WO2018123653A1 - Porous honeycomb filter production method - Google Patents

Porous honeycomb filter production method Download PDF

Info

Publication number
WO2018123653A1
WO2018123653A1 PCT/JP2017/045098 JP2017045098W WO2018123653A1 WO 2018123653 A1 WO2018123653 A1 WO 2018123653A1 JP 2017045098 W JP2017045098 W JP 2017045098W WO 2018123653 A1 WO2018123653 A1 WO 2018123653A1
Authority
WO
WIPO (PCT)
Prior art keywords
parallel
wall
axial direction
filter
cell
Prior art date
Application number
PCT/JP2017/045098
Other languages
French (fr)
Japanese (ja)
Inventor
泰史 ▲高▼山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018123653A1 publication Critical patent/WO2018123653A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/26Extrusion dies
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous

Definitions

  • the present disclosure relates to a method for manufacturing a porous honeycomb filter having inclined walls and parallel walls.
  • the exhaust pipe of the internal combustion engine is provided with an exhaust gas purification device that collects particulate matter (PM) contained in the exhaust gas.
  • This exhaust gas purification device includes a porous honeycomb filter for collecting PM contained in exhaust gas.
  • the porous honeycomb filter has a large number of cells forming a gas flow path extending in the axial direction surrounded by a porous cell wall.
  • Such a cell structure is formed by extruding unfired clay in the axial direction.
  • the porous honeycomb filter having such a configuration, the exhaust gas flows in from the cell with the inflow end face opened, passes through the cell wall, and is discharged from the cell with the outflow end face opened. PM in the exhaust gas is collected when passing through the cell wall.
  • Patent Document 1 proposes an exhaust gas purifying apparatus having a plurality of passages that are in a lattice shape and have two triangular sides that are narrower toward the back side, and two inner side surfaces that follow each end surface and extend to the vicinity of the opposite end surfaces. Has been.
  • a porous honeycomb filter having a passage extending in a triangular shape for example, has an inclined wall inclined with respect to the axial direction as a cell wall, and the passage converges when the inclined walls approach each other.
  • the cell shape of the cross section orthogonal to the axial direction changes continuously or intermittently with respect to the axial direction.
  • the cell shape of the cross section orthogonal to the axial direction is continuously the same plane with respect to the axial direction except for a plug portion formed separately, and is continuous with respect to the axial direction.
  • the porous honeycomb filter having an inclined wall inclined with respect to the axial direction which is desired in the present application, cannot be continuously formed in the axial direction by the extrusion molding conventionally used.
  • the passage extending in a triangular shape and the inclined wall forming the triangular passage are formed, for example, by pushing a wedge-shaped member into a material mass before firing and then pulling it out as disclosed in Patent Document 1.
  • the pushing and pulling of the wedge-shaped member is performed on one mass of material. Since the shape is formed by the shape change of the material block, it is necessary to simultaneously form the cell walls constituting one honeycomb filter.
  • the meshing area of the wedge-shaped member is too large, so that the releasability from the mold at the time of drawing is not possible. It is bad and it is difficult to cope with continuous production in a short time.
  • the porous honeycomb filter having an inclined wall has a problem in that it is greatly disadvantageous in productivity as compared with a continuous cell wall forming method by extrusion molding.
  • the cell wall formed by pushing and pulling out the wedge-shaped member may change the orientation of crystal grains and the pore state of the cell wall as compared with the cell wall formed by general extrusion molding. . For this reason, manufacturing conditions accumulated by extrusion cannot be adopted, and it is necessary to separately examine raw material conditions, kneading conditions, pore control conditions, and the like.
  • the present disclosure aims to provide a manufacturing method capable of manufacturing a porous honeycomb filter having an inclined wall with high productivity.
  • One aspect of the present disclosure includes a cylindrical outer skin, an inclined wall inclined with respect to the axial direction of the cylindrical outer skin, a parallel wall parallel to the axial direction, and the inclined wall inside the cylindrical outer skin. And a cell forming a gas flow path extending in the axial direction surrounded by the parallel walls, and a method for manufacturing a porous honeycomb filter, By extruding the clay in a direction orthogonal to the axial direction, a plurality of inclined portions whose inclination directions with respect to the axial direction are alternately reversed, and a plurality of connecting portions that connect the inclined portions to each other and extend in the extrusion direction.
  • An extrusion process for obtaining an inclined structure having: A parallel part forming step of obtaining a honeycomb formed body having the inclined part and the parallel part by additionally forming a plurality of parallel parts that become the parallel walls by firing with respect to the inclined part; And a firing step of firing the honeycomb formed body.
  • the above manufacturing method has an extruding step of extruding the clay in the direction orthogonal to the axial direction instead of the axial direction of the cylindrical outer shell. Therefore, the inclined structure can be continuously produced by extrusion. This is because the inclined structure has a plurality of inclined portions and a plurality of connecting portions that connect the inclined portions. Such an inclined structure can be extruded in the direction orthogonal to the axial direction as described above. That is, it is possible to push out a planar body having a cross section perpendicular to the axial direction of the inclined structure body in the extending direction of the connecting portion. As a result, it becomes possible to continuously manufacture the inclined structure by extrusion as described above, and the productivity of the porous honeycomb filter obtained using the inclined structure is improved.
  • the porous honeycomb filter is appropriately referred to as “filter”.
  • the inclined portion is formed by extrusion molding. Therefore, the inclined structure can be produced without separately considering the raw material conditions, kneading conditions, pore control conditions, molding conditions, and the like of the clay. That is, it is possible to apply the same manufacturing conditions as those for manufacturing filters by general extrusion molding.
  • the parallel part forming step a plurality of parallel parts that become parallel walls are formed by firing. Thereby, a honeycomb formed body having a parallel part and an inclined part can be obtained.
  • the parallel part can be formed of substantially the same material as that of the inclined structure, or can be formed of a different material. Therefore, in the manufacturing method described above, it is possible to manufacture not only filters in which the inclined wall and the parallel wall are made of the same material but also filters made of different materials. It is also possible to form inclined walls and parallel walls having different pore conditions such as porosity.
  • the method which can manufacture the filter which has an inclined wall with sufficient productivity can be provided.
  • FIG. 1 is a perspective view of a porous honeycomb filter of Embodiment 1.
  • FIG. 2 is a partially enlarged view of the YZ cross section of the porous honeycomb filter of Embodiment 1.
  • FIG. 3 is a partially enlarged view of the XZ cross section of the porous honeycomb filter of Embodiment 1.
  • FIG. 4 is a partially enlarged view of the inflow end surface of the porous honeycomb filter of Embodiment 1.
  • FIG. 5 is a partially enlarged view of the XY cross section at a position near the inflow end face of the porous honeycomb filter of Embodiment 1.
  • FIG. 1 is a perspective view of a porous honeycomb filter of Embodiment 1.
  • FIG. 2 is a partially enlarged view of the YZ cross section of the porous honeycomb filter of Embodiment 1.
  • FIG. 3 is a partially enlarged view of the XZ cross section of the porous honeycomb filter of Embodiment 1.
  • FIG. 4 is
  • FIG. 6 is a partially enlarged view of the XY cross section at the axial center position of the porous honeycomb filter of the first embodiment.
  • FIG. 7 is a partially enlarged view of the XY cross section at a position near the outflow end face of the porous honeycomb filter of the first embodiment.
  • FIG. 8 is a partially enlarged view of the outflow end surface of the porous honeycomb filter of Embodiment 1.
  • FIG. 9 is a partial cross-sectional enlarged view of the connecting portion of the inclined wall according to the first embodiment.
  • FIG. 10 is an enlarged cross-sectional view of the inclined wall according to the first embodiment.
  • FIG. 11 is an enlarged cross-sectional view of a parallel wall in the first embodiment, FIG.
  • FIG. 12 is an explanatory diagram of an extrusion process for obtaining an inclined structure from the clay in Embodiment 1.
  • FIG. 13 is an explanatory diagram of an extrusion process for extruding an inclined structure from a mold in Embodiment 1.
  • FIG. 14 is a partially enlarged view of the YZ cross section of the inclined structure according to the first embodiment.
  • FIG. 15 is a partially enlarged view of the inclined structure in the XY plane according to the first embodiment.
  • 16 (a) is a partially enlarged sectional view of the clay in the first embodiment
  • FIG. 16 (b) is a partially enlarged sectional view of the inclined portion in the first embodiment, FIG.
  • FIG. 17A is a partial perspective view of the inclined structure in which the parallel wall forming material is filled in the space between the inclined portions in the first embodiment
  • FIG. 17B is the inclined wall in the first embodiment.
  • It is a partial perspective view of an inclined structure in which a parallel wall is formed by partially curing the parallel wall forming material filled in the space between
  • FIG. 18 is a partial perspective view of an inclined structure in which a plurality of parallel portions formed by curing a parallel wall forming material in Embodiment 1 are formed
  • Fig. 19 (a) is an XY plan view of the honeycomb formed body in the first embodiment
  • Fig. 19 (b) is an XY plan view of a columnar honeycomb formed body having a tubular portion in the first embodiment.
  • FIG. 20A is a perspective view of the inclined structure body according to the second embodiment
  • FIG. 20B is a perspective view of the inclined structure body piece according to the second embodiment
  • FIG. 21A is an explanatory diagram of a lamination process of alternately laminating inclined structure pieces and molded sheets according to the second embodiment
  • FIG. 21B is parallel to the inclined structure pieces according to the second embodiment. It is a partially enlarged view of the XY plane of a honeycomb formed body made of a laminate with a portion
  • FIG. 22 is a YZ plane cross-sectional view of the porous honeycomb filter of Modification Example 1
  • FIG. 23 is a partial cross-sectional enlarged view of a connecting portion of an inclined wall inclined in a curved shape in Modification Example 1
  • FIG. 21A is an explanatory diagram of a lamination process of alternately laminating inclined structure pieces and molded sheets according to the second embodiment
  • FIG. 21B is parallel to the inclined structure pieces according to the second embodiment.
  • It is a partially
  • FIG. 24 is a YZ plane cross-sectional view of the porous honeycomb filter of Modification Example 2
  • FIG. 25 is a YZ plane cross-sectional view of a porous honeycomb filter of Modification 3
  • FIG. 26 is a partial cross-sectional enlarged view of the connecting portion of the inclined wall in Modification 3.
  • FIG. 27 is an enlarged view of an end face of the porous honeycomb filter of Modification Example 4
  • 28 (a) is a YZ plane cross-sectional view of the porous honeycomb filter of Modification Example 4
  • FIG. 28 (b) is an XZ plane cross-sectional view of the porous honeycomb filter of Modification Example 4
  • FIG. 29 is a front view of the end face of the porous honeycomb filter of Modification Example 5, FIG.
  • FIG. 30 is a perspective view of the porous honeycomb filter of Comparative Example 1
  • FIG. 31 is a cross-sectional view in a plane parallel to the axial direction of the porous honeycomb filter of Comparative Example 1
  • FIG. 32 is an explanatory view showing a cross section of an inclined wall in the porous honeycomb filter of the sample E2 in the experimental example
  • FIG. 33 is a diagram showing the relationship between the distance in the axial direction from the inflow end face of each porous honeycomb filter and the wall permeation flow velocity in the experimental example.
  • the filter 1 includes a cylindrical outer skin 10, an inclined wall 21, a parallel wall 22, and a cell 3.
  • a wall surrounding the cell 3 serving as a gas flow path, such as the inclined wall 21 and the parallel wall 22, is appropriately referred to as a cell wall 2.
  • the cylindrical outer skin 10 is a cylindrical body having openings at both ends covering the outer periphery of the filter 1.
  • the axial direction of the cylindrical outer skin 10 is referred to as the axial direction Z in this specification.
  • the axial direction Z is the extension direction of the cell 3 forming the gas flow path, the flow direction of the exhaust gas G flowing into the filter 1, the flow direction of the exhaust gas G flowing out from the filter 1, and the exhaust gas G flowing through the cell 3. It is possible to match the flow direction and the like.
  • the inclined wall 21 and the parallel wall 22 define the inside of the cylindrical outer skin 10. Thus, a large number of cells 3 surrounded by the inclined wall 21 and the parallel wall 22 are formed inside the cylindrical outer skin 10.
  • the inclined wall 21 extends while being inclined with respect to the axial direction Z.
  • the inclined wall 21 is porous, for example.
  • the exhaust gas G flowing in the cell 3 can pass through the porous inclined wall 21.
  • FIG. 1 is a perspective view of the filter 1, and the cell wall inside the filter 1 is not originally shown, but the formation pattern of a part of the inclined walls 21 is indicated by dotted lines for convenience of explanation.
  • the parallel wall 22 extends parallel to the axial direction Z.
  • the parallel walls 22 are also parallel to the flow direction of the exhaust gas G, for example. For this reason, the exhaust gas G hardly enters the inside from the wall surface of the parallel wall 22. Even if the parallel wall 22 permeates the exhaust gas G, the parallel wall 22 may not substantially permeate the exhaust gas.
  • the parallel wall 22 preferably has a lower porosity than the inclined wall 21.
  • the strength of the parallel wall can be made higher than that of the inclined wall. Therefore, PM can be collected by the inclined wall 21, and the strength of the filter 1 can be increased by the parallel wall 22.
  • the parallel wall 22 may be porous, but need not be porous, and may be a non-porous body, that is, a dense body.
  • the porosity of the inclined wall 21 and the parallel wall 22 can be changed by adjusting the raw material composition, the particle size of each raw material powder, and the like.
  • the porosity can be compared and measured using a mercury porosimeter by a mercury intrusion method.
  • a mercury porosimeter for example, Autopore IV9500 manufactured by Shimadzu Corporation can be used.
  • the filter 1 is, for example, a columnar shape, but may be another columnar body such as an elliptical column shape, a triangular column shape, or a quadrangular column shape.
  • the filter 1 includes, for example, a cylindrical outer shell 10 that is open at both ends, such as a cylindrical shape, and a cell wall 2 that defines the inner side of the cylindrical outer shell 10.
  • the axial direction Z of the cylindrical outer skin 10 is also the axial direction Z of the filter 1.
  • the outer edge shape of the cell 3 on both end faces 11 and 12 in the axial direction Z of the filter 1 can be a polygon such as a triangle, a square, a rectangle, a hexagon, and an octagon.
  • the outer edge shape of the cell 3 may be circular or elliptical.
  • the outer edge shape of the cell 3 in the cross section orthogonal to the axial direction Z is the same.
  • the outer edge shape of the cell 3 is a polygon
  • at least one cell wall 2 out of the plurality of cell walls 2 surrounding each cell 3 can be inclined to form the inclined wall 21.
  • the outer edge shape of the cell 3 is preferably a polygonal shape having two opposite sides.
  • a pair of inclined walls 21 is preferably formed by inclining two opposing cell walls 2 surrounding the cell 3.
  • the pressure loss can be reduced by reducing the variation in the flow velocity of the exhaust gas G passing through the inclined wall 21.
  • the outer edge shape of the cell 3 is more preferably a quadrangle as illustrated in FIG. 1, and the pair of opposing inclined walls 21 have a wall distance between them facing either one of the end faces 11 and 12. It is more preferable to incline so that it may approach.
  • the pressure loss is hereinafter referred to as “pressure loss” as appropriate.
  • the direction orthogonal to the Z-axis direction and parallel to the wall surface of the parallel wall 22 is defined as the Y-axis direction
  • the direction orthogonal to both the Z-axis direction and the Y-axis direction is defined as the X-axis direction.
  • the filter cross section in the plane having the X axis and the Y axis is the XY cross section
  • the filter cross section in the plane having the Y axis and the Z axis is the YZ cross section
  • the filter cross section in the plane having the X axis and the Z axis is The cross section is XZ.
  • FIG. 2 shows a cross section of the filter 1 in the YZ plane parallel to the flow direction of the exhaust gas G.
  • FIG. 2 shows a cross section of the filter 1 in a plane including the axial direction Z of the filter 1 and the Y-axis direction parallel to the wall surface of the parallel wall 22.
  • the inclined directions Ds1 and Ds2 of the inclined wall 21 intersect with the axial direction Z.
  • the inclined directions Ds1 and Ds2 are the inclined directions of the inclined wall 21.
  • the Y coordinate position of each inclined wall 21 changes continuously with respect to the axial direction Z, for example.
  • the pair of opposed inclined walls 21 are continuously inclined, for example, so that the Y coordinate positions of both approach toward either one of the both end faces 11 and 12, respectively.
  • the inclined wall 21 may be formed in the entire extending direction of the cell wall 2 as illustrated in FIG. 2, but may be partially formed as shown in Modification 2 described later.
  • the inclined wall 21 only needs to be externally inclined with respect to the axial direction Z, and the inclination angle ⁇ 1 of the inclined wall 21 with respect to the axial direction Z is not particularly limited, but is preferably 0.9 ° or more, for example. (See FIG. 9).
  • the upper limit of the inclination angle ⁇ 1 is, for example, less than 30 °.
  • the inclination angle ⁇ 1 can be appropriately adjusted according to the size of the filter 1, desired pressure loss, collection rate, and the like.
  • the inclination angle of each inclined wall 21 may be constant as in the present embodiment or may be changed.
  • each cell 3 is preferably sandwiched between a pair of opposed inclined walls 21.
  • the inclination directions Ds1 and Ds2 of the pair of inclined walls 21 are preferably symmetric with respect to the axial direction Z.
  • the variation in the flow velocity of the exhaust gas G passing through the pair of inclined walls 21 at the predetermined position in the axial direction Z can be reduced. Therefore, the pressure loss can be further reduced.
  • the variation in the amount of PM collected by the pair of inclined walls 21 is reduced. Therefore, the temperature variation during heating of the filter 1 can be reduced.
  • the tilt directions Ds1 and Ds2 can be asymmetric with respect to the axial direction Z.
  • FIG. 3 shows a cross section of the filter 1 in the XZ plane parallel to the flow direction of the exhaust gas G.
  • FIG. 3 shows a cross section of the filter 1 in a plane orthogonal to the wall surface of the parallel wall 22, and shows a cross section of the parallel wall 22.
  • the X coordinate position of each parallel wall 22 does not change with respect to the axial direction Z, and is constant, for example.
  • the parallel walls 22 can also be formed in a pair of opposed cell walls 2 in the same manner as the inclined wall 21 described above.
  • the parallel wall 22 only needs to be parallel to the axial direction Z in terms of appearance, and may include a minute inclination, or a wavy portion that can be formed during molding or sintering.
  • the parallel wall 22 and the inclined wall 21 are preferably orthogonal to each other in the end faces 11 and 12 and the XY cross section of the filter 1.
  • the strength of the filter 1 can be further improved.
  • 5 is a view showing an XY cross section of the filter 1 at the intermediate position between the center in the axial direction Z and the inflow end surface 11 from the inflow end surface 11 side.
  • the position and orientation in the axial direction Z of the XY cross section in FIG. 5 are indicated by the VV line and the arrow in FIG.
  • FIG. 6 is a view showing the XY cross section of the filter 1 at the center position in the axial direction Z from the inflow end face 11 side.
  • FIG. 7 is a view showing an XY cross section of the filter 1 at the intermediate position between the center in the axial direction Z and the outflow end surface 12 from the inflow end surface 11 side.
  • the position and orientation in the axial direction Z of the XY cross section of FIG. 7 are indicated by the VII-VII line and the arrow in FIG. 2, respectively.
  • the filter 1 has an inflow end surface 11 and an outflow end surface 12 for the exhaust gas G at both ends in the axial direction Z.
  • the cell 3 includes a reduced cell 32 in which the gas flow path cross-sectional area S in the cell 3 decreases from the inflow end surface 11 toward the outflow end surface 12, and a gas flow in the cell 3 from the inflow end surface 11 toward the outflow end surface 12. It has the expansion cell 33 with which the road cross-sectional area S becomes large.
  • the reduced cell 32 and the enlarged cell 33 preferably share one inclined wall 21 and are adjacent to each other.
  • the exhaust gas G flows into the reduced cell 32, passes through the shared inclined wall 21 and is easily discharged from the adjacent enlarged cell 33, improves the PM collection rate, and reduces the variation in the collection rate.
  • the gas channel cross-sectional area of the reduced cell 32 is S 1
  • the gas channel cross-sectional area of the enlarged cell 33 is S 2 .
  • the gas flow path cross-sectional area S 1 is the area of the reduced cell 32 in the cross section orthogonal to the axial direction Z
  • the gas flow path cross-sectional area S 2 is the area of the enlarged cell 33 in the cross section orthogonal to the axial direction Z.
  • the reduced cell 32 includes a region where the gas channel cross-sectional area S 1 is constant and a region where the gas channel cross-sectional area S 1 is small, even if the gas channel cross-sectional area S 1 is gradually reduced. Good.
  • the gas flow path cross-sectional area S 2 may be made stepwise increased.
  • the reduced cells 32 and the enlarged cells 33 are alternately formed in the Y-axis direction on the XY plane, and are adjacent to each other in the Y-axis direction.
  • the reduced cells 32 or the enlarged cells 33 are adjacent to each other.
  • the gas flow cross-sectional area S 1 of the reduced cell 32 is maximized at the inflow end surface 11, and the reduced cell 32 is preferably open at the inflow end surface 11. .
  • the gas flow path cross-sectional area S 2 of the expansion cell 33 is minimized at the inflow end surface 11, and the pair of inclined walls 21 forming the expansion cell 33 are directly connected to each other at the inflow end surface 11.
  • the enlarged cell 33 is closed by the inflow end face 11, and the gas flow path cross-sectional area S 2 of the enlarged cell 33 becomes 0 at the inflow end face 11. Therefore, the opening area in the inflow end surface 11 is increased, and the pressure loss can be further reduced.
  • the gas flow path cross-sectional area S 1 of the contraction cell 32 is minimized, and the two opposing inclined walls 21 forming the contraction cell 32 have an outflow.
  • the outflow side connection portion 213 is formed by direct connection at the end face 12.
  • the reduced cell 32 is closed by the outflow side connection portion 213, and the gas flow path cross-sectional area S 1 can be zero at the outflow side connection portion 213 of the outflow end surface 12.
  • the gas flow path cross-sectional area S 2 of the enlarged cell 33 becomes maximum at the outflow end face 12, and the enlarged cell 33 can be opened at the outflow end face 12.
  • the inclination direction can intersect at either the outflow end face 12 or the inflow end face 11 as described above.
  • the pair of inclined walls 21 can be directly connected at the outflow end surface 12 or the inflow end surface 11 where the inclination directions intersect.
  • each cell 3 is surrounded by a pair of inclined walls 21 and parallel walls. Therefore, the shape of the cell 3 is a triangular prism whose X-axis direction is the height direction.
  • the reduced cells 32 and the enlarged cells 33 are adjacent to each other in the Y-axis direction, that is, in the direction parallel to the wall surface of the parallel wall 22 and in the direction orthogonal to the axial direction Z.
  • the adjacent reduced cell 32 and enlarged cell 33 share one inclined wall 21.
  • the filter 1 is made of a ceramic material such as cordierite, SiC, aluminum titanate, ceria-zirconia solid solution, alumina, mullite. Cordierite is preferable from the viewpoint of a small thermal expansion coefficient and excellent thermal shock resistance.
  • the inclined wall 21 and the parallel wall 22 may be formed of the same material, but can also be formed of different materials.
  • the inclined wall 21 can be formed of ceramics such as cordierite
  • the parallel wall 22 can be formed of metal. It is preferable that both the inclined wall 21 and the parallel wall 22 are made of ceramics whose main component is a cordierite crystal phase. In this case, since the difference in thermal expansion between the inclined wall 21 and the parallel wall 22 can be reduced, the occurrence of defects such as cracks can be prevented.
  • the parallel wall 22 is preferably formed of a material having a higher strength per unit thickness than the inclined wall 21. In this case, the strength improvement effect by the parallel walls 22 is further increased.
  • the strength per unit thickness can be measured and compared by, for example, three-point bending strength evaluation of two fulcrums and one load point according to JIS R1601: 2008 “Fine ceramic bending strength test method”. .
  • the exhaust gas purification catalyst 4 can be supported on the inclined wall 21 and the parallel wall 22.
  • the catalyst 4 include a three-way catalyst containing a noble metal.
  • the noble metal is preferably at least one of Pt, Rh, and Pd.
  • the catalyst 4 when the porosity of the inclined wall 21 is increased, the catalyst 4 is supported not only on the surface of the inclined wall 21 but also on the inside. Specifically, since the inclined wall 21 having a high porosity has a large number of large pores 219, the catalyst 4 can be supported on the wall surface facing the pores 219 in the inclined wall 21.
  • the pores 219 serve as exhaust gas passages that pass through the inclined wall 21. From the viewpoint of improving the PM collection rate and reducing the pressure loss, the porosity of the inclined wall 21 can be set in the range of 40 to 70%, for example.
  • the porosity of the parallel wall 22 when the porosity of the parallel wall 22 is lowered, the catalyst 4 is not supported inside the parallel wall 22 but is supported on the surface 228 facing the gas flow path.
  • the parallel wall 22 may not be able to transmit the exhaust gas. Therefore, it is not necessary to carry the catalyst 4 even inside the parallel wall 22.
  • the porosity of the inclined wall 21 can be increased to the extent that the catalyst is supported inside, and the porosity of the parallel wall 22 can be decreased to the extent that the catalyst is supported on the surface 228.
  • the porosity of the parallel wall 22 is preferably 45% or less, and more preferably 30% or less.
  • the parallel wall 22 may be a dense body. That is, the porosity of the parallel wall 22 may be zero.
  • the catalyst can be supported by a known method. For example, there is a method of immersing the filter in a liquid containing the catalyst or a precursor thereof and then baking the catalyst on the filter.
  • the filter 1 as described above is manufactured by performing an extrusion process, a parallel part forming process, and a firing process, as illustrated in FIGS.
  • the clay 20 is extruded in the direction X perpendicular to the axial direction Z.
  • an inclined structure 210 having a large number of inclined portions 211 and connecting portions 213 and 214 that connect the pair of inclined portions 211 to each other is obtained.
  • the inclined portion 211 forms the above-described inclined wall 21 after firing described later. Since the connecting portions 213 and 214 of the inclined wall 21 and the connecting portions 213 and 214 of the inclined portion 211 show substantially the same components, they are indicated by the same reference numerals in this specification.
  • the clay 20 can contain, for example, an inclined wall forming material.
  • the inclined wall forming material is a material for forming the inclined wall 21 after firing described later, and includes, for example, a cordierite raw material described later.
  • the clay 20 is manufactured as follows, for example.
  • a cordierite raw material is prepared by blending raw material powders such as silica, aluminum hydroxide, and talc so as to have a cordierite composition.
  • kaolin, alumina and the like can also be used as the cordierite raw material.
  • the cordierite raw material has a final composition after firing such as SiO 2 : 47 to 53% by mass, Al 2 O 3 : 32 to 38% by mass, and MgO: 12 to 16% by mass. The composition can be adjusted.
  • a clay-like clay 20 water and methylcellulose are added to the powdered cordierite raw material and kneaded to obtain a clay-like clay 20.
  • a thickener, a dispersant, an organic binder, a pore former, a surfactant, and the like can be added to the clay 20.
  • the clay 20 preferably contains a cordierite raw material as described above.
  • the inclined wall 21 containing cordierite having excellent thermal shock resistance can be formed. Therefore, the thermal shock resistance of the filter 1 can be improved.
  • a cordierite raw material is a raw material which produces
  • the cordierite raw material can contain, for example, Mg source, Si source, Al source and the like.
  • the clay 20 preferably contains plate-like particles 201 such as talc and kaolin.
  • the in-plane direction of the plate-like particles 201 in the inclined portion 211 can be oriented in the extrusion direction X as illustrated in FIG.
  • the in-plane direction is a direction orthogonal to the thickness direction of the plate-like particles 201. Therefore, the inclined wall 21 in which the cordierite crystal grains are oriented in the C-axis direction can be formed. As a result, thermal expansion of the inclined wall 21 in the C-axis direction is reduced, so that thermal stress can be reduced. Therefore, the thermal shock resistance of the filter 1 can be improved.
  • the plate-like particle 201 means a plate-like appearance, and is a concept including particles such as scales and flakes.
