WO2018126843A1 - 发送方式确定方法、通信节点和计算机存储介质 - Google Patents

发送方式确定方法、通信节点和计算机存储介质 Download PDF

Info

Publication number
WO2018126843A1
WO2018126843A1 PCT/CN2017/115090 CN2017115090W WO2018126843A1 WO 2018126843 A1 WO2018126843 A1 WO 2018126843A1 CN 2017115090 W CN2017115090 W CN 2017115090W WO 2018126843 A1 WO2018126843 A1 WO 2018126843A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication node
frequency division
division multiplexing
orthogonal frequency
mode
Prior art date
Application number
PCT/CN2017/115090
Other languages
English (en)
French (fr)
Inventor
王瑜新
鲁照华
李儒岳
陈艺戬
吴昊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018126843A1 publication Critical patent/WO2018126843A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • H04B7/066Combined feedback for a number of channels, e.g. over several subcarriers like in orthogonal frequency division multiplexing [OFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method for determining a transmission mode, a communication node, and a computer storage medium.
  • a Physical Downlink Control Channel (PDCCH) is used to carry uplink and downlink scheduling information and uplink power control information.
  • DCI Downlink Control Information
  • DCI format is divided into DCI format 0, 1, 1A, 1B, 1C, 1D, 2, 2A, 3, 3A, etc., and later evolved to LTE-A Release 12 ( DCI formats 2B, 2C, and 2D have been added to LTE-A Release 12 to support a variety of different applications and transmission modes.
  • the evolved base station (e-Node-B, hereinafter referred to as the eNB) can configure the user equipment (User Equipment, UE for short) through the downlink control information, or the UE accepts the configuration of the higher layers, which is also referred to as high-level signaling. Configure the UE.
  • User equipment can also be called a terminal;
  • High-frequency carrier communication has a large available bandwidth and can provide efficient high-speed data communication.
  • a big technical challenge for high-frequency carrier communication is that relatively low-frequency signals, high-frequency signals have a very large fading in space, although
  • there is a spatial fading loss problem in the communication of high-frequency signals in the outdoor but due to the reduction of the wavelength, more antennas can usually be used, so that communication can be performed based on the beam to compensate for the fading loss in space.
  • the high-frequency communication system except the first communication node will configure a large number of antennas to form a downlink transmission beam to compensate for the spatial fading of high-frequency communication, and the user's second communication node is also the same.
  • a large number of antennas are also configured to form an uplink transmission beam.
  • the second communication node can use two different transmission waveforms, which are discrete Fourier transform spread spectrum orthogonal frequency division multiplexing (DFT-S-OFDM) and cyclic prefix orthogonal frequency division. Multiplexing (CP-OFDM), but in actual implementation, the actual transmission effect of these two transmission methods does not achieve the desired ideal effect.
  • DFT-S-OFDM discrete Fourier transform spread spectrum orthogonal frequency division multiplexing
  • CP-OFDM cyclic prefix orthogonal frequency division. Multiplexing
  • embodiments of the present invention are directed to providing a method for determining a transmission mode and a communication node and a computer storage medium to at least partially solve the problem that the transmission effect of different frequency division multiplexing is not good enough. .
  • a first aspect of the embodiments of the present invention provides a method for determining a sending manner, including:
  • Both the first communication node and the second communication node predefine a transmission mode used by the second communication node to transmit information, wherein the information includes service data and/or control information.
  • a second aspect of the embodiments of the present invention provides a method for determining a sending manner, including:
  • the second communication node and the first communication node both predefine a transmission mode used by the second communication node to transmit information, where the information includes service data and/or control information.
  • a third aspect of the embodiment of the present invention provides a communication node, where the communication node is a first communication node, and includes:
  • a determining unit configured to determine a sending manner used by the second communications node to send information
  • a first sending unit configured to: indicate, by using signaling, the sending manner to the second communications node;
  • the first pre-defined unit is configured to predefine a transmission manner used by the second communication node to transmit information control, and the information includes service data and/or control information.
  • a fourth aspect of the embodiments of the present invention provides a communications node, where the communications node is a second communications node, including:
  • a second receiving unit configured to receive signaling sent by the first communications node, where the signaling is used to indicate a sending manner used by the second communications node to send information
  • a second pre-defined unit configured to pre-define with each of the first communication nodes a transmission manner used by the second communication node to transmit information, where the information includes service data and/or control information.
  • the fifth aspect of the embodiment of the present invention further provides another communication node, including:
  • a communication interface configured to exchange information with other communication nodes
  • the processor coupled to the communication interface, is configured to implement a transmission mode determination method provided by one or more of the foregoing technical solutions by execution of computer executable instructions.
  • a sixth aspect of the embodiments of the present invention provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to implement a transmission mode determining method provided by one or more of the foregoing technical solutions.
  • the sending mode determining party, the communication node and the computer storage medium provided by the embodiments of the present invention. It is found that the two orthogonal frequency division multiplexing, DFT-S-OFDM and CP-OFDM, substantially correspond to different transmission modes. If the receiver does not know that the sender adopts the transmission mode, it will cause the current use and transmission. The receiving mode corresponding to the mode is poor, and the receiving effect is poor, resulting in poor communication quality.
  • the first communication node notifies the second communication node of the transmission mode by sending the information, or determines the used transmission mode by predefining with the second communication node, in which case, based on the CP-OFDM and
  • the transmission method is known in advance before DFT-S-OFDM communication.
  • the second communication node can directly receive information according to the receiving manner corresponding to the determined transmission mode, thereby ensuring communication quality when using CP-OFDM and DFT-S-OFDM, and having the characteristics of being simple to implement; In the prior art, the receiving method cannot know the problem of poor communication quality caused by the transmission method.
  • FIG. 1 is a schematic flowchart diagram of a first method for determining a sending manner according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a second method for determining a sending manner according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a third method for determining a sending manner according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart diagram of a fourth method for determining a sending manner according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a first first communication node according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a second first communication node according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a third first communication node according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a fourth second communication node according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a first type of second communication node according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a second type of second communication node according to an embodiment of the present invention.
  • this embodiment provides a method for determining a sending manner, including:
  • Step S110 The first communication node determines a sending manner used by the second communications node to send information.
  • Step S120 The signaling mode is indicated to the second communication node by signaling
  • this embodiment further provides another method for determining a sending manner, including:
  • Step S200 The first communication node and the second communication node both predefine a transmission manner used by the second communication node to transmit information, where the information includes service data and/or control information.
  • the first communication node may be a base station of a macro cell, a base station or a transmission node of a small cell, a sending node in a high frequency communication system, a sending node in an Internet of Things system, and the like.
  • the second communication node may be a receiving node in a communication system such as a user terminal (UE), a mobile phone, a portable device, or a car.
  • UE user terminal
  • the base station, the sending node, and the like may serve as the second communications node, and the UE may be referred to as a first communications node.
  • the first communication node may be a transmitting node that transmits signaling indicating a transmission mode
  • the second communication node may be a receiving node that receives the signaling.
  • DFT-S-OFDM and CP-OFDM may be included; wherein the DFT-S-OFDM may also be referred to as a single carrier frequency division multiple access, single carrier transmission waveform; OFDM can also be referred to as an orthogonal frequency division multiple access, multi-carrier transmission waveform.
  • the sending mode is a sending mode of uplink information.
  • the uplink information includes uplink service data and/or uplink control information.
  • the first communication node and the second communication node are in determining a transmission mode Previously, the two parties pre-defined the transmission method through information negotiation or according to the communication protocol.
  • the method further includes:
  • Step S100 Before the first communication node determines the sending manner, receiving, by the second communications node, a sending manner suggested by the second communications node or related information of a power amplifier PA of the second communications node
  • the related information includes at least one of: a first difference between a saturation region start voltage of the power amplifier and a voltage of the quiescent operating point, a saturation region start current of the power amplifier, and a static operating point a second difference between the currents, a range in which the static operating point of the power amplifier is located;
  • the step S110 may include:
  • the sending manner is determined according to the recommended sending manner or the related information of the PA.
  • the proposed transmission mode is the transmission mode desired by the second communication node, and the first communication node may directly select the transmission mode suggested by the second communication node as the final transmission mode of the uplink transmission of the second communication node. .
  • the second communication node determines the recommended transmission mode, and may also determine according to related information of its own PA. When the first difference is greater than the first threshold, CP-OFDM is adopted, otherwise DFT-S-OFDM may be used; or when the second difference is greater than the second threshold, CP-OFDM is adopted Otherwise, DFT-S-OFDM can be used.
  • the first threshold and the second threshold may be preset values or calculated according to a preset function relationship.
  • the first threshold value and the second threshold value may be the same as the peak-to-average ratio of the data transmitted by the second communication node to the first communication node or the Cubic Metric (CM) value of the data transmission power.
  • CM Cubic Metric
  • the minimum operational signal of the power amplifier in the linear amplification interval is E, and the maximum operating signal is F; when the minimum operating signal is the minimum operating voltage, the maximum operating signal is the maximum operating voltage; When the minimum electrical signal is a minimum operating current, the maximum operating signal is a maximum operating current;
  • the power amplifier is divided into three sections in a linear amplification interval, which are interval 1 and interval 2, respectively. And interval 3;
  • the working signal range corresponding to the interval 1 is [E, E+(F-E)/2-delta);
  • the working signal range corresponding to the interval 2 is [E+(F-E)/2-delta, E+(F-E)/2+delta];
  • the working signal range corresponding to the interval 3 is (E+(F-E)/2+delta, F];
  • delta is a positive real number less than (F-E)/2.
  • the first communication node may directly determine the correspondence between each interval and the sending mode. The manner in which the second communication node transmits the information.
  • the transmission mode is a discrete Fourier transform. Orthogonal frequency division multiplexing of spread spectrum
  • the transmission mode is cyclic prefix orthogonal frequency division multiplexing.
  • the transmission mode when the first difference is greater than the first threshold or the second difference is greater than the second threshold, the transmission mode is cyclic prefix orthogonal frequency division multiplexing. Otherwise, the transmission mode is orthogonal frequency division multiplexing of discrete Fourier transform spread spectrum.
  • the signaling includes at least one of the following:
  • the modulation coding mode index signaling indicating the uplink data the modulation mode signaling indicating the uplink data, the rank signaling indicating the uplink spatial multiplexing, the value signaling indicating the redundancy version, and the sequence type used for configuring the uplink reference signal Signaling.
  • the first communication node may determine at least the transmission mode to the second communication node by using dedicated signaling, or may multiplex other signaling implicit indications.
  • the method of sending is signaling that indicates other information.
  • the first communication node and the second communication node both define a correspondence between other information and a transmission mode in advance, so after the second communication node receives the signaling, the solution The signal is encoded, and the content and the corresponding relationship are obtained by decoding, and the current transmission mode determined by the first communication node is known.
  • the first communication node sends the signaling, the first communication node needs to select a signaling indication indicating the currently selected transmission mode to the second communication node according to the determined transmission mode and the corresponding relationship.
  • the S200 can include:
  • both sides are predefined.
  • the method is cyclic prefix orthogonal frequency division multiplexing. Otherwise, the two sides predefine the orthogonal frequency division multiplexing in which the transmission mode is discrete Fourier transform spread, where C is a positive integer greater than or equal to 2.
  • the step S200 may include:
  • the two parties pre-define the mode as cyclic prefix orthogonal frequency division multiplexing, when the uplink data is When the modulation mode is not 16 orthogonal amplitude modulation QAM or 64QAM or 256QAM or a higher order modulation mode than 256QAM, or when the modulation coding mode index of the uplink data is smaller than the C, the two parties pre-define the transmission mode as a cyclic prefix.
  • Orthogonal Frequency Division Multiplexing or orthogonal frequency division multiplexing of the discrete Fourier transform spread spectrum wherein the C is a positive integer greater than or equal to 2. That is, when the modulation mode of the uplink data is not 16 orthogonal amplitude modulation QAM or 64QAM or 256QAM or a higher order modulation mode than 256QAM, or when the modulation coding mode index of the uplink data is smaller than the C, a loop may be randomly selected.
  • One of prefix orthogonal frequency division multiplexing and orthogonal frequency division multiplexing of the discrete Fourier transform spread spectrum is not 16 orthogonal amplitude modulation QAM or 64QAM or 256QAM or a higher order modulation mode than 256QAM.
  • the amount of data generated is larger. Therefore, in this embodiment, in order to balance the relationship between the transmission resource and the data amount, priority is given when the modulation mode of the uplink data is 16 orthogonal.
  • the modulation mode index of uplink data is 16 orthogonal.
  • cyclic prefix orthogonal frequency division multiplexing with higher spectrum resource utilization is used as the transmission method.
  • Table 1 Coded modulation mode, transport block size index, and redundancy version table of the Physical Uplink Share Channel (PUSCH)
  • the modulation order of the coded modulation method is constant, so the correspondence relationship between the coded modulation order of the coded modulation method and the coded modulation mode index is the correspondence between the coded modulation mode and the coded modulation mode index.
  • the step S200 may include:
  • the uplink spatial multiplexing rank is 1 and the uplink data is modulated by quadrature phase shift keying QPSK or 16 quadrature amplitude modulation QAM, or when the uplink spatial multiplexing rank is 1 and the uplink data is modulated and encoded.
  • the mode index is less than or equal to M1
  • the two parties pre-define the orthogonal frequency division multiplexing in which the transmission mode is discrete Fourier transform spread, otherwise the two sides pre-define the transmission mode to cyclic prefix orthogonal frequency division multiplexing.
  • M1 is an integer of 2 to 30.
  • the rank of the uplink spatial multiplexing is 1, it indicates that the second communication device is at the edge of the cell, and the orthogonal frequency division multiplexing of the discrete Fourier transform spread with better orthogonal performance is preferentially used as the transmission mode. To ensure the orthogonality of the signal transmitted by the UE.
  • the step S200 may include:
  • both sides are predefined.
  • the transmission mode is orthogonal frequency division multiplexing of the discrete Fourier transform spread spectrum. Otherwise, the two sides pre-define the transmission mode to cyclic prefix orthogonal frequency division multiplexing, where the M2 is an integer of 2 to 30.
  • the step S200 may include:
  • the two parties pre-define the transmission mode to be discrete Fourier transform spread spectrum positive Frequency division multiplexing;
  • the two parties pre-define the transmission mode to cyclic prefix orthogonal frequency division multiplexing.
  • the reference sequence type is an uplink reference signal sequence type.
  • the uplink reference signal sequence type of the UE is a Zadoffu Chu sequence or a constant modulus zero autocorrelation CAZAC sequence, it indicates that the UE has higher orthogonality requirements, so it is preferred to use a discrete Fourier with better orthogonality. Transform OFDM orthogonal frequency division multiplexing to meet the orthogonality requirements.
  • the step S200 may include:
  • the two parties pre-define the transmission mode to cyclic prefix orthogonal frequency division multiplexing;
  • the two parties pre-define the orthogonal frequency division multiplexing in which the transmission mode is discrete Fourier transform spread spectrum.
  • the transmission performance of the handover is generally required.
  • the orthogonality of the discrete Fourier transform is preferentially used. Frequency division multiplexing, when using Zadoffu Chu sequence or constant modulus zero autocorrelation CAZAC sequence, cyclic prefix orthogonal frequency division multiplexing can be used.
  • the step S200 may further include: the first communication node and the The second communication node pre-defines the second communication node, and the information is sent by using different transmission modes in different time domain resources, where the time domain resource includes at least one of the following: a time domain symbol, a time slot, and a sub- Frame, subframe collection.
  • the step S200 may include: the first communication node and the second communication node predefining the second communication node to send the information in different frequency domain resources using different transmission modes, where the frequency
  • the domain resource includes at least one of the following: a frequency domain resource block RB, an RB set, a subcarrier, a component carrier, a frequency domain bandwidth, and a frequency domain subband.
  • the time domain resources may include time domain symbols, time slots, subframes, or a set of subframes.
  • the frequency domain resources herein may include frequency domain resource blocks (RBs), RB sets including one or more frequency domain resource blocks, subcarriers, component carriers, and the like.
