WO2018126563A1 - Millimeter wave array antenna system based on metal fuselage - Google Patents

Millimeter wave array antenna system based on metal fuselage Download PDF

Info

Publication number
WO2018126563A1
WO2018126563A1 PCT/CN2017/081811 CN2017081811W WO2018126563A1 WO 2018126563 A1 WO2018126563 A1 WO 2018126563A1 CN 2017081811 W CN2017081811 W CN 2017081811W WO 2018126563 A1 WO2018126563 A1 WO 2018126563A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
antenna
metal body
millimeter wave
branch
Prior art date
Application number
PCT/CN2017/081811
Other languages
French (fr)
Chinese (zh)
Inventor
赵安平
艾付强
Original Assignee
深圳市信维通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市信维通信股份有限公司 filed Critical 深圳市信维通信股份有限公司
Publication of WO2018126563A1 publication Critical patent/WO2018126563A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path

Definitions

  • FIG. 9 is a schematic structural diagram of a T-shaped slot antenna array applied to a mobile phone terminal according to Embodiment 2 of the present invention
  • FIG. 10a is a T-slot antenna array shown in FIG. 9 operating at a frequency of 28 GHz, scanning The angle (theta) is a 3-dimensional far-field radiation pattern of the antenna array at 0 degrees;
  • the width of the first slit branch and the second slit branch is 0.01-2 mm.
  • FIG. 15 is a comparison diagram of the far field characteristic gain distribution of the antenna array shown in FIGS. 1, 9, and 12 in the YZ plane.
  • FIG. The solid line in the figure indicates the antenna array shown in Fig. 1.
  • the broken line including the inverted triangle indicates the antenna array shown in Fig. 9, and the dotted line including the square indicates the antenna array shown in Fig. 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

The invention discloses a millimeter wave array antenna system based on a metal fuselage, comprising a metal fuselage and an array antenna, wherein the array antenna is disposed on the metal fuselage; the array antenna comprises more than two slot antennas embedded in the metal fuselage; the slot antennas are coupled and fed through a micro strip arranged inside a metal shell. The millimeter wave array antenna system based on the metal fuselage provided by the present invention is suitable for a mobile terminal with the metal fuselage, and the size of the slot antennas constituting the antenna array is small and does not affect the integrity of the mobile terminal.