  • the extrusion direction X of the clay 12 in the extrusion molding is a direction orthogonal to the axial direction Z.
  • the extrusion direction X is the extension direction of the connecting portions 213 and 214.
  • the extension direction of the connecting portions 213 and 214 may be represented by the same reference numeral as the extrusion direction and may be denoted as the extension direction X.
  • the inclined structure 210 has a large number of inclined portions 211 and a large number of connecting portions 213 and 214, as illustrated in FIGS.
  • the inclined portion 211 extends in the axial direction Z while being inclined with respect to the axial direction Z.
  • Each inclined portion 211 has, for example, a plate shape, but may have a curved surface as in Modification 1 described later.
  • a pair of inclined portions 211 adjacent in the Y-axis direction have opposing surfaces facing each other, and the opposing surfaces are arranged in parallel in the Y-axis direction.
  • the inclination directions Ds1 and Ds2 with respect to the axial direction Z of the inclined portion 211 are alternately reversed.
  • the directions in which the inclination directions Ds1 and Ds2 are alternately reversed are such that the intersection points P 1 and P 2 of the inclination directions Ds1 and Ds2 of the pair of inclined portions 211 facing each other are alternately opposite in the Z-axis direction as illustrated in FIG.
  • the inclination directions Ds1 and Ds2 of the pair of opposing inclined portions 211 may be symmetric about the axial direction Z or may be asymmetric. Preferably, it is symmetrical. In this case, an inclined wall symmetrical with respect to the axial direction can be formed. As a result, the pressure loss can be further reduced as described above.
  • the inclination angle of the inclined portion 211 with respect to the axial direction can be appropriately adjusted according to the inclination angle of the inclined wall 21 described above.
  • the angle ⁇ 2 formed by the pair of opposing inclined portions 211 can be adjusted within a range of 0.5 to 30 °, for example. If the angle ⁇ 2 becomes too large, the axial length of the filter 1 becomes too small, so that the fluctuation of pressure loss accompanying soot deposition becomes large and drivability may be deteriorated. On the other hand, if the angle ⁇ 2 is too small, the effect of reducing pressure loss may be reduced, or the axial length of the filter 1 may be too large. From the viewpoint of reducing the size of the filter and reducing the pressure loss, the angle ⁇ 2 is preferably 0.9 to 1.5 °.
  • connection portions 213 and 214 can be formed at the end portion in the axial direction Z of the inclined structure 210. That is, the connection portions 213 and 214 can be formed by connecting the pair of inclined portions 211 at one end or the other end in the axial direction Z of the inclined structure 210.
  • the length in the axial direction Z of the other-end inclined structure 210 is equal to the length in the axial direction Z of the filter 1 unless the shrinkage after firing is taken into consideration.
  • one end and the other end of the inclined structure 210 described above correspond to the inflow end surface 11 and the outflow end surface 12 of the filter 1, respectively.
  • the inclined structure 210 illustrated in FIGS. 12 to 15 has the mountain portions M and the valley portions V alternately.
  • FIG. 14 when the cross-sectional view is rotated by 90 ° counterclockwise, for example, in the drawing, the peak M and valley V become clearer.
  • connection portions 213 and 214 are formed by the peak portions M and the valley portions V.
  • the inclined structure 210 has, for example, a bellows shape, and the cross section of the inclined structure 210 has a zigzag shape, a wave shape, or the like as illustrated in FIG.
  • the cross section of the mountain part M and the valley part V may have a corner part formed by two straight lines and their intersections, and the cross section of the mountain part and the valley part as in Modification Example 1 described later, It may be arcuate.
  • the connecting portions 213 and 214 connect a pair of opposing inclined portions 211.
  • the extending direction of the connecting portions 213 and 214 is the extrusion direction.
  • the extrusion direction is the X-axis direction in FIGS.
  • a plane body indicated by a YZ cross section of the inclined structure 210 illustrated in FIG. 14 can be extruded in the X-axis direction.
  • the X-axis direction is a direction orthogonal to the paper surface in FIG. 14 and is an extension direction of the connecting portions 213 and 214.
  • a plane body indicated by a YZ cross section of the inclined structure 210 is appropriately referred to as a YZ plane body.
  • the YZ plane body can also be called a bellows cross-section plane body, a wavy plane body, a zigzag plane body, a connected V-shaped plane body, or the like.
  • the inclined structure 210 can be obtained.
  • the inclined structure 210 can be obtained by extrusion molding by extruding the YZ plane in the X-axis direction.
  • the mass productivity of the inclined structure 210 is improved and the productivity of the filter 1 is increased.
  • extrusion molding can be performed using, for example, an extrusion molding machine 5 including a main body 51 and a mold 52.
  • the mold 52 has an extrusion hole 521 having the same shape as the YZ section of the inclined structure 210.
  • the extrusion hole 521 is also referred to as an extrusion groove, a molding groove, or a slit.
  • the extrusion hole 521 has a structure in which, for example, crest-shaped holes and valley-shaped holes are alternately connected.
  • the shape of the extrusion holes 521 is, for example, a zigzag shape or a wave shape. It is. That is, the shape of the extrusion hole 521 is the same shape as the YZ plane body (see FIG. 14) of the inclined structure 210 described above.
  • a conventional mold having a general shape that is extruded in the axial direction has a structure in which slits intersect and there is no portion in which the metal portion of the mold is connected in the radial direction.
  • the extrusion mold 52 used in this embodiment has a structure in which slits intersect and a portion where the meat portion of the mold is connected in the radial direction.
  • There is no complicated structure such as no structure. Therefore, as a structure of the mold 52, for example, it is not necessary to combine different shapes in the axial direction, and the mold 52 having a relatively simple structure configured with one cross-sectional shape can be used.
  • the clay 12 kneaded in the main body 51 is extruded from the extrusion hole 521 of the mold.
  • the above-described inclined structure 210 can be obtained. Since the inclined structure 210 is a continuous structure in which the YZ plane body extends in the X-axis direction, the inclined structure 210 can be molded by the extruder 5 by setting the X-axis direction to the extrusion direction as described above.
  • the inclined structure 210 is dried and contracted by microwave drying. Then, it can cut
  • a parallel portion forming step is performed.
  • the several parallel part 221 used as the above-mentioned parallel wall 22 is formed by baking. Thereby, the honeycomb formed body 100 having the inclined portion 211 and the parallel portion 221 as illustrated in FIG. 19A can be obtained.
  • the parallel part forming step a plurality of parallel parts 221 having a surface orthogonal to the extending direction X of the connection parts 213 and 214 can be formed.
  • the parallel part 221 can contain a parallel wall forming material described later.
  • the parallel part forming step includes a curing step and a discharging step.
  • the curing step as illustrated in FIG. 17A, in the curing step, the inclined structure 210 can be arranged so that the extending direction of the connecting portions 213 and 214 is vertical. In this case, filling of the parallel wall forming material 220 described later becomes easy. Further, during the light irradiation described later, the shape of the parallel wall forming material 220 can be maintained by its own weight, so that curing can be easily performed. Vertical is the direction of gravity.
  • the parallel wall forming material 220 is filled into the space Sp between the inclined portions 211 of the inclined structure 210.
  • the parallel wall forming material 220 is filled up to a predetermined height in the extending direction of the connecting portions 213 and 214.
  • the formation pitch of the parallel walls 22 can be adjusted by appropriately adjusting the height.
  • the parallel wall forming material 220 is a material for forming the parallel wall 22 after firing described later.
  • the parallel wall forming material 220 can contain a metal material, a ceramic material, or the like. Thereby, the parallel wall 22 which consists of a metal, ceramics, etc. can be formed.
  • the parallel wall forming material 220 contains a cordierite raw material.
  • the parallel wall 22 containing a cordierite crystal can be formed.
  • the thermal expansion difference between the inclined wall 21 and the parallel wall 22 can be reduced and the thermal shock resistance can be improved.
  • a cordierite raw material the same thing as the above-mentioned inclination part 211 can be illustrated.
  • the parallel wall forming material 220 filled between the inclined portions 211 is irradiated with light LS.
  • the light LS is, for example, laser light.
  • strength of a laser beam can be hardened.
  • the parallel portion 221 having a desired thickness can be formed.
  • the parallel part 221 can be formed as illustrated in FIG.
  • the parallel part 221 is made of a cured product of the parallel wall forming material 220.
  • the irradiation direction of the laser light LS is preferably the vertical direction. In this case, adjustment of the thickness of the parallel part 221 formed after hardening becomes easy. As a result, the parallel portion 221 having a uniform thickness can be easily formed. Irradiation with the laser beam LS can be performed, for example, from the top to the bottom in the vertical direction.
  • the thickness of the parallel part 221 can be appropriately adjusted according to the desired thickness of the parallel wall 22.
  • the thickness of the parallel portion 221 can be controlled by, for example, the composition of the parallel wall forming material, the intensity of the laser light LS, the irradiation time, and the like.
  • the parallel wall forming material 220 preferably contains a photocurable organic component.
  • the parallel wall forming material 220 can be easily cured by irradiation with the laser beam LS.
  • the photocurable organic component is, for example, a photocurable resin.
  • the content of the photocurable organic component resin in the parallel wall forming material 220 is preferably as small as possible if the parallel wall forming material 220 can be cured by laser irradiation. In this case, the strength of the filter 1 can be increased by increasing the density of the parallel walls 22.
  • the parallel part 221 is plate-shaped, for example, and has a surface parallel to the horizontal direction.
  • the parallel wall forming material 220 is further filled on the parallel portions 221 formed between the inclined portions 211.
  • the parallel wall forming material 220 is irradiated with a laser beam LS. Thereby, the parallel wall forming material 220 is cured by a predetermined thickness. In this way, the parallel part 221 is further formed between the inclined parts 211.
  • the filling of the parallel wall forming material 220 and the irradiation with the light LS are repeatedly performed. Thereby, a large number of parallel portions 221 can be formed between the inclined portions 211.
  • a removal process can be performed.
  • the uncured parallel wall forming material 220 is discharged from between the inclined portions 211 of the inclined structure 210.
  • the removal of the uncured parallel wall forming material 220 may be performed after all the parallel portions 221 are formed or after each parallel portion 221 is formed. Thereby, a large number of cells 3 surrounded by the inclined portion 211 and the parallel portion 221 are formed. In this way, the honeycomb formed body 100 can be obtained as illustrated in FIG.
  • the removal of the uncured parallel wall forming material 220 can be easily performed by tilting the honeycomb formed body 100.
  • the parallel wall forming material 220 can be easily removed from the openings of the cells 3 on the end faces 11 and 12. Further, the parallel wall forming material 220 can be removed by using air blow or the like together.
  • the properties of the parallel wall forming material 220 at the time of filling are not particularly limited, and examples thereof include powder, slurry, sol solution, and gas.
  • the parallel wall forming material 220 at the time of filling is preferably in a powder form. In this case, the parallel wall forming material 220 can be easily filled. Further, the parallel wall forming material 220 is easily cured by the laser beam. Furthermore, in this case, it becomes easy to remove the uncured parallel wall forming material 220 in the above-described removing step.
  • the average particle diameter of the parallel wall forming material 220 can be appropriately adjusted from the viewpoints of ease of filling at the time of filling, curability by light irradiation, ease of removal at the removing step, and the like. From the viewpoint of enhancing ease of filling, curability, and ease of removal, the average particle size of the parallel wall forming material 220 is preferably 1 ⁇ m to 30 ⁇ m, and more preferably 15 ⁇ m to 25 ⁇ m.
  • the average particle diameter is the median diameter d50. That is, the average particle diameter means a particle diameter at a volume integrated value of 50% in a particle size distribution obtained by a laser diffraction / scattering method.
  • FIG. 19 (a) is an XY plan view of the honeycomb formed body 100.
  • FIG. 19A is a plan view of the honeycomb formed body 100 as viewed from one connection portion 213 or 214 side.
  • straight lines extending in parallel with the X-axis direction indicate the connecting portions 213 and 214 of the inclined portion 211.
  • the thick line indicates the connection portion 213 located on the near side of the paper surface
  • the thin line indicates the connection portion 214 located on the far side of the paper surface.
  • a straight line extending in parallel with the Y axis indicates the parallel portion 221.
  • the parallel part forming step it is preferable to form the parallel part 221 so as to be orthogonal to the inclined part 211 as illustrated in FIG.
  • a filter in which the inclined wall 21 and the parallel wall 22 are orthogonal can be obtained.
  • Such a filter 1 is further improved in strength.
  • a 3D printer can be used to form the parallel portion 221.
  • the parallel wall forming material 220 containing the photocurable organic component may be used as in the present embodiment, but the parallel wall forming material 220 not containing the photocurable organic component can also be used.
  • a light source that can be absorbed by cordierite can be selected as the light source of the laser light LS.
  • Such a light source has a short wavelength and high energy.
  • the cordierite raw material generates heat by irradiation with the laser beam LS, and can be cured by at least partially sintering the cordierite raw material.
  • a femtosecond laser can be used for the irradiation with the short-wavelength laser light.
  • the honeycomb formed body 100 can be cut into a desired shape.
  • a hollow shape is indicated by a broken line.
  • the honeycomb formed body 100 can be cut out in a columnar shape.
  • the cylindrical portion 110 can be formed as illustrated in FIG. 19B by performing a cylindrical portion forming step.
  • the tubular portion 110 is a tubular portion that covers the outer periphery of the honeycomb formed body 100.
  • the cylindrical portion 110 can be formed by, for example, cementing.
  • the cylindrical portion 110 containing the outer skin forming material can be formed by applying the outer skin forming material to the outer periphery of the honeycomb formed body 100.
  • the outer skin forming material preferably contains, for example, a cordierite raw material.
  • the thermal shock resistance of the filter 1 can be further improved.
  • the honeycomb formed body 100 is fired. Thereby, the filter 1 illustrated in FIGS. 1 to 9 can be obtained.
  • the firing step it is preferable to fire the inclined portion 211 and the parallel portion 221. That is, it is preferable to perform firing by temperature control that allows the inclined portion 211 and the parallel portion 221 to be sintered.
  • firing can be performed in one step. Therefore, for example, compared with the case where the inclined portion 211 and the parallel portion 221 are sintered by different firing operations, the operation during manufacturing can be reduced.
  • the connecting portion between the inclined portion 211 and the parallel portion 221 can be fired. That is, in this case, the inclined portion 211, the parallel portion 221 and these connecting portions can be integrally fired. Therefore, the bonding strength between the inclined wall 21 and the parallel wall 22 after firing can be increased.
  • the inclined part 211 and the parallel part 221 are made of the same material, for example, cordierite having the same composition, the inclined part 211 and the parallel part 221 are simultaneously fired by firing in the above-described one step. It becomes possible.
  • the inclined portion 211 and the parallel portion 221 can be fired by different firing operations. Specifically, an inclined portion firing step of firing the inclined structure 210 after the above-described extrusion step and before the parallel portion forming step can be performed. Therefore, the inclined structure 210 used in the parallel part forming step is a concept including not only an unfired body but also a fired body. Similarly, the honeycomb formed body is a concept including not only a form having an unfired inclined part but also a form having an inclined wall after firing.
  • the joining strength of the cylindrical outer skin 10 in the filter 1 obtained after firing can be increased.
  • the filter shape, cell shape, etc. can be changed as appropriate.
  • dimensions such as the cell pitch, the thickness of the cell wall, the inclination angle of the inclined wall, and the length and width of the filter 1 can be appropriately changed.
  • the clay 20 is extruded in the direction X perpendicular to the axial direction Z as illustrated in FIG. Therefore, it is possible to continuously produce the inclined structure 210 by extrusion molding.
  • the inclined structure 210 includes a plurality of inclined portions 211 and a plurality of connecting portions 213 and 214 that connect the inclined portions 211 to each other, as illustrated in FIGS.
  • Such an inclined structure 210 can be extruded in the axial direction Z and the orthogonal direction X as described above.
  • the YZ plane body of the inclined structure 210 illustrated in FIG. 14 can be pushed out in the extending direction X of the connecting portions 213 and 214.
  • the inclined structure 210 can be continuously manufactured by extrusion as described above. Therefore, the productivity of the filter 1 obtained using the inclined structure 210 is improved.
  • the inclined portion 211 is formed by extrusion molding. Therefore, the inclined structure can be manufactured without separately considering the raw material composition, kneading conditions, pore control conditions, molding conditions, and the like of the clay 20. That is, the same manufacturing conditions as those for manufacturing filters by general extrusion molding can be applied. Therefore, it is advantageous in actual mass production.
  • the parallel wall forming material 220 and the clay 20 may be substantially the same material or different materials. That is, it is possible to manufacture not only the filter 1 made of the same material for the inclined wall 21 and the parallel wall 22 but also the filter 1 made of a different material.
  • the inclined wall 21 and the parallel wall 22 having different pore conditions such as porosity can be formed. it can.
  • the filter 1 of the present embodiment includes an inclined wall 21 and a parallel wall 22 as illustrated in FIGS. 1 to 9.
  • the inclined wall 21 is inclined with respect to the axial direction Z. Therefore, in the reduced cell 32 opened to the inflow end surface 11, the gas flow path cross-sectional area S 1 gradually decreases from the inflow end surface 11 toward the outflow end surface 12.
  • the enlarged cell 33 that opens to the outflow end surface 12 has a gas passage cross-sectional area S 2 that gradually increases, contrary to the reduced cell 32.
  • the internal pressure difference between the reduced cell 32 and the enlarged cell 33 becomes a driving force, and the exhaust gas G passes through the inclined wall 21.
  • the dense dot hatching area and the low density dot hatching area are adjacent to each other via the inclined wall 21, and the areas S 1 , S 1 , S 2 is different.
  • Such a configuration generates the above-described internal pressure difference.
  • the adjacent reduced cell 32 and enlarged cell 33 across the inclined wall 21 open to the inflow end surface 11 and the outflow end surface 12, respectively, and are adjacent cells that cause an internal pressure difference between the reduced cell 32 and the enlarged cell 33.
  • the exhaust gas G passes through the inclined wall 21, and PM in the exhaust gas G is collected on the inclined wall 21.
  • the porosity of the inclined wall 21 it is possible to increase the collection rate or prevent an increase in pressure loss.
  • the cells 3 adjacent to each other with the parallel wall 22 in between are either the reduced cells 32 or the expanded cells 33. Therefore, an internal pressure difference does not occur between the cells 3 adjacent to each other across the parallel wall 22. Therefore, the parallel wall 22 is less likely to transmit the exhaust gas than the inclined wall 21. 5 to 7, dot hatching areas having high density correspond to the relationship of the gas flow path cross-sectional areas of the reduced cells 32 adjacent to each other via the parallel wall 22. The areas of dot hatching with low density correspond to the relationship of the gas flow path cross-sectional areas of the enlarged cells 33 adjacent to each other via the parallel wall 22.
  • the parallel wall 22 since the gas permeation due to the internal pressure difference hardly occurs in the parallel wall 22, the porosity of the parallel wall 22 can be made smaller than that of the inclined wall 21. Thereby, the strength of the filter 1 can be increased. That is, the parallel wall 22 may be porous, but need not be porous, and may be a non-porous body, that is, a dense body. As described above, there is no internal pressure difference between the cells 3 sandwiching the parallel wall 22, so even if the parallel wall 22 is porous, the parallel wall 22 becomes a cell wall that is less permeable to gas than the inclined wall 21. Alternatively, the cell wall does not substantially transmit gas.
  • the strength of the filter 1 can be increased as described above. In this case, it is only necessary to ensure the strength in the Y-axis direction orthogonal to the axial direction Z, and the volume of the structure is as small as possible so that the structure formed by the parallel walls 22 does not become a gas flow resistance. Is desirable. Therefore, it is preferable that the parallel wall 22 is parallel to the axial direction Z and is orthogonal to the inclined wall 21.
  • the inclined wall 21 and the parallel wall 22 can have different functions.
  • PM can be collected in the inclined wall 21 while suppressing an increase in pressure loss, and the parallel wall 22 can have a practically sufficient strength.
  • the inclined structure 210 exemplified in FIGS. 20A and 20B is cut in the axial direction Z.
  • the inclined structure 210 is produced in the same manner as in the first embodiment.
  • the inclined structure 210 can be cut in a cross section orthogonal to the X-axis direction, that is, a YZ cross section.
  • Cutting in the axial direction Z means cutting in parallel with the axial direction Z.
  • the cutting direction of the inclined structure 210 is also a direction orthogonal to the extending direction X of the connecting portions 213 and 214.
  • the inclined structure 210 can be cut with the same width as the formation pitch of the desired parallel walls 22, for example.
  • the shape of the inclined structure piece 209 is substantially the same as that of the inclined structure 210 except that the width in the X-axis direction is small. Therefore, the inclined structure piece 209 includes the inclined portion 211 and the connecting portions 213 and 214 as in the inclined structure 210.
  • a lamination process is performed.
  • a large number of inclined structure pieces 209 and a large number of molded sheets 225 are alternately stacked.
  • the molded sheet 225 contains a parallel wall forming material. As such a molded sheet 225, a so-called green sheet can be used.
  • the molded sheet 225 is manufactured as follows, for example. First, a cordierite raw material, an organic solvent, and a butyral binder are mixed. Thereby, a slurry-like parallel wall forming material is produced. This parallel wall forming material is formed into a sheet having a predetermined thickness by, for example, a doctor blade method. In this way, a molded sheet 225 can be obtained. The thickness of the molded sheet can be adjusted as appropriate so that the parallel wall 22 having a desired thickness is formed after firing.
  • the cut surface 203 of the inclined structure piece 209 and the sheet surface 226 of the formed sheet 225 are brought into contact with each other.
  • the cut surface 203 of the inclined structure piece 209 is, for example, a zigzag or wavy YZ surface in FIG.
  • the stacking direction in the stacking process is a direction in which the extending direction of the connecting portions 213 and 214 of the inclined structure piece 209 and the thickness direction of the molded sheet 225 are parallel to each other.
  • the parallel part 221 includes a molded sheet 225.
  • the honeycomb formed body 100 is formed of a stacked body in which a large number of inclined structure body pieces 209 and a large number of formed sheets 225 are alternately stacked.
  • the stacking step it is preferable to apply an organic solvent to the contact surface between the inclined structure piece 209 and the molded sheet 225.
  • the adhesiveness between the inclined structure piece 209 and the molded sheet 225 can be improved. For this reason, it is possible to prevent the inclined wall 21 and the parallel wall 22 from being cracked or deformed.
  • the same or similar organic solvent as that used when the molded sheet 225 is produced.
  • “similar” means, for example, organic solvents that are compatible with each other.
  • the organic solvent can be applied by spraying, for example.
  • the organic solvent can be applied to the cut surface 203 of the inclined structure piece 209.
  • the filter 1 similar to the first embodiment can be obtained by performing the same operations as in the first embodiment.
  • the parallel portion 221 can be formed using the molded sheet 225 as described above.
  • This molded sheet 225 can be manufactured continuously. Therefore, not only the inclined structure 210 but also the molded sheet 225 can be manufactured continuously. Therefore, the productivity of the filter 1 can be further increased.
  • the inclined wall structure partitioned by the parallel wall 22 can be crossed in steps.
  • the inflow side connection portion 214 and the outflow side connection portion 213 of the inclined wall 21 on the inflow end surface 11 and the outflow end surface 12 are also formed in a different manner.
  • the number of contacts between the parallel wall 22 and the inflow side connection portion 214 of the inclined wall 21 increases, and thermal stress can be dispersed.
  • Other configurations and operational effects are the same as those of the first embodiment.
  • the present disclosure is not limited to the above embodiments, and can be applied to various embodiments without departing from the scope of the disclosure.
  • the manufacturing method of this indication is not limited to manufacture of these filters.
  • the connecting portions 213 and 214 that connect the inclined wall 21 extend in the X-axis direction that is orthogonal to the axial direction Z, the manufacturing method of the present disclosure can be applied.
  • the filter 1 of the present example includes the cells 3 whose outer edge shape in the XY cross section is a square as in the first embodiment.
  • a pair of opposing cell walls 2 is formed by an inclined wall 21, and the remaining pair of opposing cell walls 2 is formed by a parallel wall 22 (see FIG. 1).
  • the two inclined walls 21 facing each other as illustrated in FIG. 22 are linearly inclined in the central portion in the axial direction Z, but as illustrated in FIGS. Inclined in a curved manner toward the outflow end face 12 side.
  • the inclined wall 21 extending in the axial direction Z includes an inflow-side curved inclined area Acf that curves in a direction toward the inflow end surface 11 and an outflow side that inclines in a curve toward the outflow end surface 12. And a curved slope region Acr.
  • the pair of inclined walls 21 are connected in the outflow side curved inclined area Acr to form the outflow side connection portion 213.
  • the pair of inclined walls 21 are connected in the inflow side curved inclined area Acf to form the inflow side connection portion 214.
  • the inflow side connection portion 214 and the outflow side connection portion 213 have a curved structure.
  • the inclined wall 21 between the inflow side curved inclined area Acf and the outflow side curved inclined area Acr is linearly inclined.
  • the angle ⁇ formed between the tangential plane TP of the inclined wall 21 and the axial direction Z increases toward the both end surfaces 11 and 12 in the axial direction.
  • the angle ⁇ 1 formed between the tangential plane TP 1 and the axial direction Z satisfies the relationship ⁇ 1 ⁇ 2 .
  • the inclined wall 21 may have a curved surface, and when the inclined wall 21 is curved and curved in the YZ cross section as illustrated in FIGS. 22 and 23.
  • the variation in the flow rate of the exhaust gas passing through the inclined wall 21 can be further reduced. As shown in an experimental example described later, the variation is the smallest as compared with the filter 1 of the first embodiment and the modified example 2 described later. Therefore, it is possible to show an excellent collection rate while sufficiently reducing the pressure loss.
  • the pair of inclined walls 21 that are inclined in a curved shape are symmetrical with respect to the axial direction Z, and are connected at the inflow end surface 11.
  • the gas flow path cross-sectional area of the cell 3 increases toward the inflow end surface 11 side, and the increase amount also increases toward the inflow end surface 11 side.
  • the outflow side curved slope region Acr side it is considered that the opening area of the cell 3 at the inflow end surface 11 and the outflow end surface 12 becomes larger, and as a result, the pressure loss can be further reduced.
  • the inclination direction of the inclined wall 21 inclined in a curve means a tangential direction.
  • the fact that the inclination direction is symmetric with respect to the axial direction Z means that each tangent on the curved inclined wall 21 is symmetric, but even if not all tangents are strictly symmetric, they are substantially in appearance. As long as it is symmetrical.
  • FIG. 22 shows an example of an inclined wall that linearly slopes between the inflow side curved slope area Acf and the outflow side curved slope area Acr.
  • the linearly sloped area is not necessarily required. Absent.
  • an inflection point can be provided in the center in the axial direction of the inclined wall in the YZ section of the filter. Accordingly, it is possible to form an inclined wall in which the inflow-side curved inclined region Acf and the outflow-side curved inclined region Acr whose inclination directions are symmetric with respect to the axial direction are connected at the inflection point.
  • the filter 1 of this example is manufactured using an inclined structure having a cross-sectional structure similar to that of the inclined wall 21 illustrated in FIG. Specifically, the inclined structure can be obtained by extruding the YZ plane body of the inclined wall in FIG. 22 in the X-axis direction. Using the inclined structure obtained in this manner, the filter 1 can be manufactured in the same manner as in the first or second embodiment. Other configurations and operational effects are the same as those in the first and second embodiments.
  • the filter 1 of this example includes cells 3 whose outer edges are square.
  • a pair of opposed cell walls 2 has an inclined wall 21 inclined with respect to the axial direction Z, and the remaining pair of opposed cell walls 2 are formed by parallel walls 22 extending parallel to the axial direction Z. (See FIG. 1).
  • the pair of inclined walls 21 extending in the axial direction Z are connected to the inner side in the axial direction Z from the inflow end surface 11 or the outflow end surface 12 to form connection portions 213 and 214.
  • the filter 1 of this example illustrated in FIG. 24 will be described by paying attention to a continuous cell wall 2 including the inclined wall 21 and extending to both end faces 11 and 12 in the axial direction Z.
  • the cell wall 2 has an inclined wall 21 formed between the inflow side connection portion 214 and the outflow side connection portion 214 at the center in the axial direction Z.