  • the method further includes the first communication node transmitting, to the neighboring cell, transmission mode information indicating the transmission mode.
  • the first communication node is covered by one cell A, and the neighboring cell is a neighboring cell of the cell A.
  • the first communication node sends the transmission mode information indicating the selected transmission mode to the neighboring cell.
  • the first communication node that is sent to the neighboring cell, at least to the neighboring cell may be the second communication node when the specific implementation is implemented, so that the neighboring cell knows that the corresponding second communication node sends the information, for example, Uplink information, the method of transmission used.
  • the sending mode information includes at least one of: a sending mode used on the time domain resource, a sending mode used on the frequency domain resource, and a sending mode used on the beam domain resource.
  • this embodiment provides a method for determining a sending manner, including:
  • Step S300 The second communication node receives the signaling sent by the first communications node, where the signaling is used to indicate a sending manner used by the second communications node to send the information.
  • this embodiment further provides another method for determining a sending manner, including:
  • Step S400 The second communication node and the first communication node predefine a transmission manner used by the second communication node to transmit information, where the information includes service data and/or control information. Both of the transmission methods are applied to the second communication node, where the second communication node can be various types of user terminals and the like.
  • the user terminal may include a terminal such as a human-mounted user terminal or an in-vehicle user terminal.
  • the second communication node here is not limited to the user terminal, and may also be a Machine 2 Machine (M2M) device in the physical network.
  • M2M Machine 2 Machine
  • the second communication node receives the signaling sent by the first communication node, and obtains the transmission mode determined by the first communication node by using signaling analysis.
  • the second communication node sends information to the first communication node, it is sent by using a determined transmission mode.
  • the second communication node and the first communication node predefine the transmission mode, so that the second communication node can also easily determine the transmission mode of the information sent to the first communication node.
  • the transmission mode includes at least one of the following: orthogonal frequency division multiplexing of discrete Fourier transform, and cyclic prefix orthogonal frequency division multiplexing.
  • the second communication node may transmit information to the first communication node by using one of orthogonal frequency division multiplexing or cyclic prefix orthogonal frequency division multiplexing of discrete Fourier transform spread spectrum.
  • the method before the first communication node determines the sending manner, the method further includes:
  • the second communication node reports, to the first communication node, a transmission manner suggested by the second communication node or related information of a power amplifier PA of the second communication node, where the related information includes at least one of the following: The first difference between the saturation region start voltage of the amplifier and the voltage at the quiescent operating point, the second difference between the saturation region start current of the power amplifier and the current at the quiescent operating point, and the static operating point of the power amplifier The interval,
  • the suggested sending mode or related information of the PA is used by the first communications node to determine the sending mode.
  • the second communication node may propose a simple transmission mode according to the PA related information or the uplink coding modulation mode and other various parameters, and notify the first communication node that the first communication node is based on the first communication node.
  • the suggestion of the second communication node proceeds to determine whether to use the suggested transmission mode for communication.
  • the second communication node sends the information about the PA to the first communication node, so that the first communication node can select the current information according to the information about the PA of the second communication node.
  • the transmission mode of the transmission power characteristic of the second communication node is used for the information transmission of the second communication node, thereby avoiding the problem that the transmission power of the second communication node cannot meet the signal quality difference caused by the power consumption of a certain transmission mode.
  • the minimum operating signal of the power amplifier in the linear amplification interval is E, and the maximum working signal is F; when the minimum working signal is the minimum operating voltage, the maximum working signal is the maximum operating voltage; When the minimum electrical signal is the minimum operating current, the maximum operating signal is the maximum operating current;
  • the power amplifier is divided into three sections in a linear amplification section, namely, section 1, section 2, and section 3;
  • the working signal range corresponding to the interval 1 is [E, E+(F-E)/2-delta);
  • the working signal range corresponding to the interval 2 is [E+(F-E)/2-delta, E+(F-E)/2+delta];
  • the working signal range corresponding to the interval 3 is (E+(F-E)/2+delta, F];
  • delta is a positive real number less than (F-E)/2.
  • the linear transmission of the power amplifier PA is divided into three zones, and then the interval in which the static working power of the PA is located determines which transmission mode is adopted. For example, when the interval in which the static working point of the power amplifier of the second communication node is located is the interval 1 or the interval 3, the transmission mode is positive for discrete Fourier transform and spread. The frequency division is multiplexed; when the interval in which the static operating point of the power amplifier of the second communication node is located is the interval 2, the transmission mode is cyclic prefix orthogonal frequency division multiplexing.
  • the first communication node indicates that there are multiple signalings of the transmission mode to the second communication node.
  • the following signaling is used to perform a composite indication or an implicit indication.
  • the signaling includes at least one of: modulation coding mode index signaling indicating uplink data, modulation mode signaling indicating uplink data, rank signaling indicating uplink spatial multiplexing, value signaling indicating a redundancy version,
  • the signaling of the sequence type used by the uplink reference signal is configured.
  • the information content or the signaling itself carried by the foregoing signaling has a mapping relationship with the transmission mode.
  • the second communication node may according to the mapping relationship. It is determined whether the current transmission mode determined by the first communication node is orthogonal frequency division multiplexing of discrete Fourier transform spread spectrum or cyclic prefix orthogonal frequency division multiplexing.
  • the signaling can be used to construct the dedicated signaling, so in the embodiment, the multiplexing with the existing signaling is used to implement the implicit indication, which can reduce the signaling overhead and reduce the first. The number of signaling interactions between the communication node and the second communication node.
  • the modulation mode of the uplink data is 16 orthogonal amplitude modulation QAM or 64QAM or 256QAM or a higher order modulation mode than 256QAM, or when the modulation coding mode index of the uplink data is greater than or equal to C.
  • the two parties pre-define the manner as cyclic prefix orthogonal frequency division multiplexing, otherwise the two parties pre-define the orthogonal frequency division multiplexing in which the transmission mode is discrete Fourier transform spread, where the C is greater than Or a positive integer equal to 2.
  • the uplink data is modulated by 16 orthogonal amplitude modulation QAM or 64QAM or 256QAM or a higher order modulation mode than 256QAM, or when the modulation coding mode index of the uplink data is greater than or equal to C.
  • the two parties pre-define the mode as cyclic prefix orthogonal frequency division multiplexing
  • the modulation mode of the uplink data is not 16 orthogonal amplitude modulation QAM or 64QAM or 256QAM or a higher order modulation mode than 256QAM, or
  • the modulation coding mode index of the uplink data is smaller than the C
  • the two parties pre-define the orthogonal frequency division multiplexing in which the transmission mode is cyclic prefix orthogonal frequency division multiplexing or the discrete Fourier transform spreading.
  • the step S400 may include:
  • the uplink spatial multiplexing rank is 1 and the uplink data is modulated by quadrature phase shift keying QPSK or 16 quadrature amplitude modulation QAM, or when the uplink spatial multiplexing rank is 1 and the uplink data is modulated and encoded.
  • the mode index is less than or equal to M1
  • the two parties pre-define the orthogonal frequency division multiplexing in which the transmission mode is discrete Fourier transform spread, otherwise the two sides pre-define the transmission mode to cyclic prefix orthogonal frequency division multiplexing.
  • M1 is an integer of 2 to 30.
  • the step S400 may include:
  • the two parties pre-define the orthogonal frequency division multiplexing in which the transmission mode is discrete Fourier transform spread, otherwise the two parties pre-define the transmission mode as cyclic prefix orthogonal frequency division. Multiplexing, wherein the M2 is an integer from 2 to 30.
  • the step S400 may include:
  • the two parties pre-define the orthogonal manner that the transmission mode is discrete Fourier transform spread spectrum Frequency division multiplexing; when the reference signal sequence type configured by the first communication node for the second communication node is a pseudo-random PN sequence, the two parties pre-define the transmission mode to cyclic prefix orthogonal frequency division multiplexing.
  • the step S400 may include:
  • the two parties pre-define the transmission mode to cyclic prefix orthogonal frequency division multiplexing;
  • the reference signal sequence type configured by the first communication node for the second communication node is the PN sequence
  • the two parties pre-define the transmission mode to be a discrete Fourier transform.
  • the step S400 may further include:
  • the second communication node and the first communication node pre-define a second communication node, and send the information in different time-domain resources using different transmission modes, where the time domain resource includes at least one of the following: Time domain symbols, time slots, subframes, and subframe sets.
  • step S400 may further include:
  • the second communication node and the first communication node pre-define the second communication node to send the information in different frequency domain resources using different transmission modes, where the frequency domain resource includes at least one of the following: Domain resource block RB, RB set, subcarrier, component carrier, frequency domain bandwidth, frequency domain subband.
  • the embodiment provides a communication node, where the communication node is a first communication node, and includes:
  • the determining unit 110 is configured to determine a sending manner used by the second communications node to send information
  • the first sending unit 120 is configured to indicate the sending manner to the second communications node by using signaling.
  • the determining unit 110 may be a processor or a processing circuit in various communication nodes such as a base station.
  • the processor can include a central processing unit, a microprocessor, a digital signal processor, an application processor or a programmable array, and the like.
  • the processing circuit can also include an application specific integrated circuit.
  • the processor or processing circuitry may perform the determination of the manner of transmission by predetermined code execution.
  • this embodiment further provides another first communication node, including:
  • the first pre-defined unit 200 is configured to predefine a transmission manner used by the second communication node to transmit information control, and the information includes service data and/or control information.
  • the type of the first communication node in this embodiment may also be as described above, where the first predefined unit 200 may include a processor or a communication interface, and the communication interface may be used for the second communication section.
  • the point performs information interaction while the processor is coupled to the communication interface for processing various information in the interaction, for example, parsing the interactive information and/or storing the information in a storage medium.
  • the transmission mode includes at least one of the following: orthogonal Fourier transform spread spectrum orthogonal frequency division multiplexing, cyclic prefix orthogonal frequency division multiplexing.
  • the communication node further includes:
  • the first receiving unit 130 is configured to receive, according to the first communication node, the sending manner, the sending manner suggested by the second communications node or the power of the second communications node Information related to the amplifier PA, wherein the related information includes at least one of: a first difference between a saturation region start voltage of the power amplifier and a voltage of the quiescent operating point, and a saturation region starting current of the power amplifier a second difference between the currents of the quiescent operating point and a range in which the static operating point of the power amplifier is located;
  • the determining unit 110 is configured to determine the sending manner according to the suggested sending manner or related information of the PA.
  • the minimum operating signal of the power amplifier in the linear amplification interval is E, and the maximum working signal is F; when the minimum working signal is the minimum operating voltage, the maximum working signal is the maximum operating voltage; When the minimum electrical signal is the minimum operating current, the maximum operating signal is the maximum operating current; the power amplifier is divided into three sections in the linear amplification interval, namely, interval 1, interval 2, and interval 3;
  • the working signal range is [E, E+(FE)/2-delta);
  • the working signal range corresponding to the interval 2 is [E+(FE)/2-delta, E+(FE)/2+delta];
  • the corresponding working signal range is (E+(FE)/2+delta, F]; wherein the delta is a positive real number less than (FE)/2.
  • the determining unit 120 is configured to: when the interval in which the static working point of the power amplifier of the second communication node is located is the interval 1 or the interval 3, determine the sending The method is orthogonal frequency division multiplexing of the discrete Fourier transform spread spectrum; when the interval of the static working point of the power amplifier of the second communication node is the interval 2, determining the The sending mode is cyclic prefix orthogonal frequency division multiplexing, or when the first difference is greater than the first threshold or the second difference is greater than the second threshold, determining that the sending mode is a cyclic prefix Orthogonal frequency division multiplexing, otherwise determining that the transmission mode is orthogonal frequency division multiplexing of discrete Fourier transform spread spectrum.
  • the signaling sent by the first sending unit 120 may include at least one of: modulation and coding mode index signaling indicating uplink data, modulation mode signaling indicating uplink data, rank signaling indicating uplink spatial multiplexing, indicating redundancy The value signaling of the remaining version and the signaling of the sequence type used to configure the uplink reference signal.
  • the first pre-defined unit 200 is further configured to: when the modulation mode of the uplink data is 16 orthogonal amplitude modulation QAM or 64QAM or 256QAM or a higher order modulation mode than 256QAM, or when uplink data
  • the modulation coding mode index is greater than or equal to C
  • the two parties pre-define the mode as cyclic prefix orthogonal frequency division multiplexing, otherwise the two parties pre-define the orthogonal frequency division complex with the transmission mode as discrete Fourier transform spread spectrum.
  • the C is a positive integer greater than or equal to 2; optionally, the first pre-defined unit 200 is further configured to: when the uplink data is modulated by 16 orthogonal amplitude modulation QAM or 64QAM or 256QAM or a higher order modulation mode than 256QAM, or when the modulation coding mode index of the uplink data is greater than or equal to C, the two parties predefine the mode as cyclic prefix orthogonal frequency division multiplexing; when the uplink data is When the modulation mode is not 16 orthogonal amplitude modulation QAM or 64QAM or 256QAM or a higher order modulation mode than 256QAM, or when the modulation coding mode index of the uplink data is smaller than the C, the two sides pre-define the transmission mode as Cyclic prefix orthogonal frequency division multiplexing or orthogonal discrete Fourier transform of the spread frequency division multiplexing.
  • the first pre-defined unit 200 is configured to: when the uplink spatial multiplexing rank is 1 and the uplink data is modulated by quadrature phase shift keying QPSK or 16 quadrature amplitude modulation QAM. Or, when the uplink spatial multiplexing rank is 1 and the modulation coding mode index of the uplink data is less than or equal to M1, the two parties pre-define the transmission mode to be discrete Fourier transform spread spectrum. Orthogonal frequency division multiplexing, otherwise the two sides pre-define the transmission mode to cyclic prefix orthogonal frequency division multiplexing, where the M1 is an integer of 2 to 30.
  • the first pre-defined unit 200 is specifically configured to: when the number of transport blocks multiplexed in the uplink space is 1 and the modulation mode of the transport block is quadrature phase shift keying QPSK or 16 orthogonal amplitude.
  • the QAM is modulated, or when the number of transport blocks multiplexed in the uplink space is 1 and the modulation and coding mode index of the uplink data is less than or equal to M2, the two sides pre-define the orthogonal frequency of the spread mode of the discrete Fourier transform.
  • the division is multiplexed, otherwise the two parties pre-define the transmission mode to cyclic prefix orthogonal frequency division multiplexing, where the M2 is an integer of 2 to 30.
  • the first pre-defined unit 200 is configured to: when the reference signal sequence type configured by the first communication node for the second communication node is a Zadoff Chu sequence or a constant modulus zero autocorrelation CAZAC sequence,
  • the transmission mode is orthogonal frequency division multiplexing of discrete Fourier transform spread; when the reference signal sequence type configured by the first communication node for the second communication node is a pseudo-random PN sequence, the two parties pre-define the
  • the transmission method is cyclic prefix orthogonal frequency division multiplexing.
  • the first pre-defined unit 200 is specifically configured to: when the first communication node is configured as a second communication node, the reference signal sequence type is the Zadoff Chu sequence or the In the case of the CAZAC sequence, the two parties pre-define the transmission mode to cyclic prefix orthogonal frequency division multiplexing; when the reference signal sequence type configured by the first communication node for the second communication node is the PN sequence, the two parties pre- The orthogonal frequency division multiplexing in which the transmission mode is discrete Fourier transform spread spectrum is defined.
  • the first pre-defined unit 200 is configured to pre-define the second communication node by using the first communication node and the second communication node to send the information in different frequency domain resources using different transmission modes, where
  • the frequency domain resource includes at least one of the following: a frequency domain resource block RB, an RB set, a subcarrier, a component carrier, a frequency domain bandwidth, and a frequency domain subband.
  • the first sending unit 120 is further configured to send, to the neighboring cell, transmission mode information indicating the transmission mode.
  • the sending mode information includes at least one of: a sending mode used on the time domain resource, a sending mode used on the frequency domain resource, and a sending mode used on the beam domain resource.
  • the embodiment provides a communication node, where the communication node is a second communication node, and includes:
  • the second receiving unit 310 is configured to receive signaling sent by the first communications node, where the signaling is used to indicate a sending manner used by the second communications node to send information,
