WO2018124374A1 - Earth leakage circuit breaker for electric vehicle charger - Google Patents

Earth leakage circuit breaker for electric vehicle charger Download PDF

Info

Publication number
WO2018124374A1
WO2018124374A1 PCT/KR2017/001344 KR2017001344W WO2018124374A1 WO 2018124374 A1 WO2018124374 A1 WO 2018124374A1 KR 2017001344 W KR2017001344 W KR 2017001344W WO 2018124374 A1 WO2018124374 A1 WO 2018124374A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
diagnostic
load
leakage
transmission line
Prior art date
Application number
PCT/KR2017/001344
Other languages
French (fr)
Korean (ko)
Inventor
최지현
최승우
Original Assignee
엘에스산전 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스산전 주식회사 filed Critical 엘에스산전 주식회사
Publication of WO2018124374A1 publication Critical patent/WO2018124374A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to an earth leakage breaker, and more particularly, to an earth leakage breaker of an electric vehicle charger capable of performing self-diagnosis in real time in an electric vehicle charger.
  • Electric vehicles or hybrid vehicles require electric energy to drive a motor used to drive the vehicle, which is supplied through a battery.
  • Batteries used in electric vehicles or hybrid vehicles are mainly composed of secondary batteries capable of repeating a discharge process of converting chemical energy into electrical energy and a charging process of converting electrical energy into chemical energy.
  • Secondary batteries include nickel cadmium batteries, nickel hydrogen batteries, lithium ion batteries and lithium ion polymer batteries.
  • the battery of the electric vehicle is to be charged with electrical energy of high potential
  • the battery and its management device should be kept insulated from other external devices.
  • a leakage current is generated. If a leakage current is generated, it may primarily cause discharge of the battery and malfunction or failure of the electronic devices equipped with the battery.
  • the charging device of the electric vehicle is provided with an earth leakage blocking device that can automatically detect the leakage current to cut off the circuit.
  • FIG. 1 is a view showing an earth leakage breaker of a conventional electric vehicle charger.
  • a ground fault interrupting device 20 of a conventional electric vehicle charger is disposed between an external power source 10 and a load 30.
  • the external power source 10 is a current source or a voltage source for charging the battery of the electric vehicle.
  • the load 30 is a battery of an electric vehicle.
  • the ground fault interrupting device 20 includes a switch unit 21, a ground fault sensor 22, a control unit 23, a display unit 24, and a diagnostic unit 25.
  • the switch unit 21 includes a first switch SW1 and a second switch SW2 connected to each of a plurality of lines through which current is transmitted from the external power source 10.
  • the first switch SW1 and the second switch SW2 are opened and closed under the control of the controller 23.
  • the earth leakage sensor 22 is disposed to surround a plurality of lines between the switch unit 21 and the load 30, and detects a leakage current by using a difference in current flowing through the plurality of lines.
  • the controller 23 determines whether the current is leaked based on the signal output from the ground fault sensor 22.
  • the control unit 23 controls the opening and closing operation of the switch unit 21 and the display operation of the display unit 24 according to the determination result.
  • the diagnosis unit 25 self-diagnoses the operating states of the ground fault interrupting device 20, that is, the ground fault sensor 22 and the control unit 23.
  • the diagnosis unit 25 configures one line connecting the external power source 10 and the load 30 by the third switch SW3.
  • the third switch SW3 closes by differentiating the amount of current applied from the external power supply 10 to the load 30 and the amount of current fed back from the load 30, the ground fault sensor 22 detects this.
  • the control unit 23 diagnoses whether the switch unit 21 is properly opened or closed.
  • the earth leakage breaker 20 of the conventional electric vehicle charger detects a leakage current between the external power source 10 and the load 30 and cuts off the connection thereof, thereby causing malfunction or failure of electronic devices or damage to the user. Will be prevented.
  • the conventional ground fault interrupting device 20 is configured by being connected to a plurality of lines for transmitting the current from the external power supply 10 to the load 30 by the diagnostic section 25, and thus, the circuit breaker by the diagnostic section 25. There is difficulty in self-diagnosis of the device 20.
  • the diagnostic unit 25 in order to operate the diagnostic unit 25 in the conventional earth leakage breaker 20, a predetermined diagnostic current must be transmitted through a plurality of lines from the external power source 10. Therefore, when the diagnosis unit 25 performs the self-diagnosis while the load 30 is connected to a plurality of lines, the load 30 may cause device damage such as a charging failure. Therefore, in order to prevent damage to the load 30, the third switch SW3 of the diagnosis unit 25 is opened and closed for a very short time, so that it is difficult to accurately diagnose the operating state of the ground fault interrupting device 20, and also the life of the switch. Problems also occur. This lowers the operation reliability of the ground fault interrupting device 20.
  • An electric leakage blocking device of an electric vehicle charger includes a plurality of switches connected to a current transmission line and a feedback transmission line between an external power source and a load; A diagnostic unit connected to the diagnostic line and outputting a diagnostic current; An electric leakage sensor disposed surrounding the current transmission line, the feedback transmission line, and the diagnostic line, and detecting a leakage current from the current transmission line, the feedback transmission line, and the diagnostic line; And a control unit controlling the connection of the external power source and the load by controlling the opening / closing operation of the plurality of switches according to a result of comparing the leakage current with a reference value.
  • the diagnostic line is only connected to the diagnostic unit.
  • the diagnostic current is an alternating current having a level equal to or higher than the reference value.
  • the diagnostic unit includes a first signal generator and a second signal generator commonly connected to the diagnostic line, the first signal generator outputs an AC current as a first diagnostic current, and the second signal generator includes a DC current. Is output as the second diagnostic current.
  • the first and second diagnostic currents have a level equal to or greater than the reference value.
  • the first and second diagnostic currents are sequentially output.
  • the diagnostic unit outputs the diagnostic current during the charging preparation section of the load or outputs the diagnostic current in the charging section of the load.
  • the plurality of switches includes a first switch connected to the current transmission line and a second switch connected to the feedback transmission line, and the control unit simultaneously opens and closes the first switch and the second switch according to the comparison result.
  • the earth leakage breaker of the electric vehicle charger is provided with a diagnostic unit connected to a separate diagnostic line, the diagnostic unit outputs a diagnostic current through the diagnostic line, the self-diagnosis operation state of the earth leakage sensor and the control unit can do.
  • the earth leakage breaker does not need to apply a leakage current to the current transmission line through which the charging current is transmitted for self-diagnosis, thereby preventing damage to the load due to self-diagnosis.
  • FIG. 1 is a view showing an earth leakage breaker of a conventional electric vehicle charger.
  • FIG. 2 is a diagram illustrating a configuration of an earth leakage breaker according to an exemplary embodiment of the present invention.
  • FIG. 3 is a view illustrating an operation of the ground fault interrupting device of FIG. 2.
  • FIG. 4 is a diagram illustrating a configuration of an earth leakage breaker according to another exemplary embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an operation of the earth leakage breaker of FIG. 4.
  • FIG. 2 is a diagram illustrating a configuration of an earth leakage breaker according to an exemplary embodiment of the present invention.
  • the earth leakage breaker 100 of the present embodiment is configured inside the charger of the electric vehicle, it may be disposed between the external power source 10 and the load 30.
  • the earth leakage breaker 100 may protect the load 30 from an overvoltage caused by leakage of current flowing through a plurality of lines from the external power source 10.
  • the earth leakage blocking device 100 may include a switch unit 110, an earth leakage sensor 120, a control unit 130, a display unit 140, and a diagnosis unit 150.
  • the switch unit 110 may control a connection between the external power source 10 and the load 30.
  • the switch unit 110 may include a plurality of switches, for example, a first switch SW1 and a second switch SW2.
  • the first switch SW1 and the second switch SW2 may be opened and closed under the control of the controller 130 to electrically connect the external power source 10 and the load 30.
  • the first switch SW1 may be connected to a current transmission line IL connecting between the external power source 10 and the load 30.
  • the first switch SW1 may be opened or closed according to the switching control signal SCS provided by the controller 130.
  • SCS switching control signal
  • the second switch SW2 may be connected to a feedback transmission line FL connecting the external power source 10 and the load 30.
  • the second switch SW2 may be opened or closed according to the switching control signal SCS provided by the controller 130.
  • SCS switching control signal
  • the first switch SW1 and the second switch SW2 may be simultaneously switched to open and close.
  • the earth leakage sensor 120 may be disposed between the switch unit 110 and the load 30 to surround a plurality of lines, for example, a current transmission line IL, a feedback transmission line FL, and a diagnostic line TL. .
  • the earth leakage sensor 120 may detect a leakage current by using a difference in current flowing through a plurality of lines.
  • the earth leakage sensor 120 may output the detected leakage current to the controller 130.
  • the earth leakage sensor 120 may be configured as an image current transformer.
  • the controller 130 may compare the leakage current value detected by the ground fault sensor 120 with a preset reference value.
  • the controller 130 may output a control signal, that is, a switching control signal SCS, to the switch unit 110 according to the comparison result.
  • the controller 130 may output the display control signal DCS to the display unit 140 according to the comparison result.
  • an input current flows through the current transmission line IL, and an output current flows through the feedback transmission line FL.
  • their magnitude is the same and the direction of current is reversed. Therefore, since the magnetic flux generated by each current cancel each other, the earth leakage sensor 120 outputs a leakage current corresponding to 0 to the controller 130.
  • the controller 130 determines whether the line is leaked by converting the leakage current output from the ground fault sensor 120 into a voltage. Since the leakage current provided from the ground fault sensor 120 is 0, the controller 130 may determine that no leakage occurs. Therefore, the controller 130 may maintain the closed state of the switch 110.
  • the controller 130 converts the leakage current output from the ground fault sensor 120 into a voltage to determine whether the leakage occurs. At this time, the controller 130 determines that leakage occurs when the voltage according to the leakage current is greater than the preset reference value. Accordingly, the controller 130 may output the switching control signal SCS to the switch unit 110.
  • the switch unit 110 opens the internal switches according to the switching control signal SCS to block the connection of the external power source 10 and the load 30.
  • the controller 130 outputs the display control signal DCS to the display unit 140.
  • the display unit 140 displays the current state, ie, leakage, to the outside according to the display control signal DCS.
  • the controller 130 may be variously implemented as a microcomputer, a controller, or a microcontroller.
  • the controller 130 may be implemented separately, and may be implemented such that one component controls some components and another component controls other components.
  • the controller 130 is divided into a first controller for controlling the ground fault sensor 120 and a second controller for determining leakage of current according to an output value of the ground fault sensor 120 and performing a corresponding control. Can be configured.
  • control unit 130 may further include a trip coil (not shown) for opening and closing operations of each switch of the switch unit 110.
  • the trip coil may be operated according to the switching control signal SCS generated by the controller 130 to open and close the first switch SW1 and the second switch SW2 of the switch unit 110.
  • the display unit 140 may externally display a current line state, that is, a normal state or a leakage state, according to the display control signal DCS output from the controller 130.
  • the display unit 140 may be configured as a display panel for displaying a predetermined image or a lamp or LED for emitting light.
