WO2018123658A1 - Method for producing polysilane compound, composition, film, and substrate - Google Patents

Method for producing polysilane compound, composition, film, and substrate Download PDF

Info

Publication number
WO2018123658A1
WO2018123658A1 PCT/JP2017/045124 JP2017045124W WO2018123658A1 WO 2018123658 A1 WO2018123658 A1 WO 2018123658A1 JP 2017045124 W JP2017045124 W JP 2017045124W WO 2018123658 A1 WO2018123658 A1 WO 2018123658A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polysilane
compound
polysilane compound
less
Prior art date
Application number
PCT/JP2017/045124
Other languages
French (fr)
Japanese (ja)
Inventor
博樹 千坂
国宏 野田
大 塩田
Original Assignee
東京応化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京応化工業株式会社 filed Critical 東京応化工業株式会社
Priority to JP2018559050A priority Critical patent/JP6989525B2/en
Publication of WO2018123658A1 publication Critical patent/WO2018123658A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing a polysilane compound, a composition containing the polysilane compound, a film, and a substrate.
  • Polysilane compounds include ceramic precursors, photoelectron materials (for example, photoelectrophotographic materials such as photoresists and organic photoreceptors, optical transmission materials such as optical waveguides, optical recording materials such as optical memories, and electroluminescent element materials), various elements. Used in applications such as interlayer insulating films, sealing materials for light emitting elements such as LED elements and organic EL elements, coating films for diffusion of impurities into semiconductor substrates, and gap fill materials for semiconductor processes. In the material field, there is a high demand for removing metal components from raw materials. In addition, in manufacturing processes including microfabrication and multilayer processes, gap fill characteristics for filling irregularities on a substrate are required, and chemical resistance and ease of workability are required.
  • Patent Document 1 discloses a method for producing polysilane by reacting metal magnesium with a halosilane compound in the presence of a metal halide such as zinc chloride.
  • a metal halide such as zinc chloride
  • a metal such as zinc remains in the polysilane after production due to a silicon-metal bond, and it is difficult to reduce the residual metal. It has been a problem that the remaining metal can impair the performance as an optoelectronic material such as a film containing the polysilane. Further, there has been a dilemma that gap fill characteristics deteriorate when a high molecular weight of polysilane produced for the purpose of reducing residual metal is increased.
  • Patent Document 2 describes a purification method in which residual metal is removed using a metal compound such as copper chloride after the production of polysilane.
  • the purification using a metal compound such as copper chloride has a problem that the terminal in polysilane is converted to silanol (Si—OH) by hydrolysis and polysilane is converted to siloxane.
  • silanolation in polysilane can also cause deterioration in performance (for example, generation of cracks) of the film containing polysilane.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide a method for producing a polysilane compound with little residual metal (eg, Zn, Cu, Fe), a composition containing the polysilane compound, a film, and a substrate.
  • a polysilane compound with little residual metal eg, Zn, Cu, Fe
  • the present inventors can achieve silencing of the produced polysilane compound and a mass average molecular weight of 5000 or less, and reduce the residual metal. As a result, the present invention has been completed.
  • the first aspect of the present invention is: It is a manufacturing method of the polysilane compound of the mass mean molecular weight 5000 or less including making a halosilane compound react in presence of the organometallic complex represented by the following general formula (A1), and magnesium.
  • A1 organometallic complex represented by the following general formula (A1), and magnesium.
  • M p L p / q (A1) In the general formula (A1), M p represents a p-valent metal cation, L represents a q-valent organic ligand, and p and q each independently represents an integer of 1 or more.
  • the second aspect of the present invention is: The peak areas of the following (1X) and (2X) obtained by separating the spectrum having the maximum detected peak height in the binding energy range of 99 eV or more and 104 eV or less measured by X-ray photoelectron spectroscopy in the polysilane compound.
  • the ratio of the following (2X) to the sum, the ratio represented by the following formula (3X) is 0.4 or less, and the metal content in the polysilane compound is 500 ppb or less, and the polysilane having a mass average molecular weight of 5000 or less A compound.
  • the third aspect of the present invention is a composition comprising the polysilane compound of the second aspect.
  • a fourth aspect of the present invention is a film containing the polysilane compound of the second aspect.
  • a fifth aspect of the present invention is a substrate comprising a film containing the polysilane compound of the second aspect.
  • a method for producing a polysilane compound with little residual metal for example, Zn, Cu, Fe
  • a composition containing the polysilane compound a film, and a substrate.
  • the manufacturing method of the polysilane compound which concerns on a 1st aspect is a manufacturing method of the polysilane compound including making a halosilane compound react in presence of the organometallic complex represented with the said general formula (A1), and magnesium.
  • a residual metal can be decreased by using the organometallic complex represented by the said general formula (A1).
  • the mass average molecular weight of the produced polysilane compound can be 5000 or less, and the gap fill characteristics can be improved.
  • q-valent organic ligand L is preferably an integer of 1 to 4, more preferably an integer of 1 to 3, and still more preferably 2 or 3.
  • q is preferably an integer of 1 to 4, more preferably an integer of 1 to 3, and still more preferably 1 or 2.
  • ⁇ -diketonato ligands such as acetylacetonato, olefins, conjugated ketones, nitriles, amines, carboxylate ligands, carbon monoxide, phosphine, phosphinite, phosphonite, phosphite Organic ligands such as The q-valent organic ligand L may be a chelate ligand.
  • the organometallic complex is preferably an organometallic complex represented by the following general formula (A2).
  • M represents iron, silver, aluminum, bismuth, cerium, cobalt, copper, dysprosium, erbium, europium, gallium, gadolinium, hafnium, holmium, indium, iridium, lanthanum, lutetium, manganese, Molybdenum, neodymium, nickel, osmium, palladium, promethium, praseodymium, platinum, rhenium, rhodium, ruthenium, samarium, scandium, tin, terbium, titanium, thulium, vanadium, chromium, tantalum, ytterbium, gold, mercury tungsten, yttrium, zinc
  • R a1 each independently represents a saturated hydrocarbon group, an unsaturated hydrocarbon group, an aromatic hydrocarbon group, an aral
  • R a2 represents a hydrogen atom, a saturated hydrocarbon group, an unsaturated hydrocarbon group, an aromatic hydrocarbon group or an aralkyl group, and p represents an integer of 1 or more.
  • Examples of the saturated hydrocarbon group represented by R a1 and R a2 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, heptyl Group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, icosyl group, docosyl group, 2-dodecylhexadecyl group, triacontyl group, dotriacontyl group, tetracontyl group, etc.
  • a linear or branched alkyl group having a number of 1 to 40 which further includes a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), an alkoxy group (such as those described below), a silyl group (described below) Alkyl groups substituted with one or more substituents, such as those described), for example Chloropropyl group, 3,3,3-trifluoropropyl group, 3,3,4,4,5,5,6,6,6-nonafluorohexyl group, tridecafluoro-1,1,2,2- Tetrahydrooctyl group, heptadecafluoro-1,1,2,2-tetrahydrodecyl group, 3- (heptafluoroisopropoxy) propyl group, trimethylsilylmethyl group, etc .; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group,
  • Examples of the unsaturated hydrocarbon group represented by R a1 and R a2 include vinyl group, ethynyl group, allyl group, 1-propenyl group, propargyl group, butenyl group, pentenyl group, hexenyl group, octenyl group, decanyl group, dodecanyl group
  • a linear or branched alkenyl group having 2 to 18 carbon atoms such as an octadecanyl group, an alkynyl group, and these unsaturated hydrocarbon groups include a halogen atom (such as those described above) and an alkoxy group (described below).
  • Silyl groups such as those described below
  • aryl groups such as those described below
  • substituents such as 2-trifluoromethylethenyl Group, 2-trifluoromethylethynyl group, 3-methoxy-1-propenyl group, 3-methoxy-1-propynyl group, 2-trimethyl Rusilylethenyl group, 2-trimethylsilylethynyl group, 2-phenylethenyl group, 2-phenylethynyl group, etc .
  • cyclic unsaturated hydrocarbon group having 3 to 18 carbon atoms such as cyclopropenyl group, cyclohexenyl group, cyclooctenyl group
  • Examples thereof include an alkyl group having an unsaturated hydrocarbon group (such as those described above), such as a cyclohexenylethyl group.
  • Examples of the aromatic hydrocarbon group represented by R a1 and R a2 include one or more of a phenyl group, an alkyl group such as a tolyl group, a butylphenyl group, and a butoxyphenyl group, an alkoxy group, and an amino group. Examples include substituted phenyl groups.
  • Examples of the aralkyl group represented by R a1 and R a2 include a benzyl group, a phenethyl group, a methylphenethyl group, a butylphenethyl group, a phenylpropyl group, and a methoxyphenylpropyl group.
  • a heteroaralkyl group a pyridylmethyl group, A pyridylethyl group etc. are mentioned.
  • Examples of the alkoxy group represented by R a1 include alkoxy groups having 1 to 18 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a hexyloxy group, and an octyloxy group, and an aryloxy group includes a phenoxy group And a substituted phenoxy group substituted with a substituent such as an alkyl group such as a tolyloxy group and a butylphenoxy group.
  • Examples of the aralkyloxy group represented by R a1 include a benzyloxy group and a phenethyloxy group, and examples of the aryloxyalkyl group include a phenoxypropyl group and a phenoxybutyl group.
  • R a1 is preferably a saturated hydrocarbon group or aromatic hydrocarbon group having 1 to 30 carbon atoms, and more preferably an alkyl group or phenyl group having 1 to 15 carbon atoms. Preferred is a methyl group.
  • R a2 is preferably a hydrogen atom, a saturated hydrocarbon group having 1 to 18 carbon atoms, an aromatic hydrocarbon group or the like, and more preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, phenyl, Group, phenylethyl group and the like, and particularly preferred is a hydrogen atom.
  • R a1 represents a methyl group
  • R a2 preferably represents a hydrogen atom. Preferred examples of p are as described above.
  • Examples of the metal complex include various metal complexes depending on the combination of the metal M and R a1 and R a2 . Specific examples include silver acetylacetonate (I), tris (acetylacetonato) aluminum (III), tris (2,2,6,6-tetramethyl-3,5-heptanedionato) aluminum (III), tris (2,2,6,6-tetramethyl-3,5-heptanedionato) bismuth (III), tris (acetylacetonato) cerium (III), bis (acetylacetonato) cobalt (II), tris (acetylacetonato ) Cobalt (III), Tris (1,3-diphenyl-1,3-propanedionato) cobalt (III), Tris (3-methyl-2,4-pentandionato) cobalt (III), Tris (3- Phenyl-2,4-pentanedionato) cobalt (III), tris (3- (1-
  • the amount of the organometallic complex used is preferably in the range of 0.0001 to 10 mol times, more preferably in the range of 0.0005 to 1 mol times, and particularly preferably in the range of 0.001 to 0.1 mol with respect to the halosilane compound. It is the range of mole times.
  • magnesium In the method for producing a polysilane compound according to the first aspect, the reaction of the halosilane compound is performed in the presence of magnesium.
  • Magnesium can function as a reducing agent for dehalogenating polycondensation of a halosilane compound (“magnesium reduction method”, methods described in WO98 / 29476, JP2003-277507, etc.).
  • Magnesium may be in the form of metallic magnesium (magnesium alone), a magnesium alloy, or a mixture thereof (hereinafter also simply referred to as “magnesium component”).
  • the kind of magnesium alloy is not particularly limited, and examples thereof include conventional magnesium alloys such as magnesium alloys containing components such as aluminum, zinc, rare earth elements (scandium, yttrium, etc.).
  • the shape of the magnesium component is not particularly limited as long as the reaction of the halosilane compound is not impaired. Flat form etc.) etc. are illustrated, and it is preferable that they are a powder, a granular material, a ribbon-like body, a cutting piece-like body etc. especially.
  • the average particle size of magnesium eg, powdered magnesium
  • the said magnesium component may be used independently and may be used in combination of 2 or more type.
  • the amount of the magnesium component used is preferably 1 to 20 equivalents, more preferably 1.1 to 14 equivalents, and 1.2 to 10 equivalents in terms of magnesium with respect to the halogen atom of the halosilane compound. More preferably, it is 1.2 to 5 equivalents. Further, the amount of magnesium used is preferably 1 to 20 times, more preferably 1.1 to 14 times, and more preferably 1.2 to 10 times as magnesium in terms of moles with respect to the halosilane compound. Is more preferable, and 1.2 to 5 times is particularly preferable.
  • the halosilane compound is preferably a compound represented by the following formula (1).
  • X n SiR 4-n (1) Wherein n is an integer of 2 to 4, n Xs are each independently a halogen atom, and (4-n) Rs are each independently a hydrogen atom, an organic group or silyl Group.
  • halogen atom represented by X examples include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a chlorine atom or a bromine atom, and more preferably a chlorine atom.
  • Examples of the organic group represented by R include alkyl groups [alkyl groups having 1 to 10 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl and t-butyl groups (preferably alkyl groups having 1 to 6 carbon atoms).
  • a cycloalkyl group (a cycloalkyl group having 5 to 8 carbon atoms such as a cyclohexyl group, particularly a cycloalkyl group having 5 to 6 carbon atoms), an alkenyl group [ethenyl Group, propenyl group, butenyl group and the like alkenyl group having 2 to 10 carbon atoms (preferably alkenyl group having 2 to 6 carbon atoms, especially alkenyl group having 2 to 4 carbon atoms)], cycloalkenyl group [1- A cycloalkenyl group having 5 to 10 carbon atoms such as a cyclopentenyl group and a 1-cyclohexenyl group (preferably a cycloalkenyl group having 5 to 8 carbon atoms, Such cycloalkenyl group having 5-7 carbon atoms)], the aryl group (phenyl, aryl group having
  • the aryl group constituting the alkyl group, cycloalkyl group, aryl group or aralkyl group may have one or more substituents.
  • substituents include the above-exemplified alkyl groups (particularly alkyl groups having 1 to 6 carbon atoms).
  • organic group having such a substituent include C 1-6 alkyl-C such as tolyl group (methylphenyl group), xylenyl group (2,6-dimethylphenyl group), ethylphenyl group and methylnaphthyl group.
  • a 6-10 aryl group preferably a mono, di or tri C 1-4 alkyl-C 6-10 aryl group, particularly a mono or di C 1-4 alkylphenyl group).
  • silyl group examples include substituted silyl groups substituted with the above alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group, aryl group, aralkyl group, alkoxy group and the like.
  • R is preferably a hydrocarbon group such as an alkyl group or an aryl group.
  • dihalosilane compounds include, for example, dialkyldihalosilanes (diC 1-10 alkyldihalosilanes such as dimethyldichlorosilane, preferably diC 1-6 alkyldihalosilanes, more preferably diC 1-4 Alkyl dihalosilanes), monoalkyl monoaryl dihalosilanes (mono C 1-10 alkyl mono C 6-12 aryl dihalosilanes such as methylphenyldichlorosilane, preferably mono C 1-6 alkyl mono C6-10 aryl) Dihalosilanes, more preferably mono C 1-4 alkyl mono C 6-8 aryl dihalo silanes, etc., diaryl dihalo silanes (diC 6-12 aryl dihalo silanes such as diphenyl dichloro silane, preferably di C 6 -10 aryl dihalo silane, more preferably di C 6-8 A Rujiharoshiran, etc.),
  • R is preferably a hydrocarbon group such as an alkyl group, a cycloalkyl group, an aryl group which may have a substituent, or an aralkyl group, particularly an alkyl group or an aryl group. Groups are preferred.
  • trihalosilane compounds include alkyltrihalosilanes (C 1-10 alkyltrihalosilanes such as methyltrichlorosilane, butyltrichlorosilane, t-butyltrichlorosilane, hexyltrichlorosilane, preferably C 1-6 alkyltrihalosilane, More preferably, C 1-4 alkyltrihalosilane, etc., cycloalkyltrihalosilane (mono C6-10 cycloalkyltrihalosilane, such as cyclohexyltrihalosilane), aryltrihalosilane (phenyltrichlorosilane, tolyltrichlorosilane, xylyltrichlorosilane) C 6-12 aryl trihalosilane, preferably C 6-10 aryl trihalosilane, more preferably C 6-8 aryl trihalosilane, etc.) .
  • tetrahalosilane compound examples include, for example, tetrachlorosilane, dibromodichlorosilane, and tetrabromosilane.
  • the tetrahalosilane compounds may be used alone or in combination of two or more.
  • the tetrahalosilane compound is preferably used in combination with a mono-, di- or trihalosilane compound.
  • the halosilane compound may be a monohalosilane compound.
  • Representative monohalosilanes include, for example, trialkylmonohalosilanes (tri-C 1-10 alkyl monohalosilanes such as trimethylchlorosilane, preferably tri-C 1-6 alkyl monohalosilanes, more preferably tri-C 1-4 alkyls).
  • Monohalosilanes, etc.), dialkyl monoaryl monohalosilanes (diC 1-10 alkyl mono C 6-12 aryl monohalosilanes such as dimethylphenylchlorosilane, preferably diC 1-6 alkyl mono C 6-10 aryl monohalo Silane, more preferably diC 1-4 alkyl mono C 6-8 aryl monohalosilane, etc., monoalkyl diaryl monohalo silane (mono C 1-10 alkyl di C 6-12 aryl monohalo silane, such as methyldiphenylchlorosilane, preferably mono C 1 6 alkyl di C 6-10 aryl monohaloalkyl silane, more preferably such mono C 1-4 alkyl di C 6-8 aryl monohaloalkyl silane), tri C 6-12 aryl monohaloalkyl such triaryl monohaloalkyl silane (triphenyl chlorosilane Silane, preferably tri-C 6-10 aryl
  • halosilane compounds can be used alone or in combination of two or more.
  • the halosilane compound preferably contains at least one selected from a dihalosilane compound and a trihalosilane compound.
  • halosilane compound contains a trihalosilane compound and / or a tetrahalosilane compound
  • a network-like (network-like or branched) polysilane compound can be generated.
  • representative halosilanes include (a) alkyltrihalosilanes (for example, alkyltrihalosilanes alone, methyltrihalosilanes in combination with C2-10 alkyltrihalosilanes, C 2-10 alkyltrihalosilane), (b) aryltrihalosilane (eg, aryltrihalosilane alone), (c) combination of aryltrihalosilane and dihalosilane (eg, monoalkylmonoaryldihalosilane), etc. Can be mentioned.
  • the ratio (use ratio) of at least one selected from dihalosilane compounds and trihalosilane compounds is 50 mol% or more (for example, 60 mol% or more), preferably 70 mol% or more, based on the entire halosilane. (For example, 80 mol% or more), more preferably 90 mol% or more (for example, 95 mol% or more).
  • the proportion (use ratio) of the trihalosilane compound is 30 mol% or more (for example, 40 mol% or more), preferably 50 mol% or more (for example, 60 mol%) of the entire halosilane compound. Mol% or more), more preferably 70 mol% or more (for example, 75 mol% or more), particularly 80 mol% or more.
  • the halosilane compound is preferably as pure as possible.
  • liquid halosilane compounds are preferably dried and dried using a desiccant such as calcium hydride, and solid halosilane compounds are purified and used by recrystallization or the like. Is preferred.
  • the concentration of the halosilane compound (substrate concentration) in the raw material mixture (reaction solution) is, for example, about 0.05 to 20 mol / l, preferably about 0.1 to 15 mol / l, more preferably 0.2 to 5 mol. / L may be sufficient.
  • the halosilane compound may be further reacted with the organometallic complex and magnesium in the presence of a metal halide.
  • the metal halide include polyvalent metal halides such as transition metals (for example, periodic table group 3A elements such as samarium, periodic table group 4A elements such as titanium, periodic table group 5A elements such as vanadium, iron, nickel, Periodic table group 8 elements such as cobalt and palladium, periodic table group 1B elements such as copper, periodic table group 2B elements such as zinc), periodic table group 3B metals (such as aluminum), periodic table group 4B metals (such as tin) Metal halides such as chloride, bromide or iodide.
  • the valence of the metal constituting the metal halide is not particularly limited, but is preferably 2 to 4, more preferably 2 or 3. These metal halides can be used alone or in combination of two or more.
  • the metal halide is preferably a chloride or bromide of at least one metal selected from iron, aluminum, zinc, copper, tin, nickel, cobalt, vanadium, titanium, palladium, samarium and the like.
  • metal halides examples include chlorides (iron chloride such as FeCl 2 and FeCl 3 ; AlCl 3 , ZnCl 2 , SnCl 2 , CoCl 2 , VCl 2 , TiCl 4 , PdCl 2 , and SmCl 2 ).
  • chlorides iron chloride such as FeCl 2 and FeCl 3 ; AlCl 3 , ZnCl 2 , SnCl 2 , CoCl 2 , VCl 2 , TiCl 4 , PdCl 2 , and SmCl 2 ).
  • bromides such as iron bromide such as FeBr 2 and FeBr 3
  • iodides such as SmI 2
  • chlorides for example, iron chlorides such as iron (II) chloride and iron (III), zinc chloride, etc.
  • bromides are preferred.
  • iron chloride and / or zinc chloride, especially zinc chloride and the like are used.
  • the amount of the metal halide used is preferably in the range of 0.001 to 10 mole times, more preferably in the range of 0.001 to 1 mole times, particularly preferably 0.001 to 0.1 moles relative to the halosilane compound. It is the range of mole times.
  • the concentration of the metal halide in the reaction solution is usually about 0.001 to 6 mol / L, preferably about 0.005 to 4 mol / L, more preferably about 0.01 to 3 mol / L. It may be.
  • the reaction of the halosilane compound in the method for producing a polysilane compound according to the first aspect is preferably performed in a solvent (reaction solvent), more preferably in an aprotic solvent.
  • the aprotic solvent as the solvent (reaction solvent) include ethers (1,4-dioxane, tetrahydrofuran, tetrahydropyran, diethyl ether, diisopropyl ether, 1,2-dimethoxyethane, bis (2-methoxyethyl) Cyclic or linear C 4-6 ethers such as ethers), carbonates (such as propylene carbonate), nitriles (such as acetonitrile and benzonitrile), amides (such as dimethylformamide and dimethylacetamide), sulfoxides (such as dimethyl sulfoxide) Aromatic hydrocarbons (benzene, toluene, xylene, etc.), aliphatic hydrocarbons
  • aprotic solvents can be used alone or in combination of two or more as a mixed solvent.
  • at least polar solvents for example, ethers [for example, tetrahydrofuran, 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,4-dioxane, etc. (especially tetrahydrofuran, 1,2- Dimethoxyethane)]] is preferably used.
  • a polar solvent may be used individually or in combination of 2 or more types, and may combine a polar solvent and a nonpolar solvent.
  • the solution after the reaction is brought into contact with an aqueous solution containing at least one selected from the group consisting of a base and an acid to purify the solution. It is preferable to further include obtaining a polysilane compound.
  • impurities such as halogen atoms (eg, halogen ions (chloride ions, etc.), Si—Cl remaining in the polysilane compound) can be removed.
  • the molecular weight reduction of the polysilane compound can be promoted, and the solvent solubility of the polysilane compound can be improved.
  • the acid can also function as a quencher for the reaction of the halosilane compound.
  • the metal atom for example, Mg, Zn, Cu, Fe, etc.
  • the treatment temperature is preferably from ⁇ 50 ° C. to the boiling point of the solvent, more preferably from room temperature to 100 ° C.
  • bases can be used as long as they are basic compounds.
  • Inorganic bases such as potassium carbonate, lithium hydride, sodium hydride, potassium hydride, calcium hydride, alkyl metals such as methyl lithium, n-butyl lithium, methyl magnesium chloride, ethyl magnesium bromide, Cr, Ga , Fe (Fe (II), Fe (III)), Cd, Co, Ni, Sn, Pb, Cu (Cu (II), Cu (I)), Ag, Pd, Pt, Au, and other metals (or metals) Metal halide composed of ions), sodium methoxide, sodium ethoxide, potassium t- Alkoxides such as Tokishido, triethylamine, diisopropylethylamine, N, N-dimethylaniline, pyridine,
  • various solvents can be used as the base or acid treatment, for example, hydrocarbon solvents such as benzene, toluene and xylene, glycol solvents such as propylene glycol monomethyl ether and propylene glycol monoethyl ether, Ether solvents such as diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, 1,4-dioxane, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclopentanone, cyclohexanone, ethanol, isopropyl alcohol, One or more selected from alcohol solvents such as butanol can be used.
  • hydrocarbon solvents such as benzene, toluene and xylene
  • glycol solvents such as propylene glycol monomethyl ether and propylene glycol monoethyl ether
  • a cyclic skeleton acetate-containing compound can also be preferably used as a solvent used in the above base or acid treatment.
  • the acetate compound containing a cyclic skeleton is not particularly limited as long as it is an acetate solvent having a cyclic skeleton that does not impair the effects of the present invention, but is preferably a cycloalkyl acetate represented by the following formula (S1).
  • each R s1 is independently an alkyl group, p is an integer of 1 to 6, and q is an integer of 0 to (p + 1).
  • alkyl group represented by R s1 include alkyl groups having 1 to 3 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, and an i-propyl group.
  • cycloalkyl acetate represented by the formula (S1) include cyclopropyl acetate, cyclobutyl acetate, cyclopentyl acetate, cyclohexyl acetate, cycloheptyl acetate, and cyclooctyl acetate.
  • cyclohexyl acetate is preferable from the viewpoint of availability.
  • the polysilane compound can be obtained with a yield of 50% or more, and preferably the yield is 70% or more.
  • a polysilane compound having a mass average molecular weight (Mw) of 5000 or less can be produced.
  • the mass average molecular weight (Mw) is a value measured by gel permeation chromatography (GPC) in terms of polystyrene.
  • the Mw of the polysilane compound is preferably 4000 or less, more preferably 3000 or less, and still more preferably 2500 or less from the viewpoint of gap fill properties.
  • the lower limit of Mw of the polysilane compound is not particularly limited as long as the effect of the present invention is not impaired, but is preferably 300 or more, more preferably 400 or more, and further preferably 500 or more, It is particularly preferably 600 or more, and most preferably 700 or more.
  • a polysilane compound selected from the group consisting of linear polysilane, branched polysilane, and cyclic polysilane can be produced.
  • a cyclic polysilane compound can also be selectively produced.
  • the cyclic polysilane compound is preferably a polysilane compound having a Mw of 5000 or less in view of chemical structure and chemical properties. Examples of the polysilane compound include polysilane compounds having 3 to 40 Si atoms, and polysilane compounds having 5 to 30 Si atoms are preferable.
  • the polysilane compound is preferably at least one selected from the group consisting of polysilane compounds represented by the following general formulas (T-1) and (T-2).
  • R t10 , R t11 , R t12 , R t13 , R t14 and R t15 are each independently a hydrogen atom, a hydroxyl group or an organic group.
  • R t16 and R t17 each independently represents a hydrogen atom, a hydroxyl group or an organic group.
  • U represents an integer of 3 to 20).
  • Examples of the organic group represented by R t10 to R t17 include the same as the specific examples and preferred examples described above as the organic group represented by R.
  • any organic group can be introduced by the method described in paragraph 0031 of JP-A No. 2003-261681, for example.
  • the ratio represented by the following formula of the siloxane bond (Si—O) measured by X-ray photoelectron spectroscopy in the polysilane compound is preferably 0.5 or less.
  • the spectrum having the maximum detected peak height in the binding energy range of 99 eV to 104 eV measured by X-ray photoelectron spectroscopy in the polysilane compound is peak-separated.
  • the ratio represented by the following formula (3X), which is the ratio of the following (2X) to the sum of the areas of the following (1X) and (2X) peaks, can be reduced to 0.4 or less. It is preferably 35 or less, more preferably 0.3 or less, still more preferably 0.2 or less, particularly preferably 0.1 or less, and most preferably 0.05 or less.