  • the continuous cell wall 2 is connected to the inflow side of the inclined wall 21 and extends in parallel to the axial direction Z, and is connected to the outflow side of the inclined wall 21 and extends in the axial direction Z. It has an outflow side parallel wall 216 extending in parallel with respect to it.
  • the inclined wall 21, the inflow side parallel wall 215, and the outflow side parallel wall 216 can be formed by components having different compositions and porosity.
  • the inclined wall 21, the inflow side parallel wall 215, and the outflow side parallel wall 216 are made of the same constituent members. It is preferable to become.
  • the filter 1 of this example will be described from the viewpoint of the cell wall surrounding the reduced cell 32 and the enlarged cell 33.
  • the reduced cell 32 into which the exhaust gas G flows from the inflow end face 11 includes a pair of opposed inclined walls 21, a pair of inflow side parallel walls 215 that are connected to the inflow side of each inclined wall 21 and extend parallel to the axial direction Z.
  • Have The pair of inclined walls 21 in the reduced cell 32 are inclined so as to approach each other toward the outflow end surface 12, and are connected inside the outflow end surface 12 in the axial direction Z.
  • the pair of inclined walls 21 are directly connected, for example, to form the outflow side connection portion 213.
  • the reduced cell 32 is blocked at the outflow side connection portion 213.
  • the outflow side connection portion 213 can be formed near the outflow end surface 12 in the axial direction Z, for example.
  • An outflow side parallel wall 216 extending in parallel with the axial direction Z is formed on the outflow end surface 12 side of the outflow side connection portion 213, and the connected inclined wall 21 is formed as one cell wall.
  • the enlarged cell 33 from which the exhaust gas G is discharged from the outflow end face 12 includes a pair of opposed inclined walls 21, a pair of outflow side parallel walls 216 that are connected to the outflow side of each inclined wall 21 and extend parallel to the axial direction Z.
  • the pair of inclined walls 21 in the expansion cell 33 are inclined so as to approach each other toward the inflow end surface 11, and are connected inside the axial direction Z from the inflow end surface 11.
  • the inflow side connection portion 214 is formed by directly connecting the pair of inclined walls 21, for example.
  • the enlarged cell 33 is closed at the inflow side connection portion 214.
  • the inflow side connection portion 214 can be formed near the inflow end surface 11 in the axial direction Z, for example.
  • An inflow side parallel wall 215 extending in parallel with the axial direction Z is formed on the inflow end face 11 side of the inflow side connection portion 214, and the connected inclined wall 21 is formed as one cell wall.
  • the inclination directions of the pair of opposing inclined walls 21 can be made symmetrical with respect to the axial direction Z, for example.
  • the reduced cell 32 and the enlarged cell 33 are adjacent to each other with the common inclined wall 21 therebetween, and are formed alternately in the Y-axis direction, for example.
  • the filter 1 includes a communication region Ac in which the reduced cell 32 and the enlarged cell 33 are adjacent to each other in the Y-axis direction, for example, and a non-adjacent non-communication region Anc through the inclined wall 21.
  • the communication region Ac is a region through which the exhaust gas G passes through the inclined wall 21, and the exhaust gas G that has flowed into the reduced cell 32 passes through the inclined wall 21 in the communication region Ac and is discharged from the enlarged cell 33.
  • the reduced cells 32 are adjacent to each other via the inflow side parallel wall 215, and the enlarged cells 33 are adjacent to each other via the outflow side parallel wall 216.
  • the non-communication region Anc is a region where the exhaust gas G does not substantially pass through the cell wall.
  • the communication area Ac is formed at the center in the axial direction Z, and the non-communication area Anc is formed in each of the predetermined areas from both end faces 11 and 12 in the axial direction Z.
  • the inflow side parallel wall 215 and the outflow side parallel wall 216 have the same length, for example, and the non-communication areas Anc on the inflow end surface 11 side and the outflow end surface 12 side can also have the same length, for example.
  • the length of the inflow side parallel wall 215 and the length of the outflow side parallel wall 216 can be changed as appropriate, and the lengths of both may be the same or different.
  • the connecting portions 213 and 214 of the inclined wall 21 are formed on the outflow end surface 12 and the inflow end surface 11 as in the first embodiment. 2 (see FIG. 2), when the connecting portions 213 and 214 are formed inside the outflow end surface 12 and the inflow end surface 11 in the axial direction Z (see FIG. 24), respectively, as in this example (see FIG. 24).
  • a run-up section where gas permeation to the cell wall 2 at the outflow end face 12 does not occur can be provided. Due to the presence of this running section, inflow loss and gas concentration into the cell 3 caused by the influence of gas turbulence due to the collision with the cell wall 2 at the inflow end face 11 are suppressed. Thereby, pressure loss can be reduced.
  • the filter 1 of the present example uses an inclined structure having a cross-sectional structure similar to that of the cross-sectional body including the inclined wall 21, the inflow side parallel wall 215, and the outflow side parallel wall 216.
  • an inclined structure can be obtained by extruding a YZ plane including the inclined wall 21, the inflow side parallel wall 215, and the outflow side parallel wall 216 in the X-axis direction.
  • the filter 1 can be manufactured in the same manner as in the first or second embodiment.
  • Other configurations and operational effects are the same as those in the first and second embodiments.
  • the filter 1 of the present example includes the cells 3 whose outer edge shape in the XY cross section is a square as in the first embodiment.
  • a pair of opposing cell walls 2 are formed by inclined walls 21 inclined with respect to the axial direction Z, and the remaining pair of opposing cell walls 2 are formed by parallel walls 22 extending parallel to the axial direction Z. (See FIG. 1).
  • the pair of inclined walls 21 extending in the axial direction Z are not directly crossed but connected via a connecting member 23.
  • the reduced cell 32 is closed by an outflow side connecting member 231 provided on the outflow end surface 12, and an outflow side connecting portion 213 is formed by the outflow side connecting member 231.
  • the enlarged cell 33 is closed by an inflow side connecting member 232 provided on the inflow end surface 11, and an inflow side connecting portion 214 is formed by the inflow side connecting member 232.
  • Each inclined wall 21 is continuously and linearly inclined from the inflow end surface 11 toward the outflow end surface 12.
  • the inclined walls 21 are formed at the same cell pitch in the filters 1 having the same shape and size, compared to the case where the inclined walls 21 cross and connect at the end faces 11 and 12 as in the first embodiment (see FIG. 2).
  • the inclined wall 21 is connected to the end surfaces 11 and 12 via the connecting member 23 as in this example, the inclination angle of the inclined wall 21 is reduced.
  • the connecting member 23 has a surface orthogonal to the axial direction Z, for example. As described above, the connecting member 23 can be provided in parallel with the inflow end surfaces 11 and 12, but may be inclined if the pair of inclined walls 21 can be connected.
  • the material of the connecting member 23 can be selected as appropriate. Although not particularly limited, for example, it can be formed of cordierite similarly to the inclined wall 21 and the parallel wall 22.
  • the inclined wall 21 and the connecting member 23 are preferably made of the same constituent members in order to manufacture the inclined structure with high productivity by extrusion as in the first embodiment.
  • the inclined wall 21 extending linearly with respect to the axial direction Z can be connected by the connecting member 23 at both end faces 11 and 12.
  • the connecting member 23 since the inclination angle can be reduced, the passage distance of the exhaust gas G in the inclined wall 21 is increased. Therefore, the PM collection rate can be improved.
  • the PM in the exhaust gas G can be collected also in the connecting member 23 of the end surfaces 11 and 12. Since the inclined wall 21 is provided, the formation area of the connecting member 23 on the end faces 11 and 12 of each cell 3 does not have the inclined wall 21 and extends parallel to the axial direction Z as in Comparative Example 1 described later, for example. This is smaller than the formation area of the connecting member 23 in the filter having cell walls. Therefore, pressure loss can be reduced.
  • the formation area of the connecting member 23 is an area of the connecting member 23 on the end faces 11 and 12 of the filter 1.
  • the filter 1 of this example is manufactured using an inclined structure having a cross-sectional structure similar to that of the cross-sectional body including the inclined wall 21 and the connecting member 23 in the cross-sectional view illustrated in FIG.
  • an inclined structure can be obtained by extruding a YZ plane body composed of the inclined wall 21 and the connecting member 23 in FIG. 25 in the X-axis direction.
  • the filter 1 can be manufactured in the same manner as in the first or second embodiment.
  • Other configurations and operational effects are the same as those in the first and second embodiments.
  • the parallel wall 22 is formed up to both end faces 11 and 12 in the axial direction Z.
  • the parallel wall 22 does not reach both end faces 11, 12 in the axial direction Z, and the parallel wall 22
  • the end portion 222 is inside the axial direction Z with respect to the end surfaces 11 and 12.
  • the filter 1 of the present example includes the cells 3 whose outer edge shape in the XY cross section is a square as in the first embodiment.
  • a pair of opposing cell walls 2 are formed by inclined walls 21 extending in an inclined manner with respect to the axial direction Z.
  • the pair of inclined walls 21 are formed up to the inflow end surface 11 or the outflow end surface 12.
  • the remaining two cell walls 2 facing each other are formed by parallel walls 22 extending parallel to the axial direction Z.
  • the pair of parallel walls 22 does not reach the inflow end surface 11 or the outflow end surface 12, and the end 222 of the parallel wall 22 is , They are inside the axial direction Z from the end faces 11 and 12 respectively.
  • the parallel wall 22 is formed in a predetermined range At in the axial direction Z of the filter 1.
  • the formation region At of the parallel wall 22 is inside the both end surfaces 11 and 12.
  • a non-formation area Ant of the parallel wall 22 is formed in a predetermined area inside the both end faces 11 and 12 of the filter 1.
  • a parallel wall is not formed in the non-forming region Ant.
  • each cell 3 is surrounded by the pair of inclined walls 21 and the pair of parallel walls 22 in the above-described formation region At, but is not sandwiched between the pair of parallel walls 22 in the above-mentioned non-formation region Ant. It is sandwiched and partitioned by a pair of inclined walls 21. Further, on both end faces 11 and 12 of the filter 1, enlarged cell openings 35 that are sandwiched between the pair of inclined walls 21 and do not have the parallel walls 22 are formed.
  • the pressure loss can be further reduced.
  • the enlarged cell opening 35 is formed in the inflow end surface 11, the opening area in the inflow end surface 11 into which exhaust gas flows becomes larger, and thus the effect of reducing the pressure loss becomes more remarkable.
  • the length in the axial direction Z of the formation region At and the non-formation region Ant of the parallel wall 22 can be changed as appropriate.
  • the parallel wall 22 composed of the parallel walls 22 can improve the filter strength as described above, and in order to sufficiently obtain this strength improvement effect, the length of the formation region At of the parallel wall 22 is the axis of the filter.
  • the total length in the direction Z is preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more.
  • the length of the non-forming region Ant in the axial direction Z is preferably 1% or more of the total length in the axial direction Z of the filter. It is more preferably 3% or more, and further preferably 5% or more. In the case where the non-forming regions Ant are formed at both ends in the axial direction Z, the lengths of the non-forming regions Ant in the axial direction Z are the respective lengths.
  • the non-formation region Ant of the parallel wall 22 and the enlarged cell opening 35 formed thereby may be formed on both end surfaces 11 and 12 in the axial direction Z, but may be formed on one end surface. . From the viewpoint that the pressure loss of the inflow end surface 11 can be further reduced as described above, it is preferable that the non-formation region Ant of the parallel wall 22 and the enlarged cell opening 35 are formed at least on the inflow end surface 11.
  • the filter 1 of the present example can be manufactured in the same manner as in the first embodiment in the above-described curing process, for example, by limiting the laser light irradiation range to the formation region At of the parallel wall 22. Further, in the above-described laminating step, the length in the Z-axis direction of the molded sheet is shorter than that in the first embodiment, and the same as in the second embodiment except that the molded sheet is stacked in the formation region At of the parallel wall 22. Can be manufactured. In this case, the area
  • the cross section of the inclined wall 21 is a region extending in parallel with the X-axis direction, and is a region indicated by fine hatching. This region is the cross-sectional area S a of the inclined wall 21. That is, in any cross section in the axial direction and orthogonal direction of the filter 1, the sum of the cross-sectional area of the inclined wall 21 is S a.
  • the cross section of the parallel wall 22 is a region extending in parallel with the Y-axis direction, and is a region indicated by rough hatching. This region is the cross-sectional area S 2 of the parallel wall 22. That is, in any cross section in the axial direction and orthogonal direction of the filter 1, the sum of the cross-sectional area of the parallel walls 22 is S b.
  • the relationship of S a > S b is satisfied in the cross section of the filter 1 in the direction orthogonal to the axial direction at an arbitrary position in the axial direction.
  • the occupied volume of the parallel wall 22 in the filter 1 can be reduced. Therefore, the obstruction of the gas flow by the parallel wall 22 that is difficult to permeate the gas can be alleviated. Thereby, the pressure loss can be further reduced.
  • PM in the exhaust gas G is collected by the inclined wall 21, even if the occupation area of the parallel wall 22 is relatively reduced as described above, it is possible to prevent the collection rate from being lowered. That is, the pressure loss can be reduced while preventing the collection rate from decreasing.
  • FIG. 29 is a front view of the end faces 11 and 12 of the filter 1.
  • the thick lines indicate the connection portions 214 and 213 in the front direction in the direction orthogonal to the paper surface
  • the thin lines indicate the connection portions 213 and 214 in the back direction in the direction orthogonal to the paper surface.
  • the positions of the thick line and the thin line extending in parallel to the X-axis direction are shifted by a half pitch, but the figures are substantially equivalent.
  • the filter 1 illustrated in FIG. 29 has the cells 3 whose outer edge shape of the XY cross section is a square as in the first embodiment.
  • a pair of opposing cell walls 2 are formed by inclined walls 21 extending in an inclined manner with respect to the axial direction Z.
  • the remaining two cell walls 2 facing each other are formed by parallel walls 22 extending parallel to the axial direction Z.
  • the inclined wall 21 and the parallel wall 22 are orthogonal to each other, for example.
  • the cell 3 surrounded by the inclined wall 21 and the parallel wall 22 has a rectangular outer edge shape on the end surfaces 11 and 12.
  • the number of parallel walls 22 that linearly divide the inside of the cylindrical outer skin 10 on the end faces 11 and 12 is smaller than the number of inclined walls 21.
  • the shape of the opening of the cell 3 in the inflow end surface 11 and the outflow end surface 12 is rectangular as illustrated in FIG.
  • the relationship of S a > S b can be satisfied. Therefore, the occupied volume of the parallel wall 22 in the filter 1 can be reduced, and the obstruction of the gas flow by the parallel wall 22 can be reduced. Therefore, the pressure loss can be reduced. In this case, for example, the opening area of the cell 3 on the inflow end face 11 can be increased. From this viewpoint, the pressure loss can be further reduced. Moreover, the number of the parallel walls 22 can be adjusted within a range in which a desired strength can be maintained.
  • the thickness T 2 of the parallel wall 22 is made larger than the thickness T 1 of the inclined wall 21.
  • the relationship of T 1 ⁇ T 2 may be satisfied.
  • the volume occupied by the parallel walls 22 in the filter 1 can be reduced. As a result, the pressure loss can be further reduced.
  • the parallel wall 22 is formed of a material having a higher strength per unit thickness than the inclined wall 21. In this case, since the strength of the parallel wall 22 itself is improved, even if the number of the parallel walls 22 is reduced, the strength reduction is further prevented. Therefore, the pressure loss can be improved while further preventing the strength from being lowered.
  • the filling height of the parallel wall forming material into the space between the inclined portions is made larger than that in the first embodiment, for example, in the above-described curing process, and the others are the same as in the first embodiment.
  • the filter 1 can be manufactured in the same manner as in the second embodiment except that the inclined structure piece 209 has a larger width than that in the first embodiment in the above-described cutting step.
  • the thickness of the parallel wall can be adjusted, for example, by changing the laser beam transmission intensity in the curing step or changing the thickness of the molded sheet.
  • other configurations and operational effects are the same as those in the first and second embodiments.
  • the filter 9 of this example does not have an inclined wall that extends while being inclined in the axial direction Z.
  • the filter 9 includes a cylindrical outer skin 90, a cell wall 91 that partitions the inner skin, and a cell 92 that is surrounded by the cell wall 91 and forms a gas flow path extending in the axial direction Z of the cylindrical outer skin.
  • Each cell 92 is surrounded by four cell walls 91, has two sets of opposing cell walls 91, and each cell wall 91 is orthogonal.
  • the shape of the cell 92 in the cross section orthogonal to the axial direction Z is a quadrangle, more specifically, a square.
  • any one of both end faces 93 and 94 in the axial direction Z of each cell 92 is blocked by a blocking member 95 that does not transmit gas.
  • the cell 92 in which the closing member 95 is provided on the outflow end surface 94 is open to the inflow end surface 93 and becomes an inflow cell 921 into which exhaust gas flows.
  • the cell 92 in which the closing member 95 is provided on the inflow end surface 93 is open to the outflow end surface 94 and becomes an outflow cell 922 from which exhaust gas flows out.
  • the inflow cell 921 and the outflow cell 922 are alternately close to each other. Two adjacent inflow cells 921 and outflow cells 922 share one cell wall 91.
  • the exhaust gas flowing into the inflow cell 921 passes through the cell wall 91 shared with the inflow cell 921 and reaches the outflow cell 922.
  • the exhaust gas G is discharged from the outflow end surface 94 through the outflow cell 922.
  • the cell walls 91 extend parallel to the axial direction Z, and the cells 92 surrounded by the cell walls 91 are alternately closed at the end faces 93 and 94 as described above. Therefore, in the inflow end face 93, half of all the cells 92 are opened, but the other half is closed by the closing member 95. Therefore, the pressure loss at the inflow end face 93 is larger than that of the filter of the first embodiment and the first to fifth modifications. Also on the outflow end surface 94, half of the cells 92 are open and the other half are closed.
  • the magnitude of the flow velocity of the exhaust gas G passing through the cell wall 91 is represented by the length of the arrow that crosses the cell wall 91.
  • the flow rate of the exhaust gas G passing through the cell wall 91 is referred to as a wall permeation flow rate.
  • the wall permeation speed increases as it approaches the inflow end face 93 and the outflow end face 94 provided with the closing member 95, and the wall permeation flow speed is small at the center in the axial direction Z of the filter 9. Become.
  • the variation in the wall permeation flow rate increases and the pressure loss increases.
  • the wall permeation flow rates of three types of filters having inclined walls formed in the same pattern as in the first embodiment, the first modification, and the second modification are measured by simulation and compared with the first comparative example.
  • the sample E1 corresponds to the filter of the first embodiment, the inclined wall 21 is linearly and continuously inclined from the inflow end surface 11 to the outflow end surface 12, and the opposing inclined walls 21 are in one of the both end surfaces 11 and 12.
  • the filter 1 is directly connected (see FIGS. 1 to 9).
  • the actual shape and size of the sample E1 used for measuring the wall permeation flow velocity are as follows.
  • the filter 1 of the sample E1 has a cylindrical shape, the diameter ⁇ is 118.4 mm, and the length in the axial direction Z is 118.4 mm.
  • the thickness of the cell walls 2, i.e., the thickness T 2 of the thickness T 1 and parallel walls 22 of the inclined wall 21 are both 0.203 mm (see FIG. 9, FIG. 3).
  • the thickness T 3 in the Y-axis direction of the connecting portions 213 and 214 of the inclined wall 21 is 0.444 mm, and the width W 1 in the axial direction Z of the connecting portions 213 and 214 is 0.200 mm (see FIG. 9).
  • the inclination angle ⁇ of the inclined wall 21, that is, the angle ⁇ formed between the inclined wall 21 and the axial direction Z is 0.97 ° (see FIG. 9).
  • the outer edge shape of the cell 3 on the end faces 11 and 12 is a square, and the length L 1 of one side of the outer edge is 1.576 mm (see FIG. 4).
  • Sample E2 corresponds to the filter of the first modification, and is the filter 1 in which the inclined wall 21 is curvedly inclined to both end faces 11 and 12 in the axial direction Z and has connection portions 213 and 214 having a curved structure.
  • FIG. 32 shows an actual formation pattern of the inclined wall 21 in the sample E2 used for measuring the wall permeation flow velocity.
  • the horizontal axis indicates the length in the axial direction Z of the filter from the inflow end surface 11 to the outflow end surface 12.
  • the vertical axis is the width in the radial direction, and more specifically indicates the distance in the Y-axis direction from, for example, an arbitrary inflow side connecting portion 214 located at the center.
  • the thickness of the connection parts 213 and 214 is small, the thickness of the connection parts 213 and 214 can be changed arbitrarily. Other shapes and dimensions are the same as those of the sample E1.
  • Sample E3 corresponds to the filter of the second modification, and is the filter 1 in which the inclined wall 21 is connected and closed inside the end surfaces 11 and 12 in the axial direction (see FIG. 24).
  • Each dimension in the sample E3 used for the measurement of the wall permeation flow velocity is as follows.
  • the distance in the axial direction Z between the inflow side connection portion 214 and the outflow side connection portion 213, that is, the length in the axial direction of the region where the inclined wall 21 is formed is 108.4 mm.
  • the length and the length of the outflow side parallel wall 216 are both 5.0 mm.
  • the angle between the inclined wall 21 and the axial direction Z, that is, the inclination angle is 1.06 °.
  • Other shapes and dimensions are the same as those of the sample E1.
  • Sample C1 corresponds to the filter of Comparative Example 1, and is a filter 9 in which all cell walls extend in the axial direction and each cell is alternately closed by a closing member at both ends (see FIGS. 30 and 31). .
  • Each dimension in the sample C1 used for the measurement of the wall permeation flow velocity is the same as that of the sample E1 except that there is no inclined wall.
  • the dimensions of the samples E1 to E3 are representative examples, and the dimensions of the filter 1 are not limited to these and can be changed as appropriate.
  • the relationship between the axial distance from the inflow end face in the filter of each sample and the wall permeation flow velocity was obtained by simulation.
  • the measurement conditions for the simulation are as follows. Gas flow rate: 32 m 3 / min, temperature: 900 ° C., upstream pressure: 60 kPa. The result is shown in FIG.
  • the filter 9 closed by this increases the variation in the wall permeation flow velocity (see FIGS. 30 and 31). Specifically, the wall permeation flow velocity increases as it approaches the inflow end surface 93 and the outflow end surface 94, and is maximized at each end surface 93, 94. On the other hand, it becomes minimum at the center in the axial direction Z. In the sample C1, the minimum value and the maximum value of the wall permeation flow rate are large, and the variation in the wall permeation flow rate is large. Therefore, the pressure loss increases.
  • the variation in the wall permeation flow velocity is small and the pressure loss is small as compared with the sample C1 described above.
  • the variation in the wall permeation flow velocity decreases in the order of the sample E3, the sample E1, and the sample E2.
  • the filter 1 of the sample E3 in which the inclined wall 21 is connected and closed inside the end surfaces 11 and 12 in the axial direction Z is the sample E1 in which the inclined wall 21 is closed at the end surfaces 11 and 12.
  • the opening area of the inflow end face 11 is increased as described above. Therefore, as shown in FIG. 33, the sample E3 has a smaller wall permeation flow rate on the inflow end face 11 side.
  • the wall permeation flow velocity at the center in the axial direction Z is larger in the sample E3.
  • the variation in the wall permeation flow velocity is smaller in the sample E1 than in the sample E3.
  • the wall permeation flow rate is constant, and there is substantially no variation.
  • the pressure loss can be reduced most among the samples E1 to E3.
  • the configurations of the inclined wall, the connecting portion, and the parallel wall in the filters of Embodiment 1 and Modifications 1 to 5 described above can be combined as appropriate.
  • the first and second modifications may be combined to form the inclined wall connecting portions 214 and 213 inclined in a curved shape on the inner side in the axial direction.
  • the modification 1 and the modification 3 are combined, and a pair of inclined walls inclined in a curved shape can be connected via a connecting member at the connection portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

The present invention produces a porous honeycomb filter by performing an extrusion step, a parallel section forming step, and a firing step. In the extrusion step, clay (20) is extrusion-molded in a direction (X) orthogonal to the axial direction (Z). As a result, an inclined structure (210) is obtained that has: a plurality of inclined sections (211) that have alternately reversed directions of inclination relative to the axial direction (Z); and a plurality of connected sections (213, 214) that connect inclined sections to each other and extend in the extrusion direction. In the parallel section forming step, a plurality of parallel sections that become parallel walls as a result of firing are additionally formed on the inclined sections (211). As a result, a honeycomb molded body is obtained that has inclined sections (211) and parallel sections. The honeycomb molded body is fired in the firing step.

Description

多孔質ハニカムフィルタの製造方法Method for manufacturing porous honeycomb filter 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年12月27日に出願された日本の特許出願番号2016-253335号に基づくものであり、その記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-253335 filed on Dec. 27, 2016, the contents of which are incorporated herein by reference.
 本開示は、傾斜壁と平行壁とを有する多孔質ハニカムフィルタの製造方法に関する。 The present disclosure relates to a method for manufacturing a porous honeycomb filter having inclined walls and parallel walls.
 内燃機関の排気管には、排ガスに含まれる粒子状物質(Particulate Matter:PM)を捕集する排ガス浄化装置が設けられている。この排ガス浄化装置は、排ガスに含まれるPMを捕集するための多孔質ハニカムフィルタを備えている。 The exhaust pipe of the internal combustion engine is provided with an exhaust gas purification device that collects particulate matter (PM) contained in the exhaust gas. This exhaust gas purification device includes a porous honeycomb filter for collecting PM contained in exhaust gas.
 多孔質ハニカムフィルタは、多孔質のセル壁に囲まれて軸方向に伸びるガス流路を形成する多数のセルを有する。このようなセル構造は、未焼成の坏土を軸方向に押出成形することにより形成される。 The porous honeycomb filter has a large number of cells forming a gas flow path extending in the axial direction surrounded by a porous cell wall. Such a cell structure is formed by extruding unfired clay in the axial direction.
 多孔質ハニカムフィルタの多数のセルのうち、一部のセルは流入端面において栓部によって閉塞され、残りのセルは流出端面において栓部によって閉塞される。このような構成の多孔質ハニカムフィルタにおいては、排ガスは、流入端面が開口したセルから流入し、セル壁内を通過した後に、流出端面が開口したセルから排出される。排ガス中のPMは、セル壁を通過する際に捕集される。 Among the many cells of the porous honeycomb filter, some cells are blocked by plugs at the inflow end face, and the remaining cells are blocked by plugs at the outflow end face. In the porous honeycomb filter having such a configuration, the exhaust gas flows in from the cell with the inflow end face opened, passes through the cell wall, and is discharged from the cell with the outflow end face opened. PM in the exhaust gas is collected when passing through the cell wall.
 ところが、上記多孔質ハニカムフィルタにおいては、流入端面における通路面積が栓部によって半減するため、圧力損失が増大しやすい。そこで、例えば特許文献1には、格子状で各々の端面に続く内側の対向する2側面が奥側ほど狭くなる三角形状で、それぞれ反対側端面近傍まで伸びる複数の通路を有する排ガス浄化装置が提案されている。 However, in the porous honeycomb filter, the passage area at the inflow end face is halved by the plug portion, so that the pressure loss tends to increase. Therefore, for example, Patent Document 1 proposes an exhaust gas purifying apparatus having a plurality of passages that are in a lattice shape and have two triangular sides that are narrower toward the back side, and two inner side surfaces that follow each end surface and extend to the vicinity of the opposite end surfaces. Has been.
