WO2018126725A1 - 像素电路及其驱动方法、以及显示面板 - Google Patents

像素电路及其驱动方法、以及显示面板 Download PDF

Info

Publication number
WO2018126725A1
WO2018126725A1 PCT/CN2017/100888 CN2017100888W WO2018126725A1 WO 2018126725 A1 WO2018126725 A1 WO 2018126725A1 CN 2017100888 W CN2017100888 W CN 2017100888W WO 2018126725 A1 WO2018126725 A1 WO 2018126725A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
pixel circuit
node
driving
scan line
Prior art date
Application number
PCT/CN2017/100888
Other languages
English (en)
French (fr)
Inventor
杨盛际
董学
吕敬
陈小川
张粲
孙伟
时凌云
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/761,336 priority Critical patent/US10909924B2/en
Publication of WO2018126725A1 publication Critical patent/WO2018126725A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • G09G3/3241Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror
    • G09G3/325Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror the data current flowing through the driving transistor during a setting phase, e.g. by using a switch for connecting the driving transistor to the data driver
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3283Details of drivers for data electrodes in which the data driver supplies a variable data current for setting the current through, or the voltage across, the light-emitting elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • G09G2340/0428Gradation resolution change

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a pixel circuit and a driving method thereof, and a display panel including the pixel circuit.
  • OLED display is one of the hotspots in the field of flat panel display research. Compared with liquid crystal display, OLED display has low energy consumption, low production cost, self-illumination, wide viewing angle and fast response. advantage. At present, in the display fields of mobile phones, PDAs, digital cameras, etc., OLED displays have begun to replace traditional liquid crystal displays. Pixel circuit design is the core technology content of OLED display, which has important research significance. Unlike TFT (Thin Field FET)-LCD, which uses a stable voltage to control the brightness of a light-emitting transistor, OLEDs are current-driven and require a constant current to control the brightness of the light-emitting diodes.
  • TFT Thin Field FET
  • the current through the OLED is not only controlled by the data signal voltage, but also by the threshold voltage Vth of the driving thin film transistor that drives the light emitting diode. Due to the difference in the threshold voltage Vth characteristics of the driving transistors in the plurality of pixel circuits, and the process process and device aging, etc., the driving thin film transistors of the respective pixels in the OLED display do not have completely consistent performance parameters, and the threshold values of the driving thin film transistors are driven. The voltage Vth will drift, which causes the current of the OLED flowing through each pixel to be different, affecting the display effect of the OLED display.
  • the resolution of each area is the same, and the resolution cannot be dynamically adjusted in real time to the local area of the display screen according to the user's visual attention point.
  • the present disclosure proposes a pixel circuit, a driving method thereof, and a display surface board.
  • the pixel circuit can perform threshold voltage compensation on the driving transistor that drives the light emitting display of the light emitting device, and eliminate the influence of the drift of the threshold voltage on the driving current of the driving transistor, thereby avoiding the unevenness of the threshold voltage of each driving transistor to the light emitting device.
  • the illuminating display caused inconsistencies.
  • a pixel circuit comprising: an input unit, a driving unit, a voltage compensation unit, and an illumination control unit, wherein the input unit is coupled to the data line and the first scan line, configured to be in the first scan Under the control of the line, the jump data signal of the data line is input to the voltage compensation unit; the voltage compensation unit is connected to the first node, the second scan line and the third scan line, and the second scan line and the third scan line Under control, a compensation voltage is generated at the first node; the drive unit is coupled to the voltage compensation unit and configured to generate a current that drives the illumination device to illuminate using the compensation voltage generated at the first node by the voltage compensation unit.
  • a method of driving the pixel circuit comprising: applying an active level to a first scan line, writing a hopping data signal on a data line to a pixel circuit, generating at a first node Compensation voltage.
  • the hopping data signal on the data line can be written into the voltage compensation unit, so that the voltage compensation unit generates the compensation voltage at the first node, so that the threshold voltage compensation can be performed on the driving transistor, and the pixel circuit is eliminated.
  • the pixel circuit further includes: an illumination control unit connected to the plurality of illumination devices, the plurality of illumination control signal terminals, and the driving unit, configured to be controlled by the illumination control signals connected to the plurality of illumination control signal terminals A driving current generated by the driving unit is supplied to the plurality of light emitting devices.
  • the driving method of the pixel circuit further includes: changing the data signal on the data line in the case of displaying at the first resolution, writing different data signals on the data line to the pixel circuit, thereby driving The unit generates different driving currents, sequentially applying an effective level to the plurality of light emitting control terminals, thereby supplying different driving currents generated by the driving unit to the plurality of light emitting devices; in the case of displaying at the second resolution, simultaneously An active level is applied to the plurality of illumination control terminals to provide a drive current generated by the drive unit to the plurality of illumination devices, wherein the first resolution is higher than the second resolution.
  • the image can be adjusted by controlling the data signal on the data line and controlling the effective level applied to the plurality of illumination control signal terminals in accordance with the adjustment requirements of the display resolution.
  • a display panel is also provided.
  • the method includes: a plurality of the pixel circuits arranged in an array manner.
  • the display panel further includes: at least one sensor that detects an eye movement of the user viewing the interface of the display panel and generates an eye movement detection signal; and a processor that determines the interface on the user's attention according to the eye movement detection signal.
  • the pixel array of the display panel may be divided into regions, and the area of the region division may be determined according to specific observation needs.
  • the eye tracking technique determines the position of the area of the screen that the human eye is interested in, and displays the area of interest at a higher resolution, while displaying other areas that are not of interest at a lower resolution.
  • the eye movement of the user can be detected by the sensor, and the specific area observed by the user can be determined, thereby realizing the resolution of the display area, and the resolution of the area of the different position is performed as the position of the human eye is changed.
  • Switching realizing the effect of adjustable resolution. Thereby, the resolution of each display area can be dynamically adjusted in real time, and display power consumption is reduced.
  • combining the threshold voltage compensation of the driving transistor of the pixel circuit with the intelligent display can realize the dynamic real-time adjustment of the resolution of the display panel according to the difference of the focus of the screen displayed by the user on the display panel.
  • the area that the user pays attention to is displayed at a higher resolution, and the area that is not of interest is displayed at a lower resolution, thereby reducing power consumption.
  • FIG. 1 is a block diagram of a pixel circuit in accordance with an embodiment of the present disclosure
  • FIG. 2 illustrates a circuit structure of a pixel circuit in accordance with an embodiment of the present disclosure
  • FIG. 3 illustrates signal timings applicable to the pixel circuit illustrated in FIG. 2 in a high resolution display mode, in accordance with an embodiment of the present disclosure
  • 4-7 are diagrams showing the operation of various stages when the signal timing shown in FIG. 3 is applied in the pixel circuit shown in FIG. 2 according to an embodiment of the present disclosure
  • FIG. 8 illustrates signal timings applicable to the pixel circuit illustrated in FIG. 2 in a low resolution display mode, in accordance with an embodiment of the present disclosure
  • FIG. 9 illustrates another signal timing applicable to the pixel circuit illustrated in FIG. 2 in a low resolution display mode, in accordance with an embodiment of the present disclosure
  • FIG. 10 illustrates a block diagram of a display panel in accordance with an embodiment of the present disclosure
  • Figure 11 illustrates the principle of employing different resolutions for various regions on the display interface based on the user's visual focus
  • FIG. 12 is a schematic flow chart of a driving method of an applicable pixel circuit, according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic block diagram of a pixel circuit in accordance with an embodiment of the present disclosure.
  • the pixel circuit includes an input unit 101, a driving unit 102, and a voltage compensation unit 103.
  • the input unit 101 is connected to the data line Vdata and the first scan line Scan1, and is configured to input a hopping data signal for accessing the data line Vdata to the voltage compensation unit 103 under the control of the first scan line Scan1.
  • the voltage compensation unit 103 is connected to the first node N1, the second scan line Gate, and the third scan line EM, and generates a compensation voltage at the first node N1 under the control of the second scan line Gate and the third scan line EM.
  • the driving unit 102 is connected to the voltage compensating unit 103, and is configured to generate a current for driving the light emitting device to emit light using the compensation voltage generated by the voltage compensating unit 103 at the first node N1.
  • the pixel circuit further includes: a light emission control unit 104 connected to the plurality of light emitting devices OLED1, OLED2, OLED3, the plurality of light emission control signal terminals EM1, EM2, EM3 and the driving unit 102, configured to emit light in multiple
  • the driving current generated by the driving unit 102 is supplied to the plurality of light emitting devices OLED1, OLED2, OLED3 under the control of the light emission control signals to which the control signal terminals EM1, EM2, EM3 are connected.
