WO2018127979A1 - Treatment method for arsenic-containing copper mineral - Google Patents

Treatment method for arsenic-containing copper mineral Download PDF

Info

Publication number
WO2018127979A1
WO2018127979A1 PCT/JP2017/000324 JP2017000324W WO2018127979A1 WO 2018127979 A1 WO2018127979 A1 WO 2018127979A1 JP 2017000324 W JP2017000324 W JP 2017000324W WO 2018127979 A1 WO2018127979 A1 WO 2018127979A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
arsenic
leaching
treating
sulfuric acid
Prior art date
Application number
PCT/JP2017/000324
Other languages
French (fr)
Japanese (ja)
Inventor
良介 辰巳
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to PCT/JP2017/000324 priority Critical patent/WO2018127979A1/en
Publication of WO2018127979A1 publication Critical patent/WO2018127979A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for treating arsenic-containing copper minerals (arsenous pyrite, arsenic tetrahedral copper or the like).
  • An oxidation roasting method and a non-oxidation roasting method are known in which copper concentrate is roasted in an oxidizing atmosphere or a non-oxidizing atmosphere to volatilize and remove arsenic. The obtained roasted ore is used as a raw material for dry smelting to recover copper. Further, a sulfuric acid roasting method (treatment method for converting to sulfate) in which concentrate and sulfuric acid are kneaded and roasted in a furnace has been reported (Non-Patent Documents 1 to 3). Arsenic in the copper mineral is dissolved in the leachate and recovered, or volatilized and removed by high-temperature roasting.
  • Non-Patent Document 4 Arsenic in the copper mineral forms scorodite with Fe that coexists during leaching, and is precipitated and removed in the residue.
  • an object of the present invention is to provide a method for treating an arsenic-containing copper mineral that efficiently leaches copper from an arsenic-containing copper mineral and easily recovers arsenic.
  • the present invention completed on the basis of the above knowledge is, in one aspect, a method for treating an arsenic-containing copper mineral including a step of leaching copper from an arsenic-containing copper mineral with sulfuric acid at 100 to 290 ° C.
  • the step of leaching the copper is performed under atmospheric pressure.
  • copper is leached with sulfuric acid at 150 to 200 ° C. in the step of leaching copper.
  • the copper leaching rate in the step of leaching copper is 50% or more.
  • the copper leaching time is 1 to 5 hours in the step of leaching copper.
  • the pulp concentration of the sulfuric acid solution in the step of leaching the copper is 40% or less.
  • the leachate obtained in the step of leaching copper is diluted, neutralized, and then heated while oxidizing to synthesize scorodite.
  • the method further includes the step of:
  • the method for treating an arsenic-containing copper mineral of the present invention further includes a step of recovering copper by solvent extraction from the liquid remaining after removing the scorodite obtained in the step of synthesizing the scorodite.
  • an impurity removal treatment is performed on the post-extraction solution after solvent extraction of copper in the step of recovering copper by the solvent extraction.
  • the method further includes the step of using the obtained liquid as a diluent when diluting the leachate obtained in the step of leaching copper.
  • FIG. 1 is a flowchart showing an embodiment of a method for treating an arsenic-containing copper mineral of the present invention.
  • Arsenic-containing copper minerals to be treated in the present invention are arsenous copper ore (Cu 3 AsS 4 ), arsenic tetrahedral copper (Cu 12 As 4 S 13 ), chalcopyrite (CuFeS 2 ), arsenite (FeAsS) and sulfide. It is a copper mineral containing an arsenic component, such as a mineral mixed with arsenic.
  • copper is leached from sulfuric acid at 100 to 290 ° C. from the arsenic-containing copper mineral.
  • a reaction represented by the following formula occurs, and for example, arsenite can be oxidized and decomposed into copper sulfate and arsenous acid by the oxidizing power of sulfuric acid.
  • the leaching temperature is preferably 150 ° C. or higher, and more preferably 180 ° C. or higher.
  • an arsenic-containing copper mineral of the present invention it becomes possible to treat at a lower temperature than the conventional dry method, and arsenic can be easily recovered by being dissolved in a leachate without volatilizing. it can.
  • pressure and air blowing are indispensable as described above, and thus a pressure-resistant and acid-resistant device such as an autoclave is necessary. Blowing (or blowing of oxygen-containing gas) is unnecessary, and the arsenic-containing copper mineral can be satisfactorily treated even under atmospheric pressure. Therefore, according to the present invention, copper and arsenic can be efficiently separated and recovered from a copper mineral containing arsenic.
  • the sulfuric acid used in the present invention is preferably concentrated sulfuric acid having a concentration of 95% or more, more preferably concentrated sulfuric acid having a concentration of 98% or more. That is, the sulfuric acid used in the present invention is preferably hot concentrated sulfuric acid at a temperature of 100 to 290 ° C. and a concentration of 95% or more.
  • the reaction represented by the above formula proceeds better, and arsenous copper ore can be oxidized and decomposed into copper sulfate and arsenous acid better.
  • copper is leached from the arsenic-containing copper mineral.
  • copper can be leached at a leaching rate of 50% or more.
  • copper can be further leached at a leaching rate of 60% or more, 70% or more, 80% or more, or 90% or more.
  • the copper leaching time may be 1 to 10 hours, may be 1 to 6 hours, or may be 1 to 5 hours.
  • the pulp concentration of the sulfuric acid solution in the step of leaching copper is preferably 40% or less.
  • the pulp concentration of the sulfuric acid solution is 40% or less, the copper leaching rate is further improved.
  • sulfuric acid may be consumed by reaction, and there exists a possibility that a sulfuric acid may be depleted and it may become a form of a roasting process instead of a leaching.
  • Pulp concentration concentrate mass (g) ⁇ (concentrate mass + concentrated sulfuric acid mass (g)) x 100 (%)
  • concentration of concentrated sulfuric acid mass is calculated by the amount of concentrated sulfuric acid solution (mL) ⁇ the concentration of concentrated sulfuric acid (g / cm 3 ).
  • the gas generated during the leaching process is converted to SO 2 through an exhaust gas process, and may be used again as a sulfuric acid raw material for leaching copper from the sulfuric acid plant.
  • the residue includes, for example, gangue and gypsum.
  • Test Example 1 250 g of copper concentrate containing copper mineral containing arsenic was dissolved in 500 ml of sulfuric acid (concentration 98%), and leaching treatment was performed for 3 hours.
  • the chemical analysis value of the copper concentrate was 21% for Cu grade and 7% for As.
  • MLA mineral analysis system
  • 85 mass% or more 85 mass% or more was in the form of arsenite.
  • the pulp concentration of the sulfuric acid solution was 20%.
  • leaching temperatures 120 ° C., 150 ° C., and 180 ° C. Further, the leaching process was performed under atmospheric pressure without blowing oxygen-containing gas. Copper and arsenic were collected from the obtained copper leaching solution, and their leaching rate was measured. The test results are shown in Table 1 and FIG.
  • Test Example 2 When 25 g of copper concentrate containing arsenic similar to Test Example 1 was oxidized and roasted in air at 200 ° C., the leaching rate of copper into water was 4 to 6%. Moreover, when oxidative roasting was performed in air at 400 ° C., the leaching rate of copper into water was 22%. Further, when 25 g of copper concentrate containing arsenic similar to Test Example 1 was non-oxidized and roasted, the volatilization reaction of arsenic did not proceed unless it was 550 ° C. or higher. As can be seen from Test Examples 1 and 2, according to the present invention, copper leaching treatment can be performed at a lower temperature than in the dry method.
  • Test Example 4 The copper leaching solution obtained in Test Example 1 was controlled to pH 1.5 with Ca (OH) 2 and subjected to solvent extraction with Covolis Japan Co., Ltd. 20 vol% -LIX984N, confirming that copper was extracted. did.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Provided is a treatment method for arsenic-containing copper mineral, with which it is possible to efficiently leach copper from an arsenic-containing copper mineral, and with which it is easy to recover arsenic. This treatment method for arsenic-containing copper mineral includes a step of leaching copper from an arsenic-containing copper mineral using sulfuric acid at a temperature of 100-290°C.