Description

基于金属机身的毫米波阵列天线***  Millimeter wave array antenna system based on metal body
技术领域  Technical field
[0001] 本发明涉及天线技术领域, 尤其涉及一种基于金属机身的毫米波阵列天线*** 背景技术  [0001] The present invention relates to the field of antenna technologies, and in particular, to a millimeter wave array antenna system based on a metal body.
[0002] 目前, 全球对于第五代 (5G) 无线通信技术的研发正在逐渐升温, 世界各国和 各主流标准化组织都已经看到了 5G技术发展的迫切性, 并且制定了相应的研发 推进计划, 成为移动通信领域的研究热点。 比如, 2013年初欧盟在第 7框架计划 启动了面向 5G研发的 METIS项目; 2016年 7月 15日, 美国联邦通信委员会 (FCC ) 定义了如下用于 5G的毫米波频段: 28GHz (27.5-28.35GHz) , 37GHz (37-38. 6GHz) 和 39GHz (38.6-40GHz) 。 目前, 国际上许多著名移动终端设备厂商已 经计划将实现 5G功能作为其新一代移动终端产品的标准配置, 并预期在 2020年 实现 5G的商品化。  [0002] At present, the global research and development of fifth-generation (5G) wireless communication technologies is gradually warming up. Countries around the world and mainstream standardization organizations have already seen the urgency of 5G technology development, and have developed corresponding research and development promotion plans. Research hotspots in the field of mobile communications. For example, in early 2013, the EU launched the METIS project for 5G R&D in the 7th Framework Plan; on July 15, 2016, the US Federal Communications Commission (FCC) defined the following millimeter wave band for 5G: 28GHz (27.5-28.35 GHz) ), 37GHz (37-38. 6GHz) and 39GHz (38.6-40GHz). At present, many well-known mobile terminal equipment manufacturers in the world have planned to implement 5G functions as the standard configuration of their next-generation mobile terminal products, and expect to realize the commercialization of 5G in 2020.
[0003] 为了实现上述目的, 设计出适合于手机终端的行之有效的毫米波天线阵列是必 不可少的重要环节。 此外, 为了增强手持设备的质感和强度, 金属机身已经被 广泛地应用在手持设备中。 虽然适用于金属机身的 2G、 3G和 4G天线设计已经成 熟, 但是由于 5G毫米波天线阵列的特殊性, 如何设计出适合于金属机身的 5G毫 米波天线阵列将是我们所要面临并急需解决的首要问题。  [0003] In order to achieve the above object, it is an indispensable important link to design an effective millimeter wave antenna array suitable for a mobile phone terminal. In addition, in order to enhance the texture and strength of handheld devices, metal bodies have been widely used in handheld devices. Although the 2G, 3G and 4G antenna designs for metal fuselage have matured, due to the particularity of 5G millimeter wave antenna arrays, how to design a 5G millimeter wave antenna array suitable for metal fuselage will be an urgent need for us to solve The primary issue.
技术问题  technical problem
[0004] 本发明所要解决的技术问题是: 提供一种用于第五代无线通信, 适用于金属机 身的毫米波阵列天线***。  The technical problem to be solved by the present invention is to provide a millimeter wave array antenna system for a fifth-generation wireless communication suitable for a metal body.
问题的解决方案  Problem solution
技术解决方案  Technical solution
[0005] 为了解决上述技术问题, 本发明采用的技术方案为:  [0005] In order to solve the above technical problem, the technical solution adopted by the present invention is:
[0006] 一种基于金属机身的毫米波阵列天线***, 包括金属机身和阵列天线, 所述阵 列天线设在所述金属机身上; 所述阵列天线包括两个以上缝隙天线, 所述缝隙 天线嵌设在所述金属机身内。 [0006] A millimeter wave array antenna system based on a metal body, comprising a metal body and an array antenna, wherein the array antenna is disposed on the metal body; the array antenna includes two or more slot antennas, Gap An antenna is embedded in the metal body.
发明的有益效果  Advantageous effects of the invention
有益效果  Beneficial effect
[0007] 本发明的有益效果在于: 在金属机身上幵设缝隙作为天线的辐射单元, 通过多 个辐射单元形成适用于毫米波的天线阵列, 克服了金属机身对无线信号的屏蔽 作用; 由于幵设的缝隙天线较小, 所以并不会影响金属机身的整体性, 也可以 在缝隙天线中填充低损耗材料来保持其美观性和完整性。  [0007] The beneficial effects of the present invention are as follows: a slit is formed on the metal body as a radiating unit of the antenna, and an antenna array suitable for the millimeter wave is formed by the plurality of radiating elements, thereby overcoming the shielding effect of the metal body on the wireless signal; Since the slot antenna is small, it does not affect the integrity of the metal body. It is also possible to fill the slot antenna with low-loss materials to maintain its aesthetics and integrity.
对附图的简要说明  Brief description of the drawing
附图说明  DRAWINGS
[0008] 图 1为本发明实施例一的 T形缝隙天线阵列的结构示意图;  1 is a schematic structural diagram of a T-shaped slot antenna array according to Embodiment 1 of the present invention;
[0009] 图 2为本发明实施例一的 T形缝隙天线的幵路形式馈电示意图; 2 is a schematic diagram of a loop form feed of a T-shaped slot antenna according to Embodiment 1 of the present invention;
[0010] 图 3为图 2所示的 T形缝隙天线的幵路形式馈电侧视图; 3 is a side view of a loop form feed of the T-shaped slot antenna shown in FIG. 2; [0010] FIG.
[0011] 图 4为本发明实施例一的 T形缝隙天线的短路形式馈电示意图; 4 is a schematic diagram of a short-circuit form feed of a T-shaped slot antenna according to Embodiment 1 of the present invention;
[0012] 图 5为图 3所示的 T形缝隙天线的短路形式馈点侧视图; 5 is a side view of a short-circuit form feed point of the T-shaped slot antenna shown in FIG. 3; [0012] FIG.
[0013] 图 6为本发明实施例一的 T形缝隙天线阵列的 S参数图; 6 is an S parameter diagram of a T-shaped slot antenna array according to Embodiment 1 of the present invention;
[0014] 图 7a为图 1所示的 T形天线阵列在工作频率为 28GHz、 扫描角度 (theta) 为 0度 条件下天线阵列的 3维远场辐射图;  7A is a 3-dimensional far-field radiation pattern of the antenna array of the T-shaped antenna array shown in FIG. 1 under the condition of an operating frequency of 28 GHz and a scan angle of 0 degrees; [0014] FIG.
[0015] 图 7b为图 1所示的 T形天线阵列在工作频率为 28GHz、 扫描角度 (theta) 为 20度 条件下天线阵列的 3维远场辐射图; 7b is a 3-dimensional far-field radiation pattern of the antenna array of the T-shaped antenna array shown in FIG. 1 at an operating frequency of 28 GHz and a scan angle of 20 degrees; [0015] FIG.
[0016] 图 7c为图 1所示的 T形天线阵列在工作频率为 28GHz、 扫描角度 (theta) 为 40度 条件下天线阵列的 3维远场辐射图; 7c is a 3-dimensional far-field radiation pattern of the antenna array of the T-shaped antenna array shown in FIG. 1 under the condition of an operating frequency of 28 GHz and a scan angle of 40 degrees; [0016] FIG.
[0017] 图 8为图 1所示的 T形天线阵列 XZ平面内不同扫描角度 (theta) 情况下的天线增 益特性曲线; 8 is an antenna gain characteristic curve in the case of different scanning angles (theta) in the XZ plane of the T-shaped antenna array shown in FIG. 1;
[0018] 图 9为本发明实施例二的 T形缝隙天线阵列在手机终端上应用吋的结构示意图; [0019] 图 10a为图 9所示的 T形缝隙天线阵列在工作频率为 28GHz、 扫描角度 (theta) 为 0度条件下天线阵列的 3维远场辐射图;  9 is a schematic structural diagram of a T-shaped slot antenna array applied to a mobile phone terminal according to Embodiment 2 of the present invention; [0019] FIG. 10a is a T-slot antenna array shown in FIG. 9 operating at a frequency of 28 GHz, scanning The angle (theta) is a 3-dimensional far-field radiation pattern of the antenna array at 0 degrees;