  • the three OLED devices are merely exemplary and capable. The field technician can adjust the number of light-emitting devices according to actual needs.
  • the pixel circuit further includes: a reset unit 105 connected to the reset signal end Reset and the first node N1, configured to reset the first node N1 under the control of the reset signal accessed by the reset signal end Reset .
  • the compensation voltage can be generated at the first node N1 by the voltage compensation unit 103, so that the threshold voltage compensation can be performed on the driving transistor M3, eliminating the threshold voltage drift of the driving transistor M3 in the pixel circuit to the light emitting device.
  • the pixel circuit of the present disclosure it is possible to control the data signal on the data line Vdata and control the effective level applied to the plurality of light emission control signal terminals EM1, EM2, EM3 according to the adjustment of the display resolution.
  • the resolution of the pixel area is adjusted, and the illumination of the plurality of light emitting devices OLED is combined to achieve different visual resolutions.
  • FIG. 2 illustrates a schematic circuit structure of a pixel circuit in accordance with an embodiment of the present disclosure.
  • the circuit structure of the pixel circuit will be described in detail below with reference to FIGS. 1 and 2.
  • the input unit 101 includes an input transistor M5
  • the voltage compensation unit 103 includes a first compensation transistor M4, a second compensation transistor M2, and a compensation capacitor C1
  • the driving unit 102 includes a driving Transistor M3.
  • the gate of the input transistor M5 is connected to the first scan line Scan1, the first pole is connected to the data line Vdata, and the second pole is connected to the first end of the compensation capacitor C1.
  • the gate of the first compensation transistor M4 is connected to the third scan line EM, the first pole is connected to the first voltage terminal Vdd, and the second pole is connected to the input terminal of the driving unit 102.
  • the gate of the second compensation transistor M2 is connected to the second scan line Gate, the first pole is connected to the first node N1, and the second pole is connected to the output terminal of the driving unit 102.
  • the compensation capacitor C1 has a second end connected to the first node N1.
  • the driving transistor M3 has a gate connected to the first node N1, and the second electrode outputs a current for driving the light emitting device OLED to emit light.
  • the illumination control unit 104 includes a plurality of illumination control transistors M6, M7, M8, and the gates are respectively connected to the plurality of illumination control signal terminals EM1, EM2, EM3, One pole is connected to the output of the driving unit 102, and the second pole is connected to the plurality of light emitting devices OLED1, OLED2, OLED3, respectively. It should be understood that three of the light emitting devices OLED are merely exemplary, and those skilled in the art can adjust the number of light emitting devices according to actual needs.
  • the reset unit 105 includes a reset transistor M1, the gate is connected to the reset signal terminal Reset, the first pole is connected to the second voltage terminal Vinit, and the second pole is connected. Connect to the first node N1.
  • all the transistors are P-type thin film transistor TFTs, thereby reducing the process of the module and improving the production efficiency.
  • some or all of the transistors may also adopt an N-type TFT as needed, as long as the level of the control signal is adjusted accordingly, and the specific connection relationship is omitted here.
  • the first pole of the transistor in addition to being the gate of the transistor as its gate, the first pole of the transistor may be the source for the input signal and the second pole as the drain for the output signal.
  • the first pole of the transistor may be the source for the input signal and the second pole as the drain for the output signal.
  • the TFT in the dotted line frame in FIGS. 4-7 represents the turned-off TFT, and the arrow indicates the current flow direction at each stage.
  • FIG. 3 illustrates signal timings applicable to the pixel circuit illustrated in FIG. 2 in a high resolution display mode, in accordance with an embodiment of the present disclosure.
  • the reset signal end Reset applies a low level signal
  • the first scan signal line Scan1, the second scan signal line Gate, and the third scan signal line EM apply a high level signal
  • the control signal terminal EM1, the second illumination control signal terminal EM2, and the third illumination control signal terminal EM3 apply a high level signal
  • the data signal accessed by the data line Vdata is changed to a low level signal. Therefore, as shown in FIG.
  • the reset transistor M1 in the pixel circuit is turned on, and the other transistors in the pixel circuit are turned off, and the process resets the level of the first node N1 to the Vitit potential, thereby performing the potential of the first node. Initialization, this phase is the reset phase of the pixel circuit.
  • the signal applied by the reset signal terminal Reset is changed to a high level signal, and the first scan signal line Scan1, the second scan signal line Gate, and the third scan signal line EM are changed to apply low power.
  • the flat signal, the first illumination control signal terminal EM1, the second illumination control signal terminal EM2, and the third illumination control signal terminal EM3 continue to apply a high level signal, and the data signal Vdata accessed by the data line Vdata is changed to V0. Therefore, as shown in FIG. 5, the reset transistor M1, the light emission control transistors M6, M7, M8 in the pixel circuit are turned off, and the input transistor M5, the first compensation transistor M4, and the second compensation transistor M2 are applied with a low level due to the gate.
  • the first voltage terminal is connected to the first
  • the voltage Vdd signal begins to charge the first node N1 through the transistor M4 ⁇ M3 ⁇ M2, and the first node N1 is always charged to Vdd-Vth, where Vth represents the threshold voltage of the driving transistor M3.
  • This phase is the charging phase of the pixel circuit and is also the first data signal writing phase of the pixel circuit.
  • the reset signal end Reset continues to apply a high level signal
  • the first scan signal line Scan1 continues to apply the low level signal
  • the second scan signal line Gate and the third scan signal line EM are changed to
  • the first lighting control signal terminal EM1, the second lighting control signal terminal EM2, and the third lighting control signal terminal EM3 continue to apply a high level signal
  • the data signal Vdata accessed by the data line Vdata jumps to V1. Therefore, as shown in FIG. 6, the reset transistor M1, the first compensation transistor M4, the second compensation transistor M2, the light emission control transistors M6, M7, M8 in the pixel circuit are turned off, and the input transistor M5 is continuously applied with low power due to the gate.
  • the fourth stage shown in FIG. 3 is a stage in which the pixel circuit drives the light emitting device OLED1 to perform light emission display.
  • the reset signal end Reset and the second scan signal line Gate continue to apply a high level signal
  • the first scan signal line Scan1 is changed to apply a high level signal
  • the third scan signal line EM is changed to apply a low level signal
  • the signal terminal EM1 is changed to apply a low level signal
  • the second illumination control signal terminal EM2 and the third illumination control signal terminal EM3 continue to apply a high level signal
  • the data signal Vdata accessed by the data line Vdata is changed to a low level signal. Therefore, as shown in FIG.
  • the reset transistor M1, the second compensation transistor M2, the input transistor M5, and the light emission control transistors M7, M8 in the pixel circuit are turned off, and the first compensation transistor M4 and the light emission control transistor M6 are applied due to the gate.
  • the gate of the driving transistor M3 is turned on due to being charged to Vdd-Vth-V0+V1 in the previous stage, forming a current path through the transistor M4 ⁇ M3 ⁇ M6, and the driving light emitting device OLED1 starts to emit light.
  • the drive current generated by the drive transistor M3 can be expressed by the following formula (1):
  • the drive current I OLED1 is not affected by the threshold voltage Vth of the drive transistor, and is only related to the data signal Vdata to which the data line Vdata is connected. Therefore, the influence of the threshold voltage Vth drift of the driving transistor on the driving current I OLED1 outputted by the driving transistor due to the process process and long-time operation is eliminated, and the uniformity of the OLED light-emitting display can be ensured, and the display quality can be improved.
  • the control signal terminal EM2 and the third light-emission control signal terminal EM3 sequentially apply a low-level signal, and provide different driving currents generated by the driving unit to the light-emitting devices OLED2 and OLED3, so that the light-emitting devices OLED2 and OLED3 sequentially display and emit light.
  • device OLED1, OLED2, a driving current I OLED2 OLED3, I OLED3, I OLED2 vary.
  • FIG. 8 illustrates signal timings applicable to the pixel circuit illustrated in FIG. 2 in a low resolution display mode according to an embodiment of the present disclosure.
  • the reset signal end Reset applies a low level signal
  • the first scan signal line Scan1, the second scan signal line Gate, and the third scan signal line EM apply a high level signal
  • the control signal terminal EM1, the second illumination control signal terminal EM2, and the third illumination control signal terminal EM3 apply a high level signal
  • the data signal accessed by the data line Vdata is changed to a low level signal. Therefore, referring to the operation of the pixel circuit shown in FIG.
  • the reset transistor M1 in the pixel circuit is turned on, and the other transistors in the pixel circuit are turned off, and the process resets the level of the first node N1 to the Vitit potential, thereby The potential of the first node is initialized, which is the reset phase of the pixel circuit.
  • the signal applied by the reset signal terminal Reset is changed to a high level signal, and the first scan signal line Scan1, the second scan signal line Gate, and the third scan signal line EM are changed to apply low power.
  • the flat signal, the first illumination control signal terminal EM1, the second illumination control signal terminal EM2, and the third illumination control signal terminal EM3 continue to apply a high level signal, and the data signal Vdata accessed by the data line Vdata is changed to V0. Therefore, referring to the operation of the pixel circuit shown in FIG. 5, the reset transistor M1, the light emission control transistors M6, M7, M8 in the pixel circuit are turned off, and the input transistor M5, the first compensation transistor M4, and the second compensation transistor M2 are gated.