特開2002-317618号公報JP 2002-317618 A
 上述のように例えば三角形状に伸びる通路を有する多孔質ハニカムフィルタは、セル壁として、軸方向に対して傾斜した傾斜壁を有し、傾斜壁同士が近づくことにより通路が収束する。言い換えると軸方向に直行する断面のセル形状が、軸方向に対して連続、もしくは断続的に変化する。一方、従来の一般的なハニカムフィルタでは、軸方向と直交する断面のセル形状は軸方向に対して、別に形成される栓部分を除き、連続的に同一平面であり、軸方向に対して連続的に同一形状をなす押出成形にて成形される。本願で所望する、軸方向に対して傾斜した傾斜壁を有する多孔質ハニカムフィルタは、従来用いられている押出成形では傾斜壁を軸方向に連続的に成形することができない。 As described above, a porous honeycomb filter having a passage extending in a triangular shape, for example, has an inclined wall inclined with respect to the axial direction as a cell wall, and the passage converges when the inclined walls approach each other. In other words, the cell shape of the cross section orthogonal to the axial direction changes continuously or intermittently with respect to the axial direction. On the other hand, in the conventional general honeycomb filter, the cell shape of the cross section orthogonal to the axial direction is continuously the same plane with respect to the axial direction except for a plug portion formed separately, and is continuous with respect to the axial direction. Are formed by extrusion molding having the same shape. The porous honeycomb filter having an inclined wall inclined with respect to the axial direction, which is desired in the present application, cannot be continuously formed in the axial direction by the extrusion molding conventionally used.
 したがって、三角形状に伸びる通路及びこれを形成する傾斜壁は、例えば特許文献1のように、焼成前の材料塊にくさび形状部材を押し込んだ後引き抜くことにより形成される。しかしながら、くさび形状部材の押し込み及び引き抜きは、1つの材料塊に対して行われる。材料塊の形状変化により形状が形成されるため、1つのハニカムフィルタを構成するセル壁を同時に形成する必要がある。しかし、一般的なハニカムフィルタで必要とされるセルピッチと基材長さと類似の形状とするためには、くさび形状部材の噛み合わせ面積が大きすぎるため、引き抜き時の金型からの離形性が悪く、短時間での連続的な製造対応が困難である。そのため、押出成形による連続的なセル壁の形成方法に比べて、傾斜壁を有する多孔質ハニカムフィルタは、生産性において大きく不利になるという問題がある。また、くさび形状部材の押し込み及び引き抜きによって形成されるセル壁は、一般的な押出成形によって形成されるセル壁に比べて、セル壁を構成する結晶粒の配向や気孔状態が変化するおそれがある。そのため、押出成形によって蓄積された製造条件を採用できず、原料条件、混練条件、気孔制御条件等の検討が別途必要になる。 Therefore, the passage extending in a triangular shape and the inclined wall forming the triangular passage are formed, for example, by pushing a wedge-shaped member into a material mass before firing and then pulling it out as disclosed in Patent Document 1. However, the pushing and pulling of the wedge-shaped member is performed on one mass of material. Since the shape is formed by the shape change of the material block, it is necessary to simultaneously form the cell walls constituting one honeycomb filter. However, in order to obtain a shape similar to the cell pitch and substrate length required for a general honeycomb filter, the meshing area of the wedge-shaped member is too large, so that the releasability from the mold at the time of drawing is not possible. It is bad and it is difficult to cope with continuous production in a short time. Therefore, the porous honeycomb filter having an inclined wall has a problem in that it is greatly disadvantageous in productivity as compared with a continuous cell wall forming method by extrusion molding. In addition, the cell wall formed by pushing and pulling out the wedge-shaped member may change the orientation of crystal grains and the pore state of the cell wall as compared with the cell wall formed by general extrusion molding. . For this reason, manufacturing conditions accumulated by extrusion cannot be adopted, and it is necessary to separately examine raw material conditions, kneading conditions, pore control conditions, and the like.
 本開示は、傾斜壁を有する多孔質ハニカムフィルタを生産性良く製造することができる製造方法を提供することを目的とする。 The present disclosure aims to provide a manufacturing method capable of manufacturing a porous honeycomb filter having an inclined wall with high productivity.
 本開示の一態様は、筒状外皮と、上記筒状外皮の軸方向に対して傾斜する傾斜壁と、上記軸方向に対して平行な平行壁と、上記筒状外皮の内側において上記傾斜壁及び上記平行壁に囲まれて上記軸方向に伸びるガス流路を形成するセルと、を有する多孔質ハニカムフィルタの製造方法において、
 坏土を上記軸方向と直交方向に押出成形することにより、上記軸方向に対する傾斜方向が交互に逆となる複数の傾斜部と、上記傾斜部同士を接続すると共に押出方向に伸びる複数の接続部とを有する傾斜構造体を得る押出工程と、
 焼成により上記平行壁となる複数の平行部を上記傾斜部に対して追加形成することにより、上記傾斜部と上記平行部とを有するハニカム成形体を得る平行部形成工程と、
 上記ハニカム成形体を焼成する焼成工程と、を有する多孔質ハニカムフィルタの製造方法にある。
One aspect of the present disclosure includes a cylindrical outer skin, an inclined wall inclined with respect to the axial direction of the cylindrical outer skin, a parallel wall parallel to the axial direction, and the inclined wall inside the cylindrical outer skin. And a cell forming a gas flow path extending in the axial direction surrounded by the parallel walls, and a method for manufacturing a porous honeycomb filter,
By extruding the clay in a direction orthogonal to the axial direction, a plurality of inclined portions whose inclination directions with respect to the axial direction are alternately reversed, and a plurality of connecting portions that connect the inclined portions to each other and extend in the extrusion direction. An extrusion process for obtaining an inclined structure having:
A parallel part forming step of obtaining a honeycomb formed body having the inclined part and the parallel part by additionally forming a plurality of parallel parts that become the parallel walls by firing with respect to the inclined part;
And a firing step of firing the honeycomb formed body.
 上記製造方法は、筒状外皮の軸方向ではなく、軸方向と直交方向に坏土を押し出す押出工程を有している。そのため、押出成形により傾斜構造体を連続的に生産することができる。これは、傾斜構造体が複数の傾斜部と、傾斜部同士を接続する複数の接続部とを有するためである。このような傾斜構造体は、上記のごとく軸方向と直交方向に押出成形を行うことが可能である。すなわち、傾斜構造体の軸方向に直交する断面からなる平面体を接続部の伸長方向に押し出すことができる。その結果、上述のように押出成形による傾斜構造体の連続的な製造が可能になり、傾斜構造体を用いて得られる多孔質ハニカムフィルタの生産性が良好になる。以下、多孔質ハニカムフィルタのことを適宜「フィルタ」という。 The above manufacturing method has an extruding step of extruding the clay in the direction orthogonal to the axial direction instead of the axial direction of the cylindrical outer shell. Therefore, the inclined structure can be continuously produced by extrusion. This is because the inclined structure has a plurality of inclined portions and a plurality of connecting portions that connect the inclined portions. Such an inclined structure can be extruded in the direction orthogonal to the axial direction as described above. That is, it is possible to push out a planar body having a cross section perpendicular to the axial direction of the inclined structure body in the extending direction of the connecting portion. As a result, it becomes possible to continuously manufacture the inclined structure by extrusion as described above, and the productivity of the porous honeycomb filter obtained using the inclined structure is improved. Hereinafter, the porous honeycomb filter is appropriately referred to as “filter”.
 また、押出工程においては、押出成形により傾斜部を形成している。そのため、坏土の原料条件、混練条件、気孔制御条件、成形条件などを別途検討することなく、傾斜構造体を製造することができる。すなわち、一般的な押出成形によるフィルタの製造と同様の製造条件を適用することが可能になる。 Also, in the extrusion process, the inclined portion is formed by extrusion molding. Therefore, the inclined structure can be produced without separately considering the raw material conditions, kneading conditions, pore control conditions, molding conditions, and the like of the clay. That is, it is possible to apply the same manufacturing conditions as those for manufacturing filters by general extrusion molding.
 上記平行部形成工程においては、焼成により平行壁となる複数の平行部を形成する。これにより、平行部と傾斜部とを有するハニカム成形体を得ることができる。平行部は、実質的に傾斜構造体と同じ材料で形成することもできるし、異なる材料で形成することもできる。そのため、上記製造方法においては、傾斜壁と平行壁とが同じ材質からなるフィルタだけでなく、異なる材質からなるフィルタを製造することが可能になる。また、気孔率などの気孔条件が相互に異なる傾斜壁と平行壁とを形成することも可能になる。 In the parallel part forming step, a plurality of parallel parts that become parallel walls are formed by firing. Thereby, a honeycomb formed body having a parallel part and an inclined part can be obtained. The parallel part can be formed of substantially the same material as that of the inclined structure, or can be formed of a different material. Therefore, in the manufacturing method described above, it is possible to manufacture not only filters in which the inclined wall and the parallel wall are made of the same material but also filters made of different materials. It is also possible to form inclined walls and parallel walls having different pore conditions such as porosity.
 以上のごとく、上記態様によれば、傾斜壁を有するフィルタを生産性良く製造できる方法を提供することができる。 As mentioned above, according to the said aspect, the method which can manufacture the filter which has an inclined wall with sufficient productivity can be provided.
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1の多孔質ハニカムフィルタの斜視図であり、 図2は、実施形態1の多孔質ハニカムフィルタのYZ断面の部分拡大図であり、 図3は、実施形態1の多孔質ハニカムフィルタのXZ断面の部分拡大図であり、 図4は、実施形態1の多孔質ハニカムフィルタの流入端面の部分拡大図であり、 図5は、実施形態1の多孔質ハニカムフィルタの流入端面寄りの位置におけるXY断面の部分拡大図であり、 図6は、実施形態1の多孔質ハニカムフィルタの軸方向の中央位置におけるXY断面の部分拡大図であり、 図7は、実施形態1の多孔質ハニカムフィルタの流出端面寄りの位置におけるXY断面の部分拡大図であり、 図8は、実施形態1の多孔質ハニカムフィルタの流出端面の部分拡大図であり、 図9は、実施形態1における傾斜壁の接続部の部分断面拡大図であり、 図10は、実施形態1における傾斜壁の拡大断面図であり、 図11は、実施形態1における平行壁の拡大断面図であり、 図12は、実施形態1における、坏土から傾斜構造体を得る押出工程の説明図であり、 図13は、実施形態1における、金型から傾斜構造体を押し出す押出工程の説明図であり、 図14は、実施形態1における傾斜構造体のYZ断面の部分拡大図であり、 図15は、実施形態1における傾斜構造体のXY平面の部分拡大図であり、 図16(a)は、実施形態1における坏土の部分拡大断面図であり、図16(b)は実施形態1における傾斜部の部分断面拡大図であり、 図17(a)は、実施形態1における、傾斜部間の空間内に平行壁形成材料を充填した傾斜構造体の部分斜視図であり、図17(b)は、実施形態1における、傾斜壁間の空間内に充填された平行壁形成材料を部分的に硬化させて平行部を形成した傾斜構造体の部分斜視図であり、 図18は、実施形態1における、平行壁形成材料を硬化してなる平行部を複数形成した傾斜構造体の部分斜視図であり、 図19(a)は、実施形態1におけるハニカム成形体のXY平面図であり、図19(b)は、実施形態1における筒状部を有する円柱状のハニカム成形体のXY平面図であり、 図20(a)は、実施形態2における傾斜構造体の斜視図であり、図20(b)は、実施形態2における傾斜構造体片の斜視図であり、 図21(a)は、実施形態2における傾斜構造体片と成形シートとを交互に積層する積層工程の説明図であり、図21(b)は、実施形態2における、傾斜構造体片と平行部との積層体からなるハニカム成形体のXY平面の部分拡大図であり、 図22は、変形例1の多孔質ハニカムフィルタのYZ平面断面図であり、 図23は、変形例1における曲線状に傾斜する傾斜壁の接続部の部分断面拡大図であり、 図24は、変形例2の多孔質ハニカムフィルタのYZ平面断面図であり、 図25は、変形例3の多孔質ハニカムフィルタのYZ平面断面図であり、 図26は、変形例3における傾斜壁の接続部の部分断面拡大図であり、 図27は、変形例4の多孔質ハニカムフィルタにおける端面の拡大図であり、 図28(a)は、変形例4の多孔質ハニカムフィルタにおけるYZ平面断面図であり、図28(b)は、変形例4の多孔質ハニカムフィルタにおけるXZ平面断面図であり、 図29は、変形例5の多孔質ハニカムフィルタの端面における正面図であり、 図30は、比較例1の多孔質ハニカムフィルタの斜視図であり、 図31は、比較例1の多孔質ハニカムフィルタの軸方向と平行な面での断面図であり、 図32は、実験例における、試料E2の多孔質ハニカムフィルタにおける傾斜壁の断面を示す説明図であり、 図33は、実験例における、各多孔質ハニカムフィルタの流入端面から軸方向における距離と壁透過流速との関係を示す図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a perspective view of a porous honeycomb filter of Embodiment 1. FIG. 2 is a partially enlarged view of the YZ cross section of the porous honeycomb filter of Embodiment 1. FIG. 3 is a partially enlarged view of the XZ cross section of the porous honeycomb filter of Embodiment 1. FIG. 4 is a partially enlarged view of the inflow end surface of the porous honeycomb filter of Embodiment 1. FIG. 5 is a partially enlarged view of the XY cross section at a position near the inflow end face of the porous honeycomb filter of Embodiment 1. FIG. 6 is a partially enlarged view of the XY cross section at the axial center position of the porous honeycomb filter of the first embodiment. FIG. 7 is a partially enlarged view of the XY cross section at a position near the outflow end face of the porous honeycomb filter of the first embodiment. FIG. 8 is a partially enlarged view of the outflow end surface of the porous honeycomb filter of Embodiment 1. FIG. 9 is a partial cross-sectional enlarged view of the connecting portion of the inclined wall according to the first embodiment. FIG. 10 is an enlarged cross-sectional view of the inclined wall according to the first embodiment. FIG. 11 is an enlarged cross-sectional view of a parallel wall in the first embodiment, FIG. 12 is an explanatory diagram of an extrusion process for obtaining an inclined structure from the clay in Embodiment 1. FIG. 13 is an explanatory diagram of an extrusion process for extruding an inclined structure from a mold in Embodiment 1. FIG. 14 is a partially enlarged view of the YZ cross section of the inclined structure according to the first embodiment. FIG. 15 is a partially enlarged view of the inclined structure in the XY plane according to the first embodiment. 16 (a) is a partially enlarged sectional view of the clay in the first embodiment, FIG. 16 (b) is a partially enlarged sectional view of the inclined portion in the first embodiment, FIG. 17A is a partial perspective view of the inclined structure in which the parallel wall forming material is filled in the space between the inclined portions in the first embodiment, and FIG. 17B is the inclined wall in the first embodiment. It is a partial perspective view of an inclined structure in which a parallel wall is formed by partially curing the parallel wall forming material filled in the space between, FIG. 18 is a partial perspective view of an inclined structure in which a plurality of parallel portions formed by curing a parallel wall forming material in Embodiment 1 are formed; Fig. 19 (a) is an XY plan view of the honeycomb formed body in the first embodiment, and Fig. 19 (b) is an XY plan view of a columnar honeycomb formed body having a tubular portion in the first embodiment. FIG. 20A is a perspective view of the inclined structure body according to the second embodiment, and FIG. 20B is a perspective view of the inclined structure body piece according to the second embodiment. FIG. 21A is an explanatory diagram of a lamination process of alternately laminating inclined structure pieces and molded sheets according to the second embodiment, and FIG. 21B is parallel to the inclined structure pieces according to the second embodiment. It is a partially enlarged view of the XY plane of a honeycomb formed body made of a laminate with a portion, FIG. 22 is a YZ plane cross-sectional view of the porous honeycomb filter of Modification Example 1, FIG. 23 is a partial cross-sectional enlarged view of a connecting portion of an inclined wall inclined in a curved shape in Modification Example 1, FIG. 24 is a YZ plane cross-sectional view of the porous honeycomb filter of Modification Example 2, FIG. 25 is a YZ plane cross-sectional view of a porous honeycomb filter of Modification 3; FIG. 26 is a partial cross-sectional enlarged view of the connecting portion of the inclined wall in Modification 3. FIG. 27 is an enlarged view of an end face of the porous honeycomb filter of Modification Example 4, 28 (a) is a YZ plane cross-sectional view of the porous honeycomb filter of Modification Example 4, and FIG. 28 (b) is an XZ plane cross-sectional view of the porous honeycomb filter of Modification Example 4, FIG. 29 is a front view of the end face of the porous honeycomb filter of Modification Example 5, FIG. 30 is a perspective view of the porous honeycomb filter of Comparative Example 1, FIG. 31 is a cross-sectional view in a plane parallel to the axial direction of the porous honeycomb filter of Comparative Example 1, FIG. 32 is an explanatory view showing a cross section of an inclined wall in the porous honeycomb filter of the sample E2 in the experimental example, FIG. 33 is a diagram showing the relationship between the distance in the axial direction from the inflow end face of each porous honeycomb filter and the wall permeation flow velocity in the experimental example.
(実施形態1)
 多孔質ハニカムフィルタの製造方法に係る実施形態について、図1~図19を参照して説明する。まず、本実施形態の製造方法により製造することができる多孔質ハニカムフィルタ1について説明する。図1に例示されるように、フィルタ1は、筒状外皮10、傾斜壁21、平行壁22、及びセル3を有する。本明細書においては、傾斜壁21及び平行壁22のように、ガス流路となるセル3を囲む壁のことを、適宜セル壁2という。
(Embodiment 1)
An embodiment according to a method for manufacturing a porous honeycomb filter will be described with reference to FIGS. First, the porous honeycomb filter 1 that can be manufactured by the manufacturing method of the present embodiment will be described. As illustrated in FIG. 1, the filter 1 includes a cylindrical outer skin 10, an inclined wall 21, a parallel wall 22, and a cell 3. In the present specification, a wall surrounding the cell 3 serving as a gas flow path, such as the inclined wall 21 and the parallel wall 22, is appropriately referred to as a cell wall 2.
 筒状外皮10は、フィルタ1の外周を覆う両端開口の筒状体である。この筒状外皮10の軸方向を本明細書においては軸方向Zという。軸方向Zは、ガス流路を形成するセル3の伸長方向、フィルタ1内に流入する排ガスGの流れ方向、フィルタ1から外部に流出する排ガスGの流れ方向、セル3内を流れる排ガスGの流れ方向等と一致させることができる。傾斜壁21及び平行壁22は、筒状外皮10の内側を区画する。これにより、筒状外皮10の内側には、傾斜壁21及び平行壁22に囲まれた多数のセル3が形成される。 The cylindrical outer skin 10 is a cylindrical body having openings at both ends covering the outer periphery of the filter 1. The axial direction of the cylindrical outer skin 10 is referred to as the axial direction Z in this specification. The axial direction Z is the extension direction of the cell 3 forming the gas flow path, the flow direction of the exhaust gas G flowing into the filter 1, the flow direction of the exhaust gas G flowing out from the filter 1, and the exhaust gas G flowing through the cell 3. It is possible to match the flow direction and the like. The inclined wall 21 and the parallel wall 22 define the inside of the cylindrical outer skin 10. Thus, a large number of cells 3 surrounded by the inclined wall 21 and the parallel wall 22 are formed inside the cylindrical outer skin 10.
 傾斜壁21は、軸方向Zに対して傾斜して伸びる。傾斜壁21は例えば多孔質である。セル3内を流れる排ガスGは多孔質の傾斜壁21を通り抜けることができる。なお、図1は、フィルタ1の斜視図を示し、フィルタ1の内部のセル壁は本来図示されないが、説明の便宜のため一部の傾斜壁21の形成パターンを点線にて示してある。 The inclined wall 21 extends while being inclined with respect to the axial direction Z. The inclined wall 21 is porous, for example. The exhaust gas G flowing in the cell 3 can pass through the porous inclined wall 21. FIG. 1 is a perspective view of the filter 1, and the cell wall inside the filter 1 is not originally shown, but the formation pattern of a part of the inclined walls 21 is indicated by dotted lines for convenience of explanation.
 平行壁22は、軸方向Zに対して平行に伸びる。平行壁22は、排ガスGの流れ方向に対しても例えば平行である。そのため、排ガスGは平行壁22の壁面から内部に侵入しにくい。平行壁22は、排ガスGを透過しても実質的に排ガスを透過しなくてもよい。 The parallel wall 22 extends parallel to the axial direction Z. The parallel walls 22 are also parallel to the flow direction of the exhaust gas G, for example. For this reason, the exhaust gas G hardly enters the inside from the wall surface of the parallel wall 22. Even if the parallel wall 22 permeates the exhaust gas G, the parallel wall 22 may not substantially permeate the exhaust gas.
 平行壁22は傾斜壁21よりも気孔率が低いことが好ましい。この場合には、平行壁の強度を傾斜壁よりも高くすることができる。したがって、傾斜壁21によりPMの捕集を可能にし、平行壁22によりフィルタ1の強度を高めることができる。平行壁22は、多孔質であってもよいが、多孔質である必要はなく、非多孔体、すなわち緻密体であってもよい。 The parallel wall 22 preferably has a lower porosity than the inclined wall 21. In this case, the strength of the parallel wall can be made higher than that of the inclined wall. Therefore, PM can be collected by the inclined wall 21, and the strength of the filter 1 can be increased by the parallel wall 22. The parallel wall 22 may be porous, but need not be porous, and may be a non-porous body, that is, a dense body.
 傾斜壁21及び平行壁22の気孔率は、原料組成や各原料粉末の粒径などを調整することにより変更可能である。気孔率は、水銀圧入法による水銀ポロシメータを用いて比較、測定することできる。水銀ポロシメータには、例えば島津製作所製のオートポアIV9500を用いることができる。 The porosity of the inclined wall 21 and the parallel wall 22 can be changed by adjusting the raw material composition, the particle size of each raw material powder, and the like. The porosity can be compared and measured using a mercury porosimeter by a mercury intrusion method. As the mercury porosimeter, for example, Autopore IV9500 manufactured by Shimadzu Corporation can be used.
 図1に例示されるように、フィルタ1は、例えば円柱状であるが、楕円柱状、三角柱状、四角柱状などの他の柱状体であってもよい。フィルタ1は、例えば円筒状のような両端開口の筒状外皮10と、この筒状外皮10の内側を区画するセル壁2とを有する。筒状外皮10の軸方向Zがフィルタ1の軸方向Zでもある。 As exemplified in FIG. 1, the filter 1 is, for example, a columnar shape, but may be another columnar body such as an elliptical column shape, a triangular column shape, or a quadrangular column shape. The filter 1 includes, for example, a cylindrical outer shell 10 that is open at both ends, such as a cylindrical shape, and a cell wall 2 that defines the inner side of the cylindrical outer shell 10. The axial direction Z of the cylindrical outer skin 10 is also the axial direction Z of the filter 1.
 フィルタ1の軸方向Zにおける両端面11、12におけるセル3の外縁形状は、三角形、正方形、長方形、六角形、八角形等の多角形にすることができる。セル3の外縁形状は、円形、楕円形にすることも可能である。軸方向Zに直交する断面におけるセル3の外縁形状も同様である。 The outer edge shape of the cell 3 on both end faces 11 and 12 in the axial direction Z of the filter 1 can be a polygon such as a triangle, a square, a rectangle, a hexagon, and an octagon. The outer edge shape of the cell 3 may be circular or elliptical. The outer edge shape of the cell 3 in the cross section orthogonal to the axial direction Z is the same.
 セル3の外縁形状が多角形の場合には、各セル3を囲む複数のセル壁2のうち少なくとも1つのセル壁2を傾斜させて傾斜壁21とすることができる。セル3の外縁形状は、対向する二辺を有する多角形状が好ましい。そして、セル3を囲む対向する2つのセル壁2を傾斜させることにより一対の傾斜壁21を形成する好ましい。この場合には、傾斜壁21を通過する排ガスGの流速のばらつきを小さくして圧力損失を小さくすることができる。同様の観点から、セル3の外縁形状は、図1に例示されるように四角形がより好ましく、対向する一対の傾斜壁21は、両者の壁面距離が両端面11、12のいずれか一方に向かうにつれて近づくように傾斜することがより好ましい。なお、圧力損失を以下、適宜「圧損」という。 When the outer edge shape of the cell 3 is a polygon, at least one cell wall 2 out of the plurality of cell walls 2 surrounding each cell 3 can be inclined to form the inclined wall 21. The outer edge shape of the cell 3 is preferably a polygonal shape having two opposite sides. A pair of inclined walls 21 is preferably formed by inclining two opposing cell walls 2 surrounding the cell 3. In this case, the pressure loss can be reduced by reducing the variation in the flow velocity of the exhaust gas G passing through the inclined wall 21. From the same point of view, the outer edge shape of the cell 3 is more preferably a quadrangle as illustrated in FIG. 1, and the pair of opposing inclined walls 21 have a wall distance between them facing either one of the end faces 11 and 12. It is more preferable to incline so that it may approach. The pressure loss is hereinafter referred to as “pressure loss” as appropriate.
 以下、フィルタ1の例を詳細に説明する。なお、以下の説明において、Z軸方向と直交し、かつ平行壁22の壁面と平行な方向をY軸方向とし、Z軸方向及びY軸方向のいずれにも直交する方向をX軸方向とする。また、X軸とY軸とを有する平面でのフィルタ断面をXY断面、Y軸とZ軸とを有する平面でのフィルタ断面をYZ断面、X軸とZ軸とを有する平面でのフィルタ断面をXZ断面とする。 Hereinafter, an example of the filter 1 will be described in detail. In the following description, the direction orthogonal to the Z-axis direction and parallel to the wall surface of the parallel wall 22 is defined as the Y-axis direction, and the direction orthogonal to both the Z-axis direction and the Y-axis direction is defined as the X-axis direction. . Further, the filter cross section in the plane having the X axis and the Y axis is the XY cross section, the filter cross section in the plane having the Y axis and the Z axis is the YZ cross section, and the filter cross section in the plane having the X axis and the Z axis is The cross section is XZ.
 図2は、排ガスGの流れ方向に対して平行なYZ平面でのフィルタ1の断面を示す。具体的には、図2には、フィルタ1の軸方向Z、及び平行壁22の壁面と平行なY軸方向を含む平面でのフィルタ1の断面を示す。図2に例示されるように、傾斜壁21は、軸方向Zに対して傾斜しているため、傾斜壁21の傾斜方向Ds1、Ds2は軸方向Zと交わる。傾斜方向Ds1、Ds2は傾斜壁21の斜面方向である。各傾斜壁21は、そのY座標位置が軸方向Zに対して例えば連続的に変化する。対向する一対の傾斜壁21は、例えば両者のY座標位置が両端面11、12のいずれか一方に向かってそれぞれ近づくように連続的に傾斜する。 FIG. 2 shows a cross section of the filter 1 in the YZ plane parallel to the flow direction of the exhaust gas G. Specifically, FIG. 2 shows a cross section of the filter 1 in a plane including the axial direction Z of the filter 1 and the Y-axis direction parallel to the wall surface of the parallel wall 22. As illustrated in FIG. 2, since the inclined wall 21 is inclined with respect to the axial direction Z, the inclined directions Ds1 and Ds2 of the inclined wall 21 intersect with the axial direction Z. The inclined directions Ds1 and Ds2 are the inclined directions of the inclined wall 21. The Y coordinate position of each inclined wall 21 changes continuously with respect to the axial direction Z, for example. The pair of opposed inclined walls 21 are continuously inclined, for example, so that the Y coordinate positions of both approach toward either one of the both end faces 11 and 12, respectively.
 傾斜壁21は、図2に例示されるようにセル壁2の伸長方向全体に形成されていてもよいが、後述の変形例2に示すように部分的に形成されていてもよい。傾斜壁21は、軸方向Zに対して外観上傾斜していればよく、傾斜壁21の軸方向Zに対する傾斜角度θ1は、特に限定されるわけではないが例えば0.9°以上が好ましい(図9参照)。傾斜角度θ1の上限は、例えば30°未満である。傾斜角度θ1はフィルタ1の寸法、所望の圧損や捕集率等に応じて適宜調整可能である。各傾斜壁21の傾斜角度は、本実施形態のように一定にしてもよいが変化させてもよい。 The inclined wall 21 may be formed in the entire extending direction of the cell wall 2 as illustrated in FIG. 2, but may be partially formed as shown in Modification 2 described later. The inclined wall 21 only needs to be externally inclined with respect to the axial direction Z, and the inclination angle θ 1 of the inclined wall 21 with respect to the axial direction Z is not particularly limited, but is preferably 0.9 ° or more, for example. (See FIG. 9). The upper limit of the inclination angle θ 1 is, for example, less than 30 °. The inclination angle θ 1 can be appropriately adjusted according to the size of the filter 1, desired pressure loss, collection rate, and the like. The inclination angle of each inclined wall 21 may be constant as in the present embodiment or may be changed.