  • the diagnosis unit 150 may perform self-diagnosis of an operating state of the ground fault interrupting device 100, that is, an operating state of the ground fault sensor 120 and the controller 130.
  • the diagnosis unit 150 may include a resistance element R and a signal generator 155 connected to the diagnosis line TL surrounded by the ground fault sensor 120.
  • the diagnostic line TL is connected only to the diagnosis unit 150.
  • the signal generator 155 of the diagnostic unit 150 may output a diagnostic current having a predetermined magnitude to the diagnostic line TL through the resistor R.
  • FIG. Due to such a diagnosis current a magnetic flux deviation due to a current difference is generated in a plurality of lines, that is, the current transmission line IL, the feedback transmission line FL, and the diagnostic line TL. Therefore, the ground fault sensor 120 may detect a leakage current according to the magnetic flux deviation and output it to the controller 130. Thereafter, the operation of the controller 130 may be the same as described above.
  • the diagnostic current output from the signal generator 155 of the diagnostic unit 150 may have a level substantially equal to or higher than the reference value set in the controller 130.
  • the signal generator 155 may be configured as a micro controller (MCU) for outputting a pulse width modulated signal PWM.
  • the signal generator 155 may output the diagnostic current in a specific operation section of the electric vehicle charger or output the diagnostic current at all times according to external control.
  • the earth leakage breaker 100 of the present embodiment is provided with a diagnostic unit 150 for self-diagnosis of the operating state
  • the diagnostic unit 150 may be configured to be connected to a separate diagnostic line (TL). have. Therefore, in the self-diagnosis of the ground fault interrupting device 100, a leakage current for self-diagnosis does not flow into a line between the external power supply 10 and the load 30, that is, the current transmission line IL and the feedback transmission line FL. Since it is not necessary, damage to the load 30 due to self-diagnosis can be prevented.
  • the diagnosis unit 150 since the diagnosis unit 150 is configured to be connected to a separate diagnosis line TL, the self-diagnosis of the ground fault interrupting device 100 may be performed in real time.
  • FIG. 3 is a view illustrating an operation of the ground fault interrupting device of FIG. 2.
  • the load 30 is connected to the external power source 10 through the earth leakage breaker 100.
  • the first switch SW1 and the second switch SW2 of the ground fault interrupting device 100 are both turned on, that is, closed.
  • the signal generator 155 of the diagnostic unit 150 may output a diagnostic current LC_T of a predetermined magnitude through the diagnostic line TL at a specific time, for example, in a preparation section before charging of the load 30 is started.
  • the diagnostic current LC_T may be an alternating current having a predetermined frequency band, for example, 50 to 60 Hz frequency band.
  • the diagnostic current LC_T may be substantially the same level or higher than the reference values Ref1 and Ref2 set in the controller 130.
  • the diagnostic current LC_T may be output for several ms.
  • the diagnostic current LC_T flows through the diagnostic line TL, a magnetic flux deviation occurs in the current transmission line IL, the feedback transmission line FL, and the diagnostic line TL surrounded by the ground fault sensor 120. .
  • the earth leakage sensor 120 may detect this and output it to the controller 130.
  • the ground fault sensor 120 detects the magnetic flux deviation generated by the diagnostic current LC_T. The leaked current may be output to the controller 130.
  • the controller 130 may determine whether the leakage is based on the leakage current provided from the ground fault sensor 120. Since the diagnostic current LC_T has a level equal to or greater than the reference values Ref1 and Ref2 set in the controller 130, the controller 130 may determine that leakage has occurred.
  • the controller 130 may output the switching control signal SCS and the display control signal DCS according to the leakage determination.
  • the reference values Ref1 and Ref2 may include a positive reference value Ref1 and a negative reference value Ref2.
  • the switch unit 110 turns off the first switch SW1 and the second switch SW2 in response to the switching control signal SCS to open the first switch SW1 and the second switch SW2 to cut off the connection between the external power source 10 and the load 30. Let's do it.
  • the display unit 140 externally indicates that leakage has occurred in response to the display control signal DCS.
  • the earth leakage breaker 100 outputs a diagnosis current LC_T through the diagnosis unit 150 in the charge preparation section before the charge of the load 30 is started, thereby causing the earth leakage sensor 120. And an operating state of the controller 130. Therefore, the ground fault interrupting device 100 determines the leakage of the line by operating the ground fault sensor 120 and the controller 130 normally in the charging section in which the actual charge of the load 30 is made, and accordingly, the external power source 10. And control the connection between the load 30. Therefore, the operation reliability of the ground fault interrupting device 100 can be improved.
  • diagnosis unit 150 may output the diagnosis current LC_T in the charging section of the load 30 to diagnose the operating state of the ground fault sensor 120 and the controller 130 in real time.
  • FIG. 4 is a diagram illustrating a configuration of an earth leakage breaker according to another exemplary embodiment of the present invention.
  • the earth leakage breaker 101 is configured inside the charger of the electric vehicle, and may be disposed between the external power source 10 and the load 30.
  • the earth leakage blocking device 101 may include a switch unit 110, an earth leakage sensor 120, a control unit 130, a display unit 140, and a diagnosis unit 151.
  • the switch unit 110 may include a first switch SW1 and a second switch SW2 that are opened and closed under the control of the controller 130 to electrically connect the external power source 10 and the load 30.
  • the first switch SW1 may be connected to the current transmission line IL
  • the second switch SW2 may be connected to the feedback transmission line FL.
  • the earth leakage sensor 120 may be disposed surrounding the current transmission line IL, the feedback transmission line FL, and the diagnostic line TL.
  • the earth leakage sensor 120 may detect a leakage current and output the leakage current to the controller 130.
  • the controller 130 compares the leakage current provided from the ground fault sensor 120 with a reference value, determines whether there is leakage according to the result, and outputs a switching control signal SCS and a display control signal DCS according to the determination result. Can be.
  • the display unit 140 may display a normal state or a leaked state to the outside according to the display control signal DCS provided from the controller 130.
  • the diagnosis unit 151 may self-diagnose operation states of the earth leakage sensor 120 and the controller 130 of the earth leakage blocking device 101.
  • the diagnosis unit 151 may include a first signal generator 156, a second signal generator 157, and resistance elements commonly connected to the diagnostic line TL, such as the first resistor R1 and the second resistor R2. ) May be included.
  • the diagnostic line TL may be connected only to the diagnosis unit 151.
  • the first signal generator 156 of the diagnostic unit 151 may output the first diagnostic current to the diagnostic line TL through the first resistor R1.
  • the first diagnostic current may be an alternating current.
  • the second signal generator 157 of the diagnostic unit 151 may output the second diagnostic current to the diagnostic line TL through the second resistor R2.
  • the second diagnostic current may be a direct current.
  • the first signal generator 156 and the second signal generator 157 may be operated simultaneously to simultaneously output the first and second diagnostic currents or sequentially output the first and second diagnostic currents, respectively. .
  • the magnetic flux deviation due to the current difference is generated in the current transmission line IL, the feedback transmission line FL, and the diagnostic line TL by the first diagnostic current and the second diagnostic current output from the diagnosis unit 151. Therefore, the ground fault sensor 120 may detect a leakage current according to the magnetic flux deviation and output it to the controller 130. Thereafter, the operation of the controller 130 may be the same as described above.
  • the first diagnostic current and the second diagnostic current may have a level substantially equal to or higher than the reference value set in the controller 130.
  • FIG. 5 is a diagram illustrating an operation of the earth leakage breaker of FIG. 4.
  • the load 30 is connected to the external power source 10 through the earth leakage breaker 101.
  • the first switch SW1 and the second switch SW2 of the ground fault interrupting device 101 are both turned on, that is, closed.
  • the first signal generation unit 156 and the second signal generation unit 157 of the diagnosis unit 151 have a first diagnosis current LC_T1 of a predetermined magnitude in a charging preparation section before charging of the load 30 is started. And a second diagnostic current LC_T2 to the diagnostic line TL.
  • the first diagnostic current LC_T1 is an AC current having a level substantially the same as or higher than the reference values Ref1 and Ref2 set in the controller 130.
  • the second diagnostic current LC_T2 is a DC current having a level substantially the same as or higher than the reference values Ref1 and Ref2 set in the controller 130.
  • the first diagnostic current LC_T1 and the second diagnostic current LC_T2 may be sequentially output or simultaneously output.
  • the first diagnostic current LC_T1 and the second diagnostic current LC_T2 may be output for several ms, respectively.
  • the earth leakage sensor 120 may detect this and output it to the controller 130.
  • the ground fault sensor 120 since the external power supply 10 does not apply a current to the current transmission line IL, that is, a charging current of the load 30, the ground fault sensor 120 has a first diagnostic current LC_T1 or a second diagnostic current LC_T2. ) May output the detected leakage current to the controller 130.
  • the controller 130 may determine whether the leakage is based on the leakage current provided from the ground fault sensor 120. Since the first diagnostic current LC_T1 and the second diagnostic current LC_T2 have the same or higher level than the reference values Ref1 and Ref2 set in the controller 130, the controller 130 determines that leakage has occurred. can do.
  • the diagnosis unit 151 may sequentially output the first diagnostic current LC_T1 and the second diagnostic current LC_T2. Therefore, the controller 130 checks whether the line is leaked from the leakage current provided from the ground fault sensor 120 according to the first diagnostic current LC_T1 and the leakage current provided from the ground fault sensor 120 according to the second diagnostic current LC_T2. Each can be judged.
  • the controller 130 may output the switching control signal SCS and the display control signal DCS according to the leakage determination.
  • the reference values Ref1 and Ref2 may include positive reference values Ref1 and Ref2 and negative reference values Ref1 and Ref2.
  • the switch unit 110 turns off the first switch SW1 and the second switch SW2 in response to the switching control signal SCS to open the first switch SW1 and the second switch SW2 to cut off the connection between the external power source 10 and the load 30. Let's do it.
  • the display unit 140 externally indicates that leakage has occurred in response to the display control signal DCS.
  • the earth leakage breaker 101 uses the first diagnosis current LC_T1 and the second diagnosis current through the diagnosis unit 151 in the charge preparation section before the charging of the load 30 is started.
  • LC_T2 By outputting (LC_T2), it is possible to diagnose the operating state of the ground fault sensor 120 and the controller 130. Therefore, the ground fault interrupting device 101 determines whether the ground fault sensor 120 and the control unit 130 are normally operated in the charging section in which the actual charging of the load 30 is performed, and thus determines the leakage of the line. And control the connection between the load 30.
  • this embodiment is described as an example in which the diagnostic unit 151 operates in the charge preparation section of the load 30, but is not limited thereto.
  • the diagnosis unit 151 may output the diagnosis currents LC_T1 and LC_T2 in the charging section of the load 30 to diagnose the operating states of the ground fault sensor 120 and the controller 130 in real time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The present invention comprises: a plurality of switches connected respectively to a current transfer line and a feedback transfer line between an external power source and a load; a diagnostic unit connected to a diagnostic line so as to output diagnostic current; an earth leakage sensor arranged to encompass the current transfer line, the feedback transfer line, and the diagnostic line, and sensing leakage current therefrom; and a control unit controlling opening/closing operations of the plurality of switches according to a comparison result between the leakage current and a reference value so as to control the connection between the external power source and the load, and thus the present invention has an advantage of allowing an electric vehicle charger to perform a self-diagnosis in real time.

