WO2018126959A1 - 一种纤维素ii型纳米晶粒子及其制备方法和应用 - Google Patents

一种纤维素ii型纳米晶粒子及其制备方法和应用 Download PDF

Info

Publication number
WO2018126959A1
WO2018126959A1 PCT/CN2017/118915 CN2017118915W WO2018126959A1 WO 2018126959 A1 WO2018126959 A1 WO 2018126959A1 CN 2017118915 W CN2017118915 W CN 2017118915W WO 2018126959 A1 WO2018126959 A1 WO 2018126959A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
cellulose type
nanocrystallite
type
molecular weight
Prior art date
Application number
PCT/CN2017/118915
Other languages
English (en)
French (fr)
Inventor
张劲松
颜雨坤
周扬韬
刘志宇
Original Assignee
中国科学院金属研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院金属研究所 filed Critical 中国科学院金属研究所
Priority to KR1020197022928A priority Critical patent/KR20190101453A/ko
Priority to EP17890169.0A priority patent/EP3567057A4/en
Priority to US16/475,921 priority patent/US11149095B2/en
Priority to JP2019556409A priority patent/JP7002563B2/ja
Publication of WO2018126959A1 publication Critical patent/WO2018126959A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • C08B1/003Preparation of cellulose solutions, i.e. dopes, with different possible solvents, e.g. ionic liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/08Fractionation of cellulose, e.g. separation of cellulose crystallites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/06Cellulose hydrate