[0020] 图 10b为图 9所示的 T形缝隙天线阵列在工作频率为 28GHz、 扫描角度 (theta) 为 20度条件下天线阵列的 3维远场辐射图; [0021] 图 10c为图 9所示的 T形缝隙天线阵列在工作频率为 28GHz、 扫描角度 (theta) 为 40度条件下天线阵列的 3维远场辐射图; 10b is a 3-dimensional far-field radiation pattern of the antenna array of the T-slot antenna array shown in FIG. 9 under the condition of an operating frequency of 28 GHz and a scan angle of 20 degrees; [0020] FIG. 10c is a 3-dimensional far-field radiation pattern of the antenna array of the T-slot antenna array shown in FIG. 9 under the condition of an operating frequency of 28 GHz and a scan angle of 40 degrees; [0021] FIG.
[0022] 图 11为图 9所示天线阵列在 XZ平面内不同扫描角度 (theta) 情况下的天线增益 特性; 11 is an antenna gain characteristic of the antenna array of FIG. 9 at different scanning angles (theta) in the XZ plane; [0022] FIG.
[0023] 图 12为本发明实施例二的长方形缝隙天线阵列在手机终端上应用的示意图; [0024] 图 13a  12 is a schematic diagram of a rectangular slot antenna array applied to a mobile phone terminal according to Embodiment 2 of the present invention; [0024] FIG. 13a
为图 12所示的长方形缝隙天线阵列在工作频率为 28GHz、 扫描角度 (theta) 为 0 度条件下天线阵列的 3维远场辐射图;  The three-dimensional far-field radiation pattern of the antenna array under the condition that the rectangular slot antenna array shown in FIG. 12 has an operating frequency of 28 GHz and a scanning angle (theta) of 0 degrees;
[0025] 图 13b为图 12所示的长方形缝隙天线阵列在工作频率为 28GHz、 扫描角度为 (th eta) 20度条件下天线阵列的 3维远场辐射图; 13b is a 3-dimensional far-field radiation pattern of the antenna array of the rectangular slot antenna array shown in FIG. 12 under the condition of an operating frequency of 28 GHz and a scanning angle of (th eta) 20 degrees; [0025] FIG.
图 13c为图 12所示的长方形缝隙天线阵列在工作频率为 28GHz、 扫描角度为 (th eta) 40度条件下天线阵列的 3维远场辐射图;  13c is a 3-dimensional far-field radiation pattern of the antenna array of the rectangular slot antenna array shown in FIG. 12 under the condition of an operating frequency of 28 GHz and a scanning angle of (th eta) 40 degrees;
[0027] 图 14为图 12所示的长方形缝隙天线阵列在 XZ平面内不同扫描角度 (theta) 情 况下的天线增益特性; 14 is an antenna gain characteristic of the rectangular slot antenna array shown in FIG. 12 at different scanning angles (theta) in the XZ plane; [0027] FIG.
[0028] 图 15为本发明如图 1, 图 9和图 12所示的天线阵列在 YZ平面内的远场特性增益 分布比较图;  15 is a comparison diagram of far field characteristic gain distribution of the antenna array shown in FIG. 1, FIG. 9 and FIG. 12 in the YZ plane according to the present invention; [0028] FIG.
[0029] 图 16为本发明实施例二的 T形缝隙天线阵列全部设在后壳体上的结构示意图; [0030] 图 17为本发明实施例二的 T形缝隙天线阵列全部设在侧壳体上的结构示意图; [0031] 图 18为本发明如图 1、 图 16和图 17所示的天线阵列在 YZ平面内的远场特性增益 分布比较图。  16 is a schematic structural view of a T-shaped slot antenna array disposed on a rear casing according to Embodiment 2 of the present invention; [0030] FIG. 17 is a second embodiment of a T-shaped slot antenna array according to Embodiment 2 of the present invention; FIG. 18 is a comparison diagram of far-field characteristic gain distribution of the antenna array shown in FIGS. 1, 16, and 17 in the YZ plane of the present invention.
[0032] 标号说明: [0032] Description of the label:
[0033] 1、 天线阵列; 2、 缝隙天线; 3、 第一缝隙分支; 4、 第二缝隙分支;  [0033] 1, the antenna array; 2, the slot antenna; 3, the first slot branch; 4, the second slot branch;
[0034] 5、 微带线; 6、 金属后壳; 7、 电介质层; 8、 导电柱; 9、 移动终端; [0034] 5, microstrip line; 6, metal back shell; 7, dielectric layer; 8, conductive column; 9, mobile terminal;
[0035] 10、 金属机身; 11、 后壳体; 12、 侧壳体。 [0035] 10, metal body; 11, rear housing; 12, side housing.
具体实施方式 detailed description
[0036] 本发明最关键的构思在于:在金属机身上幵设缝隙作为天线的辐射单元, 通过 多个辐射单元形成适用于毫米波的天线阵列, 克服了金属机身对无线信号的屏 蔽作用。 [0036] The most critical idea of the present invention is that a slit is formed on the metal body as a radiating unit of the antenna, and an antenna array suitable for the millimeter wave is formed by the plurality of radiating elements, thereby overcoming the screen of the metal body against the wireless signal. Covering effect.
[0037] 请参照图 1, 一种基于金属机身的毫米波阵列天线***, 包括金属机身和阵列 天线, 所述阵列天线设在所述金属机身上; 所述阵列天线包括两个以上缝隙天 线, 所述缝隙天线嵌设在所述金属机身内。  1, a millimeter-wave array antenna system based on a metal body, comprising a metal body and an array antenna, wherein the array antenna is disposed on the metal body; the array antenna includes two or more a slot antenna, the slot antenna being embedded in the metal body.
[0038] 从上述描述可知, 本发明的有益效果在于: 在金属机身上幵设缝隙作为天线的 辐射单元, 通过多个辐射单元形成适用于毫米波的天线阵列, 克服了金属机身 对无线信号的屏蔽作用; 由于幵设的缝隙天线较小, 所以并不会影响金属机身 的整体性, 也可以在缝隙天线中填充低损耗材料来保持其美观性和完整性。  [0038] As can be seen from the above description, the present invention has the following advantages: the slit is provided as a radiating unit of the antenna on the metal body, and the antenna array suitable for the millimeter wave is formed by the plurality of radiating elements, thereby overcoming the metal body to the wireless The shielding effect of the signal; because the slot antenna is small, it does not affect the integrity of the metal body. It can also be filled with low-loss materials in the slot antenna to maintain its aesthetics and integrity.
[0039] 进一步的, 所述金属机身上设有一电介质层, 所述缝隙天线通过所述电介质层 连接一微带线进行馈电。  [0039] Further, the metal body is provided with a dielectric layer, and the slot antenna is connected to the microstrip line through the dielectric layer for feeding.
[0040] 由上述描述可知, 当采用传统的微带线对缝隙天线进行馈电吋需要通过一电介 质层, 馈电的方式可以是幵路的方式耦合, 也可以是短路的方式耦合。  [0040] It can be seen from the above description that when a conventional microstrip line is used to feed a slot antenna, it needs to pass through a dielectric layer, and the feeding mode may be a circuit coupling or a short circuit coupling.
[0041] 进一步的, 靠近所述缝隙天线一端的金属机身上设有一导电柱, 所述微带线的 末端通过所述导电柱进行接地。  [0041] Further, a metal pillar is disposed on a metal body near one end of the slot antenna, and an end of the microstrip line is grounded through the conductive pillar.
[0042] 由上述描述可知, 微带线对缝隙天线进行馈点吋可以通过一导电柱采用短路形 式的耦合方式进行。  [0042] As can be seen from the above description, the feeding point of the microstrip line to the slot antenna can be performed by a short-circuit coupling manner of a conductive post.
[0043] 进一步的, 所述金属机身包括后壳体, 所述天线阵列设于所述后壳体上。  [0043] Further, the metal body includes a rear case, and the antenna array is disposed on the rear case.
[0044] 进一步的, 所述金属机身包括侧壳体, 所述天线阵列设于所述侧壳体上。 [0044] Further, the metal body includes a side casing, and the antenna array is disposed on the side casing.
[0045] 进一步的, 所述金属机身包括后壳体和侧壳体, 所述缝隙天线的部分设于所述 侧壳体上, 所述缝隙天线未设于所述侧壳体上的部分设于所述后壳体上。 [0045] Further, the metal body includes a rear case and a side case, and a portion of the slot antenna is disposed on the side case, and the slot antenna is not disposed on the side case Provided on the rear casing.
[0046] 由上述描述可知, 可根据需要将缝隙天线阵列设置在侧壳体或后壳体上; 或者 是部分位于侧壳体部分位于后壳体, 使得缝隙天线能在远场产生较均匀的辐射 分布。 [0046] As can be seen from the above description, the slot antenna array can be disposed on the side casing or the rear casing as needed; or the partial casing portion is located in the rear casing, so that the slot antenna can be more uniform in the far field. Radiation distribution.