Description

砒素含有銅鉱物の処理方法Method for treating arsenic-containing copper minerals
 本発明は、砒素を含有する銅鉱物(硫砒銅鉱、砒四面銅鉱等)の処理方法に関する。 The present invention relates to a method for treating arsenic-containing copper minerals (arsenous pyrite, arsenic tetrahedral copper or the like).
 砒素を含有する銅鉱物(硫砒銅鉱、砒四面銅鉱等)から、銅と砒素とを分離する方法として、従来、以下に示すような乾式法及び湿式法に係る処理方法が報告されている。 As a method of separating copper and arsenic from arsenic-containing copper minerals (arsenous copper ore, arsenic tetrahedral copper or the like), the following treatment methods related to the dry method and the wet method have been reported.
 -乾式法の例-
 酸化雰囲気または非酸化雰囲気で銅精鉱を焙焼し、砒素を揮発除去する酸化焙焼法、非酸化焙焼法が知られている。得られた焙焼鉱は、乾式製錬原料にして、銅を回収する。
 また、精鉱と硫酸を混錬して、炉で焙焼する硫酸焙焼法(硫酸塩に変換する処理方法)も報告されている(非特許文献1~3)。銅鉱物中の砒素は、浸出液に溶解させて回収、または、高温焙焼によって揮発除去している。
-Example of dry method-
An oxidation roasting method and a non-oxidation roasting method are known in which copper concentrate is roasted in an oxidizing atmosphere or a non-oxidizing atmosphere to volatilize and remove arsenic. The obtained roasted ore is used as a raw material for dry smelting to recover copper.
Further, a sulfuric acid roasting method (treatment method for converting to sulfate) in which concentrate and sulfuric acid are kneaded and roasted in a furnace has been reported (Non-Patent Documents 1 to 3). Arsenic in the copper mineral is dissolved in the leachate and recovered, or volatilized and removed by high-temperature roasting.
 -湿式法の例-
 硫化浴浸出等のアルカリ浸出法が知られている。
 また、酸浸出では、オートクレーブによる加圧・空気吹き込みにより酸化浸出するCESLプロセスが知られている(非特許文献4)。銅鉱物中の砒素は、浸出中に共存するFeとスコロダイトを形成し、残渣に沈殿させて除去している。
-Example of wet method-
Alkaline leaching methods such as sulfidation bath leaching are known.
Also, in acid leaching, a CESL process is known in which oxidative leaching is performed by pressurization and air blowing by an autoclave (Non-Patent Document 4). Arsenic in the copper mineral forms scorodite with Fe that coexists during leaching, and is precipitated and removed in the residue.
 しかしながら、上記従来の乾式法によれば、銅と砒素とを分離するには650℃以上の温度で焙焼する必要がある。また、酸化焙焼法では有毒な亜砒酸の形態で揮発し、非酸化焙焼では硫化砒素の形態で揮発するため、これら砒素の回収方法に問題が生じている。 However, according to the above conventional dry method, it is necessary to roast at a temperature of 650 ° C. or higher in order to separate copper and arsenic. Further, the oxidation roasting method volatilizes in the form of toxic arsenous acid, and the non-oxidation roasting volatilizes in the form of arsenic sulfide, which causes a problem in the recovery method of these arsenic.
 また、上記従来の湿式法によれば、加圧・空気吹き込みにより酸化浸出することで銅の高浸出率が実現されるが、加圧・空気吹き込みが必須であるため、オートクレーブのような耐圧、耐酸性の装置が必要となり、コスト等、処理効率の面で問題がある。 In addition, according to the above conventional wet method, high leaching rate of copper is realized by oxidative leaching by pressurization / air blowing, but since pressure / air blowing is essential, the pressure resistance like an autoclave, An acid-resistant device is required, and there are problems in terms of processing efficiency such as cost.
 本発明は、上記問題に鑑み、砒素を含有する銅鉱物から、効率良く銅を浸出させ、且つ、容易に砒素を回収する砒素含有銅鉱物の処理方法を提供することを課題とする。 In view of the above problems, an object of the present invention is to provide a method for treating an arsenic-containing copper mineral that efficiently leaches copper from an arsenic-containing copper mineral and easily recovers arsenic.
 本発明者が鋭意検討を進めた結果、所定の温度の硫酸によって砒素含有銅鉱物から銅を浸出させることにより、砒素を含有する銅鉱物から、効率良く銅を浸出させ、且つ、容易に砒素を回収することができることを見出した。 As a result of intensive studies by the present inventors, copper is leached from copper minerals containing arsenic by leaching copper from arsenic-containing copper minerals with sulfuric acid at a predetermined temperature, and arsenic is easily removed. It was found that it can be recovered.
 以上の知見を基礎として完成された本発明は一側面において、砒素含有銅鉱物から、100~290℃の硫酸によって銅を浸出させる工程を含む砒素含有銅鉱物の処理方法である。 The present invention completed on the basis of the above knowledge is, in one aspect, a method for treating an arsenic-containing copper mineral including a step of leaching copper from an arsenic-containing copper mineral with sulfuric acid at 100 to 290 ° C.