  • the content ratio of Si—O and Si—C can be seen from the area of the peak having the peak height. Further, the content ratio of Si—Si is found from the area of the peak having the maximum peak height in the range where the bond energy of (1X) is 99.0 eV or more and 99.5 eV or less.
  • the polysilane compound contains not only Si—C but also Si—O, peaks having two maximum peak heights appear in the range of 100 eV or more and 104 eV or less after peak separation, but according to the second aspect In the polysilane compound, it is preferable that only a peak having one maximum peak height appears after peak separation in the range of 100 eV or more and 104 eV or less, and ideally only one peak appears. O-bonds are not considered to be included.
  • the peak ratio in the range of 100 eV or more and 104 eV or less appears as two peaks having the maximum peak height overlapping, so the area ratio is Since it becomes large, the ratio represented by the above formula exceeds 0.4.
  • the organometallic complex does not contain a halogen atom, generation of by-products such as a siloxane bond and a silanol group can be suppressed.
  • the amount of siloxane bonds (Si—O) present in the compound can be reduced, and the film performance such as suppression of microcracking can be improved.
  • the content of the residual metal in the polysilane compound can be reduced, the content of the metal in the polysilane compound can be 500 ppb or less, and 400 ppb or less. Preferably, it is 100 ppb or less, more preferably 50 ppb or less, and particularly preferably 10 ppb or less. By setting it within the above range, it is possible to prevent performance degradation as a photoelectron material such as a film containing the polysilane compound.
  • the composition which concerns on a 3rd aspect is a composition containing the polysilane compound of a 2nd aspect.
  • the composition according to the third aspect may be a thermosetting composition or may not be a thermosetting composition.
  • the composition according to the third aspect may be a radiation-sensitive composition or not a radiation-sensitive composition, and is a positive-type radiation-sensitive composition that is solubilized in a developer upon exposure. Or a negative radiation-sensitive composition that becomes insoluble in a developer upon exposure.
  • the radiation light source include an active energy ray such as ultraviolet light and excimer laser light, a light source that emits ultraviolet light such as a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp, and a carbon arc lamp.
  • the composition according to the third aspect preferably contains a solvent.
  • the solvent the above-mentioned cyclic skeleton acetate-containing compound, Alcohols such as methanol, ethanol, propanol, n-butanol; Polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol; Ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl-n-amyl ketone, methyl isoamyl ketone, 2-heptanone; a lactone ring-containing organic solvent such as ⁇ -butyrolactone; Compounds having an ester bond such as ethylene glycol monoacetate, diethylene glycol monoacetate, propylene glycol monoacetate or dipropylene glycol monoacetate, monomethyl ether, monoethyl ether, monopropyl of the above polyhydric alcohols or the above compound having an ester bond Derivation of the
  • PGMEA propylene glycol monomethyl ether acetate
  • PGME propylene glycol monomethyl ether
  • TNU N′-tetramethylurea
  • butanol two or more of these solvents may be used in combination.
  • the water content of the composition according to the third aspect is 0.5% by mass or less in that the composition according to the third aspect is easy to form a silica-based film having a low dielectric constant or suppressing microcracks.
  • 0.3 mass% or less is more preferable, and less than 0.3 mass% is especially preferable.
  • the water content of the composition according to the third aspect is often derived from a solvent. For this reason, it is preferable that the solvent is dehydrated so that the water content of the composition according to the third aspect becomes the above amount.
  • the amount of solvent used is not particularly limited as long as the object of the present invention is not impaired. From the viewpoint of film forming property, the solvent is used so that the solid content concentration of the composition according to the third aspect is preferably 1 to 50% by mass, more preferably 10 to 40% by mass.
  • the composition according to the third aspect may include a polysilane other than the polysilane compound according to the first aspect.
  • a polysilane compound having a high Mw hereinafter also simply referred to as “high molecular weight polysilane” in terms of improving chemical resistance and the like, and the Mw of the high molecular weight polysilane is, for example, more than 5,000 and less than 100,000, preferably It is about 6000 to 60000.
  • the composition according to the third aspect may contain a silicon-containing resin other than the polysilane compound in terms of improving processability.
  • the silicon-containing resin other than the polysilane compound include a polysiloxane resin or a polysilane-polysiloxane resin having a polysilane structure (I-1) and a polysiloxane structure (I-2).
  • the Mw of the silicon-containing resin other than the polysilane compound is preferably 500 to 20000, more preferably 1000 to 10,000, and still more preferably 2000 to 8000.
  • the polysilane-polysiloxane resin is prepared by, for example, treating the polysilane compound according to the first embodiment in a solvent under the basic conditions described above, and then adding the following general formulas (A-1-1) to (A- 1-4) at least one silicon compound selected from the group consisting of silicon compounds and at least one selected from the group consisting of hydrolysates, condensates and hydrolysis condensates of the above silicon compounds; Can be produced by hydrolytic condensation reaction.
  • X 1 to X 4 are each independently a hydrolyzable group
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or An organic group, and a hydrogen atom in the organic group may be substituted with a halogen atom.
  • Examples of the hydrolyzable group represented by X 1 to X 4 include an alkoxy group, a halogen atom or an isocyanate group (NCO), and an alkoxy group is preferable.
  • Examples of the alkoxy group include an alkoxy group having 1 to 6 carbon atoms, specifically, a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, a t-butoxy group, Examples include a pentoxy group.
  • halogen atom a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom is mentioned, A chlorine atom is preferable.
  • Examples of the organic group represented by R 1 to R 6 include an organic group having 1 to 30 carbon atoms, and an alkyl group [methyl, ethyl, n-propyl, i-propyl, n-butyl group and t-butyl group.
  • An alkyl group having 1 to 10 carbon atoms preferably an alkyl group having 1 to 6 carbon atoms, particularly an alkyl group having 1 to 4 carbon atoms
  • a cycloalkyl group having 5 to 5 carbon atoms such as a cyclohexyl group).
  • alkenyl groups [alkenyl groups having 2 to 10 carbon atoms such as ethenyl group, propenyl group, butenyl group (preferably 2 to 6 carbon atoms). Alkenyl groups, especially alkenyl groups having 2 to 4 carbon atoms, etc.]], cycloalkenyl groups [cycloalkenyl groups having 5 to 10 carbon atoms such as 1-cyclopentenyl group, 1-cyclohexenyl group, etc.
  • a group (preferably a cycloalkenyl group having 5 to 8 carbon atoms, particularly a cycloalkenyl group having 5 to 7 carbon atoms)], an aryl group (an aryl group having 6 to 10 carbon atoms such as phenyl or naphthyl group), Aralkyl groups [C 6-10 aryl-C 1-6 alkyl groups such as benzyl and phenethyl groups (C 6-10 aryl-C 1-4 alkyl groups etc.)], amino groups, N-substituted amino groups (the above alkyl groups) , N-mono- or di-substituted amino group substituted with a cycloalkyl group, an aryl group, an aralkyl group, an acyl group, and the like.
  • the aryl group constituting the alkyl group, cycloalkyl group, aryl group or aralkyl group may have one or more substituents.
  • substituents include the above-exemplified alkyl groups (particularly alkyl groups having 1 to 6 carbon atoms), the above-exemplified alkoxy groups, and the like.
  • organic group having a substituent include a C 1-6 alkyl-C 6-10 aryl group such as tolyl, xylenyl, ethylphenyl, methylnaphthyl group (preferably mono, di or tri C 1-4).
  • Alkyl-C 6-10 aryl groups especially mono or di C 1-4 alkylphenyl groups); C 1-10 alkoxy C 6-10 aryl groups such as methoxyphenyl, ethoxyphenyl, methoxynaphthyl groups (preferably C 1 -6 alkoxy C 6-10 aryl group, especially C 1-4 alkoxyphenyl group, etc.).
  • the silicon compound represented by the general formula (A-1-3) may be a silicon compound represented by the following formula (A-3).
  • HOOC-UZY-Si (OR a ) 3 (A-3) (In the above general formula (A-3), U represents a divalent group or branched chain formed by removing one hydrogen atom of each of two ring carbon atoms from an aromatic ring group or an alicyclic group.
  • Z represents —NHCO— or —CONH—
  • Y represents a single bond, an alkylene group, an arylene group or —R Y1 —NH—R Y2 -
  • R Y1 and R Y2 each independently represents an alkylene group
  • R a each independently represents a hydrocarbon group, provided that U and / or Y are a (meth) acryl group, (It may have at least one group selected from the group consisting of a vinyl group and an epoxy group as a substituent.)
  • Examples of the aromatic ring in U include aromatic rings having 6 to 10 carbon atoms which may have a substituent having 1 to 2 carbon atoms (for example, benzene ring, naphthalene ring, tolyl group, xylyl group, etc.). be able to.
  • Examples of the alicyclic ring in U include alicyclic rings having 5 to 10 carbon atoms (for example, a monocyclic cycloalkyl group, a monocyclic cycloalkenyl group, a bicyclic alkyl group, a cage alkyl group, and the like.
  • a cyclopentane ring for example, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclononane ring, a cyclodecane ring, a dicyclopentadiene ring, a norbornane ring, a norbornene ring, a cubane ring, and a basuketan ring.
  • Examples of the alkylene group in Y include an alkylene group having 1 to 6 carbon atoms, and examples thereof include a methylene group, an ethylene group, a propylene group, and a butylene group.
  • the arylene group for Y is preferably one having 6 to 10 carbon atoms. Examples of such include phenylene groups (ortho, meta, para, etc.), naphthylene groups (1,4-, 1,5-, 2,6-, etc.) and the like.
  • —R Y1 —NH—R Y2 — in Y include, for example, —CH 2 —NH—CH 2 —, — (CH 2 ) 2 —NH— (CH 2 ) 2 —, — ( CH 2 ) 3 —NH— (CH 2 ) 3 —, —CH 2 —NH— (CH 2 ) 2 —, — (CH 2 ) 2 —NH—CH 2 —, — (CH 2 ) 2 —NH— ( CH 2 ) 3 —, — (CH 2 ) 3 —NH— (CH 2 ) 2 —, —CH 2 —NH— (CH 2 ) 3 —, — (CH 2 ) 3 —NH—CH 2 — and the like be able to.
  • the polysiloxane resin includes a hydrolyzate or condensate of at least one silicon compound selected from the group consisting of silicon compounds represented by the general formulas (A-1-1) to (A-1-4). And at least one selected from the group consisting of hydrolysis condensates.
  • Resins other than the polysilane compound according to the first aspect may be used singly or in combination.
  • the blending ratio (mass ratio) of the polysilane compound according to the first aspect and the other Si resin in the composition according to the third aspect may be appropriately changed according to the application. For example, it is 1:99 to 99: 1, preferably 10:90 to 90:10.
  • composition which concerns on a 3rd aspect may contain the organic compound which has a 2 or more hydroxyl group or carboxyl group in 1 molecule as a solubility promoter to alkaline aqueous solution or a solution.
  • organic compound which has a 2 or more hydroxyl group or carboxyl group in 1 molecule as a solubility promoter to alkaline aqueous solution or a solution.
  • examples of such an organic compound include the following compounds.
  • E in the above structural formula is a hydrogen atom, a methyl group or a hydroxymethyl group
  • R 15 is a methylene group, a carbonyl group or a phenylene group
  • n is an integer of 3 or more and less than 100.
  • na represents a natural number of 1 to 3
  • nb represents a natural number of 1 or more
  • nc represents a natural number of 2 to 4
  • nd represents a natural number of 2 or more.
  • the structural formula may include enantiomers and diastereoisomers, and each structural formula represents all of these stereoisomers. These stereoisomers may be used alone or as a mixture.
  • the said organic compound can be used individually by 1 type or in combination of 2 or more types.
  • the amount used is preferably 0.001 to 50% by mass, more preferably 0.01 to 30% by mass, based on the total solid content excluding the solvent of the composition according to the third aspect.
  • the composition according to the third embodiment may contain a monovalent or divalent or higher organic acid having 1 to 30 carbon atoms in order to improve stability.
  • Acids added at this time include formic acid, acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oleic acid, stearic acid, linoleic acid, linolenic acid, benzoic acid , Phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, trifluoroacetic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, oxalic acid, malonic acid, methylmalonic acid, ethylmalonic acid, propylmalonic acid, butylmalonic acid, dimethylmalonic acid Diethyl malonic acid, succinic acid,
  • oxalic acid, maleic acid, formic acid, acetic acid, propionic acid, citric acid and the like are particularly preferable.
  • two or more kinds of acids may be mixed and used.
  • the organic acid is blended so that it is preferably 0 ⁇ pH ⁇ 7, more preferably 0.3 ⁇ pH ⁇ 6.5, and even more preferably 0.5 ⁇ pH ⁇ 6, in terms of the pH of the composition. It is good.
  • composition according to the third aspect may contain a monovalent or divalent or higher alcohol having a cyclic ether as a substituent, or an ether compound as a stabilizer.
  • a monovalent or divalent or higher alcohol having a cyclic ether as a substituent or an ether compound as a stabilizer.
  • Specific examples of the stabilizer that can be used include those described in paragraphs (0180) to (0184) of JP2009-126940A.
  • the composition according to the third aspect may contain water. Lithography performance is improved by adding water.
  • the content of water in the solvent component of the composition according to the third aspect is preferably more than 0% and less than 50% by weight, more preferably 0.3 to 30% by weight, still more preferably 0.5 to 20% by weight. It is.
  • composition according to the third aspect may contain a photoacid generator.
  • a photoacid generator that can be used include the photoacid generators described in paragraphs (0160) to (0179) of JP2009-126940A.
  • composition according to the third aspect may contain a surfactant as necessary.
  • a surfactant as necessary.
  • Specific examples of the surfactant that can be used include the surfactants described in paragraph (0185) of JP2009-126940A.
  • the composition according to the third aspect may contain a thermal crosslinking accelerator.
  • thermal crosslinking accelerators that can be used include thermal crosslinking accelerators described in JP-A-2007-302873.
  • the thermal crosslinking accelerator include phosphate compounds and borate compounds.
  • phosphate compounds include ammonium salts such as ammonium phosphate, tetramethylammonium phosphate, and tetrabutylammonium phosphate, and sulfonium salts such as triphenylsulfonium phosphate.
  • borate compounds examples include ammonium salts such as ammonium borate, tetramethylammonium borate, tetrabutylammonium borate, and sulfonium salts such as triphenylsulfonium borate.
  • the said thermal crosslinking accelerator can be used individually by 1 type or in combination of 2 or more types.
  • the addition amount of the thermal crosslinking accelerator is preferably 0.01 to 50% by mass, more preferably 0.1 to 40% by mass, based on the total amount of the solid content excluding the solvent of the composition.
  • composition which concerns on a 3rd aspect may contain the other various hardening
  • the curing agent include Bronsted acids; imidazoles; organic amines; organic phosphorus compounds and complexes thereof; organic amine complexes of Lewis acids; amidines; curing agents that generate a base component by light or heat. It is done.
  • the composition which concerns on a 3rd aspect has few residual metals and contains the polysilane compound by which silanization was suppressed (control), it can be used suitably for the material for manufacturing processes, such as a semiconductor, a display, or a solar cell. .
  • the material for manufacturing processes such as a semiconductor, a display, or a solar cell.
  • it can be used as an application for forming a protective film or an interlayer film for protecting various substrates (including metal oxide-containing films and various metal-containing films).
  • the various substrates include semiconductor substrates, liquid crystal displays, organic light emitting displays (OLEDs), electrophoretic displays (electronic paper), touch panels, color filters, backlights, and other display material substrates (metal oxide-containing films, various metal-containing materials).
  • a film Including a film), a substrate for a solar cell (including a metal oxide-containing film and various metal-containing films), a substrate for a photoelectric conversion element such as an optical sensor (including a metal oxide-containing film and various metal-containing films). And substrates of photoelectric devices (including metal oxide-containing films and various metal-containing films).
  • the base material component (resin component) in the composition according to the third aspect is substantially composed only of the polysilane compound according to the first aspect, the gap fill characteristics are particularly excellent.
  • Including a trench isolation structure in which a fine groove is formed on the surface and the inside of the groove is filled with the composition according to the third aspect to electrically isolate elements formed on both sides of the groove. It can be used as an application for forming insulating films, passivation films, planarization films, protective films, and the like.
  • membrane which concerns on a 4th aspect is a film
  • substrate which concerns on a 5th aspect is a board
  • the film according to the fourth aspect is preferably an insulating film, a passivation film, a planarizing film, or a protective film including a trench isolation structure.
  • the method for forming the film according to the fourth aspect is not particularly limited as long as the effects of the present invention are not impaired, but a contact transfer type coating apparatus such as a roll coater, a reverse coater, a bar coater, etc., on an arbitrary substrate as necessary. And a method of coating using a non-contact coating apparatus such as a spinner (rotary coating apparatus) or a curtain flow coater.
  • a contact transfer type coating apparatus such as a roll coater, a reverse coater, a bar coater, etc.
  • a non-contact coating apparatus such as a spinner (rotary coating apparatus) or a curtain flow coater.
  • substrate of display materials such as a semiconductor substrate, a liquid crystal display, an organic light emitting display (OLED), an electrophoretic display (electronic paper), a touch panel, a color filter, and a backlight (metal oxide containing) Films, including various metal-containing films), substrates for solar cells (including metal oxide-containing films and various metal-containing films), substrates for photoelectric conversion elements such as optical sensors (metal oxide-containing films, various metal-containing films) Glass substrate, quartz substrate, transparent or translucent resin substrate (for example, polycarbonate, polyethylene terephthalate, poly, etc.) in addition to photoelectric device substrates (including metal oxide-containing films and various metal-containing films).
  • display materials such as a semiconductor substrate, a liquid crystal display, an organic light emitting display (OLED), an electrophoretic display (electronic paper), a touch panel, a color filter, and a backlight (metal oxide containing) Films, including various metal-containing films), substrates for solar cells (including metal oxide-
  • Heat-resistant materials such as ether sulfone, polyimide, polyamideimide, etc.), metals, silicon substrates, etc.
  • substrate is not specifically limited, According to the usage condition of a pattern formation body, it can select suitably.
  • the drying method is not particularly limited. For example, (1) a method of drying on a hot plate at a temperature of 80 to 120 ° C., preferably 90 to 100 ° C. for 60 to 120 seconds, and (2) a room temperature for several hours to Examples include a method of leaving for several days, and (3) a method of removing the solvent by placing it in a warm air heater or an infrared heater for several tens of minutes to several hours.
  • the dried coating film may or may not be exposed to irradiation with active energy rays such as ultraviolet rays and excimer laser light.
  • the energy dose to be irradiated is not particularly limited, and for example, about 30 to 2000 mJ / cm 2 can be mentioned. You may perform the process to expose with the process of baking instead of the process of baking mentioned later.
  • the exposure step for example, the formed coating film may be selectively exposed, and in the case of including a selective exposure step, a developing step may be included. Further, for example, imprint lithography may be performed on the formed coating film.
  • the dried, exposed or developed coating film is preferably baked (post-baked) from the viewpoint of improving film properties.
  • the firing temperature depends on the lower substrate and the intended use, it is, for example, in the range of 200 to 1000 ° C., preferably 200 ° C. to 500 ° C., more preferably 200 to 250 ° C.
  • the firing atmosphere is not particularly limited, and may be an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, a vacuum, or a reduced pressure. It may be under air or the oxygen concentration may be controlled appropriately.
  • the firing time may be appropriately changed, and is, for example, about 10 minutes to 120 minutes.
  • the film thickness in the fourth and fifth embodiments is preferably 10 to 3000 nm, more preferably 50 to 1500 nm, and still more preferably 100 to 1000 nm.
  • THF tetrahydrofuran
  • Example 2 A round flask with an internal volume of 1000 ml equipped with a three-way cock is charged with 25 g of granular (particle size 20 to 1000 ⁇ m) magnesium and 2.1 g of tris (acetylacetonato) iron (III) as a catalyst, and adjusted to 1 mmHg at 50 ° C. After heating and reducing pressure to dry the inside of the reactor, dry argon gas was introduced into the reactor, 500 ml of THF previously dried with sodium-benzophenone ketyl was added, and the mixture was stirred at 25 ° C. for about 60 minutes.
  • Example 3 A round flask with an internal volume of 1000 ml equipped with a three-way cock is charged with 25 g of granular (particle size 20 to 1000 ⁇ m) magnesium and 2.1 g of tris (acetylacetonato) iron (III) as a catalyst, and adjusted to 1 mmHg at 50 ° C. After heating and reducing the pressure to dry the inside of the reactor, dry argon gas was introduced into the reactor, 500 ml of tetrahydrofuran previously dried with sodium-benzophenone ketyl was added, and the mixture was stirred at room temperature (25 ° C.) for about 30 minutes.
  • Example 4 A round flask with an internal volume of 1000 ml equipped with a three-way cock is charged with 25 g of granular (particle size 20 to 1000 ⁇ m) magnesium and 2.1 g of tris (acetylacetonato) iron (III) as a catalyst, and adjusted to 1 mmHg at 50 ° C. After heating and reducing the pressure to dry the inside of the reactor (flask), dry argon gas was introduced into the reactor, 500 ml of tetrahydrofuran previously dried with sodium-benzophenone ketyl was added, and the mixture was stirred at room temperature for about 30 minutes.
  • the obtained branched polyphenylsilane was dissolved in a mixed solution of 150 g of toluene and 150 g of tetrahydrofuran, and further mixed with 200 g of an aqueous copper chloride solution containing copper chloride (II) (CuCl 2 ) at a ratio of 10% by mass. After stirring for a minute, the organic phase containing branched polyphenylsilane and the aqueous phase containing copper chloride were separated.
  • Example 5 A round flask with an internal volume of 1000 ml equipped with a three-way cock is charged with 25 g of granular (particle size 20 to 1000 ⁇ m) magnesium and 2.1 g of tris (acetylacetonato) iron (III) as a catalyst, and adjusted to 1 mmHg at 50 ° C. After heating and reducing pressure to dry the inside of the reactor, dry argon gas was introduced into the reactor, 500 ml of THF previously dried with sodium-benzophenone ketyl was added, and the mixture was stirred at 25 ° C. for about 60 minutes.
  • the obtained branched phenylsilane-dimethylsilane copolymer is dissolved in a mixed solution of 150 g of toluene and 150 g of tetrahydrofuran, and further 200 g of an aqueous copper chloride solution containing copper (II) (CuCl 2 ) in a proportion of 10% by mass. And the mixture was stirred for 60 minutes, and then the organic phase containing the branched phenylsilane-dimethylsilane copolymer and the aqueous phase containing copper chloride were separated.
  • the organic phase containing the branched phenylsilane-dimethylsilane copolymer was washed with 200 ml of pure water three times, and then the solvent component was distilled off to obtain a phenylsilane-methylsilane copolymer (mass average molecular weight 2000). 36.6 g was obtained (74% yield).
  • Example 6 A round flask with an internal volume of 1000 ml equipped with a three-way cock is charged with 25 g of granular (particle size 20 to 1000 ⁇ m) magnesium and 2.1 g of tris (acetylacetonato) iron (III) as a catalyst, and adjusted to 1 mmHg at 50 ° C. After heating and reducing pressure to dry the inside of the reactor, dry argon gas was introduced into the reactor, 500 ml of tetrahydrofuran previously dried with sodium-benzophenone ketyl was added, and the mixture was stirred at room temperature for about 30 minutes.
  • the toluene phase was washed 10 times with 200 ml of pure water, the toluene phase was dried over anhydrous magnesium sulfate, and then toluene was distilled off to obtain 21.6 g of methylphenylsilane polymer (mass average molecular weight 6000) (recovery). Rate 60%).
  • the organic phase containing the linear phenylsilane-dimethylsilane copolymer was washed with 200 ml of pure water three times, the solvent component was distilled off, and the linear phenylsilane-dimethylsilane copolymer ( 21.6 g (mass average molecular weight 3000) was obtained (yield 60%).
  • the obtained linear methylphenylsilane polymer was dissolved in a mixed solution of 150 g of toluene and 150 g of tetrahydrofuran, and further 200 g of an aqueous copper chloride solution containing 10% by mass of copper (II) chloride (CuCl 2 ) was mixed. After stirring for 60 minutes, the organic phase containing the linear methylphenylsilane polymer and the aqueous phase containing copper chloride were separated. And after wash
  • the obtained branched polyphenylsilane was dissolved in a mixed solution of 150 g of toluene and 150 g of tetrahydrofuran, and further mixed with 200 g of an aqueous copper chloride solution containing copper chloride (II) (CuCl 2 ) at a ratio of 10% by mass. After stirring for a minute, the organic phase containing branched polyphenylsilane and the aqueous phase containing copper chloride were separated. And after wash
  • ⁇ Gap fill characteristic evaluation> The polysilane compounds obtained in Examples 1 to 6 and Comparative Examples 1 to 5 were dissolved in cyclohexyl acetate so that the concentration of the polysilane compound was 5% by mass, and each of the obtained polysilane compound solutions (including the polysilane compound) was dissolved.
  • the gap fill characteristics were evaluated according to the following evaluation method using the composition. (Evaluation criteria) Each polysilane compound solution is applied to a silicon wafer on which a repeated trench pattern having a line width of 40 nm, a space width of 15 nm, and a height (space depth) of 85 nm is formed.
  • the pattern was applied so that the height from the bottom of the pattern was about 185 nm), pre-baked at 100 ° C. for 100 seconds, and then baked (post-baked) at 350 ° C. for 30 minutes to obtain a polysilane compound film.
  • the cross-sectional portion was immersed in a 0.4% hydrofluoric acid aqueous solution for 1 minute, and then the cross-sectional shape was observed with an SEM. Evaluation was made according to the following criteria. A: The polysilane compound film is uniformly embedded in the trench pattern portion. X: Poor filling of the polysilane compound film is observed in the trench pattern portion.
  • Peak area (2X) having a maximum peak height in the range of 104 eV or less peak area derived from siloxane bond (Si—O) and Si—C bond), and bond energy of 99.0 eV or more and 99.5 eV or less
  • the range peak area (1X) (peak area derived from Si—Si) was calculated, the ratio represented by the following formula (3X) was calculated, and evaluated according to the following criteria.