[0047] 进一步的, 所述缝隙天线包括长条形的第一缝隙分支和第二缝隙分支; 所述第 二缝隙分支的一端与第一缝隙分支的中间区域连接, 另一端远离第一缝隙分支  [0047] Further, the slot antenna includes an elongated first slot branch and a second slot branch; one end of the second slot branch is connected to an intermediate area of the first slot branch, and the other end is away from the first slot branch.
[0048] 由上述描述可知, 缝隙天线包括长条形的第一缝隙分支和第二缝隙分支, 可使 其产生的环绕缝隙分支周围分布的电流具有较好的均匀性。 [0049] 进一步的, 所述第二缝隙分支的一端与第一缝隙分支的中点连接。 [0048] As can be seen from the above description, the slot antenna includes an elongated first slot branch and a second slot branch, which can produce a uniform current distributed around the branch of the slot. [0049] Further, one end of the second slot branch is connected to a midpoint of the first slot branch.
[0050] 进一步的, 所述第一缝隙分支和第二缝隙分支均为矩形分支, 所述第一缝隙分 支的长度为所述缝隙天线工作频率所对应波长的 1/2; 所述第二缝隙分支的长度 为所述缝隙天线工作频率所对应波长的 1/4。  [0050] Further, the first slot branch and the second slot branch are both rectangular branches, and the length of the first slot branch is 1/2 of a wavelength corresponding to the working frequency of the slot antenna; The length of the branch is 1/4 of the wavelength corresponding to the operating frequency of the slot antenna.
[0051] 由上述描述可知, 矩形长条的结构特征能够进一步的保证由其产生的环绕缝隙 分支周围分布的电流具有最佳的均匀分布效果; 第二缝隙分支相当于传统的长 方形缝隙天线, 传统的长方形缝隙分支的长度为其工作频率所对应波长的 1/2左 右。 因此, 从天线的长度方向看, 本申请的缝隙天线相较传统的长方形缝隙天 线, 具有显著减小整体尺寸的优点, 能够更好的适用于微小型终端。  [0051] As can be seen from the above description, the structural features of the rectangular strip can further ensure that the current distributed around the branch of the slit produced by the strip has the best uniform distribution effect; the second slit branch is equivalent to the traditional rectangular slot antenna, the conventional The length of the rectangular slit branch is about 1/2 of the wavelength corresponding to its operating frequency. Therefore, the slot antenna of the present application has the advantage of significantly reducing the overall size compared to the conventional rectangular slot antenna as viewed from the length of the antenna, and can be better applied to the microminiature terminal.
[0052] 进一步的, 所述缝隙天线为长方形缝隙天线, 所述缝隙天线的长度为所述缝隙 天线工作频率所对应波长的 1/2。  [0052] Further, the slot antenna is a rectangular slot antenna, and the length of the slot antenna is 1/2 of a wavelength corresponding to the working frequency of the slot antenna.
[0053] 进一步的, 相邻两个缝隙天线之间的间距为所述缝隙天线工作频率所对应波长 的 1/2 1。  [0053] Further, a spacing between two adjacent slot antennas is 1/2 1 of a wavelength corresponding to the operating frequency of the slot antenna.
[0054] 由上述描述可知, 每个缝隙天线之间的间距满足毫米波天线阵列的要求。  [0054] As can be seen from the above description, the spacing between each slot antenna satisfies the requirements of the millimeter wave antenna array.
[0055] 进一步的, 所述第一缝隙分支和第二缝隙分支的宽度为 0.01-2mm。  [0055] Further, the width of the first slit branch and the second slit branch is 0.01-2 mm.
[0056] 进一步的, 所述第一缝隙分支和第二缝隙分支的宽度为 0.5mm。  [0056] Further, the width of the first slit branch and the second slit branch is 0.5 mm.
[0057] 由上述描述可知, 缝隙分支的宽度在 0.5mm吋的天线辐射效果较好。  [0057] As can be seen from the above description, the antenna having a slit branch width of 0.5 mm 辐射 has a better radiation effect.
[0058] 进一步的, 所述长方形缝隙天线的宽度为 0.01-2mm。  [0058] Further, the rectangular slot antenna has a width of 0.01-2 mm.
[0059] 进一步的, 所述长方形缝隙天线的宽度为 0.5mm。  [0059] Further, the rectangular slot antenna has a width of 0.5 mm.
[0060] 进一步的, 所述第一缝隙分支和第二缝隙分支垂直连接形成一 T字形。  [0060] Further, the first slot branch and the second slot branch are vertically connected to form a T-shape.
[0061] 进一步的, 所述第一缝隙分支与所述第二缝隙分支连接形成一 Y字形。  [0061] Further, the first slot branch and the second slot branch are connected to form a Y-shape.
[0062] 进一步的, 所述第一缝隙分支与所述第二缝隙分支连接形成一箭头形。  [0062] Further, the first slot branch and the second slot branch are connected to form an arrow shape.
[0063] 由上述描述可知, 可以将缝隙天线设计为 T字形、 Y字形或者箭头形, 都能克 服金属机身对无线信号的屏蔽作用, 实现辐射效果。  [0063] As can be seen from the above description, the slot antenna can be designed in a T-shape, a Y-shape or an arrow shape, which can overcome the shielding effect of the metal body on the wireless signal and achieve the radiation effect.
[0064] 实施例一 [0064] Embodiment 1
[0065] 请参照图 1至图 8, 本发明的实施例一为: 一种基于金属机身的毫米波阵列天线 ***, 适用于第五代无线通信***, 将毫米波阵列天线***应用在移动终端上 , 能克服金属机身对无线信号的屏蔽作用, 所述终端可以是手机、 平板等有天 线需求的移动终端。 Referring to FIG. 1 to FIG. 8, Embodiment 1 of the present invention is: A millimeter wave array antenna system based on a metal body, which is applicable to a fifth generation wireless communication system, and applies a millimeter wave array antenna system to mobile On the terminal, it can overcome the shielding effect of the metal body on the wireless signal, and the terminal can be a mobile phone, a tablet, etc. Line demand for mobile terminals.
[0066] 本实施例中, 如图 1所示, 只有金属后壳 6为金属材质, 移动终端的其他壳体部 位为非金属材质。 所述毫米波天线阵列 1包括两个以上缝隙天线 2, 优选的, 本 实施例中所述天线阵列 1包括 8个缝隙天线 2。 缝隙天线 2嵌设在所述金属后壳 6内 , 并且位于金属后壳 6的边缘位置, 当然也可以设在金属后壳 6的其他位置, 不 限于边缘位置。 所述缝隙天线 2包括分别为长条形的第一缝隙分支 3和第二缝隙 分支 4, 所述第一缝隙分支 3和第二缝隙分支 4垂直连接并形成一 T字形, 即第二 缝隙分支 4的一端与第一缝隙分支 3的中点连接, 使第一缝隙分支 3连接点两边的 辐射强度相同, 缝隙天线 2整体电流分布更均匀。  [0066] In this embodiment, as shown in FIG. 1, only the metal back shell 6 is made of metal, and the other housing parts of the mobile terminal are made of non-metal materials. The millimeter wave antenna array 1 includes two or more slot antennas 2. Preferably, the antenna array 1 in the embodiment includes eight slot antennas 2. The slot antenna 2 is embedded in the metal rear case 6 and located at the edge of the metal rear case 6, and may of course be disposed at other positions of the metal back case 6, not limited to the edge position. The slot antenna 2 includes a first slot branch 3 and a second slot branch 4 which are respectively elongated, and the first slot branch 3 and the second slot branch 4 are vertically connected and form a T-shape, that is, the second slot branch One end of the fourth slot is connected to the midpoint of the first slot branch 3, so that the radiation intensity on both sides of the first slot branch 3 connection point is the same, and the overall current distribution of the slot antenna 2 is more uniform.
