WO2018126767A1 - 触控面板及其制作方法、显示装置 - Google Patents

触控面板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2018126767A1
WO2018126767A1 PCT/CN2017/107358 CN2017107358W WO2018126767A1 WO 2018126767 A1 WO2018126767 A1 WO 2018126767A1 CN 2017107358 W CN2017107358 W CN 2017107358W WO 2018126767 A1 WO2018126767 A1 WO 2018126767A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
transparent conductive
lead
leads
touch panel
Prior art date
Application number
PCT/CN2017/107358
Other languages
English (en)
French (fr)
Inventor
尹奇
孟庆超
范同胜
陈宗义
张忠琪
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN201780020245.2A priority Critical patent/CN108885520B/zh
Priority to US15/780,410 priority patent/US11537250B2/en
Publication of WO2018126767A1 publication Critical patent/WO2018126767A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • At least one embodiment of the present disclosure relates to a touch panel, a method of fabricating the same, and a display device.
  • a capacitive touch panel includes a self-capacitive touch panel and a mutual capacitive touch panel.
  • the self-capacitive touch panel includes a touch electrode array made of a transparent conductive material on a base substrate, and the touch electrodes respectively form a capacitance with the ground.
  • the touch detection chip can determine the touch by detecting the change of the capacitance value of each touch electrode during the touch time period. Control position.
  • the mutual capacitive touch panel comprises a lateral electrode and a longitudinal electrode which are insulated from each other by a transparent conductive material on a base substrate, and a capacitor is formed where the two sets of electrodes intersect.
  • the touch display device can be divided into an external type and an in-line type according to the relationship between the touch structure and the display panel.
  • a typical one-piece glass (OGS) touch panel belongs to an external touch panel.
  • ITO indium tin oxide
  • At least one embodiment of the present disclosure provides a touch panel, a method of fabricating the same, and a display device.
  • the longest lead among the plurality of leads in the touch panel adopts a transparent conductive layer lead, which can reduce the influence of the particles on the lead, and reduce the probability of poor electrical measurement caused by the particles without increasing the process, thereby saving cost and improving Yield.
  • At least one embodiment of the present disclosure provides a touch panel including a substrate substrate, the substrate base
  • the board includes a touch area and a lead end area; a plurality of first electrodes and a plurality of second electrodes are disposed in the touch area, and the second electrode is insulated from the first electrode; the plurality of leads are combined with the plurality of first electrodes A plurality of second electrodes are electrically connected and connected to the lead end regions, respectively, wherein the plurality of leads comprise transparent conductive layer leads.
  • At least one embodiment of the present disclosure provides a display device including the above touch panel.
  • At least one embodiment of the present disclosure provides a method for fabricating a touch panel, including: forming a touch region and a lead end region on a substrate; forming a plurality of first electrodes in the touch region; forming in the touch region a plurality of second electrodes, and are insulated from the first electrode; forming a plurality of leads at the edge of the touch area, electrically connecting to the plurality of first electrodes and the plurality of second electrodes, respectively, and connecting to the lead end regions, wherein
  • the leads include transparent conductive layer leads.
  • 1a is a schematic diagram of a touch panel
  • FIG. 1b is a schematic cross-sectional view of a touch panel along the AA' direction of FIG. 1a;
  • FIG. 2a is a schematic diagram of a touch panel according to an embodiment of the present disclosure
  • FIG. 2b is a cross-sectional view of the touch panel along the AA' direction of FIG. 2a according to an embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view of the touch panel along the BB′ direction of FIG. 2 a according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of another touch panel according to an embodiment of the present disclosure.
  • FIG. 3b is a cross-sectional view of another touch panel according to an AA' direction of FIG. 3a according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of another touch panel according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a method for fabricating a touch panel according to an embodiment of the present disclosure
  • 6a-6e are schematic diagrams showing a specific process of manufacturing a touch panel according to an embodiment of the present disclosure.
  • 10-substrate substrate 11-touch area; 12-lead end region; 20-first electrode; 30-second electrode; 40-lead 60-black matrix; 70-transparent conductive bridge; 80-insulation layer; a substrate substrate; 110-touch region; 120-lead end region; 200-first electrode; 210-first sub-electrode; 300-second electrode; 310-second sub-electrode; 320-connecting portion; 400-lead; 410-transparent conductive layer lead; 420-metal lead; 421-first metal lead; 422-second metal lead; 430-first lead; 431-first transparent conductive layer lead; 440-second lead; 441-second transparent conductive layer lead; 500-first insulating layer; 510-lap joint; 600-black matrix; 700-transparent conductive bridge; 800-second insulating layer; 900-lap line.
  • FIG. 1a is a schematic view of a touch panel
  • FIG. 1b is a cross-sectional view of the touch panel along the AA' direction of FIG. 1a.
  • the touch panel includes a base substrate 10 including a touch area 11, a black matrix 60 disposed around an edge of the touch area 11, and a lead end disposed at an edge of the touch area 11. District 12.
  • a plurality of first electrodes 20 and a plurality of second electrodes 30 are disposed in the touch area 11, and the first electrodes 20 and the second electrodes 30 are cross-insulated.
  • the plurality of first electrodes 20 and the plurality of second electrodes 30 are connected to the lead end regions 12 by a plurality of leads 40.
  • the detection of the touch operation and the detection of the position at which the touch operation occurs can be realized by applying and detecting the electrical signals to the plurality of leads 40.
  • the wire width of each of the leads 40 is narrow, for example, the line width is 30 ⁇ m.
  • the length of the plurality of leads 40 depends on the length of the distance from the electrode to which the electrode is electrically connected is from the lead end region 12.
  • the Applicant has found that in the process of depositing or photolithographically forming a metal lead, since the line width of the lead is thin, it is easily blocked by the particles, resulting in poor electrical measurement, such as an open circuit or a short circuit. Moreover, the longer the length of the lead, the greater the probability of being blocked by the particles, and the greater the probability of causing poor electrical measurement.
  • At least one embodiment of the present disclosure provides a touch panel, a method of fabricating the same, and a display device.
  • the touch panel includes a base substrate including a touch area and a lead end area; a plurality of first electrodes and a plurality of second electrodes are disposed in the touch area, and the second electrode is insulated from the first electrode; A plurality of leads are electrically connected to the plurality of first electrodes and the plurality of second electrodes and connected to the lead end regions, wherein the plurality of leads comprise transparent conductive layer leads.
  • the longest lead among the plurality of leads in the touch panel adopts a transparent conductive layer lead, which can reduce the influence of the particles on the lead, and reduce the probability of poor electrical measurement caused by the particles without increasing the process, thereby saving cost. Improve yield.
  • the touch panel provided by the embodiment of the present disclosure, a manufacturing method thereof, and a display device will be described below with reference to the accompanying drawings.
  • a touch panel includes a base substrate 100 including a touch area 110 and a lead end region disposed at an edge of the touch area 110.
  • a plurality of first electrodes 200 and a plurality of second electrodes 300 are disposed in the touch area 110, and the second electrodes 300 are cross-insulated with the first electrodes 200; a plurality of leads 400, and a plurality of first electrodes 200 and more
  • the second electrodes 300 are electrically connected and connected to the lead end regions 120, respectively, and the plurality of leads 400 include transparent conductive layer leads 410.
  • the width of the transparent conductive layer lead 410 is wider than that of the general lead, thereby reducing the probability that the transparent conductive layer lead 410 is blocked by particles and causing poor electrical measurement, thereby preventing short circuit or open circuit, thereby improving product yield. .
  • the transparent conductive layer lead 410 can be used instead of the lead electrically connected to the first electrode 200 farthest from the lead end region 120, that is, the lead having the longest length, so that the longest lead is prevented from being blocked by the particles. Therefore, the short-circuit or the disconnection of the touch panel during the electrical measurement or the actual use can be prevented, and the product yield of the touch panel provided by the embodiment can be improved.
  • the transparent conductive layer leads may also be electrically connected to a second electrode that is furthest from the lead end region.
  • the plurality of leads 400 further includes a plurality of metal leads 420, that is, a plurality of metal leads 420 and a plurality of first electrodes 200 and a plurality of The two electrodes 300 are electrically connected for input/output signals, respectively.
  • the touch panel further includes a first insulating layer 500.
