を有する第1駆動部2および第2駆動部3と、空気吸引装置であるブロワモータユニット5によって減圧されるメイン減圧室32と、メイン減圧室32に連通し第1駆動部2および第2駆動部3それぞれに配置されるサブ減圧室33と、サブ減圧室33の吸着孔21の配置側に設けられ、サブ減圧室33と複数の吸着孔21の各々を連通する複数の通気孔35と、通気孔35の各々を解放したり閉鎖したりする開閉手段55と、を有している。開閉手段55は、壁面Wと吸着孔21で形成される複数の吸着室47の気圧がサブ減圧室33の気圧と同じであるときに通気孔21を解放し、吸着室47の気圧がサブ減圧室33の気圧よりも高くなるときに通気孔21を閉鎖し、通気孔21を閉鎖した際に、通気孔21にはサブ減圧室33の気圧が他の吸着室47の気圧に影響しない程度の大きさの隙間70が形成されている。
 吸着室47とサブ減圧室33とを連通する通気孔35は、開閉手段55によって解放したり閉じたりすることが可能となっている。開閉手段55は、吸着室47と壁面Wとの間に空気漏れなどがあって、サブ減圧室33の気圧<吸着室47の気圧となると、通気孔35を閉じてサブ減圧室33の気圧が大気圧に近づくことを防いでいる。また、開閉手段55を閉じたときにできる隙間70によって吸着室35とサブ減圧室33との間は通気可能なので吸着室47の空気漏れがなくなった後に、サブ減圧室33の気圧=吸着室47の気圧となり、開閉手段55が通気孔35を解放することによって吸着力を回復できる。このようにすることで、壁面Wへの吸着力の変動を抑制し安定した吸着力を維持できる吸着走行装置1,1A,1B,1Cを提供することができる。
 また、吸着孔21は、サブ減圧室33側の開口面積を壁面W側の開口面積よりも小さくしている。このことは、区画壁50がサブ減圧室33側の断面積を大きく、壁面W側の断面積を小さくしていることになる。このようにすれば、壁面Wを強く吸着することによる区画壁50の座屈変形に伴う吸着室47の空気漏れを抑制できる。また、壁面W側の開口面積を従来の開口面積と同じに確保できる。吸着力は開口面積に比例するので高い吸着力を維持できる。
 また、吸着走行装置1Aは、メイン減圧室部31の壁面W側の底部78に固定される取付け枠75を有し、前記取付け枠75の一部は第1駆動部2および第2駆動部3の外側に作業用装置などを取り付け可能な枠部77が突設している。
 このような構成にすれば、取付け枠75の枠部77を利用して、たとえば、ビルの壁や高速道路の高架、橋脚など、大型建造物の壁面(ガラス面を含む)を保守点検する装置や洗浄装置などの作業用装置を吸着走行装置1Aに容易に取付け可能となる。枠部77には、上記装置類の取付け用の複数の孔部82を設けることによって、作業対象の装置を切り替えて取付けることが容易にできる。
 また、吸着走行装置1Aは、メイン減圧室部31に固定された取付け枠75を連結手段83によって走行方向または/および走行方向に直交する方向に複数連結することが可能である。メイン減圧室部31に固定された取付け枠75を連結手段83によって連結するということは、吸着走行装置1(1A)を連結手段83によって複数台連結することであって、走行方向に連結した吸着走行装置1B、走行方向と走行方向に直交する方向に連結した吸着走行装置1Cを構成できる。このように吸着走行装置1を多連構成にすることによって、面積の広い壁面であっても壁面作業を効率的に行うことや、吸着走行装置1が単体の場合に比べて、吸着力と走行力(駆動力)が台数に比例して大きくなり、台数分の重量を有する上記作業用装置を搭載して走行することができる。
 また、連結手段83は、隣接する取付け枠75の間に配置される連結板84と、取付け枠75と連結板84とを連結するヒンジ85を有している。このように構成すれば、連結された吸着走行装置1は、連結板84がヒンジ85で搖動可能なので1台1台が段差のある壁面Wでも段差に追従して走行が可能となる。
 また、複数の吸着孔21が形成された無端走行帯20と、吸着孔21側の空気を吸入する空気吸引装置であるブロワモータユニット5と、を有し、無端走行帯20が走行面である壁面Wに吸着し姿勢を保持すると共に回転することで前進または後進の少なくとも一方を行う吸着走行装置1,1A,1B,1Cにおいて、ブロワモータユニット5による減圧を吸着孔21側に及ぼしたり、及ぼさなかったりするための開閉手段55を設け、開閉手段55は、吸着孔21側が外部空間と連通しない状態時には弁体58開くことで、吸着孔21を減圧し、吸着孔21側が外部空間と連通し大気圧となっている状態時には、わずかな隙間70を有しつつ弁体58を閉じることで、上記連通しない状態に復帰したときに開閉手段83が閉じた状態を継続してしまい、吸着孔21側が減圧されなくなることを防ぐようにしている。