Definitions

  • the present invention relates to the field of cellulose nanocrystals, and more particularly to a cellulose type II nanocrystallite and a preparation method and application thereof.
  • Cellulose nanocrystals are high-end cellulose materials that have been extensively studied in recent decades. They have biodegradability, biocompatibility, high specific surface area, high specific strength and high specific modulus, and strong controllability of structure and morphology.
  • the surface can be modified and other unique physical, chemical and biological properties, and has broad application prospects in the fields of materials, light industry, chemical industry, food, medicine, health care, environmental protection, information, energy and so on.
  • cellulose nanocrystals have two crystal structures, one is cellulose type I, and the other is cellulose type II.
  • the existing cellulose type II nanocrystals are mainly prepared by the following three methods: method one, mercerizing the cellulose raw material, and then performing acid-catalyzed hydrolysis treatment to obtain spherical cellulose type II nanocrystals having a diameter of 50 nm to 200 nm;
  • cellulose I type nanocrystals are obtained by acid hydrolysis method, and then treated with sodium hydroxide solution to obtain rod-shaped or needle-shaped cellulose type II nanocrystals having a width of more than 10 nm and a length of more than 200 nm; and method 3, in an ice bath Under the condition, concentrated sulfuric acid is slowly added dropwise to the aqueous dispersion of cellulose, and then heated to obtain a transparent hydrolyzate, and then the hydrolyzed liquid is washed with water to precipitate crystals of hydrolyzed cellulose to
  • Cellulose type II nanocrystals The first two methods are essentially extraction, while the third method is essentially the crystallization of small molecule cellulose after degradation of the cellulose feedstock.
  • the above three cellulose type II nanocrystal preparation methods have the following disadvantages:
  • the surface properties of cellulose nanocrystals are difficult to control. Surface properties are a key indicator of the quality of cellulose nanocrystals, and the controllability of surface properties is critical for their application in composites and the development of various functionalized derivatives. A variety of test results indicate that the rod-shaped, needle-like, whisker-like, spherical cellulose nanocrystals obtained by the existing preparation method are not complete single crystals, but are formed by blending several micro cellulose crystals with amorphous cellulose. There are many polycrystalline structures with crystal defects inside.
  • Cellulose nanocrystals have been around for 70 years, and they have shown promising application prospects, but they still face the dual challenges of preparation cost and product quality. As a result, the application of cellulose nanocrystals remains at the research level.
  • the object of the present invention is to provide a cellulose type II nano-grain and a preparation method and application thereof.
  • the cellulose type II nano-crystal has high crystallinity, small molecular weight, narrow molecular weight distribution, narrow size distribution, clear surface conformation and surface chemistry. It has great modification potential and can be used for catalyst carrier and composite materials for equal purposes.
  • the present inventors have solved the above two technical problems existing in the prior art, and are characterized in that the amorphous cellulose having a loose structure is easily hydrolyzed, the surface structure of the single crystal is clear, and the properties are easy to control, and the crystallization behavior of the polysaccharide molecule is combined with the organic solvent.
  • the regulation effect a new idea of the preparation of cellulose type II nano-crystals is proposed.
  • the cellulose raw materials are first amorphized and recrystallized, and then crystallization and acid hydrolysis, to achieve efficient and clean production of cellulose nanocrystalline materials. quality control.
  • the present invention provides a cellulose II type nanocrystal grain having a crystallinity of ⁇ 80%; a number average molecular weight of 1200 to 2500, and a molecular weight distribution coefficient Mw/Mn ⁇ 1.30.
  • the molecular weight distribution coefficient Mw / Mn 1.20.
  • the molecular weight distribution coefficient Mw / Mn 1.10.
  • the number average molecular weight is from 1,500 to 2,200.
  • the number average molecular weight is from 1600 to 2,000.
  • the outer surface of the cellulose type II nanocrystallite composed of the cellulose sugar chain end is a crystal plane perpendicular to the (001) crystal ribbon axis, Or perpendicular to a crystal face of the ribbon axis, the length and width of the outer surface defining a length L and a width W of the cellulose type II nanocrystallite, and a dimension perpendicular to the outer surface defines a height of the cellulose type II nanocrystal ion H.
  • the crystal plane perpendicular to the (001) crystal ribbon axis or the perpendicular to the end of the sugar chain A reactive aldehyde group is present on the crystal face of the ribbon axis.
  • the outer surface of the cellulose type II nanocrystallite composed of the cellulose sugar chain end is perpendicular to The crystal face of the ribbon axis, the length L and the width W of the cellulose type II nanocrystallite are between 3 nm and 20 nm, and the height H is between 3 nm and 10 nm.
  • the outer surface of the cellulose type II nanocrystallite composed of the cellulose sugar chain end is a crystal perpendicular to the (001) crystal ribbon axis
  • the length L and the width W of the cellulose type II nanocrystallite are both between 15 nm and 200 nm, and the height H is between 2 nm and 10 nm.
  • the length L and the width W are both between 3 nm and 15 nm, and the height H is between 3 nm and 8 nm.
  • the length L and the width W are both between 3 nm and 10 nm, and the height H is between 3 nm and 6 nm.
  • the crystallinity is > 90%.
  • the crystallinity is > 95%.
  • the yield is greater than 80% relative to the total weight of the cellulosic feedstock.
  • the yield is greater than 90% relative to the total weight of the cellulosic feedstock.
  • the cellulose type II nanocrystallite is a single crystal particle.
  • the present invention provides a method of preparing a cellulose type II nanocrystallite of the first aspect of the invention, comprising the steps of:
  • Step 1 dissolving the cellulose-containing raw material to obtain a cellulose solution; mixing the cellulose solution with a poor solvent to precipitate the dissolved cellulose in a poor solvent to obtain amorphized and reconstituted cellulose;
  • Step 2 adding the amorphized and reconstituted cellulose prepared in the step 1 to a mixed solution of water/organic solvent, and adding a mineral acid to adjust the acidity, the preparation can be carried out under a low concentration of acidic conditions, and the reaction is obtained by heating.
  • the cellulose type II nanocrystal particles are used in the preparation to adjust the acidity.
  • the cellulose-containing raw material is a purified cellulose or cellulose slurry isolated from plants, animals, algae, bacteria.
  • the solvent for dissolving the cellulose-containing raw material is selected from the group consisting of sodium hydroxide/urea/water, lithium hydroxide/urea/water, sodium hydroxide/thiourea /water, lithium hydroxide/thiourea/water, N-methylmorpholine-N-oxide/water, N,N-dimethylacetamide/LiCl, N,N-dimethylformamide/LiBr One or two or more.
  • the poor solvent is one or two selected from the group consisting of water, alcohols, ketones, esters, ethers, aromatic hydrocarbons, and alkane solvents. the above.
  • the poor solvent is one or more of water, an alcohol, and a ketone.
  • the poor solvent is methanol, ethanol, n-propanol, isopropanol, sec-butanol, tert-butanol, ethylene glycol, glycerol, acetone One or more of them.
  • the organic solvent is an alcohol, an ether, a ketone, an ester, N,N-dimethylformamide, N,N-dimethyl One or more of acetamide and dimethyl sulfoxide.
  • the organic solvent is methanol, ethanol, isopropanol, isobutanol, sec-butanol, tert-butanol, ethylene glycol, glycerol, acetone One or more of them.
  • the organic solvent is tetrahydrofuran and/or 1,4-dioxane.
  • the organic solvent is acetone and/or ethyl acetate.
  • the inorganic acid is one or more selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid, perchloric acid, and hydrobromic acid.
  • the concentration of the inorganic acid is from 0.01 to 5 mol/L.
  • the concentration of the inorganic acid is from 0.1 to 2 mol/L.
  • the cellulose type II nanocrystals obtained in the step 2 are washed and stored in a wet state.
  • the present invention provides the use of the cellulose type II nanocrystals of the first aspect of the invention or the cellulose type II nanocrystals prepared by the method of the second aspect of the invention, characterized in that It can be used as a catalyst carrier, and the composite material is enhanced equal.
  • the present invention at least partially achieves the following technical effects by adopting the above technical solutions.
  • the method of the invention firstly amorphizes the cellulose raw material, converts it into amorphous cellulose which is loosely structured and easily degraded, and then undergoes acid-catalyzed crystallization degradation, thereby greatly reducing the difficulty of degradation. Therefore, the existing process has a heavy dependence on high concentration and high multiple acid, so that the degradation process can be carried out under low concentration acidic conditions, and the amount of strong acid is greatly reduced, thereby solving the corrosion and a large amount of high concentration and strong acid on the equipment.
  • the cost problem caused by wastewater treatment Secondly, by using the regulation effect of organic solvent on the crystallization behavior of polysaccharide molecules, at the same time obtaining at least the cellulose type II nanocrystals with high crystallinity, clear surface conformation and controlled properties, at least In some embodiments, excessive degradation of the cellulose is also avoided, achieving high yields of up to more than 90%.
  • the present invention also achieves the following two unexpected effects.
  • the cellulose II type nano-grain sub-product prepared by the invention has a highly complete crystal structure, and can clearly observe the atomic image structure of the cellulose crystal under HRTEM, which precisely describes the surface conformation and development of the cellulose nano-grain.
  • the derivative application based on surface properties is of great significance; secondly, the cellulose type II nanocrystals prepared by the present invention not only have a large amount of active hydroxyl groups on the exposed surface thereof, but the inventors also found that at the end of the cellulose sugar chain A large number of highly active aldehyde groups are also present on the particular exposed surface of the composition, whereas conventional cellulose nanocrystals have only active hydroxyl functional groups on their surface.
  • This novel structure with dual reactive functional groups provides greater flexibility and possibilities for extending the subsequent application of cellulose nanocrystalline products.
  • the technical scheme provided by the invention successfully prepares cellulose type II nano-crystals with high crystallinity, small molecular weight, narrow molecular weight distribution, narrow size distribution, clear surface conformation and large surface chemical modification potential.
  • the abscissa 2theta represents the diffraction angle 2 ⁇ (degrees); the ordinate Indensity represents the intensity (a.u.);
  • Figure 3 is a TEM photograph of a cellulose type II nanocrystallite in accordance with the present invention.
  • FIG. 4 is a partial enlarged photograph of a TEM photograph of the cellulose type II nanocrystallite shown in FIG. 3; wherein, A is a high-dispersion photograph of the cellulose type II nanocrystallite at a low magnification; and B is a high-resolution TEM.
  • A is a high-dispersion photograph of the cellulose type II nanocrystallite at a low magnification; and B is a high-resolution TEM.
  • the C picture shows a high resolution TEM enlargement of a cellulose type II nano-grain;
  • the picture D is a cellulose II High resolution TEM magnification of a type of nanocrystallite;
  • Figure 5 is another partially enlarged photograph of a TEM photograph of the cellulose type II nanocrystallite shown in Figure 3;
  • Figure 6 is another partially enlarged photograph of a TEM photograph of the cellulose type II nanocrystallite shown in Figure 3;
  • Figure 7 is another TEM photograph of a cellulose type II nanocrystallite in accordance with the present invention.
  • Figure 8 is a partial enlarged photograph of a TEM photograph of the cellulose type II nanocrystallite shown in Figure 7;
  • Figure 9 is a GPC test chart of the modified particles of the nanoparticle modified by carboxymethyl group in the process of determining the cellulose type II nanocrystallite according to the present invention by the GPC method; in the figure, the abscissa RT represents the retention time. (min); ordinate Indensity represents intensity (au);
  • Figure 10 is a photograph of a suspension of cellulose type II nanocrystallites dispersed in water in accordance with the present invention.
  • the invention is specifically illustrated by the following examples, which are not intended to limit the scope of the invention in any way.
  • the starting materials used in this embodiment are known compounds and are commercially available.
  • the "cellulose-containing raw material” or “cellulose raw material” may be a cellulose-containing material in any physical state, preferably a purified cellulose or cellulose slurry isolated from plants, animals, algae, bacteria, Preferred are plant-derived refined cellulose or cellulose slurries.
  • plant "animal”, “alga”, “bacteria” have the usual meanings in the art, for example, plants may include bryophytes, ferns, seed plants, etc., such as trees, bamboo, cotton. , grass, hemp, and so on.
  • refined cellulose refers to a cellulose-containing material having an improved cellulose content obtained by pretreating a cellulose raw material, and the pretreatment or purification of the cellulose raw material may employ a technique known in the art, for example, most
  • the conventional cellulose raw material is refined by continuously refluxing a cellulose raw material (for example, straw, bamboo, etc.) through an aqueous solution of 5 wt% NaOH, an aqueous solution of 1 wt% HCl, and an aqueous solution of 1 wt% sodium hypochlorite.
  • cellulose slurry means a cellulose-containing raw material in the form of a slurry, such as pulp, bamboo pulp, cotton pulp, grass pulp, hemp pulp, etc., and a preparation method thereof is also known in the art.
  • amorphization reconstitution refers to a process of breaking the original crystalline portion of the cellulose raw material and converting it into a loosely structured amorphous reconstituted cellulose.
  • the first step of the amorphization reconstitution is to dissolve the cellulose-containing raw material to obtain a cellulose solution.
  • the solvent used may be any solvent used in the prior art for dissolving a cellulose-containing raw material, preferably selected from the group consisting of sodium hydroxide/urea/water, lithium hydroxide/urea/water, sodium hydroxide/thiourea/water, hydrogen.
  • lithium oxide/thiourea/water, N-methylmorpholine-N-oxide/water, N,N-dimethylacetamide/LiCl, N,N-dimethylformamide/LiBrkind One or more of lithium oxide/thiourea/water, N-methylmorpholine-N-oxide/water, N,N-dimethylacetamide/LiCl, N,N-dimethylformamide/LiBrkind.
  • the cellulose solution is mixed with a poor solvent to precipitate the dissolved cellulose in a poor solvent to obtain amorphized and reconstituted cellulose.
  • the poor solvent used therein may be any poor solvent which can precipitate cellulose from the cellulose solution in the prior art, and is preferably selected from the group consisting of water, alcohols, ketones, esters, ethers, aromatic hydrocarbons, and alkane solvents.
  • the cellulose solution may be mixed with a poor solvent by any liquid-liquid mixing method in the art, and any manner of enhancing mixing (for example, stirring, etc.) may be adopted. This is achieved by adding the cellulose solution to a poor solvent or by adding a poor solvent to the cellulose solution.
  • the amorphized and reconstituted cellulose may be optionally filtered and washed with a suitable washing liquid (for example, methanol, ethanol, n-propanol, etc.). Freeze-drying to obtain amorphized and reconstituted cellulose, which is used in subsequent processes.
  • a suitable washing liquid for example, methanol, ethanol, n-propanol, etc.
  • crystalline acid hydrolysis refers to an acid-catalyzed degradation reaction of amorphized and reconstituted cellulose in a mixed solution system of an organic solvent and water to cause amorphization of the reconstituted cellulose in the degradation process.
  • the precipitated amorphized and reconstituted cellulose is added to a mixed solution of an organic solvent and water, and then an appropriate amount of a mineral acid is added to the solution to adjust the acidity, and is heated to an appropriate temperature for acid catalysis.
  • the reaction was degraded to obtain a suspension containing the cellulose type II nanocrystallite of the present invention.
  • the selection of the organic solvent in the process is a conventional technical knowledge in the art, for example, preferably selected from the group consisting of alcohols, ethers, ketones, esters, N,N-dimethylformamide, N,N-dimethyl One or more of acetamide, dimethyl sulfoxide, tetrahydrofuran and 1,4-dioxane, more preferably selected from the group consisting of methanol, ethanol, isopropanol, isobutanol, sec-butanol, tert-butanol Or one or more of ethylene glycol, glycerol, acetone, in another embodiment, the organic solvent is selected from tetrahydrofuran or 1,4-dioxane, and in another embodiment, the organic The solvent is selected from acetone or ethyl acetate.
  • the selection of the mineral acid in the process is also a matter of routine knowledge in the art, for example any inorganic acid which may be capable of degrading cellulose, preferably selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid, perchloric acid, hydrobromic acid.
  • the concentration of the inorganic acid used is not limited. Since the amorphous cellulose structure is loose and easily degraded, relatively mild process conditions can be employed in the process.
  • the concentration of the inorganic acid used in the step is preferably 0.01-5 mol/L, more preferably 0.05-3 mol/L. It is more preferably 0.1 to 2 mol/L, and most preferably 0.1 to 1 mol/L.
  • the suspension may be optionally neutralized with a base, and solid-liquid separation (for example, membrane separation, centrifugation, etc.) may be employed.
  • solid-liquid separation for example, membrane separation, centrifugation, etc.
  • the method removes the cellulose type II nano-crystals from the medium, washes them with deionized water, and stores them in a wet state for a long time to maintain the dispersibility.
  • the yield of the process for preparing cellulosic Form II nanocrystallites in accordance with the present invention is greater than 80%, preferably up to or greater than 90%, based on the total amount of cellulosic feedstock.
  • the cellulose type II nanocrystals according to the invention have a crystallinity of more than 80%, preferably more than 90%, more preferably more than 95%, even up to 96%.
  • crystallinity is measured by a wide-angle X-ray diffraction method in accordance with a known analytical method in the art.
  • the number average molecular weight of the cellulose type II nanocrystallite according to the present invention is in the range of 1200-2500, preferably in the range of 1500-2200, more preferably in the range of 1600-2000; the molecular weight distribution is extremely narrow, and the molecular weight distribution coefficient Mw/Mn ⁇ 1.30, preferably Mw / Mn ⁇ 1.20, more preferably Mw / Mn ⁇ 1.10.