  • the second receiving unit here may correspond to a communication interface, and in the embodiment, the communication interface may correspond to an antenna, and may receive signaling from the first communication node.
  • the second communication node may further include a storage medium to store the signaling; in some embodiments, the second communication node further includes a processor or processing circuit, and the signaling may be parsed.
  • the transmission mode determined by the first communication node is obtained based on the mapping relationship between the signaling or signaling content and the transmission mode, or based on the signaling content itself.
  • this embodiment provides another second communication node, including:
  • the second pre-defined unit 400 is configured to predefine a transmission manner used by the second communication node to transmit information, and the information includes service data and/or control information.
  • the second predetermined unit 400 herein may also correspond to a communication interface, and may perform information interaction with the first communication node to predefine the transmission mode.
  • the second communication node further includes a storage medium, and the storage medium may store the predefined sending manner. When the data is sent subsequently, the predefined predefined content may be queried, and the predefined The sending method transmits information to the first communication node.
  • the transmission modes mentioned in the foregoing two embodiments of the second communication node include at least one of the following: orthogonal Fourier transform spread spectrum orthogonal frequency division multiplexing, cyclic prefix orthogonal frequency division multiplexing.
  • the communication node further includes:
  • the second sending unit 320 is configured to determine, in the first communications node, the sending manner And reporting, to the first communications node, a sending manner suggested by the second communications node or related information of a power amplifier PA of the second communications node, where the related information includes at least one of: a saturation region of the power amplifier a first difference between the initial voltage and the voltage at the quiescent operating point, a second difference between the saturation region start current of the power amplifier and the current at the quiescent operating point, and a range in which the quiescent operating point of the power amplifier is located,
  • the suggested sending mode or related information of the PA is used by the first communications node to determine the sending mode.
  • the second sending unit 320 may also include a transmitting antenna, which may be used to send the suggested sending manner or related information of the PA to the first communications node.
  • the minimum operating signal of the power amplifier in the linear amplification interval is E, and the maximum working signal is F; when the minimum working signal is the minimum operating voltage, the maximum working signal is the maximum operating voltage; When the minimum electrical signal is the minimum operating current, the maximum operating signal is the maximum operating current; the power amplifier is divided into three sections in the linear amplification interval, namely, interval 1, interval 2, and interval 3;
  • the working signal range is [E, E+(FE)/2-delta);
  • the working signal range corresponding to the interval 2 is [E+(FE)/2-delta, E+(FE)/2+delta];
  • the corresponding working signal range is (E+(FE)/2+delta, F]; wherein the delta is a positive real number less than (FE)/2.
  • the transmission mode is positive for discrete Fourier transform.
  • the frequency division is multiplexed; when the interval in which the static operating point of the power amplifier of the second communication node is located is the interval 2, the transmission mode is cyclic prefix orthogonal frequency division multiplexing.
  • the sending manner is cyclic prefix orthogonal frequency division multiplexing, otherwise the sending manner is Discrete Fourier Transform Spread Spectrum Orthogonal Frequency Division Multiplexing.
  • the signaling received by the first receiving unit 310 includes at least one of the following: indicating the number of uplinks The modulation coding mode index signaling, the modulation mode signaling indicating the uplink data, the rank signaling indicating the uplink spatial multiplexing, the value signaling indicating the redundancy version, and the sequence type signaling used to configure the uplink reference signal .
  • the second pre-defined unit 400 is configured to: when the modulation mode of the uplink data is 16 orthogonal amplitude modulation QAM or 64QAM or 256QAM or a higher order modulation mode than 256QAM, or when modulation coding of uplink data
  • the mode index is greater than or equal to C
  • the two parties pre-define the mode as cyclic prefix orthogonal frequency division multiplexing, otherwise the two parties pre-define the orthogonal frequency division multiplexing in which the transmission mode is discrete Fourier transform spread spectrum, where , C is a positive integer greater than or equal to 2;
  • the second pre-defined unit 400 is configured to: when the modulation mode of the uplink data is 16 orthogonal amplitude modulation QAM or 64QAM or 256QAM or a higher order modulation mode than 256QAM, or when modulation coding of uplink data
  • the two parties pre-define the mode as cyclic prefix orthogonal frequency division multiplexing; when the modulation mode of the uplink data is not 16 orthogonal amplitude modulation QAM or 64QAM or 256QAM or higher order than 256QAM
  • the two parties pre-define the orthogonality of the transmission mode to cyclic prefix orthogonal frequency division multiplexing or the discrete Fourier transform spreading. Frequency division multiplexing.
  • the second pre-defined unit 400 may be further configured when the uplink spatial multiplexing rank is 1 and the uplink data is modulated by quadrature phase shift keying QPSK or 16 quadrature amplitude modulation QAM.
  • the uplink spatial multiplexing rank is 1 and the modulation coding mode index of the uplink data is less than or equal to M1
  • the two parties pre-define the orthogonal frequency division multiplexing in which the transmission mode is discrete Fourier transform spread, otherwise The two parties pre-define the transmission mode as cyclic prefix orthogonal frequency division multiplexing, where the M1 is an integer of 2 to 30.
  • the second pre-defined unit 400 is configured to: when the number of transport blocks multiplexed in the uplink space is 1 and the modulation mode of the transport block is quadrature phase shift keying QPSK or 16 quadrature amplitude modulation QAM Or, when the number of transmission blocks multiplexed in the uplink space is 1 and the modulation coding mode index of the uplink data is less than or equal to M2, the two sides predefine the orthogonal frequency division complex in which the transmission mode is discrete Fourier transform spread spectrum. For example, the two sides pre-define the sending manner to cyclic prefix orthogonal frequency division multiplexing, where the M2 is an integer of 2 to 30.
  • the second pre-defined unit 400 is configured to: when the reference signal sequence type configured by the first communication node for the second communication node is a ZC sequence or a constant modulus zero autocorrelation CAZAC sequence, Predefining the transmission mode is orthogonal frequency division multiplexing of discrete Fourier transform; when the reference signal sequence type configured by the first communication node for the second communication node is a pseudo-random PN sequence, the two parties pre- The transmission mode is defined as cyclic prefix orthogonal frequency division multiplexing.
  • the second pre-defined unit 400 is configured to: when the reference signal sequence type configured by the first communication node for the second communication node is the Zadoff Chu sequence or the CAZAC sequence, The two parties pre-define the transmission mode as cyclic prefix orthogonal frequency division multiplexing; when the reference signal sequence type configured by the first communication node for the second communication node is the PN sequence, the two parties pre-define the transmission mode Orthogonal frequency division multiplexing for spread spectrum of discrete Fourier transform.
  • the second pre-defined unit 400 is configured to pre-define a second communication node by using the second communication node and the first communication node, and send the different transmission manners in different time domain resources.
  • Information wherein the time domain resource includes at least one of the following: a time domain symbol, a time slot, a subframe, and a subframe set.
  • the second pre-defined unit 400 is configured to pre-define the second communication node by using the second communication node and the first communication node to send the information in different frequency domain resources using different sending manners.
  • the frequency domain resource includes at least one of the following: a frequency domain resource block RB, an RB set, a subcarrier, a component carrier, a frequency domain bandwidth, and a frequency domain subband.
  • the foregoing sending modes have the following characteristics:
  • the parameter according to the foregoing may include the foregoing related information of the PA, an index of a coded modulation mode or a coded modulation mode, an uplink spatial multiplexing rank, an uplink spatial multiplexing transport block number, a reference signal sequence type, and the like. Can determine the basis of the transmission method;
  • the orthogonal frequency division multiplexing in which the transmission mode is cyclic prefix orthogonal frequency division multiplexing or discrete Fourier transform spreading is determined.
  • the obtaining according to the parameter includes: receiving from the communication device of the communication peer, and querying the local parameter in the local database. For example, if the communication device performing the foregoing operation is the UE, the UE may query related information of the PA, and adopt The various transmissions with the first threshold or the second threshold or interval in the foregoing embodiments determine the transmission mode.
  • a communication device After a communication device determines the transmission mode, it can also notify the communication peer end of the determined transmission mode, so that the communication peer can obtain the determined communication mode without determining it by itself.
  • the peers can be notified through various signalings to check the verification of the respective transmission modes, so as to avoid conflicts caused by the inconsistency of the respective determination modes.
  • the second communication node reports, to the first communication node, related information of the power amplifier PA of the second communication node, where the related information includes at least one of: a saturation region of the power amplifier or a start voltage of the cutoff region and a static operating point The difference between the voltages, the difference between the saturation region of the power amplifier or the start current of the cutoff region and the current at the quiescent operating point.
  • the first communication node determines a transmission mode or transmission waveform used by the second communication node to transmit uplink data and/or uplink control.
  • a certain threshold value K1 When the difference between the saturation region of the power amplifier reported by the second communication node or the current of the cutoff region and the current of the static operating point is less than a certain threshold value K2, the first communication node signaling Configuring a second communication node to be a discrete Fourier transform spread spectrum orthogonal frequency division multiplexing transmission mode or transmission waveform; in other cases, the first communication node signaling configuration second communication node is a cyclic prefix orthogonal Frequency division multiplexing transmission method or transmission waveform.
  • the first communication node signaling configures the second communication node to be a cyclic prefix orthogonal frequency division complex.
  • the transmission mode or the transmission waveform used; in other cases, the first communication node signaling configures the second communication node to be a discrete Fourier transform spread spectrum orthogonal frequency division multiplexing transmission mode or transmission waveform.
  • K1 and K2 are related to the peak value of the uplink transmission data, which is related to the PAPR or CM (Cubic Metric) value, and may be a predefined certain value.
  • the second communication node reports the related information of the power amplifier PA of the second communication node to the first communication node, where the related information is a range or interval in which the static working point of the power amplifier is located.
  • the first communication node signaling configures the second communication node to be a discrete Fourier transform spread spectrum orthogonal frequency division multiplexing transmission mode;
  • the first communication node signaling configures the second communication node to be cyclic prefix orthogonal frequency division multiplexing. sending method.
  • the signaling includes at least one of the following: a modulation and coding mode index of the uplink data.
  • the Modulation and Coding Scheme (MCS) index of the uplink data implicitly indicates the transmission mode or the transmission waveform, or the predefined transmission mode or the transmission waveform.
  • the modulation coding mode index of the uplink data is greater than or equal to C
  • the first communication node implicitly indicates that the second communication node uses a cyclic prefix orthogonal frequency division multiplexing transmission mode or a transmission waveform, or both the first communication node and the second communication node pre-define to send uplink data and/or
  • the transmission mode used for the uplink control is cyclic prefix orthogonal frequency division multiplexing; where C is 11 or 21, or an integer other than 11 and 21 between 2 and 30.
  • the MCS When the MCS is other values, it implicitly indicates the transmission mode or transmission waveform of the orthogonal communication division of the second communication node using the discrete Fourier transform spread spectrum, or both the first communication node and the second communication node are predefined.
  • the transmission method used for transmitting the uplink data and/or the uplink control is orthogonal frequency division multiplexing of discrete Fourier transform spread spectrum.
  • Both the second communication node and the second communication node predefine the transmission mode used by the second communication node to transmit uplink data and/or uplink control.
  • the signaling is signaling indicating a modulation mode of the uplink data.
  • the modulation coding mode of the uplink data is used to implicitly indicate or pre-define the transmission mode or transmission waveform of the second communication node, when the modulation mode of the uplink data is 16QAM or 64QAM or 256QAM, or when the modulation mode of the uplink data is In the 16QAM or 64QAM higher order modulation mode, the first communication node implicitly indicates that the second communication node or the predefined second communication node uses a cyclic prefix orthogonal frequency division multiplexing transmission mode or transmission waveform; wherein, C It is 11 or 21, or an integer other than 11 and 21 between 2 and 30.
  • the MCS is other values, it implicitly indicates the transmission mode or transmission waveform of the orthogonal frequency division multiplexing of the second communication node or the predefined second communication node using the discrete Fourier transform.
  • the signaling is a sequence type signaling used by the uplink reference signal.
  • a sequence type signaling configured to configure an uplink reference signal to implicitly indicate a transmission mode or transmission waveform of the second communication node or a predefined second communication node, when the first communication node is configured for the second communication node
  • the uplink reference signal sequence type is a ZC (Zadoff Chu) sequence or a constant modulus zero autocorrelation CAZAC sequence
  • the method is orthogonal frequency division multiplexing of discrete Fourier transform spread; when the uplink reference signal sequence type configured by the first communication node for the second communication node is a pseudo-random PN sequence, the implicit indication is The transmission mode used by the second communication node or the predefined second communication node to transmit uplink data and/or uplink control is cyclic prefix orthogonal frequency division multiplexing.
  • the first communication node and the second communication node pre-define the second communication node to send the message information in different time-domain resources using different transmission modes, where the time domain resource includes at least one of the following: a time domain symbol , time slot, subframe, and subframe set.
  • all uplink subframes are divided into a subframe set 1 and a subframe set 2, and a cyclic prefix orthogonal frequency division multiplexing is used on the subframe set 1 and a discrete Fourier transform is used on the subframe set 2 Frequency orthogonal frequency division multiplexing.
  • the first communication node and the second communication node pre-define the second communication node to send the uplink information by using different transmission modes in different frequency domain resources, where the frequency domain resource includes at least one of the following: the frequency domain resource block RB, frequency domain resource block RB set, subcarrier, component carrier, frequency domain bandwidth, frequency domain subband.
  • bandwidth 2 For example, dividing the frequency domain bandwidth of the UE into bandwidth 1 and bandwidth 2, predefining the use of cyclic prefix orthogonal frequency division multiplexing on bandwidth 1, and orthogonal frequency division using spread discrete Fourier transform on bandwidth 2 use.
  • the first communication node interacts with the first communication node of the other neighboring cell with the sending mode information configured by the first communications node, where the sending mode information includes at least one of the following: a sending mode and a frequency used on the time domain resource.
  • the embodiment of the invention further provides a communication node, including:
  • a communication interface configured to exchange information with other communication nodes
  • the processor is coupled to the communication interface and configured to implement one or more of the foregoing transmission mode determining methods provided by the technical solution by execution of computer executable instructions.
  • the communication interface may correspond to one or more antennas of the first communication device and the second communication device, and may implement information interaction with other communication nodes by transmitting wireless signals.
  • the processor is various types of processors, processing circuits or processing chips, such as a central processing unit, a microprocessor, a digital signal processor, an application processor, a programmable array, or an application specific integrated circuit.
  • the processor may be connected to the communication interface via a bus, such as an integrated circuit bus (IIC) or the like, and control information transmission and reception of the communication interface.
  • a bus such as an integrated circuit bus (IIC) or the like, and control information transmission and reception of the communication interface.
  • IIC integrated circuit bus
  • the communication node provided in this embodiment may be the foregoing first communication node or the foregoing second communication node.
  • An embodiment of the present invention further provides a computer storage medium.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions for being applied to a first communication node and/or a second communication node. Method of determining the method.
  • the computer storage medium provided by the embodiment of the invention includes: a mobile storage device, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. Medium.
  • the computer storage medium is optionally a non-transitory storage medium.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be through some connection.
  • the indirect coupling or communication connection of a port, device or unit may be electrical, mechanical or other form.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may be separately used as one unit, or two or more units may be integrated into one unit; the above integration
  • the unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the transmission mode is determined by signaling transmission or both parties, so that the receiver can send according to the communication when the communication is performed.
  • the party's transmission method performs information reception, thereby avoiding the problem of poor communication quality caused by the use of the incorrect reception mode, and thus has a positive industrial effect, and at the same time, the transmission is notified by the pre-defined or signaling of both parties.
  • the method has the characteristics of being simple to implement and has a wide range of applications in the industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种发送方式确定方法及通信节点,所述方法包括:第一通信节点确定第二通信节点发送信息所使用的发送方式,并将所述发送方式通过信令指示给第二通信节点;或者,第一通信节点和第二通信节点双方预定义第二通信节点发送信息所使用的发送方式,其中,所述信息包括业务数据和/或控制信息。本发明实施例还提供一种计算机存储介质。