  • the pole is turned on with a low level applied, and the gate of the driving transistor M3 is turned on due to Vinit which is reset to a low level in the previous stage.
  • the first voltage Vdd signal connected to the first voltage terminal starts to charge the first node N1 through the transistor M4 ⁇ M3 ⁇ M2, and the first node N1 is charged to Vdd-Vth, wherein Vth represents the driving transistor M3. Threshold voltage.
  • This phase is the charging phase of the pixel circuit and is also the first data signal writing phase of the pixel circuit.
  • the reset signal terminal Reset continues to apply the high level signal
  • the first scan signal line Scan1 continues to apply the low level signal
  • the second scan signal line Gate and the third scan signal line EM are changed to
  • the first lighting control signal terminal EM1, the second lighting control signal terminal EM2, and the third lighting control signal terminal EM3 continue to apply a high level signal
  • the data signal Vdata accessed by the data line Vdata jumps to V1. Therefore, referring to the operation of the pixel circuit shown in FIG. 6, the reset transistor M1, the first compensation transistor M4, the second compensation transistor M2, the light emission control transistors M6, M7, M8 in the pixel circuit are turned off, and the input transistor M5 is gated.
  • the fourth stage shown in FIG. 8 is a stage in which the pixel circuit simultaneously drives the light-emitting devices OLED1, OLED2, and OLED3 to perform light-emitting display.
  • the reset signal end Reset and the second scan signal line Gate continue to apply a high level signal
  • the first scan signal line Scan1 is changed to apply a high level signal
  • the third scan signal line EM is changed to apply a low level signal
  • the first illumination control The signal terminal EM1, the second illumination control signal terminal EM2, and the third illumination control signal terminal EM3 are changed to apply a low level signal
  • the data signal Vdata accessed by the data line Vdata is changed to a low level signal.
  • the reset transistor M1, the second compensation transistor M2, and the input transistor M5 in the pixel circuit are turned off, and the first compensation transistor M4 and the light emission control transistors M6, M7, M8 are turned on because the gate is applied with a low level, and the driving transistor M3 is turned on.
  • the gate is turned on because it is charged to Vdd-Vth-V0+V1 in the previous stage, forming a current path through the transistor M4 ⁇ M3 ⁇ M6, a current path through the transistor M4 ⁇ M3 ⁇ M7, and a pass transistor M4 ⁇ M3 ⁇
  • the current path of the M8 provides the same driving current generated by the driving unit to the light-emitting devices OLED1, OLED2, OLED3, so that the light-emitting devices OLED1, OLED2, OLED3 are simultaneously illuminated.
  • the light-emitting devices OLED1, OLED2, and OLED3 have the same gray-scale information, and by combining the light-emitting displays of the light-emitting devices OLED1, OLED2, and OLED3, a lower visual resolution can be obtained.
  • FIG. 9 illustrates another signal timing applicable to the pixel circuit shown in FIG. 2 in a low resolution display mode, which is displayed in one frame time at the signal timing shown in FIG. 9 according to an embodiment of the present disclosure.
  • three colors The difference between the signal timings shown in Fig. 9 and Fig. 8 lies in the fifth stage and the sixth stage.
  • the data signal Vdata accessed by the data line Vdata is hopped twice, causing the potential of the first node N1 to also jump twice, so that the driving current generated by the driving unit also occurs twice.
  • the change enables the light-emitting devices OLED1, OLED2, and OLED3 to display three colors within one frame time, thereby increasing the refresh rate of the display. Similar to the case of the signal timing shown in FIG. 8, the light-emitting devices OLED1, OLED2, OLED3 have the same gray-scale information, and by combining the light-emitting displays of the light-emitting devices OLED1, OLED2, and OLED3, a lower visual resolution can be obtained.
  • the jump data signal on the data line can be written into the voltage compensation unit, so that the voltage compensation unit generates the compensation voltage at the first node, so that the threshold voltage of the driving transistor can be performed. Compensating for eliminating the influence of the threshold voltage drift of the driving transistor in the pixel circuit on the light emitting display of the light emitting device.
  • the pixel power according to the above embodiment The path can be adjusted according to the adjustment of the display resolution, by controlling the data signal on the data line and controlling the effective level applied to the plurality of illumination control signal terminals, and adjusting the resolution of the pixel region, and Illumination is combined to achieve different visual resolutions.
  • the red, green, and blue colors may be respectively displayed by the light emitting devices OLED1, OLED2, and OLED3, thereby being combined into three primary colors RGB of one pixel.
  • the principle of the present disclosure is not limited thereto, and the three light-emitting devices OLED are merely exemplary. In fact, the number of the light-emitting devices may be adjusted according to actual needs. For example, four light-emitting devices may be used to respectively display red, green, and Blue and yellow, or red, green, blue, and white, respectively, make the displayed colors richer and higher quality.
  • a display panel is also provided.
  • the display panel includes: an OLED pixel array, wherein each OLED pixel can be constituted by the above pixel circuit; at least one sensor detects an eye movement of a user who views an interface of the display panel and generates an eye movement detection signal And a processor that determines an area on the interface that the user is interested in according to the eye movement detection signal, and changes the data signal on the data line to the plurality of illumination control signal ends in the pixel circuit corresponding to the area An effective level is applied to increase the resolution in the area.
  • the pixel array of the display panel may be divided into regions, and the area of the region division may be determined according to specific observation needs.
  • the human eye tracking technique the position of the area of the screen that the human eye is interested in is judged, and the area of interest is displayed at a higher resolution, while the other areas not being focused are displayed at a lower resolution.
  • the eye movement of the user can be detected by the sensor, and the specific area observed by the user can be determined, thereby realizing the resolution of the display area, and the resolution of the area of the different position is performed as the position of the human eye is changed.
  • Switching realizing the effect of adjustable resolution. Thereby, the resolution of each display area can be dynamically adjusted in real time, and display power consumption is reduced.
  • a high resolution display mode can be employed in an area of interest to the user, and a low resolution mode can be employed in other areas, so that display power consumption can be reduced.
  • the display may be performed in a manner of combining pixels according to actual needs.
  • pixels can be combined in a square display to display picture pixels.
  • display is performed in a manner of one, four or nine physical pixel bindings, wherein one physical pixel corresponds to one picture pixel for display, represents a high resolution display mode, and nine physical pixels correspond to one When the picture is pixel, it represents the low resolution display mode.
  • a display device comprising the above display panel,
  • the display device may be: an AMOLED display, a television, a digital photo frame, a mobile phone, a tablet computer, or the like having any display function.
  • a method of driving the above pixel circuit comprising: applying an active level to a first scan line, and writing a hopping data signal on the data line to the pixel
  • the circuit generates a compensation voltage at the first node.
  • the method further includes: applying an active level to the first scan line, the second scan line, and the third scan line, turning on the input unit and the voltage compensation unit, and writing the jump data signal on the data line to the pixel circuit A compensation voltage is generated at the first node.
  • the method further includes: changing the data signal on the data line in the case of displaying at the first resolution, writing different data signals on the data line to the pixel circuit, thereby causing the driving unit to generate different Driving current, sequentially applying an effective level to a plurality of light-emission control signal terminals, thereby supplying different driving currents generated by the driving unit to the plurality of light-emitting devices; and simultaneously displaying to the plurality of light-emitting devices at the second resolution
  • the light-emitting control signal terminal applies an active level to supply a driving current generated by the driving unit to the plurality of light-emitting devices, wherein the first resolution is higher than the second resolution.
  • the method further comprises: applying an active level to the reset signal terminal before applying the active level to the first scan line, turning on the reset unit, and resetting the first node.
  • the hopping data signal on the data line can be written into the voltage compensation unit, so that the voltage compensation unit generates a compensation voltage at the first node, so that the driving transistor can be performed.
  • the threshold voltage compensation eliminates the influence of the threshold voltage drift of the driving transistor in the pixel circuit on the light emitting display of the light emitting device.
  • the resolution of the pixel region can be adjusted by controlling the data signal on the data line and controlling the effective level applied to the plurality of light emission control signal terminals according to the adjustment of the display resolution. And combining the illumination of a plurality of light emitting devices to achieve different visual resolutions.
  • the driving method thereof, and the display panel the threshold voltage compensation of the driving transistor of the pixel circuit is combined with the intelligent display, and the difference of the focus on the screen displayed by the user on the display panel can be realized.
  • the resolution is dynamically adjusted in real time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种像素电路及其驱动方法以及显示面板。像素电路包括:输入单元(101)、驱动单元(102)和电压补偿单元(103);输入单元(101)连接到数据线(Vdata)和第一扫描线(Scan1),被配置为在第一扫描线(Scan1)的控制下,将数据线(Vdata)接入的跳变数据信号输入电压补偿单元(103);电压补偿单元(103)连接到第一节点(N1)、第二扫描线(Gate)和第三扫描线(EM),在第二扫描线(Gate)和第三扫描线(EM)的控制下,在第一节点(N1)处产生补偿电压;驱动单元(102)连接到电压补偿单元(103),被配置为利用电压补偿单元(103)在第一节点(N1)处产生的补偿电压,产生驱动发光器件(OLED,OLED1,OLED2,OLED3)发光的电流。像素电路及其驱动方法以及显示面板,将对像素电路的驱动晶体管(M3)进行阈值电压补偿与智能显示相结合,可以实现针对用户对显示面板显示的画面的关注点的不同,对显示面板分辨率进行动态实时调节。