[0067] 天线阵列 1可以采用串联不等分功率馈电网络或者并联等功率馈电网络或者其 他馈电方式进行馈电, 本实施例的所述天线阵列 1通过并联等功率馈电网络对其 进行馈电。 具体的, 本实施例通过微带线对缝隙天线进行耦合馈电。 通过微带 线对缝隙天线进行馈电吋有两种不同的方式: 短路和幵路。 如图 2和图 3所示为 幵路的方式, 所述缝隙天线 2通过微带线 5进行耦合馈电, 在微带线 5与金属后壳 6之间设有电介质层 7, 为了满足毫米波的要求, 电介质层 7采用损耗较小的材料 , 例如罗杰斯 (Rogers) 材料。 如图 4和图 5所示为采用短路的方式进行馈电, 在 靠近缝隙天线 2—端的金属后壳 6上设有一导电柱 8, 所述微带线 5的末端通过所 述导电柱 8与接地层连接, 同样的, 缝隙天线 2通过电介质层 7连接微带线 5进行 耦合馈电。 [0067] The antenna array 1 can be fed by a power feeding network of a series unequal power feeding network or a parallel power feeding network or other feeding mode. The antenna array 1 of the embodiment is connected to a parallel power supply network. Feeding. Specifically, in this embodiment, the slot antenna is coupled and fed through the microstrip line. There are two different ways to feed a slot antenna through a microstrip line: short circuit and open circuit. As shown in FIG. 2 and FIG. 3, the slot antenna 2 is coupled and fed through the microstrip line 5, and a dielectric layer 7 is disposed between the microstrip line 5 and the metal back shell 6, in order to satisfy the millimeter. The wave layer requires that the dielectric layer 7 be made of a less lossy material, such as a Rogers material. As shown in FIG. 4 and FIG. 5, the short circuit is used for feeding, and a conductive post 8 is disposed on the metal back shell 6 near the end of the slot antenna. The end of the microstrip line 5 passes through the conductive post 8 and The ground layer is connected. Similarly, the slot antenna 2 is connected to the microstrip line 5 through the dielectric layer 7 for coupling feeding.
[0068] 本实施例中, 第一缝隙分支 3的长度为所述缝隙天线 2工作频率所对应波长的 1/ 2; 所述第二缝隙分支 4的长度为所述缝隙天线 2工作频率所对应波长的 1/4, 所述 第一缝隙分支 3和第二缝隙分支 4的宽度可根据需要设定, 优选的, 所述第一缝 隙分支 3和第二缝隙分支 4的宽度为 0.01-2mm, 进一步优选 0.5mm。 相邻两个缝隙 天线 2之间的间距为所述缝隙天线 2工作频率所对应波长的 1/2~1, 可根据具体情 况进行选择。 为了不破坏金属机身的外观, 也可以在缝隙天线 2处填充低损耗材 料。  [0068] In this embodiment, the length of the first slot branch 3 is 1/2 of the wavelength corresponding to the operating frequency of the slot antenna 2; the length of the second slot branch 4 is corresponding to the operating frequency of the slot antenna 2. 1/4 of the wavelength, the width of the first slit branch 3 and the second slit branch 4 may be set as needed. Preferably, the width of the first slit branch 3 and the second slit branch 4 is 0.01-2 mm. More preferably, it is 0.5 mm. The spacing between the adjacent two slot antennas 2 is 1/2~1 of the wavelength corresponding to the operating frequency of the slot antenna 2, which can be selected according to the specific situation. In order not to damage the appearance of the metal body, it is also possible to fill the slot antenna 2 with a low loss material.
[0069] 天线辐射体上的表面电流分布决定了天线在 3维远场的辐射强度分布, 无论缝 隙天线的形状如何, 缝隙天线辐射体的表面电流都是环绕着缝隙天线的周围分 布的。 本实施例以 T字形缝隙天线作为毫米波阵列天线的辐射单元, 它除了具有 较强的沿着第二缝隙分支 4的长度方向上的分布电流外, 同吋还具有较强的沿着 第一缝隙天线分支 3的长度方向的分布电流。 再者, 由于 Τ字形缝隙天线的两个 分支是相互垂直的, 所以在 Τ字形缝隙天线的远场辐射分布具有很好的均匀性, 能够很好的克服传统长方形缝隙天线只具有沿其长度方向的分布电流, 在远程 辐射强度不均匀的缺点。 [0069] The surface current distribution on the antenna radiator determines the radiation intensity distribution of the antenna in the 3-dimensional far field. Regardless of the shape of the slot antenna, the surface current of the slot antenna radiator is surrounded by the periphery of the slot antenna. Cloth. In this embodiment, the T-shaped slot antenna is used as the radiating element of the millimeter wave array antenna, and in addition to having a strong distributed current along the length direction of the second slot branch 4, the same has a strong along the first The distributed current in the longitudinal direction of the slot antenna branch 3. Furthermore, since the two branches of the U-shaped slot antenna are perpendicular to each other, the far-field radiation distribution of the U-shaped slot antenna has good uniformity, which can well overcome the conventional rectangular slot antenna only having a length along its length. The distribution of current, the disadvantage of uneven radiation intensity at the remote.
[0070] 具体的, 如图 6所示, 为图 1所示的 Τ形缝隙天线阵列的 S参数图, 图中的八条曲 线分别对应 8个 Τ形缝隙天线 2的 S参数曲线, 其中最上面的一条曲线为其中一个 缝隙天线 2的 S参数曲线, 下面的七条曲线为其他七个缝隙天线 2与所述其中一个 缝隙天线 2耦合后的 S参数曲线。 从图中可以看出, 所述缝隙天线 2工作在 28GHz 的毫米波段内; 并且缝隙天线 2之间的互耦小于 -14.6dB, 满足天线阵列的波束成 形与扫描的要求。 图 7a、 图 7b和图 7c分别为图 6所示的天线阵列在工作频率为 28 GHz. 扫描角度 (theta, 与 Z轴夹角) 分别为 0度, 20度和 40度情况下天线阵列的 3维远场辐射图。 图 8为所述天线阵列在 XZ平面内不同扫描角度情况下的天线增 益特性曲线。 当横坐标的数值为 -90吋, 从上往下的曲线对应的扫描角分别为 50 度、 40度、 30度、 0度、 10度和 20度。 从图 7a、 图 7b、 图 7c和图 8中的结果可以看 出, 本实施例中的毫米波天线阵列具有很好的波束成形与波束扫描的特性。  [0070] Specifically, as shown in FIG. 6, which is an S-parameter diagram of the Τ-shaped slot antenna array shown in FIG. 1, the eight curves in the figure respectively correspond to S-parameter curves of eight Τ-shaped slot antennas 2, wherein the uppermost One curve is the S-parameter curve of one of the slot antennas 2, and the lower seven curves are the S-parameter curves after the other seven slot antennas 2 are coupled to the one of the slot antennas 2. As can be seen from the figure, the slot antenna 2 operates in the millimeter band of 28 GHz; and the mutual coupling between the slot antennas 2 is less than -14.6 dB, which satisfies the beamforming and scanning requirements of the antenna array. Figure 7a, Figure 7b and Figure 7c show the antenna array shown in Figure 6 at an operating frequency of 28 GHz. The scanning angle (theta, angle with the Z-axis) is 0 degrees, 20 degrees and 40 degrees, respectively. 3D far field radiation pattern. Fig. 8 is an antenna gain characteristic curve of the antenna array in different scanning angles in the XZ plane. When the value of the abscissa is -90 吋, the scan angles from the top to the bottom are 50 degrees, 40 degrees, 30 degrees, 0 degrees, 10 degrees, and 20 degrees, respectively. It can be seen from the results in Figs. 7a, 7b, 7c and 8 that the millimeter wave antenna array in this embodiment has excellent beamforming and beam scanning characteristics.
[0071] 在另一具体实施方式中, 所述第一缝隙分支 3与所述第二缝隙分支 4连接形成一 Y字形。  [0071] In another embodiment, the first slit branch 3 is connected to the second slit branch 4 to form a Y-shape.
[0072] 在另一具体实施方式中, 所述第一缝隙分支 3与所述第二缝隙分支 4连接形成一 箭头形。  [0072] In another embodiment, the first slit branch 3 is connected to the second slit branch 4 to form an arrow shape.
[0073] 在其他具体实施方式中, 第一缝隙分支 3和第二缝隙分支 4还可以采用其他的连 接方式, 不限于上述 τ字形、 Y字形或箭头形的连接方式。  In other embodiments, the first slot branch 3 and the second slot branch 4 may also adopt other connection manners, and are not limited to the above-mentioned τ-shaped, Y-shaped or arrow-shaped connection manner.
[0074] 实施例二 Embodiment 2
[0075] 请参照图 9至图 18, 本实施例在实施例一的基础上, 金属机身 10的后壳体 11和 侧壳体 12均为金属材质。  Referring to FIG. 9 to FIG. 18, on the basis of the first embodiment, the rear casing 11 and the side casing 12 of the metal body 10 are made of metal.