  • the number average molecular weight Mn, the weight average molecular weight Mw, and the molecular weight distribution coefficient Mw/Mn are all determined by the following method: "Carboxymethyl cellulose prepared from bamboo shoots", He Yang et al., Chemical Progress, 2013 The method described in Vol. 32, No.
  • the cellulose type II nanocrystals according to the present invention comprise two types of particulate morphology as determined by high power TEM, wherein the outer surface of the cellulose sugar chain ends of one type of particles is perpendicular to a crystal face of the ribbon axis, the length and width of the outer surface defining a length L and a width W of the cellulose type II nanocrystallite, and a dimension perpendicular to the outer surface defines a height of the cellulose type II nanocrystal ion H, the length L and the width W of such particles are both between 3 nm and 20 nm, preferably between 3 nm and 15 nm, more preferably between 3 nm and 10 nm, and the height H is between 3 nm and 10 nm, preferably between 3 nm and 8 nm.
  • Another type of particle having an outer surface composed of a cellulose sugar chain end is a crystal plane perpendicular to the (001) crystal ribbon axis, the length and width of the outer surface defining the length L of the cellulose type II nanocrystallite and The width W, perpendicular to the outer surface, defines the height H of the cellulose type II nanocrystal ions, the length L of such particles being between 15 nm and 200 nm, preferably between 20 nm and 150 nm, more preferably at 30 nm.
  • the width W is between 15 nm and 200 nm, preferably between 20 nm and 150 nm, more preferably between 30 nm and 100 nm, and the height H is between 2 nm and 10 nm, preferably between 2 nm and 8 nm, more preferably Between 2nm-6nm.
  • the inventors have surprisingly found that on the surface of the cellulose type II nanocrystallites according to the present invention, not only a large amount of active hydroxyl groups are present on the side chains of cellulose, but also by sugar a crystal plane perpendicular to the (001) ribbon axis or perpendicular to the end of the chain A large number of highly reactive aldehyde groups are also present on the crystal faces of the ribbon axis. Although not supported by a complete theoretical explanation, the inventors believe that the presence of such large amounts of highly reactive aldehyde functional groups is due, at least in part, to the integrity of the surface of the nanocrystalline crystals prepared by the process of the present invention.
  • the reactive aldehyde group means an aldehyde group functional group which can reduce a silver ammonia solution to a silver atom.
  • the cellulose nanocrystals of the invention have a wide range of uses in the field of catalyst support and composite reinforcement due to their high structural integrity and active surface chemistry.
  • Step 1 Amorphization and Reconstitution of Cellulose
  • Straw refined cellulose obtained by continuously refluxing a straw with an aqueous solution of 5 wt% NaOH, an aqueous solution of 1 wt% HCl, and an aqueous solution of 1 wt% sodium hypochlorite is used as the content of the present invention.
  • Raw material for cellulose A solvent system consisting of 8.3 wt% NaOH, 10 wt% urea and the balance water was added and stirred to obtain 50 g of a 5 wt% straw cellulose solution. During the stirring, ethanol was added until the cellulose was completely precipitated, and the precipitated amorphized and reconstituted cellulose was washed with ethanol and dried.
  • Step 2 crystallization and acidolysis of amorphized and reconstituted cellulose: the amorphized and reconstituted cellulose obtained in the step 1 is added to a water/ethanol/ethylene glycol mixed solution, and hydrochloric acid is added to the solution, hydrochloric acid The concentration was 0.1 mol/L, and the reaction was heated under reflux for 10 h to obtain a cellulose type II nano-grain sub-product. The yield of the product was 90.3% based on the total amount of the cellulose raw material.
  • step 1 shows the XRD pattern of the amorphized and reconstituted cellulose obtained in the step 1, which can be obtained by the Hall method, and the crystallinity of the amorphized and reconstituted cellulose after the amorphization is not higher than 5 %.
  • Figure 3-8 shows a TEM photograph of the cellulose type II nanocrystallite.
  • the cellulose type II nanocrystallite has good dispersibility.
  • 4-6 are a plurality of partial enlarged photographs taken from the TEM photograph of Fig. 3, respectively. It can be seen that there are granular nanoparticles with a length and a width between 3 nm and 10 nm and a height between 3 nm and 7 nm.
  • the outer surface composed of the cellulose sugar chain ends is perpendicular to The crystal plane of the ribbon axis.
  • Figure 7 is another TEM photograph of the cellulose type II nanocrystallite. It can be seen that there is another type of nanoparticle. From the enlarged view of Fig. 8, the nanoparticle is in the form of flat particles, and the crystal grains thereof. The size is between 50-100 nm in the length and width directions and between 2-8 nm in the thickness direction, and the outer surface composed of the cellulose sugar chain ends is further analyzed to be a crystal plane perpendicular to the (001) crystal ribbon axis.
  • Figure 9 shows the GPC test pattern of the modified particles modified by carboxymethyl group in the process of determining the molecular weight by the GPC method.
  • Fig. 10 shows a photograph of a suspension in which the cellulose type II nanocrystallite is dispersed in water, from which it can be seen that the nanoparticle is highly dispersed in water and can be preserved for a long period of time in a wet state and maintains dispersibility.
  • Step 1 Amorphization and Reconstitution of Cellulose
  • Straw refined cellulose obtained by continuously refluxing a straw with an aqueous solution of 5 wt% NaOH, an aqueous solution of 1 wt% HCl, and an aqueous solution of 1 wt% sodium hypochlorite is used as the content of the present invention.
  • Raw material for cellulose A solvent system consisting of 8.3 wt% NaOH, 10 wt% urea and the balance water was added and stirred to obtain 50 g of a 5 wt% straw cellulose solution. During the stirring, methanol was added until the cellulose was completely precipitated, and the precipitated amorphized and reconstituted cellulose was washed with methanol and dried.
  • Step 2 crystallization and acid hydrolysis of the amorphized and reconstituted cellulose: the amorphized and reconstituted cellulose obtained in the step 1 is added to a water/tetrahydrofuran mixed solution, and sulfuric acid is added to the solution, and the sulfuric acid concentration is 1 mol/ L, heating and refluxing for 4 h to obtain a cellulose type II nano-grain sub-product.
  • the yield was 81.7%
  • the crystallinity was 87%
  • the number average molecular weight was 2133
  • the molecular weight distribution coefficient Mw/Mn was 1.18
  • the morphology includes two granular morphology, wherein the outer surface of one of the particles consisting of the ends of the cellulose sugar chain is perpendicular to
  • the crystal plane of the ribbon axis has a length L and a width W of between 3 and 10 nm and a height of between 3 and 6 nm, and the outer surface of the other particle composed of the end of the cellulose sugar chain is perpendicular to (001)
  • the crystal plane of the ribbon axis has a length L between 20 nm and 100 nm, a width W between 30 nm and 80 nm, and a height H between 3 nm and 8 nm.
  • Step 1 Amorphization and Reconstitution of Cellulose
  • Straw refined cellulose obtained by continuously refluxing a straw with an aqueous solution of 5 wt% NaOH, an aqueous solution of 1 wt% HCl, and an aqueous solution of 1 wt% sodium hypochlorite is used as the content of the present invention.
  • Raw material for cellulose A solvent system consisting of 8.3 wt% NaOH, 10 wt% urea and the balance water was added and stirred to obtain 50 g of a 5 wt% straw cellulose solution. While stirring, propanol was added until the cellulose was completely precipitated, and the precipitated amorphized and reconstituted cellulose was washed with propanol and dried.
  • Step 2 crystallization and acidolysis of the amorphized and reconstituted cellulose: adding the amorphized and reconstituted cellulose obtained in the step 1 to a water/propanol/glycerol mixed solution, and adding phosphoric acid to the solution, The phosphoric acid concentration was 2 mol/L, and the reaction was heated under reflux for 6 hours to obtain a cellulose type II nano-grain sub-product.
  • the morphology includes two granular morphology, one of which is perpendicular to the outer surface of the cellulose sugar chain end
  • the crystal plane of the ribbon axis has a length L and a width W of between 3 and 10 nm and a height of between 3 and 6 nm, and the outer surface of the other particle composed of the cellulose sugar chain ends is perpendicular to the (001) crystal.
  • the crystal face of the axis has a length L between 20 nm and 80 nm, a width W between 30 nm and 80 nm, and a height H between 5 nm and 10 nm.
  • Step 1 Amorphization and Reconstitution of Cellulose
  • Straw refined cellulose obtained by continuously refluxing a straw with an aqueous solution of 5 wt% NaOH, an aqueous solution of 1 wt% HCl, and an aqueous solution of 1 wt% sodium hypochlorite is used as the content of the present invention.
  • Raw material for cellulose A solvent system consisting of 8.3 wt% NaOH, 10 wt% urea and the balance water was added and stirred to obtain 50 g of a 5 wt% straw cellulose solution. While stirring, isopropyl alcohol was added until the cellulose was completely precipitated, and the precipitated amorphized and reconstituted cellulose was washed with isopropyl alcohol and dried.
  • Step 2 crystallization and acidolysis of amorphized and reconstituted cellulose: adding the amorphized and reconstituted cellulose obtained in the step 1 to a water/isopropyl alcohol/propylene glycol mixed solution, and adding hydrobromic acid to the solution
  • the concentration of hydrobromic acid was 0.5 mol/L, and the reaction was heated under reflux for 7 hours to obtain a cellulose type II nanocrystalline sub-product.
  • the yield was 87.3%
  • the crystallinity was 94%
  • the number average molecular weight was 1579
  • the molecular weight distribution coefficient Mw/Mn was 1.08
  • the morphology includes two granular morphology, wherein the outer surface of one of the particles consisting of the ends of the cellulose sugar chain is perpendicular to
  • the crystal plane of the ribbon axis has a length L and a width W of between 3 and 10 nm and a height of between 4 and 8 nm, and the outer surface of the other particle composed of the end of the cellulose sugar chain is perpendicular to (001)
  • the crystal plane of the ribbon axis has a length L between 20 nm and 100 nm, a width W between 30 nm and 80 nm, and a height H between 3 nm and 6 nm.
  • Step 1 Amorphization and Reconstitution of Cellulose
  • Straw refined cellulose obtained by continuously refluxing a straw with an aqueous solution of 5 wt% NaOH, an aqueous solution of 1 wt% HCl, and an aqueous solution of 1 wt% sodium hypochlorite is used as the content of the present invention.
  • Raw material for cellulose A solvent system consisting of 8.3 wt% NaOH, 10 wt% urea and the balance water was added and stirred to obtain 50 g of a 5 wt% straw cellulose solution. While stirring, isobutanol was added until the cellulose was completely precipitated, and the precipitated amorphized and reconstituted cellulose was washed with isobutanol and dried.
  • Step 2 crystallization and acid hydrolysis of the amorphized and reconstituted cellulose: the amorphized and reconstituted cellulose obtained in the step 1 is added to a water/isobutanol/sec-butanol mixed solution, and perchloric acid is added thereto.
  • the concentration of perchloric acid was 0.1 mol/L, and the reaction was heated under reflux for 10 hours to obtain a cellulose type II nano-grain sub-product.
  • the yield was 92.3%
  • the crystallinity was 95%
  • the number average molecular weight was 1835
  • the molecular weight distribution coefficient Mw/Mn was 1.07
  • the morphology includes two granular morphology, wherein the outer surface of one of the particles consisting of the ends of the cellulose sugar chain is perpendicular to
  • the crystal plane of the ribbon axis has a length L and a width W of between 3 and 10 nm and a height of between 3 and 10 nm, and the outer surface of the other particle consisting of the end of the cellulose sugar chain is perpendicular to (001)
  • the crystal plane of the ribbon axis has a length L between 20 nm and 100 nm, a width W between 30 nm and 80 nm, and a height H between 3 nm and 10 nm.
  • Step 1 Amorphization and Reconstitution of Cellulose
  • Straw refined cellulose obtained by continuously refluxing a straw with an aqueous solution of 5 wt% NaOH, an aqueous solution of 1 wt% HCl, and an aqueous solution of 1 wt% sodium hypochlorite is used as the content of the present invention.
  • Raw material for cellulose A solvent system consisting of 8.3 wt% NaOH, 10 wt% urea and the balance water was added and stirred to obtain 50 g of a 5 wt% straw cellulose solution. While stirring, tert-butyl alcohol was added until the cellulose was completely precipitated, and the precipitated amorphized and reconstituted cellulose was washed with t-butanol and dried.
  • Step 2 crystallization and acidolysis of amorphized and reconstituted cellulose: the amorphized and reconstituted cellulose obtained in the step 1 is added to a water/tert-butanol/ethylene glycol mixed solution, and hydrochloric acid is added to the solution.
  • the concentration of hydrochloric acid was 1 mol/L, and the reaction was heated under reflux for 5 hours to obtain a cellulose type II nanocrystalline sub-product.
  • the yield was 91.5%
  • the crystallinity was 91%
  • the number average molecular weight was 1887
  • the molecular weight distribution coefficient Mw/Mn was 1.07
  • the morphology includes two granular morphology, wherein the outer surface of one of the particles consisting of the ends of the cellulose sugar chain is perpendicular to
  • the crystal plane of the ribbon axis has a length L and a width W of between 3 and 10 nm and a height of between 3 and 6 nm, and the outer surface of the other particle composed of the end of the cellulose sugar chain is perpendicular to (001)
  • the crystal plane of the ribbon axis has a length L between 20 nm and 100 nm, a width W between 30 nm and 80 nm, and a height H between 5 nm and 10 nm.
  • Step 1 Amorphization and Reconstitution of Cellulose
  • Straw refined cellulose obtained by continuously refluxing a straw with an aqueous solution of 5 wt% NaOH, an aqueous solution of 1 wt% HCl, and an aqueous solution of 1 wt% sodium hypochlorite is used as the content of the present invention.
  • Raw material for cellulose A solvent system consisting of 8.3 wt% NaOH, 10 wt% urea and the balance water was added and stirred to obtain 50 g of a 5 wt% straw cellulose solution. While stirring, isopropyl alcohol was added until the cellulose was completely precipitated, and the precipitated amorphized and reconstituted cellulose was washed with isopropyl alcohol and dried.
  • Step 2 crystallization and acid hydrolysis of the amorphized and reconstituted cellulose: the amorphized and reconstituted cellulose obtained in the step 1 is added to the water/t-butanol mixed solution, and hydrochloric acid is added to the solution, and the hydrochloric acid concentration is 0.1 mol/L, heating and refluxing for 10 h, to obtain a cellulose type II nano-grain sub-product.
  • the yield was 85.9%
  • the crystallinity was 89%
  • the number average molecular weight was 1822
  • the molecular weight distribution coefficient Mw/Mn was 1.07
  • the morphology includes two granular morphology, wherein the outer surface of one of the particles consisting of the ends of the cellulose sugar chain is perpendicular to
  • the crystal plane of the ribbon axis has a length L and a width W of between 3 and 10 nm and a height of between 3 and 6 nm, and the outer surface of the other particle composed of the end of the cellulose sugar chain is perpendicular to (001)
  • the crystal plane of the ribbon axis has a length L between 20 nm and 100 nm, a width W between 30 nm and 80 nm, and a height H between 5 nm and 10 nm.
  • Step 1 Amorphization Reconstitution of Cellulose Raw Material: Using Refined Bamboo Cellulose obtained by continuously refluxing a bamboo fiber through an aqueous solution of 5 wt% NaOH, an aqueous solution of 1 wt% HCl, and an aqueous solution of 1 wt% sodium hypochlorite as the present invention A cellulose-containing raw material. A solvent system consisting of 7 wt% NaOH, 12 wt% urea and the balance water was added and stirred to obtain 50 g of a 5 wt% bamboo cellulose solution. During the stirring, ethanol was added until the cellulose was completely precipitated, and the precipitated amorphized and reconstituted cellulose was washed with ethanol and dried.
  • Step 2 crystallization and acid hydrolysis of amorphized and reconstituted cellulose: the amorphized and reconstituted cellulose obtained in the step 1 is added to a water/dioxane mixed solution, and hydrochloric acid is added to the solution, and the concentration of hydrochloric acid is When it was 0.1 mol/L, it was heated and refluxed for 10 hours to obtain a cellulose type II nano-grain sub-product.
  • the yield was 93.6%
  • the crystallinity was 95%
  • the number average molecular weight was 1782
  • the molecular weight distribution coefficient Mw/Mn was 1.07
  • the morphology includes two granular morphology, wherein the outer surface of one of the particles consisting of the ends of the cellulose sugar chain is perpendicular to
  • the crystal plane of the ribbon axis has a length L and a width W of between 3 and 10 nm and a height of between 3 and 6 nm, and the outer surface of the other particle composed of the end of the cellulose sugar chain is perpendicular to (001)
  • the crystal plane of the ribbon axis has a length L between 20 nm and 100 nm, a width W between 30 nm and 80 nm, and a height H between 5 nm and 10 nm.
  • Step 1 Amorphization Reconstitution of Cellulose Raw Material: As used in the present invention, refined straw cellulose obtained by continuously refluxing a straw with an aqueous solution of 5 wt% NaOH, an aqueous solution of 1 wt% HCl, and an aqueous solution of 1 wt% sodium hypochlorite is used. Raw material for cellulose. A solvent system consisting of 5 wt% NaOH, 16 wt% urea and the balance water was added and stirred to obtain 50 g of a 5 wt% straw cellulose solution. During the stirring, ethanol was added until the cellulose was completely precipitated, and the precipitated amorphized and reconstituted cellulose was washed with ethanol and dried.
  • Step 2 crystallization and acidolysis of amorphized and reconstituted cellulose: the amorphized and reconstituted cellulose obtained in the step 1 is added to a water/ethanol/ethylene glycol mixed solution, and hydrochloric acid is added to the solution, hydrochloric acid The concentration was 0.1 mol/L, and the reaction was heated under reflux for 10 h to obtain a cellulose type II nano-grain sub-product.
  • the yield was 90.2%
  • the crystallinity was 94%
  • the number average molecular weight was 1458
  • the molecular weight distribution coefficient Mw/Mn was 1.06
  • the morphology includes two granular morphology, wherein the outer surface of one of the particles consisting of the ends of the cellulose sugar chain is perpendicular to
  • the crystal plane of the ribbon axis has a length L and a width W of between 3 and 10 nm and a height of between 3 and 6 nm, and the outer surface of the other particle composed of the end of the cellulose sugar chain is perpendicular to (001)
  • the crystal plane of the ribbon axis has a length L between 20 nm and 100 nm, a width W between 30 nm and 80 nm, and a height H between 5 nm and 10 nm.
