WO2018128121A1 - Actuator - Google Patents

Actuator Download PDF

Info

Publication number
WO2018128121A1
WO2018128121A1 PCT/JP2017/046573 JP2017046573W WO2018128121A1 WO 2018128121 A1 WO2018128121 A1 WO 2018128121A1 JP 2017046573 W JP2017046573 W JP 2017046573W WO 2018128121 A1 WO2018128121 A1 WO 2018128121A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
dielectric
actuator
actuator according
electrodes
Prior art date
Application number
PCT/JP2017/046573
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 森本
義哲 権
達彦 入江
近藤 孝司
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2018560374A priority Critical patent/JP7056582B2/en
Publication of WO2018128121A1 publication Critical patent/WO2018128121A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/063Forming interconnections, e.g. connection electrodes of multilayered piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/506Piezoelectric or electrostrictive devices having a stacked or multilayer structure of cylindrical shape with stacking in radial direction, e.g. coaxial or spiral type rolls
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions

Definitions

  • the present invention relates to an actuator, more particularly to an actuator using a stretchable conductor composition as an electrode material, and more particularly to at least one actuator selected from a piezoelectric type, a dielectric type, and an electromagnetic induction type.
  • the first aspect of the present invention relates to an actuator using a piezoelectric phenomenon, and more particularly to a stacked piezoelectric actuator in which piezoelectric materials and internal electrodes are alternately stacked.
  • a piezoelectric laminated body is used in which a large number of piezoelectric ceramics having a small thickness and internal electrode layers are alternately laminated and integrally fired.
  • the ceramic layer made of piezoelectric ceramic a thin plate having a thickness of 20 to 200 ⁇ m is used, and the number of ceramic layers alternately laminated with the internal electrode layers reaches about 100 to 700.
  • Patent Document 1 discloses an example of this type of stacked piezoelectric actuator.
  • the outer invention includes a structure in which a ceramic laminate (piezo stack) having a smaller number of layers than the final number of layers is adhered by an adhesive as a countermeasure against problems caused by internal stress of the ceramic laminate, that is, a laminated type having a divided adhesion structure
  • a piezoelectric actuator is disclosed.
  • the side electrode is generally formed of a sintered conductive paste or a thermosetting conductive paste, but the cured product of such a paste is hard and brittle. There is a concern about troubles such as short circuit of an adjacent electric circuit due to poor conduction due to cracks and electrode pieces dropped from the cracks. Further, since the side electrodes are hard and brittle, the operation of the piezoelectric actuator itself is hindered, and the displacement of the actuator is limited to a small extent.
  • a second aspect of the present invention relates to an actuator that utilizes a change in volume of a dielectric when a voltage is applied to the dielectric.
  • an elastic dielectric material elastic insulating material
  • polarization occurs in the elastic dielectric material, and a positive charge accumulates on one of the opposing electrode surfaces and a negative charge on the other Accumulates.
  • This is a so-called capacitor.
  • An attractive force is generated between the positive and negative charges due to the Coulomb force. Due to the Coulomb force, the electrodes are attracted to each other to cause displacement and contraction stress in a direction in which the thickness of the elastic dielectric material is reduced. At the same time, a displacement and a force are generated in the surface direction of the dielectric material.
  • Patent Document 2 An example of a dielectric actuator using such a phenomenon is described in Patent Document 2.
  • the dielectric actuator described in Patent Document 1 shows a basic configuration of this type.
  • the Coulomb attractive force can be increased by increasing the charge accumulated in the electrode.
  • a large dielectric polarization can be generated by increasing the dielectric constant of the dielectric elastic body, and the accumulated charge can be increased.
  • the applied voltage is higher, the accumulated charge increases and the Coulomb force increases.
  • an increase in accumulated charge is directly linked to an increased risk of dielectric breakdown between the electrodes.
  • a dielectric elastic material kneaded with conductive carbon is used in a pseudo manner to increase the dielectric constant of the dielectric elastic material, and in order to cover the insulation that decreases due to the kneading of conductive carbon, a layer between layers is separately provided. A highly insulating elastic body is sandwiched.
  • the insulation is improved in this way, a low dielectric constant layer is interposed between the electrodes, and the effective dielectric constant is lowered.
  • the electrode material is a metal
  • deformation in the surface direction of the dielectric elastic body is constrained by the electrode metal, and although the internal stress in the dielectric elastic body increases, the amount of displacement is limited. The satisfactory displacement could not be obtained.
  • a third aspect of the present invention relates to an actuator that utilizes deformation of the inductor itself due to electromagnetic force generated by passing a current through the inductor.
  • An electromagnetic induction actuator is an actuator that uses a magnetic force generated by an electric current. This type of actuator has long been applied as a motor and an inductor.
  • the electromagnetic induction actuators known so far operate by moving an armature set in advance so as to be able to perform horizontal motion or rotational motion by electromagnetic force.
  • the electromagnetic force not only drives the armature, but also stresses the coil itself that can generate and stab the electromagnetic force.
  • the deformation of the coil due to the electromagnetic force leads to structural deterioration of the actuator itself, and thus the coil is required to have rigidity for suppressing the deformation.
  • the present invention is an actuator that positively uses deformation of the coil itself due to electromagnetic force applied to the coil. An actuator based on such a technical idea has not been put into practical use.
  • An object of the present invention is to provide a novel actuator by applying a stretchable conductor composition to an electrode or conductor portion of an actuator.
  • the first aspect of the present invention has been made in view of such conventional problems, and an attempt is made to provide a multilayer piezoelectric actuator having a side electrode that can follow the operation of the actuator and does not hinder the operation of the actuator. To do.
  • the second aspect of the present invention has been made in view of such conventional problems, and is intended to provide a dielectric actuator having an electrode that can follow the operation of the actuator and does not hinder the operation of the actuator. .
  • the third aspect of the present invention has been made in view of such a conventional problem, and intends to provide a novel electromagnetic induction actuator that deforms the coil itself by energization by using a conductor material having a large degree of freedom of deformation. Is.
  • the present invention has the following configuration.
  • [1] In a laminated piezoelectric actuator having a structure in which piezoelectric materials that cause a volume change by application of voltage and internal electrodes are alternately stacked, and the internal electrodes are alternately arranged as a positive electrode and a negative electrode.
  • the elastomer is natural rubber (NR), synthetic natural rubber (isoprene rubber) (IR), styrene-butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), butyl rubber (IIR), nitrile. Rubber (NBR), ethylene / propylene rubber (EPM, EPDM), chlorosulfonated polyethylene rubber (Hypalon) (CSM), acrylic rubber (ACM), urethane rubber (U), silicone rubber (Q), fluoro rubber (FKM)
  • NR natural rubber
  • IR synthetic natural rubber
  • SBR styrene-butadiene rubber
  • BR butadiene rubber
  • IIR butyl rubber
  • Rubber NBR
  • EPM ethylene / propylene rubber
  • CSM chlorosulfonated polyethylene rubber
  • ACM acrylic rubber
  • U urethane rubber
  • Q silicone rubber
  • FKM fluoro rubber
  • the conductor composition constituting the side electrode has a free volume of 3 to 35% by volume.
  • the elastomer is natural rubber (NR), synthetic natural rubber (isoprene rubber) (IR), styrene-butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), butyl rubber (IIR), nitrile. Rubber (NBR), ethylene / propylene rubber (EPM, EPDM), chlorosulfonated polyethylene rubber (Hypalon) (CSM), acrylic rubber (ACM), urethane rubber (U), silicone rubber (Q), fluoro rubber (FKM)
  • NR natural rubber
  • IR synthetic natural rubber
  • SBR styrene-butadiene rubber
  • BR butadiene rubber
  • IIR butyl rubber
  • Rubber (NBR) ethylene / propylene rubber
  • CSM chlorosulfonated polyethylene rubber
  • ACM acrylic rubber
  • U urethane rubber
  • Q silicone rubber
  • FKM fluoro rubber
  • An electromagnetic induction actuator characterized in that the inductor itself is deformed by using an electromagnetic force generated by passing an electric current through the inductor, which is formed of a stretchable conductor material.
  • the stretchable conductor composition is a mixture of conductive particles and a binder resin containing 90% by mass or more of an elastomer.
  • the elastomer is natural rubber (NR), synthetic natural rubber (isoprene rubber) (IR), styrene / butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), butyl rubber (IIR), nitrile.
  • T polysulfide rubber
  • the conductive particles include metal particles having a center diameter in a range of 0.08 ⁇ m to 25 ⁇ m.
  • the stretchable conductor composition has a free volume of 3 to 35% by volume.
  • the present invention preferably has the following configuration.
  • [18] The electromagnetic induction actuator according to any one of [13] to [17], wherein the layer made of a stretchable conductor and the layer made of a stretchable insulator are wound together in a roll shape.
  • [19] The electromagnetic induction actuator according to any one of [13] to [18], wherein the layer made of a stretchable conductor and the layer made of a stretchable insulator are wound together around an iron core. .
  • a conductive composition that is stretchable on the side electrode of the multilayer piezoelectric actuator (abbreviated as a stretchable conductor), preferably a stretchable conductor that is a composite of conductive particles and an elastomer, More preferably, by adopting a stretchable conductor having a free volume inside, the durability of the side electrode is improved, and the side electrode does not hinder the operation of the multilayer piezoelectric actuator. Improvements can be realized at the same time.
  • the stretchable conductor By having a free volume inside the stretchable conductor, it is possible to cause an apparent volume shrinkage when compressive strain is applied to the stretchable conductor, and to reduce internal stress applied to the stretchable conductor. Since the internal stress of the stretchable conductor, which is the side electrode, directly affects the operation of the multilayer piezoelectric actuator, the significance of reducing the internal stress when the side conductor contracts is large.
  • the shrinkage caused by internal compression of the free volume is realized by the side electrode being composed of a composite of conductive particles and elastomer. Since electrical conduction in such a composite conductor is realized by a contact chain of conductive particles, even when metal particles are used as the conductive particles, the specific resistance is one to two digits or more compared to bulk metal.
  • the electrode of the dielectric actuator has a stretchable conductor composition (abbreviated as a stretchable conductor), preferably a stretchable conductor that is a composite of conductive particles and an elastomer, more preferably an inner part.
  • a stretchable conductor composition abbreviated as a stretchable conductor
  • a stretchable conductor that is a composite of conductive particles and an elastomer, more preferably an inner part.
  • a conductive composition (abbreviated as a stretchable conductor) that is stretchable on the interlayer electrode and / or the side electrode, preferably conductive particles
  • Adopting a stretchable conductor that is a composite of elastomer, more preferably a stretchable conductor having a free volume inside improves the durability of the side electrode, and the side electrode does not hinder the operation of the multilayer dielectric actuator Therefore, the improvement of the operating range of the multilayer dielectric actuator is realized at the same time.
  • the stretchable conductor By having a free volume inside the stretchable conductor, it is possible to cause an apparent volume shrinkage when compressive strain is applied to the stretchable conductor, and to reduce internal stress applied to the stretchable conductor. Since the internal stress of the stretchable conductor that is an electrode (including the case of the interlayer electrode and / or the side electrode) directly affects the operation of the dielectric actuator, the significance of reducing the internal stress when the conductor contracts is large.
  • the third aspect of the present invention is an actuator that utilizes the fact that the coil itself is deformed by energization by constituting the coil using a conductor having a large degree of freedom of deformation.
  • the present invention preferably employs a stretchable conductor that is a composite of conductive particles and an elastomer, and more preferably a stretchable conductor having a free volume inside, thereby providing a sufficient degree of freedom of deformation when the coil is contracted by energization. .
  • the degree of freedom of compression deformation can be ensured. Since conventional conductor materials have a low degree of freedom of compression deformation, the electromagnetic contraction force of the coil itself cannot be used as a practical actuator.
  • By having a free volume inside the stretchable conductor it is possible to cause an apparent volume shrinkage when compressive strain is applied to the stretchable conductor, and to reduce internal stress applied to the stretchable conductor.
  • the actuator of the present invention uses a stretchable conductor composition for a conductor portion in which a metal member is generally often used.
  • the actuator emits vibration or operation sound when the metal part moves in accordance with the operation, but in the present invention, the elastic conductor composition has a vibration absorbing function, so that a low vibration and noiseless actuator is realized. I can do things.
  • FIG. 1 is a schematic diagram showing the configuration of a multilayer piezoelectric actuator according to the present invention. These are the schematic schematic diagrams which show the structure of the dielectric actuator (single layer) in this invention. These are the schematic schematic diagrams which show the structure of the laminated dielectric actuator in this invention.
  • FIG. 4 is a schematic diagram showing a configuration of an example (cylindrical type) of the electromagnetic induction actuator in the present invention.
  • FIG. 5 is a schematic diagram showing a configuration of an example (planar coil type) of the electromagnetic induction actuator according to the present invention.
  • the multilayer piezoelectric actuator according to the first aspect of the present invention causes a volume change by voltage application as shown in FIG. 1.
  • Piezoelectric material piezoelectric material
  • Examples of the piezoelectric material (piezoelectric material) that changes in volume when voltage is applied according to the first aspect of the present invention include berlinite (aluminum phosphate: AlPO4), sucrose, quartz (quartz) (SiO2), and Rochelle salt (potassium sodium tartrate).
  • a conductive metal electrode can be employed as the internal electrode layer in the first aspect of the present invention.
  • Usable metals include copper, aluminum, nickel, gold, silver, chromium, nickel-chromium alloy, tungsten, molybdenum, brass, bronze, white copper, platinum, rhodium, and other foils or vacuum thin film conductors, or powder sintering Thick film conductors can be used.
  • a polymer type thick film conductor made of conductive particles and a binder resin may be used.
  • FIG. 2 shows a basic configuration of the dielectric actuator according to the second embodiment of the present invention.
  • the dielectric elastic body 11 is sandwiched between the electrodes 10 and has the same structure as a so-called parallel one night capacitor.
  • FIG. 3 is a configuration diagram of a multilayer dielectric actuator having a multilayer structure of dielectric actuators in the second embodiment of the present invention.
  • Dielectric elastic bodies 11 that change in volume when voltage is applied are alternately sandwiched between internal electrodes (interlayer electrodes), and are arranged such that the internal electrodes are alternately positive and negative electrodes.
  • the electrode 13 and the side electrode 14 are connected.
  • an elastomer exhibiting rubber elasticity can be used as the dielectric substance (dielectric material) that changes in volume by voltage application in the second aspect of the present invention.
  • the elastomer in the second aspect of the present invention includes natural rubber (NR), synthetic natural rubber (isoprene rubber) (IR), styrene-butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), butyl rubber.
  • IIR nitrile rubber
  • NBR nitrile rubber
  • EPM ethylene / propylene rubber
  • CSM chlorosulfonated polyethylene rubber
  • ACM acrylic rubber
  • U urethane rubber
  • U silicone rubber
  • Q Fluorine rubber
  • FKM polysulfide rubber
  • T polysulfide rubber
  • nitrile group-containing rubber, chloroprene rubber and chlorosulfonated polyethylene rubber are preferable, and nitrile group-containing rubber is particularly preferable.
  • the preferred elastic modulus range is from 2 to 480 MPa, more preferably from 3 to 240 MPa, still more preferably from 4 to 120 MPa.
  • These rubber materials have a high relative dielectric constant because they have a large polarization due to nitrile groups or halogen groups.
  • the effective dielectric constant can be increased by further adding a ferroelectric filler to the elastomer.
  • Ferroelectric materials used in the second embodiment of the present invention include berlinite (aluminum phosphate: AlPO4), sucrose, quartz (quartz) (SiO2), Rochelle salt (potassium sodium tartrate) (KNaC4H4O6), topaz (yellow jade, (Silicate) (Al2SiO4 (F, OH) 2), tourmaline group mineral, ortho (positive) gallium phosphate (GaPO4), langasite (La3Ga5SiO14), perovskite (perovskite calcium titanate: CaTiO3), tungsten- Ceramics with bronze structure, barium titanate (BaTiO3), lead titanate (PbTiO3), PZT: lead zirconate titanate (zirconate-lead titanate) (Pb [ZrxTi1-
  • dielectric materials piezo materials
  • dielectric ceramics such as barium titanate and PZT (lead zirconate titanate) are preferably used.
  • these ferroelectric materials are powder fillers having a center diameter of about 0.1 to 10 ⁇ m, and the ratio of the elastomer resin to the ferroelectric material is 3 to 70 parts by mass / 97 to 30 parts by mass. It can be kneaded and mixed so that it can be used as a hybrid.
  • the elastic modulus of the dielectric elastic body according to the second aspect of the present invention is preferably 1 MPa or more and 1000 MPa or less.
  • the dielectric elastic body used in the second aspect of the present invention is preferably a paste obtained by kneading and mixing ferroelectric particles and a flexible resin, preferably a binder resin containing 90% by mass or more of an elastomer, and a solvent added as necessary. It can be obtained by applying a predetermined shape by printing, dip coating, dispensing or the like, followed by drying and curing. Alternatively, it can be obtained by a method of pasting into a film or sheet after pasting in advance, and applying a predetermined shape to the obtained film or sheet.
  • a conductive metal electrode in the case of an actuator mainly using displacement in the thickness direction of the dielectric elastic body, a conductive metal electrode can be employed as the electrode or the internal electrode.
  • Usable metals include copper, aluminum, nickel, gold, silver, chromium, nickel-chromium alloy, tungsten, molybdenum, brass, bronze, white copper, platinum, rhodium, and other foils or vacuum thin film conductors, or powder sintering Thick film conductors can be used.
  • a polymer type thick film conductor made of conductive particles and a binder resin may be used.
  • FIG. 4 is an example of a cylindrical electromagnetic induction actuator configured by co-winding a layer made of a stretchable conductor and a layer made of a stretchable insulator in a roll shape.
  • contraction in the diameter direction of the cylinder and contraction in the height direction occur by energization. Therefore, for example, if a hose-like space is provided inside the cylinder and passes through the tube, the tube can be compressed during energization to create a pulsatile flow.
  • the inner space is made into a bag shape and filled with an incompressible liquid, it can be applied as a pump that discharges the liquid in the bag when energized.
  • the contraction of the actuator itself in the diametrical direction or the height direction can be directly used for mechanical driving.
  • FIG. 5 shows a planar coil electromagnetic induction actuator in which a coil is formed on a flat surface with a stretchable conductor on a stretchable base material.
  • contraction in the surface direction of the coil is significantly caused by energization.
  • the planar coil type since the actuator itself can be regarded as a sheet, it is possible to apply deformation such as tightening or compression by winding the actuator regarded as a sheet around an object. Both the cylindrical type and the planar coil type are close to each other, and preferably the amount of deformation can be increased by placing an iron core in the center of the coil.
  • a feature of the present invention resides in the use of stretchable conductor Seo organisms for electrodes, coils, and wiring.