[0076] 具体的, 所述移动终端 9包括金属机身 10, 所述天线阵列 1设在所述金属机身 10 的边缘位置, 当然可以设置在金属机身 10的中间部位。 所述金属机身 10包括后 壳体 11和侧壳体 12。 如图 9所示, 为本实施例中的一种具体实施方式, 所述天线 阵列 1包括 8个 T形缝隙天线 2, 所述缝隙天线 2的第一缝隙分支 3设于所述侧壳体 1 2上, 所述第二缝隙分支 4一部分设于所述侧壳体 12上, 另一部分设于所述后壳 体 11上。 图 10a、 图 10b和图 10c分别为图 9所示的 T形缝隙天线阵列在工作频率为 28GHz. 扫描角度 (theta) 分别为 0度, 20度和 40度情况下天线阵列的 3维远场辐 射图。 图 11为图 9所示天线阵列在 XZ平面内不同扫描角度情况下的天线增益特性 。 当横坐标的数值为 -90吋, 从上往下的曲线对应的扫描角分别为 50度、 40度、 3 0度、 0度、 10度和 20度。 从图 10a、 图 10b、 图 10c和图 11中可以看出所述毫米波 天线阵列也具有很好的波束成形与波束扫描的特性。 [0076] Specifically, the mobile terminal 9 includes a metal body 10, and the antenna array 1 is disposed at an edge position of the metal body 10, and may be disposed at an intermediate portion of the metal body 10. The metal body 10 includes a rear Housing 11 and side housing 12. As shown in FIG. 9, in the specific embodiment of the present embodiment, the antenna array 1 includes eight T-shaped slot antennas 2, and the first slot branch 3 of the slot antenna 2 is disposed in the side casing. In the upper portion, the second slit branch 4 is partially disposed on the side casing 12, and the other portion is disposed on the rear casing 11. 10a, 10b, and 10c are the 3-dimensional far field of the antenna array of the T-slot antenna array shown in Fig. 9 at an operating frequency of 28 GHz. The scanning angles (theta) are 0 degrees, 20 degrees, and 40 degrees, respectively. Radiation pattern. 11 is an antenna gain characteristic of the antenna array of FIG. 9 in different scanning angles in the XZ plane. When the value of the abscissa is -90 吋, the scan angles corresponding to the curves from top to bottom are 50 degrees, 40 degrees, 30 degrees, 0 degrees, 10 degrees, and 20 degrees, respectively. It can be seen from Figures 10a, 10b, 10c and 11 that the millimeter wave antenna array also has good beamforming and beam scanning characteristics.
[0077] 本实施例的另一具体实施方式为, 如图 12所示, 将长方形缝隙天线的一部分设 在后壳体 11上, 另一部分设在侧壳体 12上, 所述长方形缝隙天线的长度为所述 长方形缝隙天线工作频率所对应波长的 1/2, 缝隙天线的宽度可根据需要进行设 定, 优选宽度为 0.01-2mm, 进一步优选 0.5mm, 相邻两个缝隙天线之间的间距为 所述缝隙天线工作频率所对应波长的 1/2~1。 此吋在后壳体 11上的缝隙天线与在 侧壳体 12上的缝隙天线垂直, 因此也能在远场产生较为均匀的辐射, 图中的天 线阵列包含了 8个长方形缝隙天线。 图 13a、 图 13b和图 13c分别为图 12所示的长方 形缝隙天线阵列在工作频率为 28GHz、 扫描角度 (theta) 分别为 0度, 20度和 40 度情况下天线阵列的 3维远场辐射图。 图 14为图 12所示天线阵列在 XZ平面内不同 扫描角度情况下的天线增益特性。 当横坐标的数值为 -90吋, 从上往下的曲线对 应的扫描角分别为 50度、 40度、 30度、 0度、 10度和 20度。 从图 13a、 图 13b、 图 1 3c和图 14中可以看出所述长方形的毫米波天线阵列也具有很好的波束成形与波束 扫描的特性。 [0077] Another embodiment of the present embodiment is that, as shown in FIG. 12, a part of the rectangular slot antenna is disposed on the rear case 11 and another part is disposed on the side case 12, and the rectangular slot antenna is The length is 1/2 of the wavelength corresponding to the operating frequency of the rectangular slot antenna, and the width of the slot antenna can be set as needed, preferably having a width of 0.01-2 mm, further preferably 0.5 mm, and a spacing between adjacent slot antennas. It is 1/2~1 of the wavelength corresponding to the working frequency of the slot antenna. The slot antenna on the rear housing 11 is perpendicular to the slot antenna on the side housing 12 and thus produces relatively uniform radiation in the far field. The antenna array in the figure contains eight rectangular slot antennas. 13a, 13b, and 13c are three-dimensional far-field radiation of the antenna array of the rectangular slot antenna array shown in FIG. 12 at an operating frequency of 28 GHz and a scan angle of the degrees of 0, 20, and 40 degrees, respectively. Figure. Fig. 14 is an antenna gain characteristic of the antenna array of Fig. 12 in different scanning angles in the XZ plane. When the value of the abscissa is -90 吋, the scan angles from top to bottom are 50 degrees, 40 degrees, 30 degrees, 0 degrees, 10 degrees, and 20 degrees, respectively. It can be seen from Fig. 13a, Fig. 13b, Fig. 13c and Fig. 14 that the rectangular millimeter wave antenna array also has excellent beamforming and beam scanning characteristics.
[0078] 图 15为图 1、 图 9和图 12所示的天线阵列在 YZ平面内的远场特性增益分布比较 图。 图中实线表示图 1所示的天线阵列, 包含倒三角的虚线表示图 9所示的天线 阵列, 包含方形的虚线表示图 12所示的天线阵列。  15 is a comparison diagram of the far field characteristic gain distribution of the antenna array shown in FIGS. 1, 9, and 12 in the YZ plane. [0078] FIG. The solid line in the figure indicates the antenna array shown in Fig. 1. The broken line including the inverted triangle indicates the antenna array shown in Fig. 9, and the dotted line including the square indicates the antenna array shown in Fig. 12.
[0079] 如图 16所示, 在另一具体实施方式中, T形的天线阵列 1全部位于后壳体 11上。 As shown in FIG. 16, in another embodiment, the T-shaped antenna array 1 is entirely located on the rear case 11.
[0080] 如图 17所示, 在另一具体实施方式中, T形的天线阵列 1全部位于侧壳体 12上。 As shown in FIG. 17, in another embodiment, the T-shaped antenna array 1 is entirely located on the side casing 12.
[0081] 图 18为图 1、 图 16与图 17所示的天线阵列在 YZ平面内的远场特性增益分布比较 图。 图中实线表示图 1所示的天线阵列, 包含正三角的虚线表示图 16所示的天线 阵列, 包含正方形的虚线表示图 17所示的天线阵列。 从图 15和图 18中可以看出 , 由于天线阵列在金属机身上分布位置的不同, 其相应的天线阵列的远场辐射 分布也存在一定的差异。 比如, 当天线阵列 1的一部分分布在后壳体 11上, 另一 部分分布在侧壳体 12上吋, 无论天线辐射单元为长方形缝隙或者是 T字形缝隙, 天线阵列的远场辐射方向具有很高的相似性。 设计者可以利用上述的差异特点 , 在具体的应用环境下对天线阵列的分布形式进行相应的选择。 18 is a comparison of far field characteristic gain distributions of the antenna arrays shown in FIGS. 1, 16, and 17 in the YZ plane. Figure. The solid line in the figure indicates the antenna array shown in Fig. 1. The dotted line including the positive triangle indicates the antenna array shown in Fig. 16, and the dotted line including the square indicates the antenna array shown in Fig. 17. As can be seen from FIG. 15 and FIG. 18, due to the difference in the distribution positions of the antenna array on the metal body, the far-field radiation distribution of the corresponding antenna array also has a certain difference. For example, when a part of the antenna array 1 is distributed on the rear case 11 and another part is distributed on the side case 12, the far field radiation direction of the antenna array is high regardless of whether the antenna radiating element is a rectangular slit or a T-shaped slit. Similarity. The designer can use the above differences to select the distribution pattern of the antenna array in a specific application environment.
[0082] 虽然实施例一和实施例二以 28GHz的毫米波频段作为具体实施例进行说明, 本 发明方案中提出的缝隙天线阵列也适用于其它毫米波频段, 在这里就不一一赘 述。 Although the first embodiment and the second embodiment are described with the 28 GHz millimeter wave band as a specific embodiment, the slot antenna array proposed in the solution of the present invention is also applicable to other millimeter wave bands, which will not be described herein.
[0083] 综上所述, 本发明提供的基于金属机身的毫米波阵列天线***, 适用于金属机 身的移动终端, 并且构成天线阵列的缝隙天线的尺寸较小, 不会影响移动终端 的整体性。  [0083] In summary, the metal body-based millimeter wave array antenna system provided by the present invention is applicable to a mobile terminal of a metal body, and the size of the slot antenna constituting the antenna array is small, and does not affect the mobile terminal. Integrity.