Description

发送方式确定方法、通信节点和计算机存储介质
本申请基于申请号为201710014926.X、申请日为2017年01月09日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及无线通信领域,尤其涉及一种发送方式确定方法及通信节点和计算机存储介质。
背景技术
在相关技术中,在长期演进(Long Term Evolution,简称为LTE)中,物理下行控制信道(Physical Downlink Control Channel,简称为PDCCH)用于承载上、下行调度信息,以及上行功率控制信息。下行控制信息(Downlink Control Information,简称为DCI)格式(format)分为DCI format 0、1、1A、1B、1C、1D、2、2A、3,3A等,后面演进至LTE-A Release 12(LTE-A版本12)中又增加了DCI format 2B、2C、2D以支持多种不同的应用和传输模式。演进型基站(e-Node-B,简称为eNB)可以通过下行控制信息配置用户设备(User Equipment,简称为UE),或者UE接受高层(higher layers)的配置,也称为通过高层信令来配置UE。用户设备又可以称之为终端;
随着通信技术的发展,数据业务需求量不断增加,可用的低频载波也已经非常稀缺,由此,基于还未充分利用的高频(30~300GHz)载波通信成为解决未来高速数据通信的重要通信手段之一。高频载波通信的可用带宽很大,可以提供有效的高速数据通信。但是,高频载波通信面临的一个很大的技术挑战就是:相对低频信号,高频信号在空间的衰落非常大,虽 然会导致高频信号在室外的通信出现了空间的衰落损耗问题,但是由于其波长的减小,通常可以使用更多的天线,从而可以基于波束进行通信以补偿在空间的衰落损耗。
但是,当天线数增多时,由于此时需要每个天线都有一套射频链路,基于数字波束成型也带来了增加成本和功率损耗的问题。因此,目前的研究中比较倾向于混合波束赋形,即射频波束和数字波束共同形成最终的波束。
在新的无线接入技术(New Radio Access Technology)的研究中,高频通信***除了第一通信节点会配置大量的天线形成下行传输波束以补偿高频通信的空间衰落,用户第二通信节点同样也会配置大量的天线形成上行传输波束。在现有的研究中,第二通信节点可以使用两种不同的传输波形,分别为离散傅里叶变换扩频的正交频分复用(DFT-S-OFDM)和循环前缀正交频分复用(CP-OFDM),但是具体实现时,这两种传输方式的实际传输效果并没有达到期望的理想效果。
发明内容
有鉴于此,本发明实施例期望提供一种发送方式确定方法及通信节点和计算机存储介质,以至少部分解决不同的频分复用的传输效果不够好的问题。。
为达到上述目的,本发明的技术方案是这样实现的:
本发明实施例第一方面提供一种发送方式确定方法,包括:
第一通信节点确定第二通信节点发送信息所使用的发送方式,并将所述发送方式通过信令指示给第二通信节点;
或者,
第一通信节点和第二通信节点双方预定义第二通信节点发送信息所使用的发送方式,其中,所述信息包括业务数据和/或控制信息。
本发明实施例第二方面提供一种发送方式确定方法,包括:
第二通信节点接收第一通信节点发送的信令,所述信令用于指示第二通信节点发送信息所使用的发送方式,
或者,
第二通信节点和第一通信节点双方预定义第二通信节点发送信息所使用的发送方式,其中,所述信息包括业务数据和/或控制信息。
本发明实施例第三方面提供一种通信节点,所述通信节点为第一通信节点,包括:
确定单元,配置为确定第二通信节点发送信息所使用的发送方式,
第一发送单元,配置为通过信令将所述发送方式指示给第二通信节点;
或者,
第一预定义单元,配置为和第二通信节点双方预定义第二通信节点发送信息控制所使用的发送方式,其中,所述信息包括业务数据和/或控制信息。
本发明实施例第四方面提供一种通信节点,所述通信节点为第二通信节点,包括:
第二接收单元,配置为于接收第一通信节点发送的信令,所述信令用于指示第二通信节点发送信息所使用的发送方式,
或者,
第二预定义单元,配置为和第一通信节点双方预定义第二通信节点发送信息所使用的发送方式,其中,所述信息包括业务数据和/或控制信息。
本发明实施例第五方面还提供另一种通信节点,包括:
通信接口,配置为与其他通信节点进行信息交互;
处理器,与所述通信接口连接,配置为通过计算机可执行指令的执行,实现前述一个或多个技术方案提供的发送方式确定方法。
本发明实施例第六方面提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于实现前述一个或多个技术方案提供的发送方式确定方法。
本发明实施例提供的发送方式确定方及通信节点及计算机存储介质。发现,DFT-S-OFDM及CP-OFDM这两种正交频分复用,实质上对应了不同的发送方式,若接收方如果不知道发送方采用发送方式则就会导致当前使用的与发送方式对应的接收方式不对导致的接收效果差,从而导致通信质量差的问题。在本发明实施例中第一通信节点会通过信息的发送告知第二通信节点发送方式,或者,通过与第二通信节点的预先定义确定出所使用的发送方式,这样的话,在基于CP-OFDM及DFT-S-OFDM通信之前就预先知晓了发送方式。第二通信节点可以直接根据所确定的发送方式对应的接收方式进行信息接收即可,从而确保了在使用CP-OFDM及DFT-S-OFDM时的通信质量,且具有实现简便的特点;从而解决了现有技术中接收方法无法获知发送方式导致的通信质量差的问题。
附图说明
图1为本发明实施例提供的第一种发送方式确定方法的流程示意图;
图2为本发明实施例提供的第二种发送方式确定方法的流程示意图;
图3为本发明实施例提供的第三种发送方式确定方法的流程示意图;
图4为本发明实施例提供的第四种发送方式确定方法的流程示意图;
图5为本发明实施例提供的第一种第一通信节点的结构示意图;
图6为本发明实施例提供的第二种第一通信节点的结构示意图;
图7为本发明实施例提供的第三种第一通信节点的结构示意图;
图8为本发明实施例提供的第四种第二通信节点的结构示意图;
图9为本发明实施例提供的第一种第二通信节点的结构示意图;
图10为本发明实施例提供的第二种第二通信节点的结构示意图。
具体实施方式
以下结合说明书附图及具体实施例对本发明的技术方案做进一步的详细阐述,应当理解,以下所说明的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
如图1所示,本实施例提供一种发送方式确定方法,包括:
步骤S110:第一通信节点确定第二通信节点发送信息所使用的发送方式;
步骤S120:将所述发送方式通过信令指示给第二通信节点;
如图2所示,本实施例还提供另一种发送方式确定方法,包括:
步骤S200:第一通信节点和第二通信节点双方预定义第二通信节点发送信息所使用的发送方式,其中,所述信息包括业务数据和/或控制信息。
在本发明实施例中,第一通信节点可以为宏小区的基站、小小区(small cell)的基站或传输节点、高频通信***中的发送节点、物联网***中的发送节点等发送和控制终端的设备节点。第二通信节点可以为用户终端(UE)、手机、便携设备、汽车等通信***中的接收节点。当然,所述基站、发送节点等设备节点可作为所述第二通信节点,UE可称为第一通信节点。总之,所述第一通信节点可为发送指示发送方式的信令的发送节点,所述第二通信节点可为接收所述信令的接收节点。
对于传输波形或发送方式,可包括:DFT-S-OFDM及CP-OFDM;其中,所述DFT-S-OFDM又可称为单载波频分多址、单载波的传输波形;所述CP-OFDM又可称为正交频分多址、多载波的传输波形。
在本实施例中当所述第一通信节点和第二通信节点之间有一个为基站,另一个为UE时,所述发送方式为上行信息的发送方式。则所述上行信息包括上行业务数据和/或上行控制信息。
在一些实施例中,所述第一通信节点和第二通信节点在确定发送方式 之前,双方通过信息协商或按照通信协议预先定义发送方式。
如图3所示,所述方法还包括:
步骤S100:在所述第一通信节点确定所述发送方式之前,接收所述第二通信节点上报的所述第二通信节点建议的发送方式或所述第二通信节点的功率放大器PA的相关信息,其中,所述相关信息至少包括以下之一:功率放大器的饱和区起始电压与静态工作点的电压之间的第一差值、所述功率放大器的饱和区起始电流与静态工作点的电流之间的第二差值、所述功率放大器的静态工作点所处的区间;
所述步骤S110可包括:
根据所述建议的发送方式或所述PA的相关信息,确定所述发送方式。这里的建议的发送方式,为所述第二通信节点想要的发送方式,所述第一通信节点可以直接选择第二通信节点建议的发送方式,作为第二通信节点的上行发送的最终发送方式。所述第二通信节点确定所述建议的发送方式,也可以根据自身的PA的相关信息来确定。当所述第一差值大于第一门槛值时,则采用CP-OFDM,否则可以采用DFT-S-OFDM;或,当所述第二差值大于第二门槛值时,则采用CP-OFDM,否则可以采用DFT-S-OFDM。
这里的第一门槛值和所述第二门槛值都可为预设值,或根据预设函数关系计算得到的。在本实施例中所述第一门槛值和第二门槛值,均可与第二通信节点向第一通信节点的数据发送的峰均比或数据发送功率的立方度量(Cubic Metric,CM)值相关。
在还有些实施例中,所述功率放大器在线性放大区间的最小工作信号为E,最大工作信号为F;当所述最小工作信号为最小工作电压时,所述最大工作信号为最大工作电压;当所述最小电信号为最小工作电流时,所述最大工作信号为最大工作电流;
所述功率放大器在线性放大区间分为3个区间,分别是区间1、区间2 和区间3;
所述区间1对应的工作信号范围为[E,E+(F-E)/2-delta);
所述区间2对应的工作信号范围为[E+(F-E)/2-delta,E+(F-E)/2+delta];
所述区间3对应的工作信号范围为(E+(F-E)/2+delta,F];
其中,所述delta为小于(F-E)/2的正实数。
若第二通信节点直接向所述第一通信节点,上报的PA工作在静态工作点所对应的区间,则所述第一通信节点可以直接根据各个区间与发送方式之间的对应关系,确定出第二通信节点发送信息的发送方式。
在一些实施例中,当所述第二通信节点的所述功率放大器的静态工作点所处的区间为所述区间1或所述区间3时,则确定所述发送方式为离散傅里叶变换扩频的正交频分复用;
当所述第二通信节点的所述功率放大器的静态工作点所处的区间为所述区间2时,则确定所述发送方式为循环前缀正交频分复用。
在还有一些实施例中,当所述第一差值大于第一门槛值时或所述第二差值大于第二门槛值时,则所述发送方式为循环前缀正交频分复用,否则所述发送方式为离散傅里叶变换扩频的正交频分复用。
在一些实施例中,所述信令至少包括以下之一:
指示上行数据的调制编码方式索引信令、指示上行数据的调制方式信令、指示上行空间复用的秩信令、指示冗余版本的取值信令、配置上行参考信号所使用的序列类型的信令。
在本实施例中所述第一通信节点和第二通信节点之间,第一通信节点可以通过专用信令向第二通信节点至少确定的发送方式,也可以复用其他信令隐含指示所述发送方式。例如,在本实施例中所述信令为上述指示其他信息的信令。所述第一通信节点和第二通信节点都预先定义了其他信息与发送方式之间的对应关系,故第二通信节点在接收到所述信令之后,解 码所述信令,通过解码得到内容及所述对应关系,就知道当前第一通信节点确定的发送方式。当然若这样的话,第一通信节点在发送所述信令之前,需要根据确定的发送方式,和所述对应关系,选择能够指示当前选择的发送方式的信令指示给第二通信节点。
在一些实施例中,所述S200可包括:
当所述上行数据的调制方式为16正交幅度调制QAM或64QAM或256QAM或比256QAM更高阶的调制方式时、或者当上行数据的调制编码方式索引大于或等于C时,则双方预定义所述方式为循环前缀正交频分复用,否则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用,其中,所述C为大于或等于2的正整数。
在另一些实施例中,所述步骤S200可包括:
16QAM或比256QAM更高阶的调制方式时、或者当上行数据的调制编码方式索引大于或等于C时,则双方预定义所述方式为循环前缀正交频分复用,当所述上行数据的调制方式不是16正交幅度调制QAM或64QAM或256QAM或比256QAM更高阶的调制方式时、或者当上行数据的调制编码方式索引小于所述C时,则双方预定义所述发送方式为循环前缀正交频分复用或所述离散傅里叶变换扩频的正交频分复用,其中,所述C为大于或等于2的正整数。即当上行数据的调制方式不是16正交幅度调制QAM或64QAM或256QAM或比256QAM更高阶的调制方式时、或者当上行数据的调制编码方式索引小于所述C时,可以随机选择一种循环前缀正交频分复用及所述离散傅里叶变换扩频的正交频分复用中的一种。
高阶的调制方式对一个信息编码调制之后,产生的数据量会更大,故在本实施例中为了平衡传输资源与数据量的关系,优先在当所述上行数据的调制方式为16正交幅度调制QAM或64QAM或256QAM或比256QAM更高阶的调制方式时、或者当上行数据的调制编码方式索引大于或等于C 时,采用频谱资源利用率更高的循环前缀正交频分复用作为所述发送方式。在本实施例中所述上行数据的调制编码方式索引与QAM的调制阶数之间的对应关系可参见如下表1。表1物下行共享信道(Physical Uplink Share Channel,PUSCH)的编码调制方式、传输块尺寸索引和冗余版本表格
Figure PCTCN2017115090-appb-000001
Figure PCTCN2017115090-appb-000002
这里的编码调制方式的调制阶数一定的,故编码调制方式的编码调制阶数与编码调制方式索引的对应关系,即为编码调制方式与编码调制方式索引的对应关系。
在一些实施例中,所述步骤S200可包括:
当上行空间复用的秩为1且所述上行数据的调制方式为正交相移键控QPSK或16正交幅度调制QAM时,或者当上行空间复用的秩为1且上行数据的调制编码方式索引小于或等于M1时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用,否则双方预定义所述发送方式为循环前缀正交频分复用,其中,所述M1为2至30的整数。
通常若上行空间复用的秩为1,表明第二通信设备处于小区的边缘,优先采用正交性能更好的离散傅里叶变换扩频的正交频分复用,作为所述发送方式,以确保UE传输信号的正交性。
在另外一些实施例中,所述步骤S200可包括:
当上行空间复用的传输块数量为1且该传输块的调制方式为正交相移键控QPSK或16正交幅度调制QAM时,或者当上行空间复用的传输块数量为1且上行数据的调制编码方式索引小于或等于M2时,则双方预定义所 述发送方式为离散傅里叶变换扩频的正交频分复用,否则双方预定义所述发送方式为循环前缀正交频分复用,其中,所述M2为2至30的整数。
在另一些实施例中,所述步骤S200可包括:
当所述第一通信节点为第二通信节点配置的参考信号序列类型为Zadoffu Chu序列或恒模零自相关CAZAC序列时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用;
当所述第一通信节点为第二通信节点配置的参考信号序列类型为伪随机PN序列时,则双方预定义所述发送方式为循环前缀正交频分复用。
这里的若第二通信节点为UE,第一通信节点为基站,则所述参考序列类型为上行参考信号序列类型。
一般情况下,若UE的上行参考信号序列类型为Zadoffu Chu序列或恒模零自相关CAZAC序列时,表明该UE对正交性要求比较高,故优先采用正交性更好的离散傅里叶变换扩频的正交频分复用,满足正交性需求。在另一些实施例中,所述步骤S200可包括:
当所述第一通信节点为第二通信节点配置的参考信号序列类型为Zadoffu Chu序列或恒模零自相关CAZAC序列时,则双方预定义所述发送方式为循环前缀正交频分复用;
当所述第一通信节点为第二通信节点配置的参考信号序列类型为伪随机PN序列时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用。