 通気孔35は、開閉手段55によって解放したり閉じたりすることが可能となっている。開閉手段55は、吸着室47と壁面Wとの間に空気漏れなどがあって、サブ減圧室33の気圧<吸着室47の気圧となると、通気孔35を閉じてサブ減圧室33の気圧が大気圧に近づくことを防いでいる。また、開閉手段55を閉じたときにできる隙間70によって吸着室35とサブ減圧室33との間は通気可能なので吸着室47の空気漏れがなくなった後に、サブ減圧室33の気圧=吸着室47の気圧となり、開閉手段55が通気孔35を解放することによって吸着力を回復できる。このようにすることで、壁面Wへの吸着力の変動を抑制し安定した吸着力を維持できる吸着走行装置1,1A,1B,1Cを提供することができる。
 また、開閉手段83は、無端走行帯20が対向する本体側(サブ減圧室33側)に配置され、本体側に設けられる吸着孔21と連通可能に設置される複数の通気孔35の各々を解放したり閉鎖したりする弁体58と、通気孔35が解放される方向に弁体58を付勢する弾性部材であるコイルばね61と、から構成されている。
 なお、開閉手段としては上記開閉手段83以外に、センサによって吸着室47や減圧室33の気圧を検出してアクチュエータなどで通気孔35を解放したり閉鎖したりすることが可能である。しかし、このような開閉手段は、多数の通気孔それぞれに配置されるため重量が増し、制御も複雑になってしまう。本実施の形態では、開閉手段55は、弁体58とコイルばね61とから構成されているので軽量化が可能で、コイルばね61の弾性力を適切に設定しておけば複雑な制御は不要である。
 また、無端走行帯20は、走行駆動力が伝達されるタイミングベルト45と軟弾性体の走行帯46との2層構造を有し、走行帯46を長さ方向に圧縮した状態でタイミングベルト45に固着している。走行帯46は、多孔質の軟弾性体で形成されているので容易に圧縮可能である。このようにすれば、壁面Wに段差部72がある場合などに、走行帯46は段差部72に追従して変形するため段差部72と走行帯46との間に隙間73がほとんど発生しない。したがって、段差部72に走行帯46の吸着孔21が達しても空気漏れが発生することがなく吸着力を維持することができる。
 以上説明した第1から第4の実施の形態によれば、安定した吸着力を維持しつつ、面積の広い壁面や天井などであっても壁面作業を効率的に行うことや、重量が大きい作業用装置を搭載できる吸着走行装置1、1A,1B,1Cを実現できる。さらに、無端走行帯20の構成を工夫することによって吸着力がより高い吸着走行装置1を実現することが可能となる。図1~図5において説明した第1の実施の形態に係る吸着走行装置1の無端走行帯20とその周辺を工夫した構成例を第1の無端走行帯周辺例とし、第1の無端走行帯周辺例における無端走行帯20と同種の無端走行帯20Aを備える吸着走行装置1の他の構成例を第2の無端走行帯周辺例及び第3の無端走行帯周辺例とし図9~図12を参照して説明する。
 図9は、第1の無端走行帯周辺例を示す図で、無端走行帯20Aがサブ減圧室部31に装着された状態を示す断面図であり、無端走行帯20Aを幅方向(左右方向)に切断した切断面を表している。図示する無端走行帯20Aは第2駆動部3側を表し、第1駆動部2側も同じ構成なので図示を省略する。また、無端走行帯20Aは、全周に亘って同じ構成となっているので、図9においては、下方側に符号を付して説明し、上方側の符号は省略するものがある。
 無端走行帯20Aは、走行帯46と動力伝達ベルトであるタイミングベルト45とから構成されている。無端走行帯20Aは、タイミングベルト45のサブ減圧室部31に接触する側(内側という)に帯状部材52と摺動テープ53とが積層された吸着帯51を有している。吸着帯51は、タイミングベルト45の内側の走行方向全周に亘って設けられた溝45Cの内部に埋め込まれ固着されている。溝45Cは、タイミングベルト45の幅方向のほぼ中央に形成されている。タイミングベルト45の吸着帯51を挟んで幅方向両側には、駆動輪14の歯形17に歯合する歯形45Aが形成されている。帯状部材52は走行帯46と同じ軟弾性材料で形成され、摺動テープ53は摩擦係数が小さく摺動耐久性が優れた材料で形成された薄いテープである。図示は省略するが、摺動テープ53をサブ減圧室部31の上面31A及び下面31Bにも貼着し、タイミングベルト45とサブ減圧室部31との間の摩擦を減ずるようにしてもよい。