  • the feature of the multilayer piezoelectric actuator in the first aspect of the present invention is that a stretchable conductor is used for the side electrode.
  • the dielectric actuator according to the second aspect of the present invention is characterized in that a stretchable conductor is used as the electrode of the dielectric actuator, and that the side electrode is preferably a stretchable conductor as well as the interlayer electrode in the case of the laminated dielectric actuator. Is to use.
  • a feature of the electromagnetic induction actuator in the present invention is that a stretchable conductor is used as a conductor material, particularly as a conductor material of a coil.
  • the stretchable conductor in the present invention refers to a conductor that maintains conductivity even when stretched by 10% or more or compressed by 3% or more.
  • the stretchable conductor of the present invention is preferably composed of at least metal particles and a flexible resin having a tensile elastic modulus of 1 MPa to 1000 MPa.
  • the stretchable conductor used in the present invention comprises conductive particles and a flexible resin, preferably a binder resin containing 90% by mass or more of an elastomer, and kneaded and mixed with a solvent to be added as necessary, followed by printing, dip coating, It can be obtained by applying a predetermined shape by dispensing or the like and drying and curing.
  • a binder resin preferably containing 90% by mass or more of an elastomer can be used as the flexible resin.
  • Elastomer is a general term for polymer materials exhibiting rubber elasticity.
  • the conductive particles of the present invention are particles having a specific resistance of 1 ⁇ 10 ⁇ 1 ⁇ cm or less and a particle diameter of 100 ⁇ m or less.
  • Examples of the material having a specific resistance of 1 ⁇ 10 ⁇ 1 ⁇ cm or less include metals, alloys, carbon, graphite, graphite, carbon nanoparticles, fullerenes, carbon nanotubes, graphene pieces, doped semiconductors, conductive polymers, and the like. be able to.
  • the conductive particles preferably used in the present invention are metals such as silver, gold, platinum, palladium, copper, nickel, aluminum, zinc, lead and tin, alloy particles such as brass, bronze, white copper and solder, and silver-coated copper. Hybrid particles, metal-plated polymer particles, metal-plated glass particles, metal-coated ceramic particles, and the like can be used.
  • the main use is to use 90% by mass or more of the conductive particles.
  • the amorphous aggregated powder is a three-dimensional aggregate of spherical or irregularly shaped primary particles.
  • Amorphous agglomerated powders and flaky powders are preferable because they have a specific surface area larger than that of spherical powders and the like and can form a conductive nitrate work even with a low filling amount. Since the amorphous agglomerated powder is not in a monodispersed form, the particles are in physical contact with each other, so that it is easy to form a conductive nitrate work.
  • the particle size of the flaky powder is not particularly limited, but those having an average particle size (50% D) measured by a dynamic light scattering method of 0.5 to 20 ⁇ m are preferable. More preferably, it is 3 to 12 ⁇ m. When the average particle diameter exceeds 15 ⁇ m, it becomes difficult to form fine wiring, and clogging occurs in the case of screen printing. When the average particle size is less than 0.5 ⁇ m, it is impossible to make contact between particles at low filling, and the conductivity may deteriorate.
  • the particle size of the amorphous aggregated powder is not particularly limited, but those having an average particle size (50% D) measured by a light scattering method of 1 to 20 ⁇ m are preferable. More preferably, it is 3 to 12 ⁇ m. When the average particle diameter exceeds 20 ⁇ m, the dispersibility is lowered and it becomes difficult to form a paste. When the average particle size is less than 1 ⁇ m, the effect as an agglomerated powder is lost, and good conductivity may not be maintained with low filling.
  • the non-conductive particles in the present invention are particles made of an organic or inorganic insulating material.
  • the inorganic particles of the present invention are added for the purpose of improving printing properties, stretching properties, and coating surface properties, and include inorganic particles such as silica, titanium oxide, talc, alumina, barium sulfate, and microgels made of resin materials. Etc. can be used.
  • natural rubber NR
  • synthetic natural rubber isoprene rubber
  • SBR styrene / butadiene rubber
  • BR butadiene rubber
  • IIR chloroprene rubber
  • NBR butyl rubber
  • EPM ethylene / propylene rubber
  • CSM chlorosulfonated polyethylene rubber
  • ACM acrylic rubber
  • U urethane rubber
  • U silicone rubber
  • Q fluoro rubber
  • FKM fluoro rubber
  • Polysulfide rubber T
  • nitrile group-containing rubber nitrile group-containing rubber, chloroprene rubber and chlorosulfonated polyethylene rubber are preferable, and nitrile group-containing rubber is particularly preferable.
  • the range of elastic modulus is preferably 2 to 480 MPa, more preferably 3 to 240 MPa, and still more preferably 4 to 120 MPa.
  • the rubber containing a nitrile group is not particularly limited as long as it is a rubber or elastomer containing a nitrile group, but nitrile rubber and hydrogenated nitrile rubber are preferable.
  • Nitrile rubber is a copolymer of butadiene and acrylonitrile. If the amount of bound acrylonitrile is large, the affinity with metal increases, but the rubber elasticity contributing to stretchability decreases conversely. Accordingly, the amount of bound acrylonitrile in the acrylonitrile butadiene copolymer rubber is preferably 18 to 50% by mass, and particularly preferably 40 to 50% by mass.
  • a side electrode after kneading and mixing a binder resin containing 90% by mass or more of conductive particles and an elastomer, and a solvent to be added as necessary to obtain a paste for forming a stretchable conductor.
  • the percentage of elastomer is determined from the mass of the elastomer relative to the mass of the binder resin.
  • An epoxy resin can be blended with the binder resin of the present invention.
  • the epoxy resin is an organic compound having an epoxy phase, and preferably a bisphenol A type resin or a phenol novolac type resin can be used.
  • a curing agent can be blended in the epoxy compound.
  • a known amine compound, polyamine compound, or the like may be used as the curing agent.
  • the epoxy resin is the total amount of the epoxy group-containing compound and the curing agent.
  • the binder resin of the present invention can be blended with a polyester resin, a non-crosslinked polyester urethane resin, a phenoxy resin, an acrylic resin having a glass transition temperature of 20 ° C. or less, and the like. Resin components other than these elastomers are preferably limited to less than 10% by weight, more preferably less than 5% by weight, based on the binder resin.
  • the stretchable conductor forming paste used in the present invention contains a solvent as necessary.
  • the solvent in the present invention is water or an organic solvent. Since the content of the solvent should be appropriately investigated depending on the viscosity required for the paste, it is not particularly limited, but is generally preferably 30 to 80 mass ratio when the total mass of the conductive particles and the flexible resin is 100.
  • the organic solvent used in the present invention preferably has a boiling point of 100 ° C. or higher and lower than 300 ° C., more preferably 130 ° C. or higher and lower than 280 ° C. If the boiling point of the organic solvent is too low, the solvent volatilizes during the paste manufacturing process or use of the paste, and there is a concern that the component ratio of the conductive paste is likely to change. On the other hand, if the boiling point of the organic solvent is too high, the amount of residual solvent in the dry cured coating film increases, and there is a concern that the reliability of the coating film is reduced.
  • organic solvent in the present invention examples include cyclohexanone, toluene, xylene, isophorone, ⁇ -butyrolactone, benzyl alcohol, Exxon Chemical Solvesso 100, 150, 200, propylene glycol monomethyl ether acetate, terpionol, butyl glycol acetate, diamylbenzene.
  • Triamylbenzene, n-dodecanol diethylene glycol, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol dibutyl ether, diethylene glycol monoacetate, triethylene glycol diacetate, triethylene glycol, triethylene glycol Monomethylether , Triethylene glycol monoethyl ether, triethylene glycol monobutyl ether, tetraethylene glycol, tetraethylene glycol monobutyl ether, tripropylene glycol, tripropylene glycol monomethyl ether, 2,2,4-trimethyl-1,3-pentanediol monoiso Examples include butyrate.
  • AF Solvent No. 4 (boiling point: 240 to 265 ° C.), No. 5 (boiling point: 275 to 306 ° C.), No. 6 (boiling point: 296 to 317 ° C.) manufactured by Nippon Oil Corporation No. 7, (boiling point: 259-282 ° C.), and No. 0 solvent H (boiling point: 245-265 ° C.), etc., and two or more of them may be included if necessary.
  • Such an organic solvent is appropriately contained so that the stretchable conductor-forming paste has a viscosity suitable for printing or the like.
  • the paste for forming an elastic conductor used in the present invention is composed of conductive particles, barium sulfate particles, an elastic resin, a solvent, a dissolver, a three-roll mill, a self-revolving mixer, an attritor, a ball mill, a sand mill, and the like. It can be obtained by mixing and dispersing with a disperser.
  • the paste for forming a stretchable conductor used in the present invention includes known organic and inorganic additives such as imparting printability, color tone adjustment, leveling, antioxidant, ultraviolet absorber, etc., within a range that does not impair the contents of the invention.
  • An agent can be blended.
  • the stretchable conductor composition in the present invention preferably has a free volume of 3 to 35% by volume.
  • the free volume is a volume% assuming that the void area% of the total cross-sectional area obtained from the area of the void part and the non-void part is expanded three-dimensionally from the cross-sectional image of the stretchable conductor layer, and the thickness is assumed to be a unit length. Convert to. That is, it can be obtained by replacing the numerical value of area% with volume% as it is.
  • the free volume is preferably 10 to 35% by volume, more preferably 15 to 35% by volume. Such free volume can cause an apparent volume shrinkage particularly when compressive strain is applied to the stretchable conductor, and has an effect of reducing internal stress applied to the stretchable conductor.
  • the amount of the elastomer used in the present invention is 7 to 35% by mass, preferably 9 to 28% by mass, more preferably 12%, based on the total of conductive particles, preferably non-conductive particles and flexible resin added. ⁇ 20% by weight.
  • a laminated piezoelectric actuator which is the first aspect of the present invention, also known as a piezo actuator, a dielectric actuator which is the second aspect of the present invention, and an electromagnetic induction actuator which is the third aspect of the present invention is a semiconductor. It is mainly used in industrial equipment that requires precise position control, such as moving stage, precision positioning probe, probe drive for scanning tunneling microscope (STM) and atomic force microscope (AFM). Recently, mobile phone and digital camera camera modules (autofocus mechanism, zoom mechanism, camera shake correction mechanism), hard disk drive (head position control), optical equipment (optical axis adjustment, focus adjustment), motor (impact linear motor, super It is also used as a sonic linear motor).
  • ultra-precision fine polishing tool small type mechanical transformer, high-speed angle adjustment mechanism, minute load loading / detection device, pressurization mechanism, pump, positioning stage mechanism, punching machine, inkjet head, ejector of liquid such as fuel It is also used as such.
  • the actuator of the present invention can be applied not only to these uses but also to uses that require a larger displacement.
  • the stretchable conductor was made into a sheet and cut into a width of 10 mm and a length of 140 mm to prepare a test piece.
  • the sheet resistance and film thickness of the stretchable conductor sheet test piece in the natural state were measured, and the specific resistance was calculated.
  • Thickness gauge SMD-565L manufactured by TECLOCK
  • sheet resistance was measured for four test pieces using Loresta-GP MCP-T610 (manufactured by Mitsubishi Chemical Analytech), and the average value was used. .
  • the specific resistance was calculated by the following formula.
  • ⁇ Displacement> The action of the actuator when voltage was applied was photographed with a high-speed camera, the maximum change with respect to the initial dimension was measured, and displayed as a percentage of the initial dimension.
  • ⁇ Aggregated silver particles As the aggregated silver particles (A), amorphous aggregated silver powder (G-35 manufactured by DOWA Electronics Co., Ltd., average particle diameter of 6.0 ⁇ m) was used. As the flake silver particles (B), AGC-A (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., average particle size 3.1 ⁇ m) was used.
  • AGC-A manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., average particle size 3.1 ⁇ m
  • the obtained pastes [P1] to [P8] for forming a stretchable conductor are coated on a polytetrafluoroethylene resin sheet with an applicator to form a film, dried at 120 ° C. for 20 minutes, and a stretchable conductor having a thickness of 50 ⁇ m. A sheet was formed. The specific resistance was calculated
  • a multilayer piezoelectric actuator having the configuration shown in FIG. 1 was manufactured by the following process. First, powders of lead oxide, zirconium oxide, titanium oxide, niobium oxide, strontium carbonate, etc., which are the main raw materials of the piezoelectric material (piezoelectric material), are weighed to have a desired composition, and the final composition is PZT (zirconic acid). (Lead titanate). In preparation, the lead component was blended by 1 to 2% in excess of the stoichiometric ratio of the above mixture ratio composition in consideration of lead evaporation. The blended raw materials were dry-mixed in a mixer and then calcined at 800 to 950 ° C. to obtain calcined powder.
  • ion-exchanged water and a dispersant are added to the calcined powder and premixed, and then wet pulverized by a planetary ball mill to obtain a pulverized powder.
  • a solvent, a binder, a plasticizer, a dispersant, and the like were added, mixed by a ball mill to form a slurry, and the slurry was further subjected to vacuum defoaming and viscosity adjustment while stirring with a stirrer in a vacuum apparatus. .
  • the slurry after vacuum defoaming and viscosity adjustment is formed into a green sheet with a certain thickness using a doctor blade device, and then a silver / radium firing paste that becomes an internal electrode (interlayer electrode) by firing is screened in a predetermined pattern on the green sheet.
  • Printing and punching with a press machine were performed to a predetermined size and shape to obtain a green sheet with an electrode layer.
  • a predetermined number of the obtained green sheets with electrode layers are laminated in the configuration shown in FIG. 1, and after thermocompression bonding, degreased, baked at a temperature of 900 to 1200 ° C., polished to a desired shape, and polished in the thickness direction.
  • a stacked piezoelectric electron whose polarization was controlled was obtained.
  • the obtained stacked piezoelectricity is shown in FIG.
  • the stretchable conductor-forming paste [P1] was applied and dried and cured at 120 ° C. for 30 minutes to form side electrodes to obtain a multilayer piezoelectric actuator [A1].
  • 30 actuators were manufactured under the same conditions (same lot).
  • the obtained actuator [A1] was embedded in an epoxy resin, and the cross section of the side electrode portion was observed to determine the porosity. Table 3 shows the results. Shown in The obtained multilayer piezoelectric actuator [A1] was applied with a sinusoidal electric field having an amplitude of 50 V and a frequency of 20 kHz, and a continuous operation test of the actuator was performed for 12 hours. Table 3. Shown in
  • a single-layer dielectric actuator having the configuration shown in FIG. 2 was manufactured by the following process. First, a polyester film subjected to a release treatment was used as a temporary base material, and a predetermined pattern was printed by screen printing and dried and cured using the stretchable conductor-forming paste P5 obtained in the previous production example. Next, a dielectric elastic body layer is formed on the obtained stretchable conductor layer using the dielectric elastic body forming paste D1 to form a dielectric elastic body layer, and further, the printable conductor film is dried and cured using the stretchable conductor forming paste P5. An electrode layer was formed to form a three-layer capacitor.
  • the obtained capacitor was peeled off from the release polyester film and cut into a predetermined shape to obtain a single-layer dielectric actuator X0.
  • the first formed elastic conductor layer had a thickness of 15 ⁇ m
  • the dielectric elastic layer had a thickness of 22 ⁇ m
  • the last formed elastic conductor layer had a thickness of 13 ⁇ m.
  • the insulation resistance between the front and back electrodes of the dielectric actuator A0 was> 1 ⁇ 10 12 .
  • a voltage of 0 to 1000 V was applied to the dielectric actuator, and the operation was confirmed.
  • the multilayer dielectric actuator shown in FIG. 3 was prototyped by the following process.
  • the dielectric elastic body forming paste obtained in the production example was coated on the polyester film subjected to the release treatment so as to have a constant thickness by a doctor blade device, and a dielectric elastic body green sheet was obtained through a drying process.
  • the paste P1 for forming a stretchable conductor to be an internal electrode is screen printed on a green sheet in a predetermined pattern, punched out by a press machine, and formed into a predetermined size and shape. A green sheet with an electrode layer was obtained.
  • a predetermined number of the obtained green sheets with electrode layers are laminated in the configuration shown in FIG. 3, and after thermocompression bonding, degreased, subjected to additional drying and heat treatment at a temperature of 120 ° C., and molded into a desired shape.
  • a multilayer capacitor was obtained.
  • the obtained multilayer capacitor is shown in FIG.
  • the stretchable conductor-forming paste [P1] was applied and dried and cured at 120 ° C. for 30 minutes to form a side electrode to obtain a multilayer dielectric actuator [X1].
  • 30 actuators were manufactured under the same conditions (same lot).
  • the obtained actuator [X1] was embedded in an epoxy resin, the cross section of the electrode part was observed, and the porosity was determined. The results are shown in Table 4. Shown in The obtained laminated dielectric actuator [X1] was applied with a sinusoidal electric field having an amplitude of 500 V and a frequency of 5 kHz, and a continuous operation test of the actuator was performed for 5 hours. Table 4. Shown in
  • Example 21 A cylindrical electromagnetic induction actuator having the configuration shown in FIG. 4 was manufactured by the following process. First, a polyester film subjected to the release treatment was used as a temporary base material, and a predetermined pattern was printed by screen printing and dried and cured using the stretchable conductor-forming paste P1 obtained in the previous production example. Next, the stretchable conductor layer is subjected to print drying and curing using the stretchable insulator-forming paste E1 to form a stretchable insulator, and a sheet having a two-layer structure of the stretchable conductor and the stretchable insulator is formed. Formed.
  • the obtained sheet was peeled from the release polyester film, slit-formed to a predetermined width, and then a lead wire was attached to a predetermined portion and wound into a cylindrical shape to obtain an electromagnetic induction actuator [Z1].
  • the thickness of the stretchable conductor layer is 18 ⁇ m
  • the thickness of the stretchable insulator layer is 12 ⁇ m.
  • the insulation resistance of the stretchable insulator was 1 ⁇ 10 12 ⁇ or more.
  • a voltage of 0 to 1000 V was applied to the electromagnetic induction actuator, and the operation was confirmed.
  • Example 29> The planar coil type electromagnetic induction actuator shown in FIG. 5 was prototyped by the following process.
  • the stretchable insulator-forming paste E1 obtained in the production example was coated on the polyester film subjected to the release treatment so as to have a constant thickness by a doctor blade device, and a stretchable base material was obtained through a drying process. .
  • a predetermined planar coil is printed by screen printing using the stretchable conductor-forming paste P5, dried and cured, and peeled off from the stretchable substrate release PET film.
  • An electromagnetic induction actuator [Z10] having the following structure was obtained. Table 3 shows the results of evaluation of the obtained electromagnetic induction actuator “Z10”.
  • the actuator according to the present invention is extremely quiet and withstands continuous use for a long time, and is used for semiconductors, micro-stages for exposure equipment, precision positioning probes, scanning, tunnel microscopes (STM) and atomic microscopes. It is mainly used in industrial equipment that requires precise position control, such as probe driving of an atomic force microscope (AFM).
  • FAM atomic force microscope
  • the camera modules for mobile phones and digital cameras autofocus mechanism, zoom mechanism, camera shake correction mechanism), hard disk drive (head position control), optical equipment (optical axis adjustment, focus adjustment), motor (impact linear motor, super It is also used as a sonic linear motor).
  • ultra-precision fine polishing tool small type mechanical transformer, high-speed angle adjustment mechanism, minute load loading / detection device, pressurization mechanism, pump, positioning stage mechanism, punching machine, inkjet head, ejector of liquid such as fuel It can also be used as such.
  • the multilayer piezoelectric actuator of the present invention can be sufficiently adapted as a speaker used for a long time.