Description

전기자동차 충전기의 누전차단장치Electric leakage breaker of electric vehicle charger
본 발명은 누전차단장치에 관한 것으로, 특히 전기자동차 충전기에서 실시간으로 자가진단을 수행할 수 있는 전기자동차 충전기의 누전차단장치에 관한 것이다.The present invention relates to an earth leakage breaker, and more particularly, to an earth leakage breaker of an electric vehicle charger capable of performing self-diagnosis in real time in an electric vehicle charger.
최근, 화석 에너지의 고갈과 환경오염으로 인해 화석 에너지를 사용하지 않고 전기 에너지를 이용하는 전기자동차나 하이브리드 자동차에 대한 관심이 높아지면서 이에 대한 연구가 활발하게 진행되고 있다. 전기자동차나 하이브리드 자동차에는 자동차의 구동에 사용되는 모터를 구동시키기 위해 전기 에너지가 필요하며, 이를 배터리를 통해 공급하게 된다. Recently, due to the depletion of fossil energy and environmental pollution, the interest in electric vehicles or hybrid vehicles using electric energy without using fossil energy is increasing, and research on this is being actively conducted. Electric vehicles or hybrid vehicles require electric energy to drive a motor used to drive the vehicle, which is supplied through a battery.
전기자동차나 하이브리드 자동차에 사용되는 배터리는 화학 에너지를 전기 에너지로 변환하는 방전과, 전기에너지를 화학 에너지로 변환하는 충전 과정을 반복할 수 있는 이차 전지가 주류를 이룬다. 이차 전지는 니켈 카드뮴 전지, 니켈 수소 전지, 리튬 이온 전지 및 리튬 이온 폴리머 전지 등이 있다. Batteries used in electric vehicles or hybrid vehicles are mainly composed of secondary batteries capable of repeating a discharge process of converting chemical energy into electrical energy and a charging process of converting electrical energy into chemical energy. Secondary batteries include nickel cadmium batteries, nickel hydrogen batteries, lithium ion batteries and lithium ion polymer batteries.
한편, 전기자동차의 배터리에는 고전위의 전기에너지가 충전되어야 하므로, 배터리 및 이의 관리장치는 다른 외부 장치들과 절연상태가 유지되어야 한다. 이때 배터리의 절연상태가 유지되지 못할 경우, 누설 전류가 발생하게 된다. 만약, 누설전류가 발생되는 경우에, 일차적으로는 배터리의 방전과 배터리가 장착된 전자 기기들의 오작동 및 고장의 원인이 될 수 있다. 특히, 전기자동차나 하이브리드 자동차는 고전압 배터리가 사용하므로, 배터리의 충전 중에 발생되는 누설 전류는 사용자에게 치명적인 감전피해를 줄 수 있다. 이에 따라, 전기자동차의 충전장치에는 누설전류를 감지하여 자동으로 회로를 차단할 수 있는 누전차단장치가 구비된다.On the other hand, the battery of the electric vehicle is to be charged with electrical energy of high potential, the battery and its management device should be kept insulated from other external devices. At this time, when the insulation state of the battery is not maintained, a leakage current is generated. If a leakage current is generated, it may primarily cause discharge of the battery and malfunction or failure of the electronic devices equipped with the battery. In particular, since an electric vehicle or a hybrid vehicle uses a high voltage battery, leakage current generated during charging of the battery may cause fatal electric shock to the user. Accordingly, the charging device of the electric vehicle is provided with an earth leakage blocking device that can automatically detect the leakage current to cut off the circuit.
도 1은 종래의 전기자동차 충전기의 누전차단장치를 나타내는 도면이다. 1 is a view showing an earth leakage breaker of a conventional electric vehicle charger.
도 1에 도시된 바와 같이, 종래의 전기자동차 충전기의 누전차단장치(20)는 외부전원(10)과 부하(30) 사이에 배치된다. As illustrated in FIG. 1, a ground fault interrupting device 20 of a conventional electric vehicle charger is disposed between an external power source 10 and a load 30.
외부전원(10)은 전기자동차의 배터리를 충전시키는 전류원 또는 전압원이다. 부하(30)는 전기자동차의 배터리이다. The external power source 10 is a current source or a voltage source for charging the battery of the electric vehicle. The load 30 is a battery of an electric vehicle.
누전차단장치(20)는 스위치부(21), 누전센서(22), 제어부(23), 표시부(24) 및 진단부(25)를 포함하여 구성된다. The ground fault interrupting device 20 includes a switch unit 21, a ground fault sensor 22, a control unit 23, a display unit 24, and a diagnostic unit 25.
스위치부(21)는 외부전원(10)으로부터 전류가 전송되는 다수의 라인 각각에 연결된 제1스위치(SW1) 및 제2스위치(SW2)를 포함한다. 제1스위치(SW1) 및 제2스위치(SW2)는 제어부(23)의 제어에 따라 개폐된다. The switch unit 21 includes a first switch SW1 and a second switch SW2 connected to each of a plurality of lines through which current is transmitted from the external power source 10. The first switch SW1 and the second switch SW2 are opened and closed under the control of the controller 23.
누전센서(22)는 스위치부(21)와 부하(30) 사이에서 다수의 라인을 둘러싸며 배치되고, 다수의 라인에 흐르는 전류의 차이를 이용하여 누설전류를 감지한다. The earth leakage sensor 22 is disposed to surround a plurality of lines between the switch unit 21 and the load 30, and detects a leakage current by using a difference in current flowing through the plurality of lines.
제어부(23)는 누전센서(22)에서 출력된 신호에 따라 전류의 누설여부를 판단한다. 제어부(23)는 판단 결과에 따라 스위치부(21)의 개폐동작을 제어하고, 표시부(24)의 표시동작을 제어한다. The controller 23 determines whether the current is leaked based on the signal output from the ground fault sensor 22. The control unit 23 controls the opening and closing operation of the switch unit 21 and the display operation of the display unit 24 according to the determination result.
진단부(25)는 누전차단장치(20), 즉 누전센서(22) 및 제어부(23)의 동작상태를 자가 진단한다. 진단부(25)는 제3스위치(SW3)에 의해 외부전원(10)과 부하(30)를 연결하는 하나의 라인을 구성한다. 그리고, 제3스위치(SW3)를 폐쇄(close)하여 외부전원(10)으로부터 부하(30)에 인가되는 전류량과 부하(30)로부터 피드백되는 전류량을 다르게 함으로써, 누전센서(22)가 이를 감지하고 제어부(23)에 의해 스위치부(21)가 적절히 개폐되는지를 진단한다. The diagnosis unit 25 self-diagnoses the operating states of the ground fault interrupting device 20, that is, the ground fault sensor 22 and the control unit 23. The diagnosis unit 25 configures one line connecting the external power source 10 and the load 30 by the third switch SW3. In addition, by closing the third switch SW3 (close) by differentiating the amount of current applied from the external power supply 10 to the load 30 and the amount of current fed back from the load 30, the ground fault sensor 22 detects this. The control unit 23 diagnoses whether the switch unit 21 is properly opened or closed.
이와 같이, 종래의 전기자동차 충전기의 누전차단장치(20)는 외부전원(10)과 부하(30) 사이의 누설전류를 검출하여 이들의 연결을 차단시킴으로써, 전자 기기들의 오작동 및 고장이나 사용자의 피해를 방지하게 된다. As described above, the earth leakage breaker 20 of the conventional electric vehicle charger detects a leakage current between the external power source 10 and the load 30 and cuts off the connection thereof, thereby causing malfunction or failure of electronic devices or damage to the user. Will be prevented.
그러나, 종래의 누전차단장치(20)는 진단부(25)가 외부전원(10)에서 부하(30)로 전류를 전송하는 다수의 라인에 연결되어 구성되므로, 진단부(25)에 의한 누전차단장치(20)의 자가진단 시 어려움이 있다. However, the conventional ground fault interrupting device 20 is configured by being connected to a plurality of lines for transmitting the current from the external power supply 10 to the load 30 by the diagnostic section 25, and thus, the circuit breaker by the diagnostic section 25. There is difficulty in self-diagnosis of the device 20.
다시 말해, 종래의 누전차단장치(20)에서 진단부(25)가 동작되기 위해서는 외부전원(10)에서 다수의 라인을 통해 소정의 진단전류가 전송되어야 한다. 따라서, 다수의 라인에 부하(30)가 연결된 상태에서 진단부(25)가 자가진단을 수행하게 되면, 부하(30)는 충전불량 등과 같은 장치 손상이 발생된다. 이에, 부하(30)의 손상을 방지하기 위해 매우 짧은 시간 동안 진단부(25)의 제3스위치(SW3)를 개폐하므로, 누전차단장치(20)의 정확한 동작상태 진단이 어렵고, 또한 스위치의 수명에도 문제가 발생된다. 이로 인해 누전차단장치(20)의 동작신뢰성이 저하된다.In other words, in order to operate the diagnostic unit 25 in the conventional earth leakage breaker 20, a predetermined diagnostic current must be transmitted through a plurality of lines from the external power source 10. Therefore, when the diagnosis unit 25 performs the self-diagnosis while the load 30 is connected to a plurality of lines, the load 30 may cause device damage such as a charging failure. Therefore, in order to prevent damage to the load 30, the third switch SW3 of the diagnosis unit 25 is opened and closed for a very short time, so that it is difficult to accurately diagnose the operating state of the ground fault interrupting device 20, and also the life of the switch. Problems also occur. This lowers the operation reliability of the ground fault interrupting device 20.
본 발명은 외부전원과 부하가 연결된 상태에서도 실시간으로 자가진단을 수행하여 동작신뢰성을 개선할 수 있는 전기자동차 충전기의 누전차단장치를 제공하는데 그 목적이 있다. It is an object of the present invention to provide a ground fault interrupting device for an electric vehicle charger that can improve operation reliability by performing self-diagnosis in real time even when an external power source and a load are connected.
본 발명의 일 실시 예에 따른 전기자동차 충전기의 누전차단장치는, 외부전원과 부하 사이의 전류전송라인 및 피드백전송라인에 각각 연결된 다수의 스위치; 진단라인에 연결되어 진단전류를 출력하는 진단부; 상기 전류전송라인, 피드백전송라인 및 진단라인을 둘러싸며 배치되고, 상기 전류전송라인, 피드백전송라인 및 진단라인으로부터 누설전류를 감지하는 누전센서; 및 상기 누설전류와 기준값의 비교 결과에 따라 상기 다수의 스위치의 개폐동작을 제어하여 상기 외부전원과 상기 부하의 연결을 제어하는 제어부를 포함한다. An electric leakage blocking device of an electric vehicle charger according to an exemplary embodiment of the present invention includes a plurality of switches connected to a current transmission line and a feedback transmission line between an external power source and a load; A diagnostic unit connected to the diagnostic line and outputting a diagnostic current; An electric leakage sensor disposed surrounding the current transmission line, the feedback transmission line, and the diagnostic line, and detecting a leakage current from the current transmission line, the feedback transmission line, and the diagnostic line; And a control unit controlling the connection of the external power source and the load by controlling the opening / closing operation of the plurality of switches according to a result of comparing the leakage current with a reference value.
상기 진단라인은 상기 진단부에만 연결된다. The diagnostic line is only connected to the diagnostic unit.
상기 진단전류는 상기 기준값과 동일하거나 그 이상의 레벨을 갖는 교류전류이다. The diagnostic current is an alternating current having a level equal to or higher than the reference value.
상기 진단부는, 상기 진단라인에 공통으로 연결된 제1신호발생부 및 제2신호발생부를 포함하고, 상기 제1신호발생부는 교류전류를 제1진단전류로 출력하고, 상기 제2신호발생부는 직류전류를 제2진단전류로 출력한다. The diagnostic unit includes a first signal generator and a second signal generator commonly connected to the diagnostic line, the first signal generator outputs an AC current as a first diagnostic current, and the second signal generator includes a DC current. Is output as the second diagnostic current.
상기 제1 및 제2진단전류는 상기 기준값과 동일하거나 그 이상의 레벨을 갖는다. 상기 제1 및 제2진단전류는 순차적으로 출력된다. The first and second diagnostic currents have a level equal to or greater than the reference value. The first and second diagnostic currents are sequentially output.
상기 진단부는 상기 부하의 충전 준비구간 동안 상기 진단전류를 출력하거나 또는 상기 부하의 충전구간에서 상기 진단전류를 출력한다. The diagnostic unit outputs the diagnostic current during the charging preparation section of the load or outputs the diagnostic current in the charging section of the load.
상기 다수의 스위치는, 상기 전류전송라인에 연결된 제1스위치 및 상기 피드백전송라인에 연결된 제2스위치를 포함하고, 상기 제어부는 상기 비교 결과에 따라 상기 제1스위치 및 상기 제2스위치를 동시에 개폐시킨다.The plurality of switches includes a first switch connected to the current transmission line and a second switch connected to the feedback transmission line, and the control unit simultaneously opens and closes the first switch and the second switch according to the comparison result. .