 吸着帯51の幅方向中央には、走行帯46に設けられた吸着孔21及びサブ減圧室部31に設けられた通気孔35に連通する孔54が穿設されている。吸着帯51は、タイミングベルト45の歯形45Aの頂部よりも突出する厚みを有しており、摺動テープ53はサブ減圧室部31の外殻面を構成する上面31A及び下面31Bに接触する。
 サブ減圧室部31の外側側壁部37は、上面31A及び下面31Bから上下方向に延長されたガイド部37Aを有し、内側側壁部39は、上面31A及び下面31Bから上下方向に延長されたガイド部39Aを有している。ガイド部37A,39Aは、吸着走行の際に無端走行帯20Aが蛇行することを防止する。ガイド部37A、39Aは、サブ減圧室部31の前後方向の長さ全体にわたって形成してもよく、前方側及び後方側のみに形成してもよい。
 図10は、第1の無端走行帯周辺例において、第2駆動部3が走行面である壁面Wに吸着した状態を示す断面図である。第1駆動部2は第2駆動部3と同じ構成及び作用を有しているので図示を省略する。サブ減圧室33を負圧にすることによって、無端走行帯20Aは壁面Wに吸着する。帯状部材52は吸着力によって圧縮され、摺動テープ53がサブ減圧室部31の下面31Bに強く密接し、無端走行帯20Aとサブ減圧室部31の間の空気漏れを排除する。吸着帯51を設けることによって空気漏れをなくすことによって、吸着帯51を設けない構成よりも吸着力をより高めることが可能となる。吸着帯51は、壁面Wに吸着した際にタイミングベルト45の歯形45Aの頂部がサブ減圧室31の下面31Bに接触する厚みとすることが好ましいが、僅かに隙間があってもよい。サブ減圧室部31の上面31A側には吸着力が働かないので、吸着帯51がサブ減圧室31の上面31Aに接触し、タイミングベルト45の歯形45Aの頂部はサブ減圧部31の上面31Aとの間に隙間を有する。
 図9、図10に図示する例においては、サブ減圧室部31にガイド部37A,39Aを設けているが、無端走行帯20Aの蛇行防止には、駆動輪10,14及び従動輪16にガイド部を設ける構成としてもよい。以下に、駆動輪14を例示して説明する。
 図11は、第2の無端走行帯周辺例における無端走行帯20Aと駆動輪14の関係を示す断面図である。図11に図示する無端走行帯20Aは、図9,10において図示し説明した構成と同じなので詳しい説明を省略するが、幅方向中央に吸着帯51が固着されている。駆動輪14は、吸着帯51を挟んで駆動輪部14A,14Bに分割されている。駆動輪部14A,14Bはシャフト18で接続されている。駆動輪部14A,14Bそれぞれの外周部には、歯形17が形成され、歯形17はタイミングベルト45の歯形45Aと歯合する。無端走行帯20Aが吸着帯51を有しているため、駆動輪14は吸着帯51に歯形17が干渉しないように駆動輪部14Aと駆動輪部14Bとに分割されている。
 駆動輪部14Aは、左方側端面が無端走行帯20Aの厚み方向に交差する位置まで拡径されたガイド部19Aを有し、駆動輪14Bには、右方側端面が無端走行帯20Aの厚み方向に交差する位置まで拡径されたガイド部19Bを有している。ガイド部19A,19Bは、吸着走行の際に無端走行帯20Aが蛇行することを防止する。ガイド部19A,19Bは、駆動輪10及び従動輪16にも同じように設けられる。
 サブ減圧室31にガイド部37A、39Aを設けること、駆動輪10,14及び従動輪16にガイド部19A,19Bを設けることは、前述した第1の実施例(図1、図2参照)にも適合可能である。又、ガイド部37A、39A及びガイド部19A,19Bの両方を備える構成としてもよく、また、どちらか一方を設けるようにしてもよい。なお、駆動輪部を分割する構成やガイド部を設ける構成の一方又は両方は、第1~第4の実施の形態に係る吸着走行装置や他の吸着走行装置に使用可能である。