Claims

权利要求书 Claim
一种基于金属机身的毫米波阵列天线***, 其特征在于, 包括金属机 身和阵列天线, 所述阵列天线设在所述金属机身上; 所述阵列天线包 括两个以上缝隙天线, 所述缝隙天线嵌设在所述金属机身内。 A millimeter wave array antenna system based on a metal body, comprising: a metal body and an array antenna, wherein the array antenna is disposed on the metal body; the array antenna includes two or more slot antennas, The slot antenna is embedded in the metal body.
根据权利要求 1所述的基于金属机身的毫米波阵列天线***, 其特征 在于, 所述金属机身上设有一电介质层, 所述缝隙天线通过所述电介 质层连接一微带线进行馈电。 The metal body-based millimeter wave array antenna system according to claim 1, wherein the metal body is provided with a dielectric layer, and the slot antenna is connected to the microstrip line through the dielectric layer for feeding .
根据权利要求 2所述的基于金属机身的毫米波阵列天线***, 其特征 在于, 靠近所述缝隙天线一端的金属机身上设有一导电柱, 所述微带 线的末端通过所述导电柱进行接地。 The metal body-based millimeter wave array antenna system according to claim 2, wherein a metal pillar is disposed on a metal body near one end of the slot antenna, and an end of the microstrip line passes through the conductive pillar Ground it.
根据权利要求 3所述的基于金属机身的毫米波阵列天线***, 其特征 在于, 所述金属机身包括后壳体, 所述天线阵列设于所述后壳体上。 根据权利要求 3所述的基于金属机身的毫米波阵列天线***, 其特征 在于, 所述金属机身包括侧壳体, 所述天线阵列设于所述侧壳体上。 根据权利要求 3所述的基于金属机身的毫米波阵列天线***, 其特征 在于, 所述金属机身包括后壳体和侧壳体, 所述缝隙天线的部分设于 所述侧壳体上, 所述缝隙天线未设于所述侧壳体上的部分设于所述后 壳体上。 The metal body-based millimeter wave array antenna system according to claim 3, wherein the metal body comprises a rear case, and the antenna array is disposed on the rear case. The metal body-based millimeter wave array antenna system according to claim 3, wherein the metal body comprises a side case, and the antenna array is disposed on the side case. The metal body-based millimeter wave array antenna system according to claim 3, wherein the metal body comprises a rear case and a side case, and a portion of the slot antenna is disposed on the side case The portion of the slot antenna not disposed on the side housing is disposed on the rear housing.
根据权利要求 1-6任一项所述的基于金属机身的毫米波阵列天线*** , 其特征在于, 所述缝隙天线包括长条形的第一缝隙分支和第二缝隙 分支; 所述第二缝隙分支的一端与第一缝隙分支的中间区域连接, 另 一端远离第一缝隙分支。 The metal body-based millimeter wave array antenna system according to any one of claims 1 to 6, wherein the slot antenna includes an elongated first slot branch and a second slot branch; One end of the slit branch is connected to the intermediate portion of the first slit branch, and the other end is away from the first slit branch.
根据权利要求 7所述的基于金属机身的毫米波阵列天线***, 其特征 在于, 所述第一缝隙分支和第二缝隙分支均为矩形分支, 所述第一缝 隙分支的长度为所述缝隙天线工作频率所对应波长的 1/2; 所述第二 缝隙分支的长度为所述缝隙天线工作频率所对应波长的 1/4。 The metal body-based millimeter wave array antenna system according to claim 7, wherein the first slit branch and the second slit branch are rectangular branches, and the length of the first slit branch is the slit The wavelength of the antenna corresponding to the operating frequency is 1/2; the length of the second slot branch is 1/4 of the wavelength corresponding to the operating frequency of the slot antenna.
根据权利要求 1-6任一项所述的基于金属机身的毫米波阵列天线*** , 其特征在于, 所述缝隙天线为长方形缝隙天线, 所述缝隙天线的长 度为所述缝隙天线工作频率所对应波长的 1/2。 The metal body-based millimeter wave array antenna system according to any one of claims 1 to 6, wherein the slot antenna is a rectangular slot antenna, and the slot antenna is long. The degree is 1/2 of the wavelength corresponding to the operating frequency of the slot antenna.
[权利要求 10] 根据权利要求 1-6、 8任一项所述的基于金属机身的毫米波阵列天线系 统, 其特征在于, 相邻两个缝隙天线之间的间距为所述缝隙天线工作 频率所对应波长的 1/2~1。 [Claim 10] The metal body-based millimeter wave array antenna system according to any one of claims 1-6, wherein the spacing between adjacent two slot antennas is the slot antenna operation 1/2~1 of the wavelength corresponding to the frequency.
PCT/CN2017/081811 2017-01-03 2017-04-25 Millimeter wave array antenna system based on metal fuselage WO2018126563A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710002349.2A CN108270080A (en) 2017-01-03 2017-01-03 Millimeter wave array antenna system based on metal fuselage
CN201710002349.2 2017-01-03

Publications (1)

Publication Number Publication Date
WO2018126563A1 true WO2018126563A1 (en) 2018-07-12

Family

ID=62771526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081811 WO2018126563A1 (en) 2017-01-03 2017-04-25 Millimeter wave array antenna system based on metal fuselage

Country Status (2)

Country Link
CN (1) CN108270080A (en)
WO (1) WO2018126563A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3817135A1 (en) * 2019-10-30 2021-05-05 Beijing Xiaomi Mobile Software Co., Ltd. Metal middle frame, millimeter-wave antenna structure, and mobile terminal
US11005190B1 (en) 2019-10-30 2021-05-11 Wistron Corp. Antenna array
EP3828999A4 (en) * 2018-07-24 2021-08-04 Vivo Mobile Communication Co., Ltd. Terminal device
EP3828995A4 (en) * 2018-07-24 2021-08-04 Vivo Mobile Communication Co., Ltd. Terminal device
EP3828998A4 (en) * 2018-07-24 2021-08-04 Vivo Mobile Communication Co., Ltd. Terminal device
EP3852195A4 (en) * 2018-09-14 2021-11-10 Vivo Mobile Communication Co., Ltd. Terminal device antenna
EP3852194A4 (en) * 2018-09-14 2021-11-17 Vivo Mobile Communication Co., Ltd. Terminal device antenna
EP4235960A4 (en) * 2020-12-04 2024-04-24 Samsung Electronics Co Ltd Electronic apparatus comprising antenna