  • the first insulating layer 500 is disposed between the plurality of metal leads 420 and the transparent conductive layer leads 410 for insulating the plurality of metal leads 420 and the transparent conductive layer leads 410 from each other.
  • the transparent conductive layer The lead 410 is disposed in a different layer from the plurality of metal leads 420, and the projection of the transparent conductive layer lead 410 on the base substrate 101 may overlap with the projection of the plurality of metal leads 420 on the base substrate 101. Therefore, the transparent conductive layer lead 410 can be disposed wider without increasing the width of the edge of the touch area 110, thereby ensuring good electrical conductivity and greatly reducing the blockage of the particles and causing poor electrical measurement. The chance.
  • the transparent conductive layer leads may have a width ranging from 0.5 cm to 1.5 cm.
  • the sheet resistance Rs of indium tin oxide is generally about 18 ⁇ 4 ⁇ / ⁇ , and the width of the transparent conductive layer lead is 1.5 cm in this embodiment.
  • the line resistance is calculated to be about 12,000 ⁇ /m; the sheet resistance of a general metal lead is about 0.3 ⁇ 0.05 ⁇ / ⁇ , and the line width is 30 ⁇ m, and the line resistance is calculated to be about 10000 ⁇ /m. It has been found that the line resistance values of the two are not much different.
  • the touch panel provided in this embodiment further includes a black matrix 600 disposed on an edge surrounding the touch panel, and the transparent conductive layer leads 410 are disposed on the black matrix 600, and the transparent conductive layer is disposed.
  • the width of the lead 410 is less than or equal to the width of the black matrix 600.
  • the transparent conductive layer leads do not affect the transmittance of the touch panel.
  • the plurality of first electrodes 200 extend in the X direction and are arranged in the Y direction perpendicular to the X direction; the plurality of second electrodes 300 extend in the Y direction and are arranged in the X direction perpendicular to the Y direction.
  • the embodiment is not limited thereto, and for example, the X direction and the Y direction may be interchanged.
  • the angle between the X direction and the Y direction may be other angles.
  • the arrangement of the plurality of first electrodes 200 and the plurality of second electrodes 300 may be changed according to actual needs.
  • the plurality of first electrodes 200 and the plurality of second electrodes 300 can form a capacitance at overlapping positions; when a finger is touched, the coupling of the capacitance near the touch point is affected, thereby changing the capacitance near the touch point. The capacity of the battery. Thereby, the touch position can be judged by the change in the capacitance.
  • the plurality of first electrodes 200 and the plurality of second electrodes 300 may also constitute capacitances respectively. The embodiments of the present disclosure are not limited herein.
  • the plurality of leads 400 electrically connected to the plurality of first electrodes 200 and the plurality of second electrodes 300 are connected to the touch detection chip through the lead end regions 120, and the touch detection chips input/receive signals through the lead wires 400, The touch position is determined by analyzing the signals of the received touch electrodes.
  • the touch panel provided in this embodiment further includes a transparent conductive bridge 700.
  • each of the first electrodes 200 includes a plurality of spaced apart first sub-electrodes 210.
  • the first sub-electrodes 210 arranged in a plurality of intervals are arranged in an array, and the two adjacent first sub-electrodes 210 of the plurality of first sub-electrodes 210 arranged in the X direction are electrically connected through the transparent conductive bridge 700.
  • a plurality of first sub-electrodes 210 arranged in the X direction constitute one first electrode 200, and the embodiment is not limited thereto.
  • each of the second electrodes 300 includes a plurality of second sub-electrodes 310 and a connection portion 320 disposed between adjacent two second sub-electrodes.
  • two adjacent second sub-electrodes 310 of the plurality of second sub-electrodes 310 arranged in the Y direction are electrically connected by the connection portion 310, and therefore, a plurality of second sub-electrodes 310 arranged in the Y direction and
  • the plurality of connecting portions 310 constitute one second electrode 300, and the embodiment is not limited thereto.
  • the connecting portion 310 is disposed on the transparent conductive bridge 700 in this embodiment.
  • the touch panel provided in this embodiment further includes a second insulating layer 800 disposed between the connecting portion 320 and the transparent conductive bridge 700 for separating the first electrode 200 and
  • the second electrode 300 prevents the first electrode 200 from being electrically connected to the second electrode 300.
  • the first insulating layer 500 is disposed in the same layer as the second insulating layer 800.
  • the first insulating layer 500 and the second insulating layer 800 are made of the same material, that is, the first insulating layer 500 and the second insulating layer 800 pass through.
  • the one-step patterning process is formed at the same time, so that the process and cost can be saved.
  • the first insulating layer 500 can further include a lap 510 having a width smaller than the width of the transparent conductive layer leads 410 to expose portions of the transparent conductive layer leads 410.
  • the touch panel further includes a strap 900 that overlaps the exposed transparent conductive layer leads 410 and is connected to the lead end regions 120.
  • the lap portion 510 is disposed on the transparent conductive layer lead 410, and a portion of the transparent conductive layer lead 410 is exposed along the outer edge of the black matrix 600.
  • the lap portion 510 is used to connect the transparent conductive layer lead 410 to the lead end region 120, thereby avoiding electrical connection with the other metal leads 420 in the lead end region. Therefore, the size of the lap portion 510 can be arranged along with the metal lead 420. And set.
  • the embodiment is not limited thereto.
  • the lap portion 510 of the first insulating layer 500 has a width smaller than the width of the transparent conductive layer lead 410 along the outer edge of the black matrix 600, that is, the lap portion 510 can be exposed only to be connected. Take the required portion of the wiring 900.
  • FIG. 2b is a cross-sectional view of the touch panel along AA' provided in FIG. 2a.
  • the control panel includes two complete first sub-electrodes 210 along the cross-sectional view of AA', and two complete The connection 320 and two complete transparent conductive bridges 700 are exemplified.
  • the first insulating layer 500 is disposed between the metal lead 420 and the transparent conductive layer lead 410 to prevent the metal lead 420 from being electrically connected to the transparent conductive layer lead 410.
  • the transparent conductive layer lead 410 and the metal lead 420 are disposed in different layers and the metal lead 420
  • the projection on the base substrate 100 falls within the projection of the transparent conductive layer lead 410 on the base substrate 100, and the width of the lead disposed on the edge of the touch panel can be reduced, thereby achieving a narrower bezel design.
  • the two first sub-electrodes 210 and the insulating layer between them in FIG. 2b may be disposed in contact or may be disposed at a certain distance.
  • the transparent conductive layer leads 410 may be disposed in the same layer as the transparent conductive bridge 700.
  • the transparent conductive layer lead 410 may be the same material as the transparent conductive bridge 700, for example, the material is indium tin oxide or the like, and the embodiment is not limited thereto. That is to say, the transparent conductive layer lead 410 and the transparent conductive bridge 700 can be simultaneously formed by one-step patterning process, so that the probability of poor electrical measurement caused by the particles can be reduced without increasing the process, thereby saving cost and improving yield.
  • the transparent conductive layer lead 410 may be the first sub-electrode 210 of the first electrode 200 farthest from the lead end region 120. Electrically connected (eg, lapped) to provide an electrical signal to the first electrode 200 or to output an electrical signal on the first electrode 210.
  • the transparent conductive layer lead 410 can also be electrically connected to the transparent conductive bridge 700, and the embodiment is not limited thereto.
  • FIG. 3 is a schematic diagram of a touch panel according to an embodiment of the present invention
  • FIG. 3b is a cross-sectional view of the touch panel along AA′ of FIG. 3 a , as shown in FIG. 3 a and FIG.
  • the transparent conductive bridge 700 of the sub-electrode 210 is disposed on the connecting portion 320 of the second electrode 300, and a second insulating layer 800 is disposed between the transparent conductive bridge 700 and the connecting portion 320.
  • the second insulating layer 800 is used to separate the transparent conductive bridge 700.
  • the connecting portion 320 prevents the transparent conductive bridge 700 and the connecting portion 320 from being electrically connected.
  • the transparent conductive layer lead 410 is disposed in the same layer as the connecting portion 320.
  • the transparent conductive layer lead 410 is the same material as the connecting portion 320.
  • the material is indium tin oxide or the like. Limited to this. That is to say, the transparent conductive layer lead 410 and the connecting portion 320 can be simultaneously formed by one-step patterning process, so that the probability of poor electrical measurement caused by the particles can be reduced without increasing the number of steps, thereby saving cost and improving yield.