通常UE位于小区边缘时,则所述参考信号序列类型为PN序列时,通常要求交高的传输性能,在本实施例中为了满足传输性能,则优先采用离散傅里叶变换扩频的正交频分复用,而采用Zadoffu Chu序列或恒模零自相关CAZAC序列时,可以采用循环前缀正交频分复用。
在另一些实施例中,所述步骤S200还可包括:所述第一通信节点和所 述第二通信节点双方预定义第二通信节点,在不同的时域资源使用不同的发送方式发送所述信息,其中,所述时域资源至少包括以下之一:时域符号、时隙、子帧、子帧集合。
此外,所述步骤S200可包括:所述第一通信节点和所述第二通信节点双方预定义第二通信节点在不同的频域资源使用不同的发送方式发送所述信息,其中,所述频域资源至少包括以下之一:频域资源块RB、RB集合、子载波、分量载波、频域带宽、频域子带。
在上述实施例中不仅会确定出发送方式,还会确定出使用对应发送方式的时频资源。所述时域资源可以包括时域符号、时隙、子帧或子帧集合。这里的频域资源可包括频域资源块(Resource Block,RB)、包括一个或多个频域资源块的RB集合、子载波、分量载波等信息。
所述方法还包括:所述第一通信节点向相邻小区发送指示所述发送方式的发送方式信息。
在本实施例中所述第一通信节点覆盖成一个小区A,则所述相邻小区为小区A的相邻小区。在本实施例中所述第一通信节点,会将指示其选中的发送方式的发送方式信息,发送给相邻小区。这里的发送给相邻小区,至少发送给相邻小区的第一通信节点,在具体实现时,还可以是第二通信节点,以方便相邻小区知道对应的第二通信节点发送信息,例如,上行信息,所采用的发送方式。
可选地,所述发送方式信息至少包括以下之一:时域资源上所使用的发送方式、频域资源上所使用的发送方式、波束域资源上所使用的发送方式。
如图4所示,本实施例提供一种发送方式确定方法,包括:
步骤S300:第二通信节点接收第一通信节点发送的信令,所述信令用于指示第二通信节点发送信息所使用的发送方式。
如图5所示,本实施例还提供另一种发送方式确定方法,包括:
步骤S400:第二通信节点和第一通信节点双方预定义第二通信节点发送信息所使用的发送方式,其中,所述信息包括业务数据和/或控制信息。这两种发送方式都应用于第二通信节点中,这里的第二通信节点可为各种类型的用户终端等。这里的而用户终端可包括人载用户终端,车载用户终端等终端。当然,这里的第二通信节点不局限于用户终端,还可以是物理网中的机器到机器(Machine 2 Machine,M2M)设备。
上述两种方式中,一种方式第二通信节点接收第一通信节点发送的信令,通过信令解析获得第一通信节点确定的发送方式。在后续通信过程中,若所述第二通信节点向所述第一通信节点发送信息时,则采用确定的发送方式来发送。在另一种方式中,第二通信节点和第一通信节点,预先定义发送方式,这样的话,第二通信节点也可以简便确定向第一通信节点发送信息的发送方式。在本实施例中所述发送方式至少包括以下之一:离散傅里叶变换扩频的正交频分复用、循环前缀正交频分复用。这样的话,第二通信节点可以采用离散傅里叶变换扩频的正交频分复用或循环前缀正交频分复用其中的一种向所述第一通信节点发送信息。
在一实施例中,在所述第一通信节点确定所述发送方式之前,所述方法还包括:
所述第二通信节点向所述第一通信节点上报所述第二通信节点建议的发送方式或所述第二通信节点的功率放大器PA的相关信息,所述相关信息至少包括以下之一:功率放大器的饱和区起始电压与静态工作点的电压之间的第一差值、功率放大器的饱和区起始电流与静态工作点的电流之间的第二差值、功率放大器的静态工作点所处的区间,
所述建议的发送方式或所述PA的相关信息,用于所述第一通信节点确定所述发送方式。
在本实施例中所述第二通信节点可以根据PA的相关信息或上行编码调制方式等各种依据参数,自行提出一种简易的发送方式,告知给第一通信节点,由第一通信节点根据第二通信节点的建议,进入确定是否采用建议的发送方式进行通信。
在另一些实施例中,所述第二通信节点将自身的PA的相关信息发送给第一通信节点,这样的话,第一通信节点可以根据第二通信节点的PA的相关信息,选择出适合当前第二通信节点的发送功率特点的发送方式供第二通信节点的信息发送,从而避免第二通信节点的发送功率不能满足某一种发送方式所需功耗产生的信号质量差等问题。
可选地,所述功率放大器在线性放大区间的最小工作信号为E,最大工作信号为F;当所述最小工作信号为最小工作电压时,所述最大工作信号为最大工作电压;当所述最小电信号为最小工作电流时,所述最大工作信号为最大工作电流;
所述功率放大器在线性放大区间分为3个区间,分别是区间1、区间2和区间3;
所述区间1对应的工作信号范围为[E,E+(F-E)/2-delta);
所述区间2对应的工作信号范围为[E+(F-E)/2-delta,E+(F-E)/2+delta];
所述区间3对应的工作信号范围为(E+(F-E)/2+delta,F];
其中,所述delta为小于(F-E)/2的正实数。
在本实施例中,将功率放大器PA的线性发当区分为了3个区,然后PA的静态工作电所处的区间来决定采用哪一种发送方式。具体如,当所述第二通信节点的所述功率放大器的静态工作点所处的区间为所述区间1或所述区间3时,则所述发送方式为离散傅里叶变换扩频的正交频分复用;当所述第二通信节点的所述功率放大器的静态工作点所处的区间为所述区间2时,则所述发送方式为循环前缀正交频分复用。
第一通信节点向第二通信节点指示发送方式的信令有多种,在本实施例中采用如下信令进行复合指示或隐含指示。所述信令至少包括以下之一:指示上行数据的调制编码方式索引信令、指示上行数据的调制方式信令、指示上行空间复用的秩信令、指示冗余版本的取值信令、配置上行参考信号所使用的序列类型的信令。
上述信令携带的信息内容或信令本身与发送方式具有映射关系,当第一通信节点向第二通信节点发送对应的信令或信令内容时,第二通信节点就可以根据这种映射关系确定出当前第一通信节点确定出的发送方式是离散傅里叶变换扩频的正交频分复用,还是循环前缀正交频分复用。
当然在一些实施例中还可以通过通信双方构建专用信令进行指示,但是在本实施例中利用与已有的信令的复用,实现隐含指示,具有可以减少信令开销,减少第一通信节点和第二通信节点之间的信令交互次数优点。
在有一些实施例中,当所述上行数据的调制方式为16正交幅度调制QAM或64QAM或256QAM或比256QAM更高阶的调制方式时、或者当上行数据的调制编码方式索引大于或等于C时,则双方预定义所述方式为循环前缀正交频分复用,否则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用,其中,所述C为大于或等于2的正整数。
在还有一些实施例中,所述上行数据的调制方式为16正交幅度调制QAM或64QAM或256QAM或比256QAM更高阶的调制方式时、或者当上行数据的调制编码方式索引大于或等于C时,则双方预定义所述方式为循环前缀正交频分复用,当所述上行数据的调制方式不是16正交幅度调制QAM或64QAM或256QAM或比256QAM更高阶的调制方式时、或者当上行数据的调制编码方式索引小于所述C时,则双方预定义所述发送方式为循环前缀正交频分复用或所述离散傅里叶变换扩频的正交频分复用。
双方预定义发送方式有多种,以下提供几种可选方式,但是不局限于 以下任意一种:
可选方式一:所述步骤S400可包括:
当上行空间复用的秩为1且所述上行数据的调制方式为正交相移键控QPSK或16正交幅度调制QAM时,或者当上行空间复用的秩为1且上行数据的调制编码方式索引小于或等于M1时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用,否则双方预定义所述发送方式为循环前缀正交频分复用,其中,所述M1为2至30的整数。
可选方式二:所述步骤S400可包括:
当上行空间复用的传输块数量为1且该传输块的调制方式为正交相移键控QPSK或16正交幅度调制QAM时,或者当上行空间复用的传输块数量为1且上行数据的调制编码方式索引小于或等于M2时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用,否则双方预定义所述发送方式为循环前缀正交频分复用,其中,所述M2为2至30的整数。
可选方式三:所述步骤S400可包括:
当所述第一通信节点为第二通信节点配置的参考信号序列类型为ZC序列或恒模零自相关CAZAC序列时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用;当所述第一通信节点为第二通信节点配置的参考信号序列类型为伪随机PN序列时,则双方预定义所述发送方式为循环前缀正交频分复用。
可选方式四:
所述步骤S400可包括:
当所述第一通信节点为第二通信节点配置的参考信号序列类型为所述Zadoff Chu序列或所述CAZAC序列时,则双方预定义所述发送方式为循环前缀正交频分复用;当所述第一通信节点为第二通信节点配置的参考信号序列类型为所述PN序列时,则双方预定义所述发送方式为离散傅里叶变换 扩频的正交频分复用。
在有些实施例中,所述步骤S400还可包括:
所述第二通信节点和所述第一通信节点双方预定义第二通信节点,在不同的时域资源使用不同的发送方式发送所述信息,其中,所述时域资源至少包括以下之一:时域符号、时隙、子帧、子帧集合。
可选地,所述步骤S400还可包括:
所述第二通信节点和所述第一通信节点双方预定义第二通信节点在不同的频域资源使用不同的发送方式发送所述信息,其中,所述频域资源至少包括以下之一:频域资源块RB、RB集合、子载波、分量载波、频域带宽、频域子带。
如图6所示,本实施例提供一种通信节点,所述通信节点为第一通信节点,包括:
确定单元110,配置为确定第二通信节点发送信息所使用的发送方式,第一发送单元120,配置为通过信令将所述发送方式指示给第二通信节点。
这里的第一通信节点的相关描述可以参见前述实施例,在此就不重复了。在本实施例中所述确定单元110可为基站等各种通信节点中的处理器或处理电路。所述处理器可包括中央处理器、微处理器、数字信号处理器、应用处理器或可编程阵列等。所述处理电路还可包括专用集成电路。所述处理器或处理电路可以通过预定代码执行实现发送方式的确定。
如图7所示,本实施例还提供另一种第一通信节点,包括:
第一预定义单元200,配置为和第二通信节点双方预定义第二通信节点发送信息控制所使用的发送方式,其中,所述信息包括业务数据和/或控制信息。
本实施例中所述第一通信节点的类型同样可如前述,在此所述第一预定义单元200可包括处理器或通信接口,该通信接口可用于和第二通信节 点进行信息交互,同时所述处理器与通信接口连接,用于处理交互中的各种信息,例如,解析交互的信息和/或将信息存储到存储介质中。所述发送方式至少包括以下之一:离散傅里叶变换扩频的正交频分复用、循环前缀正交频分复用。
如图8所示,所述通信节点还包括:
第一接收单元130,配置为在所述第一通信节点确定所述发送方式之前,接收所述第二通信节点上报的所述第二通信节点建议的发送方式或所述第二通信节点的功率放大器PA的相关信息,其中,所述相关信息至少包括以下之一:功率放大器的饱和区起始电压与静态工作点的电压之间的第一差值、所述功率放大器的饱和区起始电流与静态工作点的电流之间的第二差值、所述功率放大器的静态工作点所处的区间;
所述确定单元110,配置为根据所述建议的发送方式或所述PA的相关信息,确定所述发送方式。
可选地,所述功率放大器在线性放大区间的最小工作信号为E,最大工作信号为F;当所述最小工作信号为最小工作电压时,所述最大工作信号为最大工作电压;当所述最小电信号为最小工作电流时,所述最大工作信号为最大工作电流;所述功率放大器在线性放大区间分为3个区间,分别是区间1、区间2和区间3;所述区间1对应的工作信号范围为[E,E+(F-E)/2-delta);所述区间2对应的工作信号范围为[E+(F-E)/2-delta,E+(F-E)/2+delta];所述区间3对应的工作信号范围为(E+(F-E)/2+delta,F];其中,所述delta为小于(F-E)/2的正实数。
可选地,所述确定单元120,具体用于当所述第二通信节点的所述功率放大器的静态工作点所处的区间为所述区间1或所述区间3时,则确定所述发送方式为离散傅里叶变换扩频的正交频分复用;当所述第二通信节点的所述功率放大器的静态工作点所处的区间为所述区间2时,则确定所述 发送方式为循环前缀正交频分复用,或者,当所述第一差值大于第一门槛值时或所述第二差值大于第二门槛值时,则确定所述发送方式为循环前缀正交频分复用,否则确定所述发送方式为离散傅里叶变换扩频的正交频分复用。
所述第一发送单元120发送的信令可包括以下至少之一:指示上行数据的调制编码方式索引信令、指示上行数据的调制方式信令、指示上行空间复用的秩信令、指示冗余版本的取值信令、配置上行参考信号所使用的序列类型的信令。
可选地,所述第一预定义单元200,还配置为当所述上行数据的调制方式为16正交幅度调制QAM或64QAM或256QAM或比256QAM更高阶的调制方式时、或者当上行数据的调制编码方式索引大于或等于C时,则双方预定义所述方式为循环前缀正交频分复用,否则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用,其中,所述C为大于或等于2的正整数;可选地,所述第一预定义单元200,还用于当所述上行数据的调制方式为16正交幅度调制QAM或64QAM或256QAM或比256QAM更高阶的调制方式时、或者当上行数据的调制编码方式索引大于或等于C时,则双方预定义所述方式为循环前缀正交频分复用;当所述上行数据的调制方式不是16正交幅度调制QAM或64QAM或256QAM或比256QAM更高阶的调制方式时、或者当上行数据的调制编码方式索引小于所述C时,则双方预定义所述发送方式为循环前缀正交频分复用或所述离散傅里叶变换扩频的正交频分复用。
在另一些实施例中,所述第一预定义单元200,配置为当上行空间复用的秩为1且所述上行数据的调制方式为正交相移键控QPSK或16正交幅度调制QAM时,或者当上行空间复用的秩为1且上行数据的调制编码方式索引小于或等于M1时,则双方预定义所述发送方式为离散傅里叶变换扩频的 正交频分复用,否则双方预定义所述发送方式为循环前缀正交频分复用,其中,所述M1为2至30的整数。
在还有些实施例中,所述第一预定义单元200,具体用于当上行空间复用的传输块数量为1且该传输块的调制方式为正交相移键控QPSK或16正交幅度调制QAM时,或者当上行空间复用的传输块数量为1且上行数据的调制编码方式索引小于或等于M2时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用,否则双方预定义所述发送方式为循环前缀正交频分复用,其中,所述M2为2至30的整数。
此外,所述第一预定义单元200,配置为当所述第一通信节点为第二通信节点配置的参考信号序列类型为Zadoff Chu序列或恒模零自相关CAZAC序列时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用;当所述第一通信节点为第二通信节点配置的参考信号序列类型为伪随机PN序列时,则双方预定义所述发送方式为循环前缀正交频分复用。
当然在另一些实施例中还可以是,所述第一预定义单元200,具体用于当所述第一通信节点为第二通信节点配置的参考信号序列类型为所述Zadoff Chu序列或所述CAZAC序列时,则双方预定义所述发送方式为循环前缀正交频分复用;当所述第一通信节点为第二通信节点配置的参考信号序列类型为所述PN序列时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用。
所述第一预定义单元200,配置为所述第一通信节点和所述第二通信节点双方预定义第二通信节点在不同的频域资源使用不同的发送方式发送所述信息,其中,所述频域资源至少包括以下之一:频域资源块RB、RB集合、子载波、分量载波、频域带宽、频域子带。
在还有些实施例中,所述第一发送单元120,还配置为向相邻小区发送指示所述发送方式的发送方式信息。
可选地,所述发送方式信息至少包括以下之一:时域资源上所使用的发送方式、频域资源上所使用的发送方式、波束域资源上所使用的发送方式。
如图9所示,本实施例提供一种通信节点,所述通信节点为第二通信节点,包括:
第二接收单元310,配置为接收第一通信节点发送的信令,所述信令用于指示第二通信节点发送信息所使用的发送方式,