 以上説明した第1や第2の無端走行帯周辺例に係る吸着走行装置1によれば、無端走行帯20Aは、動力伝達ベルトあるタイミングベルト45のサブ減圧室31側(サブ減圧室部33側)に軟弾性体の帯状部材52と摺動テープ53とが積層された吸着帯51をさらに有し、吸着帯51は、無端走行帯20Aの幅方向中央部に固定され、かつ通気孔35と吸着孔21とに連通可能な孔54を有し、走行面である壁面Wに吸着して走行する際に、摺動テープ53はサブ減圧室部33の走行面側の外殻面である下面31Bに密接しつつ摺動するように配置されている。
 このようにすれば、吸着走行装置1が吸着走行する際に、吸着帯51はサブ減圧室部31の下面31Bの通気孔35の周囲に密接することから、無端走行帯20Aとサブ減圧室部31との間で空気漏れの発生を抑えることが可能となり、吸着力がより高い吸着走行装置1を実現することが可能となる。
 なお、図示は省略するが、吸着帯51をサブ減圧室部31の下面31Bに設ける構成とすることが可能である。たとえば、図9に示す吸着帯51の配置位置において、吸着帯51をサブ減圧室部33の下面31Bに固着する。タイミングベルト45には、図9に示す溝45Cに相当する溝が形成され、この溝内に吸着帯51が通過できるようにする。吸着帯51は、帯状部材52をサブ減圧室部31側に固着し、摺動テープ53をタイミングベルト45の溝底面に摺動させるようにする。このような構成にしても、前述した無端走行帯20Aが吸着帯51を備えるときと同じ効果が得られる。このような構成にすれば、駆動輪14を駆動輪部14A、14Bに分割しなくてもよい。駆動輪10及び従動輪16も同様である。
 なお、無端走行帯20Aの壁面Wに対する吸着力が高まると、吸着走行する際に無端走行帯20Aとサブ減圧室部31との間の摩擦負荷が高くなり、走行ロスが発生することが考えられる。そこで、この摩擦負荷を減少させる構成を第3の実施例として図12を参照して説明する。
 図12は、第3の無端走行帯周辺例におけるサブ減圧室部31の構成を拡大して示す部分断面図である。無端走行帯20Aは、前述した第2の実施例と同じ構成を例示している。サブ減圧室部31の底部34の無端走行帯20A側には、ローラユニット74が埋め込まれている。ローラユニット74は、ローラ枠体74Aと、ローラ枠体74Aに回転可能に軸支される複数のローラ74Bとを有している。ローラユニット74は、吸着帯51を挟んで幅方向両側にサブ減圧室部31の長さ方向(前後方向)に沿って配置される。ローラユニット74は、サブ減圧室部31の底部34に設けられた凹部34A内に埋め込まれている。ローラ74Bは、サブ減圧室部31の下面31Bよりも外周面の一部が突出し、走行方向に多連配列される。従って、壁面Wに吸着し吸着帯51が圧縮される際に、ローラ74Bがタイミングベルト45の歯形45Aの頂部に当接する。壁面Wに吸着して走行する際に、ローラ74Bは、タイミングベルト45によって転動するように配置されている。
 第3の無端走行帯周辺例によれば、サブ減圧室部31と無端走行帯20Aの間にローラ74Bを配設している。従って、吸着帯51を設けることによって吸着力が高まることで増加する摩擦負荷を低減し、走行ロスを低減することが可能となる。
 図12に図示する例においては、ローラユニット74をサブ減圧室部31の下面31B側に配設した例を図示している。ローラユニット74は、下面31B側に加えてサブ減圧室部31の上面31B側に配設してもよい。このようにすれば、走行時においてサブ減圧室部31と無端走行帯20との間の摩擦抵抗をさらに減ずることができる。なお、図12では、吸着帯51を設ける構成を図示しているが、ローラユニット74は吸着帯51を設けない構成にも適合できる。
 前述した第1の実施の形態による吸着走行装置1では、メイン減圧室32を介してサブ減圧室33からブロワユニット5によって壁面Wとの間に負圧を発生させる。しかし、図示は省略するが、メイン減圧室32を介さずにブロワユニット5がサブ減圧室33から配管を介して直接吸引するようにしてもよい。その際、サブ減圧室33の容積を小さくすると吸着力をより高めることが可能である。サブ減圧室部31は、無端走行帯20,20Aを支持していることから、たとえば、サブ減圧室部31に無端走行帯20,20Aを支持する部材を取り付けるようにすればよい。