Abstract

Provided are a method for producing a polysilane compound having little residual metal (such as Zn, Cu, and Fe), a composition including the polysilane compound, a film, and a substrate. A method for producing a polysilane compound having a mass-average molecular weight of 5000 or less, the method including reacting a halosilane compound in the presence of an organometallic complex represented by general formula (A1) and magnesium. (A1) MpLp/q (In general formula (A1), Mp represents a metal cation of valence p, L represents an organic ligand of valence q, and p and q each independently represent an integer of 1 or higher.)

Description

ポリシラン化合物の製造方法、組成物、膜、及び基板Method for producing polysilane compound, composition, film, and substrate
 本発明は、ポリシラン化合物の製造方法、該ポリシラン化合物を含む組成物、膜及び基板に関する。 The present invention relates to a method for producing a polysilane compound, a composition containing the polysilane compound, a film, and a substrate.
 ポリシラン化合物は、セラミックス前駆体、光電子材料(例えば、フォトレジスト、有機感光体などの光電子写真材料、光導波路などの光伝送材料、光メモリなどの光記録材料、エレクトロルミネッセンス素子用材料)、種々の素子における層間絶縁膜、LED素子や有機EL素子のような発光素子の封止材料、半導体基板への不純物拡散用の塗布膜、及び半導体プロセス用のギャップフィル材料等の用途で使用され、これらの先端材料分野においては原料のメタル成分除去に対し高い要求がされる。また、微細加工や多層プロセスを含む製造工程では、基板上の凹凸を埋めるギャップフィル特性が要求されたり、薬品耐性や加工性の容易さが要求される。 Polysilane compounds include ceramic precursors, photoelectron materials (for example, photoelectrophotographic materials such as photoresists and organic photoreceptors, optical transmission materials such as optical waveguides, optical recording materials such as optical memories, and electroluminescent element materials), various elements. Used in applications such as interlayer insulating films, sealing materials for light emitting elements such as LED elements and organic EL elements, coating films for diffusion of impurities into semiconductor substrates, and gap fill materials for semiconductor processes. In the material field, there is a high demand for removing metal components from raw materials. In addition, in manufacturing processes including microfabrication and multilayer processes, gap fill characteristics for filling irregularities on a substrate are required, and chemical resistance and ease of workability are required.
 このようなポリシラン化合物の製造方法として、例えば、特許文献1には、塩化亜鉛等の金属ハロゲン化物の存在下、ハロシラン化合物に金属マグネシウムを反応させてポリシランを製造する方法が開示されている。
 塩化亜鉛等の金属ハロゲン化物を用いる製造方法では、製造後のポリシラン中に、ケイ素-金属結合により、亜鉛等の金属が残存し残存金属の低減が困難であった。上記残存する金属は、上記ポリシランを含む膜等の光電子材料としての性能を損ない得ることが問題であった。
 また、残存金属の低減を目的として製造されるポリシランの高分子量化を図るとギャップフィル特性が劣化するというジレンマがあった。
As a method for producing such a polysilane compound, for example, Patent Document 1 discloses a method for producing polysilane by reacting metal magnesium with a halosilane compound in the presence of a metal halide such as zinc chloride.
In the production method using a metal halide such as zinc chloride, a metal such as zinc remains in the polysilane after production due to a silicon-metal bond, and it is difficult to reduce the residual metal. It has been a problem that the remaining metal can impair the performance as an optoelectronic material such as a film containing the polysilane.
Further, there has been a dilemma that gap fill characteristics deteriorate when a high molecular weight of polysilane produced for the purpose of reducing residual metal is increased.
 また、特許文献2には、ポリシラン製造後に、塩化銅等の金属化合物を用いて残存金属を除去する精製方法が記載されている。
 しかしながら、塩化銅等の金属化合物を用いた精製では、ポリシラン中における末端が加水分解により、シラノール(Si-OH)化してしまい、ポリシランがシロキサン化してしまう問題があった。また、ポリシラン中のシラノール化は、上記ポリシランを含む膜の性能低下(例えば、クラック発生)の原因にもなり得ることが知られていた。
Patent Document 2 describes a purification method in which residual metal is removed using a metal compound such as copper chloride after the production of polysilane.
However, the purification using a metal compound such as copper chloride has a problem that the terminal in polysilane is converted to silanol (Si—OH) by hydrolysis and polysilane is converted to siloxane. In addition, it has been known that silanolation in polysilane can also cause deterioration in performance (for example, generation of cracks) of the film containing polysilane.
特許第5571992号公報Japanese Patent No. 55711992 特許第5658608号公報Japanese Patent No. 5658608
 本発明は、上記従来技術の問題点に鑑み、残存金属(例えば、Zn、Cu、Fe)が少ないポリシラン化合物の製造方法、該ポリシラン化合物を含む組成物、膜及び基板の提供を目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide a method for producing a polysilane compound with little residual metal (eg, Zn, Cu, Fe), a composition containing the polysilane compound, a film, and a substrate.
 本発明者らは、ポリシラン化合物の製造方法において、特定の有機金属錯体を用いることにより、製造されるポリシラン化合物のシロキサン化の抑制と質量平均分子量として5000以下を達成し、残存金属を低減し得ることを見出し、本発明を完成するに至った。 By using a specific organometallic complex in the method for producing a polysilane compound, the present inventors can achieve silencing of the produced polysilane compound and a mass average molecular weight of 5000 or less, and reduce the residual metal. As a result, the present invention has been completed.
 本発明の第1の態様は、
 下記一般式(A1)で表される有機金属錯体及びマグネシウムの存在下においてハロシラン化合物を反応させることを含む質量平均分子量5000以下のポリシラン化合物の製造方法である。
 Mp/q  (A1)
 
(上記一般式(A1)中、Mは、p価の金属カチオンを表し、Lはq価の有機配位子を表し、p及びqは各々独立に1以上の整数を表す。)
The first aspect of the present invention is:
It is a manufacturing method of the polysilane compound of the mass mean molecular weight 5000 or less including making a halosilane compound react in presence of the organometallic complex represented by the following general formula (A1), and magnesium.
M p L p / q (A1)

(In the general formula (A1), M p represents a p-valent metal cation, L represents a q-valent organic ligand, and p and q each independently represents an integer of 1 or more.)
 本発明の第2の態様は、
 ポリシラン化合物中のX線光電子分光法により測定される99eV以上104eV以下の結合エネルギー範囲に最大検出ピーク高さを有するスペクトルをピーク分離して求められる下記(1X)及び(2X)のピークの面積の和に対する下記(2X)の比である、下記式(3X)で表される割合が0.4以下であり、上記ポリシラン化合物中の金属の含有量が500ppb以下である質量平均分子量5000以下のポリシラン化合物である。
 
(1X)・・・結合エネルギーが99.0eV以上99.5eV以下の範囲に最大検出ピーク高さを有するピークの面積
(2X)・・・結合エネルギーが100eV以上104eV以下の範囲に最大検出ピーク高さを有するピークの面積
(3X)・・・(2X)/[(1X)+(2X)]
 
 本発明の第3の態様は、第2の態様のポリシラン化合物を含む組成物である。
 本発明の第4の態様は、第2の態様のポリシラン化合物を含む膜である。
 本発明の第5の態様は、第2の態様のポリシラン化合物を含む膜を備える基板である。
The second aspect of the present invention is:
The peak areas of the following (1X) and (2X) obtained by separating the spectrum having the maximum detected peak height in the binding energy range of 99 eV or more and 104 eV or less measured by X-ray photoelectron spectroscopy in the polysilane compound The ratio of the following (2X) to the sum, the ratio represented by the following formula (3X) is 0.4 or less, and the metal content in the polysilane compound is 500 ppb or less, and the polysilane having a mass average molecular weight of 5000 or less A compound.

(1X): The area of the peak having the maximum detected peak height in the range where the binding energy is 99.0 eV or more and 99.5 eV or less (2X): The maximum detected peak height in the range where the binding energy is 100 eV or more and 104 eV or less. (3X) ... (2X) / [(1X) + (2X)]

The third aspect of the present invention is a composition comprising the polysilane compound of the second aspect.
A fourth aspect of the present invention is a film containing the polysilane compound of the second aspect.
A fifth aspect of the present invention is a substrate comprising a film containing the polysilane compound of the second aspect.
 本発明によれば、残存金属(例えば、Zn、Cu、Fe)が少ないポリシラン化合物の製造方法、該ポリシラン化合物を含む組成物、膜及び基板を提供することができる。 According to the present invention, it is possible to provide a method for producing a polysilane compound with little residual metal (for example, Zn, Cu, Fe), a composition containing the polysilane compound, a film, and a substrate.
 以下、本発明の実施態様について詳細に説明するが、本発明は、以下の実施態様に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。
 また、本明細書において、「~」は特に断りがなければ以上から以下を表す。
Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the object of the present invention. .
In the present specification, “˜” represents the following unless otherwise specified.
<ポリシラン化合物の製造方法>
 第1の態様に係るポリシラン化合物の製造方法は、上記一般式(A1)で表される有機金属錯体及びマグネシウムの存在下においてハロシラン化合物を反応させることを含むポリシラン化合物の製造方法である。
 第1の態様に係るポリシラン化合物の製造方法によれば、上記一般式(A1)で表される有機金属錯体を用いることにより、残存金属を少なくし得る。
 また、製造されるポリシラン化合物の質量平均分子量として5000以下を達成し、ギャップフィル特性も改善し得る。
<Production method of polysilane compound>
The manufacturing method of the polysilane compound which concerns on a 1st aspect is a manufacturing method of the polysilane compound including making a halosilane compound react in presence of the organometallic complex represented with the said general formula (A1), and magnesium.
According to the manufacturing method of the polysilane compound which concerns on a 1st aspect, a residual metal can be decreased by using the organometallic complex represented by the said general formula (A1).
Further, the mass average molecular weight of the produced polysilane compound can be 5000 or less, and the gap fill characteristics can be improved.
(有機金属錯体)
 第1の態様に係るポリシラン化合物の製造方法は、ハロシラン化合物の反応は下記一般式(A1)で表される有機金属錯体の存在下において行う。
 
 Mp/q  (A1)
 
(上記一般式(A1)中、Mは、p価の金属カチオンを表し、Lはq価の有機配位子を表し、p及びqは各々独立に1以上の整数を表す。)
(Organic metal complex)
In the method for producing a polysilane compound according to the first aspect, the reaction of the halosilane compound is performed in the presence of an organometallic complex represented by the following general formula (A1).

M p L p / q (A1)

(In the general formula (A1), M p represents a p-valent metal cation, L represents a q-valent organic ligand, and p and q each independently represents an integer of 1 or more.)
 p価の金属カチオンMを構成する金属原子としては、鉄、銀、アルミニウム、ビスマス、セリウム、コバルト、銅、ジスプロシウム、エルビウム、ユーロピウム、ガリウム、ガドリニウム、ハフニウム、ホルミウム、インジウム、イリジウム、ランタン、ルテチウム、マンガン、モリブデン、ネオジム、ニッケル、オスミウム、パラジウム、プロメチウム、プラセオジム、白金、レニウム、ロジウム、ルテニウム、サマリウム、スカンジウム、スズ、テルビウム、チタン、ツリウム、バナジウム、クロム、タンタル、イッテルビウム、金、水銀タングステン、イットリウム、亜鉛及びジルコニウムよりなる群から選択される金属が挙げられる。
 pとしては、1~4の整数であることが好ましく、1~3の整数であることがより好ましく、2又は3であることが更に好ましい。
 qとしては、1~4の整数であることが好ましく、1~3の整数であることがより好ましく、1又は2であることが更に好ましい。
 q価の有機配位子Lとしては、アセチルアセトナト等のβ-ジケトナト配位子、オレフィン、共役ケトン、ニトリル、アミン、カルボキシラト配位子、一酸化炭素、ホスフィン、ホスフィナイト、ホスホナイト、ホスファイト等の有機配位子が挙げられる。q価の有機配位子Lはキレート配位子であってもよい。
The metal atoms constituting the p-valent metal cation M p, iron, silver, aluminum, bismuth, cerium, cobalt, copper, dysprosium, erbium, europium, gallium, gadolinium, hafnium, holmium, indium, iridium, lanthanum, lutetium , Manganese, molybdenum, neodymium, nickel, osmium, palladium, promethium, praseodymium, platinum, rhenium, rhodium, ruthenium, samarium, scandium, tin, terbium, titanium, thulium, vanadium, chromium, tantalum, ytterbium, gold, mercury tungsten, Examples include metals selected from the group consisting of yttrium, zinc and zirconium.
p is preferably an integer of 1 to 4, more preferably an integer of 1 to 3, and still more preferably 2 or 3.
q is preferably an integer of 1 to 4, more preferably an integer of 1 to 3, and still more preferably 1 or 2.
As the q-valent organic ligand L, β-diketonato ligands such as acetylacetonato, olefins, conjugated ketones, nitriles, amines, carboxylate ligands, carbon monoxide, phosphine, phosphinite, phosphonite, phosphite Organic ligands such as The q-valent organic ligand L may be a chelate ligand.
 上記有機金属錯体としては、下記一般式(A2)で表される有機金属錯体であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
(上記一般式(A2)中、Mは、鉄、銀、アルミニウム、ビスマス、セリウム、コバルト、銅、ジスプロシウム、エルビウム、ユーロピウム、ガリウム、ガドリニウム、ハフニウム、ホルミウム、インジウム、イリジウム、ランタン、ルテチウム、マンガン、モリブデン、ネオジム、ニッケル、オスミウム、パラジウム、プロメチウム、プラセオジム、白金、レニウム、ロジウム、ルテニウム、サマリウム、スカンジウム、スズ、テルビウム、チタン、ツリウム、バナジウム、クロム、タンタル、イッテルビウム、金、水銀タングステン、イットリウム、亜鉛及びジルコニウムよりなる群から選択される金属を表し、Ra1は、各々独立して、飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基、アラルキル基、アルコキシ基、アリールオキシ基、アラルキルオキシ基又はアリールオキシアルキル基を表し、Ra2は、水素原子、飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基又はアラルキル基を表わす。pは1以上の整数を表す。)
The organometallic complex is preferably an organometallic complex represented by the following general formula (A2).
Figure JPOXMLDOC01-appb-C000002
(In the general formula (A2), M represents iron, silver, aluminum, bismuth, cerium, cobalt, copper, dysprosium, erbium, europium, gallium, gadolinium, hafnium, holmium, indium, iridium, lanthanum, lutetium, manganese, Molybdenum, neodymium, nickel, osmium, palladium, promethium, praseodymium, platinum, rhenium, rhodium, ruthenium, samarium, scandium, tin, terbium, titanium, thulium, vanadium, chromium, tantalum, ytterbium, gold, mercury tungsten, yttrium, zinc And R a1 each independently represents a saturated hydrocarbon group, an unsaturated hydrocarbon group, an aromatic hydrocarbon group, an aralkyl group, an alkoxy group, an aryl group. Represents an oxy group, an aralkyloxy group or an aryloxyalkyl group, and R a2 represents a hydrogen atom, a saturated hydrocarbon group, an unsaturated hydrocarbon group, an aromatic hydrocarbon group or an aralkyl group, and p represents an integer of 1 or more. To express.)
 Ra1及びRa2で表わされる飽和炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、イコシル基、ドコシル基、2-ドデシルヘキサデシル基、トリアコンチル基、ドトリアコンチル基、テトラコンチル基などの炭素数1~40の直鎖状または分岐状アルキル基、さらに、これらがハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルコキシ基(下記に記載するものなど)、シリル基(下記に記載するものなど)などの置換基の1種または2種以上で置換されたアルキル基、たとえばクロロプロピル基、3,3,3-トリフルオロプロピル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基、トリデカフルオロ-1,1,2,2-テトラヒドロオクチル基、ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル基、3-(ヘプタフルオロイソプロポキシ)プロピル基、トリメチルシリルメチル基など;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、ビシクロヘプチル基、シクロオクチル基、アダマンチル基などの炭素数3~18の単環または2環以上の多環の環状飽和炭化水素基、さらにこれら環状飽和炭化水素基がアルキル基(上記したものなど)、アリール基(上記したものなど)などの置換基の1種または2種以上で置換されたもの、例えば、4-t-ブチルシクロヘキシル基、4-フェニルシクロへキシル基など;または上記環状飽和炭化水素基を有するアルキル基(上記したものなど)、たとえばシクロヘキシルメチル基、アダマンチルエチル基などが挙げられる。 Examples of the saturated hydrocarbon group represented by R a1 and R a2 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, heptyl Group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, icosyl group, docosyl group, 2-dodecylhexadecyl group, triacontyl group, dotriacontyl group, tetracontyl group, etc. A linear or branched alkyl group having a number of 1 to 40, which further includes a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), an alkoxy group (such as those described below), a silyl group (described below) Alkyl groups substituted with one or more substituents, such as those described), for example Chloropropyl group, 3,3,3-trifluoropropyl group, 3,3,4,4,5,5,6,6,6-nonafluorohexyl group, tridecafluoro-1,1,2,2- Tetrahydrooctyl group, heptadecafluoro-1,1,2,2-tetrahydrodecyl group, 3- (heptafluoroisopropoxy) propyl group, trimethylsilylmethyl group, etc .; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, bicyclo Monocyclic or bicyclic polycyclic saturated hydrocarbon groups having 3 to 18 carbon atoms such as heptyl group, cyclooctyl group, adamantyl group, etc., and these cyclic saturated hydrocarbon groups are alkyl groups (such as those described above), Substituted with one or more substituents such as aryl groups (such as those described above), such as 4-t-butyl Examples thereof include a cyclohexyl group, a 4-phenylcyclohexyl group and the like; or an alkyl group having the above cyclic saturated hydrocarbon group (such as those described above), such as a cyclohexylmethyl group and an adamantylethyl group.
 Ra1及びRa2で表わされる不飽和炭化水素基としては、ビニル基、エチニル基、アリル基、1-プロペニル基、プロパルギル基、ブテニル基、ペンテニル基、ヘキセニル基、オクテニル基、デカニル基、ドデカニル基、オクタデカニル基などの炭素数2~18の直鎖状または分岐状アルケニル基、アルキニル基、さらに、これらの不飽和炭化水素基が、ハロゲン原子(上記したものなど)、アルコキシ基(下記に記載するものなど)、シリル基(下記に記載するものなど)、アリール基(下記に記載するものなど)の置換基の1種または2種以上で置換されたもの、たとえば、2-トリフルオロメチルエテニル基、2-トリフルオロメチルエチニル基、3-メトキシ-1-プロペニル基、3-メトキシ-1-プロピニル基、2-トリメチルシリルエテニル基、2-トリメチルシリルエチニル基、2-フェニルエテニル基、2-フェニルエチニル基など;シクロプロペニル基、シクロヘキセニル基、シクロオクテニル基などの炭素数3~18の環状不飽和炭化水素基;上記環状不飽和炭化水素基を有するアルキル基(上記したものなど)、たとえばシクロヘキセニルエチル基などが挙げられる。 Examples of the unsaturated hydrocarbon group represented by R a1 and R a2 include vinyl group, ethynyl group, allyl group, 1-propenyl group, propargyl group, butenyl group, pentenyl group, hexenyl group, octenyl group, decanyl group, dodecanyl group In addition, a linear or branched alkenyl group having 2 to 18 carbon atoms such as an octadecanyl group, an alkynyl group, and these unsaturated hydrocarbon groups include a halogen atom (such as those described above) and an alkoxy group (described below). ), Silyl groups (such as those described below), aryl groups (such as those described below) substituted with one or more substituents such as 2-trifluoromethylethenyl Group, 2-trifluoromethylethynyl group, 3-methoxy-1-propenyl group, 3-methoxy-1-propynyl group, 2-trimethyl Rusilylethenyl group, 2-trimethylsilylethynyl group, 2-phenylethenyl group, 2-phenylethynyl group, etc .; cyclic unsaturated hydrocarbon group having 3 to 18 carbon atoms such as cyclopropenyl group, cyclohexenyl group, cyclooctenyl group; Examples thereof include an alkyl group having an unsaturated hydrocarbon group (such as those described above), such as a cyclohexenylethyl group.
 Ra1及びRa2で表わされる芳香族炭化水素基としては、フェニル基、および、トリル基、ブチルフェニル基、ブトキシフェニル基などのアルキル基、アルコキシ基、アミノ基などの1種または2種以上で置換された置換フェニル基などが挙げられる。 Examples of the aromatic hydrocarbon group represented by R a1 and R a2 include one or more of a phenyl group, an alkyl group such as a tolyl group, a butylphenyl group, and a butoxyphenyl group, an alkoxy group, and an amino group. Examples include substituted phenyl groups.
 Ra1及びRa2で表わされるアラルキル基としては、ベンジル基、フェネチル基、メチルフェネチル基、ブチルフェネチル基、フェニルプロピル基、メトキシフェニルプロピル基などが挙げられ、ヘテロアラルキル基としては、ピリジルメチル基、ピリジルエチル基などが挙げられる。 Examples of the aralkyl group represented by R a1 and R a2 include a benzyl group, a phenethyl group, a methylphenethyl group, a butylphenethyl group, a phenylpropyl group, and a methoxyphenylpropyl group. As the heteroaralkyl group, a pyridylmethyl group, A pyridylethyl group etc. are mentioned.
 Ra1で表わされるアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ヘキシルオキシ基、オクチルオキシ基などの炭素数1~18のアルコキシ基が挙げられ、アリールオキシ基としては、フェノキシ基、およびトリルオキシ基、ブチルフェノキシ基などアルキル基などの置換基で置換された置換フェノキシ基などが挙げられる。 Examples of the alkoxy group represented by R a1 include alkoxy groups having 1 to 18 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a hexyloxy group, and an octyloxy group, and an aryloxy group includes a phenoxy group And a substituted phenoxy group substituted with a substituent such as an alkyl group such as a tolyloxy group and a butylphenoxy group.
 Ra1で表わされるアラルキルオキシ基としては、ベンジロキシ基、フェネチロキシ基などが挙げられ、アリールオキシアルキル基としては、フェノキシプロピル基、フェノキシブチル基などが挙げられる。 Examples of the aralkyloxy group represented by R a1 include a benzyloxy group and a phenethyloxy group, and examples of the aryloxyalkyl group include a phenoxypropyl group and a phenoxybutyl group.
 Ra1として好ましいものは、炭素数が1~30の飽和炭化水素基、芳香族炭化水素基などであり、さらに好ましいものは、炭素数が1~15のアルキル基、フェニル基などであり、特に好ましいものは、メチル基である。 R a1 is preferably a saturated hydrocarbon group or aromatic hydrocarbon group having 1 to 30 carbon atoms, and more preferably an alkyl group or phenyl group having 1 to 15 carbon atoms. Preferred is a methyl group.
 Ra2として好ましいものは、水素原子、炭素数が1~18の飽和炭化水素基、芳香族炭化水素基などであり、さらに好ましいものは、水素原子、炭素数が1~10のアルキル基、フェニル基、フェニルエチル基などであり、特に好ましいものは、水素原子である。
 Ra1はメチル基を表し、Ra2は水素原子を表すことが好ましい。
 pの好ましい例としては上述の通りである。
R a2 is preferably a hydrogen atom, a saturated hydrocarbon group having 1 to 18 carbon atoms, an aromatic hydrocarbon group or the like, and more preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, phenyl, Group, phenylethyl group and the like, and particularly preferred is a hydrogen atom.
R a1 represents a methyl group, and R a2 preferably represents a hydrogen atom.
Preferred examples of p are as described above.
 金属錯体としては、上記の金属MとRa1及びRa2の組み合わせにより種々の金属錯体が挙げられる。具体例を例示すると、アセチルアセトナト銀(I)、トリス(アセチルアセトナト)アルミニウム(III)、トリス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナト)アルミニウム(III)、トリス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナト)ビスマス(III)、トリス(アセチルアセトナト)セリウム(III)、ビス(アセチルアセトナト)コバルト(II)、トリス(アセチルアセトナト)コバルト(III)、トリス(1,3-ジフェニル-1,3-プロパンジオナト)コバルト(III)、トリス(3-メチル-2,4-ペンタンジオナト)コバルト(III)、トリス(3-フェニル-2,4-ペンタンジオナト)コバルト(III)、トリス(3-(1-フェニルエチル)-2,4-ペンタンジオナト)コバルト(III)、ビス(ベンゾイルアセトン)コバルト(II)ビス(ヘキサフルオロアセチルアセトナト)コバルト(II)、トリス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナト)コバルト(III)、ビス(アセチルアセトナト)銅(II)、ビス(2,2,6,6-テトラメチル-3,5-ヘプタジオナト)銅(II)、トリス(2,2,4,6,6-ペンタメチル-3,5-ヘプタンジオナト)コバルト(III)、トリス(2,2,6,6-テトラメチル-4-(1-フェニルエチル)-3,5-ヘプタンジオナト)コバルト(III)、トリス(2,2,6,6-テトラメチル-4-フェニル-3,5-ヘプタンジオナト)コバルト(III)、ビス(ヘキサフルオロアセチルアセトナト)銅(II)、ビス(トリフルオロアセチルアセトナト)銅(II)、トリス(アセチルアセトナト)ジスプロシウム(III)、トリス(アセチルアセトナト)エルビウム(III)、トリス(2,2,6,6,-テトラメチル-3,5-ヘプタンジオナト)エルビウム(III)、トリス(アセチルアセトナト)ユーロピウム(III)、ビス(アセチルアセトナト)鉄(II)、トリス(アセチルアセトナト)鉄(III)、トリス(1,3-ジフェニル-1,3-プロパンジオナト)鉄(III)、トリス(3-メチル-2,4-ペンタンジオナト)鉄(III)、トリス(3-フェニル-2,4-ペンタンジオナト)鉄(III)、トリス(3-(1-フェニルエチル)-2,4-ペンタンジオナト)鉄(III)、トリス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナト)鉄(III)、トリス(2,2,4,6,6-ペンタメチル-3,5-ヘプタンジオナト)鉄(III)、トリス(2,2,6,6-テトラメチル-4-(1-フェニルエチル)-3,5-ヘプタンジオナト)鉄(III)、トリス(2,2,6,6-テトラメチル-4-フェニル-3,5-ヘプタンジオナト)鉄(III)、テトラキス(アセチルアセトナト)ハフニウム(IV)、トリス(アセチルアセトナト)ガリウム(III)、トリス(アセチルアセトナト)ガドリニウム(III)、トリス(アセチルアセトナト)ホルミウム(III)、トリス(アセチルアセトナト)インジウム(III)、トリス(アセチルアセトナト)イリジウム(III)、トリス(アセチルアセトナト)ランタン(III)、トリス(アセチルアセトナト)ルテチウム(III)、ビス(アセチルアセトナト)マンガン(II)、トリス(アセチルアセトナト)マンガン(III)、ビス(ヘキサフルオロアセチルアセトナト)マンガン(II)、ビス(アセチルアセトナト)ジオキソモリブデン(IV)、トリス(アセチルアセトナト)ネオジム(III)、トリス(2,2,6,6-テトラメチル-3,5-ヘプタジオナト)ネオジム(III)、ビス(アセチルアセトナト)ニッケル(II)、ビス(2,2,6,6-テトラメチル-3,5-ヘプタジオナト)ニッケル(II)、ビス(ヘキサフルオロアセチルアセトナト)ニッケル(II)、ビス(1,3-ジフェニル-1,3-プロパンジオナト)ニッケル(II)、ビス(3-メチル-2,4-ペンタンジオナト)ニッケル(II)、ビス(3-フェニル-2,4-ペンタンジオナト)ニッケル(II)、ビス(3-(1-フェニルエチル)-2,4-ペンタンジオナト)ニッケル(II)、ビス(2,2,4,6,6-ペンタメチル-3,5-ヘプタンジオナト)ニッケル(II)、ビス(2,2,6,6-テトラメチル-4-(1-フェニルエチル)-3,5-ヘプタンジオナト)ニッケル(II)、ビス(2,2,6,6-テトラメチル-4-フェニル-3,5-ヘプタンジオナト)ニッケル(II)、ビス(アセチルアセトナト)パラジウム(II)、ビス(ヘキサフルオロアセチルアセトナト)パラジウム(II)、ビス(1,3-ジフェニル-1,3-プロパンジオナト)パラジウム(II)、ビス(3-メチル-2,4-ペンタンジオナト)パラジウム(II)、ビス(3-フェニル-2,4-ペンタンジオナト)パラジウム(II)、ビス(3-(1-フェニルエチル)-2,4-ペンタンジオナト)パラジウム(II)、ビス(2,2,4,6,6-ペンタメチル-3,5-ヘプタンジオナト)パラジウム(II)、ビス(2,2,6,6-テトラメチル-4-(1-フェニルエチル)-3,5-ヘプタンジオナト)パラジウム(II)、ビス(2,2,6,6-テトラメチル-4-フェニル-3,5-ヘプタンジオナト)パラジウム(II)、トリス(アセチルアセトナト)プロメチウム(III)、トリス(アセチルアセトナト)プラセオジム(III)、トリス(ヘキサフルオロアセチルアセトナト)プラセオジム(III)、ビス(アセチルアセトナト)白金(II)、トリス(アセチルアセトナト)ロジウム(III)、トリス(アセチルアセトナト)ルテニウム(III)、トリス(アセチルアセトナト)スカンジウム(III)、トリス(ヘキサフルオロアセチルアセトナト)スカンジウム(III)、トリス(2,2,6,6-テトラメチル-3,5-ヘプタジオナト)スカンジウム(III)、トリス(アセチルアセトナト)サマリウム(III)、トリス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナト)サマリウム(III)、ビス(アセチルアセトナト)スズ(II)、トリス(アセチルアセトナト)テルビウム(III)、トリス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナト)テルビウム(III)、トリス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナト)ツリウム(III)、トリス(アセチルアセトナト)バナジウム(III)、トリス(アセチルアセトナト)イットリウム(III)、トリス(ヘキサフルオロアセチルアセトナト)イットリウム(III)、トリス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナト)イットリウム(III)、ビス(アセチルアセトナト)亜鉛(II)、ビス(ヘキサフルオロアセチルアセトナト)亜鉛(II)、ビス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナト)亜鉛(II)、テトラキス(アセチルアセトナト)ジルコニウム(IV)、テトラキス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナト)ジルコニウム(IV)、テトラキス(トリフルオロアセチルアセトナト)ジルコニウム(IV)などが挙げられる。
 これら有機金属錯体は、単独または2種以上を組み合わせて使用できる。有機金属錯体として、あらかじめ合成した金属錯体を使用してもよく、系中で製造したものを使用してもよい。
Examples of the metal complex include various metal complexes depending on the combination of the metal M and R a1 and R a2 . Specific examples include silver acetylacetonate (I), tris (acetylacetonato) aluminum (III), tris (2,2,6,6-tetramethyl-3,5-heptanedionato) aluminum (III), tris (2,2,6,6-tetramethyl-3,5-heptanedionato) bismuth (III), tris (acetylacetonato) cerium (III), bis (acetylacetonato) cobalt (II), tris (acetylacetonato ) Cobalt (III), Tris (1,3-diphenyl-1,3-propanedionato) cobalt (III), Tris (3-methyl-2,4-pentandionato) cobalt (III), Tris (3- Phenyl-2,4-pentanedionato) cobalt (III), tris (3- (1-phenylethyl) -2,4-pe Tandionato) cobalt (III), bis (benzoylacetone) cobalt (II) bis (hexafluoroacetylacetonato) cobalt (II), tris (2,2,6,6-tetramethyl-3,5-heptanedionate) cobalt ( III), bis (acetylacetonato) copper (II), bis (2,2,6,6-tetramethyl-3,5-heptadionato) copper (II), tris (2,2,4,6,6- Pentamethyl-3,5-heptanedionato) cobalt (III), tris (2,2,6,6-tetramethyl-4- (1-phenylethyl) -3,5-heptaneedionato) cobalt (III), tris (2, 2,6,6-tetramethyl-4-phenyl-3,5-heptanedionato) cobalt (III), bis (hexafluoroacetylacetonate Copper (II), bis (trifluoroacetylacetonato) copper (II), tris (acetylacetonato) dysprosium (III), tris (acetylacetonato) erbium (III), tris (2,2,6,6, -Tetramethyl-3,5-heptanedionato) erbium (III), tris (acetylacetonato) europium (III), bis (acetylacetonato) iron (II), tris (acetylacetonato) iron (III), tris ( 1,3-diphenyl-1,3-propanedionato) iron (III), tris (3-methyl-2,4-pentanedionato) iron (III), tris (3-phenyl-2,4-pentanedio) Nato) iron (III), tris (3- (1-phenylethyl) -2,4-pentandionato) iron (III), tris (2,2 , 6,6-tetramethyl-3,5-heptanedionato) iron (III), tris (2,2,4,6,6-pentamethyl-3,5-heptaneedionato) iron (III), tris (2,2, 6,6-tetramethyl-4- (1-phenylethyl) -3,5-heptanedionato) iron (III), tris (2,2,6,6-tetramethyl-4-phenyl-3,5-heptaneedionato) Iron (III), tetrakis (acetylacetonato) hafnium (IV), tris (acetylacetonato) gallium (III), tris (acetylacetonato) gadolinium (III), tris (acetylacetonato) holmium (III), tris (Acetylacetonato) indium (III), tris (acetylacetonato) iridium (III), tris (acetylacetate) Nato) lanthanum (III), tris (acetylacetonato) lutetium (III), bis (acetylacetonato) manganese (II), tris (acetylacetonato) manganese (III), bis (hexafluoroacetylacetonato) manganese ( II), bis (acetylacetonato) dioxomolybdenum (IV), tris (acetylacetonato) neodymium (III), tris (2,2,6,6-tetramethyl-3,5-heptadionato) neodymium (III) Bis (acetylacetonato) nickel (II), bis (2,2,6,6-tetramethyl-3,5-heptadionato) nickel (II), bis (hexafluoroacetylacetonato) nickel (II), bis (1,3-diphenyl-1,3-propanedionato) nickel (II), bis 3-methyl-2,4-pentanedionato) nickel (II), bis (3-phenyl-2,4-pentandionato) nickel (II), bis (3- (1-phenylethyl) -2,4 -Pentandionato) nickel (II), bis (2,2,4,6,6-pentamethyl-3,5-heptanedionate) nickel (II), bis (2,2,6,6-tetramethyl-4- (1-phenylethyl) -3,5-heptanedionato) nickel (II), bis (2,2,6,6-tetramethyl-4-phenyl-3,5-heptaneedionato) nickel (II), bis (acetylacetate) Nato) palladium (II), bis (hexafluoroacetylacetonato) palladium (II), bis (1,3-diphenyl-1,3-propanedionato) palladium (II), bis (3-Methyl-2,4-pentandionato) palladium (II), bis (3-phenyl-2,4-pentandionato) palladium (II), bis (3- (1-phenylethyl) -2, 4-Pentandionato) palladium (II), bis (2,2,4,6,6-pentamethyl-3,5-heptanedionate) palladium (II), bis (2,2,6,6-tetramethyl-4 -(1-phenylethyl) -3,5-heptanedionato) palladium (II), bis (2,2,6,6-tetramethyl-4-phenyl-3,5-heptaneedionato) palladium (II), tris (acetyl) Acetonato) promethium (III), tris (acetylacetonato) praseodymium (III), tris (hexafluoroacetylacetonato) praseodymium (III) Bis (acetylacetonato) platinum (II), tris (acetylacetonato) rhodium (III), tris (acetylacetonato) ruthenium (III), tris (acetylacetonato) scandium (III), tris (hexafluoroacetylacetate) Nato) scandium (III), tris (2,2,6,6-tetramethyl-3,5-heptadionato) scandium (III), tris (acetylacetonato) samarium (III), tris (2,2,6, 6-tetramethyl-3,5-heptanedionato) samarium (III), bis (acetylacetonato) tin (II), tris (acetylacetonato) terbium (III), tris (2,2,6,6-tetramethyl -3,5-heptanedioto) terbium (III), tris (2 2,6,6-tetramethyl-3,5-heptanedionato) thulium (III), tris (acetylacetonato) vanadium (III), tris (acetylacetonato) yttrium (III), tris (hexafluoroacetylacetonato) Yttrium (III), tris (2,2,6,6-tetramethyl-3,5-heptanedionato) yttrium (III), bis (acetylacetonato) zinc (II), bis (hexafluoroacetylacetonato) zinc ( II), bis (2,2,6,6-tetramethyl-3,5-heptanedionato) zinc (II), tetrakis (acetylacetonato) zirconium (IV), tetrakis (2,2,6,6-tetramethyl) -3,5-heptanedionato) zirconium (IV), tetrakis (trifluoro) Acetylacetonato) zirconium (IV) and the like.
These organometallic complexes can be used alone or in combination of two or more. As the organometallic complex, a metal complex synthesized in advance may be used, or a metal complex produced in the system may be used.
 上記有機金属錯体の使用量は、ハロシラン化合物に対して、0.0001~10モル倍の範囲が好ましく、より好ましくは0.0005~1モル倍の範囲、特に好ましくは0.001~0.1モル倍の範囲である。 The amount of the organometallic complex used is preferably in the range of 0.0001 to 10 mol times, more preferably in the range of 0.0005 to 1 mol times, and particularly preferably in the range of 0.001 to 0.1 mol with respect to the halosilane compound. It is the range of mole times.
(マグネシウム)
 第1の態様に係るポリシラン化合物の製造方法において、ハロシラン化合物の反応はマグネシウムの存在下において行う。
 マグネシウムはハロシラン化合物を脱ハロゲン縮重合させる還元剤として機能し得る(「マグネシウム還元法」、WO98/29476号公報、特開2003-277507号公報に記載の方法など)。
 マグネシウムとしては、金属マグネシウム(マグネシウム単体)の形態、マグネシウム合金の形態であってもよく、これらの混合物などであってもよい(以下、単に「マグネシウム成分」ともいう。)。
 マグネシウム合金の種類は特に制限されず、慣用のマグネシウム合金、例えば、アルミニウム、亜鉛、希土類元素(スカンジウム、イットリウムなど)などの成分を含むマグネシウム合金が例示できる。
 マグネシウム成分の形状としては、ハロシラン化合物の反応を損なわない限り特に限定されないが、粉粒状(粉体、粒状体など)、リボン状体、切削片状体、塊状体、棒状体、板状体(平板状など)などが例示され、特に、粉体、粒状体、リボン状体、切削片状体などであることが好ましい。マグネシウム(例えば、粉粒状のマグネシウム)の平均粒径は、例えば、1~10000μm、好ましくは10~7000μm、さらに好ましくは15~5000μm(例えば、20~3000μm)であってもよい。
 上記マグネシウム成分は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(magnesium)
In the method for producing a polysilane compound according to the first aspect, the reaction of the halosilane compound is performed in the presence of magnesium.
Magnesium can function as a reducing agent for dehalogenating polycondensation of a halosilane compound (“magnesium reduction method”, methods described in WO98 / 29476, JP2003-277507, etc.).
Magnesium may be in the form of metallic magnesium (magnesium alone), a magnesium alloy, or a mixture thereof (hereinafter also simply referred to as “magnesium component”).
The kind of magnesium alloy is not particularly limited, and examples thereof include conventional magnesium alloys such as magnesium alloys containing components such as aluminum, zinc, rare earth elements (scandium, yttrium, etc.).
The shape of the magnesium component is not particularly limited as long as the reaction of the halosilane compound is not impaired. Flat form etc.) etc. are illustrated, and it is preferable that they are a powder, a granular material, a ribbon-like body, a cutting piece-like body etc. especially. The average particle size of magnesium (eg, powdered magnesium) may be, for example, 1 to 10,000 μm, preferably 10 to 7000 μm, and more preferably 15 to 5000 μm (eg, 20 to 3000 μm).
The said magnesium component may be used independently and may be used in combination of 2 or more type.
 マグネシウム成分の使用量は、ハロシラン化合物のハロゲン原子に対して、マグネシウム換算で、1~20当量であることが好ましく、1.1~14当量であることがより好ましく、1.2~10当量であることが更に好ましく、1.2~5当量であることが特に好ましい。
 また、マグネシウムの使用量は、ハロシラン化合物に対してモル数でマグネシウムとして1~20倍であることが好ましく、1.1~14倍であることがより好ましく、1.2~10倍であることが更に好ましく、1.2~5倍であることが特に好ましい。
The amount of the magnesium component used is preferably 1 to 20 equivalents, more preferably 1.1 to 14 equivalents, and 1.2 to 10 equivalents in terms of magnesium with respect to the halogen atom of the halosilane compound. More preferably, it is 1.2 to 5 equivalents.
Further, the amount of magnesium used is preferably 1 to 20 times, more preferably 1.1 to 14 times, and more preferably 1.2 to 10 times as magnesium in terms of moles with respect to the halosilane compound. Is more preferable, and 1.2 to 5 times is particularly preferable.
(ハロシラン化合物)
 第1の態様に係るポリシラン化合物の製造方法において、ハロシラン化合物としては下記式(1)で表される化合物であることが好ましい。
 