这里的第二接收单元可对应于通信接口,在本实施例中所述通信接口都可以对应于天线,可以从第一通信节点接收信令。在具体实现时,所述第二通信节点还可包括存储介质,存储所述信令;在某些实施例中所述第二通信节点还包括处理器或处理电路,可以解析所述信令,基于信令或信令内容与发送方式的映射关系,或单独基于信令内容本身得到第一通信节点确定的发送方式。
如图10所示,本实施例提供另一种第二通信节点,包括:
第二预定义单元400,配置为和第一通信节点双方预定义第二通信节点发送信息所使用的发送方式,其中,所述信息包括业务数据和/或控制信息。
这里的第二预定单元400同样可对应于通信接口,可以和第一通信节点进行信息交互,预定义出所述发送方式。在本实施例中所述第二通信节点还包括存储介质等,该存储介质可以存储所述预定义的发送方式,后续进行数据发送时,可以通过查询预定义的预定义内容,采用预定义的发送方式向第一通信节点发送信息。
前述两个第二通信节点的实施例种种提到的发送方式至少包括以下之一:离散傅里叶变换扩频的正交频分复用、循环前缀正交频分复用。
可选地,所述通信节点还包括:
第二发送单元320,配置为在所述第一通信节点确定所述发送方式之 前,向所述第一通信节点上报所述第二通信节点建议的发送方式或所述第二通信节点的功率放大器PA的相关信息,所述相关信息至少包括以下之一:功率放大器的饱和区起始电压与静态工作点的电压之间的第一差值、功率放大器的饱和区起始电流与静态工作点的电流之间的第二差值、功率放大器的静态工作点所处的区间,
所述建议的发送方式或所述PA的相关信息,用于所述第一通信节点确定所述发送方式。
在本实施例中所述第二发送单元320同样可包括发送天线,可以用于向第一通信节点发送所述建议的发送方式或所述PA的相关信息。
可选地,所述功率放大器在线性放大区间的最小工作信号为E,最大工作信号为F;当所述最小工作信号为最小工作电压时,所述最大工作信号为最大工作电压;当所述最小电信号为最小工作电流时,所述最大工作信号为最大工作电流;所述功率放大器在线性放大区间分为3个区间,分别是区间1、区间2和区间3;所述区间1对应的工作信号范围为[E,E+(F-E)/2-delta);所述区间2对应的工作信号范围为[E+(F-E)/2-delta,E+(F-E)/2+delta];所述区间3对应的工作信号范围为(E+(F-E)/2+delta,F];其中,所述delta为小于(F-E)/2的正实数。
这样的话,当所述第二通信节点的所述功率放大器的静态工作点所处的区间为所述区间1或所述区间3时,则所述发送方式为离散傅里叶变换扩频的正交频分复用;当所述第二通信节点的所述功率放大器的静态工作点所处的区间为所述区间2时,则所述发送方式为循环前缀正交频分复用。此外,当所述第一差值大于第一门槛值时或所述第二差值大于第二门槛值时,则所述发送方式为循环前缀正交频分复用,否则所述发送方式为离散傅里叶变换扩频的正交频分复用。
所述第一接收单元310接收到的信令至少包括以下之一:指示上行数 据的调制编码方式索引信令、指示上行数据的调制方式信令、指示上行空间复用的秩信令、指示冗余版本的取值信令、配置上行参考信号所使用的序列类型的信令。
可选地,第二预定义单元400,配置为当所述上行数据的调制方式为16正交幅度调制QAM或64QAM或256QAM或比256QAM更高阶的调制方式时、或者当上行数据的调制编码方式索引大于或等于C时,则双方预定义所述方式为循环前缀正交频分复用,否则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用,其中,所述C为大于或等于2的正整数;
可选地,第二预定义单元400,配置为当所述上行数据的调制方式为16正交幅度调制QAM或64QAM或256QAM或比256QAM更高阶的调制方式时、或者当上行数据的调制编码方式索引大于或等于C时,则双方预定义所述方式为循环前缀正交频分复用;当所述上行数据的调制方式不是16正交幅度调制QAM或64QAM或256QAM或比256QAM更高阶的调制方式时、或者当上行数据的调制编码方式索引小于所述C时,则双方预定义所述发送方式为循环前缀正交频分复用或所述离散傅里叶变换扩频的正交频分复用。
可选地,所述第二预定义单元400,还可配置为当上行空间复用的秩为1且所述上行数据的调制方式为正交相移键控QPSK或16正交幅度调制QAM时,或者当上行空间复用的秩为1且上行数据的调制编码方式索引小于或等于M1时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用,否则双方预定义所述发送方式为循环前缀正交频分复用,其中,所述M1为2至30的整数。
此外,所述第二预定义单元400,配置为当上行空间复用的传输块数量为1且该传输块的调制方式为正交相移键控QPSK或16正交幅度调制QAM 时,或者当上行空间复用的传输块数量为1且上行数据的调制编码方式索引小于或等于M2时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用,否则双方预定义所述发送方式为循环前缀正交频分复用,其中,所述M2为2至30的整数。
在一些实施例中,所述第二预定义单元400,配置为当所述第一通信节点为第二通信节点配置的参考信号序列类型为ZC序列或恒模零自相关CAZAC序列时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用;当所述第一通信节点为第二通信节点配置的参考信号序列类型为伪随机PN序列时,则双方预定义所述发送方式为循环前缀正交频分复用。
在另一些实施例中,所述第二预定义单元400,配置为当所述第一通信节点为第二通信节点配置的参考信号序列类型为所述Zadoff Chu序列或所述CAZAC序列时,则双方预定义所述发送方式为循环前缀正交频分复用;当所述第一通信节点为第二通信节点配置的参考信号序列类型为所述PN序列时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用。
可选地,所述第二预定义单元400,配置为所述第二通信节点和所述第一通信节点双方预定义第二通信节点,在不同的时域资源使用不同的发送方式发送所述信息,其中,所述时域资源至少包括以下之一:时域符号、时隙、子帧、子帧集合。
可选地,所述第二预定义单元400,配置为所述第二通信节点和所述第一通信节点双方预定义第二通信节点在不同的频域资源使用不同的发送方式发送所述信息,其中,所述频域资源至少包括以下之一:频域资源块RB、RB集合、子载波、分量载波、频域带宽、频域子带。
综合前述实施例提供的各种技术方案,不管是第一通信节点确定并 向第二通信节点下发指示发送方式的信令,还是双发预定义的方式,上述发送方式都具有以下特点:
获取依据参数,这里的依据参数可包括前述的PA的相关信息、编码调制方式或编码调制方式的索引、上行空间复用的秩、上行空间复用的传输块数量、参考信号序列类型等各种可以确定发送方式的依据信息;
基于所述依据信息,确定发送方式为循环前缀正交频分复用或离散傅里叶变化扩频的正交频分复用。
这里的获取依据参数包括:从通信对端的通信设备接收,也可以在本地数据库查询得到所述依据参数,例如,执行上述操作的通信设备为UE,则UE可以查询自身的PA的相关信息,采用前述实施例中各种与第一门槛值或第二门槛值或区间的划分确定所述发送方式。
一个通信设备确定了发送方式之后,还可以将确定的发送方式告知通信对端,方便通信对端在不自行确定的情况下,获得其确定的通信方式。当通信双方都自行确定发送方式时,则可以通过各种信令告知对端,进行各自发送方式确认的核对,以免各自确定的方式的不统一导致的冲突问题。
以下结合上述实施例提供几个具体示例:
示例一:
第二通信节点向第一通信节点上报所述第二通信节点的功率放大器PA的相关信息,所述相关信息至少包括以下之一:功率放大器的饱和区或截止区起始电压与静态工作点的电压之间的差值、功率放大器的饱和区或截止区起始电流与静态工作点的电流之间的差值。
第一通信节点确定第二通信节点发送上行数据和/或上行控制所使用的发送方式或传输波形。当第二通信节点上报的功率放大器的饱和区或截止区起始电压与静态工作点的电压之间的差值小于某个门槛值K1 时,当所述第二通信节点上报的功率放大器的饱和区或截止区起始电流与静态工作点的电流之间的差值小于某个门槛值K2时,则所述第一通信节点信令配置第二通信节点为离散傅里叶变换扩频的正交频分复用的发送方式或传输波形;其他情况下,则所述第一通信节点信令配置第二通信节点为循环前缀正交频分复用的发送方式或传输波形。
或者,当第二通信节点上报的功率放大器的饱和区或截止区起始电压与静态工作点的电压之间的差值大于某个门槛值K1时,当所述第二通信节点上报的功率放大器的饱和区或截止区起始电流与静态工作点的电流之间的差值大于某个门槛值K2时,则所述第一通信节点信令配置第二通信节点为循环前缀正交频分复用的发送方式或传输波形;其他情况下,则所述第一通信节点信令配置第二通信节点为离散傅里叶变换扩频的正交频分复用的发送方式或传输波形。
其中,K1和K2的取值与上行发送数据的峰均比PAPR或CM(Cubic Metric)值有关,可以为预定义的某个确定值。
示例二:
第二通信节点向第一通信节点上报所述第二通信节点的功率放大器PA的相关信息,所述相关信息为功率放大器的静态工作点所处的范围或区间。
将所述功率放大器的线性放大区间划分为3个区间,假定线性放大区间的最小工作电压或工作电流为E,线性放大区间的最大工作电压或工作电流为F,则中心点的工作电压或工作电流为E+(F-E)/2,定义区间1为[E,E+(F-E)/2-delta),区间2为[E+(F-E)/2-delta,E+(F-E)/2+delta],区间3为(E+(F-E)/2+delta,F],其中delta为小于(F-E)/2的某一数值。
第一通信节点确定第二通信节点发送上行数据和/或上行控制所使用的发送方式或传输波形,当所述第二通信节点上报的功率放大器的静 态工作点所处的范围或区间为区间1或区间3时,则所述第一通信节点信令配置第二通信节点为离散傅里叶变换扩频的正交频分复用的发送方式;当所述第二通信节点上报的功率放大器的静态工作点所处的范围或区间为区间2时,则所述第一通信节点信令配置第二通信节点为循环前缀正交频分复用的发送方式。
示例三:
第一通信节点确定第二通信节点发送上行数据和/或上行控制所使用的发送方式,并通过信令指示给第二通信节点;或者,第一通信节点和第二通信节点双方预定义第二通信节点发送上行数据和/或上行控制所使用的发送方式。
其中,所述信令至少包括以下之一:上行数据的调制编码方式索引。
例如,利用上行数据的调制编码方式(Modulation and Coding Scheme,MCS)索引隐含指示发送方式或传输波形,或者预定义发送方式或传输波形,当上行数据的调制编码方式索引大于或等于C时,则所述第一通信节点隐含指示第二通信节点使用循环前缀正交频分复用的发送方式或传输波形,或者,第一通信节点和第二通信节点双方预定义发送上行数据和/或上行控制所使用的发送方式为循环前缀正交频分复用;其中,C为11或21,或者为2至30之间除了11和21以外的某一整数。MCS为其他取值时,则隐含指示第二通信节点使用离散傅里叶变换扩频的正交频分复用的发送方式或传输波形,或者第一通信节点和第二通信节点双方预定义发送上行数据和/或上行控制所使用的发送方式为离散傅里叶变换扩频的正交频分复用。
示例四:
第一通信节点确定第二通信节点发送上行数据和/或上行控制所使用的发送方式,并通过信令指示给第二通信节点;或者,第一通信节点 和第二通信节点双方预定义第二通信节点发送上行数据和/或上行控制所使用的发送方式。
其中,所述信令为指示上行数据的调制方式的信令。
例如,利用上行数据的调制编码方式来隐含指示或预定义第二通信节点的发送方式或传输波形,当上行数据的调制方式为16QAM或64QAM或256QAM时、或者当上行数据的调制方式为比16QAM或64QAM更高阶的调制方式时则所述第一通信节点隐含指示第二通信节点或预定义第二通信节点使用循环前缀正交频分复用的发送方式或传输波形;其中,C为11或21,或者为2至30之间除了11和21以外的某一整数。MCS为其他取值时,则隐含指示第二通信节点或预定义第二通信节点使用离散傅里叶变换扩频的正交频分复用的发送方式或传输波形。
示例五:
第一通信节点确定第二通信节点发送上行数据和/或上行控制所使用的发送方式,并通过信令指示给第二通信节点;或者,第一通信节点和第二通信节点双方预定义第二通信节点发送上行数据和/或上行控制所使用的发送方式。
其中,所述信令为配置上行参考信号所使用的序列类型的信令。
例如,利用配置上行参考信号所使用的序列类型的信令来隐含指示第二通信节点或预定义第二通信节点的发送方式或传输波形,当所述第一通信节点为第二通信节点配置的上行参考信号序列类型为ZC(Zadoff Chu)序列或恒模零自相关CAZAC序列时,则隐含指示第二通信节点或预定义第二通信节点发送上行数据和/或上行控制所使用的发送方式为离散傅里叶变换扩频的正交频分复用;当所述第一通信节点为第二通信节点配置的上行参考信号序列类型为伪随机PN序列时,则隐含指示第 二通信节点或预定义第二通信节点发送上行数据和/或上行控制所使用的发送方式为循环前缀正交频分复用。
示例六:
第一通信节点和第二通信节点双方预定义第二通信节点在不同的时域资源使用不同的发送方式发送所述上信信息,其中,所述时域资源至少包括以下之一:时域符号、时隙、子帧、子帧集合。
例如,将所有的上行子帧划分为子帧集合1和子帧集合2,预定义在子帧集合1上使用循环前缀正交频分复用,在子帧集合2上使用离散傅里叶变换扩频的正交频分复用。
示例七:
第一通信节点和第二通信节点双方预定义第二通信节点在不同的频域资源使用不同的发送方式发送所述上行信息,其中,所述频域资源至少包括以下之一:频域资源块RB、频域资源块RB集合、子载波、分量载波、频域带宽、频域子带。
例如,将UE的频域带宽划分为带宽1和带宽2,预定义在带宽1上使用循环前缀正交频分复用,在带宽2上使用离散傅里叶变换扩频的正交频分复用。
示例八:
第一通信节点向其他相邻小区的第一通信节点交互所述第一通信节点所配置的发送方式信息,所述发送方式信息至少包括以下之一:时域资源上所使用的发送方式、频域资源上所使用的发送方式、波束域资源上所使用的发送方式。
本发明实施例还提供一种通信节点,包括:
通信接口,配置为与其他通信节点进行信息交互;、
处理器,与所述通信接口连接,配置为通过计算机可执行指令的执行,实现前述一个或多给技术方案提供的发送方式确定方法。
所述通信接口,可对应于第一通信设备和第二通信设备的一根或多根天线,可以通过无线信号的传输,实现与其他通信节点的信息交互。
所述处理器为各种类型的处理器、处理电路或处理芯片,例如,中央处理器、微处理器、数字信号处理器、应用处理器、可编程阵列或专用集成电路。
所述处理器可以通过总线,例如,集成电路总线(IIC)等与所述通信接口连接,并控制所述通信接口的信息收发。
本实施例提供的通信节点,可为前述第一通信节点或前述第二通信节点。
本发明实施例还提供一种计算机存储介质,
在本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于应用于第一通信节点和/或第二通信节点中的发送方式确定方法。
本发明实施例提供的计算机存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。在本实施例中,所述计算机存储介质可选为非瞬间存储介质。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接 口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理模块中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,凡按照本发明原理所作的修改,都应当理解为落入本发明的保护范围。
工业实用性
本发明实施例中在第一通信节点和第二通信节点选择频分复用方式进行通信之前,会通过信令的发送或双方预定义确定出发送方式,这样在通信的时候接收方可以根据发送方的发送方式进行信息接收,从而避免利用不对的接收方式进行信息接收导致的通信质量差的问题,从而具有积极的工业效果,与此同时通过双方预先定义或者信令的下发就告知了发送方式,具有实现简便的特点,在工业上的可适用范围广的特点。