  • FIG. 4 is a schematic diagram of a touch panel according to an embodiment of the present disclosure.
  • the plurality of leads includes a plurality of first leads 430 respectively electrically connected to the plurality of first electrodes 210 and connected to The lead end region 120; and the plurality of second leads 440 are electrically connected to the plurality of second electrodes 310 and connected to the lead end regions 120, respectively.
  • the plurality of first leads 430 include a first transparent conductive layer lead 431 electrically connected to the first electrode 210 farthest from the lead end region 120; and the plurality of second leads 440 include the second The transparent conductive layer lead 441 is electrically connected to the second electrode 310 farthest from the lead end region 120.
  • the leads connected to the second electrode 310 of the first electrode 210 farthest from the lead end region 120, that is, the longest first lead and the longest second lead are transparent conductive layer leads, thereby The first lead and the second lead having the longest length are prevented from being blocked by the particles, so that the touch panel can be prevented from being short-circuited or broken during electrical measurement or actual use, and the touch panel provided in this embodiment can be further improved.
  • Product yield
  • the plurality of first leads 430 further include a plurality of first metal leads 421; and the plurality of second leads 440 further include a plurality of second metal leads 422.
  • the plurality of first leads 430 and the plurality of second leads 440 are connected to the touch detection chip through the lead end region 120, and the touch detection chip analyzes the signals of the received touch electrodes by inputting/receiving signals through the leads. To determine the touch position.
  • the longest lead among the plurality of first leads 430 and the plurality of second leads 440 in the touch panel provided in this embodiment adopts a first transparent conductive layer lead 431 and a second transparent conductive layer lead 441, which can further reduce particle pairs.
  • the blocking effect of the lead wire; on the other hand, the first transparent conductive layer lead 431 and the second transparent conductive layer lead 441 may be disposed in the same layer as the transparent conductive bridge 700, for example, simultaneously formed in a one-step patterning process, so that it may not be increased In the case of the process, the probability of poor electrical measurement caused by the particles is reduced, thereby saving costs and improving yield.
  • the first transparent conductive layer lead 431 is disposed in a different layer from the plurality of first metal leads 421, and the projection of the first metal lead 421 on the base substrate 100 falls on the first transparent conductive layer lead 431 on the base substrate 100.
  • the second transparent conductive layer lead 441 is disposed in a different layer from the plurality of second metal leads 422, and the projection of the second metal lead 422 on the base substrate 100 falls into the second transparent conductive layer lead 441 on the base substrate
  • the width of the edge of the lead disposed around the touch panel can be reduced, thereby further achieving a narrower bezel design.
  • An embodiment of the present disclosure provides a method for fabricating a touch panel.
  • the specific steps are as shown in FIG. 5, and the manufacturing method includes the following steps S401-S404.
  • Step S401 forming a touch area and a lead end area on the base substrate.
  • the base substrate may be made of glass, polyimide, polycarbonate, polyacrylate, polyetherimide, polyethersulfone, polyethylene terephthalate, and polyethylene naphthalate. Made of one or more materials.
  • Step S402 forming a plurality of first electrodes in the touch area.
  • Step S403 forming a plurality of second electrodes in the touch area and insulating the first electrodes.
  • Step S404 forming a plurality of leads at the edge of the touch area, and the plurality of first electrodes and the plurality of second electrodes Electrically connected and connected to the lead end regions, respectively, the plurality of leads including transparent conductive layer leads.
  • the width of the transparent conductive layer lead is wider than that of the general lead, thereby reducing the probability that the transparent conductive layer lead is blocked by the particles and causing poor electrical measurement, and the short circuit can be prevented. Or the occurrence of open circuit phenomena, which can improve product yield.
  • the lead wire electrically connected to the first electrode and/or the second electrode farthest from the lead end region that is, the lead wire having the longest length can be made into a transparent conductive layer lead, and the lead wire having the longest length can be avoided. Blocking, thereby preventing the short-circuit or open circuit of the touch panel during electrical measurement or actual use, and further improving the product yield of the touch panel provided by the embodiment.
  • the transparent conductive layer leads may also be electrically connected to a second electrode that is furthest from the lead end region.
  • the plurality of leads further includes a metal lead
  • the manufacturing method further includes: forming a first insulating layer between the metal lead and the transparent conductive layer lead.
  • the first insulating layer can insulate the metal leads from the transparent conductive layer leads.
  • the transparent conductive layer leads are disposed in a different layer from the plurality of metal leads, the projection of the transparent conductive layer leads on the base substrate may overlap with the projection of the plurality of metal leads on the base substrate. Therefore, the transparent conductive layer lead can be widely disposed without increasing the width of the edge of the touch area, thereby ensuring good electrical conductivity and greatly reducing the probability of being blocked by the particles and causing poor electrical measurement. .
  • each of the first electrodes includes a plurality of spaced apart first sub-electrodes
  • each of the second electrodes includes a plurality of second sub-electrodes and are disposed adjacent to each other. a connecting portion between the two second sub-electrodes
  • the manufacturing method further comprising: forming a transparent conductive bridge between the adjacent two first sub-electrodes to electrically connect the adjacent two first sub-electrodes; transparent conductive
  • the layer leads and the transparent conductive bridge or connection are formed simultaneously by one patterning process.
  • the manufacturing method of the touch panel does not add a new preparation process compared with the general process; and the width of the transparent conductive layer lead is wider than that of the general lead, so that the particle can be reduced without increasing the process.
  • the probability of poor electrical measurement can prevent the occurrence of short circuit or open circuit, thereby saving costs and improving product yield.
  • the manufacturing method of the touch panel provided by the example of the embodiment further includes: forming a second insulating layer between the connecting portion and the transparent conductive bridge, wherein the first insulating layer and the second insulating layer are simultaneously formed by one patterning process. Therefore, the manufacturing method of the touch panel does not add a new preparation process and saves cost compared with the general process.
  • FIG. 6a-6e are specific processes of a method for fabricating a touch panel according to an example of the embodiment. As shown in FIG. 6a-6e, the manufacturing method includes the following steps:
  • a black matrix 600 is formed on the base substrate 100.
  • the black matrix 600 is formed on the edge of the touch panel, and the surrounding area of the black matrix 600 is the touch area 110.
  • the basic material of the black matrix 600 may be chrome metal or the like, or may be an acryl resin doped with a black pigment (mainly carbon), for example, a black resin in which a raw material such as carbon, titanium or nickel may be incorporated into the photoresist.
  • a black pigment mainly carbon
  • the second diagram in FIG. 6a is a schematic cross-sectional view along the first diagram along AA′
  • the second diagram in the subsequent FIGS. 6b-6e is a schematic cross-sectional view along the first diagram along AA′.
  • a transparent conductive layer lead 410 is formed on the black matrix 600.
  • the width of the transparent conductive layer lead 410 may be less than or equal to the width of the black matrix 600.
  • the width of the transparent conductive layer lead 410 ranges from 0.5 cm to 1.5.
  • the embodiment is not limited to this.
  • a plurality of transparent conductive bridges 700 arranged in an array are formed in the touch area 110.
  • the transparent conductive bridges 700 are formed in the same layer as the transparent conductive layer leads 410, that is, the transparent conductive bridges 700 and the transparent conductive layer leads 410 are simultaneously formed by one patterning process. Therefore, no new preparation process is added as compared with the general process.
  • the width of the transparent conductive layer lead 410 is wider than that of the general lead, so that the probability of poor electrical measurement caused by the particles can be reduced without increasing the number of steps, and the occurrence of short circuit or open circuit can be prevented, thereby saving cost and improving product quality. rate.
  • the embodiment is not limited thereto, and a connection portion may be formed in the touch region 110.
  • the transparent conductive bridge 700 is formed in the same layer as the connection portion, that is, the transparent conductive bridge 700 and the connection portion are simultaneously formed by one patterning process.
  • a lead end region 120 is formed at the edge of the touch area 110 of the touch panel, and a plurality of leads formed subsequently are connected to the lead end region 120.
  • a first insulating layer 500 is formed over the transparent conductive layer leads 410.
  • the first insulating layer 500 includes laps 510 having a width smaller than the width of the transparent conductive layer leads 410 to expose portions of the transparent conductive layer leads 410.