 本発明の砒素含有銅鉱物の処理方法は一実施形態において、前記銅を浸出させる工程を大気圧下で行う。 In one embodiment of the method for treating an arsenic-containing copper mineral of the present invention, the step of leaching the copper is performed under atmospheric pressure.
 本発明の砒素含有銅鉱物の処理方法は別の一実施形態において、前記銅を浸出させる工程において、150~200℃の硫酸によって銅を浸出させる。 In another embodiment of the method for treating an arsenic-containing copper mineral of the present invention, copper is leached with sulfuric acid at 150 to 200 ° C. in the step of leaching copper.
 本発明の砒素含有銅鉱物の処理方法は更に別の一実施形態において、前記銅を浸出させる工程における銅の浸出率が50%以上である。 In another embodiment of the method for treating an arsenic-containing copper mineral of the present invention, the copper leaching rate in the step of leaching copper is 50% or more.
 本発明の砒素含有銅鉱物の処理方法は更に別の一実施形態において、前記銅を浸出させる工程において、銅の浸出時間が1~5時間である。 In yet another embodiment of the method for treating an arsenic-containing copper mineral of the present invention, the copper leaching time is 1 to 5 hours in the step of leaching copper.
 本発明の砒素含有銅鉱物の処理方法は更に別の一実施形態において、前記銅を浸出させる工程において、酸素含有ガスの吹き込みを行わずに銅を浸出させる。 In yet another embodiment of the method for treating an arsenic-containing copper mineral of the present invention, in the step of leaching copper, copper is leached without blowing oxygen-containing gas.
 本発明の砒素含有銅鉱物の処理方法は更に別の一実施形態において、前記銅を浸出させる工程における硫酸溶液のパルプ濃度が40%以下である。 In another embodiment of the method for treating an arsenic-containing copper mineral of the present invention, the pulp concentration of the sulfuric acid solution in the step of leaching the copper is 40% or less.
 本発明の砒素含有銅鉱物の処理方法は更に別の一実施形態において、前記銅を浸出させる工程で得られた浸出液を希釈し、中和した後、酸化しながら加温することによりスコロダイトを合成する工程をさらに含む。 In yet another embodiment of the method for treating an arsenic-containing copper mineral of the present invention, the leachate obtained in the step of leaching copper is diluted, neutralized, and then heated while oxidizing to synthesize scorodite. The method further includes the step of:
 本発明の砒素含有銅鉱物の処理方法は更に別の一実施形態において、前記スコロダイトを合成する工程で得られたスコロダイトを除去した後に残った液から溶媒抽出により銅を回収する工程をさらに含む。 In yet another embodiment, the method for treating an arsenic-containing copper mineral of the present invention further includes a step of recovering copper by solvent extraction from the liquid remaining after removing the scorodite obtained in the step of synthesizing the scorodite.
 本発明の砒素含有銅鉱物の処理方法は更に別の一実施形態において、前記溶媒抽出により銅を回収する工程で銅を溶媒抽出した後の抽出後液に、不純物除去処理を行った後、得られた液を、前記銅を浸出させる工程で得られた浸出液を希釈する際の希釈液として用いる工程をさらに含む。 In yet another embodiment of the method for treating an arsenic-containing copper mineral of the present invention, an impurity removal treatment is performed on the post-extraction solution after solvent extraction of copper in the step of recovering copper by the solvent extraction. The method further includes the step of using the obtained liquid as a diluent when diluting the leachate obtained in the step of leaching copper.
 本発明によれば、砒素を含有する銅鉱物から、効率良く銅を浸出させ、且つ、容易に砒素を回収する砒素含有銅鉱物の処理方法を提供することができる。 According to the present invention, it is possible to provide a method for treating an arsenic-containing copper mineral by efficiently leaching copper from a copper mineral containing arsenic and easily recovering arsenic.
本発明の砒素含有銅鉱物の処理方法の一実施形態を示すフローチャートであるIt is a flowchart which shows one Embodiment of the processing method of the arsenic containing copper mineral of this invention. 実施例に係る銅及び砒素の浸出温度-浸出率のグラフである。It is a graph of the leaching temperature-leaching rate of copper and arsenic according to an example. 実施例に係る銅及び砒素の浸出時間-浸出率のグラフである。It is a graph of the leaching time-leaching rate of copper and arsenic according to an example.
 本発明の砒素含有銅鉱物の処理方法について、図を用いて詳細に説明する。図1は、本発明の砒素含有銅鉱物の処理方法の一実施形態を示すフローチャートである。 The method for treating arsenic-containing copper mineral of the present invention will be described in detail with reference to the drawings. FIG. 1 is a flowchart showing an embodiment of a method for treating an arsenic-containing copper mineral of the present invention.