Description

像素电路及其驱动方法、以及显示面板
相关申请的交叉引用
本申请要求于2017年1月3日提交的中国专利申请第201710001414.X的优先权,该中国专利申请的全文通过引用的方式结合于此以作为本申请的一部分。
技术领域
本公开涉及显示技术领域,具体涉及一种像素电路及其驱动方法、包括该像素电路的显示面板。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)显示器是当今平板显示器研究领域的热点之一,与液晶显示器相比,OLED显示器具有低能耗、生产成本低、自发光、宽视角及响应速度快等优点。目前,在手机、PDA、数码相机等显示领域,OLED显示器已经开始取代传统的液晶显示器。像素电路设计是OLED显示器核心技术内容,具有重要的研究意义。与TFT(薄膜场效应晶体管)-LCD利用稳定的电压来控制发光晶体管的亮度不同,OLED属于电流驱动,需要稳定的电流来控制发光二极管的亮度。通过OLED的电流不仅受数据信号电压的控制,同时也受驱动发光二极管的驱动薄膜晶体管的阈值电压Vth的影响。由于多个像素电路中驱动晶体管的阈值电压Vth特性存在差异,以及工艺制程和器件老化等原因,OLED显示器中的各像素点的驱动薄膜晶体管不具备完全一致的性能参数,驱动薄膜晶体管的阈值电压Vth会漂移,这样就导致了流过每个像素点的OLED的电流不同,影响OLED显示器的显示效果。
另外,目前的显示屏显示画面时,各个区域的分辨率是相同的,无法根据用户的视觉关注点对显示屏的局部区域动态实时地调整分辨率。
发明内容
针对以上问题,本公开提出了一种像素电路及其驱动方法、以及显示面 板。其中,该像素电路可以对驱动发光器件的发光显示的驱动晶体管进行阈值电压补偿,消除阈值电压的漂移对驱动晶体管的驱动电流的影响,从而避免各个驱动晶体管的阈值电压的不均匀性对发光器件的发光显示造成的不一致。
根据本公开的一方面,提供一种像素电路,包括:输入单元、驱动单元、电压补偿单元以及发光控制单元,其中,输入单元连接到数据线和第一扫描线,被配置为在第一扫描线的控制下,将数据线接入的跳变数据信号输入电压补偿单元;电压补偿单元连接到第一节点、第二扫描线和第三扫描线,在第二扫描线和第三扫描线的控制下,在第一节点处产生补偿电压;驱动单元连接到电压补偿单元,被配置为利用电压补偿单元在第一节点处产生的补偿电压,产生驱动发光器件发光的电流。
根据本公开的一方面,还提供一种驱动该像素电路的方法,包括:向第一扫描线施加有效电平,将数据线上的跳变数据信号写入像素电路,在第一节点处产生补偿电压。
根据本公开的原理,可以利用将数据线上的跳变数据信号写入电压补偿单元,使电压补偿单元在第一节点处产生补偿电压,从而可以对驱动晶体管进行阈值电压补偿,消除像素电路中的驱动晶体管的阈值电压漂移对发光器件的发光显示的影响。
可选地,该像素电路还包括:发光控制单元,连接到多个发光器件、多个发光控制信号端和驱动单元,被配置为在多个发光控制信号端接入的发光控制信号的控制下向多个发光器件提供驱动单元产生的驱动电流。
可选地,该像素电路的驱动方法还包括:在以第一分辨率进行显示的情况下,改变数据线上的数据信号,将数据线上的不同的数据信号写入像素电路,从而使驱动单元产生不同的驱动电流,向多个发光控制端顺次施加有效电平,从而将驱动单元产生的不同的驱动电流提供给多个发光器件;在以第二分辨率进行显示的情况下,同时向多个发光控制端施加有效电平,从而将驱动单元产生的驱动电流提供给多个发光器件,其中第一分辨率高于第二分辨率。
根据本公开的原理,可以根据显示分辨率的调节需要,通过控制数据线上的数据信号以及控制向多个发光控制信号端所施加的有效电平,来调节像 素区域的分辨率,并且将多个发光器件的发光进行组合,实现不同的视觉分辨率。
根据本公开的一方面,还提供一种显示面板。包括:多个以阵列方式布置的该像素电路。
可选地,该显示面板还包括:至少一个传感器,检测观看显示面板的界面的用户的眼动并产生眼动检测信号;以及处理器,根据眼动检测信号,确定用户所关注的界面上的区域,并且在对应于该区域中的像素电路中,改变数据线上的数据信号,向多个发光控制信号端顺次施加有效电平,从而提高该区域中的分辨率。
可选地,可以将显示面板的像素阵列做区域划分,区域划分的面积根据具体观测需要而定。通过人眼跟踪(eye tracking)技术,判断人眼所关注的屏幕的区域的位置,并且以较高的分辨率显示被关注的区域,而以较低的分辨率显示其它未被关注的区域。具体地,可以通过传感器来检测用户的眼动,并且判断用户观察的具体区域,从而实现显示区域的分辨率的差异化,随着人眼观察位置的变化,对不同位置的区域的分辨率进行切换,真正实现分辨率可调的效果。由此,可以实时动态地调节各个显示区域的分辨率,并且降低了显示功耗。
根据本公开的原理,将对像素电路的驱动晶体管进行阈值电压补偿与智能显示结合起来,可以实现针对用户对显示面板显示的画面的关注点的不同,对显示面板的分辨率进行动态实时调节,使得用户所关注的区域以较高的分辨率显示,而对未关注的区域以较低的分辨率显示,从而降低功耗。
附图说明
为了更清楚地说明本公开的实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本发明的限制。
图1是根据本公开的实施例的像素电路的框图;
图2示出了根据本公开的实施例的像素电路的电路结构;
图3示出了根据本公开的实施例的在高分辨率显示模式下可应用于图2所示的像素电路的信号时序;
图4-7是根据本公开的实施例的在图2所示的像素电路中应用图3所示的信号时序时的各个阶段的工作情况;
图8示出了根据本公开的实施例的在低分辨率显示模式下可应用于图2所示的像素电路的信号时序;
图9示出了根据本公开的实施例的在低分辨率显示模式下可应用于图2所示的像素电路的另一信号时序;
图10示出了根据本公开的实施例的显示面板的框图;
图11示出了根据用户的视觉关注点在显示界面上的各个区域采用不同分辨率的原理;以及
图12是根据本公开的实施例的可应用像素电路的驱动方法的示意性的流程图。
具体实施方式
下面将结合附图对本公开的实施例进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,也属于本发明保护的范围。
图1是根据本公开的实施例的像素电路的示意性的框图。如图1所示,该像素电路包括:输入单元101、驱动单元102以及电压补偿单元103。其中,输入单元101连接到数据线Vdata和第一扫描线Scan1,被配置为在第一扫描线Scan1的控制下,将数据线Vdata接入的跳变数据信号输入电压补偿单元103。电压补偿单元103连接到第一节点N1、第二扫描线Gate和第三扫描线EM,在第二扫描线Gate和第三扫描线EM的控制下,在第一节点N1处产生补偿电压。驱动单元102连接到电压补偿单元103,被配置为利用电压补偿单元103在第一节点N1处产生的补偿电压,产生驱动发光器件发光的电流。
可选地,该像素电路还包括:发光控制单元104,连接到多个发光器件OLED1、OLED2、OLED3、多个发光控制信号端EM1、EM2、EM3和驱动单元102,被配置为在多个发光控制信号端EM1、EM2、EM3接入的发光控制信号的控制下向多个发光器件OLED1、OLED2、OLED3提供驱动单元102产生的驱动电流。应当理解,发光器件OLED是三个仅仅是示范性的,本领 域技术人员可以根据实际需要来调整发光器件的数量。
可选地,该像素电路还包括:复位单元105,连接到复位信号端Reset和第一节点N1,被配置为在复位信号端Reset接入的复位信号的控制下,对第一节点N1进行复位。
根据本公开的该像素电路,可以利用电压补偿单元103在第一节点N1处产生补偿电压,从而可以对驱动晶体管M3进行阈值电压补偿,消除像素电路中的驱动晶体管M3的阈值电压漂移对发光器件OLED的发光显示的影响。
另外,根据本公开的该像素电路,可以根据显示分辨率的调节需要,通过控制数据线Vdata上的数据信号以及控制向多个发光控制信号端EM1、EM2、EM3所施加的有效电平,来调节像素区域的分辨率,并且将多个发光器件OLED的发光进行组合,实现不同的视觉分辨率。