Claims (25)

  1. 一种发送方式确定方法包括:
    第一通信节点确定第二通信节点发送信息所使用的发送方式,并将所述发送方式通过信令指示给第二通信节点;
    或者,
    第一通信节点和第二通信节点双方预定义第二通信节点发送信息所使用的发送方式,其中,所述信息包括业务数据和/或控制信息。
  2. 根据权利要求1所述的方法,其中,所述发送方式至少包括以下之一:离散傅里叶变换扩频的正交频分复用、循环前缀正交频分复用。
  3. 根据权利要求1或2所述的方法,其中,
    所述方法还包括:
    在所述第一通信节点确定所述发送方式之前,接收所述第二通信节点上报的所述第二通信节点建议的发送方式或所述第二通信节点的功率放大器PA的相关信息,其中,所述相关信息至少包括以下之一:功率放大器的饱和区起始电压与静态工作点的电压之间的第一差值、所述功率放大器的饱和区起始电流与静态工作点的电流之间的第二差值、所述功率放大器的静态工作点所处的区间;
    所述第一通信节点确定第二通信节点发送信息所使用的发送方式,包括:
    根据所述建议的发送方式或所述PA的相关信息,确定所述发送方式。
  4. 根据权利要求3所述的方法,其中,
    所述功率放大器在线性放大区间的最小工作信号为E,最大工作信号为F;当所述最小工作信号为最小工作电压时,所述最大工作信号为最大工作电压;当所述最小电信号为最小工作电流时,所述最大工作信 号为最大工作电流;
    所述功率放大器在线性放大区间分为3个区间,分别是区间1、区间2和区间3;
    所述区间1对应的工作信号范围为[E,E+(F-E)/2-delta);
    所述区间2对应的工作信号范围为[E+(F-E)/2-delta,E+(F-E)/2+delta];
    所述区间3对应的工作信号范围为(E+(F-E)/2+delta,F];
    其中,所述delta为小于(F-E)/2的正实数。
  5. 根据权利要求4所述的方法,其中,
    所述第一通信节点确定第二通信节点发送信息所使用的发送方式,包括以下至少之一:
    当所述第二通信节点的所述功率放大器的静态工作点所处的区间为所述区间1或所述区间3时,则确定所述发送方式为离散傅里叶变换扩频的正交频分复用;
    当所述第二通信节点的所述功率放大器的静态工作点所处的区间为所述区间2时,则确定所述发送方式为循环前缀正交频分复用;
    当所述第一差值大于第一门槛值时或所述第二差值大于第二门槛值时,则确定所述发送方式为循环前缀正交频分复用,否则确定所述发送方式为离散傅里叶变换扩频的正交频分复用。
  6. 根据权利要求1或2所述的方法,其中,所述信令至少包括以下之一:
    指示上行数据的调制编码方式索引信令、指示上行数据的调制方式信令、指示上行空间复用的秩信令、指示冗余版本的取值信令、配置上行参考信号所使用的序列类型的信令。
  7. 根据权利要求1或2所述的方法,其中,
    所述第一通信节点和第二通信节点双方预定义第二通信节点发送信息所使用的发送方式,包括:
    当所述上行数据的调制方式为16正交幅度调制QAM或64QAM或256QAM或比256QAM更高阶的调制方式时、或者当上行数据的调制编码方式索引大于或等于C时,则双方预定义所述方式为循环前缀正交频分复用,否则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用,其中,所述C为大于或等于2的正整数;
    或者,
    当所述上行数据的调制方式不是16正交幅度调制QAM或64QAM或256QAM或比256QAM更高阶的调制方式时、或者当上行数据的调制编码方式索引小于所述C时,则双方预定义所述发送方式为循环前缀正交频分复用或所述离散傅里叶变换扩频的正交频分复用。
  8. 根据权利要求1或2所述的方法,其中,
    所述第一通信节点和第二通信节点双方预定义第二通信节点发送信息所使用的发送方式,包括以下至少之一:
    当上行空间复用的秩为1且所述上行数据的调制方式为正交相移键控QPSK或16正交幅度调制QAM时,或者当上行空间复用的秩为1且上行数据的调制编码方式索引小于或等于M1时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用,否则双方预定义所述发送方式为循环前缀正交频分复用,其中,所述M1为2至30的整数;
    当上行空间复用的传输块数量为1且该传输块的调制方式为正交相移键控QPSK或16正交幅度调制QAM时,或者当上行空间复用的传输块数量为1且上行数据的调制编码方式索引小于或等于M2时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用,否则双方预定义所述发送方式为循环前缀正交频分复用,其中,所述M2为2 至30的整数;
    当所述第一通信节点为第二通信节点配置的参考信号序列类型为Zadoff Chu序列或恒模零自相关CAZAC序列时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用;当所述第一通信节点为第二通信节点配置的参考信号序列类型为伪随机PN序列时,则双方预定义所述发送方式为循环前缀正交频分复用;或者,当所述第一通信节点为第二通信节点配置的参考信号序列类型为所述Zadoff Chu序列或所述CAZAC序列时,则双方预定义所述发送方式为循环前缀正交频分复用;当所述第一通信节点为第二通信节点配置的参考信号序列类型为所述PN序列时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用;
    所述第一通信节点和所述第二通信节点双方预定义第二通信节点,在不同的时域资源使用不同的发送方式发送所述信息,其中,所述时域资源至少包括以下之一:时域符号、时隙、子帧、子帧集合;
    所述第一通信节点和所述第二通信节点双方预定义第二通信节点在不同的频域资源使用不同的发送方式发送所述信息,其中,所述频域资源至少包括以下之一:频域资源块RB、RB集合、子载波、分量载波、频域带宽、频域子带。
  9. 根据权利要求1或2所述的方法,其中,
    所述方法还包括:
    所述第一通信节点向相邻小区发送指示所述发送方式的发送方式信息。
  10. 根据权利要求9所述的方法,其中,所述发送方式信息至少包括以下之一:时域资源上所使用的发送方式、频域资源上所使用的发送方式、波束域资源上所使用的发送方式。
  11. 一种发送方式确定方法,包括:
    第二通信节点接收第一通信节点发送的信令,所述信令用于指示第二通信节点发送信息所使用的发送方式,
    或者,
    第二通信节点和第一通信节点双方预定义第二通信节点发送信息所使用的发送方式,其中,所述信息包括业务数据和/或控制信息。
  12. 根据权利要求11所述的方法,其中,所述发送方式至少包括以下之一:离散傅里叶变换扩频的正交频分复用、循环前缀正交频分复用。
  13. 根据权利要求11或12所述的方法,其中,
    在所述第一通信节点确定所述发送方式之前,所述方法还包括:
    所述第二通信节点向所述第一通信节点上报所述第二通信节点建议的发送方式或所述第二通信节点的功率放大器PA的相关信息,所述相关信息至少包括以下之一:功率放大器的饱和区起始电压与静态工作点的电压之间的第一差值、功率放大器的饱和区起始电流与静态工作点的电流之间的第二差值、功率放大器的静态工作点所处的区间,
    所述建议的发送方式或所述PA的相关信息,用于所述第一通信节点确定所述发送方式。
  14. 根据权利要求13所述的方法,其中,
    所述功率放大器在线性放大区间的最小工作信号为E,最大工作信号为F;当所述最小工作信号为最小工作电压时,所述最大工作信号为最大工作电压;当所述最小电信号为最小工作电流时,所述最大工作信号为最大工作电流;
    所述功率放大器在线性放大区间分为3个区间,分别是区间1、区间2和区间3;
    所述区间1对应的工作信号范围为[E,E+(F-E)/2-delta);
    所述区间2对应的工作信号范围为[E+(F-E)/2-delta,E+(F-E)/2+delta];
    所述区间3对应的工作信号范围为(E+(F-E)/2+delta,F];
    其中,所述delta为小于(F-E)/2的正实数。
  15. 根据权利要求14所述的方法,其中,
    当所述第二通信节点的所述功率放大器的静态工作点所处的区间为所述区间1或所述区间3时,则所述发送方式为离散傅里叶变换扩频的正交频分复用;
    当所述第二通信节点的所述功率放大器的静态工作点所处的区间为所述区间2时,则所述发送方式为循环前缀正交频分复用;
    当所述第一差值大于第一门槛值时或所述第二差值大于第二门槛值时,则所述发送方式为循环前缀正交频分复用,否则所述发送方式为离散傅里叶变换扩频的正交频分复用。
  16. 根据权利要求11或12所述的方法,其中,所述信令至少包括以下之一:指示上行数据的调制编码方式索引信令、指示上行数据的调制方式信令、指示上行空间复用的秩信令、指示冗余版本的取值信令、配置上行参考信号所使用的序列类型的信令。
  17. 根据权利要求11或12所述的方法,其中,
    第二通信节点和第一通信节点双方预定义第二通信节点发送信息所使用的发送方式,其中,所述信息包括业务数据和/或控制信息,包括以下至少之一:
    当所述上行数据的调制方式为16正交幅度调制QAM或64QAM或256QAM或比256QAM更高阶的调制方式时、或者当上行数据的调制编码方式索引大于或等于C时,则双方预定义所述方式为循环前缀正交 频分复用,否则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用,其中,所述C为大于或等于2的正整数;或者,当所述上行数据的调制方式不是16正交幅度调制QAM或64QAM或256QAM或比256QAM更高阶的调制方式时、或者当上行数据的调制编码方式索引小于所述C时,则双方预定义所述发送方式为循环前缀正交频分复用或所述离散傅里叶变换扩频的正交频分复用;
    当上行空间复用的秩为1且所述上行数据的调制方式为正交相移键控QPSK或16正交幅度调制QAM时,或者当上行空间复用的秩为1且上行数据的调制编码方式索引小于或等于M1时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用,否则双方预定义所述发送方式为循环前缀正交频分复用,其中,所述M1为2至30的整数;
    当上行空间复用的传输块数量为1且该传输块的调制方式为正交相移键控QPSK或16正交幅度调制QAM时,或者当上行空间复用的传输块数量为1且上行数据的调制编码方式索引小于或等于M2时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用,否则双方预定义所述发送方式为循环前缀正交频分复用,其中,所述M2为2至30的整数;
    当所述第一通信节点为第二通信节点配置的参考信号序列类型为Zadoff Chu序列或恒模零自相关CAZAC序列时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用;
    当所述第一通信节点为第二通信节点配置的参考信号序列类型为伪随机PN序列时,则双方预定义所述发送方式为循环前缀正交频分复用;
    当所述第一通信节点为第二通信节点配置的参考信号序列类型为所述Zadoff Chu序列或所述CAZAC序列时,则双方预定义所述发送方 式为循环前缀正交频分复用;当所述第一通信节点为第二通信节点配置的参考信号序列类型为所述PN序列时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用;
    所述第二通信节点和所述第一通信节点双方预定义第二通信节点,在不同的时域资源使用不同的发送方式发送所述信息,其中,所述时域资源至少包括以下之一:时域符号、时隙、子帧、子帧集合。
  18. 根据权利要求11或12所述的方法,其中,
    所述第二通信节点和第一通信节点双方预定义第二通信节点发送信息所使用的发送方式,包括:
    所述第二通信节点和所述第一通信节点双方预定义第二通信节点在不同的频域资源使用不同的发送方式发送所述信息,其中,所述频域资源至少包括以下之一:频域资源块RB、RB集合、子载波、分量载波、频域带宽、频域子带。
  19. 一种通信节点,所述通信节点为第一通信节点,包括:
    确定单元,确定第二通信节点发送信息所使用的发送方式,
    第一发送单元,配置为通过信令将所述发送方式指示给第二通信节点;
    或者,
    第一预定义单元,配置为和第二通信节点双方预定义第二通信节点发送信息控制所使用的发送方式,其中,所述信息包括业务数据和/或控制信息。
  20. 根据权利要求19所述的通信节点,其中,所述发送方式至少包括以下之一:离散傅里叶变换扩频的正交频分复用、循环前缀正交频分复用。
  21. 根据权利要求19或20所述的通信节点,其中,
    所述通信节点还包括:
    第一接收单元,配置为在所述第一通信节点确定所述发送方式之前,接收所述第二通信节点上报的所述第二通信节点建议的发送方式或所述第二通信节点的功率放大器PA的相关信息,其中,所述相关信息至少包括以下之一:功率放大器的饱和区起始电压与静态工作点的电压之间的第一差值、所述功率放大器的饱和区起始电流与静态工作点的电流之间的第二差值、所述功率放大器的静态工作点所处的区间;
    所述确定单元,具体用于根据所述建议的发送方式或所述PA的相关信息,确定所述发送方式。
    版本的取值信令、配置上行参考信号所使用的序列类型的信令。
  22. 根据权利要求19或20所述的通信节点,其中,
    所述第一预定义单元,还配置为执行以下至少之一:
    当所述上行数据的调制方式为16正交幅度调制QAM或64QAM或256QAM或比256QAM更高阶的调制方式时、或者当上行数据的调制编码方式索引大于或等于C时,则双方预定义所述方式为循环前缀正交频分复用,否则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用,其中,所述C为大于或等于2的正整数;或者,当所述上行数据的调制方式不是16正交幅度调制QAM或64QAM或256QAM或比256QAM更高阶的调制方式时、或者当上行数据的调制编码方式索引小于所述C时,则双方预定义所述发送方式为循环前缀正交频分复用或所述离散傅里叶变换扩频的正交频分复用;
    当上行空间复用的秩为1且所述上行数据的调制方式为正交相移键控QPSK或16正交幅度调制QAM时,或者当上行空间复用的秩为1且上行数据的调制编码方式索引小于或等于M1时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用,否则双方预定义所述 发送方式为循环前缀正交频分复用,其中,所述M1为2至30的整数;
    当上行空间复用的传输块数量为1且该传输块的调制方式为正交相移键控QPSK或16正交幅度调制QAM时,或者当上行空间复用的传输块数量为1且上行数据的调制编码方式索引小于或等于M2时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用,否则双方预定义所述发送方式为循环前缀正交频分复用,其中,所述M2为2至30的整数;
    当所述第一通信节点为第二通信节点配置的参考信号序列类型为ZC序列或恒模零自相关CAZAC序列时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用;当所述第一通信节点为第二通信节点配置的参考信号序列类型为伪随机PN序列时,则双方预定义所述发送方式为循环前缀正交频分复用;或者,当所述第一通信节点为第二通信节点配置的参考信号序列类型为所述Zadoff Chu序列或所述CAZAC序列时,则双方预定义所述发送方式为循环前缀正交频分复用;当所述第一通信节点为第二通信节点配置的参考信号序列类型为所述PN序列时,则双方预定义所述发送方式为离散傅里叶变换扩频的正交频分复用;
    所述第一通信节点和所述第二通信节点双方预定义第二通信节点在不同的频域资源使用不同的发送方式发送所述信息,其中,所述频域资源至少包括以下之一:频域资源块RB、RB集合、子载波、分量载波、频域带宽、频域子带。
  23. 一种通信节点,所述通信节点为第二通信节点,包括:
    第二接收单元,配置为接收第一通信节点发送的信令,所述信令用于指示第二通信节点发送信息所使用的发送方式,
    或者,
    第二预定义单元,配置为和第一通信节点双方预定义第二通信节点发送信息所使用的发送方式,其中,所述信息包括业务数据和/或控制信息。
  24. 一种通信节点,包括:
    通信接口,配置为与其他通信节点进行信息交互;
    处理器,与所述通信接口连接,配置为通过计算机可执行指令的执行,实现权利要求1至18任一项提供的所述发送方式确定方法。
  25. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至18任一项提供的所述发送方式确定方法。
PCT/CN2017/115090 2017-01-09 2017-12-07 发送方式确定方法、通信节点和计算机存储介质 WO2018126843A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710014926.X 2017-01-09
CN201710014926.XA CN108288990B (zh) 2017-01-09 2017-01-09 发送方式确定方法及通信节点