 本発明において処理対象とする砒素含有銅鉱物は、硫砒銅鉱(Cu3AsS4)、砒四面銅鉱(Cu12As413)、さらに、黄銅鉱(CuFeS2)に硫砒鉄鉱(FeAsS)や硫化砒素が混在した鉱物等の、砒素成分を含有する銅鉱物である。 Arsenic-containing copper minerals to be treated in the present invention are arsenous copper ore (Cu 3 AsS 4 ), arsenic tetrahedral copper (Cu 12 As 4 S 13 ), chalcopyrite (CuFeS 2 ), arsenite (FeAsS) and sulfide. It is a copper mineral containing an arsenic component, such as a mineral mixed with arsenic.
 本発明の砒素含有銅鉱物の処理方法の一実施形態においては、砒素含有銅鉱物から、100~290℃の硫酸によって銅を浸出させる。このとき、下記式で示す反応が生じ、硫酸の酸化力によって例えば硫砒銅鉱を硫酸銅と亜砒酸とに酸化・分解することができる。
  2Cu3AsS4+9H2SO4→6CuSO4+As23+9H2O+11S
In one embodiment of the method for treating an arsenic-containing copper mineral of the present invention, copper is leached from sulfuric acid at 100 to 290 ° C. from the arsenic-containing copper mineral. At this time, a reaction represented by the following formula occurs, and for example, arsenite can be oxidized and decomposed into copper sulfate and arsenous acid by the oxidizing power of sulfuric acid.
2Cu 3 AsS 4 + 9H 2 SO 4 → 6CuSO 4 + As 2 O 3 + 9H 2 O + 11S
 硫酸の温度が100℃未満であると、上記反応が生じ難くなる。また、硫酸の温度が290℃を超えると硫酸の分解温度となるため銅の浸出を行うことが困難となる。また、硫酸の蒸気圧を考慮する継続的に浸出液を維持しながら行うためには200℃以下が好ましい。一方、砒素含有銅鉱物から効率的に銅を浸出させる観点から浸出温度は150℃以上が好ましく、180℃以上がより好ましい。 When the sulfuric acid temperature is less than 100 ° C., the above reaction hardly occurs. Further, when the temperature of sulfuric acid exceeds 290 ° C., it becomes the decomposition temperature of sulfuric acid, so that it is difficult to perform leaching of copper. Moreover, in order to carry out while maintaining the leachate in consideration of the vapor pressure of sulfuric acid, 200 ° C. or lower is preferable. On the other hand, from the viewpoint of efficiently leaching copper from an arsenic-containing copper mineral, the leaching temperature is preferably 150 ° C. or higher, and more preferably 180 ° C. or higher.
 このように、本発明の砒素含有銅鉱物の処理方法によれば、従来の乾式法に比べて低温での処理が可能となり、砒素を揮発させることなく浸出液に溶解させて容易に回収することができる。また、従来の湿式法では、上述のように加圧・空気吹き込みが必須であるため、オートクレーブのような耐圧、耐酸性の装置が必要であったが、本発明によれば、加圧・空気吹き込み(または、酸素含有ガスの吹き込み)は不要であり、大気圧下でも良好に砒素含有銅鉱物の処理が可能となる。そのため、本願発明によれば、砒素を含有する銅鉱物から、効率良く銅と砒素とを分離して回収することができる。 Thus, according to the method for treating an arsenic-containing copper mineral of the present invention, it becomes possible to treat at a lower temperature than the conventional dry method, and arsenic can be easily recovered by being dissolved in a leachate without volatilizing. it can. Further, in the conventional wet method, pressure and air blowing are indispensable as described above, and thus a pressure-resistant and acid-resistant device such as an autoclave is necessary. Blowing (or blowing of oxygen-containing gas) is unnecessary, and the arsenic-containing copper mineral can be satisfactorily treated even under atmospheric pressure. Therefore, according to the present invention, copper and arsenic can be efficiently separated and recovered from a copper mineral containing arsenic.
 本発明において用いる硫酸は、濃度が95%以上の濃硫酸であることが好ましく、濃度が98%以上の濃硫酸であることがより好ましい。すなわち、本発明において用いる硫酸は、温度:100~290℃で、濃度:95%以上の熱濃硫酸であることが好ましい。このような熱濃硫酸を用いることで、より良好に上記式で示される反応が進み、硫砒銅鉱を、より良好に硫酸銅と亜砒酸とに酸化・分解することができる。 The sulfuric acid used in the present invention is preferably concentrated sulfuric acid having a concentration of 95% or more, more preferably concentrated sulfuric acid having a concentration of 98% or more. That is, the sulfuric acid used in the present invention is preferably hot concentrated sulfuric acid at a temperature of 100 to 290 ° C. and a concentration of 95% or more. By using such hot concentrated sulfuric acid, the reaction represented by the above formula proceeds better, and arsenous copper ore can be oxidized and decomposed into copper sulfate and arsenous acid better.