图2示出了根据本公开的实施例的像素电路的示意性的电路结构。以下结合图1和图2对该像素电路的电路结构进行详细说明。可选地,如图2所示,在该像素电路中,输入单元101包括输入晶体管M5,电压补偿单元103包括第一补偿晶体管M4、第二补偿晶体管M2和补偿电容C1,驱动单元102包括驱动晶体管M3。其中,输入晶体管M5的栅极连接到第一扫描线Scan1,第一极连接到数据线Vdata,第二极连接到补偿电容C1的第一端。第一补偿晶体管M4的栅极连接到第三扫描线EM,第一极连接到第一电压端Vdd,第二极连接到驱动单元102的输入端。第二补偿晶体管M2的栅极连接到第二扫描线Gate,第一极连接到第一节点N1,第二极连接到驱动单元102的输出端。补偿电容C1,第二端连接到第一节点N1。驱动晶体管M3,栅极连接到第一节点N1,第二极输出驱动发光器件OLED发光的电流。
可选地,如图2所示,在该像素电路中,发光控制单元104包括多个发光控制晶体管M6、M7、M8,栅极分别连接到多个发光控制信号端EM1、EM2、EM3,第一极连接到驱动单元102的输出端,第二极分别连接到多个发光器件OLED1、OLED2、OLED3。应当理解,发光器件OLED是三个仅仅是示范性的,本领域技术人员可以根据实际需要来调整发光器件的数量。
可选地,如图2所示,在该像素电路中,复位单元105包括复位晶体管M1,栅极连接到复位信号端Reset,第一极连接第二电压端Vinit,第二极连 接第一节点N1。
可选地,在图2所示的像素电路中,所有晶体管均为P型薄膜晶体管TFT,从而减小了模组的工艺制程,提高了生产效率。然而,根据需要,其中的一部分或者全部晶体管也可以采用N型TFT,只要相应地调整有关控制信号的电平即可,具体连接关系在此省略。
可选地,在本公开中,除了作为晶体管的栅极作为其控制极之外,晶体管的第一极可以是用于输入信号的源极,而第二极作为用于输出信号的漏极。然而,考虑到晶体管的源极和漏极的对称性,完全可以将二者互换,而不影响本公开的技术方案。
以上结合图1-2描述了根据本公开的实施例的像素电路的具体结构。下面将结合图3-7来详细描述根据本公开的上述实施例的像素电路在高分辨率显示模式下的各个阶段的工作情况。其中,在图4-7中的虚线框中的TFT表示关断的TFT,箭头表示每一阶段的电流流向。
图3示出了根据本公开的实施例的在高分辨率显示模式下可应用于图2所示的像素电路的信号时序。在图3所示的第一阶段中,复位信号端Reset施加低电平信号,第一扫描信号线Scan1、第二扫描信号线Gate和第三扫描信号线EM施加高电平信号,第一发光控制信号端EM1、第二发光控制信号端EM2和第三发光控制信号端EM3施加高电平信号,数据线Vdata接入的数据信号改变为低电平信号。因此,如图4所示,像素电路中的复位晶体管M1开启,而像素电路中的其他晶体管关断,此过程将第一节点N1的电平复位到Vinit电位,从而对第一节点的电位进行初始化,该阶段为像素电路的复位阶段。
在图3所示的第二阶段中,复位信号端Reset施加的信号改变为高电平信号,第一扫描信号线Scan1、第二扫描信号线Gate和第三扫描信号线EM改变为施加低电平信号,第一发光控制信号端EM1、第二发光控制信号端EM2和第三发光控制信号端EM3继续施加高电平信号,数据线Vdata接入的数据信号Vdata改变为V0。因此,如图5所示,像素电路中的复位晶体管M1、发光控制晶体管M6、M7、M8关断,输入晶体管M5、第一补偿晶体管M4和第二补偿晶体管M2由于栅极被施加低电平而开启,驱动晶体管M3的栅极由于在前一阶段被重置为低电平的Vinit而开启。第一电压端接入的第一 电压Vdd信号通过晶体管M4→M3→M2开始对第一节点N1点进行充电,一直将第一节点N1点充电到Vdd-Vth为止,其中Vth表示驱动晶体管M3的阈值电压。补偿电容C1的第二端由于连接到第一节点N1,因此,补偿电容C1的第二端的电位被充电到Vdd-Vth;补偿电容C1的第一端由于通过输入晶体管M5连接到数据线Vdata,因此,补偿电容C1的第一端的电位为Vdata=V0。该阶段为像素电路的充电阶段,也是像素电路的第一数据信号写入阶段。
在图3所示的第三阶段中,复位信号端Reset继续施加高电平信号,第一扫描信号线Scan1继续施加低电平信号,第二扫描信号线Gate和第三扫描信号线EM改变为施加高电平信号,第一发光控制信号端EM1、第二发光控制信号端EM2和第三发光控制信号端EM3继续施加高电平信号,数据线Vdata接入的数据信号Vdata跳变为V1。因此,如图6所示,像素电路中的复位晶体管M1、第一补偿晶体管M4、第二补偿晶体管M2、发光控制晶体管M6、M7、M8关断,输入晶体管M5由于栅极被继续施加低电平而保持开启,驱动晶体管M3的栅极由于在前一阶段被充电到Vdd-Vth而关断。补偿电容C1的第一端由于通过输入晶体管M5连接到数据线Vdata,因此,补偿电容C1的第一端的电位为Vdata=V1。补偿电容C1的第二端连接到第一节点N1,由于第一节点N1浮置,基于电容的自举效应,第一节点N1的电位改变为Vdd-Vth-V0+V1,以保证补偿电容C1两端的电压差Vdd-Vth-V0不变。该阶段为第一节点N1的跳变自举过程,也就是像素电路的第二数据信号写入阶段。
在以上各阶段中,由于发光控制晶体管M6、M7、M8关断,没有电流流过OLED,因此降低了功耗与OLED的寿命损耗,确保了显示质量。
图3所示的第四阶段为像素电路驱动发光器件OLED1进行发光显示的阶段。复位信号端Reset和第二扫描信号线Gate继续施加高电平信号,第一扫描信号线Scan1改变为施加高电平信号,第三扫描信号线EM改变为施加低电平信号,第一发光控制信号端EM1改变为施加低电平信号,第二发光控制信号端EM2和第三发光控制信号端EM3继续施加高电平信号,数据线Vdata接入的数据信号Vdata改变为低电平信号。因此,如图7所示,像素电路中的复位晶体管M1、第二补偿晶体管M2、输入晶体管M5和发光控制晶体管M7、M8关断,第一补偿晶体管M4和发光控制晶体管M6由于栅极被施加 低电平而开启,驱动晶体管M3的栅极由于在前一阶段被充电为Vdd-Vth-V0+V1而开启,形成通过晶体管M4→M3→M6的电流路径,驱动发光器件OLED1开始发光显示。
驱动晶体管M3产生的驱动电流可以由以下公式(1)表示:
IOLED1=K(VGS–Vth)2=K[Vdd–(Vdd-Vth-V0+V1)–Vth]2
=K(V0–V1)2             (1)
由上式(1)可知,驱动电流IOLED1已经不受驱动晶体管的阈值电压Vth的影响,只与数据线Vdata接入的数据信号Vdata有关。因此,消除了驱动晶体管由于工艺制程及长时间的操作所导致的阈值电压Vth漂移对驱动晶体管输出的驱动电流IOLED1的影响,可以保证各个OLED发光显示的均匀性,提高显示质量。
在图3所示的第五阶段和第六阶段中,由于数据线Vdata接入的数据信号Vdata发生两次跳变,导致第一节点N1的电位也发生两次跳变,通过向第二发光控制信号端EM2和第三发光控制信号端EM3顺次施加低电平信号,将驱动单元产生的不同的驱动电流提供给发光器件OLED2、OLED3,使得发光器件OLED2、OLED3顺次发光显示,并且发光器件OLED1、OLED2、OLED3的驱动电流IOLED2、IOLED3、IOLED2各不相同。通过对OLED1、OLED2、OLED3的发光显示进行组合,可以显示更丰富的灰阶信息,提高视觉分辨率。
下面将结合图8来详细描述根据本公开的上述实施例的像素电路在低分辨率显示模式下的各个阶段的工作情况。
图8示出了根据本公开的实施例的在低分辨率显示模式下可应用于图2所示的像素电路的信号时序,在图8所示的信号时序下,一帧时间内只显示一种颜色。在图8所示的第一阶段中,复位信号端Reset施加低电平信号,第一扫描信号线Scan1、第二扫描信号线Gate和第三扫描信号线EM施加高电平信号,第一发光控制信号端EM1、第二发光控制信号端EM2和第三发光控制信号端EM3施加高电平信号,数据线Vdata接入的数据信号改变为低电平信号。因此,参考图4所示的像素电路的工作情况,像素电路中的复位晶体管M1开启,而像素电路中的其他晶体管关断,此过程将第一节点N1的电平复位到Vinit电位,从而对第一节点的电位进行初始化,该阶段为像素电路的复位阶段。
在图8所示的第二阶段中,复位信号端Reset施加的信号改变为高电平信号,第一扫描信号线Scan1、第二扫描信号线Gate和第三扫描信号线EM改变为施加低电平信号,第一发光控制信号端EM1、第二发光控制信号端EM2和第三发光控制信号端EM3继续施加高电平信号,数据线Vdata接入的数据信号Vdata改变为V0。因此,参考图5所示的像素电路的工作情况,像素电路中的复位晶体管M1、发光控制晶体管M6、M7、M8关断,输入晶体管M5、第一补偿晶体管M4和第二补偿晶体管M2由于栅极被施加低电平而开启,驱动晶体管M3的栅极由于在前一阶段被重置为低电平的Vinit而开启。第一电压端接入的第一电压Vdd信号通过晶体管M4→M3→M2开始对第一节点N1点进行充电,一直将第一节点N1点充电到Vdd-Vth为止,其中Vth表示驱动晶体管M3的阈值电压。补偿电容C1的第二端由于连接到第一节点N1,因此,补偿电容C1的第二端的电位被充电到Vdd-Vth;补偿电容C1的第一端由于通过输入晶体管M5连接到数据线Vdata,因此,补偿电容C1的第一端的电位为Vdata=V0。该阶段为像素电路的充电阶段,也是像素电路的第一数据信号写入阶段。