  • Step 1 amorphization and reconstitution of the cellulose raw material: using the refined flax cellulose obtained by continuously refluxing the flax with an aqueous solution of 5 wt% NaOH, an aqueous solution of 1 wt% HCl, and 1 wt% of sodium hypochlorite as the content of the present invention
  • Raw material for cellulose A solvent system consisting of 8.3 wt% NaOH, 10 wt% urea and the balance water was added and stirred to obtain 50 g of a 5 wt% flax cellulose solution. During the stirring, ethanol was added until the cellulose was completely precipitated, and the precipitated amorphized and reconstituted cellulose was washed with ethanol and dried.
  • Step 2 crystallization and acidolysis of amorphized and reconstituted cellulose: the amorphized and reconstituted cellulose obtained in the step 1 is added to a water/ethanol/ethylene glycol mixed solution, and hydrochloric acid is added to the solution, hydrochloric acid The concentration was 0.1 mol/L, and the reaction was heated under reflux for 10 h to obtain a cellulose type II nano-grain sub-product.
  • the yield was 93.4%
  • the crystallinity was 94%
  • the number average molecular weight was 1863
  • the molecular weight distribution coefficient Mw/Mn was 1.07
  • the morphology includes two granular morphology, wherein the outer surface of one of the particles consisting of the ends of the cellulose sugar chain is perpendicular to
  • the crystal plane of the ribbon axis has a length L and a width W of between 3 and 10 nm and a height of between 3 and 8 nm, and the outer surface of the other particle composed of the cellulose sugar chain ends is perpendicular to (001)
  • the crystal plane of the ribbon axis has a length L between 20 nm and 100 nm, a width W between 30 nm and 80 nm, and a height H between 3 nm and 10 nm.
  • Step 1 Amorphization Reconstitution of Cellulose Raw Material: A pulp obtained by refluxing a waste paper with an aqueous solution of 1 wt% sodium hypochlorite was used as the cellulose-containing raw material of the present invention. A solvent system consisting of 8.3 wt% NaOH, 10 wt% urea and the balance water was added and stirred to obtain 50 g of a 5 wt% cellulose solution. During the stirring, ethanol was added until the cellulose was completely precipitated, and the precipitated amorphized and reconstituted cellulose was washed with ethanol and dried.
  • Step 2 crystallization and acidolysis of amorphized and reconstituted cellulose: the amorphized and reconstituted cellulose obtained in the step 1 is added to a water/ethanol/ethylene glycol mixed solution, and hydrochloric acid is added to the solution, hydrochloric acid The concentration was 0.1 mol/L, and the reaction was heated under reflux for 10 h to obtain a cellulose type II nano-grain sub-product.
  • the yield was 96.6%
  • the crystallinity was 93%
  • the number average molecular weight was 1906
  • the molecular weight distribution coefficient Mw/Mn was 1.07
  • the morphology includes two granular morphology, wherein the outer surface of one of the particles consisting of the ends of the cellulose sugar chain is perpendicular to
  • the crystal plane of the ribbon axis has a length L and a width W of between 3 and 10 nm and a height of between 3 and 6 nm, and the outer surface of the other particle composed of the end of the cellulose sugar chain is perpendicular to (001)
  • the crystal plane of the ribbon axis has a length L between 20 nm and 100 nm, a width W between 30 nm and 80 nm, and a height H between 5 nm and 10 nm.
  • Step 1 Amorphization Reconstitution of Cellulose Raw Material: Cotton is used as the cellulose-containing raw material of the present invention. A solvent system consisting of 8.3 wt% NaOH, 10 wt% urea and the balance water was added and stirred to obtain 50 g of a 4 wt% cotton cellulose solution. During the stirring, ethanol was added until the cellulose was completely precipitated, and the precipitated amorphized and reconstituted cellulose was washed with ethanol and dried.
  • Step 2 crystallization and acidolysis of amorphized and reconstituted cellulose: the amorphized and reconstituted cellulose obtained in the step 1 is added to a water/ethanol/ethylene glycol mixed solution, and hydrochloric acid is added to the solution, hydrochloric acid The concentration was 0.1 mol/L, and the reaction was heated under reflux for 10 h to obtain a cellulose type II nano-grain sub-product.
  • the yield was 95.4%
  • the crystallinity was 96%
  • the number average molecular weight was 1833
  • the molecular weight distribution coefficient Mw/Mn was 1.07
  • the morphology includes two granular morphology, wherein the outer surface of one of the particles consisting of the ends of the cellulose sugar chain is perpendicular to
  • the crystal plane of the ribbon axis has a length L and a width W of between 3 and 10 nm and a height of between 3 and 6 nm, and the outer surface of the other particle composed of the end of the cellulose sugar chain is perpendicular to (001)
  • the crystal plane of the ribbon axis has a length L between 20 nm and 100 nm, a width W between 30 nm and 80 nm, and a height H between 3 nm and 5 nm.
  • Step 1 Amorphization Reconstitution of Cellulose Raw Material: Bacterial cellulose obtained by reacting a spore bacterium with a 1 wt% aqueous NaOH solution at 70 ° C was used as the cellulose-containing raw material of the present invention. A solvent system consisting of 8.3 wt% NaOH, 10 wt% urea and the balance water was added and stirred to obtain 50 g of a 5 wt% flax cellulose solution. During the stirring, ethanol was added until the cellulose was completely precipitated, and the precipitated amorphized and reconstituted cellulose was washed with ethanol and dried.
  • Step 2 crystallization and acidolysis of amorphized and reconstituted cellulose: the amorphized and reconstituted cellulose obtained in the step 1 is added to a water/ethanol/ethylene glycol mixed solution, and hydrochloric acid is added to the solution, hydrochloric acid The concentration of 0.1 mol/L was heated and refluxed for 10 hours to obtain a cellulose type II nano-grain sub-product.
  • the yield was 97.3%
  • the crystallinity was 95%
  • the number average molecular weight was 1315
  • the molecular weight distribution coefficient Mw/Mn was 1.04
  • the morphology includes two granular morphology, wherein the outer surface of one of the particles consisting of the ends of the cellulose sugar chain is perpendicular to
  • the crystal plane of the ribbon axis has a length L and a width W of between 3 and 10 nm and a height of between 3 and 6 nm, and the outer surface of the other particle composed of the end of the cellulose sugar chain is perpendicular to (001)
  • the crystal plane of the ribbon axis has a length L between 20 nm and 100 nm, a width W between 30 nm and 80 nm, and a height H between 3 nm and 5 nm.
  • Step 1 amorphization and reconstitution of the cellulose raw material: using the purified seaweed cellulose obtained by continuously refluxing and extracting the seaweed through an aqueous solution of ethanol, 1 wt% HCl, 2 wt% NaOH, and 1 wt% sodium hypochlorite
  • the cellulose-containing raw material of the invention A solvent system consisting of 8.3 wt% NaOH, 10 wt% urea and the balance water was added and stirred to obtain 50 g of a 5 wt% straw cellulose solution. During the stirring, methanol was added until the cellulose was completely precipitated, and the precipitated amorphized and reconstituted cellulose was washed with methanol and dried.
  • Step 2 crystallization and acidolysis of amorphized and reconstituted cellulose: adding the amorphized and reconstituted cellulose obtained in the step 1 to a water/ethylene glycol/methanol mixed solution, adding sulfuric acid to the solution, sulfuric acid The concentration of 1 mol/L was heated and refluxed for 4 hours to obtain a cellulose type II nano-grain sub-product.
  • the yield was 86.9%
  • the crystallinity was 96%
  • the number average molecular weight was 1861
  • the molecular weight distribution coefficient Mw/Mn was 1.07
  • the morphology includes two granular morphology, wherein the outer surface of one of the particles consisting of the ends of the cellulose sugar chain is perpendicular to
  • the crystal plane of the ribbon axis has a length L and a width W of between 3 and 10 nm and a height of between 3 and 6 nm, and the outer surface of the other particle composed of the end of the cellulose sugar chain is perpendicular to (001)
  • the crystal plane of the ribbon axis has a length L between 20 nm and 100 nm, a width W between 30 nm and 80 nm, and a height H between 3 nm and 5 nm.
  • Step 1 Amorphization and Reconstitution of Cellulose
  • Straw refined cellulose obtained by continuously refluxing a straw with an aqueous solution of 5 wt% NaOH, an aqueous solution of 1 wt% HCl, and an aqueous solution of 1 wt% sodium hypochlorite is used as the content of the present invention.
  • Raw material for cellulose An aqueous solution of N-methylmorpholine-N-oxide having a concentration of 86% by weight was added and stirred to obtain 50 g of a 5 wt% straw cellulose solution. During the stirring, ethanol was added until the cellulose was completely precipitated, and the precipitated amorphized and reconstituted cellulose was washed with ethanol and dried.
  • Step 2 crystallization and acidolysis of amorphized and reconstituted cellulose: the amorphized and reconstituted cellulose obtained in the step 1 is added to a water/ethanol/ethylene glycol mixed solution, and hydrochloric acid is added to the solution, hydrochloric acid The concentration was 0.1 mol/L, and the reaction was heated under reflux for 10 h to obtain a cellulose type II nano-grain sub-product.
  • the yield was 85.2%
  • the crystallinity was 83%
  • the number average molecular weight was 1370
  • the molecular weight distribution coefficient Mw/Mn was 1.20
  • the morphology includes two granular morphology, wherein the outer surface of one of the particles consisting of the ends of the cellulose sugar chain is perpendicular to
  • the crystal plane of the ribbon axis has a length L and a width W of between 3 and 15 nm and a height of between 3 and 10 nm, and the outer surface of the other particle composed of the cellulose sugar chain ends is perpendicular to (001)
  • the crystal plane of the ribbon axis has a length L between 20 nm and 100 nm, a width W between 30 nm and 80 nm, and a height H between 3 nm and 10 nm.
  • Step 1 Amorphization and Reconstitution of Cellulose
  • Straw refined cellulose obtained by continuously refluxing a straw with an aqueous solution of 5 wt% NaOH, an aqueous solution of 1 wt% HCl, and an aqueous solution of 1 wt% sodium hypochlorite is used as the content of the present invention.
  • Raw material for cellulose A solvent system consisting of 6.7 wt% LiOH, 10 wt% urea and the balance water was added and stirred to obtain 50 g of a 5 wt% straw cellulose solution. During the stirring, ethanol was added until the cellulose was completely precipitated, and the precipitated amorphized and reconstituted cellulose was washed with ethanol and dried.
  • Step 2 crystallization and acidolysis of amorphized and reconstituted cellulose: the amorphized and reconstituted cellulose obtained in the step 1 is added to a water/ethanol/ethylene glycol mixed solution, and hydrochloric acid is added to the solution, hydrochloric acid The concentration was 0.1 mol/L, and the reaction was heated under reflux for 10 h to obtain a cellulose type II nano-grain sub-product.
  • the yield was 93.1%
  • the crystallinity was 91%
  • the number average molecular weight was 1877
  • the molecular weight distribution coefficient Mw/Mn was 1.07
  • the morphology includes two granular morphology, wherein the outer surface of one of the particles consisting of the ends of the cellulose sugar chain is perpendicular to
  • the crystal plane of the ribbon axis has a length L and a width W of between 3 and 10 nm and a height of between 3 and 6 nm, and the outer surface of the other particle composed of the end of the cellulose sugar chain is perpendicular to (001)
  • the crystal plane of the ribbon axis has a length L between 20 nm and 100 nm, a width W between 30 nm and 80 nm, and a height H between 5 nm and 10 nm.
  • Step 1 Amorphization and Reconstitution of Cellulose
  • Straw refined cellulose obtained by continuously refluxing a straw with an aqueous solution of 5 wt% NaOH, an aqueous solution of 1 wt% HCl, and an aqueous solution of 1 wt% sodium hypochlorite is used as the content of the present invention.
  • Raw material for cellulose A solvent system consisting of 8.3 wt% NaOH, 10 wt% thiourea and the balance water was added and stirred to obtain 50 g of a 5 wt% straw cellulose solution. During the stirring, ethanol was added until the cellulose was completely precipitated, and the precipitated amorphized and reconstituted cellulose was washed with ethanol and dried.
  • Step 2 crystallization and acidolysis of amorphized and reconstituted cellulose: the amorphized and reconstituted cellulose obtained in the step 1 is added to a water/ethanol/ethylene glycol mixed solution, and hydrochloric acid is added to the solution, hydrochloric acid The concentration was 0.1 mol/L, and the reaction was heated under reflux for 10 h to obtain a cellulose type II nano-grain sub-product.
  • the yield was 93.2%
  • the crystallinity was 92%
  • the number average molecular weight was 1762
  • the molecular weight distribution coefficient Mw/Mn was 1.07
  • the morphology includes two granular morphology, wherein the outer surface of one of the particles consisting of the ends of the cellulose sugar chain is perpendicular to
  • the crystal plane of the ribbon axis has a length L and a width W of between 3 and 10 nm and a height of between 3 and 6 nm, and the outer surface of the other particle composed of the end of the cellulose sugar chain is perpendicular to (001)
  • the crystal plane of the ribbon axis has a length L between 20 nm and 100 nm, a width W between 30 nm and 80 nm, and a height H between 5 nm and 10 nm.
  • Step 1 Amorphization and Reconstitution of Cellulose
  • Straw refined cellulose obtained by continuously refluxing a straw with an aqueous solution of 5 wt% NaOH, an aqueous solution of 1 wt% HCl, and an aqueous solution of 1 wt% sodium hypochlorite is used as the content of the present invention.
  • Raw material for cellulose A solvent system consisting of 7.2 wt% LiOH, 10 wt% thiourea and the balance water was added and stirred to obtain 50 g of a 5 wt% straw cellulose solution. During the stirring, ethanol was added until the cellulose was completely precipitated, and the precipitated amorphized and reconstituted cellulose was washed with ethanol and dried.
  • Step 2 crystallization and acidolysis of amorphized and reconstituted cellulose: the amorphized and reconstituted cellulose obtained in the step 1 is added to a water/ethanol/ethylene glycol mixed solution, and hydrochloric acid is added to the solution, hydrochloric acid The concentration was 0.1 mol/L, and the reaction was heated under reflux for 10 h to obtain a cellulose type II nano-grain sub-product.
  • the yield was 92.5%
  • the crystallinity was 91%
  • the number average molecular weight was 1836
  • the molecular weight distribution coefficient Mw/Mn was 1.07
  • the morphology includes two granular morphology, wherein the outer surface of one of the particles consisting of the ends of the cellulose sugar chain is perpendicular to
  • the crystal plane of the ribbon axis has a length L and a width W of between 3 and 10 nm and a height of between 3 and 6 nm, and the outer surface of the other particle composed of the end of the cellulose sugar chain is perpendicular to (001)
  • the crystal plane of the ribbon axis has a length L between 20 nm and 100 nm, a width W between 30 nm and 80 nm, and a height H between 5 nm and 10 nm.
  • Step 1 Amorphization and Reconstitution of Cellulose
  • Straw refined cellulose obtained by continuously refluxing a straw with an aqueous solution of 5 wt% NaOH, an aqueous solution of 1 wt% HCl, and an aqueous solution of 1 wt% sodium hypochlorite is used as the content of the present invention.
  • Raw material for cellulose A solvent system consisting of N,N-dimethylacetamide containing 9 wt% of LiCl was added and stirred to obtain 50 g of a 5 wt% straw cellulose solution. During the stirring, ethanol was added until the cellulose was completely precipitated, and the precipitated amorphized and reconstituted cellulose was washed with ethanol and dried.
  • Step 2 crystallization and acidolysis of amorphized and reconstituted cellulose: the amorphized and reconstituted cellulose obtained in the step 1 is added to a water/ethanol/ethylene glycol mixed solution, and hydrochloric acid is added to the solution, hydrochloric acid The concentration was 0.1 mol/L, and the reaction was heated under reflux for 10 h to obtain a cellulose type II nano-grain sub-product.
  • the yield was 92.7%
  • the crystallinity was 93%
  • the number average molecular weight was 1745
  • the molecular weight distribution coefficient Mw/Mn was 1.07
  • the morphology includes two granular morphology, wherein the outer surface of one of the particles consisting of the ends of the cellulose sugar chain is perpendicular to
  • the crystal plane of the ribbon axis has a length L and a width W of between 3 and 10 nm and a height of between 3 and 6 nm, and the outer surface of the other particle composed of the end of the cellulose sugar chain is perpendicular to (001)
  • the crystal plane of the ribbon axis has a length L between 20 nm and 100 nm, a width W between 30 nm and 80 nm, and a height H between 5 nm and 10 nm.
  • Step 1 Amorphization and Reconstitution of Cellulose
  • Straw refined cellulose obtained by continuously refluxing a straw with an aqueous solution of 5 wt% NaOH, an aqueous solution of 1 wt% HCl, and an aqueous solution of 1 wt% sodium hypochlorite is used as the content of the present invention.
  • Raw material for cellulose A solvent system consisting of 10% by weight of LiBr in N,N-dimethylformamide was added and stirred to obtain 50 g of a 5 wt% straw cellulose solution. During the stirring, ethanol was added until the cellulose was completely precipitated, and the precipitated amorphized and reconstituted cellulose was washed with ethanol and dried.
  • Step 2 crystallization and acidolysis of amorphized and reconstituted cellulose: the amorphized and reconstituted cellulose obtained in the step 1 is added to a water/ethanol/ethylene glycol mixed solution, and hydrochloric acid is added to the solution, hydrochloric acid The concentration was 0.1 mol/L, and the reaction was heated under reflux for 10 h to obtain a cellulose type II nano-grain sub-product.
  • the yield was 91.5%
  • the crystallinity was 94%
  • the number average molecular weight was 1893
  • the molecular weight distribution coefficient Mw/Mn was 1.07
  • the morphology includes two granular morphology, wherein the outer surface of one of the particles consisting of the ends of the cellulose sugar chain is perpendicular to
  • the crystal plane of the ribbon axis has a length L and a width W of between 3 and 10 nm and a height of between 3 and 6 nm, and the outer surface of the other particle composed of the end of the cellulose sugar chain is perpendicular to (001)
  • the crystal plane of the ribbon axis has a length L between 20 nm and 100 nm, a width W between 30 nm and 80 nm, and a height H between 5 nm and 10 nm.
  • the cellulose type II nano-grain product obtained in the above Examples 1-20 was subjected to a silver ammonia solution method, and the results showed that the cellulose type II nano-crystals obtained by the present invention all have a reactive aldehyde group, and these reactive aldehydes were analyzed.
  • the base is located at the end of the sugar chain and is perpendicular to the (001) crystal axis or perpendicular to The crystal face of the ribbon axis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明涉及纤维素纳米晶领域,更具体地涉及一种纤维素II型纳米晶粒子及其制备方法和应用。该纤维素II型纳米晶粒子的结晶度≥80%;其数均分子量为1200~2500,分子量分布系数Mw/Mn≤1.30。该纤维素II型纳米晶粒子的制备方法包括:纤维素原料先进行非晶化重构,再晶化酸解,晶化酸解可以在低浓度酸性条件下进行,实现了纤维素纳米晶材料的高效、清洁生产和品质控制。该方法所制备的纤维素II型纳米晶粒子结晶度高、分子量小、分子量分布窄、尺寸分布窄、表面构象明确、表面化学修饰潜力大,可用于催化剂载体、复合材料增强相等用途。