Abstract

[Problem] To provide an actuator which withstands long-term continuous use and is remarkably quiet. [Solution] According to the present invention, an elastic conductor composition is used in a conductor part, and a piezoelectric actuator, preferably, a laminated piezoelectric actuator, a dielectric actuator, or an electromagnetic induction type actuator is configured. A conductor composition having elasticity is used as the elastic conductor composition, preferably an elastic conductor made of conductive particles and an elastomer as the main binder resin. The resulting actuator is remarkably quiet and withstands long-term continuous use.

Description

アクチュエータActuator
 本発明はアクチュエータに関し、さらに詳しくは電極材料として伸縮性導体組成物を用いたアクチュエータに関し、さらに詳しくは圧電型、誘電型、電磁誘導型から選択される少なくとも一つのアクチュエータに関する。 The present invention relates to an actuator, more particularly to an actuator using a stretchable conductor composition as an electrode material, and more particularly to at least one actuator selected from a piezoelectric type, a dielectric type, and an electromagnetic induction type.
  本発明における第1の態様は、圧電現象を利用したアクチュエータに関し、さらに詳しくは、圧電物質と内部電極とを交互に積層した積層型圧電アクチュエータに関する。
 近年、圧電アクチュエータには、低電圧で高い変位を得るために、厚みの小さな圧電セラミックと内部電極層とを交互に多数積層して一体焼成させたセラミック積層体が用いられている。具体的には、圧電セラミックよりなるセラミック層としては、厚みが20~200μmの薄板を用い、内部電極層と交互に積層するセラミック層の枚数は100~700枚程度に達している。
The first aspect of the present invention relates to an actuator using a piezoelectric phenomenon, and more particularly to a stacked piezoelectric actuator in which piezoelectric materials and internal electrodes are alternately stacked.
In recent years, in order to obtain a high displacement at a low voltage, a piezoelectric laminated body is used in which a large number of piezoelectric ceramics having a small thickness and internal electrode layers are alternately laminated and integrally fired. Specifically, as the ceramic layer made of piezoelectric ceramic, a thin plate having a thickness of 20 to 200 μm is used, and the number of ceramic layers alternately laminated with the internal electrode layers reaches about 100 to 700.
  かかる構造の圧電アクチュエータにおいては、一体焼成構造であるので、積層数の増加に伴い、作動時に作動方向の動作を妨げる方向の内部応力が増大する。この作動時の内部応力が増大すると、セラミック積層体内部にクラックが発生し、その結果として変位量等の製品特性の低下やショートの発生等による製品信頼性の低下などが生じる場合がある。
 特許文献1には、このタイプの積層型圧電アクチュエータの一例が開示されている。外発明には、セラミック積層体の内部応力に起因する問題の対策として、最終積層数よりも積層数の少ないセラミック積層体(ピエゾスタック)を接着剤によって接着する構造、即ち分割接着構造の積層型圧電アクチュエータが開示されている。
Since the piezoelectric actuator having such a structure has an integrally fired structure, an internal stress in a direction that hinders the operation in the operation direction during operation increases as the number of stacked layers increases. When the internal stress at the time of this operation increases, cracks are generated in the ceramic laminate, and as a result, product characteristics such as a displacement amount may be degraded, or product reliability may be degraded due to occurrence of a short circuit.
Patent Document 1 discloses an example of this type of stacked piezoelectric actuator. The outer invention includes a structure in which a ceramic laminate (piezo stack) having a smaller number of layers than the final number of layers is adhered by an adhesive as a countermeasure against problems caused by internal stress of the ceramic laminate, that is, a laminated type having a divided adhesion structure A piezoelectric actuator is disclosed.
  しかしながら、このようにピエゾスタックを分割した場合でも、圧電アクチュエータの作動に伴い、内部電極層どうしを積層方向に接続するための側面電極に加わる応力低減することは困難であった。
 側面電極は一般に焼結型の導電性ペーストないしは熱硬化型の導電性ペーストにて形成されるが、かかるペーストの硬化物は硬く脆いために、繰り返し伸縮応力が加わると、側面電極へのクラック生成、クラックによる導通不良、またクラックから脱落した電極片により、近接する電気回路を短絡するなどのトラブルが懸念される。
 また、側面電極が硬く脆いために、圧電アクチュエータ自体の動作を阻害し、アクチュエータの変位を小さく制限してしまう事あった。
However, even when the piezo stack is divided in this way, it is difficult to reduce the stress applied to the side electrodes for connecting the internal electrode layers in the stacking direction with the operation of the piezoelectric actuator.
The side electrode is generally formed of a sintered conductive paste or a thermosetting conductive paste, but the cured product of such a paste is hard and brittle. There is a concern about troubles such as short circuit of an adjacent electric circuit due to poor conduction due to cracks and electrode pieces dropped from the cracks.
Further, since the side electrodes are hard and brittle, the operation of the piezoelectric actuator itself is hindered, and the displacement of the actuator is limited to a small extent.
  本発明における第2の態様は、誘電体に電圧を印加した際の誘電体の体積変化を利用したアクチュエータに関する。
 弾性誘電材料(弾性絶縁材料)を一対の電極で挟み、電極間へ高電圧を印加すると弾性誘電材料内に分極が発生し、対向する電極表面の一方にプラス電荷が蓄積し、他方にマイナス電荷が蓄積する。これは所謂コンデンサである。プラスとマイナスの電荷の間にはクーロン力により引力が生じる。このクーロン力によって電極同士が引き合って弾性誘電材料の厚さが縮まる方向への変位と収縮応力とが生じる。同時に誘電材料の面方向には伸張する変位と力とが発生する。かかる現象を利用した誘電アクチュエータの例が特許文献2に記載されている。
A second aspect of the present invention relates to an actuator that utilizes a change in volume of a dielectric when a voltage is applied to the dielectric.
When an elastic dielectric material (elastic insulating material) is sandwiched between a pair of electrodes and a high voltage is applied between the electrodes, polarization occurs in the elastic dielectric material, and a positive charge accumulates on one of the opposing electrode surfaces and a negative charge on the other Accumulates. This is a so-called capacitor. An attractive force is generated between the positive and negative charges due to the Coulomb force. Due to the Coulomb force, the electrodes are attracted to each other to cause displacement and contraction stress in a direction in which the thickness of the elastic dielectric material is reduced. At the same time, a displacement and a force are generated in the surface direction of the dielectric material. An example of a dielectric actuator using such a phenomenon is described in Patent Document 2.
  かかる構造の誘電アクチュエータを積層構造とすることによりさらに変位と力を益子とが期待できる。特許文献1に記載されている誘電アクチュエータは、このタイプの基本的な構成を示している。誘電アクチュエータにおいては、電極に蓄積する電荷を増やすことによりクーロン引力を高めることができる。駆動電圧に制限がある場合には、誘電弾性体の誘電率が高めることによって、多くの分極を生じせしめることができ、蓄積電荷を増やすことが出来る。また、印可電圧が高い方が、蓄積電荷は増加し、クーロン力は大きくなる。しかしながら、蓄積電荷の増加は、電極間の絶縁破壊のリスクを高めることに直結する。
 当該文献では擬似的に誘電弾性体の誘電率を高めるために導電性カーボンを練り込んだ誘電弾性体を用い、導電性カーボンを練り込む故に低下する絶縁性をカバーするために、別途、層間に高絶縁の弾性体を挟む構造としている。
By making the dielectric actuator having such a structure a laminated structure, further displacement and force can be expected. The dielectric actuator described in Patent Document 1 shows a basic configuration of this type. In the dielectric actuator, the Coulomb attractive force can be increased by increasing the charge accumulated in the electrode. When the drive voltage is limited, a large dielectric polarization can be generated by increasing the dielectric constant of the dielectric elastic body, and the accumulated charge can be increased. Further, when the applied voltage is higher, the accumulated charge increases and the Coulomb force increases. However, an increase in accumulated charge is directly linked to an increased risk of dielectric breakdown between the electrodes.
In this document, a dielectric elastic material kneaded with conductive carbon is used in a pseudo manner to increase the dielectric constant of the dielectric elastic material, and in order to cover the insulation that decreases due to the kneading of conductive carbon, a layer between layers is separately provided. A highly insulating elastic body is sandwiched.
  しかしながら、このようにして絶縁性を高めた場合、電極間に低誘電率の層が介在してしまうため、実効的な誘電率は低下してしまう。また、一般に電極材料は金属であるために、誘電弾性体の面方向への変形は電極金属により拘束されており、誘電弾性体内での内部応力は増加するものの、変位量としては制限されてしまい、満足な変位を得ることができなかった。 However, when the insulation is improved in this way, a low dielectric constant layer is interposed between the electrodes, and the effective dielectric constant is lowered. In general, since the electrode material is a metal, deformation in the surface direction of the dielectric elastic body is constrained by the electrode metal, and although the internal stress in the dielectric elastic body increases, the amount of displacement is limited. The satisfactory displacement could not be obtained.
  本発明における第3の態様は、インダクタに電流を通ずることにより生じる電磁力による、インダクタ自体の変形を利用したアクチュエータに関する。
 電磁誘導アクチュエータは、電流によって生じる磁力を用いるアクチュエータである。この種のアクチュエータは古くから、モーター、インダクタとして応用されてきた。これまでに知られている電磁誘導アクチュエータは、あらかじめ、水平運動ないし回転運動が行えるように設定されたアーマチュアを電磁力により動かすことにより動作する。
 電磁力はアーマチュアの駆動だけでなく、電磁力を生じ刺せるコイル自体に対しても応力を生じさせる。通常、かかる電磁力によるコイルの変形は、アクチュエータ自体の構造的な劣化に繋がるため、コイルには変形を抑制するための剛性が求められる。本発明はかかるコイルに加わる電磁力によるコイル自体の変形を積極的に用いるアクチュエータである。このような技術思想によるアクチュエータは実用化されていない。
A third aspect of the present invention relates to an actuator that utilizes deformation of the inductor itself due to electromagnetic force generated by passing a current through the inductor.
An electromagnetic induction actuator is an actuator that uses a magnetic force generated by an electric current. This type of actuator has long been applied as a motor and an inductor. The electromagnetic induction actuators known so far operate by moving an armature set in advance so as to be able to perform horizontal motion or rotational motion by electromagnetic force.
The electromagnetic force not only drives the armature, but also stresses the coil itself that can generate and stab the electromagnetic force. Usually, the deformation of the coil due to the electromagnetic force leads to structural deterioration of the actuator itself, and thus the coil is required to have rigidity for suppressing the deformation. The present invention is an actuator that positively uses deformation of the coil itself due to electromagnetic force applied to the coil. An actuator based on such a technical idea has not been put into practical use.
特開2008-218864JP 2008-218864 A 特開2010-68667JP 2010-68667 A
 本発明は伸縮性導体組成物をアクチュエータの電極ないし導体部分に適用することにより、新規なアクチュエータを提供することにある。
  本発明における第1の態様は、かかる従来の問題点に鑑みてなされたもので、アクチュエータの動作に追随可能で、かつ、アクチュエータの動作を阻害しない側面電極を有する積層型圧電アクチュエータを提供しようとするものである。
  本発明における第2の態様はかかる従来の問題点に鑑みてなされたもので、アクチュエータの動作に追随可能で、かつ、アクチュエータの動作を阻害しない電極を有する誘電アクチュエータを提供しようとするものである。
  本発明における第3の態様はかかる従来の問題点に鑑みてなされたもので、変形自由度が大きい導体材料を用いる事により、通電によりコイル自体を変形させる新規な電磁誘導アクチュエータを提供しようとするものである。
An object of the present invention is to provide a novel actuator by applying a stretchable conductor composition to an electrode or conductor portion of an actuator.
The first aspect of the present invention has been made in view of such conventional problems, and an attempt is made to provide a multilayer piezoelectric actuator having a side electrode that can follow the operation of the actuator and does not hinder the operation of the actuator. To do.
The second aspect of the present invention has been made in view of such conventional problems, and is intended to provide a dielectric actuator having an electrode that can follow the operation of the actuator and does not hinder the operation of the actuator. .
The third aspect of the present invention has been made in view of such a conventional problem, and intends to provide a novel electromagnetic induction actuator that deforms the coil itself by energization by using a conductor material having a large degree of freedom of deformation. Is.
  すなわち、本発明は以下の構成を有する。
[1] 電圧印加により体積変化を生じる圧電物質と内部電極とが交互に積層され、前記内部電極が互い違いに正電極、負電極となるように配置された構造を有する積層型圧電アクチュエータにおいて、正電極どうし、および負電極どうしを接続する側面電極に、伸縮性のある導体組成物を用いた事を特徴とする積層型圧電アクチュエータ。
[2] 前記伸縮性のある導体組成物が、導電性粒子と、エラストマーを90質量%以上含むバインダー樹脂との混合物である事を特徴とする[1]に記載の積層型圧電アクチュエータ。
[3] 前記エラストマーが、天然ゴム(NR)、合成天然ゴム(イソプレンゴム)(IR)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ニトリルゴム(NBR)、エチレン・プロピレンゴム(EPM、EPDM)、クロロスルホン化ポリエチレンゴム(ハイパロン)(CSM)、アクリルゴム(ACM)、ウレタンゴム(U)、シリコーンゴム(Q)、フッ素ゴム(FKM)、多硫化ゴム(T)から選択される少なくとも一種のゴムを含有することを特徴とする[1]または[2]に記載の積層型圧電アクチュエータ。
[4] 前記導電性粒子が、中心径が0.08μm~25μmの範囲にある金属粒子を含む事を特徴とする[1]から[3]のいずれかに記載の積層型圧電アクチュエータ。
[5] 前記側面電極を構成する導体組成物が、3~35体積%の自由体積を有する事を特徴とする[1]から[4]のいずれかに記載の積層型圧電アクチュエータ。
That is, the present invention has the following configuration.
[1] In a laminated piezoelectric actuator having a structure in which piezoelectric materials that cause a volume change by application of voltage and internal electrodes are alternately stacked, and the internal electrodes are alternately arranged as a positive electrode and a negative electrode. A laminated piezoelectric actuator characterized in that a stretchable conductor composition is used for a side electrode connecting electrodes and negative electrodes.
[2] The multilayer piezoelectric actuator according to [1], wherein the stretchable conductor composition is a mixture of conductive particles and a binder resin containing 90% by mass or more of an elastomer.
[3] The elastomer is natural rubber (NR), synthetic natural rubber (isoprene rubber) (IR), styrene-butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), butyl rubber (IIR), nitrile. Rubber (NBR), ethylene / propylene rubber (EPM, EPDM), chlorosulfonated polyethylene rubber (Hypalon) (CSM), acrylic rubber (ACM), urethane rubber (U), silicone rubber (Q), fluoro rubber (FKM) The laminated piezoelectric actuator according to [1] or [2], further comprising at least one rubber selected from polysulfide rubber (T).
[4] The multilayer piezoelectric actuator according to any one of [1] to [3], wherein the conductive particles include metal particles having a center diameter in a range of 0.08 μm to 25 μm.
[5] The multilayer piezoelectric actuator according to any one of [1] to [4], wherein the conductor composition constituting the side electrode has a free volume of 3 to 35% by volume.
[6]  対向する一対の電極に誘電弾性体を挟み、該一対の電極間に電圧を印加することにより前記誘電弾性体を変形させる誘電アクチュエータであって、前記電極に伸縮性のある導体組成物を用いたことを特徴とする誘電アクチュエータ。
[7] 前記伸縮性のある導体組成物が、導電性粒子と、エラストマーを90質量%以上含むバインダー樹脂との混合物である事を特徴とする[6]に記載の積層型誘電アクチュエータ。
[8] 前記エラストマーが、天然ゴム(NR)、合成天然ゴム(イソプレンゴム)(IR)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ニトリルゴム(NBR)、エチレン・プロピレンゴム(EPM、EPDM)、クロロスルホン化ポリエチレンゴム(ハイパロン)(CSM)、アクリルゴム(ACM)、ウレタンゴム(U)、シリコーンゴム(Q)、フッ素ゴム(FKM)、多硫化ゴム(T)から選択される少なくとも一種のゴムを含有することを特徴とする[6]または[7]に記載の積層型誘電アクチュエータ。
[9] 前記導電性粒子が、中心径が0.08μm~25μmの範囲にある金属粒子を含む事を特徴とする[6]から[8]のいずれかに記載の積層型誘電アクチュエータ。
[10] 前記側面電極を構成する導体組成物が、3~35体積%の自由体積を有する事を特徴とする[6]から[9]のいずれかに記載の積層型誘電アクチュエータ。
[11]  電極と誘電弾性体とが交互に積層され、前記内部電極が互い違いに正電極、負電極となるように配置された構造を有する[6]から[10]のいずれかに記載の誘電アクチュエータ。
[12] 前記、正電極どうし、および負電極どうしを接続する側面電極に、伸縮性のある導体組成物を用いた事を特徴とする[6]から[11]のいずれかに記載の誘電アクチュエータ。
[6] A dielectric actuator in which a dielectric elastic body is sandwiched between a pair of opposing electrodes, and the dielectric elastic body is deformed by applying a voltage between the pair of electrodes, and the conductor composition is elastic to the electrodes. A dielectric actuator characterized by using.
[7] The multilayer dielectric actuator according to [6], wherein the stretchable conductor composition is a mixture of conductive particles and a binder resin containing 90% by mass or more of an elastomer.
[8] The elastomer is natural rubber (NR), synthetic natural rubber (isoprene rubber) (IR), styrene-butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), butyl rubber (IIR), nitrile. Rubber (NBR), ethylene / propylene rubber (EPM, EPDM), chlorosulfonated polyethylene rubber (Hypalon) (CSM), acrylic rubber (ACM), urethane rubber (U), silicone rubber (Q), fluoro rubber (FKM) The laminated dielectric actuator according to [6] or [7], further comprising at least one rubber selected from polysulfide rubber (T).
[9] The multilayer dielectric actuator according to any one of [6] to [8], wherein the conductive particles include metal particles having a center diameter in a range of 0.08 μm to 25 μm.
[10] The laminated dielectric actuator according to any one of [6] to [9], wherein the conductor composition constituting the side electrode has a free volume of 3 to 35% by volume.
[11] The dielectric according to any one of [6] to [10], having a structure in which electrodes and dielectric elastic bodies are alternately stacked, and the internal electrodes are alternately arranged as a positive electrode and a negative electrode. Actuator.
[12] The dielectric actuator according to any one of [6] to [11], wherein a stretchable conductor composition is used for the side electrodes connecting the positive electrodes and the negative electrodes.
[13] 伸縮性のある導体材料で構成されたことを特徴とするインダクタに電流を通じることにより発生する電磁力を用いて、インダクタ自体を変形させることを特徴とする電磁誘導アクチュエータ。
[14] 前記伸縮性のある導体組成物が、導電性粒子と、エラストマーを90質量%以上含むバインダー樹脂との混合物である事を特徴とする[13]に記載の電磁誘導アクチュエータ。
[15] 前記エラストマーが、天然ゴム(NR)、合成天然ゴム(イソプレンゴム)(IR)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ニトリルゴム(NBR)、エチレン・プロピレンゴム(EPM、EPDM)、クロロスルホン化ポリエチレンゴム(ハイパロン)(CSM)、アクリルゴム(ACM)、ウレタンゴム(U)、シリコーンゴム(Q)、フッ素ゴム(FKM)、多硫化ゴム(T)から選択される少なくとも一種のゴムを含有することを特徴とする[13]または[14]に記載の電磁誘導アクチュエータ。