在图8所示的第三阶段中,复位信号端Reset继续施加高电平信号,第一扫描信号线Scan1继续施加低电平信号,第二扫描信号线Gate和第三扫描信号线EM改变为施加高电平信号,第一发光控制信号端EM1、第二发光控制信号端EM2和第三发光控制信号端EM3继续施加高电平信号,数据线Vdata接入的数据信号Vdata跳变为V1。因此,参考图6所示的像素电路的工作情况,像素电路中的复位晶体管M1、第一补偿晶体管M4、第二补偿晶体管M2、发光控制晶体管M6、M7、M8关断,输入晶体管M5由于栅极被继续施加低电平而保持开启,驱动晶体管M3的栅极由于在前一阶段被充电到Vdd-Vth而关断。补偿电容C1的第一端由于通过输入晶体管M5连接到数据线Vdata,因此,补偿电容C1的第一端的电位为Vdata=V1。补偿电容C1的第二端连接到第一节点N1,由于第一节点N1浮置,基于电容的自举效应,第一节点N1的电位改变为Vdd-Vth-V0+V1,以保证补偿电容C1两端的电压差Vdd-Vth-V0不变。该阶段为第一节点N1的跳变自举过程,也就是像素电路的第二数据信号写入阶段。
在以上各阶段中,由于发光控制晶体管M6、M7、M8关断,没有电流流 过OLED,因此降低了功耗与OLED的寿命损耗,确保了显示质量。
图8所示的第四阶段为像素电路同时驱动发光器件OLED1、OLED2、OLED3进行发光显示的阶段。复位信号端Reset和第二扫描信号线Gate继续施加高电平信号,第一扫描信号线Scan1改变为施加高电平信号,第三扫描信号线EM改变为施加低电平信号,第一发光控制信号端EM1、第二发光控制信号端EM2和第三发光控制信号端EM3改变为施加低电平信号,数据线Vdata接入的数据信号Vdata改变为低电平信号。因此,像素电路中的复位晶体管M1、第二补偿晶体管M2和输入晶体管M5关断,第一补偿晶体管M4和发光控制晶体管M6、M7、M8由于栅极被施加低电平而开启,驱动晶体管M3的栅极由于在前一阶段被充电为Vdd-Vth-V0+V1而开启,形成通过晶体管M4→M3→M6的电流路径、通过晶体管M4→M3→M7的电流路径以及通过晶体管M4→M3→M8的电流路径,将驱动单元产生的同一驱动电流提供给发光器件OLED1、OLED2、OLED3,使得发光器件OLED1、OLED2、OLED3同时发光显示。此时,发光器件OLED1、OLED2、OLED3具有相同的灰阶信息,通过对发光器件OLED1、OLED2、OLED3的发光显示进行组合,可以得到较低的视觉分辨率。
图9示出了根据本公开的实施例的在低分辨率显示模式下可应用于图2所示的像素电路的另一信号时序,在图9所示的信号时序下,一帧时间内显示三种颜色。图9与图8所示的信号时序的不同之处在于第五阶段和第六阶段。在第五阶段和第六阶段,由于数据线Vdata接入的数据信号Vdata发生两次跳变,导致第一节点N1的电位也发生两次跳变,从而驱动单元产生的驱动电流也发生两次改变,使得发光器件OLED1、OLED2、OLED3在一帧时间内可以显示三种颜色,提高显示器的刷新频率。与图8所示的信号时序的情况类似,发光器件OLED1、OLED2、OLED3具有相同的灰阶信息,通过对发光器件OLED1、OLED2、OLED3的发光显示进行组合,可以得到较低的视觉分辨率。
由此可见,根据上述实施例的像素电路,可以利用将数据线上的跳变数据信号写入电压补偿单元,使电压补偿单元在第一节点处产生补偿电压,从而可以对驱动晶体管进行阈值电压补偿,消除像素电路中的驱动晶体管的阈值电压漂移对发光器件的发光显示的影响。另外,根据上述实施例的像素电 路,可以根据显示分辨率的调节需要,通过控制数据线上的数据信号以及控制向多个发光控制信号端所施加的有效电平,来调节像素区域的分辨率,并且将多个发光器件的发光进行组合,实现不同的视觉分辨率。
可选地,在上述实施例的像素电路中,可以利用发光器件OLED1、OLED2和OLED3分别显示红色、绿色和蓝色,从而组合成一个像素的三原色RGB。然而,本公开的原理不限于此,发光器件OLED是三个仅仅是示范性的,实际上,可以根据实际需要来调整发光器件的数量,例如,可以使用四个发光器件分别显示红色、绿色、蓝色和黄色,或者分别显示红色、绿色、蓝色和白色,从而使得显示的色彩更丰富,画质更高。
根据本公开的一方面,还提供了一种显示面板。如图10所示,该显示面板包括:OLED像素阵列,其中,每一个OLED像素可以由上述的像素电路构成;至少一个传感器,检测观看显示面板的界面的用户的眼动并产生眼动检测信号;以及处理器,根据眼动检测信号,确定用户所关注的界面上的区域,并且在对应于该区域中的像素电路中,改变数据线上的数据信号,向多个发光控制信号端顺次施加有效电平,从而提高该区域中的分辨率。
可选地,可以将显示面板的像素阵列做区域划分,区域划分的面积根据具体观测需要而定。通过人眼跟踪技术,判断人眼所关注的屏幕的区域的位置,并且以较高的分辨率显示被关注的区域,而以较低的分辨率显示其它未被关注的区域。具体地,可以通过传感器来检测用户的眼动,并且判断用户观察的具体区域,从而实现显示区域的分辨率的差异化,随着人眼观察位置的变化,对不同位置的区域的分辨率进行切换,真正实现分辨率可调的效果。由此,可以实时动态地调节各个显示区域的分辨率,并且降低了显示功耗。
例如,如图11所示,可以在用户所关注的区域采用高分辨率显示模式,而在其它区域采用低分辨率模式,从而可以降低显示功耗。
可选地,可以根据实际需要,以对像素进行组合的方式来进行显示。例如,为避免失真,可以以方形的显示方式对像素进行组合来显示画面像素。例如,以一个、四个或者九个物理像素绑定的方式来进行显示,其中,一个物理像素对应于一个画面像素进行显示时,代表高分辨率显示模式,而以九个物理像素对应于一个画面像素时,代表低分辨率显示模式。
根据本公开的另一实施例,还提供了一种显示装置,包括上述显示面板, 该显示装置可以为:AMOLED显示器、电视机、数码相框、手机、平板电脑等具有任何显示功能的产品或部件。
根据本公开的实施例,还提供了一种驱动上述像素电路的方法,如图12所示,其包括:向第一扫描线施加有效电平,将数据线上的跳变数据信号写入像素电路,在第一节点处产生补偿电压。
可选地,该方法还包括:向第一扫描线、第二扫描线和第三扫描线施加有效电平,开启输入单元和电压补偿单元,将数据线上的跳变数据信号写入像素电路,在第一节点处产生补偿电压。
可选地,该方法还包括:在以第一分辨率进行显示的情况下,改变数据线上的数据信号,将数据线上的不同的数据信号写入像素电路,从而使驱动单元产生不同的驱动电流,向多个发光控制信号端顺次施加有效电平,从而将驱动单元产生的不同的驱动电流提供给多个发光器件;在以第二分辨率进行显示的情况下,同时向多个发光控制信号端施加有效电平,从而将驱动单元产生的驱动电流提供给多个发光器件,其中第一分辨率高于第二分辨率。
可选地,该方法还包括:在向第一扫描线施加有效电平之前,向复位信号端施加有效电平,开启复位单元,对第一节点进行复位。
综上所述,在本公开的上述实施例中,可以利用将数据线上的跳变数据信号写入电压补偿单元,使电压补偿单元在第一节点处产生补偿电压,从而可以对驱动晶体管进行阈值电压补偿,消除像素电路中的驱动晶体管的阈值电压漂移对发光器件的发光显示的影响。另外,根据上述实施例的像素电路,可以根据显示分辨率的调节需要,通过控制数据线上的数据信号以及控制向多个发光控制信号端所施加的有效电平,来调节像素区域的分辨率,并且将多个发光器件的发光进行组合,实现不同的视觉分辨率。根据本公开的像素电路及其驱动方法以及显示面板,将对像素电路的驱动晶体管进行阈值电压补偿与智能显示相结合,可以实现针对用户对显示面板显示的画面的关注点的不同,对显示面板分辨率进行动态实时调节。
以上所述,仅为本公开的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开实施例公开的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (12)