 また、図示は省略するが、従来のサブ減圧室部31の内部に容積が小さい減圧室部(第2減圧室部という)をさらに格納し配管を介してブロワユニット5によって直接吸引するようにしてもよい。この第2減圧室部は、サブ減圧室部31に設けられた通気孔35に連通する通気孔が設けられ、サブ減圧室部31に固定される。このような構成においては、サブ減圧室部31は、無端走行帯20,20Aの支持体として機能する。
 図13は、第1の実施の形態に係る吸着走行装置1のサブ減圧室部31に設けられる通気孔35の配列の1例を模式的に示す説明図である。無端走行帯20,20Aは吸着走行時にサブ減圧室部31に沿って図示矢印方向に移動する。つまり、吸着孔21を構成する貫通孔49も移動する。貫通孔49は常に通気孔35と連通していなければならない。そこで、図13に示すように、通気孔49を長孔とし、2列にピッチをずらして配置することで、貫通孔49はいずれの位置においても必ず通気孔35に連通させることが可能となる。通気孔35の形状は長方形にしてもよく、3列に配列してもよく自在に設定可能である。また、円形や1列配列でも、貫通孔49とのピッチを適宜ずらせば、いずれの場所においても通気孔35と貫通孔49とを必ず連通させることが可能となる。このピッチをずらして通気孔を配置する構成は、第1~第4の実施の形態に係る吸着走行装置や他の吸着走行装置に使用可能である。
 なお、本発明は前述の実施の形態や無端走行帯周辺例に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。たとえば、本実施の形態の吸着走行装置1に壁面Wの状態を検出するセンサとコンピュータとを搭載し、プログラムによって壁面Wを自走するようにすることが可能である。あるいは、吸着走行装置1に通信装置を搭載し、無線または有線で走行制御をするようにすることも可能である。また、吸着走行装置1にフックなどを設けておき、落下防止用のケーブルを取り付けられるようにしてもよい。
 また、前述した実施の形態では、走行帯46を長さ方向に圧縮する率を50%~80%としていたが、作業性を考慮すると80%~95%の範囲としてもよく、好ましくは40%~95%、さらに好ましくは50%~90%、最も好ましくは60%~80%である。
 また、前述の実施の形態では、吸着走行装置1(1A)のそれぞれを連結板84とヒンジ85とで連結しているが、一つの取付け枠75で複数台連結するようにしてもよく、取付け枠75を設けずに、駆動輪支持板38,40と従動輪支持板41,42を利用して連結板84を取り付けるようにしてもよい。
 また、前述の実施の形態等では、垂直もしくは急斜面の壁面Wを対象としていたが、天井面や危険な吊り橋などの人が渡る水平面など、その他の全ての面に本発明を適用することができる。また、前述の実施の形態等では、メイン減圧室と、サブ減圧室とを有するものが示されているが、減圧室は1つまたは3つ以上でも良い。さらに、第1~第4の実施の形態に係る吸着走行装置1、1A,1B,1Cや第1~第3の無端走行帯周辺例に示される部分構成や部品などは、他の実施の形態のものなどに適宜、転用可能であり、さらには、他の吸着走行装置にも使用可能(転用可能)である。
 また、前述の実施の形態では、吸着孔21、通気孔35、吸着室47、吸着凹部48および貫通孔49を平面四角形状の立方体としているが、平面形状が楕円形、球形、三角形など他の形状の3次元空間としてもよい。また、前述の実施の形態が2つの駆動部(第1駆動部2、第2駆動部3)を有するものとしたが、1つの駆動部や3つ以上の駆動部を有するものとしてもよい。
 また、前述した実施の形態では、動力伝達ベルトとしてタイミングベルト45を採用しているが、動力伝達ベルトとしては、凹凸(歯型)がない表面がフラットのベルトであってもよい。その際、駆動輪10,14および従動輪16,16は、凹凸の歯型を備えたものであってもよく、凹凸の歯型のない摩擦車としてもよい。
 1、1A,1B,1C…吸着走行装置、2…第1駆動部、3…第2駆動部、4…減圧室部、20,20A…無端走行帯、21…吸着孔、34…底部、35…通気孔、45…タイミングベルト、46…走行帯、47…吸着室、49…貫通孔、50…区画壁、51…吸着帯、52…帯状部材、53…摺動テープ、54…孔、55…開閉手段、58…弁体、61…コイルばね(弾性部材)、70…隙間(開閉手段)、74…ローラユニット、75…取付け枠(取付け部材)、78…底部、83…連結手段、84…連結板、85…ヒンジ、74B…ローラ、W…壁面(走行面)