본 발명의 실시 예에 따르면, 전기자동차 충전기의 누전차단장치는 별도의 진단라인에 연결되는 진단부를 구비하고, 진단부가 진단라인을 통해 진단전류를 출력함으로써, 누전센서 및 제어부의 동작상태를 자가진단할 수 있다. According to an embodiment of the present invention, the earth leakage breaker of the electric vehicle charger is provided with a diagnostic unit connected to a separate diagnostic line, the diagnostic unit outputs a diagnostic current through the diagnostic line, the self-diagnosis operation state of the earth leakage sensor and the control unit can do.
따라서, 누전차단장치는 자가진단을 위해 충전전류가 전송되는 전류전송라인으로 누설전류를 인가하지 않아도 되므로, 자가진단에 의한 부하의 손상을 방지할 수 있다. Accordingly, the earth leakage breaker does not need to apply a leakage current to the current transmission line through which the charging current is transmitted for self-diagnosis, thereby preventing damage to the load due to self-diagnosis.
또한, 부하에 대한 충전 준비구간에서 누전센서 및 제어부의 동작상태를 자가진단할 수 있으며, 따라서, 부하에 대한 실 충전구간에서 누전차단장치의 동작신뢰성을 향상시킬 수 있다. In addition, it is possible to self-diagnose the operating state of the ground fault sensor and the controller in the charge preparation section for the load, thereby improving the operation reliability of the earth leakage breaker in the actual charging section for the load.
또한, 부하에 대한 실 충전구간에서 누전센서 및 제어부의 동작상태를 자가진단할 수 있으며, 따라서, 부하가 충전되는 중에 실시간으로 누전차단장치의 동작을 진단하여 동작신뢰성을 향상시킬 수 있다.In addition, it is possible to self-diagnose the operating state of the ground fault sensor and the control unit in the actual charging section for the load, thereby improving the operation reliability by diagnosing the operation of the ground fault interrupting device in real time while the load is being charged.
도 1은 종래의 전기자동차 충전기의 누전차단장치를 나타내는 도면이다. 1 is a view showing an earth leakage breaker of a conventional electric vehicle charger.
도 2는 본 발명의 일 실시예에 따른 누전차단장치의 구성을 나타내는 도면이다.2 is a diagram illustrating a configuration of an earth leakage breaker according to an exemplary embodiment of the present invention.
도 3은 도 2의 누전차단장치의 동작을 나타내는 도면이다. 3 is a view illustrating an operation of the ground fault interrupting device of FIG. 2.
도 4는 본 발명의 다른 실시예에 따른 누전차단장치의 구성을 나타내는 도면이다.4 is a diagram illustrating a configuration of an earth leakage breaker according to another exemplary embodiment of the present invention.
도 5는 도 4의 누전차단장치의 동작을 나타내는 도면이다.FIG. 5 is a diagram illustrating an operation of the earth leakage breaker of FIG. 4.
이하에서는 본 발명의 구체적인 실시 예를 도면과 함께 상세히 설명하도록 한다. Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명의 일 실시예에 따른 누전차단장치의 구성을 나타내는 도면이다.2 is a diagram illustrating a configuration of an earth leakage breaker according to an exemplary embodiment of the present invention.
도 2를 참조하면, 본 실시예의 누전차단장치(100)는 전기자동차의 충전기 내부에 구성되며, 외부전원(10)과 부하(30) 사이에 배치될 수 있다. 누전차단장치(100)는 외부전원(10)으로부터 다수의 선로를 통해 흐르는 전류의 누설 등에 의한 과전압으로부터 부하(30)를 보호할 수 있다. 누전차단장치(100)는 스위치부(110), 누전센서(120), 제어부(130), 표시부(140) 및 진단부(150)를 포함할 수 있다. 2, the earth leakage breaker 100 of the present embodiment is configured inside the charger of the electric vehicle, it may be disposed between the external power source 10 and the load 30. The earth leakage breaker 100 may protect the load 30 from an overvoltage caused by leakage of current flowing through a plurality of lines from the external power source 10. The earth leakage blocking device 100 may include a switch unit 110, an earth leakage sensor 120, a control unit 130, a display unit 140, and a diagnosis unit 150.
스위치부(110)는 외부전원(10)과 부하(30) 사이의 연결을 제어할 수 있다. 스위치부(110)는 다수의 스위치, 예컨대 제1스위치(SW1) 및 제2스위치(SW2)를 포함할 수 있다. 제1스위치(SW1) 및 제2스위치(SW2)는 제어부(130)의 제어에 따라 개폐되어 외부전원(10)과 부하(30)를 전기적으로 연결시킬 수 있다. The switch unit 110 may control a connection between the external power source 10 and the load 30. The switch unit 110 may include a plurality of switches, for example, a first switch SW1 and a second switch SW2. The first switch SW1 and the second switch SW2 may be opened and closed under the control of the controller 130 to electrically connect the external power source 10 and the load 30.
제1스위치(SW1)는 외부전원(10)과 부하(30) 사이를 연결하는 전류전송라인(IL)에 연결될 수 있다. 제1스위치(SW1)는 제어부(130)에서 제공된 스위칭제어신호(SCS)에 따라 개폐될 수 있다. 제1스위치(SW1)가 폐쇄되면, 외부전원(10)으로부터 전류전송라인(IL)을 통해 소정 크기의 입력전류가 흐르게 된다. The first switch SW1 may be connected to a current transmission line IL connecting between the external power source 10 and the load 30. The first switch SW1 may be opened or closed according to the switching control signal SCS provided by the controller 130. When the first switch SW1 is closed, an input current of a predetermined size flows from the external power supply 10 through the current transmission line IL.
제2스위치(SW2)는 외부전원(10)과 부하(30) 사이를 연결하는 피드백전송라인(FL)에 연결될 수 있다. 제2스위치(SW2)는 제어부(130)에서 제공된 스위칭제어신호(SCS)에 따라 개폐될 수 있다. 제2스위치(SW2)가 폐쇄되면, 부하(30)로부터 피드백전송라인(FL)을 통해 소정 크기의 피드백전류가 흐르게 된다. 제1스위치(SW1)와 제2스위치(SW2)는 동시에 스위칭 동작되어 개폐될 수 있다. The second switch SW2 may be connected to a feedback transmission line FL connecting the external power source 10 and the load 30. The second switch SW2 may be opened or closed according to the switching control signal SCS provided by the controller 130. When the second switch SW2 is closed, a feedback current of a predetermined magnitude flows from the load 30 through the feedback transmission line FL. The first switch SW1 and the second switch SW2 may be simultaneously switched to open and close.
누전센서(120)는 스위치부(110)와 부하(30) 사이에서 다수의 라인들, 예컨대 전류전송라인(IL), 피드백전송라인(FL) 및 진단라인(TL)을 둘러싸며 배치될 수 있다. 누전센서(120)는 다수의 라인들에 흐르는 전류의 차이를 이용하여 누설전류를 감지할 수 있다. 누전센서(120)는 감지된 누설전류를 제어부(130)로 출력할 수 있다. 누전센서(120)는 영상 변류기 등으로 구성될 수 있다. The earth leakage sensor 120 may be disposed between the switch unit 110 and the load 30 to surround a plurality of lines, for example, a current transmission line IL, a feedback transmission line FL, and a diagnostic line TL. . The earth leakage sensor 120 may detect a leakage current by using a difference in current flowing through a plurality of lines. The earth leakage sensor 120 may output the detected leakage current to the controller 130. The earth leakage sensor 120 may be configured as an image current transformer.
제어부(130)는 누전센서(120)에서 감지된 누설전류 값을 기 설정된 기준값과 비교할 수 있다. 제어부(130)는 비교결과에 따라 스위치부(110)에 제어신호, 즉 스위칭제어신호(SCS)를 출력할 수 있다. 또한, 제어부(130)는 비교결과에 따라 표시부(140)에 표시제어신호(DCS)를 출력할 수 있다. The controller 130 may compare the leakage current value detected by the ground fault sensor 120 with a preset reference value. The controller 130 may output a control signal, that is, a switching control signal SCS, to the switch unit 110 according to the comparison result. In addition, the controller 130 may output the display control signal DCS to the display unit 140 according to the comparison result.
예컨대, 전류전송라인(IL)에는 입력전류가 흐르고, 피드백전송라인(FL)에는 출력전류가 흐른다. 누설전류가 발생되지 않은 정상상태에서는 이들의 크기는 동일하고, 전류의 방향은 반대가 된다. 따라서, 각 전류에 의해 발생되는 자속은 서로 상쇄되므로, 누전센서(120)는 0에 해당되는 누설전류를 제어부(130)로 출력한다. 제어부(130)는 누전센서(120)에서 출력된 누설전류를 전압으로 변환하여 선로의 누설여부를 판단한다. 누전센서(120)로부터 제공된 누설전류가 0이므로, 제어부(130)는 누설이 발생되지 않았음을 판단할 수 있다. 따라서, 제어부(130)는 스위치부(110)의 폐쇄상태를 유지할 수 있다.For example, an input current flows through the current transmission line IL, and an output current flows through the feedback transmission line FL. In the steady state without leakage current, their magnitude is the same and the direction of current is reversed. Therefore, since the magnetic flux generated by each current cancel each other, the earth leakage sensor 120 outputs a leakage current corresponding to 0 to the controller 130. The controller 130 determines whether the line is leaked by converting the leakage current output from the ground fault sensor 120 into a voltage. Since the leakage current provided from the ground fault sensor 120 is 0, the controller 130 may determine that no leakage occurs. Therefore, the controller 130 may maintain the closed state of the switch 110.
반면, 누설전류가 발생되면, 발생된 누설전류에 대응되어 전류전송라인(IL)과 피드백전송라인(FL)에서 자속 편차가 발생된다. 누전센서(120)는 이러한 편차에 따른 누설전류를 감지하여 제어부(130)로 출력한다. 제어부(130)는 누전센서(120)로부터 출력된 누설전류를 전압으로 변환하여 누설여부를 판단한다. 이때, 제어부(130)는 누설전류에 따른 전압이 기 설정된 기준값보다 큰 경우에 누설이 발생되었음을 판단한다. 이에 따라, 제어부(130)는 스위치부(110)에 스위칭제어신호(SCS)를 출력할 수 있다. 스위치부(110)는 스위칭제어신호(SCS)에 따라 내부의 스위치들을 개방시켜 외부전원(10)과 부하(30)의 연결을 차단시킨다. 그리고, 제어부(130)는 표시부(140)에 표시제어신호(DCS)를 출력한다. 표시부(140)는 표시제어신호(DCS)에 따라 현재상태, 즉 누설이 발생되었음을 외부로 표시하게 된다.On the other hand, when a leakage current is generated, magnetic flux deviation occurs in the current transmission line IL and the feedback transmission line FL in response to the generated leakage current. The earth leakage sensor 120 detects a leakage current according to the deviation and outputs it to the controller 130. The controller 130 converts the leakage current output from the ground fault sensor 120 into a voltage to determine whether the leakage occurs. At this time, the controller 130 determines that leakage occurs when the voltage according to the leakage current is greater than the preset reference value. Accordingly, the controller 130 may output the switching control signal SCS to the switch unit 110. The switch unit 110 opens the internal switches according to the switching control signal SCS to block the connection of the external power source 10 and the load 30. The controller 130 outputs the display control signal DCS to the display unit 140. The display unit 140 displays the current state, ie, leakage, to the outside according to the display control signal DCS.
제어부(130)는 마이컴(micro computer), 컨트롤러 또는 마이크로 컨트롤러 등으로 다양하게 구현될 수 있다. 제어부(130)는 분리되어 구현될 수 있으며, 일부의 구성요소들을 하나의 제어부가 제어하고, 다른 구성요소들을 다른 하나의 제어부가 제어하도록 구현될 수 있다. 예컨대, 제어부(130)는 누전센서(120)를 제어하기 위한 제1제어부 및 누전센서(120)의 출력값에 따라 전류의 누설을 판단하고, 이에 상응하는 제어를 수행하기 위한 제2제어부로 구분되어 구성될 수 있다. The controller 130 may be variously implemented as a microcomputer, a controller, or a microcontroller. The controller 130 may be implemented separately, and may be implemented such that one component controls some components and another component controls other components. For example, the controller 130 is divided into a first controller for controlling the ground fault sensor 120 and a second controller for determining leakage of current according to an output value of the ground fault sensor 120 and performing a corresponding control. Can be configured.
또한, 제어부(130)는 스위치부(110)의 각 스위치의 개폐 동작을 위한 트립 코일(미도시)을 더 포함할 수 있다. 트립 코일은 제어부(130)에서 생성되는 스위칭제어신호(SCS)에 따라 동작되어 스위치부(110)의 제1스위치(SW1)와 제2스위치(SW2)를 개폐시키도록 동작될 수 있다. In addition, the control unit 130 may further include a trip coil (not shown) for opening and closing operations of each switch of the switch unit 110. The trip coil may be operated according to the switching control signal SCS generated by the controller 130 to open and close the first switch SW1 and the second switch SW2 of the switch unit 110.