Description

一种纤维素II型纳米晶粒子及其制备方法和应用 技术领域
本发明涉及纤维素纳米晶领域,更具体地涉及一种纤维素II型纳米晶粒子及其制备方法和应用。
背景技术
纤维素纳米晶是近几十年来得到广泛研究的高端纤维素类材料,具有生物可降解性、生物相容性、高比表面积、高比强高比模、结构与形貌可控性强、表面可修饰等独特的物理、化学和生物学性质,在材料、轻工、化工、食品、医药、保健、环保、信息、能源等领域有着广阔的应用前景。
目前纤维素纳米晶有两种晶体结构,一种是纤维素I型,另一种是纤维素II型。现有纤维素II型纳米晶主要由以下三种方法制得:方法一,对纤维素原料进行丝光处理,而后再进行酸催化水解处理,得到直径50nm-200nm的球状纤维素II型纳米晶;方法二,先利用酸水解法获得纤维素I型纳米晶,而后经过氢氧化钠溶液处理,得到宽度大于10nm、长度大于200nm的棒状或针状纤维素II型纳米晶;方法三,在冰浴条件下,将浓硫酸缓慢滴加到纤维素的水分散液中,而后加热反应得到透明水解液,再用清水清洗水解液使水解纤维素析出结晶,得到宽度5nm-10nm、长度大于100nm的棒状纤维素II型纳米晶。前两种方法,本质上属于提取,而第三种方法本质上是纤维素原料降解后小分子纤维素的晶化重构。以上三种纤维素II型纳米晶制备方法具有以下缺点:
第一,在纤维素原料的降解过程中,必须使用高浓度、高倍数(酸液与纤维素原料质量比)硫酸或盐酸。采用硫酸时,酸液浓度高达65%,纤维素与酸液质量比值1:8—1:20,水解反应温度45℃。采用盐酸时,盐酸浓度2.5—6mol/L,纤维素与酸液质量比值1:20—1:60,水解反应温度70-110℃。高倍数、高浓度强酸的使用,既造成设备严重腐蚀,又产生大量需要无害化处理的工业废水——每获得一份质量的纳米晶产品将产生数百倍乃至数千倍、甚至上万倍质量的工业废水,这些工业废水的无害化处理所需的高昂费用无疑是构成现有纤维素纳米晶生产成本畸高的重要原因。
第二,纤维素纳米晶的表面性质难以控制。表面性质是表征纤维素纳米晶品质的一项关键指标,表面性质的可控性对于其在复合材料中应用和各种功能化衍生品的开发至关重要。多种测试结果均表明现有制备方法获得的棒状、针状、晶须状、球状纤维素纳米晶并非完整的单晶,而是由若干微小纤维素结晶与非晶纤维素共混而成的、内部存在许多晶体缺陷的多晶结构。面对这种多晶结构,即便能通过精确控制物料比、温度、酸度、时间等可操作条件,实现对纤维素纳米晶尺寸和长径比的控制,也无法准确控制产品的结晶度、晶体学缺陷,因而必然导致纳米晶表面性质的不可控性。
纤维素纳米晶问世至今已近70年,也显示出令人期待的应用前景,但依然面临制备成本和产品品质的双重挑战,致使今日纤维素纳米晶的应用仍停留在研究层面。
发明内容
本发明的目的在于提供一种纤维素II型纳米晶粒子及其制备方法和应用,纤维素II型纳米晶粒子结晶度高、分子量小、分子量分布窄、尺寸分布窄、表面构象明确、表面化学修饰潜力大,可用于催化剂载体、复合材料增强相等用途。
本发明的发明构思:
本发明人为解决现有技术存在的以上所述两个技术问题,利用结构疏松的非晶态纤维素易水解、单晶表面构造明确且性质易于控制等特点,结合有机溶剂对多糖分子结晶行为的调控效应,提出一种全新的纤维素II型纳米晶粒子的制备思路——纤维素原料先进行非晶化重构,再进行晶化酸解,实现纤维素纳米晶材料的高效、清洁生产和品质控制。
本发明的技术方案:
在第一方面,本发明提供了一种纤维素II型纳米晶粒子,其结晶度≥80%;其数均分子量为1200~2500,分子量分布系数Mw/Mn≤1.30。
在该纤维素II型纳米晶粒子的一种优选的实施方案中,其分子量分布系数Mw/Mn≤1.20。
在该纤维素II型纳米晶粒子的一种优选的实施方案中,其分子量分布系数Mw/Mn≤1.10。
在该纤维素II型纳米晶粒子的一种优选的实施方案中,其数均分子量为1500~2200。
在该纤维素II型纳米晶粒子的一种优选的实施方案中,其数均分子量为1600~2000。
在该纤维素II型纳米晶粒子的一种优选的实施方案中,该纤维素II型纳米晶粒子的晶胞参数为
Figure PCTCN2017118915-appb-000001
α=β=90°,γ=117.1°。
在该纤维素II型纳米晶粒子的一种优选的实施方案中,由纤维素糖链末端构成的该纤维素II型纳米晶粒子的外表面为垂直于(001)晶带轴的晶面、或为垂直于
Figure PCTCN2017118915-appb-000002
晶带轴的晶面,该外表面的长度和宽度限定了该纤维素II型纳米晶粒子的长度L和宽度W,垂直于该外表面的尺寸限定了该纤维素II型纳米晶离子的高度H。
在该纤维素II型纳米晶粒子的一种优选的实施方案中,在由糖链末端所构成的所述垂直于(001)晶带轴的晶面或所述垂直于
Figure PCTCN2017118915-appb-000003
晶带轴的晶面上存在活性醛基。
在该纤维素II型纳米晶粒子的一种优选的实施方案中,所述由纤维素糖链末端构成的该纤维素II型纳米晶粒子的外表面为垂直于
Figure PCTCN2017118915-appb-000004
晶带轴的晶面,该纤维素II型纳米晶粒子的长度L和宽度W均为3nm-20nm之间,高度H为3nm-10nm之间。
在该纤维素II型纳米晶粒子的一种优选的实施方案中,所述由纤维素糖链末端构成的该纤维素II型纳米晶粒子的外表面为垂直于(001)晶带轴的晶面,该纤维素II型纳米晶粒子的长度L和宽度W均在15nm-200nm之间,高度H在2nm-10nm之间。
在该纤维素II型纳米晶粒子的一种优选的实施方案中,其长度L和宽度W均在3nm-15nm之间,高度H在3nm-8nm之间。
在该纤维素II型纳米晶粒子的一种优选的实施方案中,其长度L和宽度W均在3nm-10nm之间,高度H在3nm-6nm之间。
在该纤维素II型纳米晶粒子的一种优选的实施方案中,其结晶度≥90%。
在该纤维素II型纳米晶粒子的一种优选的实施方案中,其结晶度≥95%。
在该纤维素II型纳米晶粒子的一种优选的实施方案中,其产率,相对于纤维素原料的总重量计,高于80%。
在该纤维素II型纳米晶粒子的一种优选的实施方案中,其产率,相对于纤维素原料的总重量计,高于90%。
在该纤维素II型纳米晶粒子的一种优选的实施方案中,该纤维素II型纳米晶粒子为单晶粒子。
在第二方面,本发明提供了一种制备本发明的第一方面的纤维素II型纳米晶粒子的方法,其包括如下工序:
工序1:将含纤维素的原料溶解,得到纤维素溶液;将该纤维素溶液与不良溶剂混合,使溶解的纤维素在不良溶剂中析出,得到经非晶化重构的纤维素;
工序2:将工序1制备得到的经非晶化重构的纤维素加入到水/有机溶剂的混合溶液中,加入无机酸调节酸度,可以实现在低浓度酸性条件下进行制备,经加热反应得到所述的纤维素II型纳米晶粒子。
在该方法的一种优选的实施方案中,工序1中,所述含纤维素的原料为分离自植物、动物、藻类、细菌的精制纤维素或纤维素浆液。
在该方法的一种优选的实施方案中,工序1中,用于溶解含纤维素的原料的溶剂选自氢氧化钠/尿素/水,氢氧化锂/尿素/水,氢氧化钠/硫脲/水,氢氧化锂/硫脲/水,N-甲基吗啉-N-氧化物/水,N,N-二甲基乙酰胺/LiCl,N,N-二甲基甲酰胺/LiBr的一种或两种以上。
在该方法的一种优选的实施方案中,工序1中,所述不良溶剂选自水、醇类、酮类、酯类、醚类、芳香烃类、烷烃类溶剂中的一种或两种以上。
在该方法的一种优选的实施方案中,工序1中,所述不良溶剂为水、醇、酮中的一种或两种以上。
在该方法的一种优选的实施方案中,工序1中,所述不良溶剂为甲醇、乙醇、正丙醇、异丙醇、仲丁醇、叔丁醇、乙二醇、丙三醇、丙酮中的一种或两种以上。
在该方法的一种优选的实施方案中,工序2中,所述有机溶剂为醇类、醚类、酮类、酯类、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲亚砜中的一种或两种以上。
在该方法的一种优选的实施方案中,工序2中,所述有机溶剂为甲醇、乙醇、异丙醇、异丁醇、仲丁醇、叔丁醇、乙二醇、丙三醇、丙酮中的一种或两种以上。
在该方法的一种优选的实施方案中,工序2中,所述有机溶剂为四氢呋喃和/或1,4-二氧 六环。
在该方法的一种优选的实施方案中,所述有机溶剂为丙酮和/或乙酸乙酯。
在该方法的一种优选的实施方案中,工序2中,所述无机酸为盐酸、硫酸、磷酸、高氯酸、氢溴酸中的一种或两种以上。
在该方法的一种优选的实施方案中,工序2中,所述无机酸的浓度为0.01-5mol/L。
在该方法的一种优选的实施方案中,工序2中,所述无机酸的浓度为0.1-2mol/L。
在该方法的一种优选的实施方案中,将工序2得到的纤维素II型纳米晶粒子经清洗后以湿态方式保存。
在第三方面,本发明提供了本发明的第一方面所述的纤维素II型纳米晶粒子或由本发明第二方面所述的方法制备的纤维素II型纳米晶粒子的用途,其特征在于,其可用作催化剂载体、复合材料增强相等。
本发明的技术效果:
1、本发明通过采取以上的技术方案至少部分实现了以下技术效果。第一,本发明的方法先将纤维素原料进行非晶化重构,将其转化为结构疏松、易于降解的非晶态纤维素,然后再进行酸催化晶化降解,大大降低了降解的难度,从而消除了现有工艺对高浓度、高倍数强酸的严重依赖,使得降解工序可以在低浓度酸性条件下进行,大幅度减少了强酸的用量,从而解决了高浓度强酸对设备的腐蚀和大量废水处理所带来的成本问题;第二,通过利用有机溶剂对多糖分子结晶行为的调控效应,在获得高结晶度、表面构象明确、性质可控的纤维素II型纳米晶粒子的同时,至少在一些实施方案中,还避免了纤维素的过度降解,实现了高的收率,最高可达90%以上。
2、不仅如此,在一些优选的实施方案中,本发明还获得了以下两个未曾预期的效果。第一,本发明制备的纤维素II型纳米晶粒子产品晶体结构高度完整,能够在HRTEM下清晰地观察到纤维素晶体的原子像结构,这对精确描述纤维素纳米晶粒子的表面构象和开发基于表面性质的衍生应用具有重大的意义;第二,本发明制备的纤维素II型纳米晶粒子在其暴露面上不仅存在大量活性羟基,而且本发明人还发现,在纤维素糖链末端所构成的特定暴露面上还存在大量高活性的醛基,而传统的纤维素纳米晶表面仅存在活性的羟基官能团。这种具有双活性官能团的新颖结构,对于拓展纤维素纳米晶产品的后续应用提供了更大的灵活性和可能性。
3、本发明所提供的技术方案成功制备以结晶度高、分子量小、分子量分布窄、尺寸分布窄、表面构象明确、表面化学修饰潜力大等为主要特征的纤维素II型纳米晶粒子。
附图说明
图1是依照本发明的方法中工序1得到的非晶化重构的纤维素的XRD表征图谱;图中,横坐标2theta代表衍射角2θ(度);纵坐标Indensity代表强度(a.u.);
图2是依照本发明的纤维素II型纳米晶粒子的XRD表征图谱;图中,横坐标2theta代表衍射角2θ(度);纵坐标Indensity代表强度(a.u.);
图3是依照本发明的纤维素II型纳米晶粒子的TEM照片;
图4是图3中所示的纤维素II型纳米晶粒子的TEM照片的局部放大照片;其中,A图为低倍数下纤维素II型纳米晶粒子高度分散照片;B图为高分辨TEM下对纤维素II型纳米晶粒子暴露晶面的晶面参数的计算及根据计算结果的模拟图;C图为一个纤维素II型纳米晶粒子的高分辨TEM放大图;D图为一个纤维素II型纳米晶粒子的高分辨TEM放大图;
图5是图3中所示的纤维素II型纳米晶粒子的TEM照片的另一局部放大照片;
图6是图3中所示的纤维素II型纳米晶粒子的TEM照片的另一局部放大照片;
图7是依照本发明的纤维素II型纳米晶粒子的另一TEM照片;
图8是图7中所示的纤维素II型纳米晶粒子的TEM照片的局部放大照片;
图9是在采用GPC方法测定依照本发明的纤维素II型纳米晶粒子的过程中该纳米粒子经羧甲基改性后的改性粒子的GPC测试图谱;图中,横坐标R.T.代表保留时间(min);纵坐标Indensity代表强度(a.u.);
图10是依照本发明的纤维素II型纳米晶粒子在水中分散的悬浊液照片。
具体实施方式
以下将通过实施例具体说明本发明,但这些具体实施方案不以任何方式限制本发明的保护范围。本实施方案所用的原料为已知化合物,可在市场上购得。
1、纤维素II型纳米晶粒子的制备方法
含纤维素的原料
在本发明中,“含纤维素的原料”或“纤维素原料”可以是任何物理状态的包含纤维素的物料,优选是分离自植物、动物、藻类、细菌的精制纤维素或纤维素浆液,优选是源自植物的精制纤维素或纤维素浆液。在本发明中“植物”、“动物”、“藻类”、“细菌”均具有在本领域中通常的含义,例如植物可以包括苔藓植物、蕨类植物、种子植物等,例如树木、竹子、棉花、草类、麻类、等等。
在本发明中,“精制纤维素”是指纤维素原料经预处理得到的纤维素含量提高的含纤维素的物料,纤维素原料的预处理或精制可以采用本领域公知的技术,例如,最常用的纤维素原料的精制工艺是将纤维素原料(例如秸秆、竹子等)依次经5wt%NaOH的水溶液、1wt%HCl的水溶液、1wt%次氯酸钠的水溶液连续回流反应。
在本发明中,“纤维素浆液”是指浆液形式的包含纤维素的原料,例如纸浆、竹浆、棉浆、草浆、麻浆等,其制备方法也是本领域公知的。
工序1:纤维素原料的非晶化重构
在本发明中,“非晶化重构”是指破除纤维素原料中的原有结晶部分,使之转化为结构疏松的非晶化重构的纤维素的过程。
在该工序中,非晶化重构的第一步是将含纤维素的原料溶解,得到纤维素溶液。所用的溶剂可以是现有技术中用于溶解含纤维素的原料的任何溶剂,优选选自氢氧化钠/尿素/水,氢氧化锂/尿素/水,氢氧化钠/硫脲/水,氢氧化锂/硫脲/水,N-甲基吗啉-N-氧化物/水,N,N- 二甲基乙酰胺/LiCl,N,N-二甲基甲酰胺/LiBr的一种或多种。
在溶解之后,将该纤维素溶液与不良溶剂混合,使溶解的纤维素在不良溶剂中析出,得到非晶化重构的纤维素。其中所用的不良溶剂可以是现有技术中能够将纤维素从纤维素溶液中析出的任何不良溶剂,优选选自水、醇类、酮类、酯类、醚类、芳香烃类、烷烃类溶剂中的一种或多种,更优选为水、醇、酮中的一种或多种,进一步更优选为甲醇、乙醇、正丙醇、异丙醇、仲丁醇、叔丁醇、乙二醇、丙三醇、丙酮中的一种或多种,将纤维素溶液与不良溶剂混合可以采取本领域中任何液液混合的方式进行,且可以采取任何增强混合的方式(例如搅拌等),通过将纤维素溶液加入不良溶剂中,或者将不良溶剂加入纤维素溶液中而实现。
此外,在该非晶化重构的纤维素析出之后,可以非必要地将该非晶化重构的纤维素过滤出来,采用适合的洗涤液体(例如甲醇、乙醇、正丙醇等)洗涤,冷冻干燥,获得非晶化重构的纤维素,待后续工序使用。
工序2:非晶化重构的纤维素的晶化酸解
在本发明中,“晶化酸解”是指非晶化重构的纤维素在有机溶剂和水的混合溶液体系下,进行酸催化降解反应,使非晶化重构的纤维素在降解过程中重结晶形成纤维素纳米晶的过程。
在该工序中,将析出的非晶化重构的纤维素加入至有机溶剂和水的混合溶液中,然后在该溶液中加入适量的无机酸调节酸度,并加热到适当的温度,进行酸催化降解反应,获得包含本发明的纤维素II型纳米晶粒子的悬浊液。
对于该工序中的有机溶剂的选择,是本领域的常规技术知识,例如优选选自醇类、醚类、酮类、酯类、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲亚砜、四氢呋喃和1,4-二氧六环中的一种或多种,更优选选自甲醇、乙醇、异丙醇、异丁醇、仲丁醇、叔丁醇、乙二醇、丙三醇、丙酮中的一种或多种,在另一实施方案中,该有机溶剂选自四氢呋喃或1,4-二氧六环,在另一实施方案中,该有机溶剂选自丙酮或乙酸乙酯。
对于该工序中无机酸的选择,也是本领域的常规技术知识,例如其可以能够使纤维素降解的任何种类的无机酸,优选选自盐酸、硫酸、磷酸、高氯酸、氢溴酸中的一种或多种,使用的无机酸的浓度没有限制。由于非晶态纤维素结构疏松,易于降解,因此该工序中可以采用较为温和的工艺条件,例如,该工序中所用无机酸的浓度优选为0.01-5mol/L,更优选0.05-3mol/L,更优选0.1-2mol/L,最优选0.1-1mol/L。
此外,在获得了包含本发明的纤维素II型纳米晶粒子的悬浊液之后,可以非必要地将该悬浊液用碱中和,采用固液分离(例如膜分离、离心分离等)的手段从中将纤维素II型纳米晶粒子分离出来,并用去离子水洗涤后,以湿态方式长期保存,保持其分散性。
在一些实施方案中,依照本发明的用于制备纤维素II型纳米晶粒子的方法的产率,以纤维素原料总量计,高于80%,优选可达到或高于90%。
2、纤维素II型纳米晶粒子