 図2に例示されるように、連続的かつ直線的に傾斜する傾斜壁21を形成することができるが、傾斜が断続的であったり、傾斜角度が段階的に変化したりする傾斜壁を形成することもできる。 As illustrated in FIG. 2, it is possible to form an inclined wall 21 that is continuously and linearly inclined, but an inclined wall in which the inclination is intermittent or the inclination angle changes stepwise is formed. You can also
 図2に例示されるように、各セル3は、対向する一対の傾斜壁21によって挟まれていることが好ましい。また、これら一対の傾斜壁21の傾斜方向Ds1、Ds2は、軸方向Zに対して対称であることが好ましい。この場合は、軸方向Zの所定位置における一対の傾斜壁21をそれぞれ通過する排ガスGの流速のばらつきを小さくすることができる。そのため、圧損をより小さくすることができる。また、一対の傾斜壁21にそれぞれ捕集されるPM量のばらつきが小さくなる。そのため、フィルタ1の加熱時における温度のばらつきを小さくすることができる。傾斜方向Ds1、Ds2は、軸方向Zに対して非対称にすることも可能である。 As illustrated in FIG. 2, each cell 3 is preferably sandwiched between a pair of opposed inclined walls 21. In addition, the inclination directions Ds1 and Ds2 of the pair of inclined walls 21 are preferably symmetric with respect to the axial direction Z. In this case, the variation in the flow velocity of the exhaust gas G passing through the pair of inclined walls 21 at the predetermined position in the axial direction Z can be reduced. Therefore, the pressure loss can be further reduced. Further, the variation in the amount of PM collected by the pair of inclined walls 21 is reduced. Therefore, the temperature variation during heating of the filter 1 can be reduced. The tilt directions Ds1 and Ds2 can be asymmetric with respect to the axial direction Z.
 図3は、排ガスGの流れ方向に平行なXZ平面でのフィルタ1の断面を示す。具体的には、図3には、平行壁22の壁面と直交する平面でのフィルタ1の断面を示し、平行壁22の断面が示されている。図3に例示されるように、各平行壁22は、そのX座標位置が軸方向Zに対して変化せず、例えば一定である。平行壁22も、上述の傾斜壁21と同様に、対向する一対のセル壁2に形成することができる。平行壁22は、その全体が外観上軸方向Zに対して平行であればよく、微小な傾斜や成形時や焼結時に形成されうる波状の部分を含んでいてもよい。 FIG. 3 shows a cross section of the filter 1 in the XZ plane parallel to the flow direction of the exhaust gas G. Specifically, FIG. 3 shows a cross section of the filter 1 in a plane orthogonal to the wall surface of the parallel wall 22, and shows a cross section of the parallel wall 22. As illustrated in FIG. 3, the X coordinate position of each parallel wall 22 does not change with respect to the axial direction Z, and is constant, for example. The parallel walls 22 can also be formed in a pair of opposed cell walls 2 in the same manner as the inclined wall 21 described above. The parallel wall 22 only needs to be parallel to the axial direction Z in terms of appearance, and may include a minute inclination, or a wavy portion that can be formed during molding or sintering.
 図1、図4~図8に例示されるように、フィルタ1の端面11、12やXY断面において、平行壁22と傾斜壁21とは互いに直交することが好ましい。この場合には、フィルタ1の強度をより向上させることができる。なお、図5は、軸方向Zにおける中央と流入端面11との中間位置におけるフィルタ1のXY断面を流入端面11側から示す図である。図5のXY断面の軸方向Zにおける位置及び向きは、図2におけるV-V線及び矢印でそれぞれ示される。図6は、軸方向Zの中央位置におけるフィルタ1のXY断面を流入端面11側から示す図である。図6のXY断面の軸方向Zにおける位置及び向きは、図2におけるVI-VI線及び矢印でそれぞれ示される。図7は、軸方向Zにおける中央と流出端面12との中間位置におけるフィルタ1のXY断面を流入端面11側から示す図である。図7のXY断面の軸方向Zにおける位置及び向きは、図2におけるVII-VII線及び矢印でそれぞれ示される。 As illustrated in FIGS. 1 and 4 to 8, the parallel wall 22 and the inclined wall 21 are preferably orthogonal to each other in the end faces 11 and 12 and the XY cross section of the filter 1. In this case, the strength of the filter 1 can be further improved. 5 is a view showing an XY cross section of the filter 1 at the intermediate position between the center in the axial direction Z and the inflow end surface 11 from the inflow end surface 11 side. The position and orientation in the axial direction Z of the XY cross section in FIG. 5 are indicated by the VV line and the arrow in FIG. FIG. 6 is a view showing the XY cross section of the filter 1 at the center position in the axial direction Z from the inflow end face 11 side. The position and orientation in the axial direction Z of the XY cross section in FIG. 6 are indicated by the VI-VI line and the arrow in FIG. 2, respectively. FIG. 7 is a view showing an XY cross section of the filter 1 at the intermediate position between the center in the axial direction Z and the outflow end surface 12 from the inflow end surface 11 side. The position and orientation in the axial direction Z of the XY cross section of FIG. 7 are indicated by the VII-VII line and the arrow in FIG. 2, respectively.
 図4~図8に例示されるように、フィルタ1は、軸方向Zの両端に排ガスGの流入端面11と流出端面12とを有する。そして、セル3は、流入端面11から流出端面12に向けてセル3内のガス流路断面積Sが小さくなる縮小セル32と、流入端面11から流出端面12に向けてセル3内のガス流路断面積Sが大きくなる拡大セル33とを有する。縮小セル32と拡大セル33とは、1つの傾斜壁21を共有して相互に隣り合って配置されていることが好ましい。この場合には、排ガスGが縮小セル32に流入し、共有の傾斜壁21を通過して隣接の拡大セル33から排出され易くなり、PM捕集率を向上させ、捕集率のばらつきを小さくすることができる。なお、図4~図8においては、縮小セル32のガス流路断面積をS1とし、拡大セル33のガス流路断面積をS2とする。ガス流路断面積S1は、軸方向Zと直交する断面における縮小セル32の面積であり、ガス流路断面積S2は、軸方向Zと直交する断面における拡大セル33の面積である。 As illustrated in FIGS. 4 to 8, the filter 1 has an inflow end surface 11 and an outflow end surface 12 for the exhaust gas G at both ends in the axial direction Z. The cell 3 includes a reduced cell 32 in which the gas flow path cross-sectional area S in the cell 3 decreases from the inflow end surface 11 toward the outflow end surface 12, and a gas flow in the cell 3 from the inflow end surface 11 toward the outflow end surface 12. It has the expansion cell 33 with which the road cross-sectional area S becomes large. The reduced cell 32 and the enlarged cell 33 preferably share one inclined wall 21 and are adjacent to each other. In this case, the exhaust gas G flows into the reduced cell 32, passes through the shared inclined wall 21 and is easily discharged from the adjacent enlarged cell 33, improves the PM collection rate, and reduces the variation in the collection rate. can do. 4 to 8, the gas channel cross-sectional area of the reduced cell 32 is S 1 and the gas channel cross-sectional area of the enlarged cell 33 is S 2 . The gas flow path cross-sectional area S 1 is the area of the reduced cell 32 in the cross section orthogonal to the axial direction Z, and the gas flow path cross-sectional area S 2 is the area of the enlarged cell 33 in the cross section orthogonal to the axial direction Z.
 縮小セル32は、ガス流路断面積S1が一定の領域と、ガス流路断面積S1が小さくなる領域とを含んで、ガス流路断面積S1が段階的に小さくなっていてもよい。拡大セル33においては、ガス流路断面積S2が段階的に大きくなっていてもよい。 The reduced cell 32 includes a region where the gas channel cross-sectional area S 1 is constant and a region where the gas channel cross-sectional area S 1 is small, even if the gas channel cross-sectional area S 1 is gradually reduced. Good. In larger cell 33, the gas flow path cross-sectional area S 2 may be made stepwise increased.
 図2、図4~図8に例示されるように、縮小セル32と拡大セル33とは、XY平面におけるY軸方向に交互に形成されており、Y軸方向において互いに隣り合っている。一方、XY平面におけるX軸方向においては、縮小セル32同士、又は拡大セル33同士が隣りあっている。このような縮小セル32と拡大セル33の配置構成を採用することにより、後述の傾斜構造体を用いたフィルタ1の製造が可能になる。そのため、フィルタ1の量産性が向上する。 2 and 4 to 8, the reduced cells 32 and the enlarged cells 33 are alternately formed in the Y-axis direction on the XY plane, and are adjacent to each other in the Y-axis direction. On the other hand, in the X-axis direction on the XY plane, the reduced cells 32 or the enlarged cells 33 are adjacent to each other. By adopting such an arrangement configuration of the reduced cell 32 and the enlarged cell 33, it is possible to manufacture the filter 1 using an inclined structure described later. Therefore, the mass productivity of the filter 1 is improved.
 図2、図4に例示されるように、流入端面11においては、縮小セル32のガス流路断面積S1が最大になり、縮小セル32は、流入端面11において開口していることが好ましい。一方、拡大セル33のガス流路断面積S2は、流入端面11において最小になり、拡大セル33を形成する一対の傾斜壁21は、流入端面11において直接接続して流入側接続部214が形成されていることが好ましい。この場合には、拡大セル33は流入端面11で閉塞しており、拡大セル33のガス流路断面積S2は流入端面11において0となる。そのため、流入端面11における開口面積が大きくなり、圧損をより小さくすることができる。 As illustrated in FIGS. 2 and 4, the gas flow cross-sectional area S 1 of the reduced cell 32 is maximized at the inflow end surface 11, and the reduced cell 32 is preferably open at the inflow end surface 11. . On the other hand, the gas flow path cross-sectional area S 2 of the expansion cell 33 is minimized at the inflow end surface 11, and the pair of inclined walls 21 forming the expansion cell 33 are directly connected to each other at the inflow end surface 11. Preferably it is formed. In this case, the enlarged cell 33 is closed by the inflow end face 11, and the gas flow path cross-sectional area S 2 of the enlarged cell 33 becomes 0 at the inflow end face 11. Therefore, the opening area in the inflow end surface 11 is increased, and the pressure loss can be further reduced.
 図2、図8に例示されるように、流出端面12においては、縮小セル32のガス流路断面積S1が最小になり、縮小セル32を形成する対向する2つの傾斜壁21は、流出端面12において直接接続して流出側接続部213が形成されていることが好ましい。この場合には、縮小セル32は流出側接続部213により閉塞し、ガス流路断面積S1は流出端面12の流出側接続部213において0とすることができる。一方、拡大セル33のガス流路断面積S2は、流出端面12において最大になり、流出端面12において拡大セル33を開口させることができる。 As illustrated in FIGS. 2 and 8, at the outflow end face 12, the gas flow path cross-sectional area S 1 of the contraction cell 32 is minimized, and the two opposing inclined walls 21 forming the contraction cell 32 have an outflow. It is preferable that the outflow side connection portion 213 is formed by direct connection at the end face 12. In this case, the reduced cell 32 is closed by the outflow side connection portion 213, and the gas flow path cross-sectional area S 1 can be zero at the outflow side connection portion 213 of the outflow end surface 12. On the other hand, the gas flow path cross-sectional area S 2 of the enlarged cell 33 becomes maximum at the outflow end face 12, and the enlarged cell 33 can be opened at the outflow end face 12.
 対向する一対の傾斜壁21の傾斜角度θ1を適宜調整することにより、上述のように、流出端面12又は流入端面11のいずれかにおいて傾斜方向を交わらせことができる。この場合には、傾斜方向が交わる流出端面12又は流入端面11において、一対の傾斜壁21を直接接続させることができる。 By appropriately adjusting the inclination angle θ 1 of the pair of opposing inclined walls 21, the inclination direction can intersect at either the outflow end face 12 or the inflow end face 11 as described above. In this case, the pair of inclined walls 21 can be directly connected at the outflow end surface 12 or the inflow end surface 11 where the inclination directions intersect.
 本形態のフィルタ1において、各セル3は一対の傾斜壁21と平行壁に囲まれている。したがって、セル3の形状はX軸方向が高さ方向となる三角柱となる。縮小セル32と拡大セル33とはY軸方向、すなわち、平行壁22の壁面と平行方向で、軸方向Zと直交する方向に隣り合い、交互に配置されている。隣り合う縮小セル32と拡大セル33は、1つの傾斜壁21を共有する。 In the filter 1 of this embodiment, each cell 3 is surrounded by a pair of inclined walls 21 and parallel walls. Therefore, the shape of the cell 3 is a triangular prism whose X-axis direction is the height direction. The reduced cells 32 and the enlarged cells 33 are adjacent to each other in the Y-axis direction, that is, in the direction parallel to the wall surface of the parallel wall 22 and in the direction orthogonal to the axial direction Z. The adjacent reduced cell 32 and enlarged cell 33 share one inclined wall 21.
 フィルタ1は、コージェライト、SiC、チタン酸アルミ、セリア-ジルコニア固溶体、アルミナ、ムライト等のセラミックス材料により形成される。熱膨張係数が小さく、耐熱衝撃性に優れるという観点から、コージェライトが好ましい。 The filter 1 is made of a ceramic material such as cordierite, SiC, aluminum titanate, ceria-zirconia solid solution, alumina, mullite. Cordierite is preferable from the viewpoint of a small thermal expansion coefficient and excellent thermal shock resistance.
 傾斜壁21と平行壁22は、同じ材料から形成されていてもよいが、異なる材料により形成することもできる。例えば、傾斜壁21をコージェライトのようなセラミックスにより形成し、平行壁22を金属により形成することも可能である。好ましくは、傾斜壁21及び平行壁22の両方がコージェライト結晶相を主成分とするセラミックスよりなることが好ましい。この場合には、傾斜壁21と平行壁22との熱膨張差を小さくすることができるため、クラック等の不具合の発生を防止できる。 The inclined wall 21 and the parallel wall 22 may be formed of the same material, but can also be formed of different materials. For example, the inclined wall 21 can be formed of ceramics such as cordierite, and the parallel wall 22 can be formed of metal. It is preferable that both the inclined wall 21 and the parallel wall 22 are made of ceramics whose main component is a cordierite crystal phase. In this case, since the difference in thermal expansion between the inclined wall 21 and the parallel wall 22 can be reduced, the occurrence of defects such as cracks can be prevented.
 平行壁22は、傾斜壁21よりも単位厚み当たりの強度が高い材質によって形成されることが好ましい。この場合には、平行壁22による強度向上効果がより増大する。単位厚みあたりの強度は、例えば、JIS R1601:2008「ファインセラミックスの曲げ強さ試験方法」に則り、支点2点と荷重点1点の3点曲げ強さ評価により測定し、比較することができる。 The parallel wall 22 is preferably formed of a material having a higher strength per unit thickness than the inclined wall 21. In this case, the strength improvement effect by the parallel walls 22 is further increased. The strength per unit thickness can be measured and compared by, for example, three-point bending strength evaluation of two fulcrums and one load point according to JIS R1601: 2008 “Fine ceramic bending strength test method”. .
 図10及び図11に例示されるように、傾斜壁21及び平行壁22には、排ガス浄化触媒4を担持することができる。触媒4としては、例えば貴金属を含有する三元触媒がある。触媒性能に優れるという観点から、貴金属としては、Pt、Rh、及びPdのうちの少なくとも1種が好ましい。 As illustrated in FIGS. 10 and 11, the exhaust gas purification catalyst 4 can be supported on the inclined wall 21 and the parallel wall 22. Examples of the catalyst 4 include a three-way catalyst containing a noble metal. From the viewpoint of excellent catalytic performance, the noble metal is preferably at least one of Pt, Rh, and Pd.
 図10に例示されるように、傾斜壁21の気孔率を高くすると、触媒4は、傾斜壁21の表面だけでなく内部にも担持される。具体的には、気孔率の高い傾斜壁21は、大きな細孔219を多数有するため、傾斜壁21内における細孔219に面する壁面にも触媒4を担持させることができる。細孔219は、傾斜壁21を通過する排ガスの流路となる。PMの捕集率の向上及び圧損の低減という観点から、傾斜壁21の気孔率は、例えば40~70%の範囲にすることができる。 As illustrated in FIG. 10, when the porosity of the inclined wall 21 is increased, the catalyst 4 is supported not only on the surface of the inclined wall 21 but also on the inside. Specifically, since the inclined wall 21 having a high porosity has a large number of large pores 219, the catalyst 4 can be supported on the wall surface facing the pores 219 in the inclined wall 21. The pores 219 serve as exhaust gas passages that pass through the inclined wall 21. From the viewpoint of improving the PM collection rate and reducing the pressure loss, the porosity of the inclined wall 21 can be set in the range of 40 to 70%, for example.
 一方、図11に例示されるように、平行壁22の気孔率を低くすると、触媒4は、平行壁22の内部には担持されず、ガス流路に面する表面228に担持される。上述のように、傾斜壁21が排ガスを透過できれば、平行壁22は排ガスを透過できなくてもよい。したがって、平行壁22の内部にまで触媒4を担持させる必要もない。例えば傾斜壁21においては、内部まで触媒が担持される程度まで気孔率を高め、平行壁22においては、表面228に触媒が担持される程度まで気孔率を低下させることができる。フィルタ1の強度をより向上させるという観点から、平行壁22の気孔率は、45%以下であることが好ましく、30%以下であることがより好ましい。平行壁22は緻密体であってもよい。つまり、平行壁22の気孔率は0であってもよい。 On the other hand, as illustrated in FIG. 11, when the porosity of the parallel wall 22 is lowered, the catalyst 4 is not supported inside the parallel wall 22 but is supported on the surface 228 facing the gas flow path. As described above, if the inclined wall 21 can transmit the exhaust gas, the parallel wall 22 may not be able to transmit the exhaust gas. Therefore, it is not necessary to carry the catalyst 4 even inside the parallel wall 22. For example, the porosity of the inclined wall 21 can be increased to the extent that the catalyst is supported inside, and the porosity of the parallel wall 22 can be decreased to the extent that the catalyst is supported on the surface 228. From the viewpoint of further improving the strength of the filter 1, the porosity of the parallel wall 22 is preferably 45% or less, and more preferably 30% or less. The parallel wall 22 may be a dense body. That is, the porosity of the parallel wall 22 may be zero.
 触媒の担持は、公知の方法によって行うことができる。例えば触媒又はその前駆体を含有する液体中にフィルタを浸漬し、その後フィルタに触媒を焼き付ける方法がある。 The catalyst can be supported by a known method. For example, there is a method of immersing the filter in a liquid containing the catalyst or a precursor thereof and then baking the catalyst on the filter.
 上述のようなフィルタ1は、図12~図19に例示されるように、押出工程、平行部形成工程、及び焼成工程を行うことにより製造される。図12に例示されるように、押出工程においては、坏土20を軸方向Zと直交方向Xに押出成形する。これにより、図12~図15に例示されるように、多数の傾斜部211と、一対の傾斜部211同士を接続する接続部213、214とを有する傾斜構造体210を得る。傾斜部211は、後述の焼成後に上述の傾斜壁21を形成する。上述の傾斜壁21の接続部213、214と、傾斜部211の接続部213、214は、実質的には同じ構成部位を示すため、本明細書ではこれらを同じ符号にて示す。 The filter 1 as described above is manufactured by performing an extrusion process, a parallel part forming process, and a firing process, as illustrated in FIGS. As illustrated in FIG. 12, in the extrusion process, the clay 20 is extruded in the direction X perpendicular to the axial direction Z. As a result, as illustrated in FIGS. 12 to 15, an inclined structure 210 having a large number of inclined portions 211 and connecting portions 213 and 214 that connect the pair of inclined portions 211 to each other is obtained. The inclined portion 211 forms the above-described inclined wall 21 after firing described later. Since the connecting portions 213 and 214 of the inclined wall 21 and the connecting portions 213 and 214 of the inclined portion 211 show substantially the same components, they are indicated by the same reference numerals in this specification.
 坏土20は、例えば傾斜壁形成材料を含有することができる。傾斜壁形成材料は、後述の焼成後に傾斜壁21を形成する材料であり、例えば後述のコージェライト原料を含有する。 The clay 20 can contain, for example, an inclined wall forming material. The inclined wall forming material is a material for forming the inclined wall 21 after firing described later, and includes, for example, a cordierite raw material described later.
 坏土20は、例えば次のようにして製造される。まず、シリカ、水酸化アルミニウム、タルク等の原料粉末を、コージェライト組成となるように配合したコージェライト原料を準備する。コージェライト原料としては、その他にもカオリン、アルミナ等を用いることもできる。コージェライト原料は、焼成後の最終的な組成が、例えばSiO2:47~53質量%、Al23:32~38質量%、MgO:12~16質量%となるように、原料粉末の組成を調整することができる。 The clay 20 is manufactured as follows, for example. First, a cordierite raw material is prepared by blending raw material powders such as silica, aluminum hydroxide, and talc so as to have a cordierite composition. As the cordierite raw material, kaolin, alumina and the like can also be used. The cordierite raw material has a final composition after firing such as SiO 2 : 47 to 53% by mass, Al 2 O 3 : 32 to 38% by mass, and MgO: 12 to 16% by mass. The composition can be adjusted.
 次に、粉末状のコージェライト原料に、水、メチルセルロースを加えて混練し、粘土状の坏土20を得る。坏土20には、増粘剤、分散剤、有機バインダ、造孔材、界面活性剤等を添加することもできる。 Next, water and methylcellulose are added to the powdered cordierite raw material and kneaded to obtain a clay-like clay 20. A thickener, a dispersant, an organic binder, a pore former, a surfactant, and the like can be added to the clay 20.
 坏土20は、上述のようにコージェライト原料を含むことが好ましい。この場合には、耐熱衝撃性に優れたコージェライトを含有する傾斜壁21を形成することができる。そのため、フィルタ1の耐熱衝撃性を向上させることができる。コージェライト原料は、焼成後にコージェライト結晶を生成する原料である。コージェライト原料は、例えばMg源、Si源、Al源などを含有することができる。 The clay 20 preferably contains a cordierite raw material as described above. In this case, the inclined wall 21 containing cordierite having excellent thermal shock resistance can be formed. Therefore, the thermal shock resistance of the filter 1 can be improved. A cordierite raw material is a raw material which produces | generates a cordierite crystal | crystallization after baking. The cordierite raw material can contain, for example, Mg source, Si source, Al source and the like.
 図16(a)に例示されるように、坏土20は、例えばタルク、カオリンのような板状粒子201を含有することが好ましい。この場合には、坏土20の押出成形により、図16(b)に例示されるように、傾斜部211中の板状粒子201の面内方向を押出方向Xに配向させることができる。面内方向は、板状粒子201の厚み方向と直交する方向である。そのため、コージェライト結晶粒がC軸方向に配向した傾斜壁21を形成することができる。その結果、C軸方向における傾斜壁21の熱膨張が小さくなるため、熱応力を低減することができる。したがって、フィルタ1の耐熱衝撃性の向上が可能になる。板状粒子201は、外観上板状であることを意味し、鱗片状、薄片状等の粒子を含む概念である。 As illustrated in FIG. 16A, the clay 20 preferably contains plate-like particles 201 such as talc and kaolin. In this case, the in-plane direction of the plate-like particles 201 in the inclined portion 211 can be oriented in the extrusion direction X as illustrated in FIG. The in-plane direction is a direction orthogonal to the thickness direction of the plate-like particles 201. Therefore, the inclined wall 21 in which the cordierite crystal grains are oriented in the C-axis direction can be formed. As a result, thermal expansion of the inclined wall 21 in the C-axis direction is reduced, so that thermal stress can be reduced. Therefore, the thermal shock resistance of the filter 1 can be improved. The plate-like particle 201 means a plate-like appearance, and is a concept including particles such as scales and flakes.
 図12に例示されるように、押出成形における坏土12の押出方向Xは、軸方向Zと直交方向である。押出方向Xは、接続部213、214の伸長方向となる。本明細書においては、接続部213、214の伸長方向を押出方向と同じ符号で表し、伸長方向Xと標記する場合がある。 As illustrated in FIG. 12, the extrusion direction X of the clay 12 in the extrusion molding is a direction orthogonal to the axial direction Z. The extrusion direction X is the extension direction of the connecting portions 213 and 214. In the present specification, the extension direction of the connecting portions 213 and 214 may be represented by the same reference numeral as the extrusion direction and may be denoted as the extension direction X.
 傾斜構造体210は、図12~図15に例示されるように、多数の傾斜部211と、多数の接続部213、214とを有する。傾斜部211は、軸方向Zに対して傾斜しながら軸方向Zに伸びる。各傾斜部211は、例えば板状であるが、後述の変形例1のように曲面を有していてもよい。Y軸方向において隣接する一対の傾斜部211は相互に対向する対向面を有し、対向面がY軸方向に並列されている。 The inclined structure 210 has a large number of inclined portions 211 and a large number of connecting portions 213 and 214, as illustrated in FIGS. The inclined portion 211 extends in the axial direction Z while being inclined with respect to the axial direction Z. Each inclined portion 211 has, for example, a plate shape, but may have a curved surface as in Modification 1 described later. A pair of inclined portions 211 adjacent in the Y-axis direction have opposing surfaces facing each other, and the opposing surfaces are arranged in parallel in the Y-axis direction.
 傾斜部211の軸方向Zに対する傾斜方向Ds1、Ds2は交互に逆である。傾斜方向Ds1、Ds2が交互に逆とは、図14に例示されるように対向する一対の傾斜部211の傾斜方向Ds1、Ds2の交点P1、P2が、交互にZ軸方向における反対側に位置することを意味する。対向する一対の傾斜部211の傾斜方向Ds1、Ds2は、軸方向Zを軸として対称であってもよいし、非対称であってもよい。好ましくは、対称であることがよい。この場合には、軸方向に対して対称な傾斜壁を形成することができる。その結果、上述のように圧損をより低減することができる。 The inclination directions Ds1 and Ds2 with respect to the axial direction Z of the inclined portion 211 are alternately reversed. The directions in which the inclination directions Ds1 and Ds2 are alternately reversed are such that the intersection points P 1 and P 2 of the inclination directions Ds1 and Ds2 of the pair of inclined portions 211 facing each other are alternately opposite in the Z-axis direction as illustrated in FIG. Means to be located in The inclination directions Ds1 and Ds2 of the pair of opposing inclined portions 211 may be symmetric about the axial direction Z or may be asymmetric. Preferably, it is symmetrical. In this case, an inclined wall symmetrical with respect to the axial direction can be formed. As a result, the pressure loss can be further reduced as described above.
 傾斜部211の軸方向に対する傾斜角度は、上述の傾斜壁21の傾斜角度に応じて適宜調整することができる。対向する一対の傾斜部211がなす角度θ2は例えば0.5~30°の範囲で調整することができる。角度θ2が大きくなりすぎると、フィルタ1の軸方向の長さが小さくなりすぎるので、すすの堆積に伴う圧力損失の変動が大きくなりドライバビリティが悪化するおそれがある。一方、角度θ2が小さくなりすぎると、圧損の低減効果小さくなったり、フィルタ1の軸方向の長さが大きくなりすぎたりするおそれがある。フィルタの小型化及び圧損の低減効果という観点から、角度θ2は0.9~1.5°であることが好ましい。 The inclination angle of the inclined portion 211 with respect to the axial direction can be appropriately adjusted according to the inclination angle of the inclined wall 21 described above. The angle θ 2 formed by the pair of opposing inclined portions 211 can be adjusted within a range of 0.5 to 30 °, for example. If the angle θ 2 becomes too large, the axial length of the filter 1 becomes too small, so that the fluctuation of pressure loss accompanying soot deposition becomes large and drivability may be deteriorated. On the other hand, if the angle θ 2 is too small, the effect of reducing pressure loss may be reduced, or the axial length of the filter 1 may be too large. From the viewpoint of reducing the size of the filter and reducing the pressure loss, the angle θ 2 is preferably 0.9 to 1.5 °.