  XSiR4-n  (1)
 
(式中、nは2~4の整数であり、n個のXは、各々独立に、ハロゲン原子であり、(4-n)個のRは、各々独立に、水素原子、有機基又はシリル基である。)
(Halosilane compound)
In the method for producing a polysilane compound according to the first aspect, the halosilane compound is preferably a compound represented by the following formula (1).

X n SiR 4-n (1)

Wherein n is an integer of 2 to 4, n Xs are each independently a halogen atom, and (4-n) Rs are each independently a hydrogen atom, an organic group or silyl Group.)
 Xで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子が挙げられ、塩素原子又は臭素原子が好ましく、塩素原子がより好ましい。 Examples of the halogen atom represented by X include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a chlorine atom or a bromine atom, and more preferably a chlorine atom.
 Rで表される有機基としては、アルキル基[メチル、エチル、プロピル、イソプロピル、ブチル及びt-ブチル基などの炭素原子数1~10のアルキル基(好ましくは炭素原子数1~6のアルキル基、特に炭素数1~4のアルキル基など)]、シクロアルキル基(シクロヘキシル基などの炭素原子数5~8のシクロアルキル基、特に炭素原子数5~6のシクロアルキル基)、アルケニル基[エテニル基、プロペニル基、ブテニル基などの炭素原子数2~10のアルケニル基(好ましくは炭素原子数2~6のアルケニル基、特に炭素数2~4のアルケニル基など)]、シクロアルケニル基[1-シクロペンテニル基、1-シクロヘキセニル基等の炭素原子数5~10のシクロアルケニル基(好ましくは炭素原子数5~8のシクロアルケニル基、特に炭素数5~7のシクロアルケニル基など)]、アリール基(フェニル、ナフチル基などの炭素原子数6~10のアリール基、)、アラルキル基[ベンジル、フェネチル基などのC6-10アリール-C1-6アルキル基(C6-10アリール-C1-4アルキル基など)]、アミノ基、N-置換アミノ基(上記アルキル基、シクロアルキル基、アリール基、アラルキル基、アシル基などで置換されたN-モノ又はジ置換アミノ基など)などが挙げられる。上記アルキル基、シクロアルキル基、アリール基又はアラルキル基を構成するアリール基などは、1又は複数の置換基を有していてもよい。このような置換基としては、上記例示のアルキル基(特に炭素原子数1~6のアルキル基など)などが挙げられる。このような置換基を有する有機基としては、例えば、トリル基(メチルフェニル基)、キシレニル基(2,6-ジメチルフェニル基)、エチルフェニル基、メチルナフチル基などのC1-6アルキル-C6-10アリール基(好ましくはモノ、ジ又はトリC1-4アルキル-C6-10アリール基、特にモノ又はジC1-4アルキルフェニル基など)などが挙げられる。 Examples of the organic group represented by R include alkyl groups [alkyl groups having 1 to 10 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl and t-butyl groups (preferably alkyl groups having 1 to 6 carbon atoms). , Especially an alkyl group having 1 to 4 carbon atoms)], a cycloalkyl group (a cycloalkyl group having 5 to 8 carbon atoms such as a cyclohexyl group, particularly a cycloalkyl group having 5 to 6 carbon atoms), an alkenyl group [ethenyl Group, propenyl group, butenyl group and the like alkenyl group having 2 to 10 carbon atoms (preferably alkenyl group having 2 to 6 carbon atoms, especially alkenyl group having 2 to 4 carbon atoms)], cycloalkenyl group [1- A cycloalkenyl group having 5 to 10 carbon atoms such as a cyclopentenyl group and a 1-cyclohexenyl group (preferably a cycloalkenyl group having 5 to 8 carbon atoms, Such cycloalkenyl group having 5-7 carbon atoms)], the aryl group (phenyl, aryl group having 6 to 10 carbon atoms such as naphthyl group), aralkyl group [a benzyl, C 6-10 aryl, such as phenethyl group - C 1-6 alkyl group (C 6-10 aryl-C 1-4 alkyl group etc.)], amino group, N-substituted amino group (the above alkyl group, cycloalkyl group, aryl group, aralkyl group, acyl group etc.) Substituted N-mono or disubstituted amino groups, etc.). The aryl group constituting the alkyl group, cycloalkyl group, aryl group or aralkyl group may have one or more substituents. Examples of such a substituent include the above-exemplified alkyl groups (particularly alkyl groups having 1 to 6 carbon atoms). Examples of the organic group having such a substituent include C 1-6 alkyl-C such as tolyl group (methylphenyl group), xylenyl group (2,6-dimethylphenyl group), ethylphenyl group and methylnaphthyl group. And a 6-10 aryl group (preferably a mono, di or tri C 1-4 alkyl-C 6-10 aryl group, particularly a mono or di C 1-4 alkylphenyl group).
 シリル基は、上記アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アリール基、アラルキル基及びアルコキシ基などで置換された置換シリル基が挙げられる。 Examples of the silyl group include substituted silyl groups substituted with the above alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group, aryl group, aralkyl group, alkoxy group and the like.
 nが2の場合(ジハロシラン化合物)において、Rとしては、アルキル基、アリール基などの炭化水素基が好ましい。 In the case where n is 2 (dihalosilane compound), R is preferably a hydrocarbon group such as an alkyl group or an aryl group.
 代表的なジハロシラン化合物としては、例えば、ジアルキルジハロシラン(ジメチルジクロロシランなどのジC1-10アルキルジハロシラン、好ましくはジC1-6アルキルジハロシラン、さらに好ましくはジC1-4アルキルジハロシランなど)、モノアルキルモノアリールジハロシラン(メチルフェニルジクロロシランなどのモノC1-10アルキルモノC6-12アリールジハロシラン、好ましくはモノC1-6アルキルモノC6-10アリールジハロシラン、さらに好ましくはモノC1-4アルキルモノC6-8アリールジハロシランなど)、ジアリールジハロシラン(ジフェニルジクロロシランなどのジC6-12アリールジハロシラン、好ましくはジC6-10アリールジハロシラン、さらに好ましくはジC6-8アリールジハロシランなど)などが挙げられる。ジハロシラン化合物としてはジアルキルジハロシラン又はモノアルキルモノアリールジハロシランが好ましい。ジハロシラン化合物は、単独で又は二種以上組み合わせて使用できる。 Representative dihalosilane compounds include, for example, dialkyldihalosilanes (diC 1-10 alkyldihalosilanes such as dimethyldichlorosilane, preferably diC 1-6 alkyldihalosilanes, more preferably diC 1-4 Alkyl dihalosilanes), monoalkyl monoaryl dihalosilanes (mono C 1-10 alkyl mono C 6-12 aryl dihalosilanes such as methylphenyldichlorosilane, preferably mono C 1-6 alkyl mono C6-10 aryl) Dihalosilanes, more preferably mono C 1-4 alkyl mono C 6-8 aryl dihalo silanes, etc., diaryl dihalo silanes (diC 6-12 aryl dihalo silanes such as diphenyl dichloro silane, preferably di C 6 -10 aryl dihalo silane, more preferably di C 6-8 A Rujiharoshiran, etc.), and the like. As the dihalosilane compound, dialkyldihalosilane or monoalkylmonoaryldihalosilane is preferable. A dihalosilane compound can be used individually or in combination of 2 or more types.
 nが3の場合(トリハロシラン化合物)において、Rとしては、アルキル基、シクロアルキル基、置換基を有していてもよいアリール基、アラルキル基などの炭化水素基が好ましく、特にアルキル基又はアリール基が好ましい。 In the case where n is 3 (trihalosilane compound), R is preferably a hydrocarbon group such as an alkyl group, a cycloalkyl group, an aryl group which may have a substituent, or an aralkyl group, particularly an alkyl group or an aryl group. Groups are preferred.
 代表的なトリハロシラン化合物としては、アルキルトリハロシラン(メチルトリクロロシラン、ブチルトリクロロシラン、t-ブチルトリクロロシラン、ヘキシルトリクロロシランなどのC1-10アルキルトリハロシラン、好ましくはC1-6アルキルトリハロシラン、さらに好ましくはC1-4アルキルトリハロシランなど)、シクロアルキルトリハロシラン(シクロヘキシルトリハロシランなどのモノC6-10シクロアルキルトリハロシランなど)、アリールトリハロシラン(フェニルトリクロロシラン、トリルトリクロロシラン、キシリルトリクロロシランなどのC6-12アリールトリハロシラン、好ましくはC6-10アリールトリハロシラン、さらに好ましくはC6-8アリールトリハロシランなど)などが挙げられる。トリハロシラン化合物には、アルキルトリハロシラン又はアリールトリハロシランが好ましい。
 トリハロシラン化合物は、単独で又は二種以上組み合わせて使用できる。
Representative trihalosilane compounds include alkyltrihalosilanes (C 1-10 alkyltrihalosilanes such as methyltrichlorosilane, butyltrichlorosilane, t-butyltrichlorosilane, hexyltrichlorosilane, preferably C 1-6 alkyltrihalosilane, More preferably, C 1-4 alkyltrihalosilane, etc., cycloalkyltrihalosilane (mono C6-10 cycloalkyltrihalosilane, such as cyclohexyltrihalosilane), aryltrihalosilane (phenyltrichlorosilane, tolyltrichlorosilane, xylyltrichlorosilane) C 6-12 aryl trihalosilane, preferably C 6-10 aryl trihalosilane, more preferably C 6-8 aryl trihalosilane, etc.) . The trihalosilane compound is preferably alkyltrihalosilane or aryltrihalosilane.
A trihalosilane compound can be used individually or in combination of 2 or more types.
 nが4の場合(テトラハロシラン化合物)の具体例としては、例えば、テトラクロロシラン、ジブロモジクロロシラン、テトラブロモシランなどが挙げられる。テトラハロシラン化合物は単独で又は2種以上組み合わせてもよい。
 なお、テトラハロシラン化合物は、モノ、ジ又はトリハロシラン化合物と組み合わせて使用することが好ましい。
Specific examples of when n is 4 (tetrahalosilane compound) include, for example, tetrachlorosilane, dibromodichlorosilane, and tetrabromosilane. The tetrahalosilane compounds may be used alone or in combination of two or more.
The tetrahalosilane compound is preferably used in combination with a mono-, di- or trihalosilane compound.
 また、ハロシラン化合物としてはモノハロシラン化合物であってもよい。代表的なモノハロシランとしては、例えば、トリアルキルモノハロシラン(トリメチルクロロシランなどのトリC1-10アルキルモノハロシラン、好ましくはトリC1-6アルキルモノハロシラン、さらに好ましくはトリC1-4アルキルモノハロシランなど)、ジアルキルモノアリールモノハロシラン(ジメチルフェニルクロロシランなどのジC1-10アルキルモノC6-12アリールモノハロシラン、好ましくはジC1-6アルキルモノC6-10アリールモノハロシラン、さらに好ましくはジC1-4アルキルモノC6-8アリールモノハロシランなど)、モノアルキルジアリールモノハロシラン(メチルジフェニルクロロシランなどのモノC1-10アルキルジC6-12アリールモノハロシラン、好ましくはモノC1-6アルキルジC6-10アリールモノハロシラン、さらに好ましくはモノC1-4アルキルジC6-8アリールモノハロシランなど)、トリアリールモノハロシラン(トリフェニルクロロシランなどのトリC6-12アリールモノハロシラン、好ましくはトリC6-10アリールモノハロシラン、さらに好ましくはトリC6-8アリールモノハロシランなど)などが挙げられる。モノハロシラン化合物は、単独で又は二種以上組合せて使用できる。 The halosilane compound may be a monohalosilane compound. Representative monohalosilanes include, for example, trialkylmonohalosilanes (tri-C 1-10 alkyl monohalosilanes such as trimethylchlorosilane, preferably tri-C 1-6 alkyl monohalosilanes, more preferably tri-C 1-4 alkyls). Monohalosilanes, etc.), dialkyl monoaryl monohalosilanes (diC 1-10 alkyl mono C 6-12 aryl monohalosilanes such as dimethylphenylchlorosilane, preferably diC 1-6 alkyl mono C 6-10 aryl monohalo Silane, more preferably diC 1-4 alkyl mono C 6-8 aryl monohalosilane, etc., monoalkyl diaryl monohalo silane (mono C 1-10 alkyl di C 6-12 aryl monohalo silane, such as methyldiphenylchlorosilane, preferably mono C 1 6 alkyl di C 6-10 aryl monohaloalkyl silane, more preferably such mono C 1-4 alkyl di C 6-8 aryl monohaloalkyl silane), tri C 6-12 aryl monohaloalkyl such triaryl monohaloalkyl silane (triphenyl chlorosilane Silane, preferably tri-C 6-10 aryl monohalosilane, more preferably tri-C 6-8 aryl monohalosilane). A monohalosilane compound can be used individually or in combination of 2 or more types.
 これらのハロシラン化合物は、単独で又は2種以上組み合わせて使用できる。 These halosilane compounds can be used alone or in combination of two or more.
 ハロシラン化合物は、ジハロシラン化合物及びトリハロシラン化合物から選択された少なくとも1種を含んでいることが好ましい。 The halosilane compound preferably contains at least one selected from a dihalosilane compound and a trihalosilane compound.
 なお、ハロシラン化合物が、トリハロシラン化合物及び/又はテトラハロシラン化合物を含む場合、ネットワーク状(網目状又は分岐鎖状)のポリシラン化合物を生成し得る。ネットワーク状のポリシラン化合物を得る場合、代表的なハロシラン(又はその組み合わせ)としては、(a)アルキルトリハロシラン(例えば、アルキルトリハロシラン単独、メチルトリハロシランとC2-10アルキルトリハロシランとの組み合わせ、C2-10アルキルトリハロシランなど)、(b)アリールトリハロシラン(例えば、アリールトリハロシラン単独)、(c)アリールトリハロシランとジハロシラン(例えば、モノアルキルモノアリールジハロシランなど)との組み合わせなどが挙げられる。 In addition, when a halosilane compound contains a trihalosilane compound and / or a tetrahalosilane compound, a network-like (network-like or branched) polysilane compound can be generated. When obtaining a network-like polysilane compound, representative halosilanes (or combinations thereof) include (a) alkyltrihalosilanes (for example, alkyltrihalosilanes alone, methyltrihalosilanes in combination with C2-10 alkyltrihalosilanes, C 2-10 alkyltrihalosilane), (b) aryltrihalosilane (eg, aryltrihalosilane alone), (c) combination of aryltrihalosilane and dihalosilane (eg, monoalkylmonoaryldihalosilane), etc. Can be mentioned.
 ハロシラン化合物において、ジハロシラン化合物及びトリハロシラン化合物から選択された少なくとも1種の割合(使用割合)は、ハロシラン全体に対して、50モル%以上(例えば、60モル%以上)、好ましくは70モル%以上(例えば、80モル%以上)、さらに好ましくは90モル%以上(例えば、95モル%以上)であってもよい。 In the halosilane compound, the ratio (use ratio) of at least one selected from dihalosilane compounds and trihalosilane compounds is 50 mol% or more (for example, 60 mol% or more), preferably 70 mol% or more, based on the entire halosilane. (For example, 80 mol% or more), more preferably 90 mol% or more (for example, 95 mol% or more).
 なお、ネットワーク状のポリシランを得る場合などにおいて、トリハロシラン化合物の割合(使用割合)は、ハロシラン化合物全体の30モル%以上(例えば、40モル%以上)、好ましくは50モル%以上(例えば、60モル%以上)、さらに好ましくは70モル%以上(例えば、75モル%以上)、特に80モル%以上であってもよい。 In the case of obtaining a network-like polysilane, the proportion (use ratio) of the trihalosilane compound is 30 mol% or more (for example, 40 mol% or more), preferably 50 mol% or more (for example, 60 mol%) of the entire halosilane compound. Mol% or more), more preferably 70 mol% or more (for example, 75 mol% or more), particularly 80 mol% or more.
 また、ジハロシラン化合物とトリハロシラン化合物とを組み合わせる場合、これらの割合は、前者/後者(モル比)=99/1~1/99、好ましくは90/10~2/98(例えば、85/15~2/98)、さらに好ましくは80/20~3/97(例えば、70/30~4/96)、特に60/40~5/95(例えば、50/50~7/93)であってもよく、通常50/50~5/95(例えば、45/55~7/93、好ましくは40/60~10/90、さらに好ましくは30/70~88/12)であってもよい。 When a dihalosilane compound and a trihalosilane compound are combined, the ratio of these is the former / the latter (molar ratio) = 99/1 to 1/99, preferably 90/10 to 2/98 (for example, 85/15 to 2/98), more preferably 80/20 to 3/97 (eg 70/30 to 4/96), especially 60/40 to 5/95 (eg 50/50 to 7/93). In general, it may be 50/50 to 5/95 (for example, 45/55 to 7/93, preferably 40/60 to 10/90, more preferably 30/70 to 88/12).
 ハロシラン化合物は、できるだけ高純度であることが好ましい。例えば、液体のハロシラン化合物については、水素化カルシウムなどの乾燥剤を用いて乾燥し、蒸留して使用することが好ましく、固体のハロシラン化合物については、再結晶法などにより、精製して使用することが好ましい。 The halosilane compound is preferably as pure as possible. For example, liquid halosilane compounds are preferably dried and dried using a desiccant such as calcium hydride, and solid halosilane compounds are purified and used by recrystallization or the like. Is preferred.
 なお、原料混合物(反応液)中のハロシラン化合物の濃度(基質濃度)は、例えば、0.05~20mol/l程度、好ましくは0.1~15mol/l程度、さらに好ましくは0.2~5mol/l程度であってもよい。 The concentration of the halosilane compound (substrate concentration) in the raw material mixture (reaction solution) is, for example, about 0.05 to 20 mol / l, preferably about 0.1 to 15 mol / l, more preferably 0.2 to 5 mol. / L may be sufficient.
(金属ハロゲン化物)
 第1の態様に係るポリシラン化合物の製造方法は、上記有機金属錯体及びマグネシウムとともに、更に金属ハロゲン化物の存在下において上記ハロシラン化合物を反応させてもよい。
 金属ハロゲン化物としては、多価金属ハロゲン化物、例えば、遷移金属(例えば、サマリウムなどの周期表3A族元素、チタンなどの周期表4A族元素、バナジウムなどの周期表5A族元素、鉄、ニッケル、コバルト、パラジウムなどの周期表8族元素、銅などの周期表1B族元素、亜鉛などの周期表2B族元素など)、周期表3B族金属(アルミニウムなど)、周期表4B族金属(スズなど)などの金属のハロゲン化物(塩化物、臭化物又はヨウ化物など)が挙げられる。金属ハロゲン化物を構成する上記金属の価数は、特に制限されないが、好ましくは2~4価、特に2又は3価である。これらの金属ハロゲン化物は、単独で又は二種以上組み合わせて使用できる。
(Metal halide)
In the method for producing a polysilane compound according to the first aspect, the halosilane compound may be further reacted with the organometallic complex and magnesium in the presence of a metal halide.
Examples of the metal halide include polyvalent metal halides such as transition metals (for example, periodic table group 3A elements such as samarium, periodic table group 4A elements such as titanium, periodic table group 5A elements such as vanadium, iron, nickel, Periodic table group 8 elements such as cobalt and palladium, periodic table group 1B elements such as copper, periodic table group 2B elements such as zinc), periodic table group 3B metals (such as aluminum), periodic table group 4B metals (such as tin) Metal halides such as chloride, bromide or iodide. The valence of the metal constituting the metal halide is not particularly limited, but is preferably 2 to 4, more preferably 2 or 3. These metal halides can be used alone or in combination of two or more.
 金属ハロゲン化物としては、鉄、アルミニウム、亜鉛、銅、スズ、ニッケル、コバルト、バナジウム、チタン、パラジウム、サマリウムなどから選択された少なくとも一種の金属の塩化物又は臭化物が好ましい。 The metal halide is preferably a chloride or bromide of at least one metal selected from iron, aluminum, zinc, copper, tin, nickel, cobalt, vanadium, titanium, palladium, samarium and the like.
 このような金属ハロゲン化物としては、例えば、塩化物(FeCl、FeClなどの塩化鉄;AlCl、ZnCl、SnCl、CoCl、VCl、TiCl、PdCl、SmClなど)、臭化物(FeBr、FeBrなどの臭化鉄など)、ヨウ化物(SmIなど)などが例示できる。これらの金属ハロゲン化物のうち、塩化物(例えば、塩化鉄(II)、塩化鉄(III)などの塩化鉄、塩化亜鉛など)及び臭化物が好ましい。通常、塩化鉄及び/又は塩化亜鉛、特に塩化亜鉛などが使用される。 Examples of such metal halides include chlorides (iron chloride such as FeCl 2 and FeCl 3 ; AlCl 3 , ZnCl 2 , SnCl 2 , CoCl 2 , VCl 2 , TiCl 4 , PdCl 2 , and SmCl 2 ). Examples thereof include bromides (such as iron bromide such as FeBr 2 and FeBr 3 ) and iodides (such as SmI 2 ). Of these metal halides, chlorides (for example, iron chlorides such as iron (II) chloride and iron (III), zinc chloride, etc.) and bromides are preferred. Usually, iron chloride and / or zinc chloride, especially zinc chloride and the like are used.
 金属ハロゲン化物の使用量としては、ハロシラン化合物に対して、0.001~10モル倍の範囲が好ましく、より好ましくは0.001~1モル倍の範囲、特に好ましくは0.001~0.1モル倍の範囲である。 The amount of the metal halide used is preferably in the range of 0.001 to 10 mole times, more preferably in the range of 0.001 to 1 mole times, particularly preferably 0.001 to 0.1 moles relative to the halosilane compound. It is the range of mole times.
 また、反応液中の金属ハロゲン化物の濃度は、通常、0.001~6モル/L程度であり、好ましくは0.005~4モル/L、さらに好ましくは0.01~3モル/L程度であってもよい。 The concentration of the metal halide in the reaction solution is usually about 0.001 to 6 mol / L, preferably about 0.005 to 4 mol / L, more preferably about 0.01 to 3 mol / L. It may be.
(非プロトン性溶媒)
 第1の態様に係るポリシラン化合物の製造方法におけるハロシラン化合物の反応は、溶媒(反応溶媒)中で行うことが好ましく、非プロトン性溶媒中で行うことがより好ましい。
 溶媒(反応溶媒)としての非プロトン性溶媒には、例えば、エーテル類(1,4-ジオキサン、テトラヒドロフラン、テトラヒドロピラン、ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテルなどの環状又は鎖状C4-6エーテル)、カーボネート類(プロピレンカーボネートなど)、ニトリル類(アセトニトリル、ベンゾニトリルなど)、アミド類(ジメチルホルムアミド、ジメチルアセトアミドなど)、スルホキシド類(ジメチルスルホキシドなど)、芳香族炭化水素類(ベンゼン、トルエン、キシレンなど)、脂肪族炭化水素類(例えば、ヘキサン、シクロヘキサン、オクタン、シクロオクタンなどの鎖状又は環状炭化水素類)などが含まれる。
(Aprotic solvent)
The reaction of the halosilane compound in the method for producing a polysilane compound according to the first aspect is preferably performed in a solvent (reaction solvent), more preferably in an aprotic solvent.
Examples of the aprotic solvent as the solvent (reaction solvent) include ethers (1,4-dioxane, tetrahydrofuran, tetrahydropyran, diethyl ether, diisopropyl ether, 1,2-dimethoxyethane, bis (2-methoxyethyl) Cyclic or linear C 4-6 ethers such as ethers), carbonates (such as propylene carbonate), nitriles (such as acetonitrile and benzonitrile), amides (such as dimethylformamide and dimethylacetamide), sulfoxides (such as dimethyl sulfoxide) Aromatic hydrocarbons (benzene, toluene, xylene, etc.), aliphatic hydrocarbons (eg, chain or cyclic hydrocarbons such as hexane, cyclohexane, octane, cyclooctane, etc.).
 これらの非プロトン性溶媒は、単独で又は二種以上組み合わせて混合溶媒として使用できる。これらの溶媒のうち、少なくとも極性溶媒[例えば、エーテル類[例えば、テトラヒドロフラン、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、1,4-ジオキサンなど(特に、テトラヒドロフラン、1,2-ジメトキシエタン)]]を使用することが好ましい。極性溶媒は、単独で又は二種以上組み合わせて用いてもよく、極性溶媒と非極性溶媒とを組み合わせてもよい。 These aprotic solvents can be used alone or in combination of two or more as a mixed solvent. Among these solvents, at least polar solvents [for example, ethers [for example, tetrahydrofuran, 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,4-dioxane, etc. (especially tetrahydrofuran, 1,2- Dimethoxyethane)]] is preferably used. A polar solvent may be used individually or in combination of 2 or more types, and may combine a polar solvent and a nonpolar solvent.
 第1の態様に係るポリシラン化合物の製造方法において、塩基、及び酸よりなる群から選択される少なくとも1種を含む水溶液に、上記反応後の液(反応液)を接触させて精製することにより上記ポリシラン化合物を得ることを更に含むことが好ましい。
 上記ポリシラン化合物を塩基又は酸に接触させて精製処理することにより、ハロゲン原子(例えば、ハロゲンイオン(塩化物イオン等)、ポリシラン化合物中に残存するSi-Cl)等の夾雑物を除去することができ、また、ポリシラン化合物の低分子量化を促進することができ、上記ポリシラン化合物の溶剤溶解性を向上することができる。
 また、酸は、上記ハロシラン化合物の反応のクエンチャーとしても機能し得る。
 また、上記ポリシラン化合物を下記金属ハロゲン化物に接触させて精製処理することにより、ポリシラン化合物中に残存する金属原子(例えば、Mg、Zn、Cu、Fe等)を除去することができる。
 処理温度は-50℃~溶媒の沸点程度が好ましく、室温~100℃がさらに好ましい。
In the method for producing a polysilane compound according to the first aspect, the solution after the reaction (reaction solution) is brought into contact with an aqueous solution containing at least one selected from the group consisting of a base and an acid to purify the solution. It is preferable to further include obtaining a polysilane compound.
By purifying the polysilane compound in contact with a base or acid, impurities such as halogen atoms (eg, halogen ions (chloride ions, etc.), Si—Cl remaining in the polysilane compound) can be removed. In addition, the molecular weight reduction of the polysilane compound can be promoted, and the solvent solubility of the polysilane compound can be improved.
The acid can also function as a quencher for the reaction of the halosilane compound.
Moreover, the metal atom (for example, Mg, Zn, Cu, Fe, etc.) remaining in the polysilane compound can be removed by bringing the polysilane compound into contact with the following metal halide for purification.
The treatment temperature is preferably from −50 ° C. to the boiling point of the solvent, more preferably from room temperature to 100 ° C.
 また、使用する塩基としては塩基性を呈する化合物であれば種々用いることができるが、例えば、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、アンモニア、水酸化テトラメチルアンモニウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、水素化リチウム、水素化ナトリウム、水素化カリウム、水素化カルシウム等の無機塩基類、メチルリチウム、n-ブチルリチウム、塩化メチルマグネシウム、臭化エチルマグネシウム等のアルキル金属類、Cr、Ga、Fe(Fe(II)、Fe(III))、Cd、Co、Ni、Sn、Pb、Cu(Cu(II)、Cu(I))、Ag、Pd、Pt、Auなどの金属(又は金属イオン)で構成される金属ハロゲン化物、ナトリウムメトキシド、ナトリウムエトキシド、カリウムt-ブトキシド等のアルコキシド類、トリエチルアミン、ジイソプロピルエチルアミン、N,N-ジメチルアニリン、ピリジン、4-ジメチルアミノピリジン、ジアザビシクロウンデセン(DBU)等の有機塩基類を用いることができる。反応温度は-50℃~溶媒の沸点程度が好ましく、室温~100℃がさらに好ましい。
 使用する酸としては種々用いることができるが、塩化水素等の無機酸を用いることができる。
Various bases can be used as long as they are basic compounds. For example, sodium hydroxide, potassium hydroxide, barium hydroxide, ammonia, tetramethylammonium hydroxide, sodium carbonate, sodium bicarbonate Inorganic bases such as potassium carbonate, lithium hydride, sodium hydride, potassium hydride, calcium hydride, alkyl metals such as methyl lithium, n-butyl lithium, methyl magnesium chloride, ethyl magnesium bromide, Cr, Ga , Fe (Fe (II), Fe (III)), Cd, Co, Ni, Sn, Pb, Cu (Cu (II), Cu (I)), Ag, Pd, Pt, Au, and other metals (or metals) Metal halide composed of ions), sodium methoxide, sodium ethoxide, potassium t- Alkoxides such as Tokishido, triethylamine, diisopropylethylamine, N, N-dimethylaniline, pyridine, 4-dimethylaminopyridine, may be used diazabicycloundecene (DBU) organic bases such as. The reaction temperature is preferably from −50 ° C. to the boiling point of the solvent, more preferably from room temperature to 100 ° C.
Various acids can be used as the acid to be used, and inorganic acids such as hydrogen chloride can be used.
 ここで、上記塩基又は酸処理に用いる溶剤としては種々用いることができるが、例えば、ベンゼン、トルエン、キシレン等の炭化水素系溶剤、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のグリコール系溶剤、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶剤、エタノール、イソプロピルアルコール、ブタノール等のアルコール系溶剤から選ばれる1種以上を用いることができる。 Here, various solvents can be used as the base or acid treatment, for example, hydrocarbon solvents such as benzene, toluene and xylene, glycol solvents such as propylene glycol monomethyl ether and propylene glycol monoethyl ether, Ether solvents such as diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, 1,4-dioxane, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclopentanone, cyclohexanone, ethanol, isopropyl alcohol, One or more selected from alcohol solvents such as butanol can be used.
 また、環状骨格含アセテート化合物も上記塩基又は酸処理に用いる溶剤として好ましく用いることができる。
 環状骨格含アセテート化合物としては、本発明の効果を損なわない環状骨格を有するアセテート系溶剤である限り特に制限はないが、下記式(S1)で表されるシクロアルキルアセテートであることが好ましい。
Figure JPOXMLDOC01-appb-C000003
(式(S1)中、Rs1は、それぞれ独立に、アルキル基であり、pは1~6の整数であり、qは0~(p+1)の整数である。)
 Rs1で表されるアルキル基としては炭素原子数1~3のアルキル基が挙げられ、メチル基、エチル基、n-プロピル基、i-プロピル基が挙げられる。
Further, a cyclic skeleton acetate-containing compound can also be preferably used as a solvent used in the above base or acid treatment.
The acetate compound containing a cyclic skeleton is not particularly limited as long as it is an acetate solvent having a cyclic skeleton that does not impair the effects of the present invention, but is preferably a cycloalkyl acetate represented by the following formula (S1).
Figure JPOXMLDOC01-appb-C000003
(In formula (S1), each R s1 is independently an alkyl group, p is an integer of 1 to 6, and q is an integer of 0 to (p + 1).)
Examples of the alkyl group represented by R s1 include alkyl groups having 1 to 3 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, and an i-propyl group.
 式(S1)で表されるシクロアルキルアセテートの具体例としては、シクロプロピルアセテート、シクロブチルアセテート、シクロペンチルアセテート、シクロヘキシルアセテート、シクロヘプチルアセテート、及びシクロオクチルアセテートが挙げられる。
 これらの中では、入手容易性等の観点から、シクロヘキシルアセテートが好ましい。
Specific examples of the cycloalkyl acetate represented by the formula (S1) include cyclopropyl acetate, cyclobutyl acetate, cyclopentyl acetate, cyclohexyl acetate, cycloheptyl acetate, and cyclooctyl acetate.
Among these, cyclohexyl acetate is preferable from the viewpoint of availability.
 第1の態様に係るポリシラン化合物の製造方法によれば、ポリシラン化合物を収率50%以上で得ることができ、収率70%以上であることが好ましい。 According to the method for producing a polysilane compound according to the first aspect, the polysilane compound can be obtained with a yield of 50% or more, and preferably the yield is 70% or more.
<ポリシラン化合物>
 第1の態様に係るポリシラン化合物の製造方法によれば、質量平均分子量(Mw)5000以下のポリシラン化合物が製造することができる。
 本明細書において質量平均分子量(Mw)はゲルパーミエーションクロマトグラフィ(GPC)のポリスチレン換算による測定値である。
 上記ポリシラン化合物のMwとしては、ギャップフィル性の観点から、4000以下であることが好ましく、3000以下であることがより好ましく、2500以下であることが更に好ましい。
 上記ポリシラン化合物のMwの下限値としては本発明の効果を損なわない限り特に制限はないが、300以上であることが好ましく、400以上であることがより好ましく、500以上であることが更に好ましく、600以上であることが特に好ましく、700以上であることが最も好ましい。
<Polysilane compound>
According to the method for producing a polysilane compound according to the first aspect, a polysilane compound having a mass average molecular weight (Mw) of 5000 or less can be produced.
In the present specification, the mass average molecular weight (Mw) is a value measured by gel permeation chromatography (GPC) in terms of polystyrene.
The Mw of the polysilane compound is preferably 4000 or less, more preferably 3000 or less, and still more preferably 2500 or less from the viewpoint of gap fill properties.
The lower limit of Mw of the polysilane compound is not particularly limited as long as the effect of the present invention is not impaired, but is preferably 300 or more, more preferably 400 or more, and further preferably 500 or more, It is particularly preferably 600 or more, and most preferably 700 or more.
 第1の態様に係るポリシラン化合物の製造方法によれば、直鎖状ポリシラン、分岐状ポリシラン及び環状ポリシランよりなる群から選択される少なくとも1種のポリシラン化合物を製造することができる。特に、環状ポリシラン化合物を選択的に製造することもできる。
 環状ポリシラン化合物は、化学構造及び化学性質上、好ましくはMw5000以下のポリシラン化合物となり得る。
 上記ポリシラン化合物としては、例えば、Si原子数3~40のポリシラン化合物が挙げられ、Si原子数5~30のポリシラン化合物であることが好ましい。
 上記ポリシラン化合物は、下記一般式(T-1)及び(T-2)で表されるポリシラン化合物よりなる群から選択される少なくとも1種であることが好ましい。
 