依照本发明的纤维素II型纳米晶粒子具有高于80%,优选高于90%,更优选高于95%,甚至高达96%的结晶度。在本发明中,结晶度是采用广角X射线衍射法依照本领域的公知分 析方法测定得到的。
依照本发明的纤维素II型纳米晶粒子的数均分子量在1200-2500范围内,优选在1500-2200范围内,更优选在1600-2000范围内;分子量分布极窄,分子量分布系数Mw/Mn≤1.30,优选Mw/Mn≤1.20,更优选Mw/Mn≤1.10。在本发明中,数均分子量Mn、重均分子量Mw以及分子量分布系数Mw/Mn都是通过以下方法测定的:以《毛竹笋壳制备羧甲基纤维素》,贺杨等,化工进展,2013年第32卷第10期中所述方法将本发明得到的纤维素II型纳米晶粒子转化为羧甲基纤维素钠,并通过水相凝胶排阻色谱法,以右旋糖酐为标准品对羧甲基纤维素钠的分子量进行测定,然后通过常规的计算而得到的。
在一些实施方案中,经XRD衍射法测定,依照本发明的纤维素II型纳米晶粒子具有以下晶胞参数:
Figure PCTCN2017118915-appb-000005
α=β=90°,γ=117.1°。
在一些实施方案中,经高倍数TEM测定,依照本发明的纤维素II型纳米晶粒子包含两类颗粒状形貌,其中一类颗粒的由纤维素糖链末端所构成的外表面为垂直于
Figure PCTCN2017118915-appb-000006
晶带轴的晶面,该外表面的长度和宽度限定了该纤维素II型纳米晶粒子的长度L和宽度W,垂直于该外表面的尺寸限定了该纤维素II型纳米晶离子的高度H,该类颗粒的长度L和宽度W均在3nm-20nm之间,优选在3nm-15nm之间,更优选在3nm-10nm之间,高度H在3nm-10nm之间,优选在3nm-8nm之间,更优选在3nm-6nm之间。另一类颗粒的由纤维素糖链末端所构成的外表面为垂直于(001)晶带轴的晶面,该外表面的长度和宽度限定了该纤维素II型纳米晶粒子的长度L和宽度W,垂直于该外表面的尺寸限定了该纤维素II型纳米晶离子的高度H,该类颗粒的长度L在15nm-200nm之间,优选在20nm-150nm之间,更优选在30nm-100nm之间,宽度W在15nm-200nm之间,优选在20nm-150nm之间,更优选在30nm-100nm之间,高度H在2nm-10nm之间,优选在2nm-8nm之间,更优选在2nm-6nm之间。
此外,在一些实施方案中,本发明人令人惊奇地发现,在依照本发明的纤维素II型纳米晶粒子的表面上,不仅在由纤维素侧链上存在大量活性羟基,而且在由糖链末端所构成的垂直于(001)晶带轴的晶面或垂直于
Figure PCTCN2017118915-appb-000007
晶带轴的晶面上还存在大量高活性的醛基。尽管未得到完整的理论解释的支持,但发明人相信这种大量的高活性醛基官能团的存在至少部分是由于本发明的方法所制备的纳米晶晶体表面的完整性所造成的,这种活性醛基的存在会导致其表面官能团的活性大幅提高。而且,这种双活性官能团(羟基和醛基)的新颖结构,对于拓展纤维素纳米晶产品的后续应用提供了更大的灵活性和可能性。在本发明中,活性醛基是指可以将银氨溶液还原成为银原子的醛基官能团。
3、纤维素纳米晶的用途
本发明的纤维素纳米晶由于具有高度的结构完整性和活泼的表面化学性质,因此在催化剂载体、复合材料增强相等领域具有广泛的用途。
以下以实施例的方式进一步阐述本发明,在各实施例中采用的原料均获自商业来源。
实施例1
工序1,纤维素原料的非晶化重构:使用将秸秆依次经5wt%NaOH的水溶液、1wt%HCl的水溶液、1wt%次氯酸钠的水溶液连续回流反应后得到的秸秆精制纤维素作为本发明的含纤维素的原料。加入用8.3wt%NaOH、10wt%尿素和余量的水构成的溶剂体系并搅拌,得到50g5wt%秸秆纤维素溶液。搅拌中,加入乙醇直至纤维素完全析出,将析出的非晶化重构的纤维素用乙醇洗涤并干燥。
工序2,非晶化重构的纤维素的晶化酸解:将工序1得到的非晶化重构的纤维素加入至水/乙醇/乙二醇混合溶液中,加入盐酸至溶液中,盐酸浓度为0.1mol/L,加热回流反应10h,获得纤维素II型纳米晶粒子产品。以纤维素原料总量计,产品的收率为90.3%。
图1显示了工序1得到的非晶化重构的纤维素的XRD表征图谱,通过Hall法计算可得,非晶化重构后的非晶化重构的纤维素的结晶度不高于5%。
图2显示了本实施例得到的纤维素II型纳米晶粒子的XRD表征图谱,通过Hall法计算可得,该纤维素II型纳米晶粒子的结晶度为94%,通过对全部结晶峰的拟合可以算出,该纤维素II型纳米晶粒子的晶胞参数为
Figure PCTCN2017118915-appb-000008
α=β=90°,γ=117.1°。
图3-8显示了该纤维素II型纳米晶粒子的TEM照片。如图3所示,该纤维素II型纳米晶粒子具有良好的分散性。图4-6分别是从图3的TEM照片中选取的多个局部放大照片。从中可以看出,存在颗粒状纳米粒子,其长度和宽度均在3nm-10nm之间,高度在3nm-7nm之间,经进一步分析其由纤维素糖链末端构成的外表面为垂直于
Figure PCTCN2017118915-appb-000009
晶带轴的晶面。
图7是该纤维素II型纳米晶粒子的另一处TEM照片,从中可以看出,还存在另一类纳米粒子,从图8的放大图分析,该纳米粒子呈扁平颗粒状,其晶粒尺寸在长度和宽度方向在50-100nm之间,厚度方向2-8nm之间,经进一步分析其由纤维素糖链末端构成的外表面为垂直于(001)晶带轴的晶面。
图9显示了在采用GPC方法测定分子量过程中经羧甲基改性后的改性粒子的GPC测试图谱,根据计算可知,该纤维素II型纳米晶粒子的数均分子量Mn为1843,重均分子量Mw=1974,分子量分布系数PDI=Mw/Mn=1.07。
图10显示了该纤维素II型纳米晶粒子在水中分散的悬浊液照片,从中可以看出,该纳米粒子在水中高度分散,且在湿态下可长期保存并保持分散性。
实施例2
工序1,纤维素原料的非晶化重构:使用将秸秆依次经5wt%NaOH的水溶液、1wt%HCl的水溶液、1wt%次氯酸钠的水溶液连续回流反应后得到的秸秆精制纤维素作为本发明的含纤维素的原料。加入用8.3wt%NaOH、10wt%尿素和余量的水构成的溶剂体系并搅拌,得到50g5wt%秸秆纤维素溶液。搅拌中,加入甲醇直至纤维素完全析出,将析出的非晶化重构的纤维素用甲醇洗涤并干燥。
工序2,非晶化重构的纤维素的晶化酸解:将工序1得到的非晶化重构的纤维素加入至水/四氢呋喃混合溶液中,加入硫酸至溶液中,硫酸浓度为1mol/L,加热回流反应4h,获得纤维素II型纳米晶粒子产品。
以纤维素原料总量计,其收率为81.7%,结晶度为87%,数均分子量为2133,分子量分布系数Mw/Mn为1.18,晶胞参数为
Figure PCTCN2017118915-appb-000010
α=β=90°,γ=117.1°。其形貌包括两种颗粒状形貌,其中一种颗粒的由纤维素糖链末端构成的外表面为垂直于
Figure PCTCN2017118915-appb-000011
晶带轴的晶面,其长度L和宽度W均为3-10nm之间,高度为3-6nm之间,另一种颗粒的由纤维素糖链末端构成的外表面为垂直于(001)晶带轴的晶面,其长度L在20nm-100nm之间,宽度W在30nm-80nm之间,高度H在3nm-8nm之间。
实施例3
工序1,纤维素原料的非晶化重构:使用将秸秆依次经5wt%NaOH的水溶液、1wt%HCl的水溶液、1wt%次氯酸钠的水溶液连续回流反应后得到的秸秆精制纤维素作为本发明的含纤维素的原料。加入用8.3wt%NaOH、10wt%尿素和余量的水构成的溶剂体系并搅拌,得到50g5wt%秸秆纤维素溶液。搅拌中,加入丙醇直至纤维素完全析出,将析出的非晶化重构的纤维素用丙醇洗涤并干燥。
工序2,非晶化重构的纤维素的晶化酸解:将工序1得到的非晶化重构的纤维素加入至水/丙醇/丙三醇混合溶液中,加入磷酸至溶液中,磷酸浓度为2mol/L,加热回流反应6h,获得纤维素II型纳米晶粒子产品。
以纤维素原料总量计,其收率为92.0%,结晶度为93%,数均分子量为2015,分子量分布系数Mw/Mn为1.12,晶胞参数为
Figure PCTCN2017118915-appb-000012
α=β=90°,γ=117.1°。其形貌包括两种颗粒状形貌,其中一种颗粒由纤维素糖链末端构成的外表面为垂直于
Figure PCTCN2017118915-appb-000013
晶带轴的晶面,其长度L和宽度W均为3-10nm之间,高度为3-6nm之间,另一种颗粒由纤维素糖链末端构成的外表面为垂直于(001)晶带轴的晶面,其长度L在20nm-80nm之间,宽度W在30nm-80nm之间,高度H在5nm-10nm之间。
实施例4
工序1,纤维素原料的非晶化重构:使用将秸秆依次经5wt%NaOH的水溶液、1wt%HCl的水溶液、1wt%次氯酸钠的水溶液连续回流反应后得到的秸秆精制纤维素作为本发明的含纤维素的原料。加入用8.3wt%NaOH、10wt%尿素和余量的水构成的溶剂体系并搅拌,得到50g5wt%秸秆纤维素溶液。搅拌中,加入异丙醇直至纤维素完全析出,将析出的非晶化重构的纤维素用异丙醇洗涤并干燥。
工序2,非晶化重构的纤维素的晶化酸解:将工序1得到的非晶化重构的纤维素加入至水/异丙醇/丙二醇混合溶液中,加入氢溴酸至溶液中,氢溴酸浓度为0.5mol/L,加热回流反应7h,获得纤维素II型纳米晶粒子产品。
以纤维素原料总量计,其收率为87.3%,结晶度为94%,数均分子量为1579,分子量分布系数Mw/Mn为1.08,晶胞参数为
Figure PCTCN2017118915-appb-000014
α=β=90°,γ=117.1°。其形貌包括两种颗粒状形貌,其中一种颗粒的由纤维素糖链末端构成的外表面为垂直于
Figure PCTCN2017118915-appb-000015
晶带轴的晶面,其长度L和宽度W均为3-10nm之间,高度为4-8nm之间,另一种颗粒的由纤维素糖链末端构成的外表面为垂直于(001)晶带轴的晶面,其长度L在20nm-100nm之间,宽度W在30nm-80nm之间,高度H在3nm-6nm之间。
实施例5
工序1,纤维素原料的非晶化重构:使用将秸秆依次经5wt%NaOH的水溶液、1wt%HCl的水溶液、1wt%次氯酸钠的水溶液连续回流反应后得到的秸秆精制纤维素作为本发明的含纤维素的原料。加入用8.3wt%NaOH、10wt%尿素和余量的水构成的溶剂体系并搅拌,得到50g5wt%秸秆纤维素溶液。搅拌中,加入异丁醇直至纤维素完全析出,将析出的非晶化重构的纤维素用异丁醇洗涤并干燥。
工序2,非晶化重构的纤维素的晶化酸解:将工序1得到的非晶化重构的纤维素加入至水/异丁醇/仲丁醇混合溶液中,加入高氯酸至溶液中,高氯酸浓度为0.1mol/L,加热回流反应10h,获得纤维素II型纳米晶粒子产品。
以纤维素原料总量计,其收率为92.3%,结晶度为95%,数均分子量为1835,分子量分布系数Mw/Mn为1.07,晶胞参数为
Figure PCTCN2017118915-appb-000016
α=β=90°,γ=117.1°。其形貌包括两种颗粒状形貌,其中一种颗粒的由纤维素糖链末端构成的外表面为垂直于
Figure PCTCN2017118915-appb-000017
晶带轴的晶面,其长度L和宽度W均为3-10nm之间,高度为3-10nm之间,另一种颗粒的由纤维素糖链末端构成的外表面为垂直于(001)晶带轴的晶面,其长度L在20nm-100nm之间,宽度W在30nm-80nm之间,高度H在3nm-10nm之间。
实施例6
工序1,纤维素原料的非晶化重构:使用将秸秆依次经5wt%NaOH的水溶液、1wt%HCl的水溶液、1wt%次氯酸钠的水溶液连续回流反应后得到的秸秆精制纤维素作为本发明的含纤维素的原料。加入用8.3wt%NaOH、10wt%尿素和余量的水构成的溶剂体系并搅拌,得到50g5wt%秸秆纤维素溶液。搅拌中,加入叔丁醇直至纤维素完全析出,将析出的非晶化重构的纤维素用叔丁醇洗涤并干燥。
工序2,非晶化重构的纤维素的晶化酸解:将工序1得到的非晶化重构的纤维素加入至水/叔丁醇/乙二醇混合溶液中,加入盐酸至溶液中,盐酸浓度为1mol/L,加热回流反应5h,获得纤维素II型纳米晶粒子产品。
以纤维素原料总量计,其收率为91.5%,结晶度为91%,数均分子量为1887,分子量分布系数Mw/Mn为1.07,晶胞参数为
Figure PCTCN2017118915-appb-000018
α=β=90°,γ=117.1°。 其形貌包括两种颗粒状形貌,其中一种颗粒的由纤维素糖链末端构成的外表面为垂直于
Figure PCTCN2017118915-appb-000019
晶带轴的晶面,其长度L和宽度W均为3-10nm之间,高度为3-6nm之间,另一种颗粒的由纤维素糖链末端构成的外表面为垂直于(001)晶带轴的晶面,其长度L在20nm-100nm之间,宽度W在30nm-80nm之间,高度H在5nm-10nm之间。
实施例7
工序1,纤维素原料的非晶化重构:使用将秸秆依次经5wt%NaOH的水溶液、1wt%HCl的水溶液、1wt%次氯酸钠的水溶液连续回流反应后得到的秸秆精制纤维素作为本发明的含纤维素的原料。加入用8.3wt%NaOH、10wt%尿素和余量的水构成的溶剂体系并搅拌,得到50g5wt%秸秆纤维素溶液。搅拌中,加入异丙醇直至纤维素完全析出,将析出的非晶化重构的纤维素用异丙醇洗涤并干燥。
工序2,非晶化重构的纤维素的晶化酸解:将工序1得到的非晶化重构的纤维素加入至水/叔丁醇混合溶液中,加入盐酸至溶液中,盐酸浓度为0.1mol/L,加热回流反应10h,获得纤维素II型纳米晶粒子产品。
以纤维素原料总量计,其收率为85.9%,结晶度为89%,数均分子量为1822,分子量分布系数Mw/Mn为1.07,晶胞参数为
Figure PCTCN2017118915-appb-000020
α=β=90°,γ=117.1°。其形貌包括两种颗粒状形貌,其中一种颗粒的由纤维素糖链末端构成的外表面为垂直于
Figure PCTCN2017118915-appb-000021
晶带轴的晶面,其长度L和宽度W均为3-10nm之间,高度为3-6nm之间,另一种颗粒的由纤维素糖链末端构成的外表面为垂直于(001)晶带轴的晶面,其长度L在20nm-100nm之间,宽度W在30nm-80nm之间,高度H在5nm-10nm之间。
实施例8
工序1,纤维素原料的非晶化重构:使用将竹纤维依次经5wt%NaOH的水溶液、1wt%HCl的水溶液、1wt%次氯酸钠的水溶液连续回流反应后得到的精制竹纤维素作为本发明的含纤维素的原料。加入用7wt%NaOH、12wt%尿素和余量的水构成的溶剂体系并搅拌,得到50g 5wt%竹纤维素溶液。搅拌中,加入乙醇直至纤维素完全析出,将析出的非晶化重构的纤维素用乙醇洗涤并干燥。
工序2,非晶化重构的纤维素的晶化酸解:将工序1得到的非晶化重构的纤维素加入至水/二氧六环混合溶液中,加入盐酸至溶液中,盐酸浓度为0.1mol/L,加热回流反应10h,获得纤维素II型纳米晶粒子产品。
以纤维素原料总量计,其收率为93.6%,结晶度为95%,数均分子量为1782,分子量分布系数Mw/Mn为1.07,晶胞参数为
Figure PCTCN2017118915-appb-000022
α=β=90°,γ=117.1°。其形貌包括两种颗粒状形貌,其中一种颗粒的由纤维素糖链末端构成的外表面为垂直于
Figure PCTCN2017118915-appb-000023
晶带轴的晶面,其长度L和宽度W均为3-10nm之间,高度为3-6nm之间,另一种颗粒的由 纤维素糖链末端构成的外表面为垂直于(001)晶带轴的晶面,其长度L在20nm-100nm之间,宽度W在30nm-80nm之间,高度H在5nm-10nm之间。
实施例9
工序1,纤维素原料的非晶化重构:使用将稻草依次经5wt%NaOH的水溶液、1wt%HCl的水溶液、1wt%次氯酸钠的水溶液连续回流反应后得到的精制稻草纤维素作为本发明的含纤维素的原料。加入用5wt%NaOH、16wt%尿素和余量的水构成的溶剂体系并搅拌,得到50g5wt%稻草纤维素溶液。搅拌中,加入乙醇直至纤维素完全析出,将析出的非晶化重构的纤维素用乙醇洗涤并干燥。
工序2,非晶化重构的纤维素的晶化酸解:将工序1得到的非晶化重构的纤维素加入至水/乙醇/乙二醇混合溶液中,加入盐酸至溶液中,盐酸浓度为0.1mol/L,加热回流反应10h,获得纤维素II型纳米晶粒子产品。
以纤维素原料总量计,其收率为90.2%,结晶度为94%,数均分子量为1458,分子量分布系数Mw/Mn为1.06,晶胞参数为