[16] 前記導電性粒子が、中心径が0.08μm~25μmの範囲にある金属粒子を含む事を特徴とする[13]から[15]のいずれかに記載の電磁誘導アクチュエータ。
[17] 前記伸縮性のある導体組成物が、3~35体積%の自由体積を有する事を特徴とする[13]から[16]のいずれかに記載の電磁誘導アクチュエータ。
[13] An electromagnetic induction actuator characterized in that the inductor itself is deformed by using an electromagnetic force generated by passing an electric current through the inductor, which is formed of a stretchable conductor material.
[14] The electromagnetic induction actuator according to [13], wherein the stretchable conductor composition is a mixture of conductive particles and a binder resin containing 90% by mass or more of an elastomer.
[15] The elastomer is natural rubber (NR), synthetic natural rubber (isoprene rubber) (IR), styrene / butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), butyl rubber (IIR), nitrile. Rubber (NBR), ethylene / propylene rubber (EPM, EPDM), chlorosulfonated polyethylene rubber (Hypalon) (CSM), acrylic rubber (ACM), urethane rubber (U), silicone rubber (Q), fluoro rubber (FKM) The electromagnetic induction actuator according to [13] or [14], further comprising at least one rubber selected from polysulfide rubber (T).
[16] The electromagnetic induction actuator according to any one of [13] to [15], wherein the conductive particles include metal particles having a center diameter in a range of 0.08 μm to 25 μm.
[17] The electromagnetic induction actuator according to any one of [13] to [16], wherein the stretchable conductor composition has a free volume of 3 to 35% by volume.
 さらに本発明は以下の構成を有することが好ましい。
[18] 伸縮性のある導体からなる層と伸縮性のある絶縁体からなる層が、ロール形状に共巻きされた構造を有する[13]から[17]のいずれかに記載の電磁誘導アクチュエータ。
[19] 伸縮性のある導体からなる層と伸縮性のある絶縁体からなる層が、鉄心を中心に共巻きされた構造を有する[13]から[18]のいずれかに記載の電磁誘導アクチュエータ。
Furthermore, the present invention preferably has the following configuration.
[18] The electromagnetic induction actuator according to any one of [13] to [17], wherein the layer made of a stretchable conductor and the layer made of a stretchable insulator are wound together in a roll shape.
[19] The electromagnetic induction actuator according to any one of [13] to [18], wherein the layer made of a stretchable conductor and the layer made of a stretchable insulator are wound together around an iron core. .
 本発明における第1の態様では、積層型圧電アクチュエータの側面電極に伸縮性のある導体組成物(伸縮性導体と短縮表記する)、好ましくは導電性粒子とエラストマーの複合体である伸縮性導体、さらに好ましくは内部に自由体積を有する伸縮性導体を採用することにより、側面電極の耐久性を改善し、さらに側面電極が積層型圧電アクチュエータの動作を阻害しないために、積層型圧電アクチュエータの動作域の改善も同時に実現するものである。 In the first aspect of the present invention, a conductive composition that is stretchable on the side electrode of the multilayer piezoelectric actuator (abbreviated as a stretchable conductor), preferably a stretchable conductor that is a composite of conductive particles and an elastomer, More preferably, by adopting a stretchable conductor having a free volume inside, the durability of the side electrode is improved, and the side electrode does not hinder the operation of the multilayer piezoelectric actuator. Improvements can be realized at the same time.
 伸縮性導体内部に自由体積を有する事により、伸縮性導体に圧縮歪みが加わった際に見かけの体積収縮を生じせしめることができ、伸縮性導体に加わる内部応力を低減することができる。側面電極である伸縮性導体の内部応力は、積層型圧電アクチュエータの動作阻害に直結するため、側面導体の収縮時の内部応力低減の意味合いは大きい。
 かかる自由体積を内部圧縮することによる収縮は、側面電極が導電性粒子とエラストマーの複合体で構成される事により実現される。このような複合導体における電気伝導は、導電性粒子の接触連鎖によって実現されているため、導電性粒子に金属粒子を使った場合でも、バルク金属に比較すると1桁ないし2桁以上、比抵抗が高くなることが技術常識である。したがって側面電極の抵抗値も高めになる点は避けられないが、電圧駆動であり、電流が流れない、すなわち入力インピーダンスが極めて高い素子である圧電素子にとっては問題にならない。
By having a free volume inside the stretchable conductor, it is possible to cause an apparent volume shrinkage when compressive strain is applied to the stretchable conductor, and to reduce internal stress applied to the stretchable conductor. Since the internal stress of the stretchable conductor, which is the side electrode, directly affects the operation of the multilayer piezoelectric actuator, the significance of reducing the internal stress when the side conductor contracts is large.
The shrinkage caused by internal compression of the free volume is realized by the side electrode being composed of a composite of conductive particles and elastomer. Since electrical conduction in such a composite conductor is realized by a contact chain of conductive particles, even when metal particles are used as the conductive particles, the specific resistance is one to two digits or more compared to bulk metal. It is technical common sense to be higher. Therefore, it is inevitable that the resistance value of the side electrode is also increased, but this is not a problem for a piezoelectric element that is voltage driven and does not flow current, that is, an element having an extremely high input impedance.
 本発明における第2の態様では誘電アクチュエータの電極に伸縮性のある導体組成物(伸縮性導体と短縮表記する)、好ましくは導電性粒子とエラストマーの複合体である伸縮性導体、さらに好ましくは内部に自由体積を有する伸縮性導体を採用することにより、電極の耐久性を改善し、さらに電極が誘電アクチュエータの動作を阻害しないために、誘電アクチュエータの動作域の改善も同時に実現するものである。
 さらに本発明では、誘電アクチュエータを積層した構造を有する積層型誘電アクチュエータにおいて、層間電極および、または側面電極に伸縮性のある導体組成物(伸縮性導体と短縮表記する)、好ましくは導電性粒子とエラストマーの複合体である伸縮性導体、さらに好ましくは内部に自由体積を有する伸縮性導体を採用することにより、側面電極の耐久性を改善し、さらに側面電極が積層型誘電アクチュエータの動作を阻害しないために、積層型誘電アクチュエータの動作域の改善も同時に実現するものである。
In the second aspect of the present invention, the electrode of the dielectric actuator has a stretchable conductor composition (abbreviated as a stretchable conductor), preferably a stretchable conductor that is a composite of conductive particles and an elastomer, more preferably an inner part. By adopting a stretchable conductor having a free volume, the durability of the electrode is improved. Further, since the electrode does not hinder the operation of the dielectric actuator, the operation range of the dielectric actuator is also improved.
Furthermore, in the present invention, in a laminated dielectric actuator having a structure in which dielectric actuators are laminated, a conductive composition (abbreviated as a stretchable conductor) that is stretchable on the interlayer electrode and / or the side electrode, preferably conductive particles, Adopting a stretchable conductor that is a composite of elastomer, more preferably a stretchable conductor having a free volume inside, improves the durability of the side electrode, and the side electrode does not hinder the operation of the multilayer dielectric actuator Therefore, the improvement of the operating range of the multilayer dielectric actuator is realized at the same time.
 伸縮性導体内部に自由体積を有する事により、伸縮性導体に圧縮歪みが加わった際に見かけの体積収縮を生じせしめることができ、伸縮性導体に加わる内部応力を低減することができる。電極(層間電極およびまたは側面電極の場合を含む)である伸縮性導体の内部応力は、誘電アクチュエータの動作阻害に直結するため、導体の収縮時の内部応力低減の意味合いは大きい。 By having a free volume inside the stretchable conductor, it is possible to cause an apparent volume shrinkage when compressive strain is applied to the stretchable conductor, and to reduce internal stress applied to the stretchable conductor. Since the internal stress of the stretchable conductor that is an electrode (including the case of the interlayer electrode and / or the side electrode) directly affects the operation of the dielectric actuator, the significance of reducing the internal stress when the conductor contracts is large.
 本発明における第3の態様では、変形自由度の大きい導体を用いてコイルを構成することにより、通電によりコイル自体が変形することを利用したアクチュエータである。本発明は好ましくは導電性粒子とエラストマーの複合体である伸縮性導体、さらに好ましくは内部に自由体積を有する伸縮性導体を採用することにより、通電によりコイルが収縮した際に十分な変形自由度。特に圧縮変形自由度を確保できる。従来の導体材料には圧縮変形自由度が乏しいため、コイル自体の電磁収縮力を実用的なアクチュエータとして利用することはできない。
 伸縮性導体内部に自由体積を有する事により、伸縮性導体に圧縮歪みが加わった際に見かけの体積収縮を生じせしめることができ、伸縮性導体に加わる内部応力を低減することができる。
The third aspect of the present invention is an actuator that utilizes the fact that the coil itself is deformed by energization by constituting the coil using a conductor having a large degree of freedom of deformation. The present invention preferably employs a stretchable conductor that is a composite of conductive particles and an elastomer, and more preferably a stretchable conductor having a free volume inside, thereby providing a sufficient degree of freedom of deformation when the coil is contracted by energization. . In particular, the degree of freedom of compression deformation can be ensured. Since conventional conductor materials have a low degree of freedom of compression deformation, the electromagnetic contraction force of the coil itself cannot be used as a practical actuator.
By having a free volume inside the stretchable conductor, it is possible to cause an apparent volume shrinkage when compressive strain is applied to the stretchable conductor, and to reduce internal stress applied to the stretchable conductor.
 本発明のアクチュエータは、一般に金属部材が用いられる事が多い導体部分に伸縮性導体組成物を用いている。アクチュエータはその動作に伴って、かかる金属部分が動くことにより、振動ないし動作音を発するが、本発明では伸縮性導体組成物に振動吸収機能があるため、低振動で無騒音のアクチュエータを実現する事ができる。 The actuator of the present invention uses a stretchable conductor composition for a conductor portion in which a metal member is generally often used. The actuator emits vibration or operation sound when the metal part moves in accordance with the operation, but in the present invention, the elastic conductor composition has a vibration absorbing function, so that a low vibration and noiseless actuator is realized. I can do things.
図1は、本発明における積層型圧電アクチュエータの構成を示す概略模式図である。FIG. 1 is a schematic diagram showing the configuration of a multilayer piezoelectric actuator according to the present invention. は、本発明における誘電アクチュエータ(単層)の構成を示す概略模式図である。These are the schematic schematic diagrams which show the structure of the dielectric actuator (single layer) in this invention. は、本発明における積層型誘電アクチュエータの構成を示す概略模式図である。These are the schematic schematic diagrams which show the structure of the laminated dielectric actuator in this invention. 図4は、本発明における電磁誘導アクチュエータの一例(円筒型)の構成を示す概略模式図である。FIG. 4 is a schematic diagram showing a configuration of an example (cylindrical type) of the electromagnetic induction actuator in the present invention. 図5は、本発明における電磁誘導型アクチュエータの一例(平面コイル型)の構成を示す概略模式図である。FIG. 5 is a schematic diagram showing a configuration of an example (planar coil type) of the electromagnetic induction actuator according to the present invention.
 本発明の第1の態様を図1により説明する。
 本発明の第1の態様における積層型圧電アクチュエータは、図1に示すように電圧印加により体積変化を生じる1.圧電体(圧電物質)と2.内部電極(層間電極)とが交互に積層され、前記内部電極が互い違いに正電極、負電極となるように配置された構造を有する積層型圧電アクチュエータである。
 本発明の第1の態様の電圧印加により体積変化を生じる圧電物質(圧電体)としては、ベルリナイト(燐酸アルミニウム:AlPO4)、蔗糖、石英(水晶)(SiO2)、ロッシェル塩(酒石酸カリウム-ナトリウム)(KNaC4H4O6)、トパーズ(黄玉、ケイ酸塩)(Al2SiO4(F,OH)2)、電気石(トルマリン)グループ鉱物、オルト(正)燐酸ガリウム(GaPO4)、ランガサイト(La3Ga5SiO14)、ペロフスカイト(perovskite チタン酸カルシウム:CaTiO3)、タングステン-青銅構造を持つセラミックス、チタン酸バリウム(BaTiO3)、チタン酸鉛(PbTiO3)、PZT:チタン酸ジルコン酸鉛(ジルコニウム酸-チタン酸鉛)(Pb[ZrxTi1-x]O3 0<x<1 混晶)、ニオブ酸カリウム(KNbO3)、ニオブ酸リチウム(LiNbO3)、タンタル酸リチウム(LiTaO3)、タングステン酸ナトリウム(NaXWO3)、酸化亜鉛(ZnO、Zn2O3)、Ba2NaNb5O5、Pb2KNb5O15、リチウムテトラボレート(Li2B4O7)、   ニオブ酸ナトリウムカリウム((K,Na)NbO3)、ビスマスフェライト(BiFeO3)、ニオブ酸ナトリウム(NaNbO3)、チタン酸ビスマス(Bi4Ti3O12)、チタン酸ビスマスナトリウム(Na0.5Bi0.5TiO3)、ポリフッ化ビニリデン(1,1-2フッ化エタン重合体、PVDF)、窒化アルミニウム(AlN)、リン酸ガリウム(GaPO4)、ガリウム砒素(GaAs)などを例示することができる。
 かかる圧電物質(ピエゾ物質)のなかでもチタン酸バリウム、PZT(ジルコン酸チタン酸鉛)等の圧電セラミックスの使用が好ましい。
A first embodiment of the present invention will be described with reference to FIG.
The multilayer piezoelectric actuator according to the first aspect of the present invention causes a volume change by voltage application as shown in FIG. 1. Piezoelectric material (piezoelectric material) It is a laminated piezoelectric actuator having a structure in which internal electrodes (interlayer electrodes) are alternately laminated and the internal electrodes are alternately arranged as a positive electrode and a negative electrode.
Examples of the piezoelectric material (piezoelectric material) that changes in volume when voltage is applied according to the first aspect of the present invention include berlinite (aluminum phosphate: AlPO4), sucrose, quartz (quartz) (SiO2), and Rochelle salt (potassium sodium tartrate). (KNaC4H4O6), topaz (yellow jade, silicate) (Al2SiO4 (F, OH) 2), tourmaline group mineral, ortho (galvanic) gallium phosphate (GaPO4), langasite (La3Ga5SiO14), perovskite titanium (perovskite titanium) Calcium oxide: CaTiO3), ceramics with tungsten-bronze structure, barium titanate (BaTiO3), lead titanate (PbTiO3), PZT: lead zirconate titanate (zirconate-lead titanate) (Pb [ZrxTi1-x] O3 0 <x <1 mixed crystal), potassium niobate (KNbO3), lithium niobate (LiNbO3), lithium tantalate (LiTaO3), sodium tungstate (NaXWO3), zinc oxide (ZnO, Zn2O3), Ba2NaNb5O5, Pb2KNb5O15, lithium tetraborate (Li2B4O7), sodium potassium niobate ((K, Na) NbO3), bismuth ferrite (BiFeO3), sodium niobate (NaNbO3), bismuth titanate (Bi4Ti3O12) Sodium bismuth titanate (Na0.5Bi0.5TiO3), polyvinylidene fluoride (1,1-2 fluorinated ethane polymer, PVDF), aluminum nitride (AlN), gallium phosphate (GaPO4), gallium arsenide (GaAs), etc. It can be illustrated.
Among such piezoelectric materials (piezo materials), it is preferable to use piezoelectric ceramics such as barium titanate and PZT (lead zirconate titanate).
 本発明の第1の態様における内部電極層としては、導電性の金属電極を採用することができる。使用できる金属としては、銅、アルミ、ニッケル、金、銀、クロム、ニッケル-クロム合金、タングステン、モリブデン、黄銅、青銅、白銅、プラチナ、ロジウム、などの箔ないしは真空薄膜導体、あるいは粉体焼結による厚膜導体を用いる事ができる。また、積層圧電体の製造プロセスにおいて比較的高温を用いない場合には、導電粒子とバインダー樹脂からなるポリマー型厚膜導体を用いても良い。 As the internal electrode layer in the first aspect of the present invention, a conductive metal electrode can be employed. Usable metals include copper, aluminum, nickel, gold, silver, chromium, nickel-chromium alloy, tungsten, molybdenum, brass, bronze, white copper, platinum, rhodium, and other foils or vacuum thin film conductors, or powder sintering Thick film conductors can be used. Further, when a relatively high temperature is not used in the manufacturing process of the laminated piezoelectric material, a polymer type thick film conductor made of conductive particles and a binder resin may be used.
 本発明における第2の態様を図により説明する。図2は本発明の第2の態様における誘電アクチュエータに基本構成である。すなわち誘電弾性体11を電極10にて挟んだ形で有り、所謂平行片晩方のコンデンサと同じ構造である。
 図3は本発明の第2の態様において、誘電アクチュエータを積層構造とした積層型誘電アクチュエータの構成図である。電圧印加により体積変化を生じる誘電弾性体11は、内部電極(層間電極)により交互に挟まれており、前記内部電極が互い違いに正電極、負電極となるように配置されており、それぞれが側面電極13と側面電極14にて連結されている。
A second aspect of the present invention will be described with reference to the drawings. FIG. 2 shows a basic configuration of the dielectric actuator according to the second embodiment of the present invention. In other words, the dielectric elastic body 11 is sandwiched between the electrodes 10 and has the same structure as a so-called parallel one night capacitor.
FIG. 3 is a configuration diagram of a multilayer dielectric actuator having a multilayer structure of dielectric actuators in the second embodiment of the present invention. Dielectric elastic bodies 11 that change in volume when voltage is applied are alternately sandwiched between internal electrodes (interlayer electrodes), and are arranged such that the internal electrodes are alternately positive and negative electrodes. The electrode 13 and the side electrode 14 are connected.
 本発明の第2の態様の電圧印加により体積変化を生じる誘電物質(誘電体)としては、ゴム弾性を示すエラストマーを用いる事ができる。本発明の第2の態様におけるエラストマーとしては、天然ゴム(NR)、合成天然ゴム(イソプレンゴム)(IR)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ニトリルゴム(NBR)、エチレン・プロピレンゴム(EPM、EPDM)、クロロスルホン化ポリエチレンゴム(ハイパロン)(CSM)、アクリルゴム(ACM)、ウレタンゴム(U)、シリコーンゴム(Q)、フッ素ゴム(FKM)、多硫化ゴム(T)などを用いる事ができる。本発明の第2の態様では、例示されたエラストマーから選択される少なくとも一種のゴムを含有することが好ましい。
 本発明の第2の態様では、これらエラストマーの中でも、ニトリル基含有ゴム、クロロプレンゴム、クロロスルホン化ポリエチレンゴムが好ましく、ニトリル基含有ゴムが特に好ましい。本発明の第2の態様で好ましい弾性率の範囲は2~480MPaであり、さらに好ましく3~240MPa、なお好ましくは4~120MPaの範囲である。これらのゴム材料は、ニトリル基あるいはハロゲン基により大きな分極を有するため比誘電率が高い。
As the dielectric substance (dielectric material) that changes in volume by voltage application in the second aspect of the present invention, an elastomer exhibiting rubber elasticity can be used. The elastomer in the second aspect of the present invention includes natural rubber (NR), synthetic natural rubber (isoprene rubber) (IR), styrene-butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), butyl rubber. (IIR), nitrile rubber (NBR), ethylene / propylene rubber (EPM, EPDM), chlorosulfonated polyethylene rubber (Hypalon) (CSM), acrylic rubber (ACM), urethane rubber (U), silicone rubber (Q), Fluorine rubber (FKM), polysulfide rubber (T), etc. can be used. In the second aspect of the present invention, it is preferable to contain at least one rubber selected from the exemplified elastomers.
In the second aspect of the present invention, among these elastomers, nitrile group-containing rubber, chloroprene rubber and chlorosulfonated polyethylene rubber are preferable, and nitrile group-containing rubber is particularly preferable. In the second embodiment of the present invention, the preferred elastic modulus range is from 2 to 480 MPa, more preferably from 3 to 240 MPa, still more preferably from 4 to 120 MPa. These rubber materials have a high relative dielectric constant because they have a large polarization due to nitrile groups or halogen groups.