  • the lap portion 510 serves to prevent the subsequently formed metal leads from being electrically connected to the transparent conductive layer leads 410. Therefore, the size of the lap portions 510 depends on the arrangement of the subsequently formed metal leads. For example, the width of the lap portion 510 may be narrow by 100 ⁇ m with respect to the width of the transparent conductive layer lead 410. The embodiment is not limited thereto.
  • the overlapping portion 510 of the first insulating layer 500 may have only a portion of the outer edge of the black matrix 600 having a width smaller than the width of the transparent conductive layer lead 410, or the width of the overlapping portion 510 and The transparent conductive layer leads 410 have the same width.
  • a second insulating layer 800 is formed on each of the plurality of transparent conductive bridges 700.
  • the second insulating layer 800 and the first insulating layer 500 are simultaneously formed by one patterning process, so that no new manufacturing process is added compared with the general process, and cost is saved.
  • a plurality of first electrodes 200 and a plurality of second electrodes 300 are formed in the touch region 110, and the second electrodes 300 are cross-insulated with the first electrodes 200.
  • the plurality of first electrodes 200 extend in the X direction and are arranged in the Y direction perpendicular to the X direction; the plurality of second electrodes 300 extend in the Y direction and are arranged in the X direction perpendicular to the Y direction.
  • the example is not limited to this.
  • each of the first electrodes 200 includes a plurality of spaced apart first sub-electrodes 210.
  • a plurality of spaced apart first sub-electrodes 210 are arranged in an array, and two adjacent first sub-electrodes 210 of the plurality of first sub-electrodes 210 arranged in the X direction are electrically connected through the transparent conductive bridge 700.
  • a plurality of first sub-electrodes 210 arranged in the X direction constitute one first electrode 200, and the embodiment is not limited thereto.
  • each of the second electrodes 300 includes a plurality of second sub-electrodes 310 and a connection portion 320 disposed between the adjacent two second sub-electrodes.
  • two adjacent second sub-electrodes 310 of the plurality of second sub-electrodes 310 arranged in the Y direction are electrically connected by the connection portion 310, and therefore, a plurality of second sub-electrodes 310 arranged in the Y direction and
  • the plurality of connecting portions 310 constitute one second electrode 300, and the embodiment is not limited thereto.
  • the plurality of first electrodes 200 and the plurality of second electrodes 300 may be transparent conductive layers.
  • the selected materials include transparent conductive oxides, for example, may include indium tin oxide (ITO), indium zinc oxide (IZO), A combination or at least one of zinc oxide (ZnO), indium oxide (In2O3), indium gallium oxide (IGO), and aluminum zinc oxide (AZO) is not limited herein.
  • the plurality of first electrodes 200 and the plurality of second electrodes 300 may also be a very thin transparent metal layer, for example, 10 nm to 20 nm.
  • the transparent conductive layer lead 410 and the first electrode 200 farthest from the lead end region 120 the embodiment is not limited thereto, and the transparent conductive layer lead 410 may also be the second farthest from the lead end region 120.
  • the electrodes 300 are electrically connected.
  • the longest lead among the plurality of leads in the touch panel adopts the transparent conductive layer lead 410, which can reduce the influence of the particles on the lead, and reduce the probability of poor electrical measurement caused by the particles without increasing the process, thereby saving cost. Improve yield.
  • a plurality of metal leads 420 are formed on the first insulating layer 500, and the plurality of metal leads 420 are electrically connected to the plurality of first electrodes 200, respectively, and are connected to the lead regions 120.
  • the touch panel further includes a bonding wire 900, which is overlapped with the exposed transparent conductive layer lead 410 and connected to the lead end region 120.
  • the bonding wire 900 may also be formed together with the transparent conductive layer lead 410. That is, the bonding wires 900 are formed before the first insulating layer 500 is formed. Therefore, the subsequently formed first insulating layer 500 may completely cover the transparent conductive layer leads 410, and the embodiment is not limited thereto.
  • a protective film layer (not shown) may be formed on the touch panel.