 このようにして砒素含有銅鉱物から銅が浸出されるが、このとき、本発明の砒素含有銅鉱物の処理方法によれば、銅を50%以上の浸出率で浸出することができる。また、本発明の砒素含有銅鉱物の処理方法によれば、さらに、銅を60%以上、70%以上、80%以上、または、90%以上の浸出率で浸出することができる。 Thus, copper is leached from the arsenic-containing copper mineral. At this time, according to the arsenic-containing copper mineral treatment method of the present invention, copper can be leached at a leaching rate of 50% or more. Further, according to the method for treating an arsenic-containing copper mineral of the present invention, copper can be further leached at a leaching rate of 60% or more, 70% or more, 80% or more, or 90% or more.
 銅を浸出させる工程において、銅の浸出時間は1~10時間とすることができ、1~6時間としてもよく、さらに1~5時間としてもよい。 In the step of leaching copper, the copper leaching time may be 1 to 10 hours, may be 1 to 6 hours, or may be 1 to 5 hours.
 銅を浸出させる工程における硫酸溶液のパルプ濃度が40%以下であるのが好ましい。硫酸溶液のパルプ濃度が40%以下であると、より銅の浸出率が向上する。また、硫酸溶液のパルプ濃度が40%を超えると、反応で硫酸が消費されることもあり、硫酸が枯渇して浸出ではなく焙焼処理の形態となってしまうおそれがある。「パルプ濃度」は、以下の式で算出される:
 パルプ濃度=精鉱質量(g)÷(精鉱質量+濃硫酸質量(g))×100(%)
 なお、上記「濃硫酸質量」は、濃硫酸液量(mL)×濃硫酸比重(g/cm3)で算出される。
The pulp concentration of the sulfuric acid solution in the step of leaching copper is preferably 40% or less. When the pulp concentration of the sulfuric acid solution is 40% or less, the copper leaching rate is further improved. Moreover, when the pulp concentration of a sulfuric acid solution exceeds 40%, sulfuric acid may be consumed by reaction, and there exists a possibility that a sulfuric acid may be depleted and it may become a form of a roasting process instead of a leaching. "Pulp concentration" is calculated by the following formula:
Pulp concentration = concentrate mass (g) ÷ (concentrate mass + concentrated sulfuric acid mass (g)) x 100 (%)
The “concentrated sulfuric acid mass” is calculated by the amount of concentrated sulfuric acid solution (mL) × the concentration of concentrated sulfuric acid (g / cm 3 ).
 浸出処理中に発生したガスは、図1に示すように、排ガス処理を経てSO2とされ、硫酸プラントから、再度銅の浸出のための硫酸原料として用いてもよい。 As shown in FIG. 1, the gas generated during the leaching process is converted to SO 2 through an exhaust gas process, and may be used again as a sulfuric acid raw material for leaching copper from the sulfuric acid plant.
 本発明の砒素含有銅鉱物の処理方法の一実施形態においては、銅を浸出させる工程で得られた浸出液を水等で希釈し、Ca(OH)2またはNaOHを用いたpH調整(例えばpH=1.5)によって中和した後、酸化しながら加温することにより、砒素を含有するスコロダイトを合成する。これにより、浸出液からの脱Fe、As処理を行うことができる。 In one embodiment of the method for treating an arsenic-containing copper mineral of the present invention, the leachate obtained in the step of leaching copper is diluted with water or the like, and pH adjustment using Ca (OH) 2 or NaOH (for example, pH = After neutralization according to 1.5), scorodite containing arsenic is synthesized by heating while oxidizing. Thereby, the removal of Fe and As from the leachate can be performed.
 次に、スコロダイトを合成する工程で得られたスコロダイトを固液分離により除去した後に残った液(浸出液)に溶媒抽出を行うことで銅を回収することができる。このとき、例えば電解採取を行うことで銅(電気銅)を回収することができる。一方、残渣には、スコロダイトの他、例えば、脈石や石膏等が含まれている。 Next, copper can be recovered by subjecting the scorodite obtained in the step of synthesizing scorodite to solvent extraction to the liquid (leaching solution) remaining after the solid-liquid separation. At this time, for example, copper (electrocopper) can be recovered by performing electrowinning. On the other hand, in addition to scorodite, the residue includes, for example, gangue and gypsum.
 次に、溶媒抽出により銅を回収する工程で銅を溶媒抽出した後の抽出後液(希硫酸)に、不純物除去処理(排水処理等)を行った後、得られた液を、銅を浸出させる工程で得られた浸出液を希釈する際の希釈液として用いてもよい。これにより、砒素含有銅鉱物の処理コストが良好となる。 Next, after removing copper (diluted sulfuric acid) after solvent extraction in the step of recovering copper by solvent extraction, impurities are removed (drainage treatment, etc.), and the resulting solution is leached out of copper. You may use as a dilution liquid at the time of diluting the leachate obtained at the process to make. Thereby, the processing cost of an arsenic containing copper mineral becomes favorable.
 以下に、本発明について、実施例を用いて詳細に説明するが、本発明はこれら実施例に限定されることはない。 Hereinafter, the present invention will be described in detail using examples, but the present invention is not limited to these examples.
 (試験例1)
 砒素を含有する銅鉱物を含む銅精鉱250gを500mlの硫酸(濃度98%)に溶解させて3時間の浸出処理を行った。銅精鉱の化学分析値は、Cu品位が21%、Asが7%であった。また、銅精鉱中の銅の形態を鉱物解析システム(MLA:FEI社製MLA650F)で解析したところ、85mass%以上が硫砒銅鉱の形態であった。当該硫酸溶液のパルプ濃度は20%であった。浸出温度は120℃、150℃、180℃の3種類とした。また、当該浸出処理は、大気圧下で、酸素含有ガスの吹き込みを行わずに行った。得られた銅の浸出液から銅、砒素を回収し、それらの浸出率を測定した。試験結果を表1及び図2に示す。