 図12及び図14に例示されるように、傾斜構造体210において対向して隣り合う一対の傾斜部211は、接続部213又は接続部214に向けて相互に近づくように傾斜する。本形態のように、接続部213、214は、傾斜構造体210の軸方向Zの端部に形成することができる。つまり、一対の傾斜部211を、傾斜構造体210の軸方向Zにおける一端又は他端おいて接続させて接続部213、214を形成させることができる。他端傾斜構造体210の軸方向Zの長さは、焼成後の収縮などを考慮しなければ、フィルタ1の軸方向Zの長さと一致する。本実施形態において、上述の傾斜構造体210の一端、他端は、フィルタ1の流入端面11、流出端面12にそれぞれ相当する。 As illustrated in FIGS. 12 and 14, a pair of adjacent inclined portions 211 in the inclined structure 210 are inclined so as to approach each other toward the connection portion 213 or the connection portion 214. As in the present embodiment, the connection portions 213 and 214 can be formed at the end portion in the axial direction Z of the inclined structure 210. That is, the connection portions 213 and 214 can be formed by connecting the pair of inclined portions 211 at one end or the other end in the axial direction Z of the inclined structure 210. The length in the axial direction Z of the other-end inclined structure 210 is equal to the length in the axial direction Z of the filter 1 unless the shrinkage after firing is taken into consideration. In the present embodiment, one end and the other end of the inclined structure 210 described above correspond to the inflow end surface 11 and the outflow end surface 12 of the filter 1, respectively.
 図12~図15に例示される傾斜構造体210は、山部Mと谷部Vとを交互に有するということもできる。図14においては、断面図を紙面内において例えば時計と反対回りに90°回転させると山部Mと谷部Vがより明確となる。傾斜構造体210においては、これらの山部M及び谷部Vによって接続部213、214が形成されている。傾斜構造体210は、例えば蛇腹状であり、図14に例示されるように傾斜構造体210の断面はジグザグ状、波形状等になる。山部M及び谷部Vの断面は、2つ直線とこれらの交点によって形成される角部を有していてもよく、後述の変形例1のように、山部及び谷部の断面は、円弧状であってもよい。 It can also be said that the inclined structure 210 illustrated in FIGS. 12 to 15 has the mountain portions M and the valley portions V alternately. In FIG. 14, when the cross-sectional view is rotated by 90 ° counterclockwise, for example, in the drawing, the peak M and valley V become clearer. In the inclined structure 210, connection portions 213 and 214 are formed by the peak portions M and the valley portions V. The inclined structure 210 has, for example, a bellows shape, and the cross section of the inclined structure 210 has a zigzag shape, a wave shape, or the like as illustrated in FIG. The cross section of the mountain part M and the valley part V may have a corner part formed by two straight lines and their intersections, and the cross section of the mountain part and the valley part as in Modification Example 1 described later, It may be arcuate.
 図12~図15に例示されるように、接続部213、214は、対向する一対の傾斜部211を接続する。接続部213、214の伸長方向は押出方向である。具体的には、押出方向は、図12~図15におけるX軸方向である。 As illustrated in FIGS. 12 to 15, the connecting portions 213 and 214 connect a pair of opposing inclined portions 211. The extending direction of the connecting portions 213 and 214 is the extrusion direction. Specifically, the extrusion direction is the X-axis direction in FIGS.
 押出工程においては、図14に例示される傾斜構造体210のYZ断面で示される平面体をX軸方向に押し出すことができる。X軸方向は、図14における紙面と直交方向であり、接続部213、214の伸長方向である。傾斜構造体210のYZ断面で示される平面体のことを適宜YZ平面体という。YZ平面体は、蛇腹断面状平面体、波状平面体、ジグザグ状平面体、連結V字状平面体等ということもできる。これにより、傾斜構造体210を得ることができる。このように、YZ平面体をX軸方向に押し出すことにより、押出成形によって傾斜構造体210を得ることができる。その結果、傾斜構造体210の量産性が向上し、フィルタ1の生産性が高まる。 In the extruding step, a plane body indicated by a YZ cross section of the inclined structure 210 illustrated in FIG. 14 can be extruded in the X-axis direction. The X-axis direction is a direction orthogonal to the paper surface in FIG. 14 and is an extension direction of the connecting portions 213 and 214. A plane body indicated by a YZ cross section of the inclined structure 210 is appropriately referred to as a YZ plane body. The YZ plane body can also be called a bellows cross-section plane body, a wavy plane body, a zigzag plane body, a connected V-shaped plane body, or the like. Thereby, the inclined structure 210 can be obtained. Thus, the inclined structure 210 can be obtained by extrusion molding by extruding the YZ plane in the X-axis direction. As a result, the mass productivity of the inclined structure 210 is improved and the productivity of the filter 1 is increased.
 図13に例示されるように、押出成形は、例えば本体51と金型52とを備える押出成形機5を用いて行うことができる。金型52は、傾斜構造体210のYZ断面と同形状の押出孔521を有する。押出孔521は、押出溝、成形溝、スリットともいう。図13に例示されるように、押出孔521は、例えば山形状の孔と谷形状の孔とが交互に連なった構造を有しており、押出孔521の形状は、例えばジグザグ状、波形状である。つまり、押出孔521の形状は、上述の傾斜構造体210のYZ平面体(図14参照)と同形状である。 As illustrated in FIG. 13, extrusion molding can be performed using, for example, an extrusion molding machine 5 including a main body 51 and a mold 52. The mold 52 has an extrusion hole 521 having the same shape as the YZ section of the inclined structure 210. The extrusion hole 521 is also referred to as an extrusion groove, a molding groove, or a slit. As illustrated in FIG. 13, the extrusion hole 521 has a structure in which, for example, crest-shaped holes and valley-shaped holes are alternately connected. The shape of the extrusion holes 521 is, for example, a zigzag shape or a wave shape. It is. That is, the shape of the extrusion hole 521 is the same shape as the YZ plane body (see FIG. 14) of the inclined structure 210 described above.
 従来の軸方向に押出を行う一般的な形状の金型においては、スリットが交差し、金型の肉部分が径方向に接続される部分がない構造となる。これに対して、図13に例示されるように、本形態にて用いられる押出用の金型52には、スリットが交差する構造や、金型の肉部分が径方向に接続される部分がない構造などの複雑な構造が生じない。そのため、金型52の構造として、例えば軸方向に異なる形状を組み合わせる必要がなく、一断面形状で構成された比較的簡易な構造の金型52を用いることができる。 A conventional mold having a general shape that is extruded in the axial direction has a structure in which slits intersect and there is no portion in which the metal portion of the mold is connected in the radial direction. On the other hand, as illustrated in FIG. 13, the extrusion mold 52 used in this embodiment has a structure in which slits intersect and a portion where the meat portion of the mold is connected in the radial direction. There is no complicated structure such as no structure. Therefore, as a structure of the mold 52, for example, it is not necessary to combine different shapes in the axial direction, and the mold 52 having a relatively simple structure configured with one cross-sectional shape can be used.
 押出工程においては、本体51内で混練された坏土12が金型の押出孔521から押し出される。これにより、上述の傾斜構造体210を得ることができる。傾斜構造体210は、YZ平面体がX軸方向に伸びる連続構造体であるため、上記のようにX軸方向を押出方向にすることにより、押出成形機5による成形が可能である。 In the extrusion process, the clay 12 kneaded in the main body 51 is extruded from the extrusion hole 521 of the mold. Thereby, the above-described inclined structure 210 can be obtained. Since the inclined structure 210 is a continuous structure in which the YZ plane body extends in the X-axis direction, the inclined structure 210 can be molded by the extruder 5 by setting the X-axis direction to the extrusion direction as described above.
 次いで、マイクロ波乾燥によって、傾斜構造体210を乾燥、収縮させる。その後、フィルタ1の軸方向と直交方向における所望の寸法よりも大きくなるように切断することができる。本形態においては、所望の円柱形状のフィルタ1の直径よりも大きな長さになるように傾斜構造体210を切断する。 Next, the inclined structure 210 is dried and contracted by microwave drying. Then, it can cut | disconnect so that it may become larger than the desired dimension in the direction orthogonal to the axial direction of the filter 1. In this embodiment, the inclined structure 210 is cut so as to have a length larger than the diameter of the desired cylindrical filter 1.
 次に、図17(a)、図17(b)、図18に例示されるように、平行部形成工程を行う。平行部形成工程においては、焼成により上述の平行壁22となる複数の平行部221を形成する。これにより、図19(a)に例示されるように傾斜部211と平行部221とを有するハニカム成形体100を得ることができる。平行部形成工程においては、接続部213、214の伸長方向Xと直交する面を有する複数の平行部221を形成することができる。平行部221は、後述の平行壁形成材料を含有することができる。 Next, as illustrated in FIGS. 17A, 17B, and 18, a parallel portion forming step is performed. In a parallel part formation process, the several parallel part 221 used as the above-mentioned parallel wall 22 is formed by baking. Thereby, the honeycomb formed body 100 having the inclined portion 211 and the parallel portion 221 as illustrated in FIG. 19A can be obtained. In the parallel part forming step, a plurality of parallel parts 221 having a surface orthogonal to the extending direction X of the connection parts 213 and 214 can be formed. The parallel part 221 can contain a parallel wall forming material described later.
 本形態において、平行部形成工程は、硬化工程と排出工程とを有する。硬化工程においては、図17(a)に例示されるように、硬化工程においては、傾斜構造体210を接続部213、214の伸長方向が鉛直となるように配置することができる。この場合には、後述の平行壁形成材料220の充填が容易になる。また、後述の光照射中において、自重により平行壁形成材料220の形状を保持できるため、硬化を容易に行うことができる。鉛直は重力の方向である。 In this embodiment, the parallel part forming step includes a curing step and a discharging step. In the curing step, as illustrated in FIG. 17A, in the curing step, the inclined structure 210 can be arranged so that the extending direction of the connecting portions 213 and 214 is vertical. In this case, filling of the parallel wall forming material 220 described later becomes easy. Further, during the light irradiation described later, the shape of the parallel wall forming material 220 can be maintained by its own weight, so that curing can be easily performed. Vertical is the direction of gravity.
 次いで、傾斜構造体210の傾斜部211間の空間Sp内へ平行壁形成材料220を充填する。平行壁形成材料220は、接続部213,214の伸長方向における所定の高さまで充填する。この高さを適宜調整することにより、平行壁22の形成ピッチを調整することができる。 Next, the parallel wall forming material 220 is filled into the space Sp between the inclined portions 211 of the inclined structure 210. The parallel wall forming material 220 is filled up to a predetermined height in the extending direction of the connecting portions 213 and 214. The formation pitch of the parallel walls 22 can be adjusted by appropriately adjusting the height.
 平行壁形成材料220は、後述の焼成後に平行壁22を形成する材料である。平行壁形成材料220は、金属材料、セラミックス材料等を含有することができる。これにより、金属、セラミックス等からなる平行壁22を形成することができる。 The parallel wall forming material 220 is a material for forming the parallel wall 22 after firing described later. The parallel wall forming material 220 can contain a metal material, a ceramic material, or the like. Thereby, the parallel wall 22 which consists of a metal, ceramics, etc. can be formed.
 好ましくは、平行壁形成材料220は、コージェライト原料を含有することがよい。この場合には、コージェライト結晶を含有する平行壁22を形成することができる。そして、傾斜壁21と平行壁22をコージェライトにより形成する場合には、傾斜壁21と平行壁22との熱膨張差を小さくすることができると共に、耐熱衝撃性を向上させることができる。コージェライト原料としては、上述の傾斜部211と同様のものが例示できる。 Preferably, the parallel wall forming material 220 contains a cordierite raw material. In this case, the parallel wall 22 containing a cordierite crystal can be formed. When the inclined wall 21 and the parallel wall 22 are formed of cordierite, the thermal expansion difference between the inclined wall 21 and the parallel wall 22 can be reduced and the thermal shock resistance can be improved. As a cordierite raw material, the same thing as the above-mentioned inclination part 211 can be illustrated.
 次いで、図17(a)に例示されるように、傾斜部211間に充填された平行壁形成材料220に光LSを照射する。光LSは例えばレーザ光である。これにより、平行壁形成材料220における光照射面からレーザ光の透過強度に応じた厚みまでを硬化させることができる。平行壁形成材料220の充填、レーザ光の照射を繰り返すことで所望の厚みの平行部221を形成することができる。その結果、図17(b)に例示されるように、平行部221を形成することができる。平行部221は、平行壁形成材料220の硬化物からなる。 Next, as illustrated in FIG. 17A, the parallel wall forming material 220 filled between the inclined portions 211 is irradiated with light LS. The light LS is, for example, laser light. Thereby, from the light irradiation surface in the parallel wall forming material 220 to the thickness according to the transmission intensity | strength of a laser beam can be hardened. By repeating the filling of the parallel wall forming material 220 and the irradiation of the laser beam, the parallel portion 221 having a desired thickness can be formed. As a result, the parallel part 221 can be formed as illustrated in FIG. The parallel part 221 is made of a cured product of the parallel wall forming material 220.
 レーザ光LSの照射方向は、鉛直方向であることが好ましい。この場合には、硬化後に形成される平行部221の厚みの調整が容易になる。その結果、均一な厚みの平行部221を容易に形成することができる。レーザ光LSの照射は、例えば鉛直方向の上から下に向けて行うことができる。 The irradiation direction of the laser light LS is preferably the vertical direction. In this case, adjustment of the thickness of the parallel part 221 formed after hardening becomes easy. As a result, the parallel portion 221 having a uniform thickness can be easily formed. Irradiation with the laser beam LS can be performed, for example, from the top to the bottom in the vertical direction.
 平行部221の厚みは、所望の平行壁22の厚みに応じて適宜調整することができる。平行部221の厚みは、例えば平行壁形成材料の組成、レーザ光LSの強度、照射時間などにより制御することができる。 The thickness of the parallel part 221 can be appropriately adjusted according to the desired thickness of the parallel wall 22. The thickness of the parallel portion 221 can be controlled by, for example, the composition of the parallel wall forming material, the intensity of the laser light LS, the irradiation time, and the like.
 平行壁形成材料220は、光硬化性有機成分を含有することが好ましい。この場合には、レーザ光LSの照射により、平行壁形成材料220を容易に硬化させることができる。光硬化性有機成分は、例えば光硬化性樹脂である。平行壁形成材料220中の光硬化性有機成分樹脂の含有量は、レーザ照射により平行壁形成材料220の硬化が可能であれば、できるだけ少ないことが好ましい。この場合には、平行壁22の緻密性を高めてフィルタ1の強度を高めることができる。平行部221は、例えば板状であり、水平方向と平行な面を有する。 The parallel wall forming material 220 preferably contains a photocurable organic component. In this case, the parallel wall forming material 220 can be easily cured by irradiation with the laser beam LS. The photocurable organic component is, for example, a photocurable resin. The content of the photocurable organic component resin in the parallel wall forming material 220 is preferably as small as possible if the parallel wall forming material 220 can be cured by laser irradiation. In this case, the strength of the filter 1 can be increased by increasing the density of the parallel walls 22. The parallel part 221 is plate-shaped, for example, and has a surface parallel to the horizontal direction.
 次いで、図18に例示させるように、傾斜部211の間に形成された平行部221上に平行壁形成材料220をさらに充填する。そしてこの平行壁形成材料220にレーザ光LSを照射する。これにより、平行壁形成材料220を所定の厚み分だけ硬化させる。このようにして、傾斜部211間に平行部221をさらに形成する。 Next, as illustrated in FIG. 18, the parallel wall forming material 220 is further filled on the parallel portions 221 formed between the inclined portions 211. The parallel wall forming material 220 is irradiated with a laser beam LS. Thereby, the parallel wall forming material 220 is cured by a predetermined thickness. In this way, the parallel part 221 is further formed between the inclined parts 211.
 図17及び図18に例示されるように、平行壁形成材料220の充填と光LSの照射とを繰り返し行う。これにより、傾斜部211間に多数の平行部221を形成することができる。 As illustrated in FIGS. 17 and 18, the filling of the parallel wall forming material 220 and the irradiation with the light LS are repeatedly performed. Thereby, a large number of parallel portions 221 can be formed between the inclined portions 211.
 平行部221の形成後には、除去工程を行うことができる。除去工程においては、傾斜構造体210の傾斜部211間から未硬化の平行壁形成材料220を排出させる。未硬化の平行壁形成材料220の除去は、全ての平行部221の形成後に行っても、各平行部221の形成後に行ってもよい。これにより、傾斜部211と平行部221とに囲まれる多数のセル3が形成される。このようにして、図19(a)に例示されるように、ハニカム成形体100を得ることができる。 After the parallel part 221 is formed, a removal process can be performed. In the removing step, the uncured parallel wall forming material 220 is discharged from between the inclined portions 211 of the inclined structure 210. The removal of the uncured parallel wall forming material 220 may be performed after all the parallel portions 221 are formed or after each parallel portion 221 is formed. Thereby, a large number of cells 3 surrounded by the inclined portion 211 and the parallel portion 221 are formed. In this way, the honeycomb formed body 100 can be obtained as illustrated in FIG.
 未硬化の平行壁形成材料220の除去は、ハニカム成形体100を傾けることによって容易に行うことができる。この場合には、端面11、12におけるセル3の開口部から平行壁形成材料220を容易に取り除くことができる。さらに、エアブロー等を併用して平行壁形成材料220の除去を行うこともできる。 The removal of the uncured parallel wall forming material 220 can be easily performed by tilting the honeycomb formed body 100. In this case, the parallel wall forming material 220 can be easily removed from the openings of the cells 3 on the end faces 11 and 12. Further, the parallel wall forming material 220 can be removed by using air blow or the like together.
 上記硬化工程において、充填時における平行壁形成材料220の性状は、特に限定されるわけではなく、例えば粉末状、スラリー状、ゾル溶液状、ガス状等がある。充填時における平行壁形成材料220は、粉末状であることが好ましい。この場合には、平行壁形成材料220の充填が容易になる。また、レーザ光による平行壁形成材料220の硬化が容易になる。さらにこの場合には、上述の除去工程において未硬化の平行壁形成材料220の除去も容易になる。 In the above curing process, the properties of the parallel wall forming material 220 at the time of filling are not particularly limited, and examples thereof include powder, slurry, sol solution, and gas. The parallel wall forming material 220 at the time of filling is preferably in a powder form. In this case, the parallel wall forming material 220 can be easily filled. Further, the parallel wall forming material 220 is easily cured by the laser beam. Furthermore, in this case, it becomes easy to remove the uncured parallel wall forming material 220 in the above-described removing step.
 平行壁形成材料220の平均粒子径は、充填時における充填容易性、光照射による硬化性、除去工程における除去容易性等の観点から適宜調整することができる。充填容易性、硬化性、除去容易性を高めるという観点から、平行壁形成材料220の平均粒子径は1μm~30μmであることが好ましく、15μm~25μmであることがより好ましい。平均粒子径は、メジアン径d50のことである。すなわち、平均粒子径は、レーザ回折・散乱法によって求めた粒度分布における体積積算値50%での粒径を意味する。 The average particle diameter of the parallel wall forming material 220 can be appropriately adjusted from the viewpoints of ease of filling at the time of filling, curability by light irradiation, ease of removal at the removing step, and the like. From the viewpoint of enhancing ease of filling, curability, and ease of removal, the average particle size of the parallel wall forming material 220 is preferably 1 μm to 30 μm, and more preferably 15 μm to 25 μm. The average particle diameter is the median diameter d50. That is, the average particle diameter means a particle diameter at a volume integrated value of 50% in a particle size distribution obtained by a laser diffraction / scattering method.
 図19(a)は、ハニカム成形体100のXY平面図である。図19(a)は、ハニカム成形体100を一方の接続部213又は214側から見た平面図である。図19(a)及び図19(b)において、X軸方向と平行に伸びる直線は、傾斜部211の接続部213、214を示す。これらの直線のうち、太線は紙面の手前側に位置する接続部213を示し、細線は紙面の奥側に位置する接続部214を示す。太線と細線との間は、紙面の手前から奥に向かって伸びる傾斜部211の壁面を示す。Y軸と平行に伸びる直線は、平行部221を示す。 Fig. 19 (a) is an XY plan view of the honeycomb formed body 100. FIG. 19A is a plan view of the honeycomb formed body 100 as viewed from one connection portion 213 or 214 side. In FIG. 19A and FIG. 19B, straight lines extending in parallel with the X-axis direction indicate the connecting portions 213 and 214 of the inclined portion 211. Among these straight lines, the thick line indicates the connection portion 213 located on the near side of the paper surface, and the thin line indicates the connection portion 214 located on the far side of the paper surface. Between the thick line and the thin line, the wall surface of the inclined portion 211 that extends from the front of the page toward the back is shown. A straight line extending in parallel with the Y axis indicates the parallel portion 221.
 平行部形成工程においては、図19(a)に例示されるように、平行部221を傾斜部211と直交するように形成することが好ましい。この場合には、傾斜壁21と平行壁22とが直交するフィルタを得ることができる。このようなフィルタ1は、強度がより向上する。 In the parallel part forming step, it is preferable to form the parallel part 221 so as to be orthogonal to the inclined part 211 as illustrated in FIG. In this case, a filter in which the inclined wall 21 and the parallel wall 22 are orthogonal can be obtained. Such a filter 1 is further improved in strength.
 平行部221の形成には、例えば3Dプリンタを利用することができる。この場合には、本形態のように光硬化性有機成分を含有する平行壁形成材料220を用いてもよいが、光硬化性有機成分を含有しない平行壁形成材料220を用いることも可能である。平行壁形成材料220が光硬化性有機成分を含有しない場合には、レーザ光LSの光源として、例えばコージェライトが吸収可能なものを選択することができる。このような光源としては、短波長で高エネルギーなものがある。そして、レーザ光LSの照射によりコージェライト原料が発熱し、コージェライト原料を少なくとも部分的に焼結させることにより硬化させることができる。短波長のレーザ光の照射には、例えばフェムト秒レーザを用いることができる。 For example, a 3D printer can be used to form the parallel portion 221. In this case, the parallel wall forming material 220 containing the photocurable organic component may be used as in the present embodiment, but the parallel wall forming material 220 not containing the photocurable organic component can also be used. . When the parallel wall forming material 220 does not contain a photocurable organic component, for example, a light source that can be absorbed by cordierite can be selected as the light source of the laser light LS. Such a light source has a short wavelength and high energy. The cordierite raw material generates heat by irradiation with the laser beam LS, and can be cured by at least partially sintering the cordierite raw material. For example, a femtosecond laser can be used for the irradiation with the short-wavelength laser light.
 次に、ハニカム成形体100を所望形状にくり抜くことができる。図19(a)においては、くり抜き形状を破線にて示す。図19(a)に例示されるように、例えば円柱形状にハニカム成形体100をくり抜くことができる。 Next, the honeycomb formed body 100 can be cut into a desired shape. In FIG. 19A, a hollow shape is indicated by a broken line. As illustrated in FIG. 19A, for example, the honeycomb formed body 100 can be cut out in a columnar shape.
 次いで、筒状部形成工程を行うことにより、図19(b)に例示されるように筒状部110を形成することができる。筒状部110は、ハニカム成形体100の外周を覆う筒状の部分である。筒状部110の形成は、例えばセメンティングにより行うことができる。具体的には、ハニカム成形体100の外周に外皮形成材料を塗布することにより、外皮形成材料を含有する筒状部110を形成することができる。 Next, the cylindrical portion 110 can be formed as illustrated in FIG. 19B by performing a cylindrical portion forming step. The tubular portion 110 is a tubular portion that covers the outer periphery of the honeycomb formed body 100. The cylindrical portion 110 can be formed by, for example, cementing. Specifically, the cylindrical portion 110 containing the outer skin forming material can be formed by applying the outer skin forming material to the outer periphery of the honeycomb formed body 100.
 外皮形成材料は、例えばコージェライト原料を含有することが好ましい。この場合には、フィルタ1の耐熱衝撃性をより向上させることができる。 The outer skin forming material preferably contains, for example, a cordierite raw material. In this case, the thermal shock resistance of the filter 1 can be further improved.
 次に、焼成工程を行う。焼成工程においては、ハニカム成形体100を焼成する。これにより、図1~図9に例示されるフィルタ1を得ることができる。 Next, a firing process is performed. In the firing step, the honeycomb formed body 100 is fired. Thereby, the filter 1 illustrated in FIGS. 1 to 9 can be obtained.
 焼成工程においては、傾斜部211及び平行部221を焼成することが好ましい。すなわち、傾斜部211及び平行部221の焼結が可能な温度制御によって焼成を行うことが好ましい。この場合には、焼成を1回の工程で行うことが可能になる。そのため、例えば傾斜部211と平行部221とをそれぞれ異なる焼成操作によって焼結させる場合に比べて、製造時における操作を減らすことができる。また、この場合には、傾斜部211と平行部221との接続部の焼成を行うことができる。すなわち、この場合には、傾斜部211と平行部221とこれらの接続部とを一体的に焼成することができる。そのため、焼成後における傾斜壁21と平行壁22との接合強度を高めることができる。なお、傾斜部211及び平行部221が例えば同じ組成のコージェライトのように同じ材料からなる場合には、上述の1回の工程での焼成により、傾斜部211と平行部221とを同時に焼成させることも可能になる。 In the firing step, it is preferable to fire the inclined portion 211 and the parallel portion 221. That is, it is preferable to perform firing by temperature control that allows the inclined portion 211 and the parallel portion 221 to be sintered. In this case, firing can be performed in one step. Therefore, for example, compared with the case where the inclined portion 211 and the parallel portion 221 are sintered by different firing operations, the operation during manufacturing can be reduced. In this case, the connecting portion between the inclined portion 211 and the parallel portion 221 can be fired. That is, in this case, the inclined portion 211, the parallel portion 221 and these connecting portions can be integrally fired. Therefore, the bonding strength between the inclined wall 21 and the parallel wall 22 after firing can be increased. In addition, when the inclined part 211 and the parallel part 221 are made of the same material, for example, cordierite having the same composition, the inclined part 211 and the parallel part 221 are simultaneously fired by firing in the above-described one step. It becomes possible.
 また、傾斜部211と平行部221とを、それぞれ異なる焼成操作により焼成させることも可能である。具体的には、上述の押出工程後であって平行部形成工程の前に傾斜構造体210を焼成する傾斜部焼成工程を行うことができる。したがって、平行部形成工程において用いられる傾斜構造体210は、未焼成体だけでなく、焼成体をも含む概念である。同様に、ハニカム成形体は、未焼成の傾斜部を有する形態だけでなく、焼成後の傾斜壁を有する形態をも含む概念である。 Further, the inclined portion 211 and the parallel portion 221 can be fired by different firing operations. Specifically, an inclined portion firing step of firing the inclined structure 210 after the above-described extrusion step and before the parallel portion forming step can be performed. Therefore, the inclined structure 210 used in the parallel part forming step is a concept including not only an unfired body but also a fired body. Similarly, the honeycomb formed body is a concept including not only a form having an unfired inclined part but also a form having an inclined wall after firing.
 また、焼成工程の前に上述の筒状部形成工程を行い、焼成工程においては、筒状部110を有するハニカム成形体100を焼成することが好ましい。この場合には、焼成後に得られるフィルタ1における筒状外皮10の接合強度を高めることができる。 Moreover, it is preferable to perform the above-described tubular portion forming step before the firing step, and to fire the honeycomb formed body 100 having the tubular portion 110 in the firing step. In this case, the joining strength of the cylindrical outer skin 10 in the filter 1 obtained after firing can be increased.
 フィルタ形状、セル形状などは、適宜変更可能である。また、セルピッチ、セル壁の厚み、傾斜壁の傾斜角度、フィルタ1の長さ、幅などの寸法も適宜変更可能である。 The filter shape, cell shape, etc. can be changed as appropriate. In addition, dimensions such as the cell pitch, the thickness of the cell wall, the inclination angle of the inclined wall, and the length and width of the filter 1 can be appropriately changed.