Claims (10)

  1.  走行面に吸着して走行する吸着走行装置において、
     複数の吸着孔が形成された無端走行帯を有する第1駆動部および第2駆動部と、
     空気吸引装置によって減圧されるメイン減圧室と、該メイン減圧室に連通し前記第1駆動部および前記第2駆動部それぞれに配置されるサブ減圧室と、
     前記サブ減圧室の前記吸着孔の配置側に設けられ、前記サブ減圧室と複数の前記吸着孔の各々を連通する複数の通気孔と、
     前記通気孔の各々を解放したり閉鎖したりする開閉手段と、を有し、
     前記開閉手段は、前記壁面と前記吸着孔で形成される複数の吸着室の気圧が前記サブ減圧室の気圧と同じであるときに前記通気孔を解放し、前記吸着室の気圧が前記サブ減圧室の気圧よりも高くなるときに前記通気孔を閉鎖し、
     前記通気孔を閉鎖した際に、前記通気孔には前記サブ減圧室の気圧が他の前記吸着室の気圧に影響しない程度の大きさの隙間が形成される、
    ことを特徴とする吸着走行装置。
  2.  請求項1に記載の吸着走行装置において、
     前記吸着孔は、前記サブ減圧室側の開口面積が前記壁面側の開口面積よりも小さい、
    ことを特徴とする吸着走行装置。
  3.  請求項1または請求項2に記載の吸着走行装置において、
     前記メイン減圧室部の前記壁面側の底部に固定される取付け部材を有し、
     前記取付け部材の一部は前記第1駆動部および前記第2駆動部の外側に作業用装置などを取り付け可能な枠部が突設している、
    ことを特徴とする吸着走行装置。
  4.  請求項3に記載の吸着走行装置において、
     前記吸着走行装置が、前記メイン減圧室に固定された前記取付け部材及び連結手段によって走行方向または/および走行方向に直交する方向に複数連結されている、
    ことを特徴とする吸着走行装置。
  5.  請求項3または請求項4に記載の吸着走行装置において、
     前記連結手段は、隣接する前記取付け部材の間に配置される連結板と、前記取付け板と前記連結板とを連結するヒンジを有する、
    ことを特徴とする吸着走行装置。
  6.  複数の吸着孔が形成された無端走行帯と、前記吸着孔側の空気を吸入する空気吸引装置と、を有し、前記無端走行帯が走行面に吸着し姿勢を保持すると共に回転することで前進または後進の少なくとも一方を行う吸着走行装置において、
     前記空気吸引装置による減圧を前記吸着孔側に及ぼしたり、及ぼさなかったりするための開閉手段を設け、
     前記開閉手段は、前記吸着孔側が外部空間と連通しない状態時には開くことで、前記吸着孔を減圧し、前記吸着孔側が外部空間と連通し大気圧となっている状態時には、わずかな隙間を有しつつ閉じることで前記連通しない状態に復帰したときに、前記開閉手段が閉じた状態を継続してしまい、前記吸着孔側が減圧されなくなることを防ぐように構成されている、
    ことを特徴とする吸着走行装置。
  7.  請求項1から請求項6のいずれか1項に記載の吸着走行装置において、
     前記開閉手段は、前記無端走行帯が対向する本体側に配置され、前記本体側に設けられる前記吸着孔と連通可能に設置される複数の通気孔の各々を解放したり閉鎖したりする弁体と、前記通気孔が解放される方向に前記弁体を付勢する弾性部材と、から構成されている、
    ことを特徴とする吸着走行装置。
  8.  請求項1から請求項7のいずれか1項に記載の吸着走行装置において、
     前記無端走行帯は、走行駆動力が伝達される動力伝達ベルトと軟弾性体の走行帯との2層構造を有し、
     前記走行帯が長さ方向に圧縮した状態で前記動力伝達ベルトに固着されている、
    ことを特徴とする吸着走行装置。
  9.  請求項1から請求項8のいずれか1項に記載の吸着走行装置において、
     前記無端走行帯は、前記動力伝達ベルトの前記サブ減圧室側に軟弾性体の帯状部材と摺動テープとが積層された吸着帯をさらに有し、
     前記吸着帯は、前記無端走行帯の幅方向中央部に固定され、かつ前記通気孔と前記吸着孔とに連通可能な孔を有し、
     前記走行面に吸着して走行する際に、前記摺動テープは前記サブ減圧室の前記走行面側の外殻面に密接しつつ摺動するように配置されている、
    ことを特徴とする吸着走行装置。
  10.  請求項9に記載の吸着走行装置において、
     前記外殻面には、前記吸着帯を挟んで幅方向両側に外周面の一部が前記外殻面より突出する複数のローラが長手方向に配列されており、
     前記走行面に吸着して走行する際に、前記ローラは前記動力伝達ベルトによって転動するように配置されている、
    ことを特徴とする吸着走行装置。
PCT/JP2018/000132 2017-01-07 2018-01-06 吸着走行装置 WO2018128194A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018560411A JP6901502B2 (ja) 2017-01-07 2018-01-06 吸着走行装置
US16/476,265 US11459041B2 (en) 2017-01-07 2018-01-06 Suction traveling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-001487 2017-01-07
JP2017001487 2017-01-07