(Test Example 1)
250 g of copper concentrate containing copper mineral containing arsenic was dissolved in 500 ml of sulfuric acid (concentration 98%), and leaching treatment was performed for 3 hours. The chemical analysis value of the copper concentrate was 21% for Cu grade and 7% for As. Moreover, when the form of copper in the copper concentrate was analyzed by a mineral analysis system (MLA: MLA650F manufactured by FEI), 85 mass% or more was in the form of arsenite. The pulp concentration of the sulfuric acid solution was 20%. There were three types of leaching temperatures of 120 ° C., 150 ° C., and 180 ° C. Further, the leaching process was performed under atmospheric pressure without blowing oxygen-containing gas. Copper and arsenic were collected from the obtained copper leaching solution, and their leaching rate was measured. The test results are shown in Table 1 and FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (試験例2)
 試験例1と同様の砒素を含有する銅精鉱25gを、200℃にて、空気中で酸化焙焼したところ、銅の水への浸出率は4~6%であった。また、400℃にて、空気中で酸化焙焼したところ、銅の水への浸出率は22%であった。また、試験例1と同様の砒素を含有する銅精鉱25gを非酸化焙焼したところ、550℃以上でなければ砒素の揮発反応が進行しなかった。
 試験例1及び2からわかるように、本発明によれば、乾式法に比べて低温での銅の浸出処理が可能となる。
(Test Example 2)
When 25 g of copper concentrate containing arsenic similar to Test Example 1 was oxidized and roasted in air at 200 ° C., the leaching rate of copper into water was 4 to 6%. Moreover, when oxidative roasting was performed in air at 400 ° C., the leaching rate of copper into water was 22%. Further, when 25 g of copper concentrate containing arsenic similar to Test Example 1 was non-oxidized and roasted, the volatilization reaction of arsenic did not proceed unless it was 550 ° C. or higher.
As can be seen from Test Examples 1 and 2, according to the present invention, copper leaching treatment can be performed at a lower temperature than in the dry method.
 (試験例3)
 砒素を含有する銅鉱物を含む銅精鉱250gを500mlの硫酸(濃度98%)に溶解させて1時間、3時間の浸出処理を行った。銅精鉱の化学分析値は、Cu品位が20%、Asが7.2%であった。また、銅精鉱中の銅の形態を鉱物解析システム(MLA:FEI社製MLA650F)で解析したところ、85mass%以上が硫砒銅鉱の形態であった。当該硫酸溶液のパルプ濃度は20%であった。浸出温度は180℃とした。また、当該浸出処理は、大気圧下で、酸素含有ガスの吹き込みを行わずに行った。得られた銅の浸出液から銅、砒素を回収し、それらの浸出率を測定した。試験結果を表2及び図3に示す。
(Test Example 3)
250 g of copper concentrate containing copper mineral containing arsenic was dissolved in 500 ml of sulfuric acid (concentration 98%), and leaching treatment was performed for 1 hour and 3 hours. As for the chemical analysis value of the copper concentrate, Cu grade was 20% and As was 7.2%. Moreover, when the form of copper in the copper concentrate was analyzed by a mineral analysis system (MLA: MLA650F manufactured by FEI), 85 mass% or more was in the form of arsenite. The pulp concentration of the sulfuric acid solution was 20%. The leaching temperature was 180 ° C. Further, the leaching process was performed under atmospheric pressure without blowing oxygen-containing gas. Copper and arsenic were collected from the obtained copper leaching solution, and their leaching rate was measured. The test results are shown in Table 2 and FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2及び図3に示すように、銅と砒素との挙動が同様である。浸出前の銅精鉱中の銅及び砒素は、ほぼ硫砒銅鉱の形態で存在しており、銅と砒素の浸出挙動に差が無いことから、砒素が浸出中にガス化せず、浸出液に溶解して回収されることがわかる。 As shown in Table 2 and FIG. 3, the behavior of copper and arsenic is the same. Copper and arsenic in the copper concentrate before leaching are almost in the form of arsenite, and there is no difference in the leaching behavior of copper and arsenic, so arsenic does not gasify during leaching and dissolves in the leachate It can be seen that it is recovered.
 (試験例4)
 試験例1で得られた銅の浸出液をCa(OH)2によってpH1.5に制御し、コグニスジャパン株式会社製の20vol%-LIX984Nによる溶媒抽出を行ったところ、銅が抽出されたことを確認した。
(Test Example 4)
The copper leaching solution obtained in Test Example 1 was controlled to pH 1.5 with Ca (OH) 2 and subjected to solvent extraction with Covolis Japan Co., Ltd. 20 vol% -LIX984N, confirming that copper was extracted. did.