  1. 一种像素电路,包括:
    输入单元、驱动单元以及电压补偿单元,
    其中,输入单元连接到数据线和第一扫描线,被配置为在第一扫描线的控制下,将数据线接入的跳变数据信号输入电压补偿单元;
    电压补偿单元连接到第一节点、第二扫描线和第三扫描线,在第二扫描线和第三扫描线的控制下,在第一节点处产生补偿电压;
    驱动单元连接到电压补偿单元,被配置为利用电压补偿单元在第一节点处产生的补偿电压,产生驱动发光器件发光的电流。
  2. 根据权利要求1所述的像素电路,其中,像素电路还包括:
    发光控制单元,连接到多个发光器件、多个发光控制信号端和驱动单元,被配置为在多个发光控制信号端接入的发光控制信号的控制下向多个发光器件提供驱动单元产生的驱动电流。
  3. 根据权利要求1或2所述的像素电路,其中,像素电路还包括:
    复位单元,连接到复位信号端和第一节点,被配置为在复位信号端接入的复位信号的控制下,对第一节点进行复位。
  4. 根据权利要求1至3中任一项所述的像素电路,其中,输入单元包括输入晶体管,电压补偿单元包括第一补偿晶体管、第二补偿晶体管和补偿电容,驱动单元包括驱动晶体管,
    其中,输入晶体管,栅极连接到第一扫描线,第一极连接到数据线,第二极连接到补偿电容的第一端;
    第一补偿晶体管,栅极连接到第三扫描线,第一极连接到第一电压端,第二极连接到驱动单元的输入端;
    第二补偿晶体管,栅极连接到第二扫描线,第一极连接到第一节点,第二极连接到驱动单元的输出端;
    补偿电容,第二端连接到第一节点;
    驱动晶体管,栅极连接到第一节点,第二极输出驱动发光器件发光的电流。
  5. 根据权利要求2所述的像素电路,其中,发光控制单元包括:
    多个发光控制晶体管,栅极分别连接到多个发光控制信号端,第一极连接到驱动单元的输出端,第二极分别连接到多个发光器件。
  6. 根据权利要求3所述的像素电路,其中,复位单元包括:
    复位晶体管,栅极连接到复位信号端,第一极连接第二电压端,第二极连接第一节点。
  7. 一种驱动权利要求1至6中任一项所述的像素电路的方法,包括:
    向第一扫描线施加有效电平,将数据线上的跳变数据信号写入像素电路,在第一节点处产生补偿电压。
  8. 根据权利要求7所述的方法,其中,像素电路包括输入单元、驱动单元以及电压补偿单元,其中,输入单元连接到数据线和第一扫描线,电压补偿单元连接到第一节点、第二扫描线和第三扫描线,驱动单元连接到电压补偿单元;
    所述方法还包括:
    向第一扫描线、第二扫描线和第三扫描线施加有效电平,开启输入单元和电压补偿单元,将数据线上的跳变数据信号写入像素电路,在第一节点处产生补偿电压。
  9. 根据权利要求7或8所述的方法,其中,像素电路包括发光控制单元,其中,发光控制单元连接到多个发光器件、多个发光控制信号端和驱动单元;
    所述方法还包括:
    在以第一分辨率进行显示的情况下,改变数据线上的数据信号,将数据线上的不同的数据信号写入像素电路,从而使驱动单元产生不同的驱动电流,向多个发光控制信号端顺次施加有效电平,从而将驱动单元产生的不同的驱动电流提供给多个发光器件;
    在以第二分辨率进行显示的情况下,同时向多个发光控制信号端施加有效电平,从而将驱动单元产生的驱动电流提供给多个发光器件,其中第一分辨率高于第二分辨率。
  10. 根据权利要求7-9中任一项所述的方法,其中,像素电路还包括复位单元,其中,复位单元连接到复位信号端和第一节点;
    所述方法还包括:
    在向第一扫描线施加有效电平之前,向复位信号端施加有效电平,开启 复位单元,对第一节点进行复位。
  11. 一种显示面板,包括:
    多个以阵列方式布置的如权利要求2-6中任一项所述的像素电路。
  12. 根据权利要求11述的显示面板,其中,显示面板还包括:
    至少一个传感器,检测观看显示面板的界面的用户的眼动并产生眼动检测信号;以及
    处理器,根据眼动检测信号,确定用户所关注的界面上的区域,并且在对应于所述区域中的像素电路中,改变数据线上的数据信号,向多个发光控制信号端顺次施加有效电平,从而提高所述区域中的分辨率。
PCT/CN2017/100888 2017-01-03 2017-09-07 像素电路及其驱动方法、以及显示面板 WO2018126725A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/761,336 US10909924B2 (en) 2017-01-03 2017-09-07 Pixel circuit and driving method thereof, and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710001414.XA CN107342047B (zh) 2017-01-03 2017-01-03 像素电路及其驱动方法、以及显示面板
CN201710001414.X 2017-01-03