 本発明の第2の態様では、エラストマーにさらに強誘電体のフィラーを配合することにより、実効的な誘電率を高めることが出来る。本発明の第2の態様において用いられる強誘電体としては、ベルリナイト(燐酸アルミニウム:AlPO4)、蔗糖、石英(水晶)(SiO2)、ロッシェル塩(酒石酸カリウム-ナトリウム)(KNaC4H4O6)、トパーズ(黄玉、ケイ酸塩)(Al2SiO4(F,OH)2)、電気石(トルマリン)グループ鉱物、オルト(正)燐酸ガリウム(GaPO4)、ランガサイト(La3Ga5SiO14)、ペロフスカイト(perovskite チタン酸カルシウム:CaTiO3)、タングステン-青銅構造を持つセラミックス、チタン酸バリウム(BaTiO3)、チタン酸鉛(PbTiO3)、PZT:チタン酸ジルコン酸鉛(ジルコニウム酸-チタン酸鉛)(Pb[ZrxTi1-x]O3 0<x<1 混晶)、ニオブ酸カリウム(KNbO3)、ニオブ酸リチウム(LiNbO3)、タンタル酸リチウム(LiTaO3)、タングステン酸ナトリウム(NaXWO3)、酸化亜鉛(ZnO、Zn2O3)、Ba2NaNb5O5、Pb2KNb5O15、リチウムテトラボレート(Li2B4O7)、   ニオブ酸ナトリウムカリウム((K,Na)NbO3)、ビスマスフェライト(BiFeO3)、ニオブ酸ナトリウム(NaNbO3)、チタン酸ビスマス(Bi4Ti3O12)、チタン酸ビスマスナトリウム(Na0.5Bi0.5TiO3)、ポリフッ化ビニリデン(1,1-2フッ化エタン重合体、PVDF)、窒化アルミニウム(AlN)、リン酸ガリウム(GaPO4)、ガリウム砒素(GaAs)などを例示することができる。
 かかる誘電物質(ピエゾ物質)のなかでもチタン酸バリウム、PZT(ジルコン酸チタン酸鉛)等の誘電セラミックスの使用が好ましい。
 本発明の第2の態様ではこれらの強誘電体を中心径が0.1~10μm程度の粉体フィラーとし、エラストマー樹脂と強誘電物質の比が、3~70質量部/97~30質量部とんるように混練配合して、ハイブリッド化して用いる事ができる。
In the second aspect of the present invention, the effective dielectric constant can be increased by further adding a ferroelectric filler to the elastomer. Ferroelectric materials used in the second embodiment of the present invention include berlinite (aluminum phosphate: AlPO4), sucrose, quartz (quartz) (SiO2), Rochelle salt (potassium sodium tartrate) (KNaC4H4O6), topaz (yellow jade, (Silicate) (Al2SiO4 (F, OH) 2), tourmaline group mineral, ortho (positive) gallium phosphate (GaPO4), langasite (La3Ga5SiO14), perovskite (perovskite calcium titanate: CaTiO3), tungsten- Ceramics with bronze structure, barium titanate (BaTiO3), lead titanate (PbTiO3), PZT: lead zirconate titanate (zirconate-lead titanate) (Pb [ZrxTi1-x] O3 0 <x <1 mixed crystal ), Potassium niobate (KNbO3), lithium niobate (LiNbO3), lithium tantalate (LiTaO3), sodium tungstate (NaXWO3), zinc oxide (ZnO, Zn2O3), Ba2NaNb5O5, Pb2 KNb5O15, lithium tetraborate (Li2B4O7), sodium potassium niobate ((K, Na) NbO3), bismuth ferrite (BiFeO3), sodium niobate (NaNbO3), bismuth titanate (Bi4Ti3O12), bismuth sodium titanate (Na0.5Bi0 .5TiO3), polyvinylidene fluoride (1,1-2 ethane fluoride polymer, PVDF), aluminum nitride (AlN), gallium phosphate (GaPO4), gallium arsenide (GaAs), and the like.
Among such dielectric materials (piezo materials), dielectric ceramics such as barium titanate and PZT (lead zirconate titanate) are preferably used.
In the second embodiment of the present invention, these ferroelectric materials are powder fillers having a center diameter of about 0.1 to 10 μm, and the ratio of the elastomer resin to the ferroelectric material is 3 to 70 parts by mass / 97 to 30 parts by mass. It can be kneaded and mixed so that it can be used as a hybrid.
 本発明の第2の態様の誘電弾性体の弾性率は、好ましくは1MPa以上1000MPa以下である。
 本発明の第2の態様に用いられる誘電弾性体は、好ましくは強誘電体粒子と柔軟性樹脂、好ましくはエラストマーを90質量%以上含むバインダー樹脂、必要に応じて加えられる溶剤を混練混合しペースト化した後に印刷、ディップコート、ディスペンスなどで所定の形状を付与し、乾燥硬化することによって得ることができる。またあらかじめペースト化した後に、フィルム状ないしシート状に成型し、得られたフィルムないしシートに所定形状を与えた後に貼り付けるなどの方法によっても得ることができる。
The elastic modulus of the dielectric elastic body according to the second aspect of the present invention is preferably 1 MPa or more and 1000 MPa or less.
The dielectric elastic body used in the second aspect of the present invention is preferably a paste obtained by kneading and mixing ferroelectric particles and a flexible resin, preferably a binder resin containing 90% by mass or more of an elastomer, and a solvent added as necessary. It can be obtained by applying a predetermined shape by printing, dip coating, dispensing or the like, followed by drying and curing. Alternatively, it can be obtained by a method of pasting into a film or sheet after pasting in advance, and applying a predetermined shape to the obtained film or sheet.
 本発明の第2の態様において、特に誘電弾性体の厚さ方向への変位を主として用いるアクチュエータの場合には電極、ないし内部電極としては、導電性の金属電極を採用することができる。使用できる金属としては、銅、アルミ、ニッケル、金、銀、クロム、ニッケル-クロム合金、タングステン、モリブデン、黄銅、青銅、白銅、プラチナ、ロジウム、などの箔ないしは真空薄膜導体、あるいは粉体焼結による厚膜導体を用いる事ができる。また、積層誘電体の製造プロセスにおいて比較的高温を用いない場合には、導電粒子とバインダー樹脂からなるポリマー型厚膜導体を用いても良い。 In the second aspect of the present invention, in the case of an actuator mainly using displacement in the thickness direction of the dielectric elastic body, a conductive metal electrode can be employed as the electrode or the internal electrode. Usable metals include copper, aluminum, nickel, gold, silver, chromium, nickel-chromium alloy, tungsten, molybdenum, brass, bronze, white copper, platinum, rhodium, and other foils or vacuum thin film conductors, or powder sintering Thick film conductors can be used. Further, when a relatively high temperature is not used in the manufacturing process of the laminated dielectric, a polymer type thick film conductor made of conductive particles and a binder resin may be used.
 本発明の第3の態様を図により説明する。図4は伸縮性のある導体からなる層と伸縮性のある絶縁体からなる層を、ロール状に共巻きすることにより構成された円筒型の電磁誘導アクチュエータの一例である。本構成では通電により円筒の直径方向への収縮と高さ方向での収縮が生じる。よって、たとえば円筒の内側にホース状空間を設けてチューブを通ずれば、通電時にチューブを圧縮して脈状流動を作ることができる。また内部の空間を袋状として非圧縮性の液体を満たせば、通電によりた袋内の液体を吐出するポンプとして応用することができる。もちろんアクチュエータ自体の直径方向ないし高さ方向への収縮を直接的に機械駆動に利用することもできる。 The third aspect of the present invention will be described with reference to the drawings. FIG. 4 is an example of a cylindrical electromagnetic induction actuator configured by co-winding a layer made of a stretchable conductor and a layer made of a stretchable insulator in a roll shape. In this configuration, contraction in the diameter direction of the cylinder and contraction in the height direction occur by energization. Therefore, for example, if a hose-like space is provided inside the cylinder and passes through the tube, the tube can be compressed during energization to create a pulsatile flow. Further, if the inner space is made into a bag shape and filled with an incompressible liquid, it can be applied as a pump that discharges the liquid in the bag when energized. Of course, the contraction of the actuator itself in the diametrical direction or the height direction can be directly used for mechanical driving.
 図5は伸縮性のある基材上に、伸縮性のある導体にて平面上にコイルを形成した平面コイル型電磁誘導アクチュエータである。かかる構成では、通電によりコイルの面方向への収縮が顕著に生じる。平面コイル型の場合はアクチュエータ自体をシートと見なせるため、シートに見なしたアクチュエータを対象物に巻き付けることにより締め付け、ないし圧縮などの変形を加えることが可能となる。
円筒型、平面コイル型、いずれも近接して、好ましくはコイル中心に鉄芯を入れることにより変形量を増やすことができる。
FIG. 5 shows a planar coil electromagnetic induction actuator in which a coil is formed on a flat surface with a stretchable conductor on a stretchable base material. In such a configuration, contraction in the surface direction of the coil is significantly caused by energization. In the case of the planar coil type, since the actuator itself can be regarded as a sheet, it is possible to apply deformation such as tightening or compression by winding the actuator regarded as a sheet around an object.
Both the cylindrical type and the planar coil type are close to each other, and preferably the amount of deformation can be increased by placing an iron core in the center of the coil.
 本発明の特徴は、電極ないしコイル、配線に伸縮性導体瀬尾生物を用いる事にある。
 本発明の第一の態様における積層型圧電アクチュエータの特徴は側面電極に伸縮性導体を用いる事にある。
 本発明の第2の態様における誘電アクチュエータの特徴は、誘電アクチュエータの電極としては伸縮性導体を用いる事、また積層型誘電アクチュエータの場合の層間電極並にに側面電極はとしては好ましくは伸縮性導体を用いる事である。
 本発明における電磁誘導アクチュエータの特徴は導体材料、特にコイルの導体材料として伸縮性導体を用いる事にある。
A feature of the present invention resides in the use of stretchable conductor Seo organisms for electrodes, coils, and wiring.
The feature of the multilayer piezoelectric actuator in the first aspect of the present invention is that a stretchable conductor is used for the side electrode.
The dielectric actuator according to the second aspect of the present invention is characterized in that a stretchable conductor is used as the electrode of the dielectric actuator, and that the side electrode is preferably a stretchable conductor as well as the interlayer electrode in the case of the laminated dielectric actuator. Is to use.
A feature of the electromagnetic induction actuator in the present invention is that a stretchable conductor is used as a conductor material, particularly as a conductor material of a coil.
 本発明における伸縮性導体としては10%以上の伸張、ないし3%以上の圧縮時にも導電性を維持する導体を云う。本発明の伸縮性導体は、好ましくは、少なくとも金属粒子、引張弾性率が1MPa以上1000MPa以下の柔軟性樹脂、から構成される。
 本発明に用いられる伸縮性導体は、導電性粒子と柔軟性樹脂、好ましくはエラストマーを90質量%以上含むバインダー樹脂、必要の応じて加えられる溶剤を混練混合しペースト化した後に印刷、ディップコート、ディスペンスなどで所定の形状を付与し、乾燥硬化することによって得ることができる。またあらかじめペースト化した後に、フィルム状ないしシート状に成型し、得られたフィルムないしシートに所定形状を与えた後に貼り付けるなどの方法によっても得ることができる。
 本発明では柔軟性樹脂として好ましくはエラストマーを90質量%以上含むバインダー樹脂を用いる事ができる。エラストマーとはゴム弾性を示す高分子材料の総称である。
The stretchable conductor in the present invention refers to a conductor that maintains conductivity even when stretched by 10% or more or compressed by 3% or more. The stretchable conductor of the present invention is preferably composed of at least metal particles and a flexible resin having a tensile elastic modulus of 1 MPa to 1000 MPa.
The stretchable conductor used in the present invention comprises conductive particles and a flexible resin, preferably a binder resin containing 90% by mass or more of an elastomer, and kneaded and mixed with a solvent to be added as necessary, followed by printing, dip coating, It can be obtained by applying a predetermined shape by dispensing or the like and drying and curing. Alternatively, it can be obtained by a method of pasting into a film or sheet after pasting in advance, and applying a predetermined shape to the obtained film or sheet.
In the present invention, a binder resin preferably containing 90% by mass or more of an elastomer can be used as the flexible resin. Elastomer is a general term for polymer materials exhibiting rubber elasticity.
 本発明の導電性粒子は、比抵抗が1×10-1Ωcm以下の物質からなる、粒子径が100μm以下の粒子である。比抵抗が1×10-1Ωcm以下の物質としては、金属、合金、カーボン、黒鉛、グラファイト、カーボンナノ粒子、フラーレン、カーボンナノチューブ、グラフェン片、ドーピングされた半導体、導電性高分子などを例示することができる。本発明で好ましく用いられる導電性粒子は銀、金、白金、パラジウム、銅、ニッケル、アルミニウム、亜鉛、鉛、錫などの金属、黄銅、青銅、白銅、半田などの合金粒子、銀被覆銅のようなハイブリッド粒、さらには金属メッキした高分子粒子、金属メッキしたガラス粒子、金属被覆したセラミック粒子などを用いることができる。 The conductive particles of the present invention are particles having a specific resistance of 1 × 10 −1 Ωcm or less and a particle diameter of 100 μm or less. Examples of the material having a specific resistance of 1 × 10 −1 Ωcm or less include metals, alloys, carbon, graphite, graphite, carbon nanoparticles, fullerenes, carbon nanotubes, graphene pieces, doped semiconductors, conductive polymers, and the like. be able to. The conductive particles preferably used in the present invention are metals such as silver, gold, platinum, palladium, copper, nickel, aluminum, zinc, lead and tin, alloy particles such as brass, bronze, white copper and solder, and silver-coated copper. Hybrid particles, metal-plated polymer particles, metal-plated glass particles, metal-coated ceramic particles, and the like can be used.
 本発明ではフレーク状銀粒子ないし不定形凝集銀粉を主体に用いることが好ましい。なお、ここに主体に用いるとは導電性粒子の90質量%以上用いることである。不定形凝集粉とは球状もしくは不定形状の1次粒子が3次元的に凝集したものである。不定形凝集粉およびフレーク状粉は球状粉などよりも比表面積が大きいことから低充填量でも導電性ネートワークを形成できるので好ましい。不定形凝集粉は単分散の形態ではないので、粒子同士が物理的に接触していることから導電性ネートワークを形成しやすいので、さらに好ましい。 In the present invention, it is preferable to mainly use flaky silver particles or amorphous aggregated silver powder. Here, the main use is to use 90% by mass or more of the conductive particles. The amorphous aggregated powder is a three-dimensional aggregate of spherical or irregularly shaped primary particles. Amorphous agglomerated powders and flaky powders are preferable because they have a specific surface area larger than that of spherical powders and the like and can form a conductive nitrate work even with a low filling amount. Since the amorphous agglomerated powder is not in a monodispersed form, the particles are in physical contact with each other, so that it is easy to form a conductive nitrate work.
 フレーク状粉の粒子径は特に限定されないが、動的光散乱法により測定した平均粒子径(50%D)が0.5~20μmであるものが好ましい。より好ましくは3~12μmである。平均粒子径が15μmを超えると微細配線の形成が困難になり、スクリーン印刷などの場合は目詰まりが生じる。平均粒子径が0.5μm未満の場合、低充填では粒子間で接触できなくなり、導電性が悪化する場合がある。 The particle size of the flaky powder is not particularly limited, but those having an average particle size (50% D) measured by a dynamic light scattering method of 0.5 to 20 μm are preferable. More preferably, it is 3 to 12 μm. When the average particle diameter exceeds 15 μm, it becomes difficult to form fine wiring, and clogging occurs in the case of screen printing. When the average particle size is less than 0.5 μm, it is impossible to make contact between particles at low filling, and the conductivity may deteriorate.
 不定形凝集粉の粒子径は特に限定されないが、光散乱法により測定した平均粒子径(50%D)が1~20μmであるものが好ましい。より好ましくは3~12μmである。平均粒子径が20μmを超えると分散性が低下してペースト化が困難になる。平均粒子径が1μm未満の場合、凝集粉としての効果が失われ、低充填では良導電性を維持できなくなる場合がある。 The particle size of the amorphous aggregated powder is not particularly limited, but those having an average particle size (50% D) measured by a light scattering method of 1 to 20 μm are preferable. More preferably, it is 3 to 12 μm. When the average particle diameter exceeds 20 μm, the dispersibility is lowered and it becomes difficult to form a paste. When the average particle size is less than 1 μm, the effect as an agglomerated powder is lost, and good conductivity may not be maintained with low filling.
 本発明における非導電性粒子とは、有機ないし無機の絶縁性物質からなる粒子である。本発明の無機粒子は印刷特性の改善、伸縮特性の改善、塗膜表面性の改善を目的に添加され、シリカ、酸化チタン、タルク、アルミナ、硫酸バリウム等の無機粒子、樹脂材料からなるマイクロゲル等を利用できる。 The non-conductive particles in the present invention are particles made of an organic or inorganic insulating material. The inorganic particles of the present invention are added for the purpose of improving printing properties, stretching properties, and coating surface properties, and include inorganic particles such as silica, titanium oxide, talc, alumina, barium sulfate, and microgels made of resin materials. Etc. can be used.
 本発明におけるエラストマーとしては、天然ゴム(NR)、合成天然ゴム(イソプレンゴム)(IR)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ニトリルゴム(NBR)、エチレン・プロピレンゴム(EPM、EPDM)、クロロスルホン化ポリエチレンゴム(ハイパロン)(CSM)、アクリルゴム(ACM)、ウレタンゴム(U)、シリコーンゴム(Q)、フッ素ゴム(FKM)、多硫化ゴム(T)などを用いる事ができる。本発明では、例示されたエラストマーから選択される少なくとも一種のゴムを含有することが好ましい。
 本発明では、これらエラストマーの中でも、ニトリル基含有ゴム、クロロプレンゴム、クロロスルホン化ポリエチレンゴムが好ましく、ニトリル基含有ゴムが特に好ましい。本発明で好ましい弾性率の範囲は2~480MPaであり、さらに好ましく3~240MPa、なお好ましくは4~120MPaの範囲である。
As the elastomer in the present invention, natural rubber (NR), synthetic natural rubber (isoprene rubber) (IR), styrene / butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), butyl rubber (IIR), nitrile Rubber (NBR), ethylene / propylene rubber (EPM, EPDM), chlorosulfonated polyethylene rubber (Hypalon) (CSM), acrylic rubber (ACM), urethane rubber (U), silicone rubber (Q), fluoro rubber (FKM) Polysulfide rubber (T) can be used. In the present invention, it is preferable to contain at least one rubber selected from the exemplified elastomers.
In the present invention, among these elastomers, nitrile group-containing rubber, chloroprene rubber and chlorosulfonated polyethylene rubber are preferable, and nitrile group-containing rubber is particularly preferable. In the present invention, the range of elastic modulus is preferably 2 to 480 MPa, more preferably 3 to 240 MPa, and still more preferably 4 to 120 MPa.
 ニトリル基を含有するゴムは、ニトリル基を含有するゴムやエラストマーであれば特に限定されないが、ニトリルゴムと水素化ニトリルゴムが好ましい。ニトリルゴムはブタジエンとアクリロニトリルの共重合体であり、結合アクリロニトリル量が多いと金属との親和性が増加するが、伸縮性に寄与するゴム弾性は逆に減少する。従って、アクリロニトリルブタジエン共重合体ゴム中の結合アクリロニトリル量は18~50質量%が好ましく、40~50質量%が特に好ましい。 The rubber containing a nitrile group is not particularly limited as long as it is a rubber or elastomer containing a nitrile group, but nitrile rubber and hydrogenated nitrile rubber are preferable. Nitrile rubber is a copolymer of butadiene and acrylonitrile. If the amount of bound acrylonitrile is large, the affinity with metal increases, but the rubber elasticity contributing to stretchability decreases conversely. Accordingly, the amount of bound acrylonitrile in the acrylonitrile butadiene copolymer rubber is preferably 18 to 50% by mass, and particularly preferably 40 to 50% by mass.
 本発明では導電性粒子とエラストマーを90質量%以上含むバインダー樹脂、必要の応じて加えられる溶剤を混練混合し伸縮性導体形成用ペーストとしたのちに側面電極に加工することが好ましい。なおエラストマーのパーセンテージはバインダー樹脂の質量に対するエラストマーの質量非から求める。
 本発明のバインダー樹脂にはエポキシ樹脂を配合できる。エポキシ樹脂とはエポキシ期を有する有機化合物で有り、好ましくはビスフェノールA型樹脂ないしはフェノールノボラック型樹脂を用いる事ができる。エポキシ化合物には硬化剤を配合できる。硬化剤としては公知のアミン化合物、ポリアミン化合物などを用いればよい。硬化剤を配合する場合、エポキシ樹脂とはエポキシ基含有化合物と硬化剤の総量とする。
 また本発明のバインダー樹脂にはポリエステル樹脂、非架橋のポリエステルウレタン樹脂、フェノキシ樹脂、ガラス転移温度が20℃以下のアクリル樹脂、などを配合することができる。
 これらエラストマー以外の樹脂成分はバインダー樹脂に対して10質量%未満に留めることが好ましく、さらに好ましくは5質量%未満である。