 本実施形態の製造方法においては、図12に例示されるように、軸方向Zと直交方向Xに坏土20を押し出している。そのため、押出成形により傾斜構造体210を連続的に生産することが可能である。これは、図12~図15に例示されるように、傾斜構造体210が複数の傾斜部211と、傾斜部211同士を接続する複数の接続部213、214とを有するためである。このような傾斜構造体210は、上記のごとく軸方向Zと直交方向Xに押出成形を行うこと可能である。 In the manufacturing method of the present embodiment, the clay 20 is extruded in the direction X perpendicular to the axial direction Z as illustrated in FIG. Therefore, it is possible to continuously produce the inclined structure 210 by extrusion molding. This is because the inclined structure 210 includes a plurality of inclined portions 211 and a plurality of connecting portions 213 and 214 that connect the inclined portions 211 to each other, as illustrated in FIGS. Such an inclined structure 210 can be extruded in the axial direction Z and the orthogonal direction X as described above.
 すなわち、図14に例示される傾斜構造体210のYZ平面体を接続部213、214の伸長方向Xに押し出すことができる。その結果、上述のように押出成形による傾斜構造体210の連続的な製造が可能になる。したがって、傾斜構造体210を用いて得られるフィルタ1の生産性が良好になる。 That is, the YZ plane body of the inclined structure 210 illustrated in FIG. 14 can be pushed out in the extending direction X of the connecting portions 213 and 214. As a result, the inclined structure 210 can be continuously manufactured by extrusion as described above. Therefore, the productivity of the filter 1 obtained using the inclined structure 210 is improved.
 また、押出工程においては、押出成形により傾斜部211を形成している。そのため、坏土20の原料組成、混練条件、気孔制御条件、成形条件などを別途検討することなく、傾斜構造体を製造することができる。つまり、一般的な押出成形によるフィルタの製造と同様の製造条件を適用することができる。したがって、実際の量産上で有利である。 Further, in the extrusion process, the inclined portion 211 is formed by extrusion molding. Therefore, the inclined structure can be manufactured without separately considering the raw material composition, kneading conditions, pore control conditions, molding conditions, and the like of the clay 20. That is, the same manufacturing conditions as those for manufacturing filters by general extrusion molding can be applied. Therefore, it is advantageous in actual mass production.
 平行部形成工程においては、図17(a)、図17(b)、図18、図19(a)及び図19(b)に例示されるように、焼成後に平行壁となる複数の平行部221を形成する。これにより、平行部221と傾斜部211とを有するハニカム成形体100を得ることができる。平行壁形成材料220と坏土20とは、実質的に同じ材料であってもよいし、異なる材料であってもよい。すなわち、傾斜壁21と平行壁22とが同じ材料からなるフィルタ1だけでなく、異なる材料からなるフィルタ1を製造することが可能になる。また、平行壁形成材料220と坏土20との間で組成や原料の粒子径などを変更することにより、気孔率などの気孔条件が相互に異なる傾斜壁21及び平行壁22を形成することができる。 In the parallel portion forming step, as illustrated in FIGS. 17A, 17B, 18, 19A, and 19B, a plurality of parallel portions that become parallel walls after firing are illustrated. 221 is formed. Thereby, the honeycomb formed body 100 having the parallel part 221 and the inclined part 211 can be obtained. The parallel wall forming material 220 and the clay 20 may be substantially the same material or different materials. That is, it is possible to manufacture not only the filter 1 made of the same material for the inclined wall 21 and the parallel wall 22 but also the filter 1 made of a different material. In addition, by changing the composition or the particle diameter of the raw material between the parallel wall forming material 220 and the clay 20, the inclined wall 21 and the parallel wall 22 having different pore conditions such as porosity can be formed. it can.
 本実施形態のフィルタ1は、図1~図9に例示されるように、傾斜壁21と平行壁22とを有する。傾斜壁21は、軸方向Zに対して傾斜している。そのため、流入端面11に開口する縮小セル32は、流入端面11から流出端面12に向けてガス流路断面積S1が徐々に減少する。一方、流出端面12に開口する拡大セル33は、縮小セル32と相反してガス流路断面積S2が徐々に増大する。これらの縮小セル32と拡大セル33との内圧差が駆動力となり、排ガスGが傾斜壁21を通り抜ける。換言すると、図5~図7に例示される断面において、密度の濃いドットハッチング領域と密度の薄いドットハッチング領域とが傾斜壁21を介して隣り合っており、これらのハッチング領域の面積S1、S2が異なっている。このような構成が上述の内圧差を発生させる。 The filter 1 of the present embodiment includes an inclined wall 21 and a parallel wall 22 as illustrated in FIGS. 1 to 9. The inclined wall 21 is inclined with respect to the axial direction Z. Therefore, in the reduced cell 32 opened to the inflow end surface 11, the gas flow path cross-sectional area S 1 gradually decreases from the inflow end surface 11 toward the outflow end surface 12. On the other hand, the enlarged cell 33 that opens to the outflow end surface 12 has a gas passage cross-sectional area S 2 that gradually increases, contrary to the reduced cell 32. The internal pressure difference between the reduced cell 32 and the enlarged cell 33 becomes a driving force, and the exhaust gas G passes through the inclined wall 21. In other words, in the cross-sections illustrated in FIGS. 5 to 7, the dense dot hatching area and the low density dot hatching area are adjacent to each other via the inclined wall 21, and the areas S 1 , S 1 , S 2 is different. Such a configuration generates the above-described internal pressure difference.
 つまり、傾斜壁21を挟んで隣接する縮小セル32及び拡大セル33は、それぞれ流入端面11及び流出端面12に開口しており、縮小セル32と拡大セル33との間で内圧差を生じる隣接セル構造をとる。この構造によって排ガスGが傾斜壁21を透過し、排ガスG中のPMが傾斜壁21に捕集される。傾斜壁21の気孔率を適宜調整することにより、捕集率を高めたり、圧損の増大を防止したりすることができる。 That is, the adjacent reduced cell 32 and enlarged cell 33 across the inclined wall 21 open to the inflow end surface 11 and the outflow end surface 12, respectively, and are adjacent cells that cause an internal pressure difference between the reduced cell 32 and the enlarged cell 33. Take the structure. With this structure, the exhaust gas G passes through the inclined wall 21, and PM in the exhaust gas G is collected on the inclined wall 21. By appropriately adjusting the porosity of the inclined wall 21, it is possible to increase the collection rate or prevent an increase in pressure loss.
 一方、図1、図3、図4~図8に例示されるように、平行壁22を挟んで隣接するセル3間は、いずれも縮小セル32同士又は拡大セル33同士となる。そのため、平行壁22を挟んで隣接するセル3間には内圧差が生じない。したがって、傾斜壁21に比べて平行壁22は排ガスを透過しにくい。図5~図7においては、密度の濃いドットハッチング領域同士が平行壁22を介して隣り合う縮小セル32同士のガス流路断面積の関係に相当する。密度の薄いドットハッチングの領域同士は、平行壁22を介して隣り合う拡大セル33同士のガス流路断面積の関係に相当する。 On the other hand, as illustrated in FIG. 1, FIG. 3, and FIG. 4 to FIG. 8, the cells 3 adjacent to each other with the parallel wall 22 in between are either the reduced cells 32 or the expanded cells 33. Therefore, an internal pressure difference does not occur between the cells 3 adjacent to each other across the parallel wall 22. Therefore, the parallel wall 22 is less likely to transmit the exhaust gas than the inclined wall 21. 5 to 7, dot hatching areas having high density correspond to the relationship of the gas flow path cross-sectional areas of the reduced cells 32 adjacent to each other via the parallel wall 22. The areas of dot hatching with low density correspond to the relationship of the gas flow path cross-sectional areas of the enlarged cells 33 adjacent to each other via the parallel wall 22.
 上記のように平行壁22には内圧差によるガス透過が発生し難いため、平行壁22の気孔率は傾斜壁21よりも小さくすることができる。これにより、フィルタ1の強度を高めることができる。つまり、平行壁22は、多孔質であってもよいが、多孔質である必要はなく、非多孔体、すなわち緻密体であってもよい。上述のように平行壁22を挟むセル3間には内圧差が生じないため、平行壁22がたとえ多孔質であっても、平行壁22は傾斜壁21よりもガスを透過しにくいセル壁となり、あるいは実質的にガスを透過しないセル壁となる。 As described above, since the gas permeation due to the internal pressure difference hardly occurs in the parallel wall 22, the porosity of the parallel wall 22 can be made smaller than that of the inclined wall 21. Thereby, the strength of the filter 1 can be increased. That is, the parallel wall 22 may be porous, but need not be porous, and may be a non-porous body, that is, a dense body. As described above, there is no internal pressure difference between the cells 3 sandwiching the parallel wall 22, so even if the parallel wall 22 is porous, the parallel wall 22 becomes a cell wall that is less permeable to gas than the inclined wall 21. Alternatively, the cell wall does not substantially transmit gas.
 平行壁22の気孔率を小さくすると、上述のようにフィルタ1の強度を高めることができる。この場合には、軸方向Zに直交する例えばY軸方向の強度保障ができればよく、平行壁22によって形成される構造体がガス流の抵抗にならないように、できるだけその構造体の体積は小さいことが望ましい。そのため、平行壁22は、軸方向Zに対して平行であり、傾斜壁21に対して直行していることが好ましい。 If the porosity of the parallel wall 22 is reduced, the strength of the filter 1 can be increased as described above. In this case, it is only necessary to ensure the strength in the Y-axis direction orthogonal to the axial direction Z, and the volume of the structure is as small as possible so that the structure formed by the parallel walls 22 does not become a gas flow resistance. Is desirable. Therefore, it is preferable that the parallel wall 22 is parallel to the axial direction Z and is orthogonal to the inclined wall 21.
 このように、フィルタ1においては、傾斜壁21及び平行壁22にそれぞれ異なる機能を持たせることができる。例えば傾斜壁21においては圧損の増大を抑制しながら、PMを捕集させ、平行壁22においては実用上十分な強度を持たせることができる。 Thus, in the filter 1, the inclined wall 21 and the parallel wall 22 can have different functions. For example, PM can be collected in the inclined wall 21 while suppressing an increase in pressure loss, and the parallel wall 22 can have a practically sufficient strength.
(実施形態2)
 本実施形態においては、実施形態1とは異なる方法により平行部を形成する形態について説明する。なお、本実施形態以降において用いられる符号のうち、既出の実施形態等において用いた符号と同一のものは、特に示さない限り、既出の実施形態等におけるものと同様の構成要素等を表す。本形態の平行部形成工程においては、図20(a)、図20(b)、図21(a)、図21(b)に例示されるように、以下の切断工程及び積層工程を行う。
(Embodiment 2)
In the present embodiment, a mode in which the parallel portion is formed by a method different from that in the first embodiment will be described. Of the reference numerals used in and after the present embodiment, the same reference numerals as those used in the above-described embodiments and the like represent the same constituent elements as those in the above-described embodiments and the like unless otherwise specified. In the parallel part forming process of this embodiment, the following cutting process and laminating process are performed as illustrated in FIGS. 20A, 20B, 21A, and 21B.
 切断工程においては、図20(a)及び図20(b)に例示される傾斜構造体210を軸方向Zに切断する。具体的には、まず、実施形態1と同様にして傾斜構造体210を作製する。傾斜構造体210の切断は、X軸方向と直交する断面、すなわちYZ断面で行うことができる。軸方向Zに切断するとは、軸方向Zと平行に切断すること意味する。傾斜構造体210の切断方向は、接続部213、214の伸長方向Xと直交する方向でもある。 In the cutting step, the inclined structure 210 exemplified in FIGS. 20A and 20B is cut in the axial direction Z. Specifically, first, the inclined structure 210 is produced in the same manner as in the first embodiment. The inclined structure 210 can be cut in a cross section orthogonal to the X-axis direction, that is, a YZ cross section. Cutting in the axial direction Z means cutting in parallel with the axial direction Z. The cutting direction of the inclined structure 210 is also a direction orthogonal to the extending direction X of the connecting portions 213 and 214.
 これにより、図20(a)に例示される傾斜構造体210から図20(b)に例示される傾斜構造体片209を複数切り出すことができる。傾斜構造体210の切断は、所望の平行壁22の形成ピッチと例えば同じ幅で行うことができる。傾斜構造体片209の形状は、X軸方向の幅が小さい点を除いて傾斜構造体210と実質的に同じである。したがって、傾斜構造体片209は、傾斜構造体210と同様に傾斜部211及び接続部213、214を有している。 Thereby, a plurality of inclined structure pieces 209 illustrated in FIG. 20B can be cut out from the inclined structure 210 illustrated in FIG. The inclined structure 210 can be cut with the same width as the formation pitch of the desired parallel walls 22, for example. The shape of the inclined structure piece 209 is substantially the same as that of the inclined structure 210 except that the width in the X-axis direction is small. Therefore, the inclined structure piece 209 includes the inclined portion 211 and the connecting portions 213 and 214 as in the inclined structure 210.
 次いで、積層工程を行う。積層工程においては、図21(a)に例示されるように、多数の傾斜構造体片209と多数の成形シート225とを交互に積層する。成形シート225は、平行壁形成材料を含有する。このような成形シート225としては、所謂グリーンシートを用いることができる。 Next, a lamination process is performed. In the laminating step, as illustrated in FIG. 21A, a large number of inclined structure pieces 209 and a large number of molded sheets 225 are alternately stacked. The molded sheet 225 contains a parallel wall forming material. As such a molded sheet 225, a so-called green sheet can be used.
 成形シート225は、例えば次の様にして製造される。まず、コージェライト原料と、有機溶媒と、ブチラール系バインダとを混合する。これにより、スラリー状の平行壁形成材料を作製する。この平行壁形成材料を例えばドクターブレード法により所定厚みのシート状に成形する。このようにして、成形シート225を得ることができる。成形シートの厚みは、焼成後に所望の厚みの平行壁22が形成されるように適宜調整できる。 The molded sheet 225 is manufactured as follows, for example. First, a cordierite raw material, an organic solvent, and a butyral binder are mixed. Thereby, a slurry-like parallel wall forming material is produced. This parallel wall forming material is formed into a sheet having a predetermined thickness by, for example, a doctor blade method. In this way, a molded sheet 225 can be obtained. The thickness of the molded sheet can be adjusted as appropriate so that the parallel wall 22 having a desired thickness is formed after firing.
 傾斜構造体片209と成形シート225との積層においては、傾斜構造体片209の切断面203と成形シート225のシート面226とを当接させる。傾斜構造体片209の切断面203は、図17(b)における例えばジグザグ状、波状のYZ面である。積層工程における積層方向は、図21(a)に例示されるように、傾斜構造体片209の接続部213、214の伸長方向と成形シート225の厚み方向とが平行となる方向である。 In the lamination of the inclined structure piece 209 and the molded sheet 225, the cut surface 203 of the inclined structure piece 209 and the sheet surface 226 of the formed sheet 225 are brought into contact with each other. The cut surface 203 of the inclined structure piece 209 is, for example, a zigzag or wavy YZ surface in FIG. As illustrated in FIG. 21A, the stacking direction in the stacking process is a direction in which the extending direction of the connecting portions 213 and 214 of the inclined structure piece 209 and the thickness direction of the molded sheet 225 are parallel to each other.
 積層工程を行うことにより、図21(b)に例示されるように、接続部213、214の伸長方向に直交する平行部221を形成することができる。このようにして、傾斜部211と平行部221とを有するハニカム成形体100を得ることができる。平行部221は成形シート225からなる。ハニカム成形体100は、多数の傾斜構造体片209と多数の成形シート225とが交互に積層された積層体からなる。 By performing the lamination process, as illustrated in FIG. 21B, it is possible to form the parallel part 221 orthogonal to the extending direction of the connection parts 213 and 214. In this way, the honeycomb formed body 100 having the inclined portion 211 and the parallel portion 221 can be obtained. The parallel part 221 includes a molded sheet 225. The honeycomb formed body 100 is formed of a stacked body in which a large number of inclined structure body pieces 209 and a large number of formed sheets 225 are alternately stacked.
 積層工程においては、傾斜構造体片209と成形シート225との当接面に有機溶剤を塗布することが好ましい。この場合には、傾斜構造体片209と成形シート225との接着性を向上させることができる。そのため、傾斜壁21や平行壁22にクラックが発生したり、変形が発生したりすることを防止できる。 In the stacking step, it is preferable to apply an organic solvent to the contact surface between the inclined structure piece 209 and the molded sheet 225. In this case, the adhesiveness between the inclined structure piece 209 and the molded sheet 225 can be improved. For this reason, it is possible to prevent the inclined wall 21 and the parallel wall 22 from being cracked or deformed.
 接着性をより向上させるという観点からは、有機溶剤としては、成形シート225の作製時に用いたものと同様又は類似のものを用いることが好ましい。ここで、類似とは、例えば相互に相溶性のある有機溶媒のことを意味する。有機溶剤の塗布は、例えばスプレーにより行うことができる。また、有機溶剤の塗布は、傾斜構造体片209の切断面203に対して行うことができる。また、傾斜構造体片209と成形シート225とを熱圧着により接合させてもよい。この場合にも、クラックの発生や変形を防止することができる。 From the viewpoint of further improving the adhesiveness, it is preferable to use the same or similar organic solvent as that used when the molded sheet 225 is produced. Here, “similar” means, for example, organic solvents that are compatible with each other. The organic solvent can be applied by spraying, for example. The organic solvent can be applied to the cut surface 203 of the inclined structure piece 209. Moreover, you may join the inclination structure piece 209 and the shaping | molding sheet 225 by thermocompression bonding. Also in this case, generation | occurrence | production and deformation | transformation of a crack can be prevented.
 本形態において得られるハニカム成形体100を用いて、その他は実施形態1と同様の操作を行うことにより、実施形態1と同様のフィルタ1を得ることができる。本形態においては、上述のように成形シート225を用いて平行部221を形成することができる。この成形シート225は、連続的に製造することが可能である。したがって、傾斜構造体210だけでなく、成形シート225も連続的に製造することができる。よって、フィルタ1の生産性をさらに高めることが可能になる。 Using the honeycomb molded body 100 obtained in the present embodiment, the filter 1 similar to the first embodiment can be obtained by performing the same operations as in the first embodiment. In this embodiment, the parallel portion 221 can be formed using the molded sheet 225 as described above. This molded sheet 225 can be manufactured continuously. Therefore, not only the inclined structure 210 but also the molded sheet 225 can be manufactured continuously. Therefore, the productivity of the filter 1 can be further increased.
 また、本形態の製造方法においては、平行壁22にて区切られる傾斜壁構造を段違いに交差させることができる。そのような構造とすることで、流入端面11及び流出端面12における傾斜壁21の流入側接続部214及び流出側接続部213も同様に段違いに形成される。その結果、流入端面11において、平行壁22と傾斜壁21の流入側接続部214との接点数が増大し熱応力を分散させることができる。その他の構成及び作用効果は、実施形態1と同様である。 Further, in the manufacturing method of the present embodiment, the inclined wall structure partitioned by the parallel wall 22 can be crossed in steps. By adopting such a structure, the inflow side connection portion 214 and the outflow side connection portion 213 of the inclined wall 21 on the inflow end surface 11 and the outflow end surface 12 are also formed in a different manner. As a result, in the inflow end face 11, the number of contacts between the parallel wall 22 and the inflow side connection portion 214 of the inclined wall 21 increases, and thermal stress can be dispersed. Other configurations and operational effects are the same as those of the first embodiment.
 本開示は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。以下、実施形態1及び2の製造方法によって製造可能なフィルタの変形例について説明するが、本開示の製造方法は、これらのフィルタの製造に限定されるものではない。具体的には、傾斜壁21を接続する接続部213、214が軸方向Zと直交方向であるX軸方向に伸びる場合には、本開示の製造方法の適用が可能となる。 The present disclosure is not limited to the above embodiments, and can be applied to various embodiments without departing from the scope of the disclosure. Hereinafter, although the modified example of the filter which can be manufactured with the manufacturing method of Embodiment 1 and 2 is demonstrated, the manufacturing method of this indication is not limited to manufacture of these filters. Specifically, when the connecting portions 213 and 214 that connect the inclined wall 21 extend in the X-axis direction that is orthogonal to the axial direction Z, the manufacturing method of the present disclosure can be applied.
(変形例1)
 次に、傾斜壁が軸方向の両末端側に曲線的に傾斜するフィルタの例について説明する。図22及び図23に例示されるように、本例のフィルタ1は、傾斜壁21が軸方向Zの流入端面11側又は流出端面12側にそれぞれ湾曲している。
(Modification 1)
Next, an example of a filter in which the inclined walls are curvedly inclined toward both ends in the axial direction will be described. 22 and FIG. 23, in the filter 1 of this example, the inclined wall 21 is curved toward the inflow end surface 11 side or the outflow end surface 12 side in the axial direction Z, respectively.
 本例のフィルタ1は、実施形態1と同様にXY断面の外縁形状が四角形のセル3を有する。対向する一対のセル壁2が傾斜壁21によって形成されており、対向する残りの一対のセル壁2が平行壁22によって形成されている(図1参照)。図22に例示されるように対向する2つの傾斜壁21は、軸方向Zの中央部分においては直線的に傾斜しているが、図22及び図23に例示されるように、流入端面11側、流出端面12側に向けて曲線的に傾斜する。 The filter 1 of the present example includes the cells 3 whose outer edge shape in the XY cross section is a square as in the first embodiment. A pair of opposing cell walls 2 is formed by an inclined wall 21, and the remaining pair of opposing cell walls 2 is formed by a parallel wall 22 (see FIG. 1). The two inclined walls 21 facing each other as illustrated in FIG. 22 are linearly inclined in the central portion in the axial direction Z, but as illustrated in FIGS. Inclined in a curved manner toward the outflow end face 12 side.
 より具体的には、軸方向Zに伸びる傾斜壁21は、流入端面11側に向けて曲線的に傾斜する流入側曲線傾斜領域Acfと、流出端面12側に向けて曲線的に傾斜する流出側曲線傾斜領域Acrとを有する。縮小セル32においては、一対の傾斜壁21が流出側曲線傾斜領域Acrにおいて接続して流出側接続部213が形成されている。一方、拡大セル33においては、一対の傾斜壁21が流入側曲線傾斜領域Acfにおいて接続して流入側接続部214が形成されている。その結果、流入側接続部214及び流出側接続部213は湾曲構造になっている。流入側曲線傾斜領域Acfと流出側曲線傾斜領域Acrとの間の傾斜壁21は、直線的に傾斜する。 More specifically, the inclined wall 21 extending in the axial direction Z includes an inflow-side curved inclined area Acf that curves in a direction toward the inflow end surface 11 and an outflow side that inclines in a curve toward the outflow end surface 12. And a curved slope region Acr. In the reduced cell 32, the pair of inclined walls 21 are connected in the outflow side curved inclined area Acr to form the outflow side connection portion 213. On the other hand, in the enlarged cell 33, the pair of inclined walls 21 are connected in the inflow side curved inclined area Acf to form the inflow side connection portion 214. As a result, the inflow side connection portion 214 and the outflow side connection portion 213 have a curved structure. The inclined wall 21 between the inflow side curved inclined area Acf and the outflow side curved inclined area Acr is linearly inclined.
 上記のように傾斜壁21が両端面11、12側に湾曲しているため、傾斜壁21の接平面TPと軸方向Zとのなす角αが軸方向の両端面11、12に向かって大きくなる。具体的には、図23に例示されるように、軸方向Zのより端面11、12側における接平面TP2と軸方向Zとのなす角α2と、接平面TP2よりも軸方向Zの内部における接平面TP1と軸方向Zとのなす角α1とがα1<α2の関係を満足する。 As described above, since the inclined wall 21 is curved toward the both end surfaces 11 and 12, the angle α formed between the tangential plane TP of the inclined wall 21 and the axial direction Z increases toward the both end surfaces 11 and 12 in the axial direction. Become. Specifically, as illustrated in FIG. 23, the angle α 2 formed between the tangential plane TP 2 and the axial direction Z on the side of the end faces 11 and 12 in the axial direction Z, and the axial direction Z more than the tangential plane TP 2. The angle α 1 formed between the tangential plane TP 1 and the axial direction Z satisfies the relationship α 12 .
 本例のように、傾斜壁21は、曲面を有していてもよく、図22及び図23に例示されるようにYZ断面において傾斜壁21が曲線状に傾斜して湾曲している場合には、傾斜壁21を通過する排ガスの流速のバラツキをより小さくすることができる。後述の実験例で示すように、実施形態1及び後述の変形例2のフィルタ1に比べて、最もばらつきが小さくなる。そのため、圧損を十分に低下させつつ、優れた捕集率を示すことができる。 As in this example, the inclined wall 21 may have a curved surface, and when the inclined wall 21 is curved and curved in the YZ cross section as illustrated in FIGS. 22 and 23. The variation in the flow rate of the exhaust gas passing through the inclined wall 21 can be further reduced. As shown in an experimental example described later, the variation is the smallest as compared with the filter 1 of the first embodiment and the modified example 2 described later. Therefore, it is possible to show an excellent collection rate while sufficiently reducing the pressure loss.
 また、図22に例示されるように、曲線状に傾斜する一対の傾斜壁21は、傾斜方向が軸方向Zに対して対称であり、流入端面11で接続する。その結果、流入側曲線傾斜領域Acfにおいては、セル3のガス流路断面積が流入端面11側に向かうにつれて増大し、その増大量も流入端面11側に向かうにつれて大きくなる。流出側曲線傾斜領域Acr側についても同様である。したがって、流入端面11及び流出端面12におけるセル3の開口面積がより大きくなり、その結果圧損をより小さくできると考えられる。なお、曲線状に傾斜する傾斜壁21の傾斜方向は、接線方向のことを意味する。したがって、傾斜方向が軸方向Zに対して対称であることは、曲線状の傾斜壁21上における各接線が対称であることを意味するが、厳密に全ての接線が対称でなくとも外観上実質的に対称であればよい。 Further, as illustrated in FIG. 22, the pair of inclined walls 21 that are inclined in a curved shape are symmetrical with respect to the axial direction Z, and are connected at the inflow end surface 11. As a result, in the inflow side curved slope region Acf, the gas flow path cross-sectional area of the cell 3 increases toward the inflow end surface 11 side, and the increase amount also increases toward the inflow end surface 11 side. The same applies to the outflow side curved slope region Acr side. Therefore, it is considered that the opening area of the cell 3 at the inflow end surface 11 and the outflow end surface 12 becomes larger, and as a result, the pressure loss can be further reduced. In addition, the inclination direction of the inclined wall 21 inclined in a curve means a tangential direction. Therefore, the fact that the inclination direction is symmetric with respect to the axial direction Z means that each tangent on the curved inclined wall 21 is symmetric, but even if not all tangents are strictly symmetric, they are substantially in appearance. As long as it is symmetrical.
 また、図22においては、流入側曲線傾斜領域Acfと流出側曲線傾斜領域Acrとの間が直線状に傾斜する傾斜壁の例を示したが、直線状に傾斜する領域は必ずしも必要なわけではない。具体的な図示を省略するが、フィルタのYZ断面において、例えば傾斜壁における軸方向の中央に変曲点を設けることができる。これにより、傾斜方向が軸方向に対して互いに対称な流入側曲線傾斜領域Acfと流出側曲線傾斜領域Acrとが変曲点において連結された傾斜壁を形成することが可能になる。 FIG. 22 shows an example of an inclined wall that linearly slopes between the inflow side curved slope area Acf and the outflow side curved slope area Acr. However, the linearly sloped area is not necessarily required. Absent. Although not specifically shown, an inflection point can be provided in the center in the axial direction of the inclined wall in the YZ section of the filter. Accordingly, it is possible to form an inclined wall in which the inflow-side curved inclined region Acf and the outflow-side curved inclined region Acr whose inclination directions are symmetric with respect to the axial direction are connected at the inflection point.
 本例のフィルタ1は、図22に例示される傾斜壁21と同様の断面構造を有する傾斜構造体を用いて製造される。具体的には、図22における傾斜壁のYZ平面体をX軸方向に押し出すことにより、傾斜構造体を得ることができる。このようにして得られた傾斜構造体を用いて、実施形態1又は実施形態2と同様してフィルタ1を製造することができる。その他の構成及び作用効果は、実施形態1、実施形態2と同様である。 The filter 1 of this example is manufactured using an inclined structure having a cross-sectional structure similar to that of the inclined wall 21 illustrated in FIG. Specifically, the inclined structure can be obtained by extruding the YZ plane body of the inclined wall in FIG. 22 in the X-axis direction. Using the inclined structure obtained in this manner, the filter 1 can be manufactured in the same manner as in the first or second embodiment. Other configurations and operational effects are the same as those in the first and second embodiments.