표시부(140)는 제어부(130)에서 출력된 표시제어신호(DCS)에 따라 현재의 선로 상태, 즉 정상상태 또는 누설상태를 외부로 표시할 수 있다. 표시부(140)는 소정의 이미지를 표시하는 표시패널로 구성되거나 또는 광을 출광하는 램프 또는 LED 등으로 구성될 수 있다. The display unit 140 may externally display a current line state, that is, a normal state or a leakage state, according to the display control signal DCS output from the controller 130. The display unit 140 may be configured as a display panel for displaying a predetermined image or a lamp or LED for emitting light.
진단부(150)는 누전차단장치(100)의 동작상태, 즉 내부의 누전센서(120) 및 제어부(130)의 동작상태를 자가진단(Self-Diagnosis)할 수 있다. 진단부(150)는 누전센서(120)에 의해 둘러싸인 진단라인(TL)에 연결된 저항소자(R) 및 신호발생부(155)를 포함할 수 있다. 진단라인(TL)은 진단부(150)에만 연결된다. The diagnosis unit 150 may perform self-diagnosis of an operating state of the ground fault interrupting device 100, that is, an operating state of the ground fault sensor 120 and the controller 130. The diagnosis unit 150 may include a resistance element R and a signal generator 155 connected to the diagnosis line TL surrounded by the ground fault sensor 120. The diagnostic line TL is connected only to the diagnosis unit 150.
진단부(150)의 신호발생부(155)는 저항(R)을 통해 소정 크기의 진단전류를 진단라인(TL)에 출력할 수 있다. 이러한 진단전류에 의해 다수의 라인들, 즉 전류전송라인(IL), 피드백전송라인(FL) 및 진단라인(TL)에는 전류 차이로 인한 자속 편차가 발생된다. 따라서, 누전센서(120)는 자속 편차에 따른 누설전류를 감지하고, 이를 제어부(130)로 출력할 수 있다. 이후, 제어부(130)의 동작은 앞서 설명한 것과 동일할 수 있다. The signal generator 155 of the diagnostic unit 150 may output a diagnostic current having a predetermined magnitude to the diagnostic line TL through the resistor R. FIG. Due to such a diagnosis current, a magnetic flux deviation due to a current difference is generated in a plurality of lines, that is, the current transmission line IL, the feedback transmission line FL, and the diagnostic line TL. Therefore, the ground fault sensor 120 may detect a leakage current according to the magnetic flux deviation and output it to the controller 130. Thereafter, the operation of the controller 130 may be the same as described above.
진단부(150)의 신호발생부(155)에서 출력되는 진단전류는 제어부(130)에 설정된 기준값과 실질적으로 동일한 레벨을 갖거나 그 이상의 레벨을 가질 수 있다. 이러한 신호발생부(155)는 펄스폭변조신호(PWM)를 출력하는 마이크로 컨트롤러(MCU)로 구성될 수 있다. 신호발생부(155)는 전기자동차 충전기의 특정 동작구간에서 진단전류를 출력하거나 또는 외부 제어에 따라 상시적으로 진단전류를 출력할 수 있다. The diagnostic current output from the signal generator 155 of the diagnostic unit 150 may have a level substantially equal to or higher than the reference value set in the controller 130. The signal generator 155 may be configured as a micro controller (MCU) for outputting a pulse width modulated signal PWM. The signal generator 155 may output the diagnostic current in a specific operation section of the electric vehicle charger or output the diagnostic current at all times according to external control.
상술한 바와 같이, 본 실시예의 누전차단장치(100)는 동작상태의 자가진단을 위한 진단부(150)를 구비하되, 진단부(150)가 별도의 진단라인(TL)에 연결되도록 구성할 수 있다. 따라서, 누전차단장치(100)의 자가진단 시, 외부전원(10)과 부하(30) 사이의 라인, 즉 전류전송라인(IL) 및 피드백전송라인(FL)으로 자가진단을 위한 누설전류가 흐르지 않아도 되므로, 자가진단에 따른 부하(30)의 손상을 방지할 수 있다. 또한, 진단부(150)가 별도의 진단라인(TL)에 연결되도록 구성되므로, 실시간으로 누전차단장치(100)의 자가진단을 수행할 수 있다. As described above, the earth leakage breaker 100 of the present embodiment is provided with a diagnostic unit 150 for self-diagnosis of the operating state, the diagnostic unit 150 may be configured to be connected to a separate diagnostic line (TL). have. Therefore, in the self-diagnosis of the ground fault interrupting device 100, a leakage current for self-diagnosis does not flow into a line between the external power supply 10 and the load 30, that is, the current transmission line IL and the feedback transmission line FL. Since it is not necessary, damage to the load 30 due to self-diagnosis can be prevented. In addition, since the diagnosis unit 150 is configured to be connected to a separate diagnosis line TL, the self-diagnosis of the ground fault interrupting device 100 may be performed in real time.
도 3은 도 2의 누전차단장치의 동작을 나타내는 도면이다. 3 is a view illustrating an operation of the ground fault interrupting device of FIG. 2.
도 2 및 도 3을 참조하면, 부하(30)는 누전차단장치(100)를 통해 외부전원(10)에 연결된다. 이때, 누전차단장치(100)의 제1스위치(SW1) 및 제2스위치(SW2)는 모두 턴-온 상태, 즉 폐쇄 상태이다. 2 and 3, the load 30 is connected to the external power source 10 through the earth leakage breaker 100. At this time, the first switch SW1 and the second switch SW2 of the ground fault interrupting device 100 are both turned on, that is, closed.
진단부(150)의 신호발생부(155)는 특정 시간, 예컨대 부하(30)에 대한 충전이 개시되기 전의 준비구간에서, 소정 크기의 진단전류(LC_T)를 진단라인(TL)을 통해 출력할 수 있다. 여기서, 진단전류(LC_T)는 소정 주파수 대역, 예컨대 50~60Hz 주파수 대역을 갖는 교류전류일 수 있다. 진단전류(LC_T)는 제어부(130)에 설정된 기준값(Ref1, Ref2)과 실질적으로 동일한 레벨이거나 또는 그 이상의 레벨일 수 있다. 진단전류(LC_T)는 수 ms 동안 출력될 수 있다.The signal generator 155 of the diagnostic unit 150 may output a diagnostic current LC_T of a predetermined magnitude through the diagnostic line TL at a specific time, for example, in a preparation section before charging of the load 30 is started. Can be. Here, the diagnostic current LC_T may be an alternating current having a predetermined frequency band, for example, 50 to 60 Hz frequency band. The diagnostic current LC_T may be substantially the same level or higher than the reference values Ref1 and Ref2 set in the controller 130. The diagnostic current LC_T may be output for several ms.
진단라인(TL)을 통해 진단전류(LC_T)가 흐르게 되면, 누전센서(120)에 의해 둘러싸인 전류전송라인(IL), 피드백전송라인(FL) 및 진단라인(TL)에서는 자속의 편차가 발생된다. 누전센서(120)는 이를 감지하여 제어부(130)에 출력할 수 있다. 이때, 외부전원(10)은 전류전송라인(IL)에 전류, 즉 부하(30)의 충전전류를 인가하지 않으므로, 누전센서(120)는 진단전류(LC_T)에 의해 발생되는 자속 편차에 따라 감지된 누설전류를 제어부(130)로 출력할 수 있다. When the diagnostic current LC_T flows through the diagnostic line TL, a magnetic flux deviation occurs in the current transmission line IL, the feedback transmission line FL, and the diagnostic line TL surrounded by the ground fault sensor 120. . The earth leakage sensor 120 may detect this and output it to the controller 130. At this time, since the external power supply 10 does not apply a current to the current transmission line IL, that is, the charging current of the load 30, the ground fault sensor 120 detects the magnetic flux deviation generated by the diagnostic current LC_T. The leaked current may be output to the controller 130.
제어부(130)는 누전센서(120)로부터 제공된 누설전류에 따라 누설여부를 판단할 수 있다. 앞서, 진단전류(LC_T)가 제어부(130)에 설정된 기준값(Ref1, Ref2)과 동일하거나 그 이상의 레벨을 가지므로, 제어부(130)는 누설이 발생되었음을 판단할 수 있다. The controller 130 may determine whether the leakage is based on the leakage current provided from the ground fault sensor 120. Since the diagnostic current LC_T has a level equal to or greater than the reference values Ref1 and Ref2 set in the controller 130, the controller 130 may determine that leakage has occurred.
제어부(130)는 누설 판단에 따라 스위칭제어신호(SCS) 및 표시제어신호(DCS)를 출력할 수 있다. 여기서, 기준값(Ref1, Ref2)은 양의 기준값(Ref1)과 음의 기준값(Ref2)을 포함할 수 있다. The controller 130 may output the switching control signal SCS and the display control signal DCS according to the leakage determination. Here, the reference values Ref1 and Ref2 may include a positive reference value Ref1 and a negative reference value Ref2.
스위치부(110)는 스위칭제어신호(SCS)에 응답하여 제1스위치(SW1) 및 제2스위치(SW2)를 턴-오프, 즉 개방시켜 외부전원(10)과 부하(30)의 연결을 차단시킨다. 표시부(140)는 표시제어신호(DCS)에 응답하여 누설이 발생되었음을 외부로 표시한다. The switch unit 110 turns off the first switch SW1 and the second switch SW2 in response to the switching control signal SCS to open the first switch SW1 and the second switch SW2 to cut off the connection between the external power source 10 and the load 30. Let's do it. The display unit 140 externally indicates that leakage has occurred in response to the display control signal DCS.
상술한 바와 같이, 본 실시예의 누전차단장치(100)는 부하(30)에 대한 충전이 개시되기 전의 충전 준비구간에서 진단부(150)를 통해 진단전류(LC_T)를 출력함으로써, 누전센서(120) 및 제어부(130)의 동작상태를 진단할 수 있다. 따라서, 누전차단장치(100)는 부하(30)에 대한 실제 충전이 이루어지는 충전구간에서 누전센서(120) 및 제어부(130)가 정상적으로 동작되어 선로의 누설을 판단하고, 그에 따라 외부전원(10)과 부하(30) 간의 연결을 제어할 수 있다. 따라서, 누전차단장치(100)의 동작신뢰성을 향상시킬 수 있다. As described above, the earth leakage breaker 100 according to the present embodiment outputs a diagnosis current LC_T through the diagnosis unit 150 in the charge preparation section before the charge of the load 30 is started, thereby causing the earth leakage sensor 120. And an operating state of the controller 130. Therefore, the ground fault interrupting device 100 determines the leakage of the line by operating the ground fault sensor 120 and the controller 130 normally in the charging section in which the actual charge of the load 30 is made, and accordingly, the external power source 10. And control the connection between the load 30. Therefore, the operation reliability of the ground fault interrupting device 100 can be improved.
한편, 본 실시예는 부하(30)의 충전 준비구간에서 진단부(150)가 동작되는 것을 예로 설명하나, 이에 제한되지는 않는다. 예컨대, 진단부(150)는 부하(30)의 충전구간에서 진단전류(LC_T)를 출력하여 누전센서(120) 및 제어부(130)의 동작 상태를 실시간으로 진단할 수도 있다. On the other hand, this embodiment is described as an example that the operation of the diagnostic unit 150 in the charge preparation section of the load 30, but is not limited thereto. For example, the diagnosis unit 150 may output the diagnosis current LC_T in the charging section of the load 30 to diagnose the operating state of the ground fault sensor 120 and the controller 130 in real time.
도 4는 본 발명의 다른 실시예에 따른 누전차단장치의 구성을 나타내는 도면이다.4 is a diagram illustrating a configuration of an earth leakage breaker according to another exemplary embodiment of the present invention.
도 4에 도시된 누전차단장치(101)는 앞서 도 2에 도시된 누전차단장치(100)와 대비하여 진단부(151)에 2개의 신호발생부(156, 157)가 구비된 것을 제외하고, 실질적으로 동일한 구성을 갖는다. 이에, 동일부재는 동일부호로 나타내고 이에 따른 상세한 설명은 생략하기로 한다. Except for the earth leakage blocking device 101 shown in FIG. 4, two signal generating units 156 and 157 are provided in the diagnosis unit 151 as compared to the earth leakage blocking device 100 shown in FIG. 2. Have substantially the same configuration. Therefore, the same members are denoted by the same reference numerals and detailed description thereof will be omitted.
도 4를 참조하면, 본 실시예의 누전차단장치(101)는 전기자동차의 충전기 내부에 구성되며, 외부전원(10)과 부하(30) 사이에 배치될 수 있다. 누전차단장치(101)는 스위치부(110), 누전센서(120), 제어부(130), 표시부(140) 및 진단부(151)를 포함할 수 있다. Referring to FIG. 4, the earth leakage breaker 101 according to the present embodiment is configured inside the charger of the electric vehicle, and may be disposed between the external power source 10 and the load 30. The earth leakage blocking device 101 may include a switch unit 110, an earth leakage sensor 120, a control unit 130, a display unit 140, and a diagnosis unit 151.