  • the material of the protective film layer may be a photoresist or the like, and the embodiment is not limited thereto.
  • preparation steps are only an exemplary step of the embodiment, and the embodiment is not limited thereto, and may also include two transparent conductive layer leads, and the corresponding preparation steps are also slightly different, and details are not described herein again.
  • An embodiment of the present disclosure provides a display device including any one of the above-mentioned touch panels.
  • the longest lead among the plurality of leads in the touch panel is a transparent conductive layer lead, which can reduce particles.
  • the effect on the leads and the probability of poor electrical measurement caused by the particles are reduced without increasing the number of steps, thereby saving costs and improving yield.
  • the transparent conductive layer lead is disposed in a different layer from the plurality of metal leads, and the projection of the metal lead on the base substrate falls within the projection of the transparent conductive layer lead on the base substrate, which can reduce the arrangement of the lead around the touch panel.
  • the width of the edge further extends the narrower bezel design.
  • the display device includes a liquid crystal display device or a light emitting diode display device.
  • the display device may be a display device such as a liquid crystal display, an electronic paper, a light emitting diode display, or any display device having a display function such as a television, a digital camera, a mobile phone, a watch, a tablet, a notebook computer, a navigator, and the like including the display device. Or parts.
  • a display device such as a liquid crystal display, an electronic paper, a light emitting diode display, or any display device having a display function such as a television, a digital camera, a mobile phone, a watch, a tablet, a notebook computer, a navigator, and the like including the display device. Or parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控面板及其制作方法、显示装置。该触控面板包括衬底基板(100),该衬底基板(100)包括触控区(110)和引线端区(120);在触控区(110)设置多个第一电极(200)和多个第二电极(300),且第二电极(300)与第一电极(200)交叉绝缘设置;多条引线(400),与多个第一电极(200)和多个第二电极(300)分别电连接并连接至引线端区(120),其中,多条引线(400)包括透明导电层引线(410)。该触控面板中多条引线(400)中最长的引线采用透明导电层引线(410),可以减少颗粒对引线的影响,并在不增加工序的情况下降低颗粒导致的电测不良的几率,从而节约成本,提升良率。

Description

触控面板及其制作方法、显示装置
本申请要求于2017年01月05日递交的中国专利申请第201710008242.9号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一个实施例涉及一种触控面板及其制作方法、显示装置。
背景技术
目前,触控面板技术大致具有以下几种:电容式、电阻式、光学式、电磁式、超声波式等。通常,电容式触控面板包括自电容式触控面板和互电容式触控面板。自电容式触控面板包括在衬底基板上用透明导电材料制作的触控电极阵列,这些触控电极分别与地构成电容。当手指触摸到自容式触控面板时,手指的电容将会叠加到对应的触控电极上,触控侦测芯片在触控时间段通过检测各触控电极的电容值变化可以判断出触控位置。互电容式触摸面板包括在衬底基板上用透明导电材料制作相互绝缘的横向电极和纵向电极,两组电极交叉的地方将会形成电容。当手指触摸到触控面板时,影响了触摸点附近两个电极之间的耦合,从而改变了这两个电极之间的电容量。触控侦测芯片在触控时间段通过检测这种电容值的变化从而判断出触控位置。
通常,触控显示装置根据触控结构与显示面板的关系可分为外挂式和内嵌式,典型的单片玻璃式(One glass solution,OGS)触控面板属于外挂式触控面板,是在保护玻璃上直接形成氧化铟锡(ITO)导电膜及传感器的一种技术,其中的一块玻璃同时起到保护玻璃和触摸传感器的双重作用。
发明内容
本公开的至少一个实施例提供一种触控面板及其制作方法、显示装置。该触控面板中多条引线中最长的引线采用透明导电层引线,可以减少颗粒对引线的影响,并在不增加工序的情况下降低颗粒导致的电测不良的几率,从而节约成本,提升良率。
本公开的至少一个实施例提供一种触控面板,其包括衬底基板,该衬底基 板包括触控区和引线端区;在触控区设置多个第一电极和多个第二电极,且第二电极与第一电极交叉绝缘设置;多条引线,与多个第一电极和多个第二电极分别电连接并连接至引线端区,其中,多条引线包括透明导电层引线。
本公开的至少一个实施例提供一种显示装置,包括上述触控面板。
本公开的至少一个实施例提供一种触控面板的制作方法,其包括:在衬底基板上形成触控区和引线端区;在触控区形成多个第一电极;在触控区形成多个第二电极,且与第一电极交叉绝缘;在触控区边缘形成多条引线,与多个第一电极和多个第二电极分别电连接并连接至引线端区,其中,多条引线包括透明导电层引线。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1a为一种触控面板示意图;
图1b为一种触控面板沿图1a中AA'方向的截面示意图;
图2a为本公开一实施例提供的一种触控面板示意图;
图2b为本公开一实施例提供的一种触控面板沿图2a中AA'方向的截面示意图;
图2c为本公开一实施例提供的一种触控面板沿图2a中BB'方向的截面示意图;
图3a为本公开一实施例提供的另一种触控面板示意图;
图3b为本公开一实施例提供的另一种触控面板沿图3a中AA'方向的截面示意图;
图4为本公开一实施例提供的另一种触控面板示意图;
图5为本公开一实施例提供的一种触控面板的制作方法示意图;以及
图6a-6e为本公开一实施例提供触控面板的制作方法的具体制程示意图。
附图标记:
10-衬底基板;11-触控区;12-引线端区;20-第一电极;30-第二电极;40-引线 60-黑矩阵;70-透明导电桥;80-绝缘层;100-衬底基板;110-触控区;120-引线端区;200-第一电极;210-第一子电极;300-第二电极;310-第二子电极; 320-连接部;400-引线;410-透明导电层引线;420-金属引线;421-第一金属引线;422-第二金属引线;430-第一引线;431-第一透明导电层引线;440-第二引线;441-第二透明导电层引线;500-第一绝缘层;510-搭接部;600-黑矩阵;700-透明导电桥;800-第二绝缘层;900-搭接线。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
图1a为一种触控面板示意图,图1b为一种触控面板沿图1a中AA'方向的截面示意图。如图1a和图1b所示,触控面板包括衬底基板10,衬底基板10包括触控区11、围绕触控区11边缘设置的黑矩阵60和设置在触控区11边缘的引线端区12。触控区11中设置多个第一电极20以及多个第二电极30,并且第一电极20与第二电极30交叉绝缘设置。多个第一电极20和多个第二电极30通过多条引线40连接至引线端区12。通过对多条引线40施加以及检测电信号可实现对触控操作的检测以及对触控操作发生的位置的检测。各引线40的线宽较窄,例如,线宽为30μm。多条引线40的长度根据与其电连接的电极距离引线端区12的距离的长度而定。
在研究中,本申请人发现:在沉积或光刻制作金属引线的过程中,由于引线的线宽较细,容易被颗粒阻断,导致电测不良,例如出现断路或短路现象。 并且,引线的长度越长,被颗粒阻断的几率越大,产生电测不良的几率也就越大。
本公开的至少一个实施例提供一种触控面板及其制作方法、显示装置。触控面板包括衬底基板,该衬底基板包括触控区和引线端区;在触控区设置多个第一电极和多个第二电极,且第二电极与第一电极交叉绝缘设置;多条引线,与多个第一电极和多个第二电极分别电连接并连接至引线端区,其中,多条引线包括透明导电层引线。该触控面板中的多条引线中最长的引线采用透明导电层引线,可以减少颗粒对引线的影响,并在不增加工序的情况下降低颗粒导致的电测不良的几率,从而节约成本,提升良率。
下面结合附图对本公开实施例提供的触控面板及其制作方法以及显示装置进行说明。