Figure PCTCN2017118915-appb-000024
α=β=90°,γ=117.1°。其形貌包括两种颗粒状形貌,其中一种颗粒的由纤维素糖链末端构成的外表面为垂直于
Figure PCTCN2017118915-appb-000025
晶带轴的晶面,其长度L和宽度W均为3-10nm之间,高度为3-6nm之间,另一种颗粒的由纤维素糖链末端构成的外表面为垂直于(001)晶带轴的晶面,其长度L在20nm-100nm之间,宽度W在30nm-80nm之间,高度H在5nm-10nm之间。
实施例10
工序1,纤维素原料的非晶化重构:使用将亚麻依次经5wt%NaOH的水溶液、1wt%HCl的水溶液、1wt%次氯酸钠的水溶液连续回流反应后得到的精制亚麻纤维素作为本发明的含纤维素的原料。加入用8.3wt%NaOH、10wt%尿素和余量的水构成的溶剂体系并搅拌,得到50g5wt%亚麻纤维素溶液。搅拌中,加入乙醇直至纤维素完全析出,将析出的非晶化重构的纤维素用乙醇洗涤并干燥。
工序2,非晶化重构的纤维素的晶化酸解:将工序1得到的非晶化重构的纤维素加入至水/乙醇/乙二醇混合溶液中,加入盐酸至溶液中,盐酸浓度为0.1mol/L,加热回流反应10h,获得纤维素II型纳米晶粒子产品。
以纤维素原料总量计,其收率为93.4%,结晶度为94%,数均分子量为1863,分子量分布系数Mw/Mn为1.07,晶胞参数为
Figure PCTCN2017118915-appb-000026
α=β=90°,γ=117.1°。其形貌包括两种颗粒状形貌,其中一种颗粒的由纤维素糖链末端构成的外表面为垂直于
Figure PCTCN2017118915-appb-000027
晶带轴的晶面,其长度L和宽度W均为3-10nm之间,高度为3-8nm之间,另一种颗粒的由纤维素糖链末端构成的外表面为垂直于(001)晶带轴的晶面,其长度L在20nm-100nm之间,宽度W在30nm-80nm之间,高度H在3nm-10nm之间。
实施例11
工序1,纤维素原料的非晶化重构:使用将废旧纸张用1wt%次氯酸钠的水溶液回流反应后得到的纸浆作为本发明的含纤维素的原料。加入用8.3wt%NaOH、10wt%尿素和余量的水构成的溶剂体系并搅拌,得到50g 5wt%纤维素溶液。搅拌中,加入乙醇直至纤维素完全析出,将析出的非晶化重构的纤维素用乙醇洗涤并干燥。
工序2,非晶化重构的纤维素的晶化酸解:将工序1得到的非晶化重构的纤维素加入至水/乙醇/乙二醇混合溶液中,加入盐酸至溶液中,盐酸浓度为0.1mol/L,加热回流反应10h,获得纤维素II型纳米晶粒子产品。
以纤维素原料总量计,其收率为96.6%,结晶度为93%,数均分子量为1906,分子量分布系数Mw/Mn为1.07,晶胞参数为
Figure PCTCN2017118915-appb-000028
α=β=90°,γ=117.1°。其形貌包括两种颗粒状形貌,其中一种颗粒的由纤维素糖链末端构成的外表面为垂直于
Figure PCTCN2017118915-appb-000029
晶带轴的晶面,其长度L和宽度W均为3-10nm之间,高度为3-6nm之间,另一种颗粒的由纤维素糖链末端构成的外表面为垂直于(001)晶带轴的晶面,其长度L在20nm-100nm之间,宽度W在30nm-80nm之间,高度H在5nm-10nm之间。
实施例12
工序1,纤维素原料的非晶化重构:使用棉花作为本发明的含纤维素的原料。加入用8.3wt%NaOH、10wt%尿素和余量的水构成的溶剂体系并搅拌,得到50g 4wt%棉纤维素溶液。搅拌中,加入乙醇直至纤维素完全析出,将析出的非晶化重构的纤维素用乙醇洗涤并干燥。
工序2,非晶化重构的纤维素的晶化酸解:将工序1得到的非晶化重构的纤维素加入至水/乙醇/乙二醇混合溶液中,加入盐酸至溶液中,盐酸浓度为0.1mol/L,加热回流反应10h,获得纤维素II型纳米晶粒子产品。
以纤维素原料总量计,其收率为95.4%,结晶度为96%,数均分子量为1833,分子量分布系数Mw/Mn为1.07,晶胞参数为
Figure PCTCN2017118915-appb-000030
α=β=90°,γ=117.1°。其形貌包括两种颗粒状形貌,其中一种颗粒的由纤维素糖链末端构成的外表面为垂直于
Figure PCTCN2017118915-appb-000031
晶带轴的晶面,其长度L和宽度W均为3-10nm之间,高度为3-6nm之间,另一种颗粒的由纤维素糖链末端构成的外表面为垂直于(001)晶带轴的晶面,其长度L在20nm-100nm之间,宽度W在30nm-80nm之间,高度H在3nm-5nm之间。
实施例13
工序1,纤维素原料的非晶化重构:使用将孢杆菌用1wt%NaOH水溶液在70℃反应后得到的细菌纤维素作为本发明的含纤维素的原料。加入用8.3wt%NaOH、10wt%尿素和余量的水构成的溶剂体系并搅拌,得到50g 5wt%亚麻纤维素溶液。搅拌中,加入乙醇直至纤维素完全析出,将析出的非晶化重构的纤维素用乙醇洗涤并干燥。
工序2,非晶化重构的纤维素的晶化酸解:将工序1得到的非晶化重构的纤维素加入至水/乙醇/乙二醇混合溶液中,加入盐酸至溶液中,盐酸浓度为0.1mol/L,加热回流反应10h, 获得纤维素II型纳米晶粒子产品。
以纤维素原料总量计,其收率为97.3%,结晶度为95%,数均分子量为1315,分子量分布系数Mw/Mn为1.04,晶胞参数为
Figure PCTCN2017118915-appb-000032
α=β=90°,γ=117.1°。其形貌包括两种颗粒状形貌,其中一种颗粒的由纤维素糖链末端构成的外表面为垂直于
Figure PCTCN2017118915-appb-000033
晶带轴的晶面,其长度L和宽度W均为3-10nm之间,高度为3-6nm之间,另一种颗粒的由纤维素糖链末端构成的外表面为垂直于(001)晶带轴的晶面,其长度L在20nm-100nm之间,宽度W在30nm-80nm之间,高度H在3nm-5nm之间。
实施例14
工序1,纤维素原料的非晶化重构:使用将海藻依次经乙醇、1wt%HCl的水溶液、2wt%NaOH的水溶液、1wt%次氯酸钠的水溶液连续回流提取反应后得到的精制海藻纤维素作为本发明的含纤维素的原料。加入用8.3wt%NaOH、10wt%尿素和余量的水构成的溶剂体系并搅拌,得到50g 5wt%稻草纤维素溶液。搅拌中,加入甲醇直至纤维素完全析出,将析出的非晶化重构的纤维素用甲醇洗涤并干燥。
工序2,非晶化重构的纤维素的晶化酸解:将工序1得到的非晶化重构的纤维素加入至水/乙二醇/甲醇混合溶液中,加入硫酸至溶液中,硫酸浓度为1mol/L,加热回流反应4h,获得纤维素II型纳米晶粒子产品。
以纤维素原料总量计,其收率为86.9%,结晶度为96%,数均分子量为1861,分子量分布系数Mw/Mn为1.07,晶胞参数为
Figure PCTCN2017118915-appb-000034
α=β=90°,γ=117.1°。其形貌包括两种颗粒状形貌,其中一种颗粒的由纤维素糖链末端构成的外表面为垂直于
Figure PCTCN2017118915-appb-000035
晶带轴的晶面,其长度L和宽度W均为3-10nm之间,高度为3-6nm之间,另一种颗粒的由纤维素糖链末端构成的外表面为垂直于(001)晶带轴的晶面,其长度L在20nm-100nm之间,宽度W在30nm-80nm之间,高度H在3nm-5nm之间。
实施例15
工序1,纤维素原料的非晶化重构:使用将秸秆依次经5wt%NaOH的水溶液、1wt%HCl的水溶液、1wt%次氯酸钠的水溶液连续回流反应后得到的秸秆精制纤维素作为本发明的含纤维素的原料。加入浓度为86wt%的N-甲基吗啉-N-氧化物的水溶液并搅拌,得到50g 5wt%秸秆纤维素溶液。搅拌中,加入乙醇直至纤维素完全析出,将析出的非晶化重构的纤维素用乙醇洗涤并干燥。
工序2,非晶化重构的纤维素的晶化酸解:将工序1得到的非晶化重构的纤维素加入至水/乙醇/乙二醇混合溶液中,加入盐酸至溶液中,盐酸浓度为0.1mol/L,加热回流反应10h,获得纤维素II型纳米晶粒子产品。
以纤维素原料总量计,其收率为85.2%,结晶度为83%,数均分子量为1370,分子量分布系数Mw/Mn为1.20,晶胞参数为
Figure PCTCN2017118915-appb-000036
α=β=90°,γ=117.1°。 其形貌包括两种颗粒状形貌,其中一种颗粒的由纤维素糖链末端构成的外表面为垂直于
Figure PCTCN2017118915-appb-000037
晶带轴的晶面,其长度L和宽度W均为3-15nm之间,高度为3-10nm之间,另一种颗粒的由纤维素糖链末端构成的外表面为垂直于(001)晶带轴的晶面,其长度L在20nm-100nm之间,宽度W在30nm-80nm之间,高度H在3nm-10nm之间。
实施例16
工序1,纤维素原料的非晶化重构:使用将秸秆依次经5wt%NaOH的水溶液、1wt%HCl的水溶液、1wt%次氯酸钠的水溶液连续回流反应后得到的秸秆精制纤维素作为本发明的含纤维素的原料。加入用6.7wt%LiOH、10wt%尿素和余量的水构成的溶剂体系并搅拌,得到50g5wt%秸秆纤维素溶液。搅拌中,加入乙醇直至纤维素完全析出,将析出的非晶化重构的纤维素用乙醇洗涤并干燥。
工序2,非晶化重构的纤维素的晶化酸解:将工序1得到的非晶化重构的纤维素加入至水/乙醇/乙二醇混合溶液中,加入盐酸至溶液中,盐酸浓度为0.1mol/L,加热回流反应10h,获得纤维素II型纳米晶粒子产品。
以纤维素原料总量计,其收率为93.1%,结晶度为91%,数均分子量为1877,分子量分布系数Mw/Mn为1.07,晶胞参数为
Figure PCTCN2017118915-appb-000038
α=β=90°,γ=117.1°。其形貌包括两种颗粒状形貌,其中一种颗粒的由纤维素糖链末端构成的外表面为垂直于
Figure PCTCN2017118915-appb-000039
晶带轴的晶面,其长度L和宽度W均为3-10nm之间,高度为3-6nm之间,另一种颗粒的由纤维素糖链末端构成的外表面为垂直于(001)晶带轴的晶面,其长度L在20nm-100nm之间,宽度W在30nm-80nm之间,高度H在5nm-10nm之间。
实施例17
工序1,纤维素原料的非晶化重构:使用将秸秆依次经5wt%NaOH的水溶液、1wt%HCl的水溶液、1wt%次氯酸钠的水溶液连续回流反应后得到的秸秆精制纤维素作为本发明的含纤维素的原料。加入用8.3wt%NaOH、10wt%硫脲和余量的水构成的溶剂体系并搅拌,得到50g5wt%秸秆纤维素溶液。搅拌中,加入乙醇直至纤维素完全析出,将析出的非晶化重构的纤维素用乙醇洗涤并干燥。
工序2,非晶化重构的纤维素的晶化酸解:将工序1得到的非晶化重构的纤维素加入至水/乙醇/乙二醇混合溶液中,加入盐酸至溶液中,盐酸浓度为0.1mol/L,加热回流反应10h,获得纤维素II型纳米晶粒子产品。
以纤维素原料总量计,其收率为93.2%,结晶度为92%,数均分子量为1762,分子量分布系数Mw/Mn为1.07,晶胞参数为
Figure PCTCN2017118915-appb-000040
α=β=90°,γ=117.1°。其形貌包括两种颗粒状形貌,其中一种颗粒的由纤维素糖链末端构成的外表面为垂直于
Figure PCTCN2017118915-appb-000041
晶带轴的晶面,其长度L和宽度W均为3-10nm之间,高度为3-6nm之间,另一种颗粒的由 纤维素糖链末端构成的外表面为垂直于(001)晶带轴的晶面,其长度L在20nm-100nm之间,宽度W在30nm-80nm之间,高度H在5nm-10nm之间。
实施例18
工序1,纤维素原料的非晶化重构:使用将秸秆依次经5wt%NaOH的水溶液、1wt%HCl的水溶液、1wt%次氯酸钠的水溶液连续回流反应后得到的秸秆精制纤维素作为本发明的含纤维素的原料。加入用7.2wt%LiOH、10wt%硫脲和余量的水构成的溶剂体系并搅拌,得到50g5wt%秸秆纤维素溶液。搅拌中,加入乙醇直至纤维素完全析出,将析出的非晶化重构的纤维素用乙醇洗涤并干燥。
工序2,非晶化重构的纤维素的晶化酸解:将工序1得到的非晶化重构的纤维素加入至水/乙醇/乙二醇混合溶液中,加入盐酸至溶液中,盐酸浓度为0.1mol/L,加热回流反应10h,获得纤维素II型纳米晶粒子产品。
以纤维素原料总量计,其收率为92.5%,结晶度为91%,数均分子量为1836,分子量分布系数Mw/Mn为1.07,晶胞参数为
Figure PCTCN2017118915-appb-000042
α=β=90°,γ=117.1°。其形貌包括两种颗粒状形貌,其中一种颗粒的由纤维素糖链末端构成的外表面为垂直于
Figure PCTCN2017118915-appb-000043
晶带轴的晶面,其长度L和宽度W均为3-10nm之间,高度为3-6nm之间,另一种颗粒的由纤维素糖链末端构成的外表面为垂直于(001)晶带轴的晶面,其长度L在20nm-100nm之间,宽度W在30nm-80nm之间,高度H在5nm-10nm之间。
实施例19
工序1,纤维素原料的非晶化重构:使用将秸秆依次经5wt%NaOH的水溶液、1wt%HCl的水溶液、1wt%次氯酸钠的水溶液连续回流反应后得到的秸秆精制纤维素作为本发明的含纤维素的原料。加入含有9wt%LiCl的N,N-二甲基乙酰胺构成的溶剂体系并搅拌,得到50g5wt%秸秆纤维素溶液。搅拌中,加入乙醇直至纤维素完全析出,将析出的非晶化重构的纤维素用乙醇洗涤并干燥。
工序2,非晶化重构的纤维素的晶化酸解:将工序1得到的非晶化重构的纤维素加入至水/乙醇/乙二醇混合溶液中,加入盐酸至溶液中,盐酸浓度为0.1mol/L,加热回流反应10h,获得纤维素II型纳米晶粒子产品。
以纤维素原料总量计,其收率为92.7%,结晶度为93%,数均分子量为1745,分子量分布系数Mw/Mn为1.07,晶胞参数为
Figure PCTCN2017118915-appb-000044
α=β=90°,γ=117.1°。其形貌包括两种颗粒状形貌,其中一种颗粒的由纤维素糖链末端构成的外表面为垂直于
Figure PCTCN2017118915-appb-000045
晶带轴的晶面,其长度L和宽度W均为3-10nm之间,高度为3-6nm之间,另一种颗粒的由纤维素糖链末端构成的外表面为垂直于(001)晶带轴的晶面,其长度L在20nm-100nm之间,宽度W在30nm-80nm之间,高度H在5nm-10nm之间。
实施例20
工序1,纤维素原料的非晶化重构:使用将秸秆依次经5wt%NaOH的水溶液、1wt%HCl的水溶液、1wt%次氯酸钠的水溶液连续回流反应后得到的秸秆精制纤维素作为本发明的含纤维素的原料。加入含有10wt%LiBr的N,N-二甲基甲酰胺构成的溶剂体系并搅拌,得到50g5wt%秸秆纤维素溶液。搅拌中,加入乙醇直至纤维素完全析出,将析出的非晶化重构的纤维素用乙醇洗涤并干燥。
工序2,非晶化重构的纤维素的晶化酸解:将工序1得到的非晶化重构的纤维素加入至水/乙醇/乙二醇混合溶液中,加入盐酸至溶液中,盐酸浓度为0.1mol/L,加热回流反应10h,获得纤维素II型纳米晶粒子产品。
以纤维素原料总量计,其收率为91.5%,结晶度为94%,数均分子量为1893,分子量分布系数Mw/Mn为1.07,晶胞参数为
Figure PCTCN2017118915-appb-000046
α=β=90°,γ=117.1°。其形貌包括两种颗粒状形貌,其中一种颗粒的由纤维素糖链末端构成的外表面为垂直于
Figure PCTCN2017118915-appb-000047
晶带轴的晶面,其长度L和宽度W均为3-10nm之间,高度为3-6nm之间,另一种颗粒的由纤维素糖链末端构成的外表面为垂直于(001)晶带轴的晶面,其长度L在20nm-100nm之间,宽度W在30nm-80nm之间,高度H在5nm-10nm之间。
对以上实施例1-20得到的纤维素II型纳米晶粒子产品进行银氨溶液法测定,结果显示本发明得到的纤维素II型纳米晶粒子均具有活性醛基,而且经分析,这些活性醛基位于由糖链末端所构成的垂直于(001)晶带轴的晶面或垂直于
Figure PCTCN2017118915-appb-000048
晶带轴的晶面上。
以上实施例结果表明,本发明的纤维素II型纳米晶粒子具有结晶度高、分子量小、分子量分布窄、尺寸分布窄、晶体结构完整、表面结构明确,表面化学修饰潜力大等优点,可以用于催化剂载体、复合材料增强相等应用中。