스위치부(110)는 제어부(130)의 제어에 따라 개폐되어 외부전원(10)과 부하(30)를 전기적으로 연결시키는 제1스위치(SW1) 및 제2스위치(SW2)를 포함할 수 있다. 제1스위치(SW1)는 전류전송라인(IL)에 연결되고, 제2스위치(SW2)는 피드백전송라인(FL)에 연결될 수 있다. The switch unit 110 may include a first switch SW1 and a second switch SW2 that are opened and closed under the control of the controller 130 to electrically connect the external power source 10 and the load 30. The first switch SW1 may be connected to the current transmission line IL, and the second switch SW2 may be connected to the feedback transmission line FL.
누전센서(120)는 전류전송라인(IL), 피드백전송라인(FL) 및 진단라인(TL)을 둘러싸며 배치될 수 있다. 누전센서(120)는 누설전류를 감지하여 제어부(130)로 출력할 수 있다.The earth leakage sensor 120 may be disposed surrounding the current transmission line IL, the feedback transmission line FL, and the diagnostic line TL. The earth leakage sensor 120 may detect a leakage current and output the leakage current to the controller 130.
제어부(130)는 누전센서(120)로부터 제공된 누설전류를 기준값과 비교하고, 그 결과에 따라 누설여부를 판단하며, 판단결과에 따라 스위칭제어신호(SCS) 및 표시제어신호(DCS)를 출력할 수 있다. The controller 130 compares the leakage current provided from the ground fault sensor 120 with a reference value, determines whether there is leakage according to the result, and outputs a switching control signal SCS and a display control signal DCS according to the determination result. Can be.
표시부(140)는 제어부(130)로부터 제공된 표시제어신호(DCS)에 따라 정상상태 또는 누설상태를 외부로 표시할 수 있다.The display unit 140 may display a normal state or a leaked state to the outside according to the display control signal DCS provided from the controller 130.
진단부(151)는 누전차단장치(101)의 누전센서(120) 및 제어부(130)의 동작상태를 자가 진단할 수 있다. 진단부(151)는 진단라인(TL)에 공통으로 연결된 제1신호발생부(156), 제2신호발생부(157) 및 저항소자들, 예컨대 제1저항(R1) 및 제2저항(R2)을 포함할 수 있다. 진단라인(TL)은 진단부(151)에만 연결될 수 있다. The diagnosis unit 151 may self-diagnose operation states of the earth leakage sensor 120 and the controller 130 of the earth leakage blocking device 101. The diagnosis unit 151 may include a first signal generator 156, a second signal generator 157, and resistance elements commonly connected to the diagnostic line TL, such as the first resistor R1 and the second resistor R2. ) May be included. The diagnostic line TL may be connected only to the diagnosis unit 151.
진단부(151)의 제1신호발생부(156)는 제1진단전류를 제1저항(R1)을 통해 진단라인(TL)으로 출력할 수 있다. 제1진단전류는 교류전류일 수 있다. 진단부(151)의 제2신호발생부(157)는 제2진단전류를 제2저항(R2)을 통해 진단라인(TL)으로 출력할 수 있다. 제2진단전류는 직류전류일 수 있다. 제1신호발생부(156)와 제2신호발생부(157)는 동시에 동작되어 제1 및 제2진단전류를 동시에 출력하거나 또는 순차적으로 동작에서 제1 및 제2진단전류를 각각 출력할 수 있다.The first signal generator 156 of the diagnostic unit 151 may output the first diagnostic current to the diagnostic line TL through the first resistor R1. The first diagnostic current may be an alternating current. The second signal generator 157 of the diagnostic unit 151 may output the second diagnostic current to the diagnostic line TL through the second resistor R2. The second diagnostic current may be a direct current. The first signal generator 156 and the second signal generator 157 may be operated simultaneously to simultaneously output the first and second diagnostic currents or sequentially output the first and second diagnostic currents, respectively. .
진단부(151)에서 출력된 제1진단전류 및 제2진단전류에 의해 전류전송라인(IL), 피드백전송라인(FL) 및 진단라인(TL)에는 전류 차이로 인한 자속 편차가 발생된다. 따라서, 누전센서(120)는 자속 편차에 따른 누설전류를 감지하고, 이를 제어부(130)로 출력할 수 있다. 이후, 제어부(130)의 동작은 앞서 설명한 것과 동일할 수 있다. 여기서, 제1진단전류 및 제2진단전류는 제어부(130)에 설정된 기준값과 실질적으로 동일한 레벨을 갖거나 그 이상의 레벨을 가질 수 있다. The magnetic flux deviation due to the current difference is generated in the current transmission line IL, the feedback transmission line FL, and the diagnostic line TL by the first diagnostic current and the second diagnostic current output from the diagnosis unit 151. Therefore, the ground fault sensor 120 may detect a leakage current according to the magnetic flux deviation and output it to the controller 130. Thereafter, the operation of the controller 130 may be the same as described above. Here, the first diagnostic current and the second diagnostic current may have a level substantially equal to or higher than the reference value set in the controller 130.
도 5는 도 4의 누전차단장치의 동작을 나타내는 도면이다. FIG. 5 is a diagram illustrating an operation of the earth leakage breaker of FIG. 4.
도 4 및 도 5를 참조하면, 부하(30)는 누전차단장치(101)를 통해 외부전원(10)에 연결된다. 여기서, 누전차단장치(101)의 제1스위치(SW1) 및 제2스위치(SW2)는 모두 턴-온 상태, 즉 폐쇄 상태이다. 4 and 5, the load 30 is connected to the external power source 10 through the earth leakage breaker 101. Here, the first switch SW1 and the second switch SW2 of the ground fault interrupting device 101 are both turned on, that is, closed.
진단부(151)의 제1신호발생부(156) 및 제2신호발생부(157)는 부하(30)에 대한 충전이 개시되기 전의 충전 준비구간에서, 소정 크기의 제1진단전류(LC_T1) 및 제2진단전류(LC_T2)를 진단라인(TL)에 출력할 수 있다. The first signal generation unit 156 and the second signal generation unit 157 of the diagnosis unit 151 have a first diagnosis current LC_T1 of a predetermined magnitude in a charging preparation section before charging of the load 30 is started. And a second diagnostic current LC_T2 to the diagnostic line TL.
제1진단전류(LC_T1)는 제어부(130)에 설정된 기준값(Ref1, Ref2)과 실질적으로 동일한 레벨 또는 그 이상의 레벨을 갖는 교류전류이다. 제2진단전류(LC_T2)는 제어부(130)에 설정된 기준값(Ref1, Ref2)과 실질적으로 동일한 레벨 또는 그 이상의 레벨을 갖는 직류전류이다. The first diagnostic current LC_T1 is an AC current having a level substantially the same as or higher than the reference values Ref1 and Ref2 set in the controller 130. The second diagnostic current LC_T2 is a DC current having a level substantially the same as or higher than the reference values Ref1 and Ref2 set in the controller 130.
제1진단전류(LC_T1) 및 제2진단전류(LC_T2)는 순차적으로 출력되거나 또는 동시에 출력될 수 있다. 제1진단전류(LC_T1) 및 제2진단전류(LC_T2)는 각각 수 ms 동안 출력될 수 있다. The first diagnostic current LC_T1 and the second diagnostic current LC_T2 may be sequentially output or simultaneously output. The first diagnostic current LC_T1 and the second diagnostic current LC_T2 may be output for several ms, respectively.
진단라인(TL)에 제1진단전류(LC_T1) 또는 제2진단전류(LC_T2)가 흐르게 되면, 누전센서(120)에 의해 둘러싸인 전류전송라인(IL), 피드백전송라인(FL) 및 진단라인(TL)에서는 자속의 편차가 발생된다. 누전센서(120)는 이를 감지하여 제어부(130)에 출력할 수 있다. 이때, 외부전원(10)은 전류전송라인(IL)에 전류, 즉 부하(30)의 충전전류를 인가하지 않으므로, 누전센서(120)는 제1진단전류(LC_T1) 또는 제2진단전류(LC_T2)에 따라 감지된 누설전류를 제어부(130)로 출력할 수 있다.When the first diagnostic current LC_T1 or the second diagnostic current LC_T2 flows through the diagnostic line TL, the current transmission line IL, the feedback transmission line FL, and the diagnostic line TL), deviation of magnetic flux occurs. The earth leakage sensor 120 may detect this and output it to the controller 130. At this time, since the external power supply 10 does not apply a current to the current transmission line IL, that is, a charging current of the load 30, the ground fault sensor 120 has a first diagnostic current LC_T1 or a second diagnostic current LC_T2. ) May output the detected leakage current to the controller 130.
제어부(130)는 누전센서(120)로부터 제공된 누설전류에 따라 누설여부를 판단할 수 있다. 앞서, 제1진단전류(LC_T1) 및 제2진단전류(LC_T2)가 제어부(130)에 설정된 기준값(Ref1, Ref2)과 동일하거나 그 이상의 레벨을 가지므로, 제어부(130)는 누설이 발생되었음을 판단할 수 있다. The controller 130 may determine whether the leakage is based on the leakage current provided from the ground fault sensor 120. Since the first diagnostic current LC_T1 and the second diagnostic current LC_T2 have the same or higher level than the reference values Ref1 and Ref2 set in the controller 130, the controller 130 determines that leakage has occurred. can do.
여기서, 진단부(151)는 순차적으로 제1진단전류(LC_T1) 및 제2진단전류(LC_T2)를 출력할 수 있다. 따라서, 제어부(130)는 제1진단전류(LC_T1)에 따라 누전센서(120)로부터 제공된 누설전류 및 제2진단전류(LC_T2)에 따라 누전센서(120)로부터 제공된 누설전류로부터 선로의 누설여부를 각각 판단할 수 있다.Here, the diagnosis unit 151 may sequentially output the first diagnostic current LC_T1 and the second diagnostic current LC_T2. Therefore, the controller 130 checks whether the line is leaked from the leakage current provided from the ground fault sensor 120 according to the first diagnostic current LC_T1 and the leakage current provided from the ground fault sensor 120 according to the second diagnostic current LC_T2. Each can be judged.
제어부(130)는 누설 판단에 따라 스위칭제어신호(SCS) 및 표시제어신호(DCS)를 출력할 수 있다. 여기서, 기준값(Ref1, Ref2)은 양의 기준값(Ref1, Ref2)과 음의 기준값(Ref1, Ref2)을 포함할 수 있다. The controller 130 may output the switching control signal SCS and the display control signal DCS according to the leakage determination. Here, the reference values Ref1 and Ref2 may include positive reference values Ref1 and Ref2 and negative reference values Ref1 and Ref2.
스위치부(110)는 스위칭제어신호(SCS)에 응답하여 제1스위치(SW1) 및 제2스위치(SW2)를 턴-오프, 즉 개방시켜 외부전원(10)과 부하(30)의 연결을 차단시킨다. 표시부(140)는 표시제어신호(DCS)에 응답하여 누설이 발생되었음을 외부로 표시한다. The switch unit 110 turns off the first switch SW1 and the second switch SW2 in response to the switching control signal SCS to open the first switch SW1 and the second switch SW2 to cut off the connection between the external power source 10 and the load 30. Let's do it. The display unit 140 externally indicates that leakage has occurred in response to the display control signal DCS.
상술한 바와 같이, 본 실시예의 누전차단장치(101)는 부하(30)에 대한 충전이 개시되기 전의 충전 준비구간에서, 진단부(151)를 통해 제1진단전류(LC_T1) 및 제2진단전류(LC_T2)를 출력함으로써, 누전센서(120) 및 제어부(130)의 동작상태를 진단할 수 있다. 따라서, 누전차단장치(101)는 부하(30)에 대한 실제 충전이 이루어지는 충전구간에서 누전센서(120) 및 제어부(130)가 정상적으로 동작되어 선로의 누설을 판단하고, 그에 따라 외부전원(10)과 부하(30) 간의 연결을 제어할 수 있다. As described above, the earth leakage breaker 101 according to the present embodiment uses the first diagnosis current LC_T1 and the second diagnosis current through the diagnosis unit 151 in the charge preparation section before the charging of the load 30 is started. By outputting (LC_T2), it is possible to diagnose the operating state of the ground fault sensor 120 and the controller 130. Therefore, the ground fault interrupting device 101 determines whether the ground fault sensor 120 and the control unit 130 are normally operated in the charging section in which the actual charging of the load 30 is performed, and thus determines the leakage of the line. And control the connection between the load 30.
한편, 본 실시예는 부하(30)의 충전 준비구간에서 진단부(151)가 동작되는 것을 예로 설명하나, 이에 제한되지는 않는다. 예컨대, 진단부(151)는 부하(30)의 충전구간에서 진단전류(LC_T1, LC_T2)를 각각 출력하여 누전센서(120) 및 제어부(130)의 동작 상태를 실시간으로 진단할 수도 있다.On the other hand, this embodiment is described as an example in which the diagnostic unit 151 operates in the charge preparation section of the load 30, but is not limited thereto. For example, the diagnosis unit 151 may output the diagnosis currents LC_T1 and LC_T2 in the charging section of the load 30 to diagnose the operating states of the ground fault sensor 120 and the controller 130 in real time.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (9)