Publications (1)

Publication Number Publication Date
WO2018126843A1 true WO2018126843A1 (zh) 2018-07-12

Family

ID=62789031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115090 WO2018126843A1 (zh) 2017-01-09 2017-12-07 发送方式确定方法、通信节点和计算机存储介质

Country Status (2)

Country Link
CN (1) CN108288990B (zh)
WO (1) WO2018126843A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102395160A (zh) * 2011-06-28 2012-03-28 中兴通讯股份有限公司 用户设备传输数据的控制方法和***
US20140133441A1 (en) * 2011-07-27 2014-05-15 Fujitsu Limited Method and apparatus for transmitting control signaling
CN105338549A (zh) * 2014-08-11 2016-02-17 华为技术有限公司 确定多媒体数据发送方式的方法和设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103139125B (zh) * 2011-12-02 2016-04-13 华为技术有限公司 下行数据发送、接收方法及基站与用户终端
CN104734826B (zh) * 2013-12-20 2020-08-11 中兴通讯股份有限公司 超大带宽数据发送控制方法及超大带宽数据发送设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102395160A (zh) * 2011-06-28 2012-03-28 中兴通讯股份有限公司 用户设备传输数据的控制方法和***
US20140133441A1 (en) * 2011-07-27 2014-05-15 Fujitsu Limited Method and apparatus for transmitting control signaling
CN105338549A (zh) * 2014-08-11 2016-02-17 华为技术有限公司 确定多媒体数据发送方式的方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL COMMUNICATIONS.: "Coexistence of CP OFDM and CP DFT-s-OFDM for NR UL", 3GPP TSG RAN WG1 MEETING #86BIS R1-1609887, 14 October 2016 (2016-10-14), XP051159719, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_86b/Docs/> *
NTT DOCOMO, INC.: "Study on New Radio Access Technology", 3GPP TSG RAN MEETING #74 RP-162201", 8 December 2016 (2016-12-08), XP055513255 *

Also Published As

Publication number Publication date
CN108288990B (zh) 2023-04-14
CN108288990A (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
US9681479B2 (en) Device-to-device communication management using macrocell communication resources
CN108496387B (zh) 基站装置、终端装置以及通信方法
US9974060B2 (en) Systems and methods for uplink signalling
CN104918312B (zh) 用于控制信号发送功率的方法及其装置
CN108496388B (zh) 基站装置、终端装置以及通信方法
EP3681189A1 (en) Terminal device, base station device, and communication method
CN110972265B (zh) 一种资源确定方法及装置
US20180227897A1 (en) Method and device for transmitting narrow band signal in wireless cellular communication system
KR20100020411A (ko) 무선 통신 시스템에서 sr 전송 방법
CN102907035A (zh) 用于下行链路信道资源指派的方法和装置
CN107113109A (zh) 用于确认多用户上行链路传输的方法和装置
JP2020502875A (ja) アップリンクデータを伝送するための方法、端末装置とネットワーク装置
CN113711526A (zh) 在无线通信***中收发上行链路参考信号的方法和设备
US9288024B2 (en) Systems and methods for uplink signaling using time-frequency resources
KR20200120620A (ko) 짧은 물리적 업링크 제어 채널 구조
WO2019088254A1 (ja) 端末装置、基地局装置、および、通信方法
WO2019151051A1 (ja) 端末装置、基地局装置、および、通信方法
CN115699693A (zh) 峰值降低频调分配技术
CN102972064A (zh) 移动站装置、基站装置、无线通信***、无线通信方法以及集成电路
US20220337461A1 (en) Reference Signal Determining Method and Apparatus
JP2024511588A (ja) ページング早期指示
WO2019049559A1 (ja) 端末装置、基地局装置、および、通信方法
WO2022036529A1 (zh) 一种相位跟踪参考信号的发送方法、接收方法及通信装置
CN115315979A (zh) 终端装置以及通信方法
WO2018126843A1 (zh) 发送方式确定方法、通信节点和计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889836

Country of ref document: EP

Kind code of ref document: A1