 (Rt10t11t12Si)t1(Rt13t14Si)t2(Rt15Si)t3(Si)t4  (T-1)
(上記一般式中、Rt10、Rt11、Rt12、Rt13、Rt14及びRt15は、それぞれ独立に、水素原子、水酸基又は有機基である。t1、t2、t3及びt4は、それぞれ独立に、モル分率であり、t1+t2+t3+t4=1、0≦t1≦1、0≦t2≦1、0≦t3≦1及び0≦t4≦1である。)
Figure JPOXMLDOC01-appb-C000004
(上記一般式(T-2)中、Rt16及びRt17は、それぞれ独立に、水素原子、水酸基又は有機基を表す。Uは3~20の整数を表す。)、
 Rt10~Rt17で表される有機基としては、Rで表される有機基として前述した具体例及び好ましい例と同様のものが挙げられる。
 Rt10~Rt17で表される有機基としては、例えば、特開2003-261681号公報段落0031に記載の方法により任意の有機基を導入することもできる。
According to the method for producing a polysilane compound according to the first aspect, at least one polysilane compound selected from the group consisting of linear polysilane, branched polysilane, and cyclic polysilane can be produced. In particular, a cyclic polysilane compound can also be selectively produced.
The cyclic polysilane compound is preferably a polysilane compound having a Mw of 5000 or less in view of chemical structure and chemical properties.
Examples of the polysilane compound include polysilane compounds having 3 to 40 Si atoms, and polysilane compounds having 5 to 30 Si atoms are preferable.
The polysilane compound is preferably at least one selected from the group consisting of polysilane compounds represented by the following general formulas (T-1) and (T-2).

(R t10 R t11 R t12 Si) t1 (R t13 R t14 Si) t2 (R t15 Si) t3 (Si) t4 (T-1)
(In the above general formula, R t10 , R t11 , R t12 , R t13 , R t14 and R t15 are each independently a hydrogen atom, a hydroxyl group or an organic group. T1, t2, t3 and t4 are each independently The molar fraction is t1 + t2 + t3 + t4 = 1, 0 ≦ t1 ≦ 1, 0 ≦ t2 ≦ 1, 0 ≦ t3 ≦ 1, and 0 ≦ t4 ≦ 1.)
Figure JPOXMLDOC01-appb-C000004
(In the general formula (T-2), R t16 and R t17 each independently represents a hydrogen atom, a hydroxyl group or an organic group. U represents an integer of 3 to 20).
Examples of the organic group represented by R t10 to R t17 include the same as the specific examples and preferred examples described above as the organic group represented by R.
As the organic group represented by R t10 to R t17 , any organic group can be introduced by the method described in paragraph 0031 of JP-A No. 2003-261681, for example.
 第2の態様に係るポリシラン化合物は、ポリシラン化合物中のX線光電子分光法により測定したシロキサン結合(Si-O)の下記式で表される割合が0.5以下であることが好ましい。 In the polysilane compound according to the second aspect, the ratio represented by the following formula of the siloxane bond (Si—O) measured by X-ray photoelectron spectroscopy in the polysilane compound is preferably 0.5 or less.
 第1の態様に係るポリシラン化合物の製造方法によれば、上記ポリシラン化合物中のX線光電子分光法により測定される99eV以上104eV以下の結合エネルギー範囲に最大検出ピーク高さを有するスペクトルをピーク分離して求められる下記(1X)及び(2X)のピークの面積の和に対する下記(2X)の比である、下記式(3X)で表される割合を0.4以下とすることができ、0.35以下であることが好ましく、0.3以下がより好ましく、0.2以下がさらに好ましく、0.1以下であることが特に好ましく、0.05以下であることが最も好ましい。
 
(1X)・・・結合エネルギーが99.0eV以上99.5eV以下の範囲に最大ピーク高さを有するピークの面積
(2X)・・・結合エネルギーが100eV以上104eV以下の範囲に最大ピーク高さを有するピークの面積
(3X)・・・(2X)/[(1X)+(2X)]
 
According to the method for producing a polysilane compound according to the first aspect, the spectrum having the maximum detected peak height in the binding energy range of 99 eV to 104 eV measured by X-ray photoelectron spectroscopy in the polysilane compound is peak-separated. The ratio represented by the following formula (3X), which is the ratio of the following (2X) to the sum of the areas of the following (1X) and (2X) peaks, can be reduced to 0.4 or less. It is preferably 35 or less, more preferably 0.3 or less, still more preferably 0.2 or less, particularly preferably 0.1 or less, and most preferably 0.05 or less.

(1X): The area of the peak having the maximum peak height in the range where the binding energy is 99.0 eV to 99.5 eV (2X): The maximum peak height is set in the range where the binding energy is 100 eV to 104 eV. Peak area (3X) ... (2X) / [(1X) + (2X)]
 ピークの強度(Intensity)を測定し、上記(1X)及び(2X)の各結合エネルギー範囲でピーク分離して求められるピークの面積について、(2X)の結合エネルギーが100eV以上104eV以下の範囲に最大ピーク高さを有するピークの面積から、Si-O及びSi-Cの含有割合がわかる。また、(1X)の結合エネルギーが99.0eV以上99.5eV以下の範囲に最大ピーク高さを有するピークの面積から、Si-Siの含有割合がわかる。 The peak area obtained by measuring the intensity of the peak (Intensity) and separating the peaks in the above (1X) and (2X) binding energy ranges, the maximum (2X) binding energy is in the range of 100 eV to 104 eV. The content ratio of Si—O and Si—C can be seen from the area of the peak having the peak height. Further, the content ratio of Si—Si is found from the area of the peak having the maximum peak height in the range where the bond energy of (1X) is 99.0 eV or more and 99.5 eV or less.
 ポリシラン化合物がSi-Cだけでなく、Si-Oを含む場合、100eV以上104eV以下の範囲にはピーク分離後、2つの最大ピーク高さを有するピークが重なって表れるが、第2の態様に係るポリシラン化合物は、100eV以上104eV以下の範囲にはピーク分離後、1つの最大ピーク高さを有するピークしか現れないことが好ましく、理想的には1つのピークしか現れないことから、実質的にSi-O結合は含まれないと考えられる。
 また、従来のポリシラン化合物がSi-Cだけでなく、Si-Oを含む場合、100eV以上104eV以下の範囲にはピーク分離後、最大ピーク高さを有するピークが2つ重なって表れるため面積比が大きくなるため、上記式で表される割合が0.4を超える。
When the polysilane compound contains not only Si—C but also Si—O, peaks having two maximum peak heights appear in the range of 100 eV or more and 104 eV or less after peak separation, but according to the second aspect In the polysilane compound, it is preferable that only a peak having one maximum peak height appears after peak separation in the range of 100 eV or more and 104 eV or less, and ideally only one peak appears. O-bonds are not considered to be included.
In addition, when the conventional polysilane compound contains not only Si—C but also Si—O, the peak ratio in the range of 100 eV or more and 104 eV or less appears as two peaks having the maximum peak height overlapping, so the area ratio is Since it becomes large, the ratio represented by the above formula exceeds 0.4.
 第1の態様に係るポリシラン化合物の製造方法によれば、上記有機金属錯体がハロゲン原子を含むものではないことから、シロキサン結合、シラノール基等の副反応物の生成を抑制することができ、ポリシラン化合物中のシロキサン結合(Si-O)の存在量を低減することができ、マイクロクラック発生抑制等の膜の性能を向上することができる。 According to the method for producing a polysilane compound according to the first aspect, since the organometallic complex does not contain a halogen atom, generation of by-products such as a siloxane bond and a silanol group can be suppressed. The amount of siloxane bonds (Si—O) present in the compound can be reduced, and the film performance such as suppression of microcracking can be improved.
 第1の態様に係るポリシラン化合物の製造方法によれば、ポリシラン化合物中の残存金属の含有量を低減することができ、ポリシラン化合物中の金属の含有量を500ppb以下とすることができ、400ppb以下であることが好ましく、100ppb以下であることがより好ましく、50ppb以下であることが更に好ましく、10ppb以下であることが特に好ましい。
 上記範囲内とすることにより、上記ポリシラン化合物を含む膜等の光電子材料としての性能低下を防ぐことができる。
According to the method for producing a polysilane compound according to the first aspect, the content of the residual metal in the polysilane compound can be reduced, the content of the metal in the polysilane compound can be 500 ppb or less, and 400 ppb or less. Preferably, it is 100 ppb or less, more preferably 50 ppb or less, and particularly preferably 10 ppb or less.
By setting it within the above range, it is possible to prevent performance degradation as a photoelectron material such as a film containing the polysilane compound.
<組成物>
 第3の態様に係る組成物は、第2の態様のポリシラン化合物を含む組成物である。
 また、第3の態様に係る組成物は熱硬化性組成物であってもよいし、熱硬化性組成物ではなくてもよい。
 また、第3の態様に係る組成物は感放射線性組成物であってもよいし感放射線性組成物ではなくてもよく、露光により現像液に対して可溶化するポジ型の感放射線性組成物であってもよいし、露光により現像液に対して不溶化するネガ型の感放射線性組成物であってもよい。
 上記放射線の光源としては、紫外線、エキシマレーザー光等の活性エネルギー線、高圧水銀灯、超高圧水銀灯、キセノンランプ、カーボンアーク灯等の紫外線を発する光源等が挙げられる。
<Composition>
The composition which concerns on a 3rd aspect is a composition containing the polysilane compound of a 2nd aspect.
Further, the composition according to the third aspect may be a thermosetting composition or may not be a thermosetting composition.
The composition according to the third aspect may be a radiation-sensitive composition or not a radiation-sensitive composition, and is a positive-type radiation-sensitive composition that is solubilized in a developer upon exposure. Or a negative radiation-sensitive composition that becomes insoluble in a developer upon exposure.
Examples of the radiation light source include an active energy ray such as ultraviolet light and excimer laser light, a light source that emits ultraviolet light such as a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp, and a carbon arc lamp.
(溶剤)
 第3の態様に係る組成物は、溶剤を含有することが好ましい。溶剤としては、上記環状骨格含アセテート化合物、
メタノール、エタノール、プロパノール、n-ブタノール等のアルコール類;
エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール等の多価アルコール類;
アセトン、メチルエチルケトン、シクロヘキサノン、メチル-n-アミルケトン、メチルイソアミルケトン、2-ヘプタノン等のケトン類;
γ-ブチロラクトン等のラクトン環含有有機溶媒;
エチレングリコールモノアセテート、ジエチレングリコールモノアセテート、プロピレングリコールモノアセテート、又はジプロピレングリコールモノアセテート等のエステル結合を有する化合物、上記多価アルコール類又は上記エステル結合を有する化合物のモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテル等のモノアルキルエーテル又はモノフェニルエーテル等のエーテル結合を有する化合物等の多価アルコール類の誘導体;
ジオキサンのような環式エーテル類や、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル等のエステル類;
アニソール、エチルベンジルエーテル、クレジルメチルエーテル、ジフェニルエーテル、ジベンジルエーテル、フェネトール、ブチルフェニルエーテル、エチルベンゼン、ジエチルベンゼン、アミルベンゼン、イソプロピルベンゼン、トルエン、キシレン、シメン、メシチレン等の芳香族系有機溶剤;
N,N,N’,N’-テトラメチルウレア、N,N,2-トリメチルプロピオンアミド、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルアセトアミド、N,N-ジエチルホルムアミド、1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドン、N-エチルピロリドン等の窒素含有有機溶媒;
が挙げられる。
(solvent)
The composition according to the third aspect preferably contains a solvent. As the solvent, the above-mentioned cyclic skeleton acetate-containing compound,
Alcohols such as methanol, ethanol, propanol, n-butanol;
Polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol;
Ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl-n-amyl ketone, methyl isoamyl ketone, 2-heptanone;
a lactone ring-containing organic solvent such as γ-butyrolactone;
Compounds having an ester bond such as ethylene glycol monoacetate, diethylene glycol monoacetate, propylene glycol monoacetate or dipropylene glycol monoacetate, monomethyl ether, monoethyl ether, monopropyl of the above polyhydric alcohols or the above compound having an ester bond Derivatives of polyhydric alcohols such as ether, monoalkyl ether such as monobutyl ether or compounds having an ether bond such as monophenyl ether;
Cyclic ethers such as dioxane and esters such as methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxypropionate;
Aromatic organic solvents such as anisole, ethyl benzyl ether, cresyl methyl ether, diphenyl ether, dibenzyl ether, phenetole, butyl phenyl ether, ethylbenzene, diethylbenzene, amylbenzene, isopropylbenzene, toluene, xylene, cymene, mesitylene;
N, N, N ′, N′-tetramethylurea, N, N, 2-trimethylpropionamide, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-diethylacetamide, N, N-diethyl Nitrogen-containing organic solvents such as formamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone, N-ethylpyrrolidone;
Is mentioned.
 中でも、上記環状骨格含アセテート化合物、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、N,N,N’,N’-テトラメチルウレア(TMU)、及びブタノールが好ましい。
 これらの溶剤は、2種以上組み合わせて使用してもよい。
Among them, the above cyclic skeleton-containing acetate compounds, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), N, N, N ′, N′-tetramethylurea (TMU), and butanol are preferable.
Two or more of these solvents may be used in combination.
 第3の態様に係る組成物が、マイクロクラックを抑制する点又は誘電率の低いシリカ系被膜を形成しやすい点で、第3の態様に係る組成物の水分量は0.5質量%以下が好ましく、0.3質量%以下がより好ましく、0.3質量%未満が特に好ましい。
 第3の態様に係る組成物の水分は、溶剤に由来する場合が多い。このため、第3の態様に係る組成物の水分量が上記の量となるように、溶剤が脱水されていることが好ましい。
The water content of the composition according to the third aspect is 0.5% by mass or less in that the composition according to the third aspect is easy to form a silica-based film having a low dielectric constant or suppressing microcracks. Preferably, 0.3 mass% or less is more preferable, and less than 0.3 mass% is especially preferable.
The water content of the composition according to the third aspect is often derived from a solvent. For this reason, it is preferable that the solvent is dehydrated so that the water content of the composition according to the third aspect becomes the above amount.
 溶剤の使用量は、本発明の目的を阻害しない範囲で特に限定されない。製膜性の点から、溶剤は、第3の態様に係る組成物の固形分濃度が、好ましくは1~50質量%、より好ましくは10~40質量%となるように用いられる。 The amount of solvent used is not particularly limited as long as the object of the present invention is not impaired. From the viewpoint of film forming property, the solvent is used so that the solid content concentration of the composition according to the third aspect is preferably 1 to 50% by mass, more preferably 10 to 40% by mass.
(その他の成分)
 第3の態様に係る組成物は、第1の態様に係るポリシラン化合物以外のポリシランを含んでもよい。例えば、薬品耐性向上等の点で、Mwの高いポリシラン化合物(以下、単に「高分子量ポリシラン」ともいう。)が挙げられ、高分子量ポリシランのMwとしては、例えば5000超100000以下であり、好ましくは6000~60000程度である。
(Other ingredients)
The composition according to the third aspect may include a polysilane other than the polysilane compound according to the first aspect. For example, a polysilane compound having a high Mw (hereinafter also simply referred to as “high molecular weight polysilane”) in terms of improving chemical resistance and the like, and the Mw of the high molecular weight polysilane is, for example, more than 5,000 and less than 100,000, preferably It is about 6000 to 60000.
 第3の態様に係る組成物は、加工性向上の点で、ポリシラン化合物以外のケイ素含有樹脂を含んでいてもよい。ポリシラン化合物以外のケイ素含有樹脂としては、ポリシロキサン樹脂又はポリシラン構造(I-1)とポリシロキサン構造(I-2)とを有するポリシラン-ポリシロキサン樹脂が挙げられる。ポリシラン化合物以外のケイ素含有樹脂のMwとしては、500~20000が好ましく、1000~10000がより好ましく、2000~8000が更に好ましい。
 なお、上記ポリシラン-ポリシロキサン樹脂は、例えば、第1の態様に係るポリシラン化合物を、溶剤中、上述した塩基性条件下で処理した後に、下記一般式(A-1-1)~(A-1-4)で表されるケイ素化合物よりなる群から選択される少なくとも1種のケイ素化合物並びに上記ケイ素化合物の加水分解物、縮合物及び加水分解縮合物よりなる群から選択される少なくとも1種とを加水分解縮合反応させることにより製造することができる。
 RSiX    (A-1-1)
 RSiX      (A-1-2)
 RSiX       (A-1-3)
 SiX         (A-1-4)
 (上記一般式中、X~Xは、それぞれ独立に、加水分解性基であり、R、R、R、R、R及びRは、それぞれ独立に、水素原子又は有機基であり、該有機基中の水素原子はハロゲン原子で置換されていてもよい。)
The composition according to the third aspect may contain a silicon-containing resin other than the polysilane compound in terms of improving processability. Examples of the silicon-containing resin other than the polysilane compound include a polysiloxane resin or a polysilane-polysiloxane resin having a polysilane structure (I-1) and a polysiloxane structure (I-2). The Mw of the silicon-containing resin other than the polysilane compound is preferably 500 to 20000, more preferably 1000 to 10,000, and still more preferably 2000 to 8000.
The polysilane-polysiloxane resin is prepared by, for example, treating the polysilane compound according to the first embodiment in a solvent under the basic conditions described above, and then adding the following general formulas (A-1-1) to (A- 1-4) at least one silicon compound selected from the group consisting of silicon compounds and at least one selected from the group consisting of hydrolysates, condensates and hydrolysis condensates of the above silicon compounds; Can be produced by hydrolytic condensation reaction.
R 1 R 2 R 3 SiX 1 (A-1-1)
R 4 R 5 SiX 2 2 (A-1-2)
R 6 SiX 3 3 (A-1-3)
SiX 4 4 (A-1-4)
(In the above general formula, X 1 to X 4 are each independently a hydrolyzable group, and R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or An organic group, and a hydrogen atom in the organic group may be substituted with a halogen atom.)
 X~Xで表される加水分解性基としては、アルコキシ基、ハロゲン原子又はイソシアネート基(NCO)等が挙げられ、アルコキシ基であることが好ましい。
 上記アルコキシ基としては、炭素原子数1~6のアルコキシ基が挙げられ、具体的には、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、t-ブトキシ基、ペントキシ基等が挙げられる。
 上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子が挙げられ、塩素原子が好ましい。
Examples of the hydrolyzable group represented by X 1 to X 4 include an alkoxy group, a halogen atom or an isocyanate group (NCO), and an alkoxy group is preferable.
Examples of the alkoxy group include an alkoxy group having 1 to 6 carbon atoms, specifically, a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, a t-butoxy group, Examples include a pentoxy group.
As said halogen atom, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom is mentioned, A chlorine atom is preferable.
 R~Rで表される有機基としては、炭素数1~30の有機基が挙げられ、アルキル基[メチル、エチル、n-プロピル、i-プロピル、n-ブチル基及びt-ブチル基などの炭素原子数1~10のアルキル基(好ましくは炭素原子数1~6のアルキル基、特に炭素数1~4のアルキル基など)]、シクロアルキル基(シクロヘキシル基などの炭素原子数5~8のシクロアルキル基、特に炭素原子数5~6のシクロアルキル基)、アルケニル基[エテニル基、プロペニル基、ブテニル基などの炭素原子数2~10のアルケニル基(好ましくは炭素原子数2~6のアルケニル基、特に炭素数2~4のアルケニル基など)]、シクロアルケニル基[1-シクロペンテニル基、1-シクロヘキセニル基等の炭素原子数5~10のシクロアルケニル基(好ましくは炭素原子数5~8のシクロアルケニル基、特に炭素数5~7のシクロアルケニル基など)]、アリール基(フェニル、ナフチル基などの炭素原子数6~10のアリール基、)、アラルキル基[ベンジル、フェネチル基などのC6-10アリール-C1-6アルキル基(C6-10アリール-C1-4アルキル基など)]、アミノ基、N-置換アミノ基(上記アルキル基、シクロアルキル基、アリール基、アラルキル基、アシル基などで置換されたN-モノ又はジ置換アミノ基など)などが挙げられる。上記アルキル基、シクロアルキル基、アリール基又はアラルキル基を構成するアリール基などは、1又は複数の置換基を有していてもよい。このような置換基としては、上記例示のアルキル基(特に炭素原子数1~6のアルキル基など)、上記例示のアルコキシ基などが挙げられる。このような置換基を有する有機基としては、例えば、トリル、キシレニル、エチルフェニル、メチルナフチル基などのC1-6アルキル-C6-10アリール基(好ましくはモノ、ジ又はトリC1-4アルキル-C6-10アリール基、特にモノ又はジC1-4アルキルフェニル基など);メトキシフェニル、エトキシフェニル、メトキシナフチル基などのC1-10アルコキシC6-10アリール基(好ましくはC1-6アルコキシC6-10アリール基、特にC1-4アルコキシフェニル基など)などが挙げられる。 Examples of the organic group represented by R 1 to R 6 include an organic group having 1 to 30 carbon atoms, and an alkyl group [methyl, ethyl, n-propyl, i-propyl, n-butyl group and t-butyl group. An alkyl group having 1 to 10 carbon atoms (preferably an alkyl group having 1 to 6 carbon atoms, particularly an alkyl group having 1 to 4 carbon atoms), a cycloalkyl group (having 5 to 5 carbon atoms such as a cyclohexyl group). 8 cycloalkyl groups, particularly cycloalkyl groups having 5 to 6 carbon atoms), alkenyl groups [alkenyl groups having 2 to 10 carbon atoms such as ethenyl group, propenyl group, butenyl group (preferably 2 to 6 carbon atoms). Alkenyl groups, especially alkenyl groups having 2 to 4 carbon atoms, etc.]], cycloalkenyl groups [cycloalkenyl groups having 5 to 10 carbon atoms such as 1-cyclopentenyl group, 1-cyclohexenyl group, etc. A group (preferably a cycloalkenyl group having 5 to 8 carbon atoms, particularly a cycloalkenyl group having 5 to 7 carbon atoms)], an aryl group (an aryl group having 6 to 10 carbon atoms such as phenyl or naphthyl group), Aralkyl groups [C 6-10 aryl-C 1-6 alkyl groups such as benzyl and phenethyl groups (C 6-10 aryl-C 1-4 alkyl groups etc.)], amino groups, N-substituted amino groups (the above alkyl groups) , N-mono- or di-substituted amino group substituted with a cycloalkyl group, an aryl group, an aralkyl group, an acyl group, and the like. The aryl group constituting the alkyl group, cycloalkyl group, aryl group or aralkyl group may have one or more substituents. Examples of such a substituent include the above-exemplified alkyl groups (particularly alkyl groups having 1 to 6 carbon atoms), the above-exemplified alkoxy groups, and the like. Examples of such an organic group having a substituent include a C 1-6 alkyl-C 6-10 aryl group such as tolyl, xylenyl, ethylphenyl, methylnaphthyl group (preferably mono, di or tri C 1-4). Alkyl-C 6-10 aryl groups, especially mono or di C 1-4 alkylphenyl groups); C 1-10 alkoxy C 6-10 aryl groups such as methoxyphenyl, ethoxyphenyl, methoxynaphthyl groups (preferably C 1 -6 alkoxy C 6-10 aryl group, especially C 1-4 alkoxyphenyl group, etc.).
 また、上記一般式(A-1-3)で表されるケイ素化合物は、下記式(A-3)で表されるケイ素化合物であってもよい。
 