本公开一实施例提供一种触控面板,如图2a所示,该触控面板包括衬底基板100,该衬底基板100包括触控区110和设置在触控区110边缘的引线端区120;在触控区110设置多个第一电极200和多个第二电极300,且第二电极300与第一电极200交叉绝缘设置;多条引线400,与多个第一电极200和多个第二电极300分别电连接并连接至引线端区120,多条引线400包括透明导电层引线410。透明导电层引线410的宽度相对于一般的引线要宽,因此降低了透明导电层引线410受到颗粒阻断并产生电测不良的几率,可以防止短路或断路现象的产生,从而可以提高产品良率。
一般引线的长度越长,被颗粒阻断的几率越大,产生电测不良的几率越大。因此本实施例可采用透明导电层引线410代替与距离引线端区120最远的第一电极200电连接的引线,即,长度最长的引线,可避免该长度最长的引线被颗粒阻断,从而可防止该触控面板在电测或实际使用过程中发生短路或断路现象,进而还可以提高本实施例提供的触控面板的产品良率。当然,本公开实施例包括但不限于此,透明导电层引线还可以与距离引线端区最远的第二电极电连接。
例如,在本实施例一示例提供的触控面板中,如图2a所示,多条引线400还包括多条金属引线420,即多条金属引线420与多个第一电极200和多个第二电极300分别电连接以用于输入/输出信号。该触控面板还包括第一绝缘层500。第一绝缘层500设置在多条金属引线420和透明导电层引线410之间,用于使多条金属引线420和透明导电层引线410彼此绝缘。此时,透明导电层 引线410与多条金属引线420异层设置,透明导电层引线410在衬底基板101上的投影可以与多条金属引线420在衬底基板101上的投影重叠。由此,透明导电层引线410可在不增加触控区110的边缘的宽度的前提下,设置地较宽,从而既可保证良好的导电率又可大大降低受到颗粒阻断并产生电测不良的几率。
例如,透明导电层引线的宽度范围可为0.5cm-1.5cm。例如,当透明导电层引线的材料采用氧化铟锡(ITO)时,一般氧化铟锡的方块电阻Rs约为18±4Ω/□,当本实施例以透明导电层引线的宽度为1.5cm为例计算其线电阻约为12000Ω/m;一般的金属引线的方块电阻约为0.3±0.05Ω/□,线宽为30μm,则计算其线电阻约为10000Ω/m。经比较发现,两者的线电阻值相差不大。因此,以透明导电层引线代替最长的金属引线并不会增大电阻,对触控面板的线路电阻影响很小。并且,由于颗粒的尺寸相对于0.5cm-1.5cm要小很多,因此不会阻断透明导电层引线,从而大大降低甚至消除了该透明导电层被阻断的几率,进而可提高该触控面板的产品良率。
例如,如图2a所示,本实施例提供的触控面板还包括黑矩阵600,黑矩阵600设置于围绕触控面板的边缘,透明导电层引线410设置在黑矩阵600上,并且透明导电层引线410的宽度小于或等于黑矩阵600的宽度。由此,该透明导电层引线不会影响该触控面板的透过率。
例如,如图2a所示,多个第一电极200沿X方向延伸,沿与X方向垂直的Y方向排列;多个第二电极300沿Y方向延伸,沿与Y方向垂直的X方向排列,本实施例不限于此,例如,X方向与Y方向可以互换。例如,X方向与Y方向的夹角可以是其他角度。例如,多个第一电极200与多个第二电极300的排列方式可以根据实际需要而改变。在本实施例中,多个第一电极200和多个第二电极300在交叠的位置可形成电容;当有手指触摸时,影响了触摸点附近电容的耦合,从而改变了触摸点附近电容的电容量。由此,利用这种电容量的变化可判断出触控位置。当然,多个第一电极200和多个第二电极300也可分别与地构成电容。本公开实施例在此不作限制。例如,与多个第一电极200和多个第二电极300电连接的多条引线400通过引线端区120连接至触控侦测芯片,该触控侦测芯片通过引线400输入/接收信号,通过分析接收的各个触控电极的信号,从而判断出触控位置。
例如,如图2a所示,本实施例提供的触控面板还包括透明导电桥700。例 如,各第一电极200包括多个间隔设置的第一子电极210。例如,多间隔设置的第一子电极210呈阵列排布,沿X方向排列的多个第一子电极210中相邻的两个第一子电极210通过透明导电桥700电性相连,因此,沿X方向排列的一列多个第一子电极210构成一个第一电极200,本实施例不限于此。
例如,如图2a所示,各第二电极300包括多个第二子电极310以及设置在相邻的两个第二子电极之间的连接部320。例如,沿Y方向排列的多个第二子电极310中的相邻的两个第二子电极310通过连接部310电性连接,因此,沿Y方向排列的一行多个第二子电极310以及多个连接部310构成一个第二电极300,本实施例不限于此。需要说明的是,本实施例中连接部310设置在透明导电桥700上。
例如,如图2a所示,本实施例提供的触控面板还包括第二绝缘层800,第二绝缘层800设置在连接部320与透明导电桥700之间,用于分隔第一电极200与第二电极300,防止第一电极200与第二电极300电连接。例如,第一绝缘层500与第二绝缘层800同层设置,例如,第一绝缘层500与第二绝缘层800的材料相同,也就是说,第一绝缘层500与第二绝缘层800通过一步构图工艺同时形成,因此可以不增加工艺、节约成本。
例如,如图2a所示,第一绝缘层500还可包括宽度小于透明导电层引线410的宽度的搭接部510,以暴露部分透明导电层引线410。例如,触控面板还包括:搭接线900,与暴露的透明导电层引线410搭接并连接至引线端区120。
需要说明的是,如图2a所示,搭接部510设置在透明导电层引线410上,并且沿靠近黑矩阵600的外边缘暴露部分透明导电层引线410。搭接部510用于将透明导电层引线410连接至引线端区120,从而避免在引线端区与其他金属引线420发生电连接,因此,搭接部510的尺寸可随金属引线420的布置方式而定。本实施例不限于此,例如,第一绝缘层500的搭接部510沿靠近黑矩阵600的外边缘只有一部分的宽度小于透明导电层引线410的宽度,即搭接部510可以只暴露可以连接搭接线900所需部分。
图2b为图2a提供的一种触控面板沿AA'的截面示意图,如图2b所示,控面板沿AA'的截面示意图中以包括两个完整的第一子电极210、两个完整的连接部320和两个完整的透明导电桥700为例。第一绝缘层500设置在金属引线420与透明导电层引线410之间,防止金属引线420与透明导电层引线410发生电连接。透明导电层引线410与金属引线420异层设置并且金属引线420 在衬底基板100上的投影落入透明导电层引线410在衬底基板100上的投影内,可以减少引线布置在触控面板边缘的宽度,从而实现较窄的边框设计。需要说明的是,图2b中两个第一子电极210和它们之间的绝缘层可以接触设置也可间隔一定距离设置。
例如,如图2b所示,透明导电层引线410可与透明导电桥700同层设置。
例如,透明导电层引线410可与透明导电桥700的材料相同,例如,材料均为氧化铟锡等,本实施例不限于此。也就是说,透明导电层引线410与透明导电桥700可以通过一步构图工艺同时形成,因此可以在不增加工序的情况下降低颗粒导致的电测不良的几率,从而节约成本,提升良率。
图2c为图2a提供的一种触控面板沿BB'的截面示意图,如图2c所示,透明导电层引线410可以与距离引线端区120最远的第一电极200的第一子电极210电连接(例如,搭接)从而为该第一电极200提供电信号或输出第一电极210上的电信号。当然,该透明导电层引线410还可与透明导电桥700电连接,本实施例不限于此。
本公开另一实施例提供一种触控面板,与上述实施例不同之处在于,本实施例将透明导电桥700设置在连接部320上。图3a为本实施例提供的一种触控面板示意图,图3b为图3a中的一种触控面板沿AA'的截面示意图,如图3a和图3b所示,连接相邻两个第一子电极210的透明导电桥700设置在第二电极300的连接部320上,并且透明导电桥700与连接部320之间设置第二绝缘层800,第二绝缘层800用于分隔透明导电桥700和连接部320,防止透明导电桥700和连接部320发生电连接。
例如,如图3b所示,透明导电层引线410与连接部320同层设置,例如,透明导电层引线410与连接部320的材料相同,例如,材料均为氧化铟锡等,本实施例不限于此。也就是说,透明导电层引线410与连接部320可以通过一步构图工艺同时形成,因此可以在不增加工序的情况下降低颗粒导致的电测不良的几率,从而节约成本,提升良率。
图4为根据本公开一实施例提供的一种触控面板的示意图,如图4所示,多条引线包括多条第一引线430,分别与多个第一电极210分别电连接并连接至引线端区120;以及多条第二引线440,分别与多个第二电极310分别电连接并连接至引线端区120。多条第一引线430包括第一透明导电层引线431,与距离引线端区120最远的第一电极210电连接;多条第二引线440包括第二 透明导电层引线441,与距离引线端区120最远的第二电极310电连接。由此,与距离引线端区120最远的第一电极210的第二电极310连接的引线,即,最长的第一引线和最长的第二引线,均为透明导电层引线,从而可避免长度最长的第一引线和第二引线被颗粒阻断,从而可防止该触控面板在电测或实际使用过程中发生短路或断路现象,进而还可以提高本实施例提供的触控面板的产品良率。
例如,多条第一引线430还包括多条第一金属引线421;多条第二引线440还包括多条第二金属引线422。
例如,多条第一引线430和多条第二引线440通过引线端区120连接至触控侦测芯片,该触控侦测芯片通过引线输入/接收信号,分析接收的各个触控电极的信号,从而判断出触控位置。
本实施例提供的触控面板中的多条第一引线430和多条第二引线440中最长的引线采用第一透明导电层引线431和第二透明导电层引线441,可以进一步减少颗粒对引线的阻断影响;另一方面,第一透明导电层引线431和第二透明导电层引线441可以与透明导电桥700同层设置,例如,在一步构图工艺中同时形成,从而可以在不增加工序的情况下降低颗粒导致的电测不良的几率,从而节约成本,提升良率。此外,第一透明导电层引线431与多条第一金属引线421异层设置,并且第一金属引线421在衬底基板100上的投影落入第一透明导电层引线431在衬底基板100上的投影内;第二透明导电层引线441与多条第二金属引线422异层设置,并且第二金属引线422在衬底基板100上的投影落入第二透明导电层引线441在衬底基板100上的投影内,可以减少引线布置在触控面板四周的边缘的宽度,从而进一步实现较窄的边框设计。
本公开一实施例提供一种触控面板的制作方法,具体步骤如图5所示,该制作方法包括以下步骤S401-S404。
步骤S401:在衬底基板上形成触控区和引线端区。
例如,衬底基板可以由玻璃、聚酰亚胺、聚碳酸酯、聚丙烯酸酯、聚醚酰亚胺、聚醚砜、聚对苯二甲酸乙二醇酯和聚萘二甲酸乙二醇酯中的一种或多种材料制成。
步骤S402:在触控区形成多个第一电极。
步骤S403:在触控区形成多个第二电极,且与第一电极交叉绝缘。
步骤S404:在触控区边缘形成多条引线,与多个第一电极和多个第二电极 分别电连接并连接至引线端区,多条所述引线包括透明导电层引线。
在本实施例提供的触控面板的制作方法中,透明导电层引线的宽度相对于一般的引线要宽,因此降低了透明导电层引线受到颗粒阻断并产生电测不良的几率,可以防止短路或断路现象的产生,从而可以提高产品良率。