Claims (10)

  1.  砒素含有銅鉱物から、100~290℃の硫酸によって銅を浸出させる工程を含む砒素含有銅鉱物の処理方法。 A method for treating arsenic-containing copper minerals, comprising a step of leaching copper from arsenic-containing copper minerals with sulfuric acid at 100 to 290 ° C.
  2.  前記銅を浸出させる工程を大気圧下で行う請求項1に記載の砒素含有銅鉱物の処理方法。 The method for treating an arsenic-containing copper mineral according to claim 1, wherein the step of leaching the copper is performed under atmospheric pressure.
  3.  前記銅を浸出させる工程において、150~200℃の硫酸によって銅を浸出させる請求項1または2に記載の砒素含有銅鉱物の処理方法。 The method for treating an arsenic-containing copper mineral according to claim 1 or 2, wherein in the step of leaching copper, copper is leached with sulfuric acid at 150 to 200 ° C.
  4.  前記銅を浸出させる工程における銅の浸出率が50%以上である請求項1~3のいずれか一項に記載の砒素含有銅鉱物の処理方法。 The method for treating an arsenic-containing copper mineral according to any one of claims 1 to 3, wherein a copper leaching rate in the step of leaching copper is 50% or more.
  5.  前記銅を浸出させる工程において、銅の浸出時間が1~5時間である請求項1~4のいずれか一項に記載の砒素含有銅鉱物の処理方法。 The method for treating an arsenic-containing copper mineral according to any one of claims 1 to 4, wherein in the step of leaching copper, the leaching time of copper is 1 to 5 hours.
  6.  前記銅を浸出させる工程において、酸素含有ガスの吹き込みを行わずに銅を浸出させる請求項1~5のいずれか一項に記載の砒素含有銅鉱物の処理方法。 The method for treating an arsenic-containing copper mineral according to any one of claims 1 to 5, wherein in the step of leaching copper, copper is leached without blowing oxygen-containing gas.
  7.  前記銅を浸出させる工程における硫酸溶液のパルプ濃度が40%以下である請求項1~6のいずれか一項に記載の砒素含有銅鉱物の処理方法。 The method for treating an arsenic-containing copper mineral according to any one of claims 1 to 6, wherein a pulp concentration of the sulfuric acid solution in the step of leaching copper is 40% or less.
  8.  前記銅を浸出させる工程で得られた浸出液を希釈し、中和した後、酸化しながら加温することによりスコロダイトを合成する工程をさらに含む請求項1~7のいずれか一項に記載の砒素含有銅鉱物の処理方法。 The arsenic according to any one of claims 1 to 7, further comprising a step of diluting and neutralizing the leachate obtained in the step of leaching copper and then synthesizing scorodite by heating while oxidizing. Processing method of contained copper mineral.
  9.  前記スコロダイトを合成する工程で得られたスコロダイトを除去した後に残った液から溶媒抽出により銅を回収する工程をさらに含む請求項8に記載の砒素含有銅鉱物の処理方法。 The method for treating an arsenic-containing copper mineral according to claim 8, further comprising a step of recovering copper from the liquid remaining after removing the scorodite obtained in the step of synthesizing the scorodite by solvent extraction.
  10.  前記溶媒抽出により銅を回収する工程で銅を溶媒抽出した後の抽出後液に、不純物除去処理を行った後、得られた液を、前記銅を浸出させる工程で得られた浸出液を希釈する際の希釈液として用いる工程をさらに含む請求項9に記載の砒素含有銅鉱物の処理方法。 After the extraction of the copper after solvent extraction in the step of recovering copper by the solvent extraction, after the impurity removal treatment, the obtained liquid is diluted with the step of leaching the copper. The method for treating an arsenic-containing copper mineral according to claim 9, further comprising a step of using it as a diluting solution.
PCT/JP2017/000324 2017-01-06 2017-01-06 Treatment method for arsenic-containing copper mineral WO2018127979A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/000324 WO2018127979A1 (en) 2017-01-06 2017-01-06 Treatment method for arsenic-containing copper mineral