 HOOC-U-Z-Y-Si(OR    (A-3)
 
(上記一般式(A-3)中、Uは、芳香族環基又は脂環基から2個の環炭素原子のそれぞれ1個の水素原子を除去することにより生成する2価の基又は分岐鎖及び/若しくは二重結合を有していても良いアルキレン基を表し、Zは-NHCO-又は-CONH-を表し、Yは、単結合、アルキレン基、アリーレン基又は-RY1-NH-RY2-(式中、RY1及びRY2はそれぞれ独立にアルキレン基を表す。)を表し、Rはそれぞれ独立に炭化水素基を表す。ただし、U及び/又はYは、(メタ)アクリル基、ビニル基及びエポキシ基からなる群より選ばれる少なくとも1種の基を置換基として有していてもよい。)
Further, the silicon compound represented by the general formula (A-1-3) may be a silicon compound represented by the following formula (A-3).

HOOC-UZY-Si (OR a ) 3 (A-3)

(In the above general formula (A-3), U represents a divalent group or branched chain formed by removing one hydrogen atom of each of two ring carbon atoms from an aromatic ring group or an alicyclic group. And / or an alkylene group which may have a double bond, Z represents —NHCO— or —CONH—, Y represents a single bond, an alkylene group, an arylene group or —R Y1 —NH—R Y2 -Wherein R Y1 and R Y2 each independently represents an alkylene group, and R a each independently represents a hydrocarbon group, provided that U and / or Y are a (meth) acryl group, (It may have at least one group selected from the group consisting of a vinyl group and an epoxy group as a substituent.)
 上記Uにおける芳香族環としては、炭素数1~2の置換基を有していてもよい炭素数6~10の芳香環(例えば、ベンゼン環、ナフタレン環、トリル基、キシリル基等)を挙げることができる。
 上記Uにおける脂環としては、炭素数5~10の脂環(例えば、単環シクロアルキル基、単環シクロアルケニル基、2環式アルキル基、篭型アルキル基等が挙げられ、具体的には、例えば、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロノナン環、シクロデカン環、ジシクロペンタジエン環、ノルボルナン環、ノルボルネン環、キュバン環、バスケタン環等)を挙げることができる。
 上記Uにおける分岐鎖及び/若しくは二重結合を有していても良いアルキレン基としては、炭素数1~4のアルキレン基が挙げられ、例えば、メチレン基、エチレン基、プロピレン基、ビニレン基、(2-オクテニル)エチレン基、(2,4,6-トリメチル-2-ノネニル)エチレン基等のアルキレン基、二重結合を有するアルキレン基又は炭素数1~9の分岐鎖を有するアルキレン基を挙げることができる。
Examples of the aromatic ring in U include aromatic rings having 6 to 10 carbon atoms which may have a substituent having 1 to 2 carbon atoms (for example, benzene ring, naphthalene ring, tolyl group, xylyl group, etc.). be able to.
Examples of the alicyclic ring in U include alicyclic rings having 5 to 10 carbon atoms (for example, a monocyclic cycloalkyl group, a monocyclic cycloalkenyl group, a bicyclic alkyl group, a cage alkyl group, and the like. For example, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclononane ring, a cyclodecane ring, a dicyclopentadiene ring, a norbornane ring, a norbornene ring, a cubane ring, and a basuketan ring.
Examples of the alkylene group which may have a branched chain and / or double bond in U include an alkylene group having 1 to 4 carbon atoms, such as a methylene group, an ethylene group, a propylene group, a vinylene group, ( Examples include alkylene groups such as 2-octenyl) ethylene group and (2,4,6-trimethyl-2-nonenyl) ethylene group, alkylene groups having a double bond, or alkylene groups having 1 to 9 carbon atoms. Can do.
 上記Yにおけるアルキレン基としては、炭素数1~6のアルキレン基が挙げられ、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基等を挙げることができる。上記Yにおけるアリーレン基としては、炭素数6~10のものが好ましい。このようなものとしては、例えば、フェニレン基(オルト、メタ又はパラ等)、ナフチレン基(1,4-、1,5-、2,6-等)等を挙げることができる。上記Yにおける-RY1-NH-RY2-としては、具体的には、例えば、-CH-NH-CH-、-(CH-NH-(CH-、-(CH-NH-(CH-、-CH-NH-(CH-、-(CH-NH-CH-、-(CH-NH-(CH-、-(CH-NH-(CH-、-CH-NH-(CH-、-(CH-NH-CH-等を挙げることができる。 Examples of the alkylene group in Y include an alkylene group having 1 to 6 carbon atoms, and examples thereof include a methylene group, an ethylene group, a propylene group, and a butylene group. The arylene group for Y is preferably one having 6 to 10 carbon atoms. Examples of such include phenylene groups (ortho, meta, para, etc.), naphthylene groups (1,4-, 1,5-, 2,6-, etc.) and the like. Specific examples of —R Y1 —NH—R Y2 — in Y include, for example, —CH 2 —NH—CH 2 —, — (CH 2 ) 2 —NH— (CH 2 ) 2 —, — ( CH 2 ) 3 —NH— (CH 2 ) 3 —, —CH 2 —NH— (CH 2 ) 2 —, — (CH 2 ) 2 —NH—CH 2 —, — (CH 2 ) 2 —NH— ( CH 2 ) 3 —, — (CH 2 ) 3 —NH— (CH 2 ) 2 —, —CH 2 —NH— (CH 2 ) 3 —, — (CH 2 ) 3 —NH—CH 2 — and the like be able to.
 ポリシロキサン樹脂としては、上記一般式(A-1-1)~(A-1-4)で表されるケイ素化合物よりなる群から選択される少なくとも1種のケイ素化合物の加水分解物、縮合物及び加水分解縮合物よりなる群から選択される少なくとも1種が挙げられる。 The polysiloxane resin includes a hydrolyzate or condensate of at least one silicon compound selected from the group consisting of silicon compounds represented by the general formulas (A-1-1) to (A-1-4). And at least one selected from the group consisting of hydrolysis condensates.
 上記の第1の態様に係るポリシラン化合物以外の樹脂(以下、他のSi樹脂)は、単独でも複数種を組み合わせて用いてもよい。
 上記他のSi樹脂を含む場合、第3の態様に係る組成物における第1の態様に係るポリシラン化合物と他のSi樹脂の配合比(質量比)は、用途に応じて適宜変更すればよく、例えば、1:99~99:1であり、好ましくは10:90~90:10である。
Resins other than the polysilane compound according to the first aspect (hereinafter referred to as other Si resins) may be used singly or in combination.
When the other Si resin is included, the blending ratio (mass ratio) of the polysilane compound according to the first aspect and the other Si resin in the composition according to the third aspect may be appropriately changed according to the application. For example, it is 1:99 to 99: 1, preferably 10:90 to 90:10.
 第3の態様に係る組成物は、アルカリ性の水溶液又は溶液への溶解促進剤として、1分子中に2個以上の水酸基又はカルボキシル基を有する有機化合物を含んでいてもよい。このような有機化合物として、下記に示す化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
The composition which concerns on a 3rd aspect may contain the organic compound which has a 2 or more hydroxyl group or carboxyl group in 1 molecule as a solubility promoter to alkaline aqueous solution or a solution. Examples of such an organic compound include the following compounds.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 なお、上記構造式中のEは水素原子、メチル基、又はヒドロキシメチル基であり、R15はメチレン基、カルボニル基、又はフェニレン基であり、nは3以上100未満の整数である。naは1~3の自然数を示し、nbは1以上の自然数を示し、ncは2~4の自然数を示し、ndは2以上の自然数を示す。
 上記構造式にはエナンチオ異性体(enantiomer)やジアステレオ異性体(diastereomer)が存在し得るが、各構造式はこれらの立体異性体のすべてを代表して表す。これらの立体異性体は単独で用いてもよいし、混合物として用いてもよい。
E in the above structural formula is a hydrogen atom, a methyl group or a hydroxymethyl group, R 15 is a methylene group, a carbonyl group or a phenylene group, and n is an integer of 3 or more and less than 100. na represents a natural number of 1 to 3, nb represents a natural number of 1 or more, nc represents a natural number of 2 to 4, and nd represents a natural number of 2 or more.
The structural formula may include enantiomers and diastereoisomers, and each structural formula represents all of these stereoisomers. These stereoisomers may be used alone or as a mixture.
 上記有機化合物は1種類を単独で又は2種類以上を組み合わせて用いることができる。この使用量は、第3の態様に係る組成物の溶剤を除いた固形分全量に対して、好ましくは0.001~50質量%、より好ましくは0.01~30質量%である。
 このような有機化合物を添加することで、上記組成物を用いて形成された膜の崩壊が加速され剥離が容易になる。
The said organic compound can be used individually by 1 type or in combination of 2 or more types. The amount used is preferably 0.001 to 50% by mass, more preferably 0.01 to 30% by mass, based on the total solid content excluding the solvent of the composition according to the third aspect.
By adding such an organic compound, the collapse of the film formed using the composition is accelerated and peeling becomes easy.
 第3の態様に係る組成物には、安定性を向上させるため、炭素数が1~30の1価又は2価以上の有機酸を含んでいてもよい。このとき添加する酸としては、ギ酸、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、オレイン酸、ステアリン酸、リノール酸、リノレン酸、安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、トリフルオロ酢酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、シュウ酸、マロン酸、メチルマロン酸、エチルマロン酸、プロピルマロン酸、ブチルマロン酸、ジメチルマロン酸、ジエチルマロン酸、コハク酸、メチルコハク酸、グルタル酸、アジピン酸、イタコン酸、マレイン酸、フマル酸、シトラコン酸、クエン酸等が挙げられる。これらの中でも特に、シュウ酸、マレイン酸、ギ酸、酢酸、プロピオン酸、クエン酸等が好ましい。また、安定性を保つため、2種類以上の酸を混合して使用してもよい。上記有機酸を組成物のpHに換算して、好ましくは0≦pH≦7、より好ましくは0.3≦pH≦6.5、さらに好ましくは0.5≦pH≦6となるように配合することがよい。 The composition according to the third embodiment may contain a monovalent or divalent or higher organic acid having 1 to 30 carbon atoms in order to improve stability. Acids added at this time include formic acid, acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oleic acid, stearic acid, linoleic acid, linolenic acid, benzoic acid , Phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, trifluoroacetic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, oxalic acid, malonic acid, methylmalonic acid, ethylmalonic acid, propylmalonic acid, butylmalonic acid, dimethylmalonic acid Diethyl malonic acid, succinic acid, methyl succinic acid, glutaric acid, adipic acid, itaconic acid, maleic acid, fumaric acid, citraconic acid, citric acid and the like. Among these, oxalic acid, maleic acid, formic acid, acetic acid, propionic acid, citric acid and the like are particularly preferable. In order to maintain stability, two or more kinds of acids may be mixed and used. The organic acid is blended so that it is preferably 0 ≦ pH ≦ 7, more preferably 0.3 ≦ pH ≦ 6.5, and even more preferably 0.5 ≦ pH ≦ 6, in terms of the pH of the composition. It is good.
 また、第3の態様に係る組成物は、安定剤として環状エーテルを置換基として有する1価又は2価以上のアルコール、又はエーテル化合物を含んでいてもよい。用いることができる安定剤として、具体的には、特開2009-126940号公報(0180)~(0184)段落に記載されている安定剤が挙げられる。 Further, the composition according to the third aspect may contain a monovalent or divalent or higher alcohol having a cyclic ether as a substituent, or an ether compound as a stabilizer. Specific examples of the stabilizer that can be used include those described in paragraphs (0180) to (0184) of JP2009-126940A.
 第3の態様に係る組成物は、水を含んでいてもよい。水を添加することで、リソグラフィー性能が向上する。第3の態様に係る組成物の溶剤成分における水の含有率は0質量%を超え50質量%未満が好ましく、より好ましくは0.3~30質量%、さらに好ましくは0.5~20質量%である。 The composition according to the third aspect may contain water. Lithography performance is improved by adding water. The content of water in the solvent component of the composition according to the third aspect is preferably more than 0% and less than 50% by weight, more preferably 0.3 to 30% by weight, still more preferably 0.5 to 20% by weight. It is.
 第3の態様に係る組成物は、光酸発生剤を含んでいてもよい。用いることができる光酸発生剤として、具体的には、特開2009-126940号公報(0160)~(0179)段落に記載されている光酸発生剤が挙げられる。 The composition according to the third aspect may contain a photoacid generator. Specific examples of the photoacid generator that can be used include the photoacid generators described in paragraphs (0160) to (0179) of JP2009-126940A.
 第3の態様に係る組成物は、必要に応じて界面活性剤を含んでいてもよい。用いることができる界面活性剤として、具体的には、特開2009-126940号公報(0185)段落に記載されている界面活性剤が挙げられる。 The composition according to the third aspect may contain a surfactant as necessary. Specific examples of the surfactant that can be used include the surfactants described in paragraph (0185) of JP2009-126940A.
 第3の態様に係る組成物は、熱架橋促進剤を含んでいてもよい。用いることができる熱架橋促進剤として、具体的には、特開2007-302873号公報に記載されている熱架橋促進剤が挙げられる。熱架橋促進剤として、例えば、リン酸塩化合物やホウ酸塩化合物が挙げられる。このようなリン酸塩化合物としては、例えばリン酸アンモニウム、リン酸テトラメチルアンモニウム、リン酸テトラブチルアンモニウム等のアンモニウム塩、リン酸トリフェニルスルホニウム等のスルホニウム塩が挙げられる。また、このようなホウ酸塩化合物としては、例えばホウ酸アンモニウム、ホウ酸テトラメチルアンモニウム、ホウ酸テトラブチルアンモニウム等のアンモニウム塩、ホウ酸トリフェニルスルホニウム等のスルホニウム塩が挙げられる。
なお、上記熱架橋促進剤は1種類を単独で又は2種類以上を組み合わせて用いることができる。また、熱架橋促進剤の添加量は、上記組成物の溶剤を除いた固形分全量に対して、好ましくは0.01~50質量%、より好ましくは0.1~40質量%である。
The composition according to the third aspect may contain a thermal crosslinking accelerator. Specific examples of thermal crosslinking accelerators that can be used include thermal crosslinking accelerators described in JP-A-2007-302873. Examples of the thermal crosslinking accelerator include phosphate compounds and borate compounds. Examples of such phosphate compounds include ammonium salts such as ammonium phosphate, tetramethylammonium phosphate, and tetrabutylammonium phosphate, and sulfonium salts such as triphenylsulfonium phosphate. Examples of such borate compounds include ammonium salts such as ammonium borate, tetramethylammonium borate, tetrabutylammonium borate, and sulfonium salts such as triphenylsulfonium borate.
In addition, the said thermal crosslinking accelerator can be used individually by 1 type or in combination of 2 or more types. The addition amount of the thermal crosslinking accelerator is preferably 0.01 to 50% by mass, more preferably 0.1 to 40% by mass, based on the total amount of the solid content excluding the solvent of the composition.
 第3の態様に係る組成物は、その他の種々の硬化剤を含んでいてもよい。
 硬化剤としては、例えば、ブレンステッド酸;イミダゾール類;有機アミン類;有機リン化合物及びその複合体;ルイス酸の有機アミン錯体;アミジン類;光又は熱により塩基成分を発生する硬化剤等が挙げられる。
The composition which concerns on a 3rd aspect may contain the other various hardening | curing agent.
Examples of the curing agent include Bronsted acids; imidazoles; organic amines; organic phosphorus compounds and complexes thereof; organic amine complexes of Lewis acids; amidines; curing agents that generate a base component by light or heat. It is done.
(用途)
 第3の態様に係る組成物は、残存金属が少なく、シロキサン化の抑制(制御)されたポリシラン化合物を含むので、半導体、ディスプレイ又は太陽電池等の製造プロセス用の材料に好適に用いることができる。例えば、各種基板(金属酸化物含有膜、各種金属含有膜を含む。)を保護する保護膜又は層間膜を形成する用途として使用し得る。
 上記各種基板としては、半導体基板、液晶ディスプレイ、有機発光ディスプレイ(OLED)、電気泳動ディスプレイ(電子ペーパー)、タッチパネル、カラーフィルター、バックライトなどのディスプレイ材料の基板(金属酸化物含有膜、各種金属含有膜を含む。)、太陽電池の基板(金属酸化物含有膜、各種金属含有膜を含む。)、光センサ等の光電変換素子の基板(金属酸化物含有膜、各種金属含有膜を含む。)、光電素子の基板(金属酸化物含有膜、各種金属含有膜を含む。)が挙げられる。
 また、第3の態様に係る組成物における基材成分(樹脂成分)が実質的に第1の態様に係るポリシラン化合物のみで構成される場合は、特に、ギャップフィル特性に優れるため、半導体基板の表面に微細な溝を形成させ、その溝の内部に第3の態様に係る組成物を充填して、溝の両側に形成される素子の間を電気的に分離するトレンチ・アイソレーション構造を含め、絶縁膜、パッシベーション膜、平坦化膜、保護膜などを形成する用途として使用し得る。
(Use)
Since the composition which concerns on a 3rd aspect has few residual metals and contains the polysilane compound by which silanization was suppressed (control), it can be used suitably for the material for manufacturing processes, such as a semiconductor, a display, or a solar cell. . For example, it can be used as an application for forming a protective film or an interlayer film for protecting various substrates (including metal oxide-containing films and various metal-containing films).
Examples of the various substrates include semiconductor substrates, liquid crystal displays, organic light emitting displays (OLEDs), electrophoretic displays (electronic paper), touch panels, color filters, backlights, and other display material substrates (metal oxide-containing films, various metal-containing materials). Including a film), a substrate for a solar cell (including a metal oxide-containing film and various metal-containing films), a substrate for a photoelectric conversion element such as an optical sensor (including a metal oxide-containing film and various metal-containing films). And substrates of photoelectric devices (including metal oxide-containing films and various metal-containing films).
In addition, when the base material component (resin component) in the composition according to the third aspect is substantially composed only of the polysilane compound according to the first aspect, the gap fill characteristics are particularly excellent. Including a trench isolation structure in which a fine groove is formed on the surface and the inside of the groove is filled with the composition according to the third aspect to electrically isolate elements formed on both sides of the groove. It can be used as an application for forming insulating films, passivation films, planarization films, protective films, and the like.
<膜及び上記膜を備える基板>
 第4の態様に係る膜は、第2の態様のポリシラン化合物を含む膜である。
 第5の態様に係る基板は、第2の態様のポリシラン化合物を含む膜を備える基板である。
 第4の態様に係る膜は、上述のように、トレンチ・アイソレーション構造を含めた、絶縁膜、パッシベーション膜、平坦化膜又は保護膜であることが好ましい。
 第4の態様に係る膜を形成する方法としては本発明の効果を損なわない限り特に制限はないが、必要に応じ任意の基板上に、ロールコータ、リバースコータ、バーコータ等の接触転写型塗布装置やスピンナー(回転式塗布装置)、カーテンフローコータ等の非接触型塗布装置を用いて塗布する方法が挙げられる。
 基板としては特に制限はないが、例えば、半導体基板、液晶ディスプレイ、有機発光ディスプレイ(OLED)、電気泳動ディスプレイ(電子ペーパー)、タッチパネル、カラーフィルター、バックライトなどのディスプレイ材料の基板(金属酸化物含有膜、各種金属含有膜を含む。)、太陽電池の基板(金属酸化物含有膜、各種金属含有膜を含む。)、光センサ等の光電変換素子の基板(金属酸化物含有膜、各種金属含有膜を含む。)、光電素子の基板(金属酸化物含有膜、各種金属含有膜を含む。)の他、ガラス基板、石英基板、透明又は半透明の樹脂基板(例えば、ポリカーボネート、ポリエチレンテレフタレート、ポリエーテルスルフォン、ポリイミド、ポリアミドイミド等の耐熱性の材料等)、金属、シリコン基板等が挙げられる。
 基板の厚さは、特に限定されるものではなく、パターン形成体の使用態様に応じて適宜選択することができる。
<Film and substrate provided with the film>
The film | membrane which concerns on a 4th aspect is a film | membrane containing the polysilane compound of a 2nd aspect.
The board | substrate which concerns on a 5th aspect is a board | substrate provided with the film | membrane containing the polysilane compound of a 2nd aspect.
As described above, the film according to the fourth aspect is preferably an insulating film, a passivation film, a planarizing film, or a protective film including a trench isolation structure.
The method for forming the film according to the fourth aspect is not particularly limited as long as the effects of the present invention are not impaired, but a contact transfer type coating apparatus such as a roll coater, a reverse coater, a bar coater, etc., on an arbitrary substrate as necessary. And a method of coating using a non-contact coating apparatus such as a spinner (rotary coating apparatus) or a curtain flow coater.
Although there is no restriction | limiting in particular as a board | substrate, For example, a board | substrate of display materials, such as a semiconductor substrate, a liquid crystal display, an organic light emitting display (OLED), an electrophoretic display (electronic paper), a touch panel, a color filter, and a backlight (metal oxide containing) Films, including various metal-containing films), substrates for solar cells (including metal oxide-containing films and various metal-containing films), substrates for photoelectric conversion elements such as optical sensors (metal oxide-containing films, various metal-containing films) Glass substrate, quartz substrate, transparent or translucent resin substrate (for example, polycarbonate, polyethylene terephthalate, poly, etc.) in addition to photoelectric device substrates (including metal oxide-containing films and various metal-containing films). Heat-resistant materials such as ether sulfone, polyimide, polyamideimide, etc.), metals, silicon substrates, etc.
The thickness of a board | substrate is not specifically limited, According to the usage condition of a pattern formation body, it can select suitably.
 上記塗布後の塗膜は乾燥(プリベーク)することが好ましい。乾燥方法は、特に限定されず、例えば、(1)ホットプレートにて80~120℃、好ましくは90~100℃の温度にて60~120秒間乾燥させる方法、(2)室温にて数時間~数日間放置する方法、(3)温風ヒータや赤外線ヒータ中に数十分間~数時間入れて溶剤を除去する方法等が挙げられる。 It is preferable to dry (pre-bake) the coated film after the application. The drying method is not particularly limited. For example, (1) a method of drying on a hot plate at a temperature of 80 to 120 ° C., preferably 90 to 100 ° C. for 60 to 120 seconds, and (2) a room temperature for several hours to Examples include a method of leaving for several days, and (3) a method of removing the solvent by placing it in a warm air heater or an infrared heater for several tens of minutes to several hours.
 上記乾燥後の塗膜は、紫外線、エキシマレーザー光等の活性エネルギー線を照射して露光してもしなくてもよい。照射するエネルギー線量は特に制限はないが、例えば30~2000mJ/cm程度が挙げられる。露光する工程は、後述の焼成する工程の代わり又は焼成する工程とともに行ってもよい。また、露光する工程では、例えば、形成された塗布膜を選択的に露光してもよく、選択的露光工程を含む場合は、現像する工程を含んでいてもよい。また、例えば、形成された塗布膜に対し、インプリントリソグラフィーを行ってもよい。インプリントリソグラフィーを行う場合は、例えば;
 第3の態様の組成物を基板上に塗布して、塗布膜を形成する工程と、
 所定のパターンの凹凸構造が形成されたモールドを塗布膜に対し押圧する工程と、
 露光する工程とを含む方法が挙げられる。
 露光する工程は、モールドが塗布膜に押圧された状態で、第3の態様の組成物からなる塗布膜に対して行われる。露光による硬化後、前記モールドを剥離することで、モールドの形状に応じてパターニングされた第4の態様に係る膜を得ることができる。
The dried coating film may or may not be exposed to irradiation with active energy rays such as ultraviolet rays and excimer laser light. The energy dose to be irradiated is not particularly limited, and for example, about 30 to 2000 mJ / cm 2 can be mentioned. You may perform the process to expose with the process of baking instead of the process of baking mentioned later. Further, in the exposure step, for example, the formed coating film may be selectively exposed, and in the case of including a selective exposure step, a developing step may be included. Further, for example, imprint lithography may be performed on the formed coating film. When performing imprint lithography, for example;
Applying the composition of the third aspect on a substrate to form a coating film;
A step of pressing a mold having a concavo-convex structure of a predetermined pattern against a coating film;
And a step of exposing.
The exposing step is performed on the coating film made of the composition of the third aspect in a state where the mold is pressed against the coating film. After curing by exposure, the film according to the fourth aspect patterned according to the shape of the mold can be obtained by peeling the mold.
 上記乾燥後、露光後又は現像後の塗膜は、膜物性を高める点で焼成(ポストベーク)することが好ましい。焼成温度は下層基板や使用用途にもよるが、例えば、200~1000℃の範囲であり、200℃~500℃が好ましく、200~250℃であることがより好ましい。焼成雰囲気は特に限定されず、窒素雰囲気又はアルゴン雰囲気等の不活性ガス雰囲下、真空下、又は減圧下であってもよい。大気下であってもよいし、酸素濃度を適宜コントロールしてもよい。焼成時間は、適宜変更すればよく、例えば、10分~120分程度である。 The dried, exposed or developed coating film is preferably baked (post-baked) from the viewpoint of improving film properties. Although the firing temperature depends on the lower substrate and the intended use, it is, for example, in the range of 200 to 1000 ° C., preferably 200 ° C. to 500 ° C., more preferably 200 to 250 ° C. The firing atmosphere is not particularly limited, and may be an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, a vacuum, or a reduced pressure. It may be under air or the oxygen concentration may be controlled appropriately. The firing time may be appropriately changed, and is, for example, about 10 minutes to 120 minutes.
 第4及び第5の態様における膜の膜厚としては、10~3000nmであることが好ましく、50~1500nmであることがより好ましく、100~1000nmであることが更に好ましい。 The film thickness in the fourth and fifth embodiments is preferably 10 to 3000 nm, more preferably 50 to 1500 nm, and still more preferably 100 to 1000 nm.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
〔実施例1〕
 三方コックを装着した内容積1000mlの丸型フラスコに、粒状(粒径20~1000μm)のマグネシウム25gと、触媒としてトリス(アセチルアセトナト)鉄(III)2.1gを仕込み、50℃で1mmHg(=133kPa)に加熱減圧して、反応器(フラスコ)内部を乾燥した後、乾燥アルゴンガスを反応器内に導入し、予めナトリウム―ベンゾフェノンケチルで乾燥したテトラヒドロフラン(THF)500mlを加え、25℃で約60分間撹拌した。この反応混合物に、予め蒸留により精製したメチルフェニルジクロロシラン63.5g(0.3mol)をシリンジで加え、25℃で約24時間撹拌した。反応終了後、反応混合物に1N(=1モル/L)の塩酸1000mlを投入し、さらにトルエン500mlで抽出した。トルエン相を純水200mlで10回洗浄し、トルエン相を無水硫酸マグネシウムで乾燥した後、トルエンを留去することにより、直鎖状のメチルフェニルシラン重合体(質量平均分子量2000)を28.4g得た(収率63%)。
[Example 1]
A round flask with an internal volume of 1000 ml equipped with a three-way cock was charged with 25 g of granular (particle size 20 to 1000 μm) magnesium and 2.1 g of tris (acetylacetonato) iron (III) as a catalyst, and 1 mmHg (at 50 ° C.) = 133 kPa), and the inside of the reactor (flask) was dried. Then, dry argon gas was introduced into the reactor, and 500 ml of tetrahydrofuran (THF) previously dried with sodium-benzophenone ketyl was added, and the reaction was performed at 25 ° C. Stir for about 60 minutes. To this reaction mixture, 63.5 g (0.3 mol) of methylphenyldichlorosilane purified in advance by distillation was added by a syringe and stirred at 25 ° C. for about 24 hours. After completion of the reaction, 1000 ml of 1N (= 1 mol / L) hydrochloric acid was added to the reaction mixture, followed by extraction with 500 ml of toluene. The toluene phase was washed 10 times with 200 ml of pure water, the toluene phase was dried over anhydrous magnesium sulfate, and then toluene was distilled off to obtain 28.4 g of a linear methylphenylsilane polymer (mass average molecular weight 2000). Obtained (yield 63%).
〔実施例2〕
 三方コックを装着した内容積1000mlの丸型フラスコに、粒状(粒径20~1000μm)のマグネシウム25gと、触媒としてトリス(アセチルアセトナト)鉄(III)2.1gを仕込み、50℃で1mmHgに加熱減圧して、反応器内部を乾燥した後、乾燥アルゴンガスを反応器内に導入し、予めナトリウム-ベンゾフェノンケチルで乾燥したTHF500mlを加え、25℃で約60分間撹拌した。この反応混合物に、予め蒸留により精製したメチルフェニルジクロロシラン63.5g(0.3mol)をシリンジで加え、25℃で約24時間撹拌した。
 得られた直鎖状のメチルフェニルシラン重合体をトルエン150gとテトラヒドロフラン150gとの混合溶液に溶解し、さらに塩化銅(II)(CuCl)を10質量%の割合で含む塩化銅水溶液200gを混合して60分間攪拌したのち、直鎖状のメチルフェニルシラン重合体を含む有機相と塩化銅を含む水相とを分離した。そして、直鎖状のメチルフェニルシラン重合体を含む有機相を、純水200mlで3回洗浄した後、溶媒成分を留去し、直鎖状のメチルフェニルシラン重合体(質量平均分子量2000)を32.4g得た(収率72.6%)。
[Example 2]
A round flask with an internal volume of 1000 ml equipped with a three-way cock is charged with 25 g of granular (particle size 20 to 1000 μm) magnesium and 2.1 g of tris (acetylacetonato) iron (III) as a catalyst, and adjusted to 1 mmHg at 50 ° C. After heating and reducing pressure to dry the inside of the reactor, dry argon gas was introduced into the reactor, 500 ml of THF previously dried with sodium-benzophenone ketyl was added, and the mixture was stirred at 25 ° C. for about 60 minutes. To this reaction mixture, 63.5 g (0.3 mol) of methylphenyldichlorosilane purified in advance by distillation was added by a syringe and stirred at 25 ° C. for about 24 hours.