In the present invention, it is preferable to process a side electrode after kneading and mixing a binder resin containing 90% by mass or more of conductive particles and an elastomer, and a solvent to be added as necessary to obtain a paste for forming a stretchable conductor. The percentage of elastomer is determined from the mass of the elastomer relative to the mass of the binder resin.
An epoxy resin can be blended with the binder resin of the present invention. The epoxy resin is an organic compound having an epoxy phase, and preferably a bisphenol A type resin or a phenol novolac type resin can be used. A curing agent can be blended in the epoxy compound. A known amine compound, polyamine compound, or the like may be used as the curing agent. When blending the curing agent, the epoxy resin is the total amount of the epoxy group-containing compound and the curing agent.
The binder resin of the present invention can be blended with a polyester resin, a non-crosslinked polyester urethane resin, a phenoxy resin, an acrylic resin having a glass transition temperature of 20 ° C. or less, and the like.
Resin components other than these elastomers are preferably limited to less than 10% by weight, more preferably less than 5% by weight, based on the binder resin.
 本発明に用いられる伸縮性導体形成用ペーストは、必要に応じて溶剤を含有する。本発明における溶剤は、水または有機溶剤である。溶剤の含有量は、ペーストに求められる粘性によって適宜調査されるべきであるため、特に限定はされないが、概ね導電性粒子と柔軟性樹脂の合計質量を100した場合に30~80質量比が好ましい
本発明に使用される有機溶剤は、沸点が100℃以上、300℃未満であることが好ましく、より好ましくは沸点が130℃以上、280℃未満である。有機溶剤の沸点が低すぎると、ペースト製造工程やペースト使用に際に溶剤が揮発し、導電性ペーストを構成する成分比が変化しやすい懸念がある。一方で、有機溶剤の沸点が高すぎると、乾燥硬化塗膜中の残溶剤量が多くなり、塗膜の信頼性低下を引き起こす懸念がある。
The stretchable conductor forming paste used in the present invention contains a solvent as necessary. The solvent in the present invention is water or an organic solvent. Since the content of the solvent should be appropriately investigated depending on the viscosity required for the paste, it is not particularly limited, but is generally preferably 30 to 80 mass ratio when the total mass of the conductive particles and the flexible resin is 100. The organic solvent used in the present invention preferably has a boiling point of 100 ° C. or higher and lower than 300 ° C., more preferably 130 ° C. or higher and lower than 280 ° C. If the boiling point of the organic solvent is too low, the solvent volatilizes during the paste manufacturing process or use of the paste, and there is a concern that the component ratio of the conductive paste is likely to change. On the other hand, if the boiling point of the organic solvent is too high, the amount of residual solvent in the dry cured coating film increases, and there is a concern that the reliability of the coating film is reduced.
 本発明における有機溶剤としては、シクロヘキサノン、トルエン、キシレン、イソホロン、γ-ブチロラクトン、ベンジルアルコール、エクソン化学製のソルベッソ100,150,200、プロピレングリコールモノメチルエーテルアセテート、ターピオネール、ブチルグリコールアセテート、ジアミルベンゼン、トリアミルベンゼン、n-ドデカノール、ジエチレングリコール、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジブチルエーテル、ジエチレングリコールモノアセテート、トリエチレングリコールジアセテート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、テトラエチレングリコール、テトラエチレングリコールモノブチルエーテル、トリプロピレングリコール、トリプロピレングリコールモノメチルエーテル、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレートなどが挙げられる。また、石油系炭化水素類としては、新日本石油社製のAFソルベント4号(沸点:240~265℃)、5号(沸点:275~306℃)、6号(沸点:296~317℃)、7号(沸点:259~282℃)、および0号ソルベントH(沸点:245~265℃)なども挙げられ、必要に応じてそれらの2種以上が含まれてもよい。このような有機溶剤は、伸縮性導体形成用ペーストが印刷などに適した粘度となるように適宜含有される。 Examples of the organic solvent in the present invention include cyclohexanone, toluene, xylene, isophorone, γ-butyrolactone, benzyl alcohol, Exxon Chemical Solvesso 100, 150, 200, propylene glycol monomethyl ether acetate, terpionol, butyl glycol acetate, diamylbenzene. , Triamylbenzene, n-dodecanol, diethylene glycol, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol dibutyl ether, diethylene glycol monoacetate, triethylene glycol diacetate, triethylene glycol, triethylene glycol Monomethylether , Triethylene glycol monoethyl ether, triethylene glycol monobutyl ether, tetraethylene glycol, tetraethylene glycol monobutyl ether, tripropylene glycol, tripropylene glycol monomethyl ether, 2,2,4-trimethyl-1,3-pentanediol monoiso Examples include butyrate. As petroleum-based hydrocarbons, AF Solvent No. 4 (boiling point: 240 to 265 ° C.), No. 5 (boiling point: 275 to 306 ° C.), No. 6 (boiling point: 296 to 317 ° C.) manufactured by Nippon Oil Corporation No. 7, (boiling point: 259-282 ° C.), and No. 0 solvent H (boiling point: 245-265 ° C.), etc., and two or more of them may be included if necessary. Such an organic solvent is appropriately contained so that the stretchable conductor-forming paste has a viscosity suitable for printing or the like.
 本発明に用いられる伸縮性導体形成用ペーストは、材料である導電性粒子、硫酸バリウム粒子、伸縮性樹脂、溶剤をディゾルバー、三本ロールミル、自公転型混合機、アトライター、ボールミル、サンドミルなどの分散機により混合分散することにより得ることができる。 The paste for forming an elastic conductor used in the present invention is composed of conductive particles, barium sulfate particles, an elastic resin, a solvent, a dissolver, a three-roll mill, a self-revolving mixer, an attritor, a ball mill, a sand mill, and the like. It can be obtained by mixing and dispersing with a disperser.
 本発明に用いられる伸縮性導体形成用ペーストには、発明の内容を損なわない範囲で、印刷適性の付与、色調の調整、レベリング、酸化防止剤、紫外線吸収剤などの公知の有機、無機の添加剤を配合することができる。 The paste for forming a stretchable conductor used in the present invention includes known organic and inorganic additives such as imparting printability, color tone adjustment, leveling, antioxidant, ultraviolet absorber, etc., within a range that does not impair the contents of the invention. An agent can be blended.
 本発明における伸縮性導体組成物は、3~35体積%の自由体積を有する事が好ましい。
 ここに自由体積は伸縮性導体層の断面像から、ボイド部分、非ボイド部分の面積から得られる全断面積に対するボイド面積%を三次元に拡張し、厚さを単位長さと仮定して体積%に換算する。すなわち面積%の数値をそのまま体積%と読み替えることによって得られる。
 自由体積は10~35体積%が好ましく、15~35体積%がさらに好ましい。かかる自由体積は、特に伸縮性導体に圧縮歪みが加わった際に見かけの体積収縮を生じせしめることができ、伸縮性導体に加わる内部応力を低減する作用を有する。
The stretchable conductor composition in the present invention preferably has a free volume of 3 to 35% by volume.
Here, the free volume is a volume% assuming that the void area% of the total cross-sectional area obtained from the area of the void part and the non-void part is expanded three-dimensionally from the cross-sectional image of the stretchable conductor layer, and the thickness is assumed to be a unit length. Convert to. That is, it can be obtained by replacing the numerical value of area% with volume% as it is.
The free volume is preferably 10 to 35% by volume, more preferably 15 to 35% by volume. Such free volume can cause an apparent volume shrinkage particularly when compressive strain is applied to the stretchable conductor, and has an effect of reducing internal stress applied to the stretchable conductor.
 本発明におけるエラストマーの配合量は、導電粒子と、好ましくは加えられる非導電性粒子と柔軟性樹脂の合計に対して7~35質量%であり、好ましくは9~28質量%、さらに好ましくは12~20質量%である。特に非球状の導電粒子であるフレーク状、ないしは凝集塊状の導電粒子をエラストマーをかかる配合比でペースト化することにより、所定の自由体積を伸縮性導体内に形成することが可能となる。 The amount of the elastomer used in the present invention is 7 to 35% by mass, preferably 9 to 28% by mass, more preferably 12%, based on the total of conductive particles, preferably non-conductive particles and flexible resin added. ~ 20% by weight. In particular, it is possible to form a predetermined free volume in the stretchable conductor by pasting the flaky or agglomerated conductive particles which are non-spherical conductive particles into a paste with the blending ratio of the elastomer.
  本発明の第1の態様である積層型圧電アクチュエータ、別名ピエゾアクチュエータ、本発明の第2の態様である誘電アクチュエータ、本発明の第3の態様である電磁誘導アクチュエータは、半導体. 露光装置の極微動用ステージ、精密位置決めプローブ、走査. トンネル顕微鏡(STM)や原子間力顕微鏡(AFM)などのプロー. ブ駆動用など、主に精密位置制御を必要とする産業機器を中心に使用されている。また最近では 携帯電話やデジタルカメラのカメラモジュール (オートフォーカス機構、ズーム機構、手振れ補正機構)、ハードディスクドライブ (ヘッド位置制御)、光学機器 (光軸調整、焦点調整)、モーター (インパクトリニアモーター、超音波リニアモーター)としても使用されている。これらの他、超精密微細研磨ツール、小型タイプメカトランス、高速角度調整機構、微小荷重載荷・検出装置、与圧機構、ポンプ、位置決めステージ機構、パンチングマシン、インクジェットのヘッド、燃料などの液体のイジェクタなどとしても使用されている。
 本発明のアクチュエータは、これらの用途はもちろんのこと、さらに大きな変位を必要とする用途にも応用が可能である。
A laminated piezoelectric actuator which is the first aspect of the present invention, also known as a piezo actuator, a dielectric actuator which is the second aspect of the present invention, and an electromagnetic induction actuator which is the third aspect of the present invention is a semiconductor. It is mainly used in industrial equipment that requires precise position control, such as moving stage, precision positioning probe, probe drive for scanning tunneling microscope (STM) and atomic force microscope (AFM). Recently, mobile phone and digital camera camera modules (autofocus mechanism, zoom mechanism, camera shake correction mechanism), hard disk drive (head position control), optical equipment (optical axis adjustment, focus adjustment), motor (impact linear motor, super It is also used as a sonic linear motor). Besides these, ultra-precision fine polishing tool, small type mechanical transformer, high-speed angle adjustment mechanism, minute load loading / detection device, pressurization mechanism, pump, positioning stage mechanism, punching machine, inkjet head, ejector of liquid such as fuel It is also used as such.
The actuator of the present invention can be applied not only to these uses but also to uses that require a larger displacement.
 以下、実施例を示し、本発明をより詳細かつ具体的に説明する。なお実施例中の評価結果などは以下の方法にて測定した。 Hereinafter, the present invention will be described in more detail and specifically with reference to examples. The evaluation results in the examples were measured by the following methods.
<ニトリル量>
 得られた柔軟性樹脂をNMR分析して得られた組成比から、モノマーの質量比による質量%に換算した。
<ムーニー粘度>
 島津製作所製 SMV-300RT「ムーニービスコメータ」を用いてムーニー粘度を測定した。
<弾性率>
 樹脂材料(エラストマー)を厚さ200±20μmのシート状に加熱圧縮成形し、次いでISO 527-2-1Aにて規定されるダンベル型に打ち抜き、試験片とした。ISO 527-1に規定された方法で引っ張り試験を行って弾性率を求めた。
<平均粒子径>
 堀場製作所製の光散乱式粒径分布測定装置LB-500を用いて平均粒子径を測定した。
<Nitrile amount>
From the composition ratio obtained by NMR analysis of the obtained flexible resin, it was converted to mass% based on the mass ratio of the monomers.
<Mooney viscosity>
The Mooney viscosity was measured using an SMV-300RT “Mooney Viscometer” manufactured by Shimadzu Corporation.
<Elastic modulus>
The resin material (elastomer) was heat-compressed into a sheet having a thickness of 200 ± 20 μm, and then punched into a dumbbell shape defined by ISO 527-2-1A to obtain a test piece. A tensile test was performed by a method specified in ISO 527-1 to obtain an elastic modulus.
<Average particle size>
The average particle size was measured using a light scattering type particle size distribution measuring device LB-500 manufactured by Horiba.
<比抵抗>
 伸縮性導体をシート化し、幅10mm、長さ140mmにカットして試験片を作製した。自然状態(伸長率0%)の伸縮性導体シート試験片のシート抵抗と膜厚を測定し、比抵抗を算出した。膜厚はシックネスゲージ SMD-565L(TECLOCK社製)を用い、シート抵抗はLoresta-GP MCP-T610(三菱化学アナリテック社製)を用いて試験片4枚について測定し、その平均値を用いた。比抵抗は以下の式により算出した。
  比抵抗(Ω・cm)=Rs(Ω)×t(cm)
 ここで、Rsはシート抵抗、tは膜厚を示す。
<空隙率>
 積層型圧電アクチュエータをエポキシ樹脂にて包埋し、伸縮性導体からなる側面電極部分の断面観察できるようにカットし、カット面を研磨した後に、SEMによる断面観察を実施し、断面像から、伸縮性胴体部分のボイド部分の面積%を求め、厚さを単位長さと仮定して体積%を求めた。すなわち面積%をそのまま体積%に読み替えた。
<Resistivity>
The stretchable conductor was made into a sheet and cut into a width of 10 mm and a length of 140 mm to prepare a test piece. The sheet resistance and film thickness of the stretchable conductor sheet test piece in the natural state (elongation rate 0%) were measured, and the specific resistance was calculated. Thickness gauge SMD-565L (manufactured by TECLOCK) was used for the film thickness, and sheet resistance was measured for four test pieces using Loresta-GP MCP-T610 (manufactured by Mitsubishi Chemical Analytech), and the average value was used. . The specific resistance was calculated by the following formula.
Specific resistance (Ω · cm) = Rs (Ω ) × t (cm)
Here, Rs represents sheet resistance, and t represents film thickness.
<Porosity>
The laminated piezoelectric actuator is embedded with epoxy resin, cut so that the cross section of the side electrode part made of stretchable conductor can be observed, and after the cut surface is polished, the cross section is observed by SEM, and the cross section image is expanded and contracted. The area% of the void part of the characteristic body part was obtained, and the volume% was obtained assuming that the thickness was a unit length. That is, area% was read as volume% as it was.
<変位>
 電圧印可時のアクチュエータの動作を高速度カメラで撮影し、初期寸法に対する最大変化を測定し、初期寸法に対する%にて表示した。
<電極間絶縁抵抗>
 アジレントテクノロジー社製高抵抗測定装置にて500V印可時、60秒後の電流値より、抵抗を求めた。
<静音特性>
 以下の被験者による官能評価とした
  年齢24才の健康な女性
  年齢35才の健康な男性
  年齢41才の健康な女性
  年齢56才の健康な男性
 いずれの被験者も健康診断に於ける聴覚試験では異常なしと診断されている。
<Displacement>
The action of the actuator when voltage was applied was photographed with a high-speed camera, the maximum change with respect to the initial dimension was measured, and displayed as a percentage of the initial dimension.
<Insulation resistance between electrodes>
The resistance was determined from the current value after 60 seconds when 500 V was applied using a high resistance measuring device manufactured by Agilent Technologies.
<Silent characteristics>
The following subjects were subjected to sensory evaluations. Healthy women aged 24 years Healthy men aged 35 years Healthy women aged 41 years Healthy men aged 56 years None of the subjects were abnormal in the hearing test in the health checkup Has been diagnosed.
[製造例]
<柔軟性樹脂(合成ゴム材料)の重合>
 攪拌機、水冷ジャケットを備えたステンレス鋼製の反応容器に、
 ブタジエン     54質量部
 アクリロニトリル  46質量部
 脱イオン水    270質量部
 ドデシルベンゼンスルホン酸ナトリウム 0.5質量部
 ナフタレンスルホン酸ナトリウム縮合物 2.5質量部
 t-ドデシルメルカプタン       0.3質量部
 トリエタノールアミン         0.2質量部
 炭酸ナトリウム            0.1質量部
を仕込み、窒素を流しながら浴温度を15℃に保ち、静かに攪拌した。次いで過硫酸カリウム0.3質量部を脱イオン水19.7質量部に溶解した水溶液を30分間かけて滴下し、さらに20時間反応を継続した後、ハイドロキノン0.5質量部を脱イオン水19.5質量部に溶解した水溶液を加えて重合停止操作を行った。
[Production example]
<Polymerization of flexible resin (synthetic rubber material)>
In a reaction vessel made of stainless steel equipped with a stirrer and a water cooling jacket,
Butadiene 54 parts by weight Acrylonitrile 46 parts by weight Deionized water 270 parts by weight Sodium dodecylbenzenesulfonate 0.5 part by weight Sodium naphthalenesulfonate condensate 2.5 parts by weight t-dodecyl mercaptan 0.3 part by weight Triethanolamine 0.2 Part by weight 0.1 parts by weight of sodium carbonate was added, and the bath temperature was kept at 15 ° C. while flowing nitrogen, and the mixture was gently stirred. Next, an aqueous solution in which 0.3 parts by mass of potassium persulfate was dissolved in 19.7 parts by mass of deionized water was added dropwise over 30 minutes, and the reaction was further continued for 20 hours. An aqueous solution dissolved in 5 parts by mass was added to perform a polymerization termination operation.
 次いで、未反応モノマーを留去させるために、まず反応容器内を減圧し、さらにスチームを導入して未反応モノマーを回収し、NBRからなる合成ゴムラテックス(L1)を得た。
 得られたラテックスに食塩と希硫酸を加えて凝集・濾過し、樹脂に対する体積比20倍量の脱イオン水を5回に分けて樹脂を脱イオン水に再分散、濾過を繰り返すことで洗浄し、空気中にて乾燥して柔軟性樹脂(エラストマー)(R1)を得た。(R1)の評価結果を表1に示す。
Next, in order to distill off the unreacted monomer, first, the inside of the reaction vessel was depressurized, and further steam was introduced to recover the unreacted monomer to obtain a synthetic rubber latex (L1) composed of NBR.
Salt and dilute sulfuric acid are added to the resulting latex for aggregation and filtration, and the resin is redispersed in deionized water in a volume of 20 times the volume ratio of deionized water, and washed by repeating filtration. And dried in the air to obtain a flexible resin (elastomer) (R1). The evaluation results of (R1) are shown in Table 1.
 以下仕込み原料、重合条件、洗浄条件などを変えて同様に操作を行い、表1に示す柔軟性樹脂(エラストマー)(R2)及び(R3)を得た。なお、表中の略号は以下の通りである。
NBR:アクロニトリルブタジエンゴム
SBR:スチレンブタジエンゴム(スチレン/ブタジエン=50/50質量%)
Thereafter, the same operation was carried out by changing the charged raw materials, polymerization conditions, washing conditions, etc., and flexible resins (elastomers) (R2) and (R3) shown in Table 1 were obtained. The abbreviations in the table are as follows.
NBR: acrylonitrile butadiene rubber SBR: styrene butadiene rubber (styrene / butadiene = 50/50 mass%)
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
<凝集銀粒子>
 凝集銀粒子(A)として不定形凝集銀粉(DOWAエレクトロニクス社製 G-35、平均粒子径6.0μm)を用いた。
 フレーク銀粒子(B)としてAGC-A(福田金属箔粉工業社製、平均粒子径3.1μm)を用いた。
<Aggregated silver particles>
As the aggregated silver particles (A), amorphous aggregated silver powder (G-35 manufactured by DOWA Electronics Co., Ltd., average particle diameter of 6.0 μm) was used.
As the flake silver particles (B), AGC-A (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., average particle size 3.1 μm) was used.
<伸縮性導体シート形成用ペーストの調製>
 表2の通りに、各成分を配合した後、3本ロールミルにて混練し伸縮性導体形成用ペースト[P1]~[P8]を得た。
 同様に蘇生を変更して表2に示す、誘電弾性体形成用ペーストD1、伸縮性絶縁体形成用ペーストE1を得た。
 なお、表2中、エポキシ樹脂は、ビスフェノールA型エポキシ樹脂エピコート1001と硬化剤(脂肪族ポリアミン)の9/1(質量比)混合物である。
 また添加剤のレベリング剤はBYK社製BYKETOL-OKである。
<Preparation of stretchable conductor sheet forming paste>