(変形例2)
 次に、傾斜壁が流入端面及び流出端面よりも軸方向の内側において接続して閉塞したフィルタの例について図24を参照して説明する。本例のフィルタ1は、実施形態1と同様に、外縁が四角形状のセル3を有する。対向する一対のセル壁2が軸方向Zに対して傾斜する傾斜壁21を有し、対向する残りの一対のセル壁2が軸方向Zに対して平行に伸びる平行壁22によって形成されている(図1参照)。図24に例示されるように、軸方向Zに伸びる一対の傾斜壁21は、流入端面11又は流出端面12よりも軸方向Zの内側において接続して接続部213、214が形成されている。
(Modification 2)
Next, an example of a filter in which the inclined wall is connected and closed on the inner side in the axial direction from the inflow end surface and the outflow end surface will be described with reference to FIG. As in the first embodiment, the filter 1 of this example includes cells 3 whose outer edges are square. A pair of opposed cell walls 2 has an inclined wall 21 inclined with respect to the axial direction Z, and the remaining pair of opposed cell walls 2 are formed by parallel walls 22 extending parallel to the axial direction Z. (See FIG. 1). As illustrated in FIG. 24, the pair of inclined walls 21 extending in the axial direction Z are connected to the inner side in the axial direction Z from the inflow end surface 11 or the outflow end surface 12 to form connection portions 213 and 214.
 図24に例示される本例のフィルタ1について、傾斜壁21を含み軸方向Zの両端面11、12まで伸びる一続きのセル壁2に着目して説明する。このセル壁2は、軸方向Zの中央において流入側接続部214と流出側接続部214との間に形成された傾斜壁21を有する。さらに、上述の一続きのセル壁2は、傾斜壁21の流入側に連なると共に軸方向Zに対して平行に伸びる流入側平行壁215と、傾斜壁21の流出側に連なると共に軸方向Zに対して平行に伸びる流出側平行壁216とを有する。 The filter 1 of this example illustrated in FIG. 24 will be described by paying attention to a continuous cell wall 2 including the inclined wall 21 and extending to both end faces 11 and 12 in the axial direction Z. The cell wall 2 has an inclined wall 21 formed between the inflow side connection portion 214 and the outflow side connection portion 214 at the center in the axial direction Z. Further, the continuous cell wall 2 is connected to the inflow side of the inclined wall 21 and extends in parallel to the axial direction Z, and is connected to the outflow side of the inclined wall 21 and extends in the axial direction Z. It has an outflow side parallel wall 216 extending in parallel with respect to it.
 傾斜壁21、流入側平行壁215、及び流出側平行壁216は、組成や気孔率などがそれぞれ異なる構成部材によって形成することができる。フィルタ1の製造時に、実施形態1と同様に押出成形により生産性良く傾斜構造体を製造するためには、傾斜壁21、流入側平行壁215、及び流出側平行壁216は、同じ構成部材からなることが好ましい。 The inclined wall 21, the inflow side parallel wall 215, and the outflow side parallel wall 216 can be formed by components having different compositions and porosity. In order to manufacture an inclined structure with high productivity by extrusion molding in the same manner as in Embodiment 1 when manufacturing the filter 1, the inclined wall 21, the inflow side parallel wall 215, and the outflow side parallel wall 216 are made of the same constituent members. It is preferable to become.
 また、縮小セル32及び拡大セル33を囲むセル壁の観点から本例のフィルタ1を説明する。流入端面11から排ガスGが流入する縮小セル32は、対向する一対の傾斜壁21と、各傾斜壁21の流入側に連なると共に軸方向Zに対して平行に伸びる一対の流入側平行壁215とを有する。縮小セル32における一対の傾斜壁21は、流出端面12側に向けて互いに近づくように傾斜し、流出端面12よりも軸方向Zの内側において接続する。図24に例示されるように一対の傾斜壁21は例えば直接接続することにより流出側接続部213が形成される。これにより、縮小セル32は流出側接続部213において閉塞している。流出側接続部213は例えば軸方向Zにおける流出端面12寄りに形成することができる。流出側接続部213よりも流出端面12側には、接続した傾斜壁21が1つのセル壁となって軸方向Zに平行に伸びる流出側平行壁216が形成されている。 Further, the filter 1 of this example will be described from the viewpoint of the cell wall surrounding the reduced cell 32 and the enlarged cell 33. The reduced cell 32 into which the exhaust gas G flows from the inflow end face 11 includes a pair of opposed inclined walls 21, a pair of inflow side parallel walls 215 that are connected to the inflow side of each inclined wall 21 and extend parallel to the axial direction Z. Have The pair of inclined walls 21 in the reduced cell 32 are inclined so as to approach each other toward the outflow end surface 12, and are connected inside the outflow end surface 12 in the axial direction Z. As illustrated in FIG. 24, the pair of inclined walls 21 are directly connected, for example, to form the outflow side connection portion 213. As a result, the reduced cell 32 is blocked at the outflow side connection portion 213. The outflow side connection portion 213 can be formed near the outflow end surface 12 in the axial direction Z, for example. An outflow side parallel wall 216 extending in parallel with the axial direction Z is formed on the outflow end surface 12 side of the outflow side connection portion 213, and the connected inclined wall 21 is formed as one cell wall.
 流出端面12から排ガスGが排出さる拡大セル33は、対向する一対の傾斜壁21と、各傾斜壁21の流出側に連なると共に軸方向Zに対して平行に伸びる一対の流出側平行壁216とを有する。拡大セル33における一対の傾斜壁21は、流入端面11側に向けて互いに近づくように傾斜し、流入端面11よりも軸方向Zの内側において接続する。図24に例示されるように、一対の傾斜壁21は例えば直接接続することにより流入側接続部214が形成される。これにより、拡大セル33は流入側接続部214において閉塞している。流入側接続部214は例えば軸方向Zにおける流入端面11寄りに形成することができる。流入側接続部214よりも流入端面11側には、接続した傾斜壁21が1つのセル壁となって軸方向Zに平行に伸びる流入側平行壁215が形成されている。 The enlarged cell 33 from which the exhaust gas G is discharged from the outflow end face 12 includes a pair of opposed inclined walls 21, a pair of outflow side parallel walls 216 that are connected to the outflow side of each inclined wall 21 and extend parallel to the axial direction Z. Have The pair of inclined walls 21 in the expansion cell 33 are inclined so as to approach each other toward the inflow end surface 11, and are connected inside the axial direction Z from the inflow end surface 11. As illustrated in FIG. 24, the inflow side connection portion 214 is formed by directly connecting the pair of inclined walls 21, for example. As a result, the enlarged cell 33 is closed at the inflow side connection portion 214. The inflow side connection portion 214 can be formed near the inflow end surface 11 in the axial direction Z, for example. An inflow side parallel wall 215 extending in parallel with the axial direction Z is formed on the inflow end face 11 side of the inflow side connection portion 214, and the connected inclined wall 21 is formed as one cell wall.
 縮小セル32及び拡大セル33において、対向する一対の傾斜壁21の傾斜方向は、軸方向Zについて例えば互いに対称にすることができる。縮小セル32及び拡大セル33は、両者の間に共通の傾斜壁21を有して隣り合っており、例えばY軸方向に交互に形成される。 In the reduced cell 32 and the enlarged cell 33, the inclination directions of the pair of opposing inclined walls 21 can be made symmetrical with respect to the axial direction Z, for example. The reduced cell 32 and the enlarged cell 33 are adjacent to each other with the common inclined wall 21 therebetween, and are formed alternately in the Y-axis direction, for example.
 図24に例示されるように、フィルタ1は、傾斜壁21を介して例えばY軸方向に縮小セル32と拡大セル33とが隣り合う連通領域Acと、隣り合わない非連通領域Ancとを有する。連通領域Acは、排ガスGが傾斜壁21を通過す領域であり、縮小セル32内に流入した排ガスGが連通領域Acにおいて傾斜壁21を通過して拡大セル33から排出される。一方、非連通領域Ancにおいては、縮小セル32同士が流入側平行壁215を介して隣り合い、拡大セル33同士が流出側平行壁216を介して隣り合っている。したがって、非連通領域Ancは、排ガスGがセル壁を実質的に通過しない領域となる。連通領域Acは、軸方向Zの中央に形成されており、非連通領域Ancは、軸方向Zの両端面11、12から所定領域にそれぞれ形成される。 As illustrated in FIG. 24, the filter 1 includes a communication region Ac in which the reduced cell 32 and the enlarged cell 33 are adjacent to each other in the Y-axis direction, for example, and a non-adjacent non-communication region Anc through the inclined wall 21. . The communication region Ac is a region through which the exhaust gas G passes through the inclined wall 21, and the exhaust gas G that has flowed into the reduced cell 32 passes through the inclined wall 21 in the communication region Ac and is discharged from the enlarged cell 33. On the other hand, in the non-communication region Anc, the reduced cells 32 are adjacent to each other via the inflow side parallel wall 215, and the enlarged cells 33 are adjacent to each other via the outflow side parallel wall 216. Accordingly, the non-communication region Anc is a region where the exhaust gas G does not substantially pass through the cell wall. The communication area Ac is formed at the center in the axial direction Z, and the non-communication area Anc is formed in each of the predetermined areas from both end faces 11 and 12 in the axial direction Z.
 流入側平行壁215と流出側平行壁216とは例えば同じ長さであり、流入端面11側及び流出端面12側の非連通領域Ancも例えば同じ長さにすることができる。流入側平行壁215の長さ及び流出側平行壁216の長さは、適宜変更することが可能であり、両者の長さは同じであっても異なっていてもよい。 The inflow side parallel wall 215 and the outflow side parallel wall 216 have the same length, for example, and the non-communication areas Anc on the inflow end surface 11 side and the outflow end surface 12 side can also have the same length, for example. The length of the inflow side parallel wall 215 and the length of the outflow side parallel wall 216 can be changed as appropriate, and the lengths of both may be the same or different.
 同じ形状、大きさのフィルタ1において同じセルピッチでセル壁2を形成する場合においては、実施形態1のように傾斜壁21の接続部213、214を流出端面12、流入端面11にそれぞれ形成した場合に比べて(図2参照)、本例のように接続部213、214をそれぞれ流出端面12、流入端面11よりも軸方向Zの内側に形成した場合には(図24参照)、流入端面11、流出端面12でのセル壁2に対するガス透過が発生しない助走区間を設けることができる。この助走区間の存在により、流入端面11でのセル壁2への衝突によるガス乱流の影響によって起こるセル3への流入ロスやガス集中が抑制される。これにより、圧損を低下させることができる。 When the cell walls 2 are formed at the same cell pitch in the filters 1 having the same shape and size, the connecting portions 213 and 214 of the inclined wall 21 are formed on the outflow end surface 12 and the inflow end surface 11 as in the first embodiment. 2 (see FIG. 2), when the connecting portions 213 and 214 are formed inside the outflow end surface 12 and the inflow end surface 11 in the axial direction Z (see FIG. 24), respectively, as in this example (see FIG. 24). A run-up section where gas permeation to the cell wall 2 at the outflow end face 12 does not occur can be provided. Due to the presence of this running section, inflow loss and gas concentration into the cell 3 caused by the influence of gas turbulence due to the collision with the cell wall 2 at the inflow end face 11 are suppressed. Thereby, pressure loss can be reduced.
 後述の実験例において示すように、本例のように、直線的に伸びる傾斜壁21が両端面11、12よりも内側で接続している場合には、実施形態1のように両端面11、12において接続している場合程ではないものの、傾斜壁21を通過する排ガスGの流速のバラツキを小さくすることができる。そのため、圧損を低下させつつ、優れた捕集率を示すことが可能になる。 As shown in an experimental example to be described later, when the inclined wall 21 extending linearly is connected inside the both end surfaces 11 and 12 as in this example, both end surfaces 11 and Although not as much as when connected at 12, the variation in the flow velocity of the exhaust gas G passing through the inclined wall 21 can be reduced. Therefore, it is possible to show an excellent collection rate while reducing the pressure loss.
 本例のフィルタ1は、図24に例示される断面図において、傾斜壁21、流入側平行壁215、及び流出側平行壁216からなる断面体と同様の断面構造を有する傾斜構造体を用いて製造される。具体的には、図24において、傾斜壁21、流入側平行壁215、及び流出側平行壁216からなるYZ平面体をX軸方向に押し出すことにより、傾斜構造体を得ることができる。このようにして得られた傾斜構造体を用いて、実施形態1又は実施形態2と同様してフィルタ1を製造することができる。その他の構成及び作用効果は、実施形態1、実施形態2と同様である。 In the cross-sectional view illustrated in FIG. 24, the filter 1 of the present example uses an inclined structure having a cross-sectional structure similar to that of the cross-sectional body including the inclined wall 21, the inflow side parallel wall 215, and the outflow side parallel wall 216. Manufactured. Specifically, in FIG. 24, an inclined structure can be obtained by extruding a YZ plane including the inclined wall 21, the inflow side parallel wall 215, and the outflow side parallel wall 216 in the X-axis direction. Using the inclined structure obtained in this manner, the filter 1 can be manufactured in the same manner as in the first or second embodiment. Other configurations and operational effects are the same as those in the first and second embodiments.
(変形例3)
 次に、傾斜壁が連結部材によって接続されたフィルタの例について説明する。上述の実施形態1においては、軸方向Zに伸びる対向する一対の傾斜壁21同士が接続部213、214において直接接続していた。本例においては、図25及び図26に例示されるように、例えば端面11、12と平行な連結部材23を介して傾斜壁21が連結されたフィルタ1について説明する。
(Modification 3)
Next, an example of a filter in which inclined walls are connected by a connecting member will be described. In the above-described first embodiment, the pair of opposing inclined walls 21 extending in the axial direction Z are directly connected to each other at the connection portions 213 and 214. In this example, as illustrated in FIG. 25 and FIG. 26, for example, the filter 1 in which the inclined wall 21 is connected via a connecting member 23 parallel to the end surfaces 11 and 12 will be described.
 本例のフィルタ1は、実施形態1と同様にXY断面の外縁形状が四角形のセル3を有する。対向する一対のセル壁2が軸方向Zに対して傾斜する傾斜壁21によって形成されており、対向する残りの一対のセル壁2が軸方向Zに対して平行に伸びる平行壁22によって形成されている(図1参照)。図25及び図26に例示されるように、軸方向Zに伸びる一対の傾斜壁21は、直接交わって接続しておらず、連結部材23を介して連結されている。 The filter 1 of the present example includes the cells 3 whose outer edge shape in the XY cross section is a square as in the first embodiment. A pair of opposing cell walls 2 are formed by inclined walls 21 inclined with respect to the axial direction Z, and the remaining pair of opposing cell walls 2 are formed by parallel walls 22 extending parallel to the axial direction Z. (See FIG. 1). As illustrated in FIG. 25 and FIG. 26, the pair of inclined walls 21 extending in the axial direction Z are not directly crossed but connected via a connecting member 23.
 縮小セル32は、流出端面12に設けられた流出側連結部材231により閉塞されており、流出側連結部材231により流出側接続部213が形成されている。一方、拡大セル33は、流入端面11に設けられた流入側連結部材232により閉塞されており、流入側連結部材232により流入側接続部214が形成されている。 The reduced cell 32 is closed by an outflow side connecting member 231 provided on the outflow end surface 12, and an outflow side connecting portion 213 is formed by the outflow side connecting member 231. On the other hand, the enlarged cell 33 is closed by an inflow side connecting member 232 provided on the inflow end surface 11, and an inflow side connecting portion 214 is formed by the inflow side connecting member 232.
 各傾斜壁21は、流入端面11から流出端面12に向かって連続的にかつ直線的に傾斜している。同じ形状、大きさのフィルタ1において同じセルピッチで傾斜壁21を形成する場合においては、実施形態1のように傾斜壁21が端面11、12において交わって接続する場合に比べて(図2参照)、本例のように傾斜壁21が端面11、12において連結部材23を介して連結される場合には、傾斜壁21の傾斜角度が小さくなる。 Each inclined wall 21 is continuously and linearly inclined from the inflow end surface 11 toward the outflow end surface 12. In the case where the inclined walls 21 are formed at the same cell pitch in the filters 1 having the same shape and size, compared to the case where the inclined walls 21 cross and connect at the end faces 11 and 12 as in the first embodiment (see FIG. 2). When the inclined wall 21 is connected to the end surfaces 11 and 12 via the connecting member 23 as in this example, the inclination angle of the inclined wall 21 is reduced.
 連結部材23は、例えば軸方向Zと直交する面を有する。連結部材23は、上述のごとく、流入端面11、12と平行に設けることができるが、一対の傾斜壁21を連結することができれば傾斜していてもよい。連結部材23の材質は、適宜選択可能である。特に限定されるわけではないが、例えば傾斜壁21や平行壁22などと同様にコージェライトによって形成することができる。フィルタ1の製造時に、実施形態1と同様に押出成形により生産性良く傾斜構造体を製造するためには、傾斜壁21及び連結部材23は、同じ構成部材からなることが好ましい。 The connecting member 23 has a surface orthogonal to the axial direction Z, for example. As described above, the connecting member 23 can be provided in parallel with the inflow end surfaces 11 and 12, but may be inclined if the pair of inclined walls 21 can be connected. The material of the connecting member 23 can be selected as appropriate. Although not particularly limited, for example, it can be formed of cordierite similarly to the inclined wall 21 and the parallel wall 22. When manufacturing the filter 1, the inclined wall 21 and the connecting member 23 are preferably made of the same constituent members in order to manufacture the inclined structure with high productivity by extrusion as in the first embodiment.
 本例のように、軸方向Zに対して直線的に傾斜して伸びる傾斜壁21を両端面11、12において連結部材23により連結させることができる。上述のごとく、傾斜角度を小さくすることが可能になるため、排ガスGの傾斜壁21内の通過距離が大きくなる。そのため、PMの捕集率の向上が可能になる。 As in this example, the inclined wall 21 extending linearly with respect to the axial direction Z can be connected by the connecting member 23 at both end faces 11 and 12. As described above, since the inclination angle can be reduced, the passage distance of the exhaust gas G in the inclined wall 21 is increased. Therefore, the PM collection rate can be improved.
 また、連結部材23の気孔率を調整することにより、端面11、12の連結部材23においても、排ガスG中のPMの捕集を行うことが可能になる。傾斜壁21を有するため、各セル3の端面11、12における連結部材23の形成面積は、例えば後述の比較例1のように、傾斜壁21を有しておらず軸方向Zに平行に伸びるセル壁を有するフィルタにおける連結部材23の形成面積に比べて小さくなる。そのため、圧損の低減も可能になる。連結部材23の形成面積は、フィルタ1の端面11、12における連結部材23の面積である。 Further, by adjusting the porosity of the connecting member 23, the PM in the exhaust gas G can be collected also in the connecting member 23 of the end surfaces 11 and 12. Since the inclined wall 21 is provided, the formation area of the connecting member 23 on the end faces 11 and 12 of each cell 3 does not have the inclined wall 21 and extends parallel to the axial direction Z as in Comparative Example 1 described later, for example. This is smaller than the formation area of the connecting member 23 in the filter having cell walls. Therefore, pressure loss can be reduced. The formation area of the connecting member 23 is an area of the connecting member 23 on the end faces 11 and 12 of the filter 1.
 本例のフィルタ1は、図25に例示される断面図において、傾斜壁21及び連結部材23からなる断面体と同様の断面構造を有する傾斜構造体を用いて製造される。具体的には、図25における傾斜壁21及び連結部材23からなるYZ平面体をX軸方向に押し出すことにより、傾斜構造体を得ることができる。このようにして得られた傾斜構造体を用いて、実施形態1又は実施形態2と同様してフィルタ1を製造することができる。その他の構成及び作用効果は、実施形態1、実施形態2と同様である。 The filter 1 of this example is manufactured using an inclined structure having a cross-sectional structure similar to that of the cross-sectional body including the inclined wall 21 and the connecting member 23 in the cross-sectional view illustrated in FIG. Specifically, an inclined structure can be obtained by extruding a YZ plane body composed of the inclined wall 21 and the connecting member 23 in FIG. 25 in the X-axis direction. Using the inclined structure obtained in this manner, the filter 1 can be manufactured in the same manner as in the first or second embodiment. Other configurations and operational effects are the same as those in the first and second embodiments.
(変形例4)
 次に、平行壁の軸方向の端部が軸方向の端面よりも内側に形成されたフィルタの例について説明する。上述の実施形態1においては、平行壁22は、軸方向Zにおける両端面11、12まで形成されていた。本例においては、図27、図28(a)及び図28(b)に例示されるように、平行壁22は、軸方向Zの両端面11、12には到達せず、平行壁22の端部222は、端面11、12よりも軸方向Zの内側にある。
(Modification 4)
Next, an example of a filter in which the end portion in the axial direction of the parallel wall is formed inside the end surface in the axial direction will be described. In the first embodiment described above, the parallel wall 22 is formed up to both end faces 11 and 12 in the axial direction Z. In this example, as illustrated in FIGS. 27, 28 (a), and 28 (b), the parallel wall 22 does not reach both end faces 11, 12 in the axial direction Z, and the parallel wall 22 The end portion 222 is inside the axial direction Z with respect to the end surfaces 11 and 12.
 本例のフィルタ1は、実施形態1と同様にXY断面の外縁形状が四角形のセル3を有する。対向する一対のセル壁2が軸方向Zに対して傾斜して伸びる傾斜壁21によって形成されている。一対の傾斜壁21は、流入端面11又は流出端面12まで形成されている。 The filter 1 of the present example includes the cells 3 whose outer edge shape in the XY cross section is a square as in the first embodiment. A pair of opposing cell walls 2 are formed by inclined walls 21 extending in an inclined manner with respect to the axial direction Z. The pair of inclined walls 21 are formed up to the inflow end surface 11 or the outflow end surface 12.
 一方、対向する残りの2つのセル壁2が軸方向Zに対して平行に伸びる平行壁22によって形成されている。図27、図28(a)、図28(b)に例示されるように、一対の平行壁22は、流入端面11又は流出端面12まで到達しておらず、平行壁22の端部222は、端面11、12よりもそれぞれ軸方向Zの内側にある。 On the other hand, the remaining two cell walls 2 facing each other are formed by parallel walls 22 extending parallel to the axial direction Z. As illustrated in FIGS. 27, 28 (a), and 28 (b), the pair of parallel walls 22 does not reach the inflow end surface 11 or the outflow end surface 12, and the end 222 of the parallel wall 22 is , They are inside the axial direction Z from the end faces 11 and 12 respectively.
 図28(a)及び図28(b)に例示されるように、平行壁22は、フィルタ1の軸方向Zの内部における所定の範囲Atに形成されている。平行壁22の形成領域Atは、両端面11、12よりも内側にある。フィルタ1の両端面11、12から内側の所定領域には、平行壁22の非形成領域Antが形成されている。非形成領域Antには、平行壁は形成されていない。 28A and 28B, the parallel wall 22 is formed in a predetermined range At in the axial direction Z of the filter 1. The formation region At of the parallel wall 22 is inside the both end surfaces 11 and 12. A non-formation area Ant of the parallel wall 22 is formed in a predetermined area inside the both end faces 11 and 12 of the filter 1. A parallel wall is not formed in the non-forming region Ant.
 その結果、各セル3は、上述の形成領域Atにおいては一対の傾斜壁21と一対の平行壁22とに囲まれるが、上述の非形成領域Antにおいては一対の平行壁22によって挟まれることなく一対の傾斜壁21によって挟まれて区画される。そして、フィルタ1の両端面11、12には、一対の傾斜壁21に挟まれるともに平行壁22がない拡大セル開口部35が形成される。 As a result, each cell 3 is surrounded by the pair of inclined walls 21 and the pair of parallel walls 22 in the above-described formation region At, but is not sandwiched between the pair of parallel walls 22 in the above-mentioned non-formation region Ant. It is sandwiched and partitioned by a pair of inclined walls 21. Further, on both end faces 11 and 12 of the filter 1, enlarged cell openings 35 that are sandwiched between the pair of inclined walls 21 and do not have the parallel walls 22 are formed.
 上記のように、フィルタ1の端面11、12に拡大セル開口部35を有する場合には、圧損をより低減させることができる。特に、拡大セル開口部35が、流入端面11に形成されている場合には、排ガスが流入する流入端面11における開口面積がより大きくなるため、圧損の低減効果がより顕著になる。 As described above, when the end faces 11 and 12 of the filter 1 have the enlarged cell openings 35, the pressure loss can be further reduced. In particular, when the enlarged cell opening 35 is formed in the inflow end surface 11, the opening area in the inflow end surface 11 into which exhaust gas flows becomes larger, and thus the effect of reducing the pressure loss becomes more remarkable.
 平行壁22の形成領域At、非形成領域Antの軸方向Zにおける長さは、適宜変更可能である。平行壁22よりなる平行壁22は、上述のようにフィルタ強度を向上させることができ、この強度向上効果を十分に得るためには、平行壁22の形成領域Atの長さは、フィルタの軸方向Zにおける全長の80%以上であることが好ましく、90%以上であることがより好ましく、95%以上がさらに好ましい。 The length in the axial direction Z of the formation region At and the non-formation region Ant of the parallel wall 22 can be changed as appropriate. The parallel wall 22 composed of the parallel walls 22 can improve the filter strength as described above, and in order to sufficiently obtain this strength improvement effect, the length of the formation region At of the parallel wall 22 is the axis of the filter. The total length in the direction Z is preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more.
 上述の拡大セル開口部35による圧損の低減効果をより十分に得るためには、非形成領域Antの軸方向Zにおける長さは、フィルタの軸方向Zにおける全長の1%以上であることが好ましく、3%以上であることがより好ましく、5%以上であることがさらに好ましい。非形成領域Antが軸方向Zにおける両端に形成されている場合には、非形成領域Antの軸方向Zにおける長さは、それぞれの長さのことである。 In order to obtain the effect of reducing the pressure loss due to the enlarged cell opening 35 described above, the length of the non-forming region Ant in the axial direction Z is preferably 1% or more of the total length in the axial direction Z of the filter. It is more preferably 3% or more, and further preferably 5% or more. In the case where the non-forming regions Ant are formed at both ends in the axial direction Z, the lengths of the non-forming regions Ant in the axial direction Z are the respective lengths.
 平行壁22の非形成領域Antや、これによって形成される拡大セル開口部35は、軸方向Zの両端面11、12に形成されていてもよいが、一方の端面に形成されていてもよい。上述のように流入端面11の圧損をより低減できるという観点から、平行壁22の非形成領域Antや拡大セル開口部35は、少なくとも流入端面11に形成されていることが好ましい。 The non-formation region Ant of the parallel wall 22 and the enlarged cell opening 35 formed thereby may be formed on both end surfaces 11 and 12 in the axial direction Z, but may be formed on one end surface. . From the viewpoint that the pressure loss of the inflow end surface 11 can be further reduced as described above, it is preferable that the non-formation region Ant of the parallel wall 22 and the enlarged cell opening 35 are formed at least on the inflow end surface 11.
 本例のフィルタ1は、上述の硬化工程において、例えばレーザ光の照射範囲を平行壁22の形成領域Atに限定し、その他は実施形態1と同様にして製造することができる。また、上述の積層工程において、成形シートのZ軸方向の長さを実施形態1よりも短くし、平行壁22の形成領域Atに成形シートを積層する点を除いては、実施形態2と同様にして製造することができる。この場合には、積層体の軸方向の両端面に成形シートが到達していない領域が形成される。その他の構成及び作用効果は、実施形態1、実施形態2と同様である。 The filter 1 of the present example can be manufactured in the same manner as in the first embodiment in the above-described curing process, for example, by limiting the laser light irradiation range to the formation region At of the parallel wall 22. Further, in the above-described laminating step, the length in the Z-axis direction of the molded sheet is shorter than that in the first embodiment, and the same as in the second embodiment except that the molded sheet is stacked in the formation region At of the parallel wall 22. Can be manufactured. In this case, the area | region where the shaping | molding sheet has not reached | