WO2018126581A1 - 风管机空调***及其的室内风机的控制方法和装置 - Google Patents

风管机空调***及其的室内风机的控制方法和装置 Download PDF

Info

Publication number
WO2018126581A1
WO2018126581A1 PCT/CN2017/084218 CN2017084218W WO2018126581A1 WO 2018126581 A1 WO2018126581 A1 WO 2018126581A1 CN 2017084218 W CN2017084218 W CN 2017084218W WO 2018126581 A1 WO2018126581 A1 WO 2018126581A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
set temperature
current
indoor
air
Prior art date
Application number
PCT/CN2017/084218
Other languages
English (en)
French (fr)
Inventor
魏富党
宋铭
莫艺扬
罗庚
Original Assignee
广东美的暖通设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 美的集团股份有限公司 filed Critical 广东美的暖通设备有限公司
Priority to US16/469,644 priority Critical patent/US10914481B2/en
Publication of WO2018126581A1 publication Critical patent/WO2018126581A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2614HVAC, heating, ventillation, climate control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of air conditioners, in particular to a method for controlling an indoor fan of a duct air conditioner system, a control device for an indoor fan of a duct air conditioner system, and a duct air conditioner system having the control device.
  • the conventional air conditioner can automatically adjust the wind speed of the indoor fan according to the temperature condition, but for the air conditioner using the standard type of wire controller, the user sets the temperature through the wire controller, and the wire controller performs the ambient temperature detection. And according to the demand output, the shutdown signal is sent to the indoor unit, and the indoor unit is turned on and off according to the opening and stopping signal.
  • the line controller cannot set the temperature and the ambient temperature for the indoor unit transmission, the indoor unit cannot obtain the parameter, and the air volume is automatically adjusted according to the parameter, thereby causing poor comfort and energy saving of the air conditioner, and corresponding dehumidification performance. Not good.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • the first object of the present invention is to provide a method for controlling an indoor fan of a duct air conditioner system.
  • the indoor unit cannot receive the set temperature and the ambient temperature parameter, the set temperature is obtained through a certain operating rule.
  • the automatic control of the air volume is realized, and at the same time, the air conditioning dehumidification function is improved, and the comfort and energy saving of the air conditioner are improved.
  • a second object of the present invention is to provide a non-transitory computer readable storage medium.
  • a third object of the present invention is to provide a control device for an indoor fan of a duct air conditioner system.
  • a fourth object of the present invention is to provide a duct air conditioner system.
  • a first aspect of the present invention provides a method for controlling an indoor fan of a duct air conditioner system, including the following steps: when the air duct system of the duct machine is powered on, acquiring the air conditioner of the duct machine The indoor ambient temperature and the set temperature recorded when the system was last stopped, and the current set temperature is obtained according to the indoor ambient temperature and the set temperature recorded when the air duct system air conditioner system last stopped; the indoor ambient temperature is detected in real time; Calculating a temperature difference between the current indoor ambient temperature and the set temperature according to the current indoor ambient temperature and the current set temperature, and generating a wind speed adjustment command according to the temperature difference; adjusting according to the wind speed The indoor fan is controlled to adjust the amount of air discharged from the indoor unit.
  • the control method of the indoor fan of the air duct system of the air duct machine when the air conditioning system of the air duct machine is turned on, the current environment temperature and the set temperature recorded at the last shutdown of the air duct system of the air duct machine are acquired. Constant temperature, Then, the temperature difference between the current indoor ambient temperature and the set temperature is calculated according to the current indoor ambient temperature and the current set temperature, and the wind speed adjustment command is generated according to the temperature difference. Finally, the indoor fan is controlled according to the wind speed adjustment command. To adjust the air volume of the indoor unit.
  • the indoor unit cannot receive the set temperature and the ambient temperature parameter, the set temperature is obtained through a certain operating rule to realize automatic control of the air volume, and at the same time, the air conditioning dehumidification function is improved, and the comfort and energy saving of the air conditioner are improved.
  • the method for controlling an indoor fan of the air duct air conditioner system further includes: according to the indoor ambient temperature when the air duct air conditioner system is turned on, and the current set temperature The relationship corrects the current set temperature.
  • the current set temperature is corrected according to a relationship between an indoor ambient temperature when the air duct air conditioner system is turned on and the current set temperature, including: When the air duct system is operated in the cooling mode, if the current set temperature is greater than or equal to a difference between the indoor ambient temperature and the first temperature threshold, the current set temperature is the a difference between an indoor ambient temperature and a second temperature threshold at the time of starting; when the air duct air conditioning system is operating in a heating mode, if the current set temperature is less than or equal to the indoor ambient temperature at the time of starting, The sum of the first temperature thresholds is the sum of the indoor ambient temperature and the second temperature threshold when the power is turned on.
  • the temperature difference is obtained in real time, and according to the current temperature difference and the temperature difference before the preset time X minutes before the continuous operation The current set temperature is corrected.
  • the current set temperature is corrected according to a current temperature difference and a temperature difference before the current running preset time X minutes, including: when the air duct air conditioner When the system is operating in the cooling mode, if the current temperature difference is greater than the temperature difference before the preset time X minutes of the current continuous operation, the current set temperature is decreased by the third temperature threshold.
  • the current set temperature is corrected; when the air duct air conditioning system is operating in the heating mode, if the current temperature difference is greater than the temperature difference before the preset time X minutes of the current continuous operation, Then, the current set temperature is corrected by increasing the current set temperature by the third temperature threshold.
  • a preset initial set temperature is used as the current set temperature.
  • a second aspect of the present invention provides a non-transitory computer readable storage medium having stored thereon a computer program, which is implemented by a processor to implement an indoor fan of the air duct air conditioner system described above. Control method.
  • the non-transitory computer readable storage medium of the embodiment of the present invention can perform a certain operation when the indoor unit cannot receive the set temperature and the ambient temperature parameter by executing the above-mentioned indoor fan control method of the duct air conditioner system.
  • the line rule obtains the set temperature, realizes the automatic control of the air volume, and at the same time improves the air conditioning dehumidification function and improves the comfort and energy saving of the air conditioner.
  • a third aspect of the present invention provides a control device for an indoor fan of an air duct system of a duct machine, comprising: an acquisition module, configured to acquire the air duct when the air conditioning system of the air duct machine is powered on The indoor ambient temperature and the set temperature recorded during the last shutdown of the air conditioning system, and the current set temperature is obtained according to the indoor ambient temperature and the set temperature recorded when the air duct system was last stopped; the temperature detecting module, For detecting the indoor ambient temperature in real time; the control module is configured to calculate a temperature difference between the current indoor ambient temperature and the set temperature according to the current indoor ambient temperature and the current set temperature, and according to the The temperature difference generates an air speed adjustment command, and controls the indoor fan according to the wind speed adjustment command to adjust an air volume of the indoor unit.
  • the control device of the indoor fan of the air duct air conditioner system when the air duct air conditioner system is powered on, the indoor environment temperature and the set temperature recorded at the last shutdown of the air duct system of the air duct machine are first acquired by the acquisition module. And obtaining the set temperature according to the indoor ambient temperature and the set temperature recorded when the air duct system air conditioner system last stopped, and then the control module calculates the current indoor ambient temperature and the setting according to the current indoor ambient temperature and the current set temperature. The temperature difference between the fixed temperatures is determined, and the wind speed adjustment command is generated according to the temperature difference. Finally, the control module controls the indoor fan according to the wind speed adjustment command to adjust the air volume of the indoor unit.
  • the indoor unit cannot receive the set temperature and the ambient temperature parameter, the set temperature is obtained through a certain operating rule to realize automatic control of the air volume, and at the same time, the air conditioning dehumidification function is improved, and the comfort and energy saving of the air conditioner are improved.
  • control device for the indoor fan of the air duct air conditioner system further includes: a first correction module, wherein the first correction module is configured to be used according to the indoor air conditioner system when the air conditioner system is powered on The relationship between the ambient temperature and the current set temperature is corrected for the current set temperature.
  • the first correction module corrects the current set temperature according to a relationship between an indoor ambient temperature when the duct air conditioner system is turned on and the current set temperature.
  • the current setting The fixed temperature is the difference between the indoor ambient temperature and the second temperature threshold when the power is turned on; when the air duct air conditioning system is operating in the heating mode, if the current set temperature is less than or equal to the indoor time when the power is turned on
  • the current set temperature is the sum of the indoor ambient temperature at the time of starting and the second temperature threshold.
  • the acquiring module is further configured to acquire the temperature difference value in real time during the operation of the air duct air conditioning system, and preset time according to the current temperature difference and the current continuous operation.
  • the temperature difference before X minutes is corrected by the second correction module.
  • the current set temperature is corrected by the second correction module, wherein Air duct air conditioner
  • the second correction module reduces the current set temperature by a third temperature threshold is used to correct the current set temperature; when the duct air conditioning system is operating in the heating mode, if the current temperature difference is greater than the preset time of the current continuous operation X minutes
  • the second temperature correction module corrects the current set temperature by increasing the current set temperature by the third temperature threshold.
  • the acquisition module when the air duct air conditioner system is powered on for the first time, takes a preset initial set temperature as the current set temperature.
  • an embodiment of the present invention also proposes a duct air conditioner system including the above-described control device for an indoor fan.
  • the air duct air conditioner system can obtain the set temperature by a certain operating rule when the indoor unit cannot receive the set temperature and the ambient temperature parameter through the above-mentioned control device, thereby realizing automatic control of the air volume. At the same time, it also improves the air conditioning dehumidification function and improves the comfort and energy saving of the air conditioner.
  • FIG. 1 is a flow chart showing a method of controlling an indoor fan of a duct air conditioner system according to an embodiment of the present invention
  • FIG. 2 is a control logic diagram of a duct air conditioner system according to a specific example of the present invention.
  • FIG. 3 is a schematic structural view of a duct machine air conditioning system according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing a control device of an indoor fan of a duct air conditioner system according to an embodiment of the present invention
  • FIG. 5 is a block schematic diagram of a control device for an indoor fan of a duct air-conditioning system in accordance with another embodiment of the present invention.
  • FIG. 1 is a flow chart of a method of controlling an indoor fan of a duct air-conditioning system according to an embodiment of the present invention.
  • the control method of the indoor fan of the air duct air conditioning system may include the following steps:
  • the preset initial set temperature is taken as the current set temperature.
  • the indoor ambient temperature can be detected in real time by a temperature sensor provided at the return air duct of the indoor unit.
  • S3 Calculate a temperature difference between the current indoor ambient temperature and the set temperature according to the current indoor ambient temperature and the current set temperature, and generate a wind speed adjustment command according to the temperature difference.
  • the indoor fan is controlled according to the wind speed adjustment command to adjust the air volume of the indoor unit.
  • the duct air-conditioning system may include an outdoor unit, an indoor unit, and a controller, wherein the controller is indoors according to its own set temperature (which can be set by the user) and the perceived indoor ambient temperature.
  • the machine performs on/off control.
  • the indoor unit When the controller controls the indoor unit to be turned on for the first time, the indoor unit generates a wind speed adjustment command according to the temperature difference between the current indoor ambient temperature obtained by the temperature sensor at the return air duct and the preset initial set temperature, and according to the wind speed The adjustment command adjusts the air volume of the indoor fan.
  • the controller sends a stop command to the indoor unit. After receiving the stop command, the indoor unit stops and records the indoor ambient temperature and the set temperature at the time of the stop.
  • the controller determines again that it is necessary to control the indoor unit to be powered on according to its set temperature and the sensed indoor ambient temperature, the controller sends a power-on command to the indoor unit.
  • the indoor unit generates a wind speed adjustment command according to the temperature difference between the current indoor environment temperature detected in real time and the acquired current set temperature, and adjusts the air volume of the indoor fan according to the wind speed adjustment command.
  • the indoor unit cannot receive the set temperature and the ambient temperature parameter, the set temperature is obtained through a certain operating rule, thereby realizing the automatic control of the air volume, and at the same time improving the air conditioning refrigeration dehumidification function, improving the comfort and energy saving of the air conditioner. .
  • the method for controlling an indoor fan of the air duct air conditioner system further includes: according to the relationship between the indoor ambient temperature when the air duct air conditioner system is turned on and the current set temperature Set the temperature to correct.
  • the indoor unit obtains the current setting according to the indoor ambient temperature and the set temperature recorded at the last stop. The temperature and the indoor ambient temperature detected by the indoor unit at the time of starting up are determined. When it is determined that the current indoor unit does not meet the basic starting requirement, the current set temperature of the indoor unit needs to be corrected.
  • the set temperature of the last stop recording of the system is 27 °C
  • the indoor ambient temperature recorded at the last stop is 25 °C
  • the indoor unit is turned on, the indoor environment temperature detected by the indoor unit through the temperature sensor at the return air duct is 26 ° C.
  • the indoor unit does not work, and therefore, according to the indoor environmental temperature at the time of starting up
  • the size relationship between the set temperatures is corrected for the current set temperature of the indoor unit (for example, corrected to 24 ° C) to ensure that the indoor unit can work normally.
  • the current set temperature is corrected according to the relationship between the indoor ambient temperature when the air duct air conditioner system is turned on and the current set temperature, including: when the air duct air conditioner system When operating in the cooling mode, if the set temperature is greater than or equal to the difference between the indoor ambient temperature and the first temperature threshold, the set temperature is the difference between the indoor ambient temperature and the second temperature threshold at the time of starting; When the air duct air conditioner system is running in the heating mode, if the set temperature is less than or equal to the sum of the indoor ambient temperature and the first temperature threshold at the time of starting, the set temperature is the indoor ambient temperature at the time of starting and the second The sum of the temperature thresholds.
  • the first temperature threshold and the second temperature threshold may be calibrated according to actual conditions.
  • the first temperature threshold and the second temperature threshold may both be values between 0 ° C and 5 ° C.
  • the controller can control the indoor unit to start and stop according to the set temperature and the perceived indoor ambient temperature, and control whether the indoor unit is heating or cooling according to the operation mode (which can be set by the user or judge the operation mode by itself). Boot up.
  • the indoor unit When the controller controls the indoor unit to cool and start according to the need, the indoor unit first obtains the set temperature Ts according to the indoor ambient temperature T1 (or T1 and the set temperature recorded at the last cooling stop) recorded during the last cooling shutdown. Then, the current set temperature Ts is corrected based on the current set temperature Ts and the indoor environmental temperature T1' detected by the indoor unit when the indoor unit is re-cooled and turned on.
  • the temperature difference is obtained in real time, and according to the current temperature difference and the temperature difference before the preset time X minutes of the continuous operation, the current difference is set.
  • the temperature is corrected.
  • the preset time X minutes can be calibrated according to the actual situation.
  • the current set temperature is corrected according to the current temperature difference and the temperature difference before the preset time X minutes of the continuous operation, including: when the air duct air conditioning system is cooled When the mode is running, if the current temperature difference is greater than the temperature difference before the preset time X minutes of the continuous operation, the current set temperature is corrected by reducing the current set temperature to the third temperature threshold; When the air duct air conditioner system is running in the heating mode, if the current temperature difference is greater than the temperature difference before the preset time X minutes of the continuous operation, the current temperature is increased by the third temperature threshold to Set the temperature to correct.
  • the third temperature threshold may be calibrated according to actual conditions. For example, the third temperature threshold may be a value between 0 ° C and 5 ° C.
  • the indoor unit can perform the required update according to the detected change of the indoor ambient temperature, that is, continuously update the set temperature, and according to the updated set temperature The amount of air output is adjusted.
  • the set temperature is corrected at regular intervals.
  • the temperature difference between the set temperature before the preset time X minutes before the current time and the indoor ambient temperature can be obtained.
  • the current time is t1
  • the preset time X is continuously run.
  • the time point before the minute is t2
  • the temperature difference ⁇ Tt1, ⁇ Tt2 between the set temperature at the time points t1 and t2 and the indoor ambient temperature are respectively obtained.
  • the set temperature is corrected at regular intervals.
  • the temperature difference between the set temperature before the preset time X minutes before the current time and the indoor ambient temperature can be obtained.
  • the current time point is t1
  • the preset time is continuously run.
  • the time point before X minutes is t2
  • the temperature difference values ⁇ Tt1 and ⁇ Tt2 between the set temperature at the time points t1 and t2 and the indoor ambient temperature are respectively obtained.
  • the set temperature when the set temperature is corrected, the set temperature has a certain limit to prevent the error correction, and the system cannot operate reliably.
  • FIG. 2 is a control logic diagram of a duct air conditioner system according to a specific example of the present invention.
  • the indoor unit when the indoor unit receives the power-on command sent by the controller, if the indoor unit is turned on for the first time, the indoor unit is based on the temperature difference between the preset initial set temperature Ts0 and the current indoor ambient temperature T1. ⁇ T, generates a wind speed adjustment command, and adjusts the air volume of the indoor fan according to the wind speed adjustment command.
  • every It is determined for a certain period of time whether the temperature difference ⁇ T between the current indoor ambient temperature T1 and the set temperature Ts is greater than the temperature difference ⁇ Txmin before the continuous operation preset time X minutes, and if so, the set temperature Ts is corrected.
  • the temperature difference ⁇ T between the current indoor ambient temperature T1 generates a wind speed adjustment command, and adjusts the air volume of the indoor fan according to the wind speed adjustment command.
  • the indoor unit receives the stop command sent by the controller, the indoor unit stops and records the stop time. Indoor ambient temperature T1 and set temperature Ts.
  • the indoor unit When the indoor unit receives the power-on command sent by the controller again, if it is the cooling start, the indoor unit first obtains the current set temperature Ts according to the indoor ambient temperature T1 and the set temperature Ts recorded during the last cooling stop, and The set temperature Ts is compared with the indoor ambient temperature T1' detected by the indoor unit at the time of startup.
  • the set temperature Ts is corrected at regular intervals.
  • the indoor unit receives the stop command sent by the controller again, the indoor unit stops and records the indoor ambient temperature and the set temperature at the time of the stop. Continue to cycle as described above.
  • the indoor unit may record the indoor ambient temperature T1 and the set temperature Ts by a displacement replacement method. For example, suppose the indoor unit can store 10 data, corresponding to the storage spaces A1 0 , A1 1 , A1 2 , ... A1 9 respectively . When the stop command is received for the first time, the indoor ambient temperature T1 1 at the first stop will be taken. Stored in A1 0 , the rest of the data is replaced by the indoor temperature T1 1 when the stop command is received for the first time, that is, 10 data are all T1 0 ; when the second stop is received, the second stop will occur.
  • the indoor temperature T1 2 is stored to A1 1 ; when the stop command is received for the third time, the data in A1 1 is first moved to A1 2 , and the indoor temperature T1 3 at the third stop is stored to A1. 1 ; When receiving the stop command for the fourth time, first move the data in A1 2 to A1 3 , then move the data in A1 1 to A1 2 , and finally the indoor temperature T1 at the fourth stop. 4 stored to A1 1 ;...; and so on.
  • the indoor fan control method of the air duct air conditioner system when the air duct air conditioner system is turned on, according to the indoor environment temperature and setting recorded when the air duct system air conditioner system last stopped.
  • the temperature obtains the set temperature, and then calculates the temperature difference between the current indoor ambient temperature and the set temperature according to the current indoor ambient temperature and the current set temperature, and generates a wind speed adjustment command according to the temperature difference, and finally, according to the temperature difference
  • the wind speed adjustment command controls the indoor fan to adjust the air volume of the indoor unit.
  • the indoor unit cannot receive the set temperature and the ambient temperature parameter, the set temperature is obtained through a certain operating rule to realize automatic control of the air volume, and at the same time, the air conditioning dehumidification function is improved, and the comfort and energy saving of the air conditioner are improved.
  • the present invention also provides a non-transitory computer readable storage medium having stored thereon a computer program.
  • the program is implemented by the processor to implement the above-described control method of the indoor fan of the duct air-conditioning system.
  • the non-transitory computer readable storage medium can perform a certain operation when the indoor unit cannot receive the set temperature and the ambient temperature parameter by executing the above-described control method of the indoor fan of the duct air conditioner system.
  • the rule obtains the set temperature, realizes the automatic control of the air volume, and at the same time improves the air conditioning dehumidification function and improves the comfort and energy saving of the air conditioner.
  • control device of the indoor fan of the duct air-conditioning system may include an acquisition module 10, a temperature detection module 20, and a control module 30.
  • the obtaining module 10 is configured to obtain an indoor ambient temperature and a set temperature recorded when the air duct system air conditioner system last stops when the air duct air conditioner system is powered on, and according to the indoor environment recorded when the air duct air conditioner system last stops.
  • the temperature and the set temperature are used to obtain the set temperature.
  • the temperature detecting module 20 is used to detect the indoor ambient temperature in real time.
  • the control module 30 is configured to calculate a temperature difference between the current indoor ambient temperature and the set temperature according to the current indoor ambient temperature and the current set temperature, and generate a wind speed adjustment command according to the temperature difference, and the indoor fan according to the wind speed adjustment command. Control is performed to adjust the amount of air discharged from the indoor unit.
  • the acquisition module 10 when the air duct air conditioner system is powered on for the first time, the acquisition module 10 takes the preset initial set temperature as the current set temperature.
  • the duct air-conditioning system 1000 may include an outdoor unit 100, an indoor unit 200, and a controller 300, wherein the controller 300 is based on its own set temperature (which can be set by the user) and is perceived.
  • the indoor environment temperature controls the opening and closing of the indoor unit, and the control device of the indoor fan can be integrated in the indoor unit 200.
  • the control module 30 When the controller 300 controls the indoor unit 200 to be powered on for the first time, the control module 30 generates a wind speed adjustment command according to the temperature difference between the current indoor environment temperature acquired by the temperature detecting module 20 and the preset initial set temperature, and adjusts according to the wind speed. The command regulates the amount of air blown from the indoor fan.
  • the controller 300 sends a stop command to the indoor unit 200, and after receiving the stop command, the control module 30 controls the indoor unit 200 to stop, and records the stop time. Indoor ambient temperature and set temperature.
  • the controller 300 determines again that it is necessary to control the indoor unit 200 to be powered on according to its own set temperature and the sensed indoor ambient temperature, the controller 300 transmits a power-on command to the indoor unit 200.
  • the control module 30 generates a wind speed adjustment command according to the temperature difference between the current indoor environment temperature detected in real time and the acquired current set temperature, and adjusts the air volume of the indoor fan according to the wind speed adjustment command. Therefore, when the indoor unit cannot receive the set temperature and the ambient temperature parameter, the set temperature is obtained through a certain operating rule, and the automatic control of the air volume is realized, and the air conditioning cooling is improved at the same time. Dehumidification function improves air conditioning comfort and energy saving.
  • the control device for the indoor fan of the air duct air conditioner system further includes a first correction module 40, and the first correction module 40 is configured to start according to the air conditioning system of the air duct machine. The relationship between the indoor ambient temperature and the current set temperature is corrected for the current set temperature.
  • the control module 30 detects the current set temperature and the temperature at the startup according to the acquisition module 10.
  • the indoor environment temperature detected by the module 20 determines that the current indoor unit 200 does not meet the basic power-on demand, it is necessary to correct the current set temperature of the indoor unit 200.
  • the set temperature of the last stop recording of the indoor unit 200 is 27 ° C
  • the indoor ambient temperature recorded at the last stop is 25 ° C
  • the controller 300 controls the indoor unit 200 to be turned on
  • the indoor temperature of the temperature detected by the temperature detecting module 20 through the temperature sensor at the return air duct is 26 ° C
  • the indoor unit 200 does not work, therefore, according to the relationship between the indoor ambient temperature at the time of starting and the set temperature, the current set temperature of the indoor unit is corrected (for example, corrected to 24 ° C) to ensure that the indoor unit can be normal. jobs.
  • the first correction module 40 corrects the current set temperature according to the relationship between the indoor ambient temperature when the air duct air conditioner system is turned on and the current set temperature, wherein
  • the set temperature is greater than or equal to the difference between the indoor ambient temperature and the first temperature threshold at the time of starting, the set temperature is the indoor ambient temperature at the time of starting and the second The difference between the temperature thresholds; when the air duct system is running in the heating mode, if the set temperature is less than or equal to the sum of the indoor ambient temperature and the first temperature threshold at the time of starting, the current set temperature is the time when the power is turned on.
  • the sum of the indoor ambient temperature and the second temperature threshold may each be a value between 0 ° C and 5 ° C.
  • the controller 300 can control the indoor unit 200 to start and stop according to its own set temperature and the perceived indoor ambient temperature, and control the indoor unit 200 to be heated according to the operation mode (which can be set by the user or judge the operation mode by itself). Boot or cool boot.
  • the acquisition module 10 first acquires the current setting according to the indoor environmental temperature T1 (or T1 and the set temperature recorded during the last cooling shutdown) recorded during the last cooling shutdown.
  • the wind temperature adjustment command is generated by the temperature difference between the indoor ambient temperature and the current set temperature Ts', and the air volume of the indoor fan is adjusted according to the wind speed adjustment command.
  • the acquisition module 10 firstly follows the last system.
  • the indoor ambient temperature T1 (or T1 and the set temperature recorded at the last heating shutdown) recorded during the thermal shutdown acquires the current set temperature Ts, and then the first correction module 40 sets the temperature Ts and the indoor unit according to the current time.
  • the indoor temperature T1' detected by the temperature detecting module 20 at the time of the heating start is corrected for the current set temperature Ts.
  • the control module 30 according to the temperature difference between the current indoor ambient temperature detected in real time and the current set temperature Ts' The value generates an air speed adjustment command, and adjusts the air volume of the indoor fan according to the wind speed adjustment command. Therefore, by correcting the set temperature, the indoor unit can be normally turned on after receiving the power-on command of the controller.
  • the control device for the indoor fan of the air duct air conditioner system further includes a second correction module 50, wherein during the operation of the air duct system of the duct machine, The module 10 is further configured to acquire the temperature difference in real time, and correct the current set temperature by the second correction module 50 according to the current temperature difference and the temperature difference before the preset operation time X minutes.
  • the current correction temperature is corrected by the second correction module 50, wherein
  • the second correction module 50 reduces the current set temperature by the third temperature.
  • the threshold value is corrected for the current set temperature; when the air duct air conditioner system is operating in the heating mode, if the current temperature difference is greater than the temperature difference before the preset time X minutes of the continuous operation, the second correction module 50 corrects the current set temperature by increasing the current set temperature by the third temperature threshold.
  • the third temperature threshold may be a value between 0 ° C and 5 ° C.
  • the required update can be performed according to the change of the indoor ambient temperature detected by the temperature detecting module 20, that is, the set temperature is continuously updated, and according to the updated setting.
  • the temperature adjusts the amount of air output.
  • the set temperature is corrected by the second correction module 50 at regular intervals.
  • the obtaining module 10 acquires the temperature difference between the set temperature before the preset time X minutes before the current time and the indoor ambient temperature, for example, the current time is t1, and the preset is continuously run.
  • the time point before the time X minutes is t2
  • the temperature difference values ⁇ Tt1 and ⁇ Tt2 between the set temperature at the time points t1 and t2 and the indoor ambient temperature are respectively acquired.
  • the second correction module 50 corrects the set temperature at regular intervals.
  • the obtaining module 10 acquires the temperature difference between the set temperature before the preset time X minutes before the current time and the indoor ambient temperature, for example, the current time point is t1, even The time point before the preset operation time X minutes is t2, and the temperature difference values ⁇ Tt1 and ⁇ Tt2 between the set temperature at the time points t1 and t2 and the indoor ambient temperature are respectively obtained.
  • the air volume is adjusted. Therefore, by setting the set temperature in real time according to the indoor ambient temperature to obtain the optimal set temperature, the system can reach the optimal operating state, ensuring the comfort and energy saving of the system.
  • the control device for the indoor fan of the air duct system of the air duct machine when the air conditioning system of the air duct machine is powered on, the indoor environment temperature and the temperature recorded during the last shutdown of the air duct system of the air duct machine are first acquired by the acquisition module.
  • the temperature is set, and the set temperature is obtained according to the indoor ambient temperature and the set temperature recorded when the air duct system air conditioner system last stopped, and then the control module calculates the current indoor ambient temperature according to the current indoor ambient temperature and the current set temperature.
  • the temperature difference between the temperature and the set temperature is generated, and the wind speed adjustment command is generated according to the temperature difference.
  • the control module controls the indoor fan according to the wind speed adjustment command to adjust the air volume of the indoor unit.
  • the indoor unit cannot receive the set temperature and the ambient temperature parameter, the set temperature is obtained through a certain operating rule to realize automatic control of the air volume, and at the same time, the air conditioning dehumidification function is improved, and the comfort and energy saving of the air conditioner are improved.
  • an embodiment of the present invention also proposes a duct air conditioner system including the above-described control device for an indoor fan.
  • the air duct air conditioner system can obtain the set temperature by a certain operating rule when the indoor unit cannot receive the set temperature and the ambient temperature parameter through the above-mentioned control device, thereby realizing automatic control of the air volume. At the same time, it also improves the air conditioning dehumidification function and improves the comfort and energy saving of the air conditioner.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” unless otherwise specifically defined and defined.
  • the terms should be understood in a broad sense. For example, they may be fixed connections, detachable connections, or integrated; they may be mechanical or electrical; they may be directly connected or indirectly connected through an intermediate medium. It is the internal communication of two components or the interaction of two components unless explicitly defined otherwise.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper on which the program can be printed Or other suitable medium, as the program can be obtained electronically, for example by optical scanning of paper or other medium, followed by editing, interpretation or, if necessary, processing in other suitable manner, and then storing it in computer memory in.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware and in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: discrete with logic gates for implementing logic functions on data signals Logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fluid Mechanics (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种风管机空调***(1000)及其的室内风机的控制方法和装置,该控制方法包括步骤:当风管机***(1000)开机时,获取风管机空调***(1000)上一次停机时记录的室内环境温度和设定温度,并根据上一次停机时记录的室内环境温度和设定温度获取本次设定温度(S1);实时检测室内环境温度(S2);根据当前室内环境温度和本次设定温度计算当前室内环境温度和设定温度之间的温度差值,并根据温度差值生成风速调节指令(S3);根据风速调节指令对室内风机进行控制以调节室内机(200)的出风量(S4)。从而在室内机(200)无法接收到设定温度和环境温度参数时,通过一定的运行规则获取设定温度,实现对风量的自动控制。

Description

风管机空调***及其的室内风机的控制方法和装置 技术领域
本发明涉及空调技术领域,特别涉及一种风管机空调***的室内风机的控制方法、一种风管机空调***的室内风机的控制装置以及一种具有该控制装置的风管机空调***。
背景技术
随着空调应用越来越广泛,人们对空调舒适性的要求也越来越高。
常规的空调可以根据温度情况自动调节室内风机的风速,但对于采用标准件类的线控器的空调来说,用户通过该线控器设定温度,并且该线控器进行环境温度的检测,并根据需求输出开停机信号至室内机,室内机根据该开停机信号进行开机和关机。
由于线控器无法对室内机传输设定温度和环境温度,导致室内机无法获取该参数,并根据该参数进行风量的自动调节,因而导致空调的舒适性和节能性较差,相应的除湿性能也不佳。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的第一个目的在于提出一种风管机空调***的室内风机的控制方法,在室内机无法接收到设定温度和环境温度参数时,通过一定的运行规则获取设定温度,实现对风量的自动控制,同时兼具改善空调除湿功能,提高空调的舒适性和节能性。
本发明的第二个目的在于提出一种非临时性计算机可读存储介质。
本发明的第三个目的在于提出风管机空调***的室内风机的控制装置。
本发明的第四个目的在于提出一种风管机空调***。
为实现上述目的,本发明第一方面实施例提出了一种风管机空调***的室内风机的控制方法,包括以下步骤:当所述风管机空调***开机时,获取所述风管机空调***上一次停机时记录的室内环境温度和设定温度,并根据所述风管机空调***上一次停机时记录的室内环境温度和设定温度获取本次设定温度;实时检测室内环境温度;根据当前室内环境温度和所述本次设定温度计算所述当前室内环境温度与所述设定温度之间的温度差值,并根据所述温度差值生成风速调节指令;根据所述风速调节指令对所述室内风机进行控制以调节室内机的出风量。
根据本发明实施例的风管机空调***的室内风机的控制方法,当风管机空调***开机时,根据风管机空调***上一次停机时记录的室内环境温度和设定温度获取本次设定温度, 然后,根据当前室内环境温度和本次设定温度计算当前室内环境温度与设定温度之间的温度差值,并根据温度差值生成风速调节指令,最后,根据风速调节指令对室内风机进行控制以调节室内机的出风量。从而在室内机无法接收到设定温度和环境温度参数时,通过一定的运行规则获取设定温度,实现对风量的自动控制,同时兼具改善空调除湿功能,提高空调的舒适性和节能性。
根据本发明的一个实施例,上述的风管机空调***的室内风机的控制方法,还包括:根据所述风管机空调***开机时的室内环境温度与所述本次设定温度之间的关系对所述本次设定温度进行修正。
根据本发明的一个实施例,所述根据所述风管机空调***开机时的室内环境温度与所述本次设定温度之间的关系对所述本次设定温度进行修正,包括:当所述风管机空调***以制冷模式运行时,如果所述本次设定温度大于等于所述开机时的室内环境温度与第一温度阈值之差,则所述本次设定温度为所述开机时的室内环境温度与第二温度阈值之差;当所述风管机空调***以制热模式运行时,如果所述本次设定温度小于等于所述开机时的室内环境温度与所述第一温度阈值之和,则所述本次设定温度为所述开机时的室内环境温度与所述第二温度阈值之和。
根据本发明的一个实施例,在所述风管机空调***的运行过程中,实时获取所述温度差值,并根据当前温度差值与本次连续运行预设时间X分钟前温度差值对所述本次设定温度进行修正。
根据本发明的一个实施例,所述根据当前温度差值与本次连续运行预设时间X分钟前的温度差值对所述本次设定温度进行修正,包括:当所述风管机空调***以制冷模式运行时,如果所述当前温度差值大于所述本次连续运行预设时间X分钟前的温度差值,则通过将所述本次设定温度减小第三温度阈值以对所述本次设定温度进行修正;当所述风管机空调***以制热模式运行时,如果所述当前温度差值大于所述本次连续运行预设时间X分钟前的温度差值,则通过将所述本次设定温度增加所述第三温度阈值以对所述本次设定温度进行修正。
根据本发明的一个实施例,当所述风管机空调***首次开机时,将预设的初始设定温度作为所述本次设定温度。
为实现上述目的,本发明第二方面实施例提出了一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的风管机空调***的室内风机的控制方法。
本发明实施例的非临时性计算机可读存储介质,通过执行上述的风管机空调***的室内风机的控制方法,能够在室内机无法接收到设定温度和环境温度参数时,通过一定的运 行规则获取设定温度,实现对风量的自动控制,同时兼具改善空调除湿功能,提高空调的舒适性和节能性。
为实现上述目的,本发明第三方面实施例提出了一种风管机空调***的室内风机的控制装置,包括:获取模块,用于在所述风管机空调***开机时获取所述风管机空调***上一次停机时记录的室内环境温度和设定温度,并根据所述风管机空调***上一次停机时记录的室内环境温度和设定温度获取本次设定温度;温度检测模块,用于实时检测室内环境温度;控制模块,用于根据当前室内环境温度和所述本次设定温度计算所述当前室内环境温度与所述设定温度之间的温度差值,并根据所述温度差值生成风速调节指令,以及根据所述风速调节指令对所述室内风机进行控制以调节室内机的出风量。
根据本发明实施例的风管机空调***的室内风机的控制装置,当风管机空调***开机时,首先通过获取模块获取风管机空调***上一次停机时记录的室内环境温度和设定温度,并根据风管机空调***上一次停机时记录的室内环境温度和设定温度获取本次设定温度,然后,控制模块根据当前室内环境温度和本次设定温度计算当前室内环境温度与设定温度之间的温度差值,并根据温度差值生成风速调节指令,最后,控制模块根据风速调节指令对室内风机进行控制以调节室内机的出风量。从而在室内机无法接收到设定温度和环境温度参数时,通过一定的运行规则获取设定温度,实现对风量的自动控制,同时兼具改善空调除湿功能,提高空调的舒适性和节能性。
根据本发明的一个实施例,上述的风管机空调***的室内风机的控制装置,还包括:第一修正模块,所述第一修正模块用于根据所述风管机空调***开机时的室内环境温度与所述本次设定温度之间的关系对所述本次设定温度进行修正。
根据本发明的一个实施例,所述第一修正模块根据所述风管机空调***开机时的室内环境温度与所述本次设定温度之间的关系对所述本次设定温度进行修正时,其中,当所述风管机空调***以制冷模式运行时,如果所述本次设定温度大于等于所述开机时的室内环境温度与第一温度阈值之差,则所述本次设定温度为所述开机时的室内环境温度与第二温度阈值之差;当所述风管机空调***以制热模式运行时,如果所述本次设定温度小于等于所述开机时的室内环境温度与所述第一温度阈值之和,则所述本次设定温度为所述开机时的室内环境温度与所述第二温度阈值之和。
根据本发明的一个实施例,在所述风管机空调***的运行过程中,所述获取模块还用于实时获取所述温度差值,并根据当前温度差值与本次连续运行预设时间X分钟前的温度差值通过第二修正模块对所述本次设定温度进行修正。
根据本发明的一个实施例,所述根据当前温度差值与本次连续运行预设时间X分钟前的温度差值通过第二修正模块对所述本次设定温度进行修正时,其中,当所述风管机空调 ***以制冷模式运行时,如果所述当前温度差值大于所述本次连续运行预设时间X分钟前的温度差值,则所述第二修正模块通过将所述本次设定温度减小第三温度阈值以对所述本次设定温度进行修正;当所述风管机空调***以制热模式运行时,如果所述当前温度差值大于所述本次连续运行预设时间X分钟前的温度差值,则所述第二修正模块通过将所述本次设定温度增加所述第三温度阈值以对所述本次设定温度进行修正。
根据本发明的一个实施例,当所述风管机空调***首次开机时,所述获取模块将预设的初始设定温度作为所述本次设定温度。
此外,本发明的实施例还提出了一种风管机空调***,其包括上述的室内风机的控制装置。
本发明实施例的风管机空调***,通过上述的控制装置,能够在室内机无法接收到设定温度和环境温度参数时,通过一定的运行规则获取设定温度,实现对风量的自动控制,同时兼具改善空调除湿功能,提高空调的舒适性和节能性。
附图说明
图1是根据本发明实施例的风管机空调***的室内风机的控制方法的流程图;
图2是根据本发明一个具体示例的风管机空调***的控制逻辑图;
图3是根据本发明一个实施例的风管机空调***的结构示意图;
图4是根据本发明一个实施例的风管机空调***的室内风机的控制装置的方框示意图;
图5是根据本发明另一个实施例的风管机空调***的室内风机的控制装置的方框示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图来描述本发明实施例的风管机空调***的室内风机的控制方法、风管机空调***的室内风机的控制装置以及具有该控制装置的风管机空调***。
图1是根据本发明实施例的风管机空调***的室内风机的控制方法的流程图。如图1所示,该风管机空调***的室内风机的控制方法可包括以下步骤:
S1,当风管机空调***开机时,获取风管机空调***上一次停机时记录的室内环境温度和设定温度,并根据风管机空调***上一次停机时记录的室内环境温度和设定温度获取本次设定温度。
根据本发明的一个实施例,当风管机空调***首次开机时,将预设的初始设定温度作为本次设定温度。
S2,实时检测室内环境温度。
具体地,可通过设置在室内机的回风风道处的温度传感器实时检测室内环境温度。
S3,根据当前室内环境温度和本次设定温度计算当前室内环境温度与设定温度之间的温度差值,并根据温度差值生成风速调节指令。
S4,根据风速调节指令对室内风机进行控制以调节室内机的出风量。
具体而言,如图3所示,风管机空调***可包括室外机、室内机和控制器,其中,控制器根据自身的设定温度(可由用户设定)和感知的室内环境温度对室内机进行开停控制。
当控制器控制室内机首次开机时,室内机根据回风风道处的温度传感器获取的当前室内环境温度与预设的初始设定温度之间的温度差值,生成风速调节指令,并根据风速调节指令调节室内风机的出风量。当控制器自身感知的室内环境温度达到自身的设定温度时,控制器发送停机指令至室内机,室内机在接收到停机指令后,停机并记录停机时的室内环境温度和设定温度。
当控制器根据自身的设定温度和感知的室内环境温度再次判断需要控制室内机开机时,控制器发送开机指令至室内机。此时,室内机根据上一次停机时记录的室内环境温度和设定温度获取本次设定温度,例如,本次设定温度等于上一次停机时记录的室内环境温度;或者,本次设定温度=上一次停机时记录的室内环境温度*D1+上一次停机时记录的设定温度*D2,其中,D1和D2为比例系数。然后,室内机根据实时检测的当前室内环境温度与获取的本次设定温度之间的温度差值生成风速调节指令,并根据风速调节指令对室内风机的出风量进行调节。从而在室内机无法接收到设定温度和环境温度参数时,通过一定的运行规则获取设定温度,实现对风量的自动控制,同时兼具改善空调制冷除湿功能,提高空调的舒适性和节能性。
根据本发明的一个实施例,上述的风管机空调***的室内风机的控制方法,还包括:根据风管机空调***开机时的室内环境温度与本次设定温度之间的关系对本次设定温度进行修正。
具体而言,由于控制器的设定温度存在调节的可能,因此,当控制器控制室内机开机时,而室内机根据上一次停机时记录的室内环境温度和设定温度获取的本次设定温度和开机时室内机检测到的室内环境温度,判断当前室内机不符合基本开机需求时,需要对室内机的本次设定温度进行修正处理。
例如,***上一次停机记录时的设定温度为27℃,而上一次停机时记录的室内环境温度为25℃,相应的,获得的本次设定温度可以为26℃(当D1=D2=50%时),并且控制器控 制室内机开机时,室内机通过回风风道处的温度传感器检测到的室内环境温度为26℃,按照室内机的控制逻辑,室内机不工作,因此,可根据开机时的室内环境温度与本次设定温度之间的大小关系对室内机的本次设定温度进行修正(如修正为24℃),以保证室内机能够正常工作。
进一步地,根据本发明的一个实施例,根据风管机空调***开机时的室内环境温度与本次设定温度之间的关系对本次设定温度进行修正,包括:当风管机空调***以制冷模式运行时,如果本次设定温度大于等于开机时的室内环境温度与第一温度阈值之差,则本次设定温度为开机时的室内环境温度与第二温度阈值之差;当风管机空调***以制热模式运行时,如果本次设定温度小于等于开机时的室内环境温度与第一温度阈值之和,则本次设定温度为开机时的室内环境温度与第二温度阈值之和。
其中,第一温度阈值和第二温度阈值可根据实际情况进行标定,例如,第一温度阈值和第二温度阈值均可以为0℃-5℃之间的值。
具体而言,控制器可根据自身的设定温度和感知的室内环境温度控制室内机开停,同时根据运行模式(可由用户设定,或者自行判断运行模式)控制室内机是制热开机还是制冷开机。
当控制器根据需要控制室内机制冷开机时,室内机首先根据上一次制冷停机时记录的室内环境温度T1(或者T1和上一次制冷停机时记录的设定温度)获取本次设定温度Ts,然后,根据本次设定温度Ts和室内机再次制冷开机时室内机检测到的室内环境温度T1`对本次设定温度Ts进行修正。其中,如果Ts≥T1`-a(a为第一温度阈值),则本次设定温度Ts'=T1`-b(b为第二温度阈值),然后根据实时获取的当前室内环境温度与本次设定温度Ts'之间的温度差值生成风速调节指令,并根据风速调节指令对室内风机的出风量进行调节。
当控制器根据需要控制室内机制热开机时,室内机首先根据上一次制热停机时记录的室内环境温度T1(或者T1和上一次制热停机时记录的设定温度)获取本次设定温度Ts,然后,根据本次设定温度Ts和室内机再次制热开机时室内机检测到的室内环境温度T1`对本次设定温度Ts进行修正。其中,如果Ts≤T1`+a,则本次设定温度Ts'=T1`+b,然后根据实时获取的当前室内环境温度与本次设定温度Ts'之间的温度差值生成风速调节指令,并根据风速调节指令对室内风机的出风量进行调节。从而通过对设定温度的修正,来保证室内机在接收到控制器的开机指令后,能够正常开机运行。
根据本发明的一个实施例,在风管机空调***的运行过程中,实时获取温度差值,并根据当前温度差值与本次连续运行预设时间X分钟前的温度差值对本次设定温度进行修正。其中,预设时间X分钟可根据实际情况进行标定。
进一步地,根据本发明的一个实施例,根据当前温度差值与本次连续运行预设时间X分钟前的温度差值对本次设定温度进行修正,包括:当风管机空调***以制冷模式运行时,如果当前温度差值大于本次连续运行预设时间X分钟前的温度差值,则通过将本次设定温度减小第三温度阈值以对本次设定温度进行修正;当风管机空调***以制热模式运行时,如果当前温度差值大于本次连续运行预设时间X分钟前的温度差值,则通过将本次设定温度增加第三温度阈值以对本次设定温度进行修正。其中,第三温度阈值可根据实际情况进行标定,例如,第三温度阈值可以为0℃-5℃之间的值。
具体而言,在风管机空调***运行的过程中,室内机可根据检测的室内环境温度的变化进行能需的更新,即对设定温度进行不断更新,并根据更新后的设定温度对出风量进行调节。
例如,在室内机以制冷模式运行的过程中,每隔一定的时间对设定温度进行修正。在对设定温度进行修正时,可获取当前时间之前连续运行预设时间X分钟前的设定温度与室内环境温度之间的温度差值,例如,当前时间为t1,连续运行预设时间X分钟前的时间点为t2,则分别获取t1、t2时间点处的设定温度与室内环境温度之间的温度差值ΔTt1、ΔTt2。然后,判断ΔTt1是否大于ΔTt2,如果是,则对设定温度Ts进行更新,更新后的设定温度Ts〞=Ts-c(其中,c为第三温度阈值),然后根据更新后的设定温度Ts〞对出风量进行调节;如果否,则不对当前设定温度调整。
又如,在室内机以制热模式运行的过程中,每隔一定的时间对设定温度进行修正。在对设定温度进行修正时,可获取当前时间之前连续运行预设时间X分钟前的设定温度与室内环境温度之间的温度差值,例如,当前时间点为t1,连续运行预设时间X分钟前的时间点为t2,则分别获取t1、t2时间点处的设定温度与室内环境温度之间的温度差值ΔTt1、ΔTt2。然后,判断ΔTt1是否大于ΔTt2,如果是,则对设定温度Ts进行更新,更新后的设定温度Ts〞=Ts+c,然后根据更新后的设定温度Ts〞对出风量进行调节。从而通过根据室内环境温度对设定温度进行实时更新,以获得最佳的设定温度,使得***达到最佳运行状态,保证***的舒适性和节能性。
需要说明的是,在对设定温度进行修正时,设定温度具有一定的限制,以防止出现错误修正,导致***无法可靠运行。
为使本领域技术人员更清楚的了解本发明,图2是根据本发明的一个具体示例的风管机空调***的控制逻辑图。
如图2所示,当室内机接收到控制器发送的开机指令时,如果室内机是首次开机,室内机则根据预设的初始设定温度Ts0与当前室内环境温度T1之间的温度差值ΔT,生成风速调节指令,并根据风速调节指令调节室内风机的出风量。在室内机运行的过程中,每隔 一定的时间判断当前室内环境温度T1与设定温度Ts之间的温度差值ΔT是否大于连续运行预设时间X分钟前的温度差值ΔTxmin,如果是,则对设定温度Ts进行修正。其中,如果室内机制冷运行,则修正后的Ts〞=Ts-c;如果室内机制热运行,则修正后的设定温度Ts〞=Ts+c,然后根据修正后的设定温度Ts〞与当前室内环境温度T1之间的温度差值ΔT生成风速调节指令,并根据风速调节指令调节室内风机的出风量。当室内机接收到控制器发送的停机指令时,室内机停机并记录停机时的室内环境温度T1和设定温度Ts。
当室内机再次接收到控制器发送的开机指令时,如果是制冷开机,则室内机首先根据上一次制冷停机时记录的室内环境温度T1和设定温度Ts获取本次设定温度Ts,并对本次设定温度Ts和开机时室内机检测到的室内环境温度T1`进行比较,如果Ts≥T1`-a,则本次设定温度Ts'=T1`-b;如果是制热开机,则室内机首先根据上一次制热停机时记录的室内环境温度T1获取本次设定温度Ts,并对本次设定温度Ts和开机时室内机检测到的室内环境温度T1`进行比较,如果Ts≤T1`+a,则本次设定温度Ts'=T1`+b,然后根据本次设定温度Ts'与当前室内环境温度T1之间的温度差值ΔT生成风速调节指令,并根据风速调节指令调节室内风机的出风量。在室内机运行的过程中,每隔一定的时间对设定温度Ts进行修正。当室内机再次接收到控制器发送的停机指令时,室内机停机并记录停机时的室内环境温度和设定温度。按照上述方式不断循环。
需要说明的是,在上述的示例中,室内机可采用移位替换方式记录室内环境温度T1和设定温度Ts。例如,假设室内机能够存储10个数据,分别对应存储空间A10、A11、A12、…A19,当第一次接收到停机指令时,将第一次停机时的室内环境温度T11存储至A10中,其余数据均用第一次接收到停机指令时的室内温度T11替换,即10个数据均为T10;当第二次接收到停机指令时,将第二次停机时的室内温度温度T12存储至A11;当第三次接收到停机指令时,先将A11中的数据移动至A12中,再将第三次停机时的室内温度温度T13存储至A11;当第四次接收到停机指令时,先将A12中的数据移动至A13中,再将A11中的数据移动至A12中,最后将第四次停机时的室内温度温度T14存储至A11;…;依次类推。
综上所述,根据本发明实施例的风管机空调***的室内风机的控制方法,当风管机空调***开机时,根据风管机空调***上一次停机时记录的室内环境温度和设定温度获取本次设定温度,然后,根据当前室内环境温度和本次设定温度计算当前室内环境温度与设定温度之间的温度差值,并根据温度差值生成风速调节指令,最后,根据风速调节指令对室内风机进行控制以调节室内机的出风量。从而在室内机无法接收到设定温度和环境温度参数时,通过一定的运行规则获取设定温度,实现对风量的自动控制,同时兼具改善空调除湿功能,提高空调的舒适性和节能性。
另外,本发明还提出了一种非临时性计算机可读存储介质,其上存储有计算机程序, 该程序被处理器执行时实现上述的风管机空调***的室内风机的控制方法。
本发明实施例的非临时性计算机可读存储介质,通过执行上述的风管机空调***的室内风机的控制方法,能够在室内机无法接收到设定温度和环境温度参数时,通过一定的运行规则获取设定温度,实现对风量的自动控制,同时兼具改善空调除湿功能,提高空调的舒适性和节能性。
图4是根据本发明一个实施例的风管机空调***的室内风机的控制装置的方框示意图。如图4所示,该风管机空调***的室内风机的控制装置可包括:获取模块10、温度检测模块20和控制模块30。
其中,获取模块10用于在风管机空调***开机时获取风管机空调***上一次停机时记录的室内环境温度和设定温度,并根据风管机空调***上一次停机时记录的室内环境温度和设定温度获取本次设定温度。温度检测模块20用于实时检测室内环境温度。控制模块30用于根据当前室内环境温度和本次设定温度计算当前室内环境温度与设定温度之间的温度差值,并根据温度差值生成风速调节指令,以及根据风速调节指令对室内风机进行控制以调节室内机的出风量。
根据本发明的一个实施例,当风管机空调***首次开机时,获取模块10将预设的初始设定温度作为本次设定温度。
具体而言,如图3所示,风管机空调***1000可包括室外机100、室内机200和控制器300,其中,控制器300根据自身的设定温度(可由用户设定)和感知的室内环境温度对室内机进行开停控制,室内风机的控制装置可集成在室内机200中。
当控制器300控制室内机200首次开机时,控制模块30根据温度检测模块20获取的当前室内环境温度与预设的初始设定温度之间的温度差值,生成风速调节指令,并根据风速调节指令调节室内风机的出风量。当控制器300自身感知的室内环境温度达到自身的设定温度时,控制器300发送停机指令至室内机200,控制模块30在接收到停机指令后,控制室内机200停机,并记录停机时的室内环境温度和设定温度。
当控制器300根据自身的设定温度和感知的室内环境温度再次判断需要控制室内机200开机时,控制器300发送开机指令至室内机200。此时,获取模块10根据上一次停机时记录的室内环境温度获取本次设定温度,例如,本次设定温度等于上一次停机时记录的室内环境温度;或者,本次设定温度=上一次停机时记录的室内环境温度*D1+上一次停机时记录的设定温度*D2,其中,D1和D2为比例系数。然后,控制模块30根据实时检测的当前室内环境温度与获取的本次设定温度之间的温度差值生成风速调节指令,并根据风速调节指令对室内风机的出风量进行调节。从而在室内机无法接收到设定温度和环境温度参数时,通过一定的运行规则获取设定温度,实现对风量的自动控制,同时兼具改善空调制冷 除湿功能,提高空调的舒适性和节能性。
根据本发明的一个实施例,如图5所示,上述的风管机空调***的室内风机的控制装置,还包括第一修正模块40,第一修正模块40用于根据风管机空调***开机时的室内环境温度与本次设定温度之间的关系对本次设定温度进行修正。
具体而言,由于控制器300的设定温度存在调节的可能,因此,当控制器300控制室内机200开机时,而控制模块30根据获取模块10获取的本次设定温度和开机时温度检测模块20检测到的室内环境温度,判断当前室内机200不符合基本开机需求时,需要对室内机200的本次设定温度进行修正处理。
例如,室内机200上一次停机记录时的设定温度为27℃,而上一次停机时记录的室内环境温度为25℃,相应的,获得的本次设定温度为26℃(当D1=D2=50%时),并且控制器300控制室内机200开机时,温度检测模块20通过回风风道处的温度传感器检测到的室内环境温度为26℃,按照室内机200的控制逻辑,室内机200不工作,因此,可根据开机时的室内环境温度与本次设定温度之间的大小关系对室内机的本次设定温度进行修正(如修正为24℃),以保证室内机能够正常工作。
进一步地,根据本发明的一个实施例,第一修正模块40根据风管机空调***开机时的室内环境温度与本次设定温度之间的关系对本次设定温度进行修正时,其中,当风管机空调***以制冷模式运行时,如果本次设定温度大于等于开机时的室内环境温度与第一温度阈值之差,则本次设定温度为开机时的室内环境温度与第二温度阈值之差;当风管机空调***以制热模式运行时,如果本次设定温度小于等于开机时的室内环境温度与第一温度阈值之和,则本次设定温度为开机时的室内环境温度与第二温度阈值之和。其中,第一温度阈值和第二温度阈值均可以为0℃-5℃之间的值。
具体而言,控制器300可根据自身的设定温度和感知的室内环境温度控制室内机200开停,同时根据运行模式(可由用户设定,或者自行判断运行模式)控制室内机200是制热开机还是制冷开机。
当控制器300根据需要控制室内机200制冷开机时,获取模块10首先根据上一次制冷停机时记录的室内环境温度T1(或者T1和上一次制冷停机时记录的设定温度)获取本次设定温度Ts,然后,第一修正模块40根据本次设定温度Ts和室内机再次制冷开机时温度检测模块20检测到的室内环境温度T1`对本次设定温度Ts进行修正。其中,如果Ts≥T1`-a(a为第一温度阈值),则本次设定温度Ts'=T1`-b(b为第二温度阈值),然后,控制模块30根据实时获取的当前室内环境温度与本次设定温度Ts'之间的温度差值生成风速调节指令,并根据风速调节指令对室内风机的出风量进行调节。
当控制器300根据需要控制室内机200制热开机时,获取模块10首先根据上一次制 热停机时记录的室内环境温度T1(或者T1和上一次制热停机时记录的设定温度)获取本次设定温度Ts,然后,第一修正模块40根据本次设定温度Ts和室内机再次制热开机时温度检测模块20检测到的室内环境温度T1`对本次设定温度Ts进行修正。其中,如果Ts≤T1`+a,则本次设定温度Ts'=T1`+b,然后,控制模块30根据实时检测的当前室内环境温度与本次设定温度Ts'之间的温度差值生成风速调节指令,并根据风速调节指令对室内风机的出风量进行调节。从而通过对设定温度的修正,来保证室内机在接收到控制器的开机指令后,能够正常开机运行。
根据本发明的一个实施例,如图5所示,上述的风管机空调***的室内风机的控制装置,还包括第二修正模块50,其中,在风管机空调***的运行过程中,获取模块10还用于实时获取温度差值,并根据当前温度差值与本次连续运行预设时间X分钟前的温度差值通过第二修正模块50对本次设定温度进行修正。
进一步地,根据本发明的一个实施例,根据当前温度差值与本次连续运行预设时间X分钟前的温度差值通过第二修正模块50对本次设定温度进行修正时,其中,当风管机空调***以制冷模式运行时,如果当前温度差值大于本次连续运行预设时间X分钟前的温度差值,则第二修正模块50通过将本次设定温度减小第三温度阈值以对本次设定温度进行修正;当风管机空调***以制热模式运行时,如果当前温度差值大于本次连续运行预设时间X分钟前的温度差值,则第二修正模块50通过将本次设定温度增加第三温度阈值以对本次设定温度进行修正。其中,第三温度阈值可以为0℃-5℃之间的值。
具体而言,在风管机空调***运行的过程中,可根据温度检测模块20检测的室内环境温度的变化进行能需的更新,即对设定温度进行不断更新,并根据更新后的设定温度对出风量进行调节。
例如,在室内机200以制冷模式运行的过程中,每隔一定的时间,通过第二修正模块50对设定温度进行修正。在对设定温度进行修正时,获取模块10获取当前时间之前连续运行预设时间X分钟前的设定温度与室内环境温度之间的温度差值,例如,当前时间为t1,连续运行预设时间X分钟前的时间点为t2,则分别获取t1、t2时间点处的设定温度与室内环境温度之间的温度差值ΔTt1、ΔTt2。然后,判断ΔTt1是否大于ΔTt2,如果是,第二修正模块50则对设定温度Ts进行更新,更新后的设定温度Ts〞=Ts-c(其中,c为第三温度阈值),然后根据更新后的设定温度Ts〞对出风量进行调节;如果否,则不对当前设定温度调整。
又如,在室内机200以制热模式运行的过程中,每隔一定的时间,第二修正模块50对设定温度进行修正。在对设定温度进行修正时,获取模块10获取当前时间之前连续运行预设时间X分钟前的设定温度与室内环境温度之间的温度差值,例如,当前时间点为t1,连 续运行预设时间X分钟前的时间点为t2,则分别获取t1、t2时间点处的设定温度与室内环境温度之间的温度差值ΔTt1、ΔTt2。然后,判断ΔTt1是否大于ΔTt2,如果是,第二修正模块50则对设定温度Ts进行更新,更新后的设定温度Ts〞=Ts+c,然后根据更新后的设定温度Ts〞对出风量进行调节。从而通过根据室内环境温度对设定温度进行实时更新,以获得最佳的设定温度,使得***达到最佳运行状态,保证***的舒适性和节能性。
需要说明的是,本发明实施例的风管机空调***的室内风机的控制装置中未披露的细节,请参照本发明实施例的风管机空调***的室内风机的控制方法中所披露的细节,具体这里不再赘述。
因此,根据本发明实施例的风管机空调***的室内风机的控制装置,当风管机空调***开机时,首先通过获取模块获取风管机空调***上一次停机时记录的室内环境温度和设定温度,并根据风管机空调***上一次停机时记录的室内环境温度和设定温度获取本次设定温度,然后,控制模块根据当前室内环境温度和本次设定温度计算当前室内环境温度与设定温度之间的温度差值,并根据温度差值生成风速调节指令,最后,控制模块根据风速调节指令对室内风机进行控制以调节室内机的出风量。从而在室内机无法接收到设定温度和环境温度参数时,通过一定的运行规则获取设定温度,实现对风量的自动控制,同时兼具改善空调除湿功能,提高空调的舒适性和节能性。
此外,本发明的实施例还提出了一种风管机空调***,其包括上述的室内风机的控制装置。
本发明实施例的风管机空调***,通过上述的控制装置,能够在室内机无法接收到设定温度和环境温度参数时,通过一定的运行规则获取设定温度,实现对风量的自动控制,同时兼具改善空调除湿功能,提高空调的舒适性和节能性。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定” 等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行***、装置或设备(如基于计算机的***、包括处理器的***或其他可以从指令执行***、装置或设备取指令并执行指令的***)使用,或结合这些指令执行***、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行***、装置或设备或结合这些指令执行***、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸 或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行***执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (14)

  1. 一种风管机空调***的室内风机的控制方法,其特征在于,包括以下步骤:
    当所述风管机空调***开机时,获取所述风管机空调***上一次停机时记录的室内环境温度和设定温度,并根据所述风管机空调***上一次停机时记录的室内环境温度和设定温度获取本次设定温度;
    实时检测室内环境温度;
    根据当前室内环境温度和所述本次设定温度计算所述当前室内环境温度与所述设定温度之间的温度差值,并根据所述温度差值生成风速调节指令;
    根据所述风速调节指令对所述室内风机进行控制以调节室内机的出风量。
  2. 如权利要求1所述的风管机空调***的室内风机的控制方法,其特征在于,还包括:
    根据所述风管机空调***开机时的室内环境温度与所述本次设定温度之间的关系对所述本次设定温度进行修正。
  3. 如权利要求2所述的风管机空调***的室内风机的控制方法,其特征在于,所述根据所述风管机空调***开机时的室内环境温度与所述本次设定温度之间的关系对所述本次设定温度进行修正,包括:
    当所述风管机空调***以制冷模式运行时,如果所述本次设定温度大于等于所述开机时的室内环境温度与第一温度阈值之差,则所述本次设定温度为所述开机时的室内环境温度与第二温度阈值之差;
    当所述风管机空调***以制热模式运行时,如果所述本次设定温度小于等于所述开机时的室内环境温度与所述第一温度阈值之和,则所述本次设定温度为所述开机时的室内环境温度与所述第二温度阈值之和。
  4. 如权利要求1-3中任一项所述的风管机空调***的室内风机的控制方法,其特征在于,在所述风管机空调***的运行过程中,实时获取所述温度差值,并根据当前温度差值与本次连续运行预设时间X分钟前的温度差值对所述本次设定温度进行修正。
  5. 如权利要求4所述的风管机空调***的室内风机的控制方法,其特征在于,所述根据当前温度差值与本次连续运行预设时间X分钟前的温度差值对所述本次设定温度进行修正,包括:
    当所述风管机空调***以制冷模式运行时,如果所述当前温度差值大于所述本次连续运行预设时间X分钟前的温度差值,则通过将所述本次设定温度减小第三温度阈值以对所述本次设定温度进行修正;
    当所述风管机空调***以制热模式运行时,如果所述当前温度差值大于所述本次连续 运行预设时间X分钟前的温度差值,则通过将所述本次设定温度增加所述第三温度阈值以对所述本次设定温度进行修正。
  6. 如权利要求1所述的风管机空调***的室内风机的控制方法,其特征在于,当所述风管机空调***首次开机时,将预设的初始设定温度作为所述本次设定温度。
  7. 一种风管机空调***的室内风机的控制装置,其特征在于,包括:
    获取模块,用于在所述风管机空调***开机时获取所述风管机空调***上一次停机时记录的室内环境温度和设定温度,并根据所述风管机空调***上一次停机时记录的室内环境温度和设定温度获取本次设定温度;
    温度检测模块,用于实时检测室内环境温度;
    控制模块,用于根据当前室内环境温度和所述本次设定温度计算所述当前室内环境温度与所述设定温度之间的温度差值,并根据所述温度差值生成风速调节指令,以及根据所述风速调节指令对所述室内风机进行控制以调节室内机的出风量。
  8. 如权利要求7所述的风管机空调***的室内风机的控制装置,其特征在于,还包括:
    第一修正模块,所述第一修正模块用于根据所述风管机空调***开机时的室内环境温度与所述本次设定温度之间的关系对所述本次设定温度进行修正。
  9. 如权利要求8所述的风管机空调***的室内风机的控制装置,其特征在于,所述第一修正模块根据所述风管机空调***开机时的室内环境温度与所述本次设定温度之间的关系对所述本次设定温度进行修正时,其中,
    当所述风管机空调***以制冷模式运行时,如果所述本次设定温度大于等于所述开机时的室内环境温度与第一温度阈值之差,则所述本次设定温度为所述开机时的室内环境温度与第二温度阈值之差;
    当所述风管机空调***以制热模式运行时,如果所述本次设定温度小于等于所述开机时的室内环境温度与所述第一温度阈值之和,则所述本次设定温度为所述开机时的室内环境温度与所述第二温度阈值之和。
  10. 如权利要求7-9中任一项所述的风管机空调***的室内风机的控制装置,其特征在于,在所述风管机空调***的运行过程中,所述获取模块还用于实时获取所述温度差值,并根据当前温度差值与本次连续运行预设时间X分钟前的温度差值通过第二修正模块对所述本次设定温度进行修正。
  11. 如权利要求10所述的风管机空调***的室内风机的控制装置,其特征在于,所述根据当前温度差值与本次连续运行预设时间X分钟前的温度差值通过第二修正模块对所述本次设定温度进行修正时,其中,
    当所述风管机空调***以制冷模式运行时,如果所述当前温度差值大于所述本次连续 运行预设时间X分钟前的温度差值,则所述第二修正模块通过将所述本次设定温度减小第三温度阈值以对所述本次设定温度进行修正;
    当所述风管机空调***以制热模式运行时,如果所述当前温度差值大于所述本次连续运行预设时间X分钟前的温度差值,则所述第二修正模块通过将所述本次设定温度增加所述第三温度阈值以对所述本次设定温度进行修正。
  12. 如权利要求7所述的风管机空调***的室内风机的控制装置,其特征在于,当所述风管机空调***首次开机时,所述获取模块将预设的初始设定温度作为所述本次设定温度。
  13. 一种风管机空调***,其特征在于,包括如权利要求7-12中任一项所述的风管机空调***的室内风机的控制装置。
  14. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-6中任一项所述的风管机空调***的室内风机的控制方法。
PCT/CN2017/084218 2017-01-05 2017-05-12 风管机空调***及其的室内风机的控制方法和装置 WO2018126581A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/469,644 US10914481B2 (en) 2017-01-05 2017-05-12 Duct-type air conditioning system, and control method and device for indoor ventilator thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710008093.6A CN106839284B (zh) 2017-01-05 2017-01-05 风管机空调***及其的室内风机的控制方法和装置
CN201710008093.6 2017-01-05

Publications (1)

Publication Number Publication Date
WO2018126581A1 true WO2018126581A1 (zh) 2018-07-12

Family

ID=59117838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084218 WO2018126581A1 (zh) 2017-01-05 2017-05-12 风管机空调***及其的室内风机的控制方法和装置

Country Status (3)

Country Link
US (1) US10914481B2 (zh)
CN (1) CN106839284B (zh)
WO (1) WO2018126581A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111322731A (zh) * 2020-02-17 2020-06-23 广东志高暖通设备股份有限公司 变频窗机的控制方法、装置、存储介质及智能设备
CN113203194A (zh) * 2021-04-25 2021-08-03 南京广厦软件有限公司 高精度恒温恒湿的暖通控制方法、***及可读存储介质

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107388477B (zh) * 2017-06-15 2019-11-05 青岛海尔空调器有限总公司 空调室内机的转速控制方法
CN107255343B (zh) * 2017-06-15 2019-12-31 青岛海尔空调器有限总公司 空调室内机的控制方法
CN107514744B (zh) * 2017-08-02 2019-10-01 广东美的暖通设备有限公司 新风机及其防冷风控制方法和装置
CN107990497B (zh) * 2017-11-15 2019-11-12 广东美的制冷设备有限公司 运行控制方法、装置、压缩机和计算机可读存储介质
CN108224675B (zh) * 2017-12-29 2020-04-10 北京世纪互联宽带数据中心有限公司 一种降低耗电功率的方法与装置
CN110940028B (zh) * 2018-09-21 2021-04-09 珠海格力电器股份有限公司 空调送风控制方法及装置、存储介质、处理器
CN109676432B (zh) * 2018-12-21 2021-01-29 珠海格力智能装备有限公司 主轴恒温控制的方法、装置及加工设备
CN113834197B (zh) * 2020-06-08 2022-09-13 广东美的制冷设备有限公司 空调器的控制方法、终端设备及存储介质
CN112612313B (zh) * 2020-12-22 2022-07-19 青岛海尔空调器有限总公司 空气调节设备的控制方法及装置、电子设备、存储介质
CN113405246B (zh) * 2021-06-10 2023-08-22 珠海市伟高变频科技有限公司 一种变频空调设定温度调节装置及其调节方法
CN113238591B (zh) * 2021-07-13 2021-09-28 北京力耘柯创医学研究院 一种液体输送温控设备
CN114992814B (zh) * 2022-06-20 2023-12-15 南京天加环境科技有限公司 一种空调舒适性的控制方法、***及空调

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178554A (ja) * 1988-12-29 1990-07-11 Matsushita Electric Ind Co Ltd 空気調和機の制御方法
CN1232946A (zh) * 1997-11-28 1999-10-27 Lg电子株式会社 空调器中设置温度的方法
KR20090028062A (ko) * 2007-09-13 2009-03-18 엘지전자 주식회사 공기조화기의 기류제어방법
CN103940058A (zh) * 2014-03-31 2014-07-23 广东美的制冷设备有限公司 空调器的控制方法、空调器的控制装置和空调器
CN104266302A (zh) * 2014-07-04 2015-01-07 广东美的集团芜湖制冷设备有限公司 一种家用空调的控制方法
CN106091259A (zh) * 2016-06-17 2016-11-09 珠海格力电器股份有限公司 一种用于空调的控制方法、装置及空调

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211248A (ja) * 1984-04-03 1985-10-23 Matsushita Electric Ind Co Ltd 空気調和機の除湿運転制御装置
KR100766177B1 (ko) * 2006-08-04 2007-10-10 주식회사 대우일렉트로닉스 공기 조화기의 운전 제어 방법
JP4728909B2 (ja) * 2006-08-15 2011-07-20 三菱電機ビルテクノサービス株式会社 空気調和機の診断装置
US20110039490A1 (en) * 2009-08-12 2011-02-17 James Wiese Window Fan
US20130261808A1 (en) * 2012-03-30 2013-10-03 John K. Besore System and method for energy management of an hvac system
CN104296322B (zh) * 2014-10-21 2017-04-05 广东美的暖通设备有限公司 空调***的控制方法和空调器
CN104315657B (zh) * 2014-10-23 2017-07-14 王大为 一种智能动态控制空调调节室温的方法和遥控装置
CN104374059B (zh) * 2014-10-31 2017-08-29 四川长虹电器股份有限公司 一种***能力调节方法及温度调节***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178554A (ja) * 1988-12-29 1990-07-11 Matsushita Electric Ind Co Ltd 空気調和機の制御方法
CN1232946A (zh) * 1997-11-28 1999-10-27 Lg电子株式会社 空调器中设置温度的方法
KR20090028062A (ko) * 2007-09-13 2009-03-18 엘지전자 주식회사 공기조화기의 기류제어방법
CN103940058A (zh) * 2014-03-31 2014-07-23 广东美的制冷设备有限公司 空调器的控制方法、空调器的控制装置和空调器
CN104266302A (zh) * 2014-07-04 2015-01-07 广东美的集团芜湖制冷设备有限公司 一种家用空调的控制方法
CN106091259A (zh) * 2016-06-17 2016-11-09 珠海格力电器股份有限公司 一种用于空调的控制方法、装置及空调

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111322731A (zh) * 2020-02-17 2020-06-23 广东志高暖通设备股份有限公司 变频窗机的控制方法、装置、存储介质及智能设备
CN113203194A (zh) * 2021-04-25 2021-08-03 南京广厦软件有限公司 高精度恒温恒湿的暖通控制方法、***及可读存储介质
CN113203194B (zh) * 2021-04-25 2023-01-06 南京广厦软件有限公司 高精度恒温恒湿的暖通控制方法、***及可读存储介质

Also Published As

Publication number Publication date
CN106839284B (zh) 2020-02-04
CN106839284A (zh) 2017-06-13
US10914481B2 (en) 2021-02-09
US20200088428A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
WO2018126581A1 (zh) 风管机空调***及其的室内风机的控制方法和装置
WO2018233147A1 (zh) 新风机及其的控制方法和装置
US6996999B2 (en) Method and apparatus for controlling humidity with an air conditioner
WO2019075785A1 (zh) 空调***及其化霜控制方法和装置
WO2018166372A1 (zh) 空调器控制方法
WO2020000551A1 (zh) 空气调节设备的导风条控制方法、装置和空气调节设备
WO2020000838A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2017206679A1 (zh) 空调器及其模式切换控制方法
JP7042731B2 (ja) 空調制御システム
WO2019071654A1 (zh) 空调***及其压比控制方法和控制装置
WO2020000836A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2020134124A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2019024241A1 (zh) 新风机及其防冷风控制方法和装置
WO2020134360A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2020000839A1 (zh) 空气调节设备及其控制方法和装置
CN105091205A (zh) 空调器及其检测装置和空调器的检测方法、控制方法
WO2020133927A1 (zh) 低温制冷风阀的控制方法及其装置
WO2019034124A1 (zh) 自动调温空调器控制方法及空调器
CN108131774B (zh) 空调器及其控制方法、装置
US20150323210A1 (en) Uniform temperature distribution in space using a fluid mixing device
CN107917515B (zh) 运行控制方法、运行控制装置和空调器
WO2018078709A1 (ja) 空調システム、空調制御装置、空調方法及びプログラム
WO2023226361A1 (zh) 房间面积获取方法、空调外机控制方法、装置及空调***
WO2020065844A1 (ja) 空気調和機
WO2023197557A1 (zh) 多联机空调器及其控制方法和控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890668

Country of ref document: EP

Kind code of ref document: A1