一般引线的长度越长,被颗粒阻断的几率越大,产生电测不良的几率越大。因此本实施例可将距离引线端区最远的第一电极和/或第二电极电连接的引线,即,长度最长的引线制作为透明导电层引线,可避免长度最长的引线被颗粒阻断,从而可防止该触控面板在电测或实际使用过程中发生短路或断路现象,进而还可以提高本实施例提供的触控面板的产品良率。当然,本公开实施例包括但不限于此,透明导电层引线还可以与距离引线端区最远的第二电极电连接。
例如,在本实施例一示例提供的触控面板的制作方法中,多条引线还包括金属引线,该制作方法还包括:在金属引线与透明导电层引线之间形成第一绝缘层。由此,第一绝缘层可将金属引线与透明导电层引线绝缘。并且由于透明导电层引线与多条金属引线异层设置,透明导电层引线在衬底基板上的投影可以与多条金属引线在衬底基板上的投影重叠。由此,透明导电层引线可在不增加触控区的边缘的宽度的前提下,设置地较宽,从而既可保证良好的导电率又可大大降低受到颗粒阻断并产生电测不良的几率。
例如,在本实施例一示例提供的触控面板的制作方法中,各第一电极包括多个间隔设置的第一子电极,各第二电极包括多个第二子电极以及设置在相邻的两个第二子电极之间的连接部,该制作方法还包括:在相邻的两个第一子电极之间形成透明导电桥以电性连接相邻的两个第一子电极;透明导电层引线与透明导电桥或连接部通过一次构图工艺同时形成。由此,该触控面板的制作方法与一般的制程相比没有增加新的制备工艺;并且,透明导电层引线的宽度相对于一般的引线要宽,因此可以在不增加工序的情况下降低颗粒导致的电测不良的几率,可以防止短路或断路现象的产生,从而节约成本,提高产品良率。
例如,本实施例一示例提供的触控面板的制作方法还包括:在连接部与透明导电桥之间形成第二绝缘层,第一绝缘层和第二绝缘层通过一次构图工艺同时形成。由此,该触控面板的制作方法与一般的制程相比没有增加新的制备工艺,节约了成本。
图6a-6e为本实施例一示例提供的触控面板的制作方法的具体制程。如图6a-6e所示,该制作方法包括以下步骤:
如图6a所示,在衬底基板100上形成黑矩阵600,黑矩阵600形成于触控面板边缘,并且黑矩阵600围绕区域即为触控区110。
例如,黑矩阵600的基本材质可以是铬金属等,也可以是掺入黑色颜料(主要是碳)的丙烯树脂,例如可以在光刻胶中掺入碳、钛、镍等原料的黑色树脂。需要说明的是,图6a中的第二图是第一图沿AA'的截面示意图,并且接下来的图6b-6e中的第二图都是第一图沿AA'的截面示意图。
如图6b所示,在黑矩阵600上形成透明导电层引线410,透明导电层引线410的宽度可以小于或等于黑矩阵600的宽度,例如,透明导电层引线410的宽度范围为0.5cm-1.5cm,本实施例不限于此。例如,在触控区110形成多个阵列排布的透明导电桥700,透明导电桥700与透明导电层引线410同层形成,即透明导电桥700与透明导电层引线410通过一次构图工艺同时形成,因此与一般的制程相比没有增加新的制备工艺。透明导电层引线410的宽度相对于一般的引线要宽,因此可以在不增加工序的情况下降低颗粒导致的电测不良的几率,可以防止短路或断路现象的产生,从而节约成本,提高产品良率。本实施例不限于此,还可以在触控区110形成连接部,透明导电桥700与连接部同层形成,即透明导电桥700与连接部通过一次构图工艺同时形成。
如图6b所示,在触控面板的触控区110边缘形成引线端区120,在后续形成的多条引线都会连接至引线端区120。
如图6c所示,在透明导电层引线410上形成第一绝缘层500,第一绝缘层500包括宽度小于透明导电层引线410的宽度的搭接部510,以暴露部分透明导电层引线410。搭接部510用于防止后续形成的金属引线与透明导电层引线410发生电连接,因此,搭接部510的尺寸随后续形成的金属引线的布置方式而定。例如,搭接部510的宽度可以相对于透明导电层引线410的宽度窄100μm。本实施例不限于此,例如,第一绝缘层500的搭接部510沿靠近黑矩阵600的外边缘可以只有一部分的宽度小于透明导电层引线410的宽度,或者,搭接部510的宽度与透明导电层引线410的宽度相同。
如图6c所示,在多个透明导电桥700中的每个透明导电桥700上形成第二绝缘层800。例如,第二绝缘层800与第一绝缘层500通过一次构图工艺同时形成,因此与一般的制程相比没有增加新的制备工艺,节约了成本。
如图6d所示,在触控区110形成多个第一电极200以及多个第二电极300,且第二电极300与第一电极200交叉绝缘。
如图6d所示,多个第一电极200沿X方向延伸,沿与X方向垂直的Y方向排列;多个第二电极300沿Y方向延伸,沿与Y方向垂直的X方向排列,本实施例不限于此。
例如,各第一电极200包括多个间隔设置的第一子电极210。例如,多个间隔设置的第一子电极210呈阵列排布,沿X方向排列的多个第一子电极210中相邻的两个第一子电极210通过透明导电桥700电性相连,因此,沿X方向排列的一列多个第一子电极210构成一个第一电极200,本实施例不限于此。
例如,各第二电极300包括多个第二子电极310以及设置在相邻的两个第二子电极之间的连接部320。例如,沿Y方向排列的多个第二子电极310中的相邻的两个第二子电极310通过连接部310电性连接,因此,沿Y方向排列的一行多个第二子电极310以及多个连接部310构成一个第二电极300,本实施例不限于此。
例如,多个第一电极200和多个第二电极300可为透明导电层,例如,选用的材料包括透明导电氧化物,例如,可以包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锌(ZnO)、氧化铟(In2O3)、氧化铟镓(IGO)和氧化铝锌(AZO)中的组合或至少一种,本公开实施例在此不作限制。当然,多个第一电极200和多个第二电极300也可为很薄的透明金属层,例如10nm-20nm。
如图6d所示,透明导电层引线410与距离引线端区120最远的第一电极200,本实施例不限于此,透明导电层引线410还可以与距离引线端区120最远的第二电极300电连接。该触控面板中多条引线中最长的引线采用透明导电层引线410,可以减少颗粒对引线的影响,并在不增加工序的情况下降低颗粒导致的电测不良的几率,从而节约成本,提升良率。
如图6e所示,在第一绝缘层500上形成多条金属引线420,多条金属引线420分别与多个第一电极200电连接,并连接至引线区120。需要说明的是,触控面板还包括搭接线900,与暴露的透明导电层引线410搭接并连接至引线端区120,例如,搭接线900还可以与透明导电层引线410一同形成,即在第一绝缘层500形成之前形成搭接线900,因此,后续形成的第一绝缘层500可以完全覆盖透明导电层引线410,本实施例不限于此。
例如,在本实施例一示例提供的触控面板的制作方法中,在形成多条引线之后,还可在触控面板上形成保护膜层(图中未示出)。例如,保护膜层的材料可以为光刻胶等,本实施例不限于此。
值得注意的是,以上制备步骤只是本实施例的一个示例步骤,本实施例不限于此,还可以包括两条透明导电层引线,相应的制备步骤也会略有不同,在此不再赘述。
本公开一实施例提供一种显示装置,该显示装置包括上述任一种触控面板,该显示装置中的触控面板中的多条引线中最长的引线采用透明导电层引线,可以减少颗粒对引线的影响,并在不增加工序的情况下降低颗粒导致的电测不良的几率,从而节约成本,提升良率。此外,透明导电层引线与多条金属引线异层设置,并且金属引线在衬底基板上的投影落入透明导电层引线在衬底基板上的投影内,可以减少引线布置在触控面板四周的边缘的宽度,从而进一步实现较窄的边框设计。
例如,该显示装置包括液晶显示装置或发光二级管显示装置。
例如,所述显示装置可以为液晶显示器、电子纸、发光二极管显示器等显示器件以及包括这些显示器件的电视、数码相机、手机、手表、平板电脑、笔记本电脑、导航仪等任何具有显示功能的产品或者部件。
有以下几点需要说明:
(1)除非另作定义,本公开实施例以及附图中,同一标号代表同一含义。
(2)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(3)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。
                      。

Claims (15)

  1. 一种触控面板,包括:
    衬底基板,包括触控区和引线端区;
    多个第一电极,设置于所述触控区;
    多个第二电极,设置于所述触控区,且与所述第一电极交叉绝缘设置;
    多条引线,与多个所述第一电极和多个所述第二电极分别电连接并连接至所述引线端区,
    其中,多条所述引线包括透明导电层引线。
  2. 根据权利要求1所述的触控面板,其中,所述透明导电层引线与距离所述引线端区最远的所述第一电极和/或所述第二电极电连接。
  3. 根据权利要求1所述的触控面板,其中,多条所述引线还包括金属引线,所述触控面板还包括:
    第一绝缘层,所述第一绝缘层设置在所述金属引线与所述透明导电层引线之间。
  4. 根据权利要求1-3中任一项所述的触控面板,其中,所述透明导电层引线的宽度范围为0.5cm-1.5cm。
  5. 根据权利要求1-3中任一项所述的触控面板,还包括:
    黑矩阵,设置于围绕所述触控面板的边缘,所述透明导电层引线设置在所述黑矩阵上,所述透明导电层引线的宽度小于或等于所述黑矩阵的宽度。
  6. 根据权利要求1-5中任一项所述的触控面板,其中,多条所述引线包括:多条第一引线,分别与多个所述第一电极分别电连接并连接至所述引线端区;以及多条第二引线,分别与多个所述第二电极分别电连接并连接至所述引线端区,多条所述第一引线包括第一透明导电层引线,与距离所述引线端区最远的所述第一电极电连接,多条所述第二引线包括第二透明导电层引线,与距离所述引线端区最远的所述第二电极电连接。
  7. 根据权利要求1-3中任一项所述的触控面板,其中,各所述第一电极包括多个间隔设置的第一子电极,各所述第二电极包括多个第二子电极以及设置在相邻的两个所述第二子电极之间的连接部,所述触控面板还包括:
    透明导电桥,
    其中,各所述第一电极中相邻的两个所述第一子电极通过所述透明导电桥 电性相连,所述透明导电层引线与所述透明导电桥或所述连接部同层设置。
  8. 根据权利要求7所述的触控面板,还包括:
    第二绝缘层,设置在所述连接部与所述透明导电桥之间,
    其中,所述第一绝缘层与所述第二绝缘层同层设置。
  9. 根据权利要求3所述的触控面板,其中,所述第一绝缘层包括宽度小于所述透明导电层引线的宽度的搭接部,以暴露部分所述透明导电层引线,所述触控面板还包括:搭接线,与暴露的所述透明导电层引线搭接并连接至所述引线端区。
  10. 一种显示装置,包括根据权利要求1-9中任一项所述的触控面板。
  11. 一种触控面板的制作方法,包括:
    在衬底基板上形成触控区和引线端区;
    在所述触控区形成多个第一电极;
    在所述触控区形成多个第二电极,且与所述第一电极交叉绝缘;
    在所述触控区边缘形成多条引线,与多个所述第一电极和多个所述第二电极分别电连接并连接至所述引线端区,