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108987943B (en) * 2018-07-24 2021-04-06 维沃移动通信有限公司 Millimeter wave wireless terminal equipment
CN109066068B (en) * 2018-07-24 2021-03-02 Oppo广东移动通信有限公司 Antenna assembly and electronic equipment
CN109088160B (en) * 2018-08-12 2020-11-20 瑞声科技(南京)有限公司 Antenna system and mobile terminal
CN109119746A (en) * 2018-08-23 2019-01-01 北京小米移动软件有限公司 Terminal shell and terminal
CN109216942B (en) * 2018-09-11 2023-12-19 深圳市信维通信股份有限公司 5G millimeter wave mobile terminal antenna system based on metal frame
KR20210004754A (en) * 2019-07-05 2021-01-13 삼성전자주식회사 Antenna structure and electronic device including the same
CN111463549A (en) * 2020-04-10 2020-07-28 维沃移动通信有限公司 Electronic equipment
CN113555692B (en) * 2020-04-23 2023-02-03 华为技术有限公司 Electronic equipment
CN111403897A (en) * 2020-04-29 2020-07-10 上海矽杰微电子有限公司 Millimeter wave antenna and millimeter wave antenna embedded into metal shell
CN116565566A (en) * 2022-01-27 2023-08-08 Oppo广东移动通信有限公司 Antenna assembly and electronic equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020027528A1 (en) * 2000-09-01 2002-03-07 Hiroshi Okabe Wireless handset using a slot antenna
CN101897079A (en) * 2007-12-18 2010-11-24 苹果公司 The dual-band antenna that is used for the slit with angulation of mancarried electronic aid
CN102074803A (en) * 2009-11-20 2011-05-25 联想(北京)有限公司 Microstrip-fed slot antenna and mobile terminal
CN103872430A (en) * 2012-12-07 2014-06-18 联想(北京)有限公司 Electronic device, antenna and method for making antenna
CN105552521A (en) * 2015-12-09 2016-05-04 广东欧珀移动通信有限公司 Antenna and electronic terminal comprising same
CN105576379A (en) * 2015-03-31 2016-05-11 酷派软件技术(深圳)有限公司 Terminal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203134960U (en) * 2013-03-18 2013-08-14 东莞宇龙通信科技有限公司 Mobile terminal antenna and mobile terminal
ES2657405T3 (en) * 2013-08-09 2018-03-05 Huawei Device (Dongguan) Co., Ltd. Antenna and terminal of printed circuit board
US20150116161A1 (en) * 2013-10-28 2015-04-30 Skycross, Inc. Antenna structures and methods thereof for determining a frequency offset based on a signal magnitude measurement
CN105226371B (en) * 2014-05-26 2019-02-26 比亚迪股份有限公司 Antenna system for electronic equipment and electronic equipment with the antenna system
CN205657168U (en) * 2016-04-29 2016-10-19 广东欧珀移动通信有限公司 Metal casing , antenna device and mobile terminal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020027528A1 (en) * 2000-09-01 2002-03-07 Hiroshi Okabe Wireless handset using a slot antenna
CN101897079A (en) * 2007-12-18 2010-11-24 苹果公司 The dual-band antenna that is used for the slit with angulation of mancarried electronic aid
CN102074803A (en) * 2009-11-20 2011-05-25 联想(北京)有限公司 Microstrip-fed slot antenna and mobile terminal
CN103872430A (en) * 2012-12-07 2014-06-18 联想(北京)有限公司 Electronic device, antenna and method for making antenna
CN105576379A (en) * 2015-03-31 2016-05-11 酷派软件技术(深圳)有限公司 Terminal
CN105552521A (en) * 2015-12-09 2016-05-04 广东欧珀移动通信有限公司 Antenna and electronic terminal comprising same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3828999A4 (en) * 2018-07-24 2021-08-04 Vivo Mobile Communication Co., Ltd. Terminal device
EP3828995A4 (en) * 2018-07-24 2021-08-04 Vivo Mobile Communication Co., Ltd. Terminal device
EP3828998A4 (en) * 2018-07-24 2021-08-04 Vivo Mobile Communication Co., Ltd. Terminal device
US11962066B2 (en) 2018-07-24 2024-04-16 Vivo Mobile Communication Co., Ltd. Terminal device
EP3852195A4 (en) * 2018-09-14 2021-11-10 Vivo Mobile Communication Co., Ltd. Terminal device antenna
EP3852194A4 (en) * 2018-09-14 2021-11-17 Vivo Mobile Communication Co., Ltd. Terminal device antenna
EP3817135A1 (en) * 2019-10-30 2021-05-05 Beijing Xiaomi Mobile Software Co., Ltd. Metal middle frame, millimeter-wave antenna structure, and mobile terminal
US11005190B1 (en) 2019-10-30 2021-05-11 Wistron Corp. Antenna array
US11271288B2 (en) 2019-10-30 2022-03-08 Beijing Xiaomi Mobile Software Co., Ltd. Metal middle frame, millimeter-wave antenna structure, and mobile terminal
EP4235960A4 (en) * 2020-12-04 2024-04-24 Samsung Electronics Co Ltd Electronic apparatus comprising antenna

Also Published As

Publication number Publication date
CN108270080A (en) 2018-07-10

Similar Documents

Publication Publication Date Title
WO2018126563A1 (en) Millimeter wave array antenna system based on metal fuselage
CN108346853A (en) Antenna assembly
CN101388494B (en) Multi-antenna integrated module
WO2021013010A1 (en) Antenna unit and electronic device
TWI543444B (en) Dual-band planar inverted-f antenna
CN104134856A (en) Dual-polarization broadband antenna oscillator unit and broadband dual-polarization antenna
Palandöken Dual broadband antenna with compact double ring radiators for IEEE 802.11 ac/b/g/n WLAN communication applications
CN110380213A (en) A kind of aerial array and terminal
Zhou et al. Millimeter-wave open ended SIW antenna with wide beam coverage
JP2003174317A (en) Multi-band patch antenna and skeleton slot radiator
WO2019223318A1 (en) Indoor base station and pifa antenna thereof
CN108767448A (en) A kind of small size double frequency list feedback omnidirectional antenna
Chaimool et al. CPW-fed Antennas for WiFi and WiMAX
CN110176668B (en) Antenna unit and electronic device
CN107611587B (en) Low-profile ultra-wideband high-gain directional antenna and preparation method thereof
CN206907919U (en) A kind of unmanned plane of dual-band microstrip antenna and the application antenna
CN108172975B (en) It is a kind of using metal edge frame as the mobile terminal antenna of radiator
Chen et al. Small-size WLAN MIMO antenna array with high isolation for laptop computer application
Moeikham et al. A compact printed slot antenna with high out-of-band rejection for WLAN/WiMAX applications
Zhu et al. A Dual‐Broadband Printed Dipole Antenna for 2G/3G/4G Base Station Applications
CN116264354A (en) Dual polarized omnidirectional indoor antenna
CN210640366U (en) Microwave millimeter wave cross-frequency band double-frequency dual-polarization microstrip radiating unit
CN211980887U (en) Ultra-wideband omnidirectional antenna binary array
CN210607616U (en) Large-frequency-ratio cavity-backed antenna based on SIW
CN105633562A (en) Dual-band antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889919

Country of ref document: EP

Kind code of ref document: A1