  1. 외부전원과 부하 사이의 전류전송라인 및 피드백전송라인에 각각 연결된 다수의 스위치;A plurality of switches each connected to a current transmission line and a feedback transmission line between an external power supply and a load;
    진단라인에 연결되어 진단전류를 출력하는 진단부;A diagnostic unit connected to the diagnostic line to output a diagnostic current;
    상기 전류전송라인, 피드백전송라인 및 진단라인을 둘러싸며 배치되고, 상기 전류전송라인, 피드백전송라인 및 진단라인으로부터 누설전류를 감지하는 누전센서; 및An electric leakage sensor disposed surrounding the current transmission line, the feedback transmission line, and the diagnostic line, and detecting a leakage current from the current transmission line, the feedback transmission line, and the diagnostic line; And
    상기 누설전류와 기준값의 비교 결과에 따라 상기 다수의 스위치의 개폐동작을 제어하여 상기 외부전원과 상기 부하의 연결을 제어하는 제어부를 포함하는 전기자동차 충전기의 누전차단장치.And a control unit controlling a connection between the external power source and the load by controlling opening and closing operations of the plurality of switches according to a result of comparing the leakage current with a reference value.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 진단라인은 상기 진단부에만 연결된 전기자동차 충전기의 누전차단장치.The diagnosis line is a circuit breaker of the electric vehicle charger connected only to the diagnostic unit.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 진단전류는 상기 기준값과 동일하거나 그 이상의 레벨을 갖는 교류전류인 전기자동차 충전기의 누전차단장치.And the diagnostic current is an AC current having an level equal to or higher than the reference value.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 진단부는, The diagnostic unit,
    상기 진단라인에 공통으로 연결된 제1신호발생부 및 제2신호발생부를 포함하고, A first signal generator and a second signal generator commonly connected to the diagnostic line;
    상기 제1신호발생부는 교류전류를 제1진단전류로 출력하고, 상기 제2신호발생부는 직류전류를 제2진단전류로 출력하는 전기자동차 충전기의 누전차단장치.And the first signal generator outputs an alternating current as a first diagnostic current, and the second signal generator outputs a direct current as a second diagnostic current.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 제1 및 제2진단전류는 상기 기준값과 동일하거나 그 이상의 레벨을 갖는 전기자동차 충전기의 누전차단장치.The first and second diagnostic current leakage circuit breaker of the electric vehicle charger having a level equal to or greater than the reference value.
  6. 제 4 항에 있어서,The method of claim 4, wherein
    상기 제1 및 제2진단전류는 순차적 또는 동시에 출력되는 전기자동차 충전기의 누전차단장치.The first and second diagnostic current leakage circuit breaker of the electric vehicle charger is output sequentially or simultaneously.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 진단부는 상기 부하의 충전 준비구간 동안 상기 진단전류를 출력하는 전기자동차 충전기의 누전차단장치.The diagnosis unit is an electric leakage breaker of the electric vehicle charger for outputting the diagnostic current during the charge preparation section of the load.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 진단부는 상기 부하의 충전구간에서 상기 진단전류를 출력하는 전기자동차 충전기의 누전차단장치.The diagnostic unit is an electric leakage breaker of the electric vehicle charger for outputting the diagnostic current in the charging section of the load.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 다수의 스위치는, The plurality of switches,
    상기 전류전송라인에 연결된 제1스위치 및 상기 피드백전송라인에 연결된 제2스위치를 포함하고, A first switch connected to the current transmission line and a second switch connected to the feedback transmission line,
    상기 제어부는 상기 비교 결과에 따라 상기 제1스위치 및 상기 제2스위치를 동시에 개폐시키는 누전차단장치.And the control unit is configured to open and close the first switch and the second switch simultaneously according to the comparison result.
PCT/KR2017/001344 2016-12-26 2017-02-07 Earth leakage circuit breaker for electric vehicle charger WO2018124374A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160179348A KR20180075242A (en) 2016-12-26 2016-12-26 Leakage current braking apparatus for electric vehicle charger
KR10-2016-0179348 2016-12-26