Claims (30)

  1. 一种纤维素II型纳米晶粒子,其特征在于,其结晶度≥80%;其数均分子量为1200~2500,分子量分布系数Mw/Mn≤1.30。
  2. 如权利要求1所述的纤维素II型纳米晶粒子,其特征在于,其分子量分布系数Mw/Mn≤1.20。
  3. 如权利要求2所述的纤维素II型纳米晶粒子,其特征在于,其分子量分布系数Mw/Mn≤1.10。
  4. 如权利要求1所述的纤维素II型纳米晶粒子,其特征在于,其数均分子量为1500~2200。
  5. 如权利要求4所述的纤维素II型纳米晶粒子,其特征在于,其数均分子量为1600~2000。
  6. 如权利要求1所述的纤维素II型纳米晶粒子,其特征在于,该纤维素II型纳米晶粒子的晶胞参数为
    Figure PCTCN2017118915-appb-100001
    α=β=90°,γ=117.1°。
  7. 如权利要求1所述的纤维素II型纳米晶粒子,其特征在于,由纤维素糖链末端构成的该纤维素II型纳米晶粒子的外表面为垂直于(001)晶带轴的晶面、或为垂直于
    Figure PCTCN2017118915-appb-100002
    晶带轴的晶面,该外表面的长度和宽度限定了该纤维素II型纳米晶粒子的长度L和宽度W,垂直于该外表面的尺寸限定了该纤维素II型纳米晶离子的高度H。
  8. 如权利要求7所述的纤维素II型纳米晶粒子,其特征在于,在由糖链末端所构成的所述垂直于(001)晶带轴的晶面或所述垂直于
    Figure PCTCN2017118915-appb-100003
    晶带轴的晶面上存在活性醛基。
  9. 如权利要求7所述的纤维素II型纳米晶粒子,其特征在于,所述由纤维素糖链末端构成的该纤维素II型纳米晶粒子的外表面为垂直于
    Figure PCTCN2017118915-appb-100004
    晶带轴的晶面,该纤维素II型纳米晶粒子的长度L和宽度W均为3nm-20nm之间,高度H为3nm-10nm之间。
  10. 如权利要求7所述的纤维素II型纳米晶粒子,其特征在于,所述由纤维素糖链末端构成的该纤维素II型纳米晶粒子的外表面为垂直于(001)晶带轴的晶面,该纤维素II型纳米晶粒子的长度L和宽度W均在15nm-200nm之间,高度H在2nm-10nm之间。
  11. 如权利要求9所述的纤维素II型纳米晶粒子,其特征在于,其长度L和宽度W均在3nm-15nm之间,高度H在3nm-8nm之间。
  12. 如权利要求10所述的纤维素II型纳米晶粒子,其特征在于,其长度L和宽度W均在3nm-10nm之间,高度H在3nm-6nm之间。
  13. 如权利要求1所述的纤维素II型纳米晶粒子,其特征在于,其结晶度≥90%。
  14. 如权利要求13所述的纤维素II型纳米晶粒子,其特征在于,其结晶度≥95%。
  15. 如权利要求1所述的纤维素II型纳米晶粒子,其特征在于,其产率,相对于纤维素原料的总重量计,高于80%。
  16. 如权利要求15所述的纤维素II型纳米晶粒子,其特征在于,其产率,相对于纤维素 原料的总重量计,高于90%。
  17. 如权利要求1-16中任一项所述的纤维素II型纳米晶粒子,其特征在于,该纤维素II型纳米晶粒子为单晶粒子。
  18. 一种制备权利要求1-17中任一项所述的纤维素II型纳米晶粒子的方法,其特征在于,其包括如下工序:
    工序1:将含纤维素的原料溶解,得到纤维素溶液;将该纤维素溶液与不良溶剂混合,使溶解的纤维素在不良溶剂中析出,得到经非晶化重构的纤维素;
    工序2:将工序1制备得到的经非晶化重构的纤维素加入到水/有机溶剂的混合溶液中,加入无机酸调节酸度,加热反应,得到所述的纤维素II型纳米晶粒子。
  19. 如权利要求18所述的方法,其特征在于,工序1中,所述含纤维素的原料为分离自植物、动物、藻类、细菌的精制纤维素或纤维素浆液。
  20. 如权利要求18所述的方法,其特征在于,工序1中,用于溶解含纤维素的原料的溶剂选自氢氧化钠/尿素/水,氢氧化锂/尿素/水,氢氧化钠/硫脲/水,氢氧化锂/硫脲/水,N-甲基吗啉-N-氧化物/水,N,N-二甲基乙酰胺/LiCl,N,N-二甲基甲酰胺/LiBr的一种或两种以上。
  21. 如权利要求18所述的方法,其特征在于,工序1中,所述不良溶剂选自水、醇类、酮类、酯类、醚类、芳香烃类、烷烃类溶剂中的一种或两种以上。
  22. 如权利要求21所述的方法,其特征在于,工序1中,所述不良溶剂为水、醇、酮中的一种或两种以上。
  23. 如权利要求21所述的方法,其特征在于,工序1中,所述不良溶剂为甲醇、乙醇、正丙醇、异丙醇、仲丁醇、叔丁醇、乙二醇、丙三醇、丙酮中的一种或两种以上。
  24. 如权利要求18所述的方法,其特征在于,工序2中,所述有机溶剂为醇类、醚类、酮类、酯类、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲亚砜、四氢呋喃、1,4-二氧六环中的一种或两种以上。
  25. 如权利要求24所述的方法,其特征在于,工序2中,所述有机溶剂为甲醇、乙醇、异丙醇、异丁醇、仲丁醇、叔丁醇、乙二醇、丙三醇、丙酮中的一种或两种以上,或者所述有机溶剂为四氢呋喃和/或1,4-二氧六环,或者所述有机溶剂为丙酮和/或乙酸乙酯。
  26. 如权利要求18所述的方法,其特征在于,工序2中,所述无机酸为盐酸、硫酸、磷酸、高氯酸、氢溴酸中的一种或两种以上。
  27. 如权利要求18所述的方法,其特征在于,工序2中,所述无机酸的浓度为0.01-5mol/L。
  28. 如权利要求27所述的方法,其特征在于,工序2中,所述无机酸的浓度为0.1-2mol/L。
  29. 如权利要求18-28中任一项所述的方法,其特征在于,将工序2得到的纤维素II型纳米晶粒子经清洗后以湿态方式保存。
  30. 权利要求1-17中任一项所述的纤维素II型纳米晶粒子或权利要求18-29任一项所述的方法制备的纤维素II型纳米晶粒子的用途,其特征在于,其可用作催化剂载体或复合材料增强相。
PCT/CN2017/118915 2017-01-03 2017-12-27 一种纤维素ii型纳米晶粒子及其制备方法和应用 WO2018126959A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197022928A KR20190101453A (ko) 2017-01-03 2017-12-27 셀룰로오스 ii 나노결정 입자 및 이의 제조 방법 및 용도
EP17890169.0A EP3567057A4 (en) 2017-01-03 2017-12-27 NANOCRYSTALLINE PARTICLES OF CELLULOSE TYPE II AND THE MANUFACTURING METHOD AND APPLICATION FOR IT
US16/475,921 US11149095B2 (en) 2017-01-03 2017-12-27 Cellulose II nanocrystal particles and preparation method and use thereof
JP2019556409A JP7002563B2 (ja) 2017-01-03 2017-12-27 セルロースii型ナノ結晶粒子及びその調製方法と応用

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710000911.8 2017-01-03
CN201710000911 2017-01-03
CN201710794872.3A CN108264569B (zh) 2017-01-03 2017-09-06 一种纤维素ii型纳米晶粒子及其制备方法和应用
CN201710794872.3 2017-09-06

Publications (1)

Publication Number Publication Date
WO2018126959A1 true WO2018126959A1 (zh) 2018-07-12

Family

ID=62770929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118915 WO2018126959A1 (zh) 2017-01-03 2017-12-27 一种纤维素ii型纳米晶粒子及其制备方法和应用

Country Status (6)

Country Link
US (1) US11149095B2 (zh)
EP (1) EP3567057A4 (zh)
JP (1) JP7002563B2 (zh)
KR (1) KR20190101453A (zh)
CN (1) CN108264569B (zh)
WO (1) WO2018126959A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022515100A (ja) * 2019-07-01 2022-02-17 上海清美緑色食品(集団)有限公司 オカラを用いたセルローススポンジの調製方法
CN114195173A (zh) * 2022-01-12 2022-03-18 太原理工大学 一种针状氯化钠晶体的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109096406B (zh) * 2018-10-25 2020-12-25 河北农业大学 一种ii型纳米晶体纤维素酯及其制备工艺及用途
CN116752367A (zh) * 2023-06-07 2023-09-15 广东工业大学 一种基于金属盐溶液提取纳米纤维素的方法
CN116813806A (zh) * 2023-07-14 2023-09-29 北京理工大学 一种单分散纤维寡糖的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1369508A (zh) * 2001-02-13 2002-09-18 中国科学院广州化学研究所 一种具有纤维素ii晶型的纳米微晶纤维素及制法
WO2015074120A1 (en) * 2013-11-22 2015-05-28 The University Of Queensland Nanocellulose
CN105713100A (zh) * 2016-03-16 2016-06-29 东北林业大学 一种快速制备纤维素纳米晶的方法
CN105754308A (zh) * 2016-03-21 2016-07-13 武汉理工大学 一种乙酰化纤维素纳米晶复合改性生物质基聚酯材料及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682435A (ja) * 1992-09-04 1994-03-22 Kanebo Ltd セルロース系ゲル濾過充填剤及びその製造方法
DE4342442C2 (de) * 1993-12-13 1996-11-21 Akzo Nobel Nv Verfahren zur Herstellung von Level-off DP Cellulose (LODP Cellulose) und ihre Desaggregierung zu mikrokristalliner Cellulose
JP4270525B2 (ja) 1997-12-05 2009-06-03 旭化成ケミカルズ株式会社 球状再生セルロース微粒子及びそれからなる水懸濁液、ゲル状物質及び球状再生セルロース微粒子の製法
WO2002022172A2 (en) * 2000-09-14 2002-03-21 University Of Iowa Research Foundation Powdered/microfibrillated cellulose
CN1164659C (zh) * 2002-10-25 2004-09-01 中国科学院广州化学研究所 纤维素的溶解方法及纳米晶体纤维素ii和纤维素衍生物的制法
WO2006002419A2 (en) 2004-06-22 2006-01-05 University Of Iowa Research Foundation Cross-linked cellulose ii
CA2782471C (en) * 2009-12-15 2017-02-28 National Research Council Of Canada Cellulose nanocrystals from renewable biomass
EP3186286B1 (en) * 2014-09-26 2024-04-10 Renmatix Inc. Cellulose-containing compositions and methods of making same
CN105237644B (zh) * 2015-11-13 2018-05-18 青岛科技大学 一种具有较低聚合度的纤维素及其制备方法
US10611891B2 (en) * 2018-02-01 2020-04-07 The Hong Kong Research Institute Of Textiles And Apparel Limited Textile waste processing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1369508A (zh) * 2001-02-13 2002-09-18 中国科学院广州化学研究所 一种具有纤维素ii晶型的纳米微晶纤维素及制法
WO2015074120A1 (en) * 2013-11-22 2015-05-28 The University Of Queensland Nanocellulose
CN105713100A (zh) * 2016-03-16 2016-06-29 东北林业大学 一种快速制备纤维素纳米晶的方法
CN105754308A (zh) * 2016-03-21 2016-07-13 武汉理工大学 一种乙酰化纤维素纳米晶复合改性生物质基聚酯材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3567057A4
YANG HE ET AL.: "Preparation of carboxymethyl cellulose from bamboo shoot shell", CHEMICAL INDUSTRY AND ENGINEERING PROGRESS, vol. 32, no. 10, 2013

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022515100A (ja) * 2019-07-01 2022-02-17 上海清美緑色食品(集団)有限公司 オカラを用いたセルローススポンジの調製方法
JP7165825B2 (ja) 2019-07-01 2022-11-04 上海清美緑色食品(集団)有限公司 オカラを用いたセルローススポンジの調製方法
CN114195173A (zh) * 2022-01-12 2022-03-18 太原理工大学 一种针状氯化钠晶体的制备方法
CN114195173B (zh) * 2022-01-12 2023-11-28 太原理工大学 一种针状氯化钠晶体的制备方法

Also Published As

Publication number Publication date
CN108264569A (zh) 2018-07-10
US11149095B2 (en) 2021-10-19
EP3567057A4 (en) 2020-08-26
CN108264569B (zh) 2020-01-03
JP7002563B2 (ja) 2022-01-20
US20190330378A1 (en) 2019-10-31
EP3567057A1 (en) 2019-11-13
JP2020504224A (ja) 2020-02-06
KR20190101453A (ko) 2019-08-30

Similar Documents

Publication Publication Date Title
WO2018126959A1 (zh) 一种纤维素ii型纳米晶粒子及其制备方法和应用
Mahmud et al. Preparation of different polymorphs of cellulose from different acid hydrolysis medium
Jin et al. On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II
Mushi et al. Nanostructured membranes based on native chitin nanofibers prepared by mild process
Guo et al. Isolation and characterization of nanocellulose crystals via acid hydrolysis from agricultural waste-tea stalk
Bano et al. Studies on cellulose nanocrystals isolated from groundnut shells
Lu et al. Preparation and characterization of cellulose nanocrystals from rice straw
Jiang et al. Chemically and mechanically isolated nanocellulose and their self-assembled structures
Fang et al. Hydroxyapatite crystal formation in the presence of polysaccharide
Wang et al. Strength enhanced hydrogels constructed from agarose in alkali/urea aqueous solution and their application
CN108034007B (zh) 一种双醛纤维素纳米晶须的制备方法
Jiang et al. Potentiality of carbon quantum dots derived from chitin as a fluorescent sensor for detection of ClO−
JP2016537464A (ja) 多糖繊維を製造するための組成物
Zhang et al. Sodium alginate fasten cellulose nanocrystal Ag@ AgCl ternary nanocomposites for the synthesis of antibacterial hydrogels
Li et al. Eco-friendly synthesis of symmetrical pyramid structured zinc oxide nanoparticles and high temperature stable UV-shielding properties of zinc oxide/polyurethane composite membranes
Baniasad et al. Thermal stability enhancement of modified carboxymethyl cellulose films using SnO2 nanoparticles
Zewude et al. Production of chitin nanoparticles by bottom-up approach from alkaline chitin solution
Li et al. Hydrothermal synthesis, characterization, and bactericidal activities of hybrid from cellulose and TiO2
CN113045787A (zh) 一种光限幅特性的纳米纤维素液晶纸的制备方法
Zhao et al. Room temperature preparation of cellulose nanocrystals with high yield via a new ZnCl2 solvent system
Maraschin et al. Chitosan nanocomposites with graphene-based filler
Kang et al. Facile preparation of cellulose nanocrystals/ZnO hybrids using acidified ZnCl2 as cellulose hydrolytic media and ZnO precursor
Hu et al. Top-down extraction of surface carboxylated-silk nanocrystals and application in hydrogel preparation
WO2019105287A1 (zh) 一种纳米纤维素及其制备方法和用途
Funes et al. Theoretical and experimental studies of chitin nanocrystals treated with ionic liquid or deep eutectic solvent to afford nanochitosan sheets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890169

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556409

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197022928

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017890169

Country of ref document: EP

Effective date: 20190805