Publications (1)

Publication Number Publication Date
WO2018126725A1 true WO2018126725A1 (zh) 2018-07-12

Family

ID=60222385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100888 WO2018126725A1 (zh) 2017-01-03 2017-09-07 像素电路及其驱动方法、以及显示面板

Country Status (3)

Country Link
US (1) US10909924B2 (zh)
CN (1) CN107342047B (zh)
WO (1) WO2018126725A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106991976A (zh) * 2017-06-14 2017-07-28 京东方科技集团股份有限公司 像素电路、像素驱动方法和显示装置
CN108847181B (zh) * 2018-07-13 2021-01-26 京东方科技集团股份有限公司 一种灰阶调节电路和显示装置
CN109785799B (zh) * 2019-01-18 2021-08-20 京东方科技集团股份有限公司 显示装置及其像素补偿电路和驱动方法
CN110428778B (zh) 2019-08-14 2021-08-17 京东方科技集团股份有限公司 像素电路及其驱动方法以及显示面板
US11893939B2 (en) * 2019-09-03 2024-02-06 Boe Technology Group Co., Ltd. Pixel driving circuit, pixel driving method, display panel and display device
CN111312158B (zh) * 2020-03-04 2021-11-30 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
WO2021196015A1 (zh) * 2020-03-31 2021-10-07 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置及其驱动方法
CN114220384B (zh) * 2020-09-18 2023-06-20 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置
CN114495830B (zh) * 2020-11-12 2023-10-24 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置
CN112669765B (zh) * 2020-12-25 2023-03-07 京东方科技集团股份有限公司 断点自修复像素驱动电路、驱动方法及显示装置
US11837137B2 (en) 2021-01-06 2023-12-05 Boe Technology Group Co., Ltd. Display panel, electronic device and method for driving display panel
CN114187866B (zh) * 2021-11-26 2023-11-14 江门市浩远科技有限公司 一种基于深度学习的mini-led显示控制方法及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1460982A (zh) * 2002-05-17 2003-12-10 夏普公司 信号输出装置和显示装置
CN103035202A (zh) * 2012-12-25 2013-04-10 友达光电股份有限公司 一种像素补偿电路
CN103249352A (zh) * 2010-12-08 2013-08-14 索尼电脑娱乐公司 利用视线跟踪的自适应显示
US20130335307A1 (en) * 2012-06-13 2013-12-19 Innolux Corporation Displays with pixel circuits capable of compensating for transistor threshold voltage drift
US20140022150A1 (en) * 2012-07-18 2014-01-23 Innolux Corporation Organic light-emitting diode display device and pixel circuit thereof
CN104036729A (zh) * 2014-06-09 2014-09-10 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示装置
CN104050916A (zh) * 2014-06-04 2014-09-17 上海天马有机发光显示技术有限公司 一种有机发光显示器的像素补偿电路及方法
CN104078005A (zh) * 2014-06-25 2014-10-01 京东方科技集团股份有限公司 像素电路及其驱动方法和显示装置
CN104835454A (zh) * 2015-06-01 2015-08-12 京东方科技集团股份有限公司 一种有机电致发光触控面板、其驱动方法显示装置
CN105206221A (zh) * 2014-06-13 2015-12-30 京东方科技集团股份有限公司 像素驱动电路、驱动方法、阵列基板及显示装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7173590B2 (en) * 2004-06-02 2007-02-06 Sony Corporation Pixel circuit, active matrix apparatus and display apparatus
KR100590042B1 (ko) * 2004-08-30 2006-06-14 삼성에스디아이 주식회사 발광 표시 장치, 그 구동방법 및 신호구동장치
JP4300490B2 (ja) * 2007-02-21 2009-07-22 ソニー株式会社 表示装置及びその駆動方法と電子機器
KR100873076B1 (ko) * 2007-03-14 2008-12-09 삼성모바일디스플레이주식회사 화소 및 이를 이용한 유기전계발광 표시장치 및 그의구동방법
KR100936882B1 (ko) * 2008-06-11 2010-01-14 삼성모바일디스플레이주식회사 유기전계발광 표시장치
JP4905420B2 (ja) * 2008-07-29 2012-03-28 ソニー株式会社 表示装置、表示装置の駆動方法及び製造方法、並びに電子機器
JP5446217B2 (ja) * 2008-11-07 2014-03-19 ソニー株式会社 表示装置と電子機器
JP5326850B2 (ja) * 2009-06-18 2013-10-30 セイコーエプソン株式会社 発光装置、発光装置の駆動方法および電子機器
KR101809293B1 (ko) * 2010-09-06 2017-12-14 가부시키가이샤 제이올레드 표시 장치 및 그 제어 방법
KR20120065716A (ko) * 2010-12-13 2012-06-21 삼성모바일디스플레이주식회사 표시 장치 및 그 구동 방법
KR20130046006A (ko) * 2011-10-27 2013-05-07 삼성디스플레이 주식회사 화소 회로, 이를 포함하는 유기 발광 표시 장치 및 유기 발광 표시 장치의 구동 방법
CN102842301B (zh) * 2012-08-21 2015-05-20 京东方科技集团股份有限公司 显示画面调节装置、显示装置及显示方法
CN103000132B (zh) * 2012-12-13 2015-05-06 京东方科技集团股份有限公司 像素驱动电路及显示面板
KR102033611B1 (ko) * 2013-02-25 2019-10-18 삼성디스플레이 주식회사 화소, 이를 포함하는 표시장치 및 그 구동 방법
KR102043980B1 (ko) * 2013-05-13 2019-11-14 삼성디스플레이 주식회사 화소 및 이를 이용한 유기전계발광 표시장치
CN104752468A (zh) * 2013-12-30 2015-07-01 昆山工研院新型平板显示技术中心有限公司 实现高显示密度的像素电路和显示电路
CN104036725B (zh) * 2014-05-29 2017-10-03 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置
CN104157239A (zh) * 2014-07-21 2014-11-19 京东方科技集团股份有限公司 像素电路、像素电路的驱动方法和显示装置
CN104658484B (zh) * 2015-03-18 2018-01-16 上海和辉光电有限公司 显示装置、像素驱动电路及其驱动方法
EP3098805B1 (en) * 2015-05-28 2018-07-25 LG Display Co., Ltd. Organic light emitting display and circuit thereof
US10032413B2 (en) * 2015-05-28 2018-07-24 Lg Display Co., Ltd. Organic light emitting display
IN2015CH02866A (zh) 2015-06-09 2015-07-17 Wipro Ltd
CN106409224A (zh) * 2016-10-28 2017-02-15 京东方科技集团股份有限公司 像素驱动电路、驱动电路、显示基板和显示装置
KR102656233B1 (ko) * 2016-12-22 2024-04-11 엘지디스플레이 주식회사 전계발광표시장치 및 이의 구동방법
CN106652907B (zh) * 2017-01-05 2019-02-05 上海天马有机发光显示技术有限公司 有机发光显示面板、有机发光显示装置及像素补偿方法
CN109256086A (zh) * 2017-07-12 2019-01-22 京东方科技集团股份有限公司 像素电路及其驱动方法、阵列基板、显示面板

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1460982A (zh) * 2002-05-17 2003-12-10 夏普公司 信号输出装置和显示装置
CN103249352A (zh) * 2010-12-08 2013-08-14 索尼电脑娱乐公司 利用视线跟踪的自适应显示
US20130335307A1 (en) * 2012-06-13 2013-12-19 Innolux Corporation Displays with pixel circuits capable of compensating for transistor threshold voltage drift
US20140022150A1 (en) * 2012-07-18 2014-01-23 Innolux Corporation Organic light-emitting diode display device and pixel circuit thereof
CN103035202A (zh) * 2012-12-25 2013-04-10 友达光电股份有限公司 一种像素补偿电路
CN104050916A (zh) * 2014-06-04 2014-09-17 上海天马有机发光显示技术有限公司 一种有机发光显示器的像素补偿电路及方法
CN104036729A (zh) * 2014-06-09 2014-09-10 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示装置
CN105206221A (zh) * 2014-06-13 2015-12-30 京东方科技集团股份有限公司 像素驱动电路、驱动方法、阵列基板及显示装置
CN104078005A (zh) * 2014-06-25 2014-10-01 京东方科技集团股份有限公司 像素电路及其驱动方法和显示装置
CN104835454A (zh) * 2015-06-01 2015-08-12 京东方科技集团股份有限公司 一种有机电致发光触控面板、其驱动方法显示装置

Also Published As

Publication number Publication date
US10909924B2 (en) 2021-02-02
CN107342047A (zh) 2017-11-10
CN107342047B (zh) 2020-06-23
US20200243003A1 (en) 2020-07-30

Similar Documents

Publication Publication Date Title
WO2018126725A1 (zh) 像素电路及其驱动方法、以及显示面板
US10269297B2 (en) Pixel circuit and driving method thereof, and display panel
CN112634832B (zh) 一种显示面板、驱动方法及显示装置
US11881164B2 (en) Pixel circuit and driving method thereof, and display panel
WO2023005621A1 (zh) 像素电路及其驱动方法、显示面板
CN106097964B (zh) 像素电路、显示面板、显示设备及驱动方法
CN205920745U (zh) 像素电路、显示面板及显示设备
WO2019233120A1 (zh) 像素电路及其驱动方法、显示面板
WO2019052394A1 (zh) 像素电路及其驱动方法、显示装置
CN105931599B (zh) 像素驱动电路及其驱动方法、显示面板、显示装置
WO2020001554A1 (zh) 像素电路及其驱动方法、显示面板
WO2020151007A1 (zh) 像素驱动电路及其驱动方法、显示面板
WO2019062579A1 (zh) 像素电路及其驱动方法、显示装置
WO2019134459A1 (zh) 像素电路及其驱动方法、显示装置
WO2019218954A1 (zh) 像素电路及其驱动方法、装置、阵列基板及显示装置
WO2018205617A1 (zh) 像素电路及其驱动方法、显示面板
WO2015169006A1 (zh) 一种像素驱动电路及其驱动方法和显示装置
WO2019214304A1 (zh) 像素电路及其驱动方法、显示基板、显示装置
WO2015085699A1 (zh) Oled像素电路及驱动方法、显示装置
TW202234373A (zh) 驅動閘極驅動電路的方法以及驅動使用其的顯示裝置的方法
WO2018049809A1 (zh) 像素驱动电路及其驱动方法和显示装置
GB2620507A (en) Pixel circuit and driving method therefor and display panel
US10789891B2 (en) Pixel circuit, driving method thereof, display substrate and display apparatus
WO2018049800A1 (zh) 像素驱动电路及其驱动方法和显示装置
US20230154405A1 (en) Display device, driving circuit and display driving method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889880

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17889880

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/12/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17889880

Country of ref document: EP

Kind code of ref document: A1