Publications (1)

Publication Number Publication Date
WO2018124374A1 true WO2018124374A1 (en) 2018-07-05

Family

ID=62709560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001344 WO2018124374A1 (en) 2016-12-26 2017-02-07 Earth leakage circuit breaker for electric vehicle charger

Country Status (2)

Country Link
KR (1) KR20180075242A (en)
WO (1) WO2018124374A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102338533B1 (en) * 2019-10-14 2021-12-15 모트랩(주) Apparatus for Controlling Charging Cable for Electronic Vehicle and the Method Thereof
KR102256011B1 (en) 2020-09-29 2021-05-25 (주)이카플러그 A Method for Detecting an Electric Leakage of an Electric Vehicle and Breaking the Same
KR102497871B1 (en) 2022-09-15 2023-02-08 홍정애 Surge protect device for Charging Apparatus of an Electrical Vehicle
KR102608745B1 (en) * 2023-06-14 2023-12-06 주식회사 에코스 Electric vehicle charging system capable of preventing accident due to heteogeneous abnormal current

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100817332B1 (en) * 2006-10-19 2008-03-27 대성전기공업 주식회사 Leakage current detect interrupter
US20110222194A1 (en) * 2010-03-09 2011-09-15 Kinsel Hugh T Method and Apparatus for Supervisory Circuit for Ground Fault Circuit Interrupt Device
US20120146655A1 (en) * 2010-12-10 2012-06-14 Raritan Americas, Inc. Methods and apparatus for sensing ground leakage and automated self testing thereof
US20130141110A1 (en) * 2006-11-02 2013-06-06 Texas Instruments Incorporated Methods and apparatus for continuous ground fault self-test
KR101410745B1 (en) * 2012-06-15 2014-06-24 한국전기연구원 Electric leakage circuit breaker and method for controlling the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100817332B1 (en) * 2006-10-19 2008-03-27 대성전기공업 주식회사 Leakage current detect interrupter
US20130141110A1 (en) * 2006-11-02 2013-06-06 Texas Instruments Incorporated Methods and apparatus for continuous ground fault self-test
US20110222194A1 (en) * 2010-03-09 2011-09-15 Kinsel Hugh T Method and Apparatus for Supervisory Circuit for Ground Fault Circuit Interrupt Device
US20120146655A1 (en) * 2010-12-10 2012-06-14 Raritan Americas, Inc. Methods and apparatus for sensing ground leakage and automated self testing thereof
KR101410745B1 (en) * 2012-06-15 2014-06-24 한국전기연구원 Electric leakage circuit breaker and method for controlling the same

Also Published As

Publication number Publication date
KR20180075242A (en) 2018-07-04

Similar Documents

Publication Publication Date Title
WO2018124374A1 (en) Earth leakage circuit breaker for electric vehicle charger
WO2011102576A1 (en) Abnormality diagnosis device and method of cell balancing circuit
WO2014129757A1 (en) Device and method for diagnosing failure of cell balancing circuit
WO2014054874A2 (en) Device for activating multi-bms
WO2011108788A1 (en) Abnormality diagnostic device and method of cell balancing circuits
WO2010101416A2 (en) Method and apparatus for diagnosing an abnormality of a current-measuring unit of a battery pack
WO2019221368A1 (en) Device, battery system, and method for controlling main battery and sub battery
WO2016017963A1 (en) Electric vehicle quick charge control apparatus
WO2015126035A1 (en) Apparatus, system and method for preventing damage to battery rack by means of voltage measurement
WO2018038348A1 (en) Battery management system
WO2014084628A1 (en) Apparatus for measuring current of battery and method therefor
WO2015030439A1 (en) Current measuring relay device
WO2019093667A1 (en) Relay diagnosis circuit
WO2018074744A1 (en) Device and method for diagnosing switch using voltage distribution
WO2018186528A1 (en) Converter-separated electric vehicle charging system, and electric vehicle charging apparatus installed on utility pole
WO2019151631A1 (en) Battery protective circuit and battery pack comprising same
WO2021033956A1 (en) Battery system and operating method thereof
WO2012165890A9 (en) Apparatus for leveling voltage for connecting unit racks for storing power, and system for storing power comprising same
WO2019117512A1 (en) Device and method for diagnosing watchdog timer
WO2020190009A1 (en) Apparatus and method for testing safety of battery
WO2018048128A1 (en) Apparatus and method for detecting failure of battery pack
WO2023080343A1 (en) Power supply system having two or more power sources insulated from each other for detection of insulation fault between high-voltage power source and vehicle chassis, and method using same
WO2017090978A1 (en) Battery pack status parallel monitoring device
WO2017090980A1 (en) Fuse diagnosis device of high-voltage secondary battery
WO2022080709A1 (en) Relay diagnosis device, relay diagnosis method, battery system, and electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887379

Country of ref document: EP

Kind code of ref document: A1