    其中,多条所述引线包括透明导电层引线。
  12. 根据权利要求11所述的触控面板的制作方法,其中,所述透明导电层引线与距离所述引线端区最远的所述第一电极或所述第二电极电连接。
  13. 根据权利要求11所述的触控面板的制作方法,其中,多条所述引线还包括金属引线,所述制作方法还包括:
    在所述金属引线与所述透明导电层引线之间形成第一绝缘层。
  14. 根据权利要求13所述的触控面板的制作方法,其中,各所述第一电极包括多个间隔设置的第一子电极,各所述第二电极包括多个第二子电极以及设置在相邻的两个所述第二子电极之间的连接部,所述制作方法还包括:
    在相邻的两个所述第一子电极之间形成透明导电桥以电性连接相邻的两个所述第一子电极;
    其中,所述透明导电层引线与所述透明导电桥或所述连接部通过一次构图工艺同时形成。
  15. 根据权利要求14所述的触控面板的制作方法,还包括:
    在所述连接部与所述透明导电桥之间形成第二绝缘层,
    其中,所述第一绝缘层和所述第二绝缘层通过一次构图工艺同时形成。
PCT/CN2017/107358 2017-01-05 2017-10-23 触控面板及其制作方法、显示装置 WO2018126767A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780020245.2A CN108885520B (zh) 2017-01-05 2017-10-23 触控面板及其制作方法、显示装置
US15/780,410 US11537250B2 (en) 2017-01-05 2017-10-23 Touch panel and manufacturing method thereof, display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710008242 2017-01-05
CN201710008242.9 2017-01-05

Publications (1)

Publication Number Publication Date
WO2018126767A1 true WO2018126767A1 (zh) 2018-07-12

Family

ID=62789081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107358 WO2018126767A1 (zh) 2017-01-05 2017-10-23 触控面板及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US11537250B2 (zh)
CN (1) CN108885520B (zh)
WO (1) WO2018126767A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111475055A (zh) * 2019-12-13 2020-07-31 友达光电股份有限公司 触控面板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112783377B (zh) * 2021-02-25 2023-02-28 惠州市华星光电技术有限公司 触控面板和触控装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103019423A (zh) * 2011-09-21 2013-04-03 宸鸿科技(厦门)有限公司 触控面板结构及其制造方法
CN203250289U (zh) * 2012-12-27 2013-10-23 宸鸿光电科技股份有限公司 触控面板
CN105718128A (zh) * 2016-04-13 2016-06-29 京东方科技集团股份有限公司 一种触控面板及其制备方法、触控装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5500712B2 (ja) * 2009-09-02 2014-05-21 株式会社ジャパンディスプレイ 液晶表示パネル
KR20130008876A (ko) * 2011-07-13 2013-01-23 삼성전기주식회사 터치패널의 제조방법
TWI452498B (zh) * 2011-11-02 2014-09-11 Innolux Corp 影像顯示系統及觸控感測裝置之製造方法
KR101518000B1 (ko) * 2013-03-20 2015-05-07 (주)삼원에스티 터치패널센서의 제조방법 및 터치패널센서
JP6331346B2 (ja) * 2013-11-18 2018-05-30 大日本印刷株式会社 タッチパネルセンサ
TW201528094A (zh) * 2014-01-10 2015-07-16 Wintek Corp 觸控面板
KR102204110B1 (ko) * 2014-02-05 2021-01-18 삼성디스플레이 주식회사 터치 스크린 패널 및 그 제조 방법
CN103824616B (zh) * 2014-02-26 2017-01-11 南昌欧菲光科技有限公司 导电膜及其制造方法、触控元件、触控显示装置
CN104317470B (zh) * 2014-11-14 2017-06-13 深圳市华星光电技术有限公司 互电容式ogs触摸面板及其制造方法
KR102313489B1 (ko) * 2015-01-21 2021-10-18 삼성디스플레이 주식회사 터치패널 및 이를 포함하는 표시장치
CN104731435A (zh) * 2015-04-03 2015-06-24 合肥鑫晟光电科技有限公司 触控面板及制作方法、显示装置
CN104793828B (zh) * 2015-05-08 2018-12-11 上海天马微电子有限公司 阵列基板、显示面板及显示装置
CN105159489B (zh) * 2015-08-20 2018-01-30 京东方科技集团股份有限公司 一种显示装置、触控面板及其制作方法
CN105094444A (zh) * 2015-08-24 2015-11-25 京东方科技集团股份有限公司 一种触控面板的制作方法、触控面板及触控显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103019423A (zh) * 2011-09-21 2013-04-03 宸鸿科技(厦门)有限公司 触控面板结构及其制造方法
CN203250289U (zh) * 2012-12-27 2013-10-23 宸鸿光电科技股份有限公司 触控面板
CN105718128A (zh) * 2016-04-13 2016-06-29 京东方科技集团股份有限公司 一种触控面板及其制备方法、触控装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111475055A (zh) * 2019-12-13 2020-07-31 友达光电股份有限公司 触控面板
CN111475055B (zh) * 2019-12-13 2023-08-08 友达光电股份有限公司 触控面板

Also Published As

Publication number Publication date
US11537250B2 (en) 2022-12-27
CN108885520A (zh) 2018-11-23
US20210165525A1 (en) 2021-06-03
CN108885520B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
US8581880B2 (en) Capacitive touch display panel
US10613689B2 (en) Touch screen, method of manufacturing touch screen, and display device including touch screen
WO2019242301A1 (zh) 触控面板及其制作方法、电子装置
CN103995612B (zh) 一种触控模组、其制作方法及显示装置
US9153385B2 (en) Electrode structure of the touch panel, method thereof and touch panel
TWI498797B (zh) 觸控面板及觸控顯示面板
TWI472968B (zh) 觸控裝置結構及其製造方法
WO2018099174A1 (zh) 触摸屏及其制作方法、触控显示装置
US20180210575A1 (en) Touch screen, method for manufacturing touch screen, and touch display device
US11561657B2 (en) Touch panel and manufacturing method therefor, and touch display device
US20140368755A1 (en) Touch panel
US20150060125A1 (en) Touch panel
JP5730593B2 (ja) タッチスクリーンまたはタッチスクリーン付表示装置及びその製造方法。
WO2016029548A1 (zh) 触摸屏、其制作方法及触摸显示装置
CN108228014B (zh) 触控模组及其制备方法、触控屏
US10802621B2 (en) Touch panel
JP5827972B2 (ja) タッチセンサ一体型表示装置
TWI528243B (zh) 觸控面板及其製作方法
TW201312402A (zh) 觸控面板
TWM472245U (zh) 觸控面板
WO2015196606A1 (zh) 触摸屏及其制作方法、显示装置
CN108874218B (zh) 一种触控基板、其触控定位方法及电容式触摸屏
US11010001B2 (en) Touch substrate, method of manufacturing the same, and touch display device
WO2018126767A1 (zh) 触控面板及其制作方法、显示装置
US9459735B2 (en) Electrode pattern structure of a capacitive touch panel and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890723

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25/02/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17890723

Country of ref document: EP

Kind code of ref document: A1