As shown in Table 2, each component was blended and then kneaded by a three-roll mill to obtain stretchable conductor forming pastes [P1] to [P8].
Similarly, resuscitation was changed to obtain a dielectric elastic body forming paste D1 and a stretchable insulator forming paste E1 shown in Table 2.
In Table 2, the epoxy resin is a 9/1 (mass ratio) mixture of bisphenol A type epoxy resin epicoat 1001 and a curing agent (aliphatic polyamine).
The additive leveling agent is BYKETOL-OK manufactured by BYK.
 得られた伸縮性導体形成用ペースト[P1]~[P8]をポリテトラフルオロエチレン樹脂製シート上にアプリケーターによりコーティングして製膜し、120℃で20分間乾燥し、厚さ50μmの伸縮性導体シートを形成した。得られた伸縮性導体シートについて比抵抗を求めた。結果を表2.に示す。 The obtained pastes [P1] to [P8] for forming a stretchable conductor are coated on a polytetrafluoroethylene resin sheet with an applicator to form a film, dried at 120 ° C. for 20 minutes, and a stretchable conductor having a thickness of 50 μm. A sheet was formed. The specific resistance was calculated | required about the obtained elastic conductor sheet. The results are shown in Table 2. Shown in
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
<実施例1>
 以下のプロセスにより、 図1の構成を有する積層型圧電アクチュエータを製作した。
 まず、圧電物質(圧電体)の主原料となる酸化鉛、酸化ジルコニウム、酸化チタン、酸化ニオブ、炭酸ストロンチウム等の粉末を所望の組成となるように秤量し、最終的な組成がPZT(ジルコン酸チタン酸鉛)となるように調製した。調製においては常法に従って、鉛の蒸発を考慮して、上記の混合比組成の化学量論比よりも鉛成分が1~2%過剰になるように調合した。調合された原料を混合機にて乾式混合し、その後800~950℃で仮焼し、仮焼粉を得た。
<Example 1>
A multilayer piezoelectric actuator having the configuration shown in FIG. 1 was manufactured by the following process.
First, powders of lead oxide, zirconium oxide, titanium oxide, niobium oxide, strontium carbonate, etc., which are the main raw materials of the piezoelectric material (piezoelectric material), are weighed to have a desired composition, and the final composition is PZT (zirconic acid). (Lead titanate). In preparation, the lead component was blended by 1 to 2% in excess of the stoichiometric ratio of the above mixture ratio composition in consideration of lead evaporation. The blended raw materials were dry-mixed in a mixer and then calcined at 800 to 950 ° C. to obtain calcined powder.
  次いで、仮焼粉に、イオン交換水、分散剤を加えて予備混合した後に、遊星型ボールミルにより湿式粉砕して粉砕粉としたする。粉砕粉を乾燥した後、溶剤、バインダー、可塑剤、分散剤等を加えて、ボールミルにより混合してスラリー化し、さらにスラリーを真空装置内で攪拌機により攪拌しながら真空脱泡および粘度調整を行った。
  真空脱泡、粘度調整後のスラリーをドクターブレード装置により一定の厚みのグリーンシートに成形後、グリーンシート上に、焼成により内部電極(層間電極)となる銀・ラジウム焼成ペーストを所定のパターンにスクリーン印刷し、プレス機で打ち抜いて、所定の大きさ及び形状に成形し、電極層付きグリーンシートを得た。
Next, ion-exchanged water and a dispersant are added to the calcined powder and premixed, and then wet pulverized by a planetary ball mill to obtain a pulverized powder. After the pulverized powder was dried, a solvent, a binder, a plasticizer, a dispersant, and the like were added, mixed by a ball mill to form a slurry, and the slurry was further subjected to vacuum defoaming and viscosity adjustment while stirring with a stirrer in a vacuum apparatus. .
The slurry after vacuum defoaming and viscosity adjustment is formed into a green sheet with a certain thickness using a doctor blade device, and then a silver / radium firing paste that becomes an internal electrode (interlayer electrode) by firing is screened in a predetermined pattern on the green sheet. Printing and punching with a press machine were performed to a predetermined size and shape to obtain a green sheet with an electrode layer.
  得られた電極層付きグリーンシートを所定枚数、図1の構成に積層し、熱圧着後、脱脂し、温度900~1200℃のもとで焼成し、所望の形状に研磨して、厚さ方向に分極制御された積層圧電子を得た。得られた積層圧電子に図1.の構成となるように、伸縮性導体形成用ペースト[P1]を塗布し、120℃にて30分間乾燥硬化し側面電極を形成し、積層型圧電アクチュエータ[A1]を得た。なお、同条件(同ロット)にて30個のアクチュエータを製作した。 A predetermined number of the obtained green sheets with electrode layers are laminated in the configuration shown in FIG. 1, and after thermocompression bonding, degreased, baked at a temperature of 900 to 1200 ° C., polished to a desired shape, and polished in the thickness direction. A stacked piezoelectric electron whose polarization was controlled was obtained. The obtained stacked piezoelectricity is shown in FIG. Thus, the stretchable conductor-forming paste [P1] was applied and dried and cured at 120 ° C. for 30 minutes to form side electrodes to obtain a multilayer piezoelectric actuator [A1]. In addition, 30 actuators were manufactured under the same conditions (same lot).
 得られたアクチュエータ[A1]をエポキシ樹脂に包埋し、側面電極部の断面観察を行い、空隙率を求めた。結果を表3.に示す。
 得られた積層型圧電アクチュエータ[A1]に、振幅50V、周波数20kHzの正弦交番電界を印加し、12時間のアクチュエータの連続動作試験を行い、試験後のアクチュエータの動作、および顕微鏡観察による側面電極の状態について表3.に示す。
The obtained actuator [A1] was embedded in an epoxy resin, and the cross section of the side electrode portion was observed to determine the porosity. Table 3 shows the results. Shown in
The obtained multilayer piezoelectric actuator [A1] was applied with a sinusoidal electric field having an amplitude of 50 V and a frequency of 20 kHz, and a continuous operation test of the actuator was performed for 12 hours. Table 3. Shown in
<実施例2~8、比較例1>
 以下、伸縮性導体形成用ペースト[P1]を順次[P2]~[P9]に代えて積層型圧電アクチュエータ[A2]~[A9]を作製し、評価した。結果を表3.に示す。
  表3に示すように、本発明の伸縮性導体を側面電極に用いた積層型圧電アクチュエータは、長時間の連続使用に耐える良好な特性を示すことが解る。一方で比較例においては、短時間で側面電極にクラックが生じ、実用性に乏しいことが理解される。
<Examples 2 to 8, Comparative Example 1>
Hereinafter, multilayer piezoelectric actuators [A2] to [A9] were produced and evaluated by replacing the paste [P1] for forming a stretchable conductor sequentially with [P2] to [P9]. Table 3 shows the results. Shown in
As shown in Table 3, it can be seen that the multilayer piezoelectric actuator using the stretchable conductor of the present invention for the side electrode exhibits good characteristics that can withstand continuous use for a long time. On the other hand, in the comparative example, it is understood that the side electrode is cracked in a short time, and the practicality is poor.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
<実施例10>
 以下のプロセスにより、 図2の構成を有する単層の誘電アクチュエータを製作した。
 まず離型処理を行ったポリエステルフィルムを仮基材とし、先の製造例にて得られた伸縮性導体形成用ペーストP5を用いて、スクリーン印刷にて所定のパターンを印刷し乾燥硬化した。次いで得られた伸縮性導体層の上に誘電弾性体形成用ペーストD1を用いて印刷乾燥硬化を行い誘電弾性体層を形成し、さらに伸縮性導体形成用ペーストP5を用いて印刷乾燥硬化を行い電極層を形成し、三層構造のコンデンサを形成した。得られたコンデンサを離型ポリエステルフィルムから剥離し、所定形状となるように裁断し単層の誘電アクチュエータX0を得た。得られた誘電アクチュエータX0において、最初に形成した伸縮性導体層の厚さは15μm、誘電弾性体の層の厚さは22μm、最後に形成した伸縮性導体層の厚さは13μmであった。誘電アクチュエータA0の表裏の電極間の絶縁抵抗は>1×1012 であった。当該誘電アクチュエータに、0~1000vの電圧を印加し、動作を確認した。
<Example 10>
A single-layer dielectric actuator having the configuration shown in FIG. 2 was manufactured by the following process.
First, a polyester film subjected to a release treatment was used as a temporary base material, and a predetermined pattern was printed by screen printing and dried and cured using the stretchable conductor-forming paste P5 obtained in the previous production example. Next, a dielectric elastic body layer is formed on the obtained stretchable conductor layer using the dielectric elastic body forming paste D1 to form a dielectric elastic body layer, and further, the printable conductor film is dried and cured using the stretchable conductor forming paste P5. An electrode layer was formed to form a three-layer capacitor. The obtained capacitor was peeled off from the release polyester film and cut into a predetermined shape to obtain a single-layer dielectric actuator X0. In the obtained dielectric actuator X0, the first formed elastic conductor layer had a thickness of 15 μm, the dielectric elastic layer had a thickness of 22 μm, and the last formed elastic conductor layer had a thickness of 13 μm. The insulation resistance between the front and back electrodes of the dielectric actuator A0 was> 1 × 10 12 . A voltage of 0 to 1000 V was applied to the dielectric actuator, and the operation was confirmed.
<実施例11>
 以下のプロセスにより、図3に示す積層型の誘電アクチュエータを試作した。
  製造例にて得られた誘電弾性体形成用ペーストを離型処理されたポリエステルフィルム上にドクターブレード装置により一定の厚みとなるようにコーティングし、乾燥工程を経て誘電弾性体グリーンシートを得たとなるようにに成形後、グリーンシート上に、内部電極(層間電極)となる伸縮性導体形成用ペーストP1を所定のパターンにスクリーン印刷し、プレス機で打ち抜いて、所定の大きさ及び形状に成形し、電極層付きグリーンシートを得た。
<Example 11>
The multilayer dielectric actuator shown in FIG. 3 was prototyped by the following process.
The dielectric elastic body forming paste obtained in the production example was coated on the polyester film subjected to the release treatment so as to have a constant thickness by a doctor blade device, and a dielectric elastic body green sheet was obtained through a drying process. After forming as described above, the paste P1 for forming a stretchable conductor to be an internal electrode (interlayer electrode) is screen printed on a green sheet in a predetermined pattern, punched out by a press machine, and formed into a predetermined size and shape. A green sheet with an electrode layer was obtained.
  得られた電極層付きグリーンシートを所定枚数、図3の構成に積層し、熱圧着後、脱脂し、温度120℃にて追乾燥と熱処理を行い、所望の形状に成型して、厚さ方向に積層された積層コンデンサを得た。得られた積層コンデンサに図3.の構成となるように、伸縮性導体形成用ペースト[P1]を塗布し、120℃にて30分間乾燥硬化し側面電極を形成し、積層型誘電アクチュエータ[X1]を得た。なお、同条件(同ロット)にて30個のアクチュエータを製作した。 A predetermined number of the obtained green sheets with electrode layers are laminated in the configuration shown in FIG. 3, and after thermocompression bonding, degreased, subjected to additional drying and heat treatment at a temperature of 120 ° C., and molded into a desired shape. A multilayer capacitor was obtained. The obtained multilayer capacitor is shown in FIG. Thus, the stretchable conductor-forming paste [P1] was applied and dried and cured at 120 ° C. for 30 minutes to form a side electrode to obtain a multilayer dielectric actuator [X1]. In addition, 30 actuators were manufactured under the same conditions (same lot).
 得られたアクチュエータ[X1]をエポキシ樹脂に包埋し、電極部の断面観察を行い、空隙率を求めた。結果を表4.に示す。
 得られた積層型誘電アクチュエータ[X1]に、振幅500V、周波数5kHzの正弦交番電界を印加し、5時間のアクチュエータの連続動作試験を行い、試験後のアクチュエータの動作、および顕微鏡観察による電極の状態について表4.に示す。
The obtained actuator [X1] was embedded in an epoxy resin, the cross section of the electrode part was observed, and the porosity was determined. The results are shown in Table 4. Shown in
The obtained laminated dielectric actuator [X1] was applied with a sinusoidal electric field having an amplitude of 500 V and a frequency of 5 kHz, and a continuous operation test of the actuator was performed for 5 hours. Table 4. Shown in
<実施例2~8、比較例>
 以下、伸縮性導体形成用ペースト[P1]を順次[P2]~[P9]に代えて積層型誘電アクチュエータ[X2]~[X9]を作製し、評価した。結果を表4.に示す。
  表4に示すように、本発明の伸縮性導体を側面電極に用いた積層型誘電アクチュエータは、大きな変位を示し、また長時間の連続使用に耐える良好な特性を示すことが解る。一方で比較例においては、変位が小さく、短時間で側面電極にクラックが生じ、実用性に乏しいことが理解される。
<Examples 2 to 8, Comparative Example>
Hereinafter, multilayer dielectric actuators [X2] to [X9] were prepared and evaluated by replacing the paste [P1] for forming an elastic conductor sequentially with [P2] to [P9]. The results are shown in Table 4. Shown in
As shown in Table 4, it can be seen that the laminated dielectric actuator using the stretchable conductor of the present invention for the side electrode exhibits a large displacement and a good characteristic that can withstand continuous use for a long time. On the other hand, in the comparative example, it is understood that the displacement is small, the side electrode is cracked in a short time, and the practicality is poor.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
<実施例21>
 以下のプロセスにより、 図4の構成を有する円筒型の電磁誘導アクチュエータを製作した。
 まず離型処理を行ったポリエステルフィルムを仮基材とし、先の製造例にて得られた伸縮性導体形成用ペーストP1を用いて、スクリーン印刷にて所定のパターンを印刷し乾燥硬化した。次いで得られた伸縮性導体層の上に伸縮性絶縁体形成用ペーストE1を用いて印刷乾燥硬化を行い伸縮性絶縁体を形成し、伸縮性導体と伸縮性絶縁体の二層構造のシートを形成した。得られたシートを離型ポリエステルフィルムから剥離し、所定幅にスリット成形下のち、所定部分にリード線を取り付けて円筒形に巻き取り、電磁誘導アクチュエータ[Z1]を得た。得られた電磁誘導アクチュエータZ1において、伸縮性導体層の厚さは18μm、伸縮性絶縁体の層の厚さは12μmである。伸縮性絶縁体の絶縁抵抗は1×1012Ω以上であった。当該電磁誘導アクチュエータに、0~1000vの電圧を印加し、動作を確認した。
<Example 21>
A cylindrical electromagnetic induction actuator having the configuration shown in FIG. 4 was manufactured by the following process.
First, a polyester film subjected to the release treatment was used as a temporary base material, and a predetermined pattern was printed by screen printing and dried and cured using the stretchable conductor-forming paste P1 obtained in the previous production example. Next, the stretchable conductor layer is subjected to print drying and curing using the stretchable insulator-forming paste E1 to form a stretchable insulator, and a sheet having a two-layer structure of the stretchable conductor and the stretchable insulator is formed. Formed. The obtained sheet was peeled from the release polyester film, slit-formed to a predetermined width, and then a lead wire was attached to a predetermined portion and wound into a cylindrical shape to obtain an electromagnetic induction actuator [Z1]. In the obtained electromagnetic induction actuator Z1, the thickness of the stretchable conductor layer is 18 μm, and the thickness of the stretchable insulator layer is 12 μm. The insulation resistance of the stretchable insulator was 1 × 10 12 Ω or more. A voltage of 0 to 1000 V was applied to the electromagnetic induction actuator, and the operation was confirmed.
<実施例22~28、比較例3>
 以下、伸縮性導体形成用ペースト[P1]を順次[P2]~[P9]に代えて電磁誘導アクチュエータ[Z2]~[Z9]を作製し、評価した。結果を表3.に示す。
  表3に示すように、本発明の伸縮性導体を側面電極に用いた電磁誘導アクチュエータは、大きな変位を示した。一方で比較例においては、変位が小さくアクチュエータとしての実用性に乏しいことが示された。
<Examples 22 to 28, Comparative Example 3>
In the following, electromagnetic induction actuators [Z2] to [Z9] were prepared and evaluated by replacing the paste [P1] for forming an elastic conductor sequentially with [P2] to [P9]. Table 3 shows the results. Shown in
As shown in Table 3, the electromagnetic induction actuator using the stretchable conductor of the present invention as the side electrode showed a large displacement. On the other hand, the comparative example shows that the displacement is small and the practicality as an actuator is poor.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
<実施例29>
 以下のプロセスにより、図5に示す平面コイル型の電磁誘導アクチュエータを試作した。
  製造例にて得られた伸縮性絶縁体形成用ペーストE1を離型処理されたポリエステルフィルム上にドクターブレード装置により一定の厚みとなるようにコーティングし、乾燥工程を経て伸縮性基材を得た。得られた伸縮性基材上に伸縮性導体形成用ペーストP5を用いてスクリーン印刷法により所定の平面コイルを印刷し乾燥硬化し、伸縮性基材事離型PETフィルムから剥離して、図5の構成を有する電磁誘導アクチュエータ[Z10]を得た。得られた電磁誘導アクチュエータ「Z10]について評価を行った結果を表3に示す。
<Example 29>
The planar coil type electromagnetic induction actuator shown in FIG. 5 was prototyped by the following process.
The stretchable insulator-forming paste E1 obtained in the production example was coated on the polyester film subjected to the release treatment so as to have a constant thickness by a doctor blade device, and a stretchable base material was obtained through a drying process. . On the obtained stretchable substrate, a predetermined planar coil is printed by screen printing using the stretchable conductor-forming paste P5, dried and cured, and peeled off from the stretchable substrate release PET film. An electromagnetic induction actuator [Z10] having the following structure was obtained. Table 3 shows the results of evaluation of the obtained electromagnetic induction actuator “Z10”.
 以上、示してきたように、本発明におけるアクチュエータは、極めて静音性に優れ、長時間の連続使用に耐え、半導体. 露光装置の極微動用ステージ、精密位置決めプローブ、走査. トンネル顕微鏡(STM)や原子間力顕微鏡(AFM)などのプロー. ブ駆動用など、主に精密位置制御を必要とする産業機器を中心に使用されている。また最近では 携帯電話やデジタルカメラのカメラモジュール (オートフォーカス機構、ズーム機構、手振れ補正機構)、ハードディスクドライブ (ヘッド位置制御)、光学機器 (光軸調整、焦点調整)、モーター (インパクトリニアモーター、超音波リニアモーター)としても使用されている。これらの他、超精密微細研磨ツール、小型タイプメカトランス、高速角度調整機構、微小荷重載荷・検出装置、与圧機構、ポンプ、位置決めステージ機構、パンチングマシン、インクジェットのヘッド、燃料などの液体のイジェクタなどとしても使用できる。さらに本発明の積層型圧電アクチュエータは、長時間使用されるスピーカーとしても十分適応が可能である。 As described above, the actuator according to the present invention is extremely quiet and withstands continuous use for a long time, and is used for semiconductors, micro-stages for exposure equipment, precision positioning probes, scanning, tunnel microscopes (STM) and atomic microscopes. It is mainly used in industrial equipment that requires precise position control, such as probe driving of an atomic force microscope (AFM). Recently, the camera modules for mobile phones and digital cameras (autofocus mechanism, zoom mechanism, camera shake correction mechanism), hard disk drive (head position control), optical equipment (optical axis adjustment, focus adjustment), motor (impact linear motor, super It is also used as a sonic linear motor). Besides these, ultra-precision fine polishing tool, small type mechanical transformer, high-speed angle adjustment mechanism, minute load loading / detection device, pressurization mechanism, pump, positioning stage mechanism, punching machine, inkjet head, ejector of liquid such as fuel It can also be used as such. Furthermore, the multilayer piezoelectric actuator of the present invention can be sufficiently adapted as a speaker used for a long time.
 1:圧電物質(圧電体)
 2:内部電極(層間電極)
 3:側面電極
 4:側面電極
 10:電極
 11:誘電弾性体
 12:内部電極(層間電極)
 13:側面電極
 14:側面電極
 100:伸縮性のある絶縁基材(基材)
 101:伸縮性のある導体材料(伸縮性導体)
 102:伸縮性のある電磁誘導体材料(伸縮性絶縁体あるいは伸縮性電磁誘導体)
 