Publications (1)

Publication Number Publication Date
WO2018128194A1 true WO2018128194A1 (ja) 2018-07-12

Family

ID=62791117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000132 WO2018128194A1 (ja) 2017-01-07 2018-01-06 吸着走行装置

Country Status (3)

Country Link
US (1) US11459041B2 (ja)
JP (2) JP6901502B2 (ja)
WO (1) WO2018128194A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180100A1 (ja) * 2017-03-29 2018-10-04 パナソニックIpマネジメント株式会社 壁面吸着走行装置
US10919589B1 (en) 2020-04-21 2021-02-16 International Climbing Machines, Inc. Hybrid surface-traversing apparatus and method
EP3929067B1 (en) * 2020-06-22 2023-04-26 Tata Consultancy Services Limited Autonomous surface crawling robot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05111882A (ja) * 1991-10-22 1993-05-07 Ishikawajima Kensa Keisoku Kk 吸盤構造
US5487440A (en) * 1993-05-18 1996-01-30 Seemann; Henry R. Robotic apparatus
US20030048081A1 (en) * 2001-09-09 2003-03-13 Advanced Robotic Vehicles, Inc. Surface adhering tool carrying robot
JP2016084118A (ja) * 2014-10-23 2016-05-19 インダストリーネットワーク株式会社 壁面吸着走行装置の走行輪
CN106143667A (zh) * 2016-08-11 2016-11-23 上海大学 一种合页式金属壁面工作爬壁机器人