The obtained linear methylphenylsilane polymer was dissolved in a mixed solution of 150 g of toluene and 150 g of tetrahydrofuran, and further 200 g of an aqueous copper chloride solution containing 10% by mass of copper (II) chloride (CuCl 2 ) was mixed. After stirring for 60 minutes, the organic phase containing the linear methylphenylsilane polymer and the aqueous phase containing copper chloride were separated. And after wash | cleaning the organic phase containing a linear methylphenylsilane polymer 3 times with 200 ml of pure waters, the solvent component is distilled off and linear methylphenylsilane polymer (mass mean molecular weight 2000) is obtained. 32.4 g was obtained (yield 72.6%).
〔実施例3〕
 三方コックを装着した内容積1000mlの丸型フラスコに、粒状(粒径20~1000μm)のマグネシウム25gと、触媒としてトリス(アセチルアセトナト)鉄(III)2.1gを仕込み、50℃で1mmHgに加熱減圧して、反応器内部を乾燥した後、乾燥アルゴンガスを反応器内に導入し、予めナトリウム-ベンゾフェノンケチルで乾燥したテトラヒドロフラン500mlを加え、室温(25℃)で約30分間撹拌した。この反応混合物に、予め蒸留により精製したフェニルトリクロロシラン105.8g(0.50mol)を加え、20℃で約18時間撹拌した。反応終了後、トルエン300mlを加えた後、反応によって生成した塩化マグネシウム、余剰のマグネシウムを減圧濾過により除去した。ろ液を純水200mlで10回洗浄し、トルエン相を無水硫酸マグネシウムで乾燥した後、トルエン及びテトラヒドロフランを留去することにより、分岐状のポリフェニルシラン50gを得た。
 反応終了後、反応混合物に1N(=1モル/L)の塩酸1000mlを投入し、さらにトルエン500mlで抽出した。トルエン相を純水200mlで10回洗浄し、トルエン相を無水硫酸マグネシウムで乾燥した後、トルエンを留去することにより、分岐状のポリフェニルシラン(質量平均分子量2000)を38.2g得た(収率72%)。
Example 3
A round flask with an internal volume of 1000 ml equipped with a three-way cock is charged with 25 g of granular (particle size 20 to 1000 μm) magnesium and 2.1 g of tris (acetylacetonato) iron (III) as a catalyst, and adjusted to 1 mmHg at 50 ° C. After heating and reducing the pressure to dry the inside of the reactor, dry argon gas was introduced into the reactor, 500 ml of tetrahydrofuran previously dried with sodium-benzophenone ketyl was added, and the mixture was stirred at room temperature (25 ° C.) for about 30 minutes. To this reaction mixture, 105.8 g (0.50 mol) of phenyltrichlorosilane purified in advance by distillation was added and stirred at 20 ° C. for about 18 hours. After completion of the reaction, 300 ml of toluene was added, and then magnesium chloride produced by the reaction and excess magnesium were removed by filtration under reduced pressure. The filtrate was washed 10 times with 200 ml of pure water, the toluene phase was dried over anhydrous magnesium sulfate, and then toluene and tetrahydrofuran were distilled off to obtain 50 g of branched polyphenylsilane.
After completion of the reaction, 1000 ml of 1N (= 1 mol / L) hydrochloric acid was added to the reaction mixture, followed by extraction with 500 ml of toluene. The toluene phase was washed 10 times with 200 ml of pure water, the toluene phase was dried over anhydrous magnesium sulfate, and then toluene was distilled off to obtain 38.2 g of branched polyphenylsilane (mass average molecular weight 2000) ( Yield 72%).
〔実施例4〕
 三方コックを装着した内容積1000mlの丸型フラスコに、粒状(粒径20~1000μm)のマグネシウム25gと、触媒としてトリス(アセチルアセトナト)鉄(III)2.1gを仕込み、50℃で1mmHgに加熱減圧して、反応器(フラスコ)内部を乾燥した後、乾燥アルゴンガスを反応器内に導入し、予めナトリウム-ベンゾフェノンケチルで乾燥したテトラヒドロフラン500mlを加え、室温で約30分間撹拌した。この反応混合物に、予め蒸留により精製したフェニルトリクロロシラン105.8g(0.50mol)を加え、20℃で約18時間撹拌した。反応終了後、トルエン300mlを加えた後、減圧濾過により反応によって生成した塩化マグネシウム、余剰のマグネシウムを除去した。ろ液を純水200mlで10回洗浄し、トルエン相を無水硫酸マグネシウムで乾燥した後、トルエン及びテトラヒドロフランを留去することにより、分岐状のポリフェニルシラン50gを得た。
 得られた分岐状のポリフェニルシランをトルエン150gとテトラヒドロフラン150gとの混合溶液に溶解し、さらに塩化銅(II)(CuCl)を10質量%の割合で含む塩化銅水溶液200gを混合して60分間攪拌したのち、分岐状のポリフェニルシランを含む有機相と塩化銅を含む水相とを分離した。そして、分岐状のポリフェニルシランを含む有機相を、純水200mlで3回洗浄した後、溶媒成分を留去し、分岐状のポリフェニルシラン(質量平均分子量2000)を41.9g得た(収率79%)。
Example 4
A round flask with an internal volume of 1000 ml equipped with a three-way cock is charged with 25 g of granular (particle size 20 to 1000 μm) magnesium and 2.1 g of tris (acetylacetonato) iron (III) as a catalyst, and adjusted to 1 mmHg at 50 ° C. After heating and reducing the pressure to dry the inside of the reactor (flask), dry argon gas was introduced into the reactor, 500 ml of tetrahydrofuran previously dried with sodium-benzophenone ketyl was added, and the mixture was stirred at room temperature for about 30 minutes. To this reaction mixture, 105.8 g (0.50 mol) of phenyltrichlorosilane purified in advance by distillation was added and stirred at 20 ° C. for about 18 hours. After completion of the reaction, 300 ml of toluene was added, and then magnesium chloride produced by the reaction and excess magnesium were removed by filtration under reduced pressure. The filtrate was washed 10 times with 200 ml of pure water, the toluene phase was dried over anhydrous magnesium sulfate, and then toluene and tetrahydrofuran were distilled off to obtain 50 g of branched polyphenylsilane.
The obtained branched polyphenylsilane was dissolved in a mixed solution of 150 g of toluene and 150 g of tetrahydrofuran, and further mixed with 200 g of an aqueous copper chloride solution containing copper chloride (II) (CuCl 2 ) at a ratio of 10% by mass. After stirring for a minute, the organic phase containing branched polyphenylsilane and the aqueous phase containing copper chloride were separated. And after wash | cleaning the organic phase containing branched polyphenylsilane 3 times with 200 ml of pure waters, the solvent component was distilled off and 41.9g of branched polyphenylsilane (mass mean molecular weight 2000) was obtained ( Yield 79%).
〔実施例5〕
 三方コックを装着した内容積1000mlの丸型フラスコに、粒状(粒径20~1000μm)のマグネシウム25gと、触媒としてトリス(アセチルアセトナト)鉄(III)2.1gを仕込み、50℃で1mmHgに加熱減圧して、反応器内部を乾燥した後、乾燥アルゴンガスを反応器内に導入し、予めナトリウム-ベンゾフェノンケチルで乾燥したTHF500mlを加え、25℃で約60分間撹拌した。この反応混合物に、予め蒸留により精製したフェニルトリクロロシラン63.5g(0.3mol)とジメチルジクロロシラン34.5g(0.3mol)とをシリンジで加え、25℃で約24時間撹拌した。反応終了後、反応混合物に1N(=1モル/L)の塩酸1000mlを投入し、さらにトルエン500mlで抽出した。トルエン相を純水200mlで10回洗浄し、トルエン相を無水硫酸マグネシウムで乾燥した後、トルエンを留去することにより、分岐状のフェニルシラン-メチルシラン共重合体(前者/後者(モル比)=1/1)を得た(質量平均分子量3000)。
 得られた分岐状のフェニルシラン-ジメチルシラン共重合体をトルエン150gとテトラヒドロフラン150gとの混合溶液に溶解し、さらに塩化銅(II)(CuCl)を10質量%の割合で含む塩化銅水溶液200gを混合して60分間攪拌したのち、分岐状のフェニルシラン-ジメチルシラン共重合体を含む有機相と塩化銅を含む水相とを分離した。そして、分岐状のフェニルシラン-ジメチルシラン共重合体を含む有機相を、純水200mlで3回洗浄した後、溶媒成分を留去し、フェニルシラン-メチルシラン共重合体(質量平均分子量2000)を36.6g得た(収率74%)。
Example 5
A round flask with an internal volume of 1000 ml equipped with a three-way cock is charged with 25 g of granular (particle size 20 to 1000 μm) magnesium and 2.1 g of tris (acetylacetonato) iron (III) as a catalyst, and adjusted to 1 mmHg at 50 ° C. After heating and reducing pressure to dry the inside of the reactor, dry argon gas was introduced into the reactor, 500 ml of THF previously dried with sodium-benzophenone ketyl was added, and the mixture was stirred at 25 ° C. for about 60 minutes. To this reaction mixture, 63.5 g (0.3 mol) of phenyltrichlorosilane purified beforehand by distillation and 34.5 g (0.3 mol) of dimethyldichlorosilane were added by a syringe and stirred at 25 ° C. for about 24 hours. After completion of the reaction, 1000 ml of 1N (= 1 mol / L) hydrochloric acid was added to the reaction mixture, followed by extraction with 500 ml of toluene. The toluene phase was washed 10 times with 200 ml of pure water, the toluene phase was dried over anhydrous magnesium sulfate, and then toluene was distilled off to obtain a branched phenylsilane-methylsilane copolymer (the former / the latter (molar ratio)) = 1/1) was obtained (mass average molecular weight 3000).
The obtained branched phenylsilane-dimethylsilane copolymer is dissolved in a mixed solution of 150 g of toluene and 150 g of tetrahydrofuran, and further 200 g of an aqueous copper chloride solution containing copper (II) (CuCl 2 ) in a proportion of 10% by mass. And the mixture was stirred for 60 minutes, and then the organic phase containing the branched phenylsilane-dimethylsilane copolymer and the aqueous phase containing copper chloride were separated. The organic phase containing the branched phenylsilane-dimethylsilane copolymer was washed with 200 ml of pure water three times, and then the solvent component was distilled off to obtain a phenylsilane-methylsilane copolymer (mass average molecular weight 2000). 36.6 g was obtained (74% yield).
〔実施例6〕
 三方コックを装着した内容積1000mlの丸型フラスコに、粒状(粒径20~1000μm)のマグネシウム25gと、触媒としてトリス(アセチルアセトナト)鉄(III)2.1gを仕込み、50℃で1mmHgに加熱減圧して、反応器内部を乾燥した後、乾燥アルゴンガスを反応器内に導入し、予めナトリウム-ベンゾフェノンケチルで乾燥したテトラヒドロフラン500mlを加え、室温で約30分間撹拌した。この反応混合物に、予め蒸留により精製したメチルフェニルジクロロシラン63.5g(0.3mol)を加え、20℃で約6時間撹拌した。反応終了後、トルエン300mlを加えた後、減圧濾過により反応によって生成した塩化マグネシウム、余剰のマグネシウムを除去した。ろ液を純水200mlで10回洗浄し、トルエン相を無水硫酸マグネシウムで乾燥した後、トルエン及びテトラヒドロフランを留去することにより、環状のメチルフェニルシラン重合体50gを得た。
 反応終了後、反応混合物に1N(=1モル/L)の塩酸1000mlを投入し、さらにトルエン500mlで抽出した。トルエン相を純水200mlで10回洗浄し、トルエン相を無水硫酸マグネシウムで乾燥した後、トルエンを留去することにより、環状のメチルフェニルシラン重合体(質量平均分子量700)を31g得た(収率86%)。
Example 6
A round flask with an internal volume of 1000 ml equipped with a three-way cock is charged with 25 g of granular (particle size 20 to 1000 μm) magnesium and 2.1 g of tris (acetylacetonato) iron (III) as a catalyst, and adjusted to 1 mmHg at 50 ° C. After heating and reducing pressure to dry the inside of the reactor, dry argon gas was introduced into the reactor, 500 ml of tetrahydrofuran previously dried with sodium-benzophenone ketyl was added, and the mixture was stirred at room temperature for about 30 minutes. To this reaction mixture, 63.5 g (0.3 mol) of methylphenyldichlorosilane purified in advance by distillation was added and stirred at 20 ° C. for about 6 hours. After completion of the reaction, 300 ml of toluene was added, and then magnesium chloride produced by the reaction and excess magnesium were removed by filtration under reduced pressure. The filtrate was washed 10 times with 200 ml of pure water, the toluene phase was dried over anhydrous magnesium sulfate, and then toluene and tetrahydrofuran were distilled off to obtain 50 g of a cyclic methylphenylsilane polymer.
After completion of the reaction, 1000 ml of 1N (= 1 mol / L) hydrochloric acid was added to the reaction mixture, followed by extraction with 500 ml of toluene. The toluene phase was washed 10 times with 200 ml of pure water, the toluene phase was dried over anhydrous magnesium sulfate, and then toluene was distilled off to obtain 31 g of a cyclic methylphenylsilane polymer (mass average molecular weight 700). 86%).
〔比較例1〕
 三方コックを装着した内容積1000mlの丸型フラスコに、粒状(粒径20~1000μm)のマグネシウム25.0g、無水塩化亜鉛(ZnCl)16.2gを仕込み、50℃で1mmHgに加熱減圧して、反応器内部を乾燥した後、乾燥アルゴンガスを反応器内に導入し、予めナトリウム-ベンゾフェノンケチルで乾燥したTHF500mlを加え、25℃で約60分間撹拌した。この反応混合物に、予め蒸留により精製したメチルフェニルジクロロシラン63.5g(0.3mol)をシリンジで加え、25℃で約24時間撹拌した。反応終了後、反応混合物に1N(=1モル/L)の塩酸1000mlを投入し、さらにトルエン500mlで抽出した。トルエン相を純水200mlで10回洗浄し、トルエン相を無水硫酸マグネシウムで乾燥した後、トルエンを留去することにより、メチルフェニルシラン重合体(質量平均分子量6000)を21.6g得た(収率60%)。
[Comparative Example 1]
A round flask with an internal volume of 1000 ml equipped with a three-way cock was charged with 25.0 g of granular (particle size 20 to 1000 μm) magnesium and 16.2 g of anhydrous zinc chloride (ZnCl 2 ), and heated and reduced to 1 mmHg at 50 ° C. After the inside of the reactor was dried, dry argon gas was introduced into the reactor, 500 ml of THF previously dried with sodium-benzophenone ketyl was added, and the mixture was stirred at 25 ° C. for about 60 minutes. To this reaction mixture, 63.5 g (0.3 mol) of methylphenyldichlorosilane purified in advance by distillation was added by a syringe and stirred at 25 ° C. for about 24 hours. After completion of the reaction, 1000 ml of 1N (= 1 mol / L) hydrochloric acid was added to the reaction mixture, followed by extraction with 500 ml of toluene. The toluene phase was washed 10 times with 200 ml of pure water, the toluene phase was dried over anhydrous magnesium sulfate, and then toluene was distilled off to obtain 21.6 g of methylphenylsilane polymer (mass average molecular weight 6000) (recovery). Rate 60%).
〔比較例2〕
 三方コックを装着した内容積1000mlの丸型フラスコに、粒状(粒径20~1000μm)のマグネシウム25.0g、無水塩化亜鉛(ZnCl)16.2gを仕込み、50℃で1mmHgに加熱減圧して、反応器内部を乾燥した後、乾燥アルゴンガスを反応器内に導入し、予めナトリウム-ベンゾフェノンケチルで乾燥したテトラヒドロフラン(THF)500mlを加え、25℃で約60分間撹拌した。この反応混合物に、予め蒸留により精製したメチルフェニルジクロロシラン63.5g(0.3mol)をシリンジで加え、25℃で約24時間撹拌した。
 得られた直鎖状のフェニルシラン-ジメチルシラン共重合体をトルエン150gとテトラヒドロフラン150gとの混合溶液に溶解し、さらに塩化銅(II)(CuCl)を10質量%の割合で含む塩化銅水溶液200gを混合して60分間攪拌したのち、直鎖状のフェニルシラン-ジメチルシラン共重合体を含む有機相と塩化銅を含む水相とを分離した。そして、直鎖状のフェニルシラン-ジメチルシラン共重合体を含む有機相を、純水200mlで3回洗浄した後、溶媒成分を留去し、直鎖状のフェニルシラン-ジメチルシラン共重合体(質量平均分子量3000)21.6gを得た(収率60%)。
[Comparative Example 2]
A round flask with an internal volume of 1000 ml equipped with a three-way cock was charged with 25.0 g of granular (particle size 20 to 1000 μm) magnesium and 16.2 g of anhydrous zinc chloride (ZnCl 2 ), and heated and reduced to 1 mmHg at 50 ° C. After drying the inside of the reactor, dry argon gas was introduced into the reactor, 500 ml of tetrahydrofuran (THF) previously dried with sodium-benzophenone ketyl was added, and the mixture was stirred at 25 ° C. for about 60 minutes. To this reaction mixture, 63.5 g (0.3 mol) of methylphenyldichlorosilane purified in advance by distillation was added by a syringe and stirred at 25 ° C. for about 24 hours.
The obtained linear phenylsilane-dimethylsilane copolymer is dissolved in a mixed solution of 150 g of toluene and 150 g of tetrahydrofuran, and further an aqueous copper chloride solution containing 10% by mass of copper chloride (II) (CuCl 2 ). After mixing 200 g and stirring for 60 minutes, the organic phase containing linear phenylsilane-dimethylsilane copolymer and the aqueous phase containing copper chloride were separated. The organic phase containing the linear phenylsilane-dimethylsilane copolymer was washed with 200 ml of pure water three times, the solvent component was distilled off, and the linear phenylsilane-dimethylsilane copolymer ( 21.6 g (mass average molecular weight 3000) was obtained (yield 60%).
〔比較例3〕
 三方コックを装着した内容積1000mlの丸型フラスコに、粒状(粒径20~1000μm)のマグネシウム25.0g、無水塩化リチウム21.4g、第2塩化鉄4.1gを仕込み、50℃で1mmHgに加熱減圧して、反応混合物を乾燥した後、乾燥アルゴンガスを反応器内に導入し、予めナトリウム-ベンゾフェノンケチルで乾燥したテトラヒドロフラン500mlを加え、室温で約30分間撹拌した。この反応混合物に、予め蒸留により精製したメチルフェニルジクロロシラン105.8g(0.50mol)を加え、20℃で約18時間撹拌した。反応終了後、トルエン300mlを加えた後、減圧濾過により反応によって生成した塩化マグネシウム、余剰のマグネシウムを除去した。ろ液を純水200mlで10回洗浄し、トルエン相を無水硫酸マグネシウムで乾燥した後、トルエン、テトラヒドロフランを留去することにより、直鎖状のメチルフェニルシラン重合体50gを得た。
 得られた直鎖状のメチルフェニルシラン重合体をトルエン150gとテトラヒドロフラン150gとの混合溶液に溶解し、さらに塩化銅(II)(CuCl)を10質量%の割合で含む塩化銅水溶液200gを混合して60分間攪拌したのち、直鎖状のメチルフェニルシラン重合体を含む有機相と塩化銅を含む水相とを分離した。そして、直鎖状のメチルフェニルシラン重合体を含む有機相を、純水200mlで3回洗浄した後、溶媒成分を留去し、直鎖状のメチルフェニルシラン重合体(質量平均分子量2000)36gを得た(収率60%)。
[Comparative Example 3]
A round flask with an internal volume of 1000 ml equipped with a three-way cock is charged with 25.0 g of granular (particle size 20 to 1000 μm) magnesium, 21.4 g of anhydrous lithium chloride, and 4.1 g of ferric chloride, and is adjusted to 1 mmHg at 50 ° C. The reaction mixture was dried by heating under reduced pressure, dry argon gas was introduced into the reactor, 500 ml of tetrahydrofuran previously dried with sodium-benzophenone ketyl was added, and the mixture was stirred at room temperature for about 30 minutes. To this reaction mixture, 105.8 g (0.50 mol) of methylphenyldichlorosilane purified in advance by distillation was added and stirred at 20 ° C. for about 18 hours. After completion of the reaction, 300 ml of toluene was added, and then magnesium chloride produced by the reaction and excess magnesium were removed by filtration under reduced pressure. The filtrate was washed 10 times with 200 ml of pure water, the toluene phase was dried over anhydrous magnesium sulfate, and then toluene and tetrahydrofuran were distilled off to obtain 50 g of a linear methylphenylsilane polymer.
The obtained linear methylphenylsilane polymer was dissolved in a mixed solution of 150 g of toluene and 150 g of tetrahydrofuran, and further 200 g of an aqueous copper chloride solution containing 10% by mass of copper (II) chloride (CuCl 2 ) was mixed. After stirring for 60 minutes, the organic phase containing the linear methylphenylsilane polymer and the aqueous phase containing copper chloride were separated. And after wash | cleaning the organic phase containing a linear methylphenylsilane polymer 3 times with 200 ml of pure waters, the solvent component was distilled off and linear methylphenylsilane polymer (mass mean molecular weight 2000) 36g (Yield 60%).
〔比較例4〕
 三方コックを装着した内容積1000mlの丸型フラスコに、粒状(粒径20~1000μm)のマグネシウム25.0g、無水塩化亜鉛(ZnCl)16.2gを仕込み、50℃で1mmHgに加熱減圧して、反応混合物を乾燥した後、乾燥アルゴンガスを反応器内に導入し、予めナトリウム-ベンゾフェノンケチルで乾燥したテトラヒドロフラン500mlを加え、室温で約30分間撹拌した。この反応混合物に、予め蒸留により精製したフェニルトリクロロシラン105.8g(0.50mol)を加え、20℃で約18時間撹拌した。反応終了後、トルエン300mlを加えた後、減圧濾過により反応によって生成した塩化マグネシウム、余剰のマグネシウムを除去した。ろ液を純水200mlで10回洗浄し、トルエン相を無水硫酸マグネシウムで乾燥した後、トルエン及びテトラヒドロフランを留去することにより、分岐状のポリフェニルシラン50gを得た。
 反応終了後、反応混合物に1N(=1モル/L)の塩酸1000mlを投入し、さらにトルエン500mlで抽出した。トルエン相を純水200mlで10回洗浄し、トルエン相を無水硫酸マグネシウムで乾燥した後、トルエンを留去することにより、分岐状のポリフェニルシラン重合体(質量平均分子量2000)を38.2g得た(収率60%)。
[Comparative Example 4]
A round flask with an internal volume of 1000 ml equipped with a three-way cock was charged with 25.0 g of granular (particle size 20 to 1000 μm) magnesium and 16.2 g of anhydrous zinc chloride (ZnCl 2 ), and heated and reduced to 1 mmHg at 50 ° C. After drying the reaction mixture, dry argon gas was introduced into the reactor, 500 ml of tetrahydrofuran previously dried with sodium-benzophenone ketyl was added, and the mixture was stirred at room temperature for about 30 minutes. To this reaction mixture, 105.8 g (0.50 mol) of phenyltrichlorosilane purified in advance by distillation was added and stirred at 20 ° C. for about 18 hours. After completion of the reaction, 300 ml of toluene was added, and then magnesium chloride produced by the reaction and excess magnesium were removed by filtration under reduced pressure. The filtrate was washed 10 times with 200 ml of pure water, the toluene phase was dried over anhydrous magnesium sulfate, and then toluene and tetrahydrofuran were distilled off to obtain 50 g of branched polyphenylsilane.
After completion of the reaction, 1000 ml of 1N (= 1 mol / L) hydrochloric acid was added to the reaction mixture, followed by extraction with 500 ml of toluene. The toluene phase was washed 10 times with 200 ml of pure water, the toluene phase was dried over anhydrous magnesium sulfate, and then toluene was distilled off to obtain 38.2 g of a branched polyphenylsilane polymer (mass average molecular weight 2000). (Yield 60%).
〔比較例5〕
 三方コックを装着した内容積1000mlの丸型フラスコに、粒状(粒径20~1000μm)のマグネシウム25.0g、無水塩化亜鉛(ZnCl)16.2gを仕込み、50℃で1mmHgに加熱減圧して、反応混合物を乾燥した後、乾燥アルゴンガスを反応器内に導入し、予めナトリウム-ベンゾフェノンケチルで乾燥したテトラヒドロフラン500mlを加え、室温で約30分間撹拌した。この反応混合物に、予め蒸留により精製したフェニルトリクロロシラン105.8g(0.50mol)を加え、20℃で約18時間撹拌した。反応終了後、トルエン300mlを加えた後、減圧濾過により反応によって生成した塩化マグネシウム、余剰のマグネシウムを除去した。ろ液を純水200mlで10回洗浄し、トルエン層を無水硫酸マグネシウムで乾燥した後、トルエン及びテトラヒドロフランを留去することにより、分岐状のポリフェニルシラン50gを得た。
 得られた分岐状のポリフェニルシランをトルエン150gとテトラヒドロフラン150gとの混合溶液に溶解し、さらに塩化銅(II)(CuCl)を10質量%の割合で含む塩化銅水溶液200gを混合して60分間攪拌したのち、分岐状のポリフェニルシランを含む有機相と塩化銅を含む水相とを分離した。そして、分岐状のポリフェニルシランを含む有機相を、純水200mlで3回洗浄した後、溶媒成分を留去し、分岐状のポリフェニルシラン重合体(質量平均分子量2000)を31.8g得た(収率60%)。
[Comparative Example 5]
A round flask with an internal volume of 1000 ml equipped with a three-way cock was charged with 25.0 g of granular (particle size 20 to 1000 μm) magnesium and 16.2 g of anhydrous zinc chloride (ZnCl 2 ), and heated and reduced to 1 mmHg at 50 ° C. After drying the reaction mixture, dry argon gas was introduced into the reactor, 500 ml of tetrahydrofuran previously dried with sodium-benzophenone ketyl was added, and the mixture was stirred at room temperature for about 30 minutes. To this reaction mixture, 105.8 g (0.50 mol) of phenyltrichlorosilane purified in advance by distillation was added and stirred at 20 ° C. for about 18 hours. After completion of the reaction, 300 ml of toluene was added, and then magnesium chloride produced by the reaction and excess magnesium were removed by filtration under reduced pressure. The filtrate was washed 10 times with 200 ml of pure water, the toluene layer was dried over anhydrous magnesium sulfate, and then toluene and tetrahydrofuran were distilled off to obtain 50 g of branched polyphenylsilane.
The obtained branched polyphenylsilane was dissolved in a mixed solution of 150 g of toluene and 150 g of tetrahydrofuran, and further mixed with 200 g of an aqueous copper chloride solution containing copper chloride (II) (CuCl 2 ) at a ratio of 10% by mass. After stirring for a minute, the organic phase containing branched polyphenylsilane and the aqueous phase containing copper chloride were separated. And after wash | cleaning the organic phase containing branched polyphenylsilane 3 times with 200 ml of pure waters, the solvent component was distilled off and 31.8g of branched polyphenylsilane polymers (mass mean molecular weight 2000) were obtained. (Yield 60%).
 実施例1~6及び比較例1~5を下記表1にまとめる。
Figure JPOXMLDOC01-appb-T000008
Examples 1 to 6 and Comparative Examples 1 to 5 are summarized in Table 1 below.
Figure JPOXMLDOC01-appb-T000008
 実施例1~6及び比較例1~5で得られたポリシラン化合物について、下記方法に従って、Zn、Cu、Fe各々の含有量、ギャップフィル特性及びシロキサン結合(Si-O)割合について評価した。 For the polysilane compounds obtained in Examples 1 to 6 and Comparative Examples 1 to 5, the content of each of Zn, Cu, and Fe, the gap fill characteristics, and the siloxane bond (Si—O) ratio were evaluated according to the following methods.
<Zn、Cu、Fe各々の含有量評価>
 実施例1~6及び比較例1~5で得られたポリシラン化合物におけるZn、Cu、Fe各々の含有量は、ICP-MS(Inductively coupled plasma mass spectroscopy)を用いて測定した。結果を表2に示す。
(評価基準)
 〇:Zn、Cu、Fe各々について含有量が500ppb以下
 ×:Zn、Cu、Fe各々について含有量が500ppb超
<Evaluation of each content of Zn, Cu, Fe>
The contents of Zn, Cu, and Fe in the polysilane compounds obtained in Examples 1 to 6 and Comparative Examples 1 to 5 were measured using ICP-MS (Inductively coupled plasma mass spectrometry). The results are shown in Table 2.
(Evaluation criteria)
◯: Content is less than 500 ppb for each of Zn, Cu, and Fe ×: Content is over 500 ppb for each of Zn, Cu, and Fe
<ギャップフィル特性評価>
 実施例1~6及び比較例1~5で得られたポリシラン化合物を、ポリシラン化合物の濃度が5質量%となるようにシクロヘキシルアセテート中に溶解し、得られた各ポリシラン化合物溶液(ポリシラン化合物を含む組成物)を用いて以下の評価方法に従ってギャップフィル特性を評価した。
(評価基準)
 ライン幅40nmスペース幅15nmであって高さ(スペースの深さ)が85nmの繰り返しのトレンチパターンが形成されているシリコンウエハに、各ポリシラン化合物溶液を、ポストベーク後の膜厚が約100nm(トレンチパターンの底面からの高さは約185nm)になるように塗布し、100℃100秒でプリベークした後、350℃30分で焼成(ポストベーク)を行い、ポリシラン化合物膜を得た。断面部分を、0.4%のフッ酸水溶液に1分間浸漬した後、断面形状をSEMで観測した。下記基準に従って評価した。
 〇:ポリシラン化合物膜が、トレンチパターン部に均質に埋め込まれている。
 ×:トレンチパターン部にポリシラン化合物膜の埋め込み不良が観測される。
<Gap fill characteristic evaluation>
The polysilane compounds obtained in Examples 1 to 6 and Comparative Examples 1 to 5 were dissolved in cyclohexyl acetate so that the concentration of the polysilane compound was 5% by mass, and each of the obtained polysilane compound solutions (including the polysilane compound) was dissolved. The gap fill characteristics were evaluated according to the following evaluation method using the composition.
(Evaluation criteria)
Each polysilane compound solution is applied to a silicon wafer on which a repeated trench pattern having a line width of 40 nm, a space width of 15 nm, and a height (space depth) of 85 nm is formed. The pattern was applied so that the height from the bottom of the pattern was about 185 nm), pre-baked at 100 ° C. for 100 seconds, and then baked (post-baked) at 350 ° C. for 30 minutes to obtain a polysilane compound film. The cross-sectional portion was immersed in a 0.4% hydrofluoric acid aqueous solution for 1 minute, and then the cross-sectional shape was observed with an SEM. Evaluation was made according to the following criteria.
A: The polysilane compound film is uniformly embedded in the trench pattern portion.
X: Poor filling of the polysilane compound film is observed in the trench pattern portion.
<シロキサン結合(Si-O)及びSi-C結合の割合評価>
 実施例1~6及び比較例1~5で得られたポリシラン化合物についてXPS分析を行い、99eV以上104eV以下の結合エネルギー範囲に最大検出ピーク高さを有するスペクトルをピーク分離し、結合エネルギーが100eV以上104eV以下の範囲に最大ピーク高さを有するピークの面積(2X)(シロキサン結合(Si-O)とSi-C結合に由来するピーク面積)と、結合エネルギーが99.0eV以上99.5eV以下の範囲であるピーク面積(1X)(Si-Siに由来するピーク面積)とを算出し、下記式(3X)で表される割合を算出し、以下の基準で評価した。
 