 
 
1: Piezoelectric material (piezoelectric material)
2: Internal electrode (interlayer electrode)
3: Side electrode 4: Side electrode 10: Electrode 11: Dielectric elastic body 12: Internal electrode (interlayer electrode)
13: Side electrode 14: Side electrode 100: Stretchable insulating base material (base material)
101: Stretchable conductor material (stretchable conductor)
102: Stretchable electromagnetic derivative material (stretchable insulator or stretchable electromagnetic derivative)


Claims (17)

  1.   電圧印加により体積変化を生じる圧電物質と内部電極とが交互に積層され、前記内部電極が互い違いに正電極、負電極となるように配置された構造を有する積層型圧電アクチュエータにおいて、正電極どうし、および負電極どうしを接続する側面電極に、伸縮性のある導体組成物を用いた事を特徴とする積層型圧電アクチュエータ。 In a stacked piezoelectric actuator having a structure in which piezoelectric materials and internal electrodes that cause a volume change by voltage application are alternately stacked, and the internal electrodes are alternately arranged as a positive electrode and a negative electrode, And a laminated piezoelectric actuator characterized in that a stretchable conductor composition is used for side electrodes connecting the negative electrodes.
  2.  前記伸縮性のある導体組成物が、導電性粒子と、エラストマーを90質量%以上含むバインダー樹脂との混合物である事を特徴とする請求項1に記載の積層型圧電アクチュエータ。 The multilayer piezoelectric actuator according to claim 1, wherein the stretchable conductor composition is a mixture of conductive particles and a binder resin containing 90% by mass or more of an elastomer.
  3.  前記エラストマーが、天然ゴム(NR)、合成天然ゴム(イソプレンゴム)(IR)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ニトリルゴム(NBR)、エチレン・プロピレンゴム(EPM、EPDM)、クロロスルホン化ポリエチレンゴム(ハイパロン)(CSM)、アクリルゴム(ACM)、ウレタンゴム(U)、シリコーンゴム(Q)、フッ素ゴム(FKM)、多硫化ゴム(T)から選択される少なくとも一種のゴムを含有することを特徴とする請求項1または請求項2に記載の積層型圧電アクチュエータ。 The elastomer is natural rubber (NR), synthetic natural rubber (isoprene rubber) (IR), styrene-butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), butyl rubber (IIR), nitrile rubber (NBR) ), Ethylene / propylene rubber (EPM, EPDM), chlorosulfonated polyethylene rubber (Hypalon) (CSM), acrylic rubber (ACM), urethane rubber (U), silicone rubber (Q), fluoro rubber (FKM), polysulfide 3. The laminated piezoelectric actuator according to claim 1, further comprising at least one rubber selected from rubber (T).
  4.  前記導電性粒子が、中心径が0.08μm~25μmの範囲にある金属粒子を含む事を特徴とする請求項1から請求項3のいずれかに記載の積層型圧電アクチュエータ。 4. The stacked piezoelectric actuator according to claim 1, wherein the conductive particles include metal particles having a center diameter in a range of 0.08 μm to 25 μm.
  5.  前記側面電極を構成する導体組成物が、3~35体積%の自由体積を有する事を特徴とする請求項1から請求項4のいずれかに記載の積層型圧電アクチュエータ。 The multilayer piezoelectric actuator according to any one of claims 1 to 4, wherein the conductor composition constituting the side electrode has a free volume of 3 to 35% by volume.
  6.   対向する一対の電極に誘電弾性体を挟み、該一対の電極間に電圧を印加することにより前記誘電弾性体を変形させる誘電アクチュエータであって、前記電極に伸縮性のある導体組成物を用いたことを特徴とする誘電アクチュエータ。 A dielectric actuator that deforms the dielectric elastic body by sandwiching a dielectric elastic body between a pair of opposing electrodes and applying a voltage between the pair of electrodes, and using a conductive composition having elasticity for the electrodes A dielectric actuator characterized by that.
  7.  前記伸縮性のある導体組成物が、導電性粒子と、エラストマーを90質量%以上含むバインダー樹脂との混合物である事を特徴とする請求項6に記載の積層型誘電アクチュエータ。 The multilayer dielectric actuator according to claim 6, wherein the elastic conductor composition is a mixture of conductive particles and a binder resin containing 90% by mass or more of an elastomer.
  8.  前記エラストマーが、天然ゴム(NR)、合成天然ゴム(イソプレンゴム)(IR)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ニトリルゴム(NBR)、エチレン・プロピレンゴム(EPM、EPDM)、クロロスルホン化ポリエチレンゴム(ハイパロン)(CSM)、アクリルゴム(ACM)、ウレタンゴム(U)、シリコーンゴム(Q)、フッ素ゴム(FKM)、多硫化ゴム(T)から選択される少なくとも一種のゴムを含有することを特徴とする請求項6または請求項7に記載の積層型誘電アクチュエータ。 The elastomer is natural rubber (NR), synthetic natural rubber (isoprene rubber) (IR), styrene-butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), butyl rubber (IIR), nitrile rubber (NBR) ), Ethylene / propylene rubber (EPM, EPDM), chlorosulfonated polyethylene rubber (Hypalon) (CSM), acrylic rubber (ACM), urethane rubber (U), silicone rubber (Q), fluoro rubber (FKM), polysulfide The multilayer dielectric actuator according to claim 6 or 7, comprising at least one rubber selected from rubber (T).
  9.  前記導電性粒子が、中心径が0.08μm~25μmの範囲にある金属粒子を含む事を特徴とする請求項6から請求項8のいずれかに記載の積層型誘電アクチュエータ。 The multilayer dielectric actuator according to any one of claims 6 to 8, wherein the conductive particles include metal particles having a center diameter in a range of 0.08 µm to 25 µm.
  10.  前記側面電極を構成する導体組成物が、3~35体積%の自由体積を有する事を特徴とする請求項6から請求項9のいずれかに記載の積層型誘電アクチュエータ。 10. The multilayer dielectric actuator according to claim 6, wherein the conductor composition constituting the side electrode has a free volume of 3 to 35% by volume.
  11.   電極と誘電弾性体とが交互に積層され、前記内部電極が互い違いに正電極、負電極となるように配置された構造を有する請求項6から請求項10のいずれかに記載の誘電アクチュエータ。 The dielectric actuator according to any one of claims 6 to 10, which has a structure in which saddle electrodes and dielectric elastic bodies are alternately stacked, and the internal electrodes are alternately arranged as a positive electrode and a negative electrode.
  12.  前記、正電極どうし、および負電極どうしを接続する側面電極に、伸縮性のある導体組成物を用いた事を特徴とする請求項6から請求項11のいずれかに記載の誘電アクチュエータ。 The dielectric actuator according to any one of claims 6 to 11, wherein a stretchable conductor composition is used for the side electrodes connecting the positive electrodes and the negative electrodes.
  13.  伸縮性のある導体材料で構成されたことを特徴とするインダクタに電流を通じることにより発生する電磁力を用いて、インダクタ自体を変形させることを特徴とする電磁誘導アクチュエータ。 An electromagnetic induction actuator characterized in that the inductor itself is deformed by using an electromagnetic force generated by passing an electric current through the inductor characterized by being made of a stretchable conductor material.
  14.  前記伸縮性のある導体組成物が、導電性粒子と、エラストマーを90質量%以上含むバインダー樹脂との混合物である事を特徴とする請求項13に記載の電磁誘導アクチュエータ。 14. The electromagnetic induction actuator according to claim 13, wherein the elastic conductor composition is a mixture of conductive particles and a binder resin containing 90% by mass or more of an elastomer.
  15.  前記エラストマーが、天然ゴム(NR)、合成天然ゴム(イソプレンゴム)(IR)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ニトリルゴム(NBR)、エチレン・プロピレンゴム(EPM、EPDM)、クロロスルホン化ポリエチレンゴム(ハイパロン)(CSM)、アクリルゴム(ACM)、ウレタンゴム(U)、シリコーンゴム(Q)、フッ素ゴム(FKM)、多硫化ゴム(T)から選択される少なくとも一種のゴムを含有することを特徴とする請求項13または請求項14に記載の電磁誘導アクチュエータ。 The elastomer is natural rubber (NR), synthetic natural rubber (isoprene rubber) (IR), styrene-butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), butyl rubber (IIR), nitrile rubber (NBR) ), Ethylene / propylene rubber (EPM, EPDM), chlorosulfonated polyethylene rubber (Hypalon) (CSM), acrylic rubber (ACM), urethane rubber (U), silicone rubber (Q), fluoro rubber (FKM), polysulfide 15. The electromagnetic induction actuator according to claim 13, wherein the electromagnetic induction actuator contains at least one rubber selected from rubber (T).
  16.  前記導電性粒子が、中心径が0.08μm~25μmの範囲にある金属粒子を含む事を特徴とする請求項13から請求項15のいずれかに記載の電磁誘導アクチュエータ。 16. The electromagnetic induction actuator according to claim 13, wherein the conductive particles include metal particles having a central diameter in a range of 0.08 μm to 25 μm.
  17.  前記伸縮性のある導体組成物が、3~35体積%の自由体積を有する事を特徴とする請求項13から請求項16のいずれかに記載の電磁誘導アクチュエータ。
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
    The electromagnetic induction actuator according to any one of claims 13 to 16, wherein the stretchable conductor composition has a free volume of 3 to 35% by volume.














PCT/JP2017/046573 2017-01-04 2017-12-26 Actuator WO2018128121A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018560374A JP7056582B2 (en) 2017-01-04 2017-12-26 Actuator

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-000165 2017-01-04
JP2017000166 2017-01-04
JP2017000167 2017-01-04
JP2017-000167 2017-01-04
JP2017-000166 2017-01-04
JP2017000165 2017-01-04

Publications (1)

Publication Number Publication Date
WO2018128121A1 true WO2018128121A1 (en) 2018-07-12

Family

ID=62789469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046573 WO2018128121A1 (en) 2017-01-04 2017-12-26 Actuator

Country Status (3)

Country Link
JP (1) JP7056582B2 (en)
TW (1) TWI744453B (en)
WO (1) WO2018128121A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020031063A (en) * 2017-12-20 2020-02-27 住友ベークライト株式会社 Conductive paste and stretchable wiring board
CN114269822A (en) * 2019-08-29 2022-04-01 引能仕株式会社 Elastomer composition for actuator, actuator component and actuator element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296049A (en) * 1993-04-08 1994-10-21 Honda Motor Co Ltd Laminated type piezoelectric electrostrictive device
JP2010226949A (en) * 2003-03-03 2010-10-07 Sri Internatl Rolled electroactive polymer
JP2011507221A (en) * 2007-12-06 2011-03-03 シーメンス アクチエンゲゼルシヤフト Piezoelectric component having an external electrode having a vapor-deposited layer, and method for manufacturing and applying the component
WO2016031137A1 (en) * 2014-08-27 2016-03-03 ソニー株式会社 Transducer and electronic device
JP2016046953A (en) * 2014-08-25 2016-04-04 ソニー株式会社 Transducer and electronic apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7233097B2 (en) * 2001-05-22 2007-06-19 Sri International Rolled electroactive polymers
JP4922879B2 (en) * 2007-03-30 2012-04-25 東海ゴム工業株式会社 Actuator
JP6296049B2 (en) 2013-03-04 2018-03-20 日本電気株式会社 Optical switch and optical switch expansion method
JP6249852B2 (en) * 2014-03-27 2017-12-20 住友理工株式会社 Dielectric film manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296049A (en) * 1993-04-08 1994-10-21 Honda Motor Co Ltd Laminated type piezoelectric electrostrictive device
JP2010226949A (en) * 2003-03-03 2010-10-07 Sri Internatl Rolled electroactive polymer
JP2011507221A (en) * 2007-12-06 2011-03-03 シーメンス アクチエンゲゼルシヤフト Piezoelectric component having an external electrode having a vapor-deposited layer, and method for manufacturing and applying the component
JP2016046953A (en) * 2014-08-25 2016-04-04 ソニー株式会社 Transducer and electronic apparatus
WO2016031137A1 (en) * 2014-08-27 2016-03-03 ソニー株式会社 Transducer and electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020031063A (en) * 2017-12-20 2020-02-27 住友ベークライト株式会社 Conductive paste and stretchable wiring board
JP7308722B2 (en) 2017-12-20 2023-07-14 住友ベークライト株式会社 Conductive paste and stretchable wiring board
CN114269822A (en) * 2019-08-29 2022-04-01 引能仕株式会社 Elastomer composition for actuator, actuator component and actuator element

Also Published As

Publication number Publication date
JP7056582B2 (en) 2022-04-19
JPWO2018128121A1 (en) 2020-01-30
TW201830743A (en) 2018-08-16
TWI744453B (en) 2021-11-01

Similar Documents

Publication Publication Date Title
US8771541B2 (en) Polymer composite piezoelectric body and manufacturing method for the same
JP5278038B2 (en) Elastomer transducer
JP5859370B2 (en) Energy conversion element and manufacturing method thereof
JP5361635B2 (en) Vibrator
WO2012108192A1 (en) Capacitance change type electric power generating element
US10381547B2 (en) Dielectric film, method for manufacturing the same, and transducer including the same
KR20140007955A (en) Dielectric film and transducer using same
JP2018056287A (en) Transducer arranged by use of flexible piezoelectric material
WO2006135013A1 (en) Multilayer piezoelectric element and ejector using this
JP7056582B2 (en) Actuator
Qian et al. Improving dielectric properties and thermostability of CaCu3Ti4O12/polyimide composites by employing surface hydroxylated CaCu3Ti4O12 particles
WO2012105187A1 (en) Capacitance-varying type power-generation element
US10811592B2 (en) Piezoelectric element, vibrator, vibration wave motor, optical device, and electronic device
JP5931127B2 (en) Piezoelectric ceramics, method for manufacturing the same, and piezoelectric ceramic speaker having the same
JP2009232677A (en) Elastomer transducer, dielectric rubber composition, and power generating element
Du et al. The influence of processing parameters on piezoelectric and dielectric properties of dome-shaped composite PZT-epoxy actuators
CN104882277A (en) Adjustable and controllable capacitor with layered composite structure, and method of adjusting and controlling dielectric through piezoelectric stress
US20220189693A1 (en) Multilayer capacitor and board having the same mounted thereon
JP2003318458A (en) Multilayer piezoelectric element, its producing method and ejector
JP2014185061A (en) Piezoelectric element
JP2010018514A (en) Method for producing piezoelectric material, piezoelectric element, and piezoelectric power generator
US9147828B2 (en) Piezoelectric drive element and piezoelectric drive unit
JP2007284278A (en) Piezoelectric element material and production method therefor
JP2020145408A (en) Piezoelectric element and piezoelectric element sheet
JP2020150197A (en) Laminate type piezoelectric ceramic, method for manufacturing the same, laminate type piezoelectric element and piezoelectric vibratory device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018560374

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17890116

Country of ref document: EP

Kind code of ref document: A1