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146778A (ja) * 1984-08-14 1986-03-07 Mitsubishi Kakoki Kaisha Ltd 壁面吸着式自走装置
US4699252A (en) * 1986-01-30 1987-10-13 Peter Sing Rolling contact suction system for vehicle braking and adhesion
JP2721511B2 (ja) 1988-06-30 1998-03-04 精工技研株式会社 壁面吸着移動装置
JPH0295989A (ja) * 1988-10-03 1990-04-06 Fuji Electric Co Ltd 壁面走行ロボット
JP2824276B2 (ja) * 1989-05-30 1998-11-11 三菱重工業株式会社 真空吸着走行装置
US5366038A (en) * 1992-08-25 1994-11-22 Nishiguchi Hidetsugu Robot traveling on wall face
JP3348568B2 (ja) * 1994-12-13 2002-11-20 トヨタ自動車株式会社 燃料蒸発ガス排出防止装置
JP3370255B2 (ja) * 1997-06-12 2003-01-27 東海ゴム工業株式会社 車両燃料タンク安全弁装置
KR100342029B1 (ko) * 1999-06-07 2002-06-27 탁승호 표면 주행체 및 그를 이용한 청소기
US8905174B2 (en) * 2009-07-29 2014-12-09 Edward T. Saylor, Jr. Traction robot
WO2014160238A1 (en) 2013-03-13 2014-10-02 Research Foundation Of The City University Of New York Robotic device for navigating inclined surfaces
DK2781438T3 (en) * 2013-03-22 2016-06-13 Force Tech Vacuum-vægkravleindretning

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05111882A (ja) * 1991-10-22 1993-05-07 Ishikawajima Kensa Keisoku Kk 吸盤構造
US5487440A (en) * 1993-05-18 1996-01-30 Seemann; Henry R. Robotic apparatus
US20030048081A1 (en) * 2001-09-09 2003-03-13 Advanced Robotic Vehicles, Inc. Surface adhering tool carrying robot
JP2016084118A (ja) * 2014-10-23 2016-05-19 インダストリーネットワーク株式会社 壁面吸着走行装置の走行輪
CN106143667A (zh) * 2016-08-11 2016-11-23 上海大学 一种合页式金属壁面工作爬壁机器人

Also Published As

Publication number Publication date
JP6901502B2 (ja) 2021-07-14
JPWO2018128194A1 (ja) 2019-11-07
US20200079447A1 (en) 2020-03-12
JP7100862B2 (ja) 2022-07-14
JP2021138370A (ja) 2021-09-16
US11459041B2 (en) 2022-10-04

Similar Documents

Publication Publication Date Title
JP7100862B2 (ja) 吸着走行装置
CN105263791B (zh) 真空壁爬行器
WO2018135229A1 (ja) 壁面吸着走行装置
JP2008120252A (ja) クローラ型吸着走行ロボット
JP2006326712A (ja) 乗越え機構を有する無限軌道方式壁面走行ロボット
JP6827189B2 (ja) 壁面吸着走行装置
JP2000197304A (ja) アクチュエ―タ
JP2016084118A (ja) 壁面吸着走行装置の走行輪
JP2018184036A (ja) 壁面吸着走行装置
JP2016074401A (ja) 壁面吸着走行装置
JP2578262B2 (ja) クローラ型壁面吸着走行ロボット
JP2016097955A (ja) 壁面吸着走行装置の吸着機構
JPH0795936A (ja) 壁面移動ロボット用吸盤構造
JPH0818577B2 (ja) 壁面走行用ロボットの移動吸着盤
JP2559329B2 (ja) 壁面走行用ロボットの滑落防止機構
JP2721511B2 (ja) 壁面吸着移動装置
JP2004114220A (ja) 物品吸着装置
JP3318978B2 (ja) 吸着走行装置の吸着機構
JPH0343031B2 (ja)
JP2000179531A (ja) 吸着走行装置の吸着盤
JP2008207746A (ja) 走行安定化装置
JP2020059065A (ja) 吸着装置
JP2008238306A (ja) 真空吸着パッド
CN113803536B (zh) 一种降噪排水管道及其施工方法
JP2007253890A (ja) 壁面吸着走行装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18735942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018560411

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18735942

Country of ref document: EP

Kind code of ref document: A1