(1X)・・・結合エネルギーが99.0eV以上99.5eV以下の範囲に最大ピーク高さを有するピークの面積
(2X)・・・結合エネルギーが100eV以上104eV以下の範囲に最大ピーク高さを有するピークの面積
(3X)・・・(2X)/[(1X)+(2X)]
<Evaluation of ratio of siloxane bond (Si—O) and Si—C bond>
XPS analysis was performed on the polysilane compounds obtained in Examples 1 to 6 and Comparative Examples 1 to 5, and the spectrum having the maximum detected peak height in the binding energy range of 99 eV to 104 eV was peak-separated, and the binding energy was 100 eV or more. Peak area (2X) having a maximum peak height in the range of 104 eV or less (peak area derived from siloxane bond (Si—O) and Si—C bond), and bond energy of 99.0 eV or more and 99.5 eV or less The range peak area (1X) (peak area derived from Si—Si) was calculated, the ratio represented by the following formula (3X) was calculated, and evaluated according to the following criteria.

(1X): The area of the peak having the maximum peak height in the range where the binding energy is 99.0 eV to 99.5 eV (2X): The maximum peak height is set in the range where the binding energy is 100 eV to 104 eV. Peak area (3X) ... (2X) / [(1X) + (2X)]
(評価基準)
 ◎:15%以下
 〇:15%超40%以下
 ×:40%超
 結果を表2に示す。
 なお、表2中、「Si-Oピーク」が無しとは、100eV以上104eV以下の範囲において帰属されたピークが1つであることを意味する。「Si-Oピーク」が有りとは、100eV以上102eV以下の範囲において帰属されたピークが2つであることを意味する。
(Evaluation criteria)
A: 15% or less O: Over 15% over 40% X: Over 40% The results are shown in Table 2.
In Table 2, the absence of “Si—O peak” means that there is one peak assigned in the range of 100 eV to 104 eV. The presence of “Si—O peak” means that there are two peaks assigned in the range of 100 eV or more and 102 eV or less.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表2に示した結果から明らかなように、ポリシラン化合物の製造に有機金属錯体を使用せずに塩化亜鉛を使用した比較例1、2、4及び5はポリシラン化合物中にZnが残存していた。
 また、ポリシラン化合物の製造に有機金属錯体を使用せずに塩化銅により精製処理を行った比較例2、3及び5はポリシラン化合物中にCuが残存しており、また、ポリシラン化合物中のシロキサン結合(Si-O)及びSi-C結合の割合が40%を超えていた。
 また、ポリシラン化合物の製造に有機金属錯体を使用せずに塩化鉄を使用した比較例2及び3はポリシラン化合物中にFeが残存していた。
 一方、有機金属錯体を用いてポリシラン化合物を製造した実施例1~6はいずれも、ポリシラン化合物のMwが5000以下であり、ポリシラン化合物中のZn、Cu及びFeの残存量が低く、シロキサン結合(Si-O)及びSi-C結合の含有割合も15%以下であった。また、実施例1~6はいずれもギャップフィル特性に優れていた。
As is apparent from the results shown in Table 2, in Comparative Examples 1, 2, 4, and 5 in which zinc chloride was used in the production of the polysilane compound without using the organometallic complex, Zn remained in the polysilane compound. .
In Comparative Examples 2, 3 and 5 in which the purification treatment was performed with copper chloride without using an organometallic complex in the production of the polysilane compound, Cu remained in the polysilane compound, and the siloxane bond in the polysilane compound The proportion of (Si—O) and Si—C bonds exceeded 40%.
Further, in Comparative Examples 2 and 3 in which iron chloride was used without using an organometallic complex for producing the polysilane compound, Fe remained in the polysilane compound.
On the other hand, in each of Examples 1 to 6 in which a polysilane compound was produced using an organometallic complex, the Mw of the polysilane compound was 5000 or less, the remaining amount of Zn, Cu and Fe in the polysilane compound was low, and a siloxane bond ( The content ratio of Si—O) and Si—C bonds was also 15% or less. Also, all of Examples 1 to 6 were excellent in gap fill characteristics.

Claims (13)

  1.  下記一般式(A1)で表される有機金属錯体及びマグネシウムの存在下においてハロシラン化合物を反応させることを含む質量平均分子量5000以下のポリシラン化合物の製造方法。
     
     Mp/q  (A1)
     
    (上記一般式(A)中、Mは、p価の金属カチオンを表し、Lはq価の有機配位子を表し、p及びqは各々独立に1以上の整数を表す。)
    A method for producing a polysilane compound having a mass average molecular weight of 5000 or less, comprising reacting a halosilane compound in the presence of an organometallic complex represented by the following general formula (A1) and magnesium.

    M p L p / q (A1)

    (In the general formula (A), M p represents a p-valent metal cation, L represents a q-valent organic ligand, and p and q each independently represents an integer of 1 or more.)
  2.  前記有機金属錯体が、下記一般式(A2)で表される有機金属錯体である、請求項1に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(A2)中、Mは、鉄、銀、アルミニウム、ビスマス、セリウム、コバルト、銅、ジスプロシウム、エルビウム、ユーロピウム、ガリウム、ガドリニウム、ハフニウム、ホルミウム、インジウム、イリジウム、ランタン、ルテチウム、マンガン、モリブデン、ネオジム、ニッケル、オスミウム、パラジウム、プロメチウム、プラセオジム、白金、レニウム、ロジウム、ルテニウム、サマリウム、スカンジウム、スズ、テルビウム、チタン、ツリウム、バナジウム、クロム、タンタル、イッテルビウム、金、水銀タングステン、イットリウム、亜鉛及びジルコニウムよりなる群から選択される金属を表し、Ra1は、各々独立して、飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基、アラルキル基、アルコキシ基、アリールオキシ基、アラルキルオキシ基又はアリールオキシアルキル基を表し、Ra2は、水素原子、飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基又はアラルキル基を表わす。pは1以上の整数を表す。)
    The manufacturing method of Claim 1 whose said organometallic complex is an organometallic complex represented by the following general formula (A2).
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (A2), M represents iron, silver, aluminum, bismuth, cerium, cobalt, copper, dysprosium, erbium, europium, gallium, gadolinium, hafnium, holmium, indium, iridium, lanthanum, lutetium, manganese, Molybdenum, neodymium, nickel, osmium, palladium, promethium, praseodymium, platinum, rhenium, rhodium, ruthenium, samarium, scandium, tin, terbium, titanium, thulium, vanadium, chromium, tantalum, ytterbium, gold, mercury tungsten, yttrium, zinc And R a1 each independently represents a saturated hydrocarbon group, an unsaturated hydrocarbon group, an aromatic hydrocarbon group, an aralkyl group, an alkoxy group, an aryl group. Represents an oxy group, an aralkyloxy group or an aryloxyalkyl group, and R a2 represents a hydrogen atom, a saturated hydrocarbon group, an unsaturated hydrocarbon group, an aromatic hydrocarbon group or an aralkyl group, and p represents an integer of 1 or more. To express.)
  3.  前記一般式(A2)において、Ra1がメチル基を表し、Ra2が水素原子を表す、請求項2に記載の製造方法。 The production method according to claim 2, wherein, in the general formula (A2), R a1 represents a methyl group and R a2 represents a hydrogen atom.
  4.  製造される前記ポリシラン化合物が、直鎖状ポリシラン、分岐状ポリシラン及び環状ポリシランよりなる群から選択される少なくとも1種のポリシランである、請求項1~3のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the polysilane compound to be produced is at least one polysilane selected from the group consisting of linear polysilane, branched polysilane, and cyclic polysilane.
  5.  前記ポリシラン化合物が環状ポリシランを含む、請求項4に記載の製造方法。 The manufacturing method according to claim 4, wherein the polysilane compound contains cyclic polysilane.
  6.  前記ポリシラン化合物中のX線光電子分光法により測定される99eV以上104eV以下の結合エネルギー範囲に最大検出ピーク高さを有するスペクトルをピーク分離して求められる下記(1X)及び(2X)のピークの面積の和に対する下記(2X)の比である、下記式(3X)で表される割合が0.4以下である、請求項1~5のいずれか1項に記載の製造方法。
     
    (1X)・・・結合エネルギーが99.0eV以上99.5eV以下の範囲に最大ピーク高さを有するピークの面積
    (2X)・・・結合エネルギーが100eV以上104eV以下の範囲に最大ピーク高さを有するピークの面積
    (3X)・・・(2X)/[(1X)+(2X)]
     
    Areas of peaks of the following (1X) and (2X) obtained by peak-separating a spectrum having the maximum detected peak height in a binding energy range of 99 eV or more and 104 eV or less measured by X-ray photoelectron spectroscopy in the polysilane compound The production method according to any one of claims 1 to 5, wherein a ratio represented by the following formula (3X), which is a ratio of the following (2X) to the sum of:

    (1X): The area of the peak having the maximum peak height in the range where the binding energy is 99.0 eV to 99.5 eV (2X): The maximum peak height is set in the range where the binding energy is 100 eV to 104 eV. Peak area (3X) ... (2X) / [(1X) + (2X)]
  7.  前記ポリシラン化合物中の金属の含有量が500ppb以下である、請求項1~6のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 6, wherein a metal content in the polysilane compound is 500 ppb or less.
  8.  塩基及び酸よりなる群から選択される少なくとも1種を含む水溶液に、前記反応後の液を接触させて精製することにより前記ポリシラン化合物を得ることを更に含む、請求項1~7のいずれか1項に記載の製造方法。 The method according to any one of claims 1 to 7, further comprising obtaining the polysilane compound by bringing the solution after the reaction into contact with an aqueous solution containing at least one selected from the group consisting of a base and an acid for purification. The production method according to item.
  9.  前記ハロシラン化合物が下記式(1)で表される化合物である、請求項1~8のいずれか1項に記載の製造方法。
     
      XSiR4-n  (1)
     
    (式中、nは2~4の整数であり、n個のXは、各々独立に、ハロゲン原子であり、(4-n)個のRは、各々独立に、水素原子、有機基又はシリル基である。)
    The production method according to any one of claims 1 to 8, wherein the halosilane compound is a compound represented by the following formula (1).

    X n SiR 4-n (1)

    Wherein n is an integer of 2 to 4, n Xs are each independently a halogen atom, and (4-n) Rs are each independently a hydrogen atom, an organic group or silyl Group.)
  10.  ポリシラン化合物中のX線光電子分光法により測定される99eV以上104eV以下の結合エネルギー範囲に最大検出ピーク高さを有するスペクトルをピーク分離して求められる下記(1X)及び(2X)のピークの面積の和に対する下記(2X)の比である、下記式(3X)で表される割合が0.4以下であり、前記ポリシラン化合物中の金属の含有量が500ppb以下である質量平均分子量5000以下のポリシラン化合物。
     
    (1X)・・・結合エネルギーが99.0eV以上99.5eV以下の範囲に最大ピーク高さを有するピークの面積
    (2X)・・・結合エネルギーが100eV以上104eV以下の範囲に最大ピーク高さを有するピークの面積
    (3X)・・・(2X)/[(1X)+(2X)]
    The peak areas of the following (1X) and (2X) obtained by separating the spectrum having the maximum detected peak height in the binding energy range of 99 eV or more and 104 eV or less measured by X-ray photoelectron spectroscopy in the polysilane compound The ratio of the following (2X) to the sum, the ratio represented by the following formula (3X) is 0.4 or less, and the metal content in the polysilane compound is 500 ppb or less, and the polysilane having a mass average molecular weight of 5000 or less Compound.

    (1X): The area of the peak having the maximum peak height in the range where the binding energy is 99.0 eV to 99.5 eV (2X): The maximum peak height is set in the range where the binding energy is 100 eV to 104 eV. Peak area (3X) ... (2X) / [(1X) + (2X)]
  11.  請求項10に記載のポリシラン化合物を含む組成物。 A composition comprising the polysilane compound according to claim 10.
  12.  請求項10に記載のポリシラン化合物を含む膜。 A film containing the polysilane compound according to claim 10.
  13.  請求項10に記載のポリシラン化合物を含む膜を備える基板。 A substrate comprising a film containing the polysilane compound according to claim 10.
PCT/JP2017/045124 2016-12-28 2017-12-15 Method for producing polysilane compound, composition, film, and substrate WO2018123658A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018559050A JP6989525B2 (en) 2016-12-28 2017-12-15 Method for producing polysilane compound, composition, membrane, and substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016257009 2016-12-28
JP2016-257009 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018123658A1 true WO2018123658A1 (en) 2018-07-05

Family

ID=62708073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045124 WO2018123658A1 (en) 2016-12-28 2017-12-15 Method for producing polysilane compound, composition, film, and substrate

Country Status (3)

Country Link
JP (1) JP6989525B2 (en)
TW (1) TWI766919B (en)
WO (1) WO2018123658A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2944454A1 (en) 2014-04-01 2015-10-08 The Research Foundation For The State University Of New York Electrode materials for group ii cation-based batteries

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198631A (en) * 1987-10-09 1989-08-10 Mitsui Petrochem Ind Ltd Production of polysilane compound
JPH04288334A (en) * 1991-03-15 1992-10-13 Shin Etsu Chem Co Ltd Production of polysilane
JP2002097414A (en) * 2000-09-25 2002-04-02 Jsr Corp Film-forming composition and insulating film-forming material
JP2003277507A (en) * 2002-03-20 2003-10-02 Osaka Gas Co Ltd Manufacturing method of polysilane copolymer
JP2006316197A (en) * 2005-05-13 2006-11-24 Nitto Kasei Co Ltd Process for producing polysilanes
JP2007106894A (en) * 2005-10-13 2007-04-26 Nippon Soda Co Ltd Method for producing polysilane

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066594A1 (en) * 2005-12-07 2007-06-14 Osaka Gas Co., Ltd. Polysilane and resin composition containing polysilane

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198631A (en) * 1987-10-09 1989-08-10 Mitsui Petrochem Ind Ltd Production of polysilane compound
JPH04288334A (en) * 1991-03-15 1992-10-13 Shin Etsu Chem Co Ltd Production of polysilane
JP2002097414A (en) * 2000-09-25 2002-04-02 Jsr Corp Film-forming composition and insulating film-forming material
JP2003277507A (en) * 2002-03-20 2003-10-02 Osaka Gas Co Ltd Manufacturing method of polysilane copolymer
JP2006316197A (en) * 2005-05-13 2006-11-24 Nitto Kasei Co Ltd Process for producing polysilanes
JP2007106894A (en) * 2005-10-13 2007-04-26 Nippon Soda Co Ltd Method for producing polysilane

Also Published As

Publication number Publication date
TWI766919B (en) 2022-06-11
JP6989525B2 (en) 2022-01-05
TW201835168A (en) 2018-10-01
JPWO2018123658A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
US10690847B2 (en) Method of making a photonic crystal device and photonic crystal device
US7491782B1 (en) Polysilane compositions, methods for their synthesis and films formed therefrom
JP4742216B2 (en) Silicon compounds
CN1831193A (en) Plating method
JP5698070B2 (en) Positive photosensitive composition and cured product thereof
TWI809095B (en) Sensitive energy composition, cured product, and pattern forming method
KR20130045172A (en) Positive photosensitive composition
JP5479993B2 (en) Positive photosensitive composition and permanent resist
KR101677095B1 (en) Composition for alignment control of organic el light-emitting material, alignment control film of organic el light-emitting material, organic el device and method for manufacturing the same
JP6989525B2 (en) Method for producing polysilane compound, composition, membrane, and substrate
US11718717B2 (en) Resin composition, method for producing resin composition, film formation method, and cured product
WO2016010038A1 (en) Method for producing cyclic silane using concentration method
JP7413369B2 (en) Silicon-containing polymer, film-forming composition, method for forming a silicon-containing polymer film, method for forming a silica-based film, and method for producing a silicon-containing polymer
JP6916619B2 (en) Methods for producing polysilane compounds, compositions, cured products and substrates, and anionic polymerization selective accelerators.
JP5350602B2 (en) Polysilane and method for producing the same
JP4380229B2 (en) New compounds and their uses
JP7413370B2 (en) Silicon-containing polymer, film-forming composition, method for supporting a metal compound on the surface of an object to be treated, article provided with a film supporting a metal compound, and method for producing a silicon-containing polymer
JP6764782B2 (en) Method for producing polysilane and method for producing the active metal magnesium component used for this method.
JP5666266B2 (en) Positive photosensitive resin composition and permanent resist
EP1349007A1 (en) Photosensitive Paste
JP2006036889A (en) Method for producing cured product of hydrolyzable metal compound and cured product of hydrolyzable metal compound
JP2005001997A (en) New compound and its use
JP2004300089A (en) New compound and application thereof
JP2013258252A (en) Insulating film material and method of manufacturing insulating film, and semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887339

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018559050

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887339

Country of ref document: EP

Kind code of ref document: A1