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/000324 WO2018127979A1 (en) 2017-01-06 2017-01-06 Treatment method for arsenic-containing copper mineral

Publications (1)

Publication Number Publication Date
WO2018127979A1 true WO2018127979A1 (en) 2018-07-12

Family

ID=62789220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000324 WO2018127979A1 (en) 2017-01-06 2017-01-06 Treatment method for arsenic-containing copper mineral

Country Status (1)

Country Link
WO (1) WO2018127979A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4720011Y1 (en) * 1967-02-01 1972-07-06
JPS52101630A (en) * 1976-02-23 1977-08-25 Sumitomo Metal Mining Co Treating method of sulphide deposits on copper refining process
JP2008031504A (en) * 2006-07-27 2008-02-14 Nikko Kinzoku Kk Method for leaching copper sulfide ore containing copper pyrite
JP2011144437A (en) * 2010-01-18 2011-07-28 Sumitomo Metal Mining Co Ltd Method for separating and recovering copper from copper-containing iron sulfide
JP2011195878A (en) * 2010-03-18 2011-10-06 Sumitomo Metal Mining Co Ltd Method for recovering copper from copper sulfide
JP2015017010A (en) * 2013-07-10 2015-01-29 住友金属鉱山株式会社 Method for producing scorodite

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4720011Y1 (en) * 1967-02-01 1972-07-06
JPS52101630A (en) * 1976-02-23 1977-08-25 Sumitomo Metal Mining Co Treating method of sulphide deposits on copper refining process
JP2008031504A (en) * 2006-07-27 2008-02-14 Nikko Kinzoku Kk Method for leaching copper sulfide ore containing copper pyrite
JP2011144437A (en) * 2010-01-18 2011-07-28 Sumitomo Metal Mining Co Ltd Method for separating and recovering copper from copper-containing iron sulfide
JP2011195878A (en) * 2010-03-18 2011-10-06 Sumitomo Metal Mining Co Ltd Method for recovering copper from copper sulfide
JP2015017010A (en) * 2013-07-10 2015-01-29 住友金属鉱山株式会社 Method for producing scorodite

Similar Documents

Publication Publication Date Title
US9284624B2 (en) Process for recovering zinc and/or zinc oxide II
JP5161361B1 (en) Method for separating metal in mixed metal solution
JP4085908B2 (en) Method for concentrating noble metals contained in leaching residue of wet copper refining process
JP2008266774A (en) Zinc recovery method
AU2015240414B2 (en) Purification of copper concentrate by removal of arsenic and antimony with concomitant regeneration and recycle of lixiviant
WO2009068735A1 (en) Method for processing pyritic concentrate containing gold, copper and arsenic
CA2943483A1 (en) Copper removal method for aqueous nickel chloride solution
JP2021172856A (en) Removing method of magnesium ion in metal-containing solution and metal recovering method
JP5902601B2 (en) Method for separating metal in mixed metal solution
JP7050925B2 (en) Recovery of metals from pyrite
JP3948342B2 (en) Method for recovering copper from copper ore
JP2013181247A (en) Method of separating metal mixed solution
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
FI120406B (en) Process for hydrometallurgical treatment of a sulfidic material containing zinc and copper
JP5161379B1 (en) Method for separating mixed metal solution
JP2020105588A (en) Treatment method of mixture containing noble metal, selenium and tellurium
WO2018127979A1 (en) Treatment method for arsenic-containing copper mineral
JP6437367B2 (en) Recovery method of rhenium from molybdenum concentrate
Roshani et al. Studies on the leaching of an arsenic–uranium ore
JP6694689B2 (en) Arsenic-containing copper mineral treatment method
CN106906363B (en) A kind of processing method of the slag containing arsenical copper
JP4525354B2 (en) Reduction method of cupric chloride ion
JP2020105587A (en) Treatment method of acidic solution containing noble metal, selenium and tellurium
WO2015092150A1 (en) Method and process arrangement of separating indium and arsenic from each other
WO2021075467A1 (en) Method for producing high-purity cobalt sulfate solution, and method for producing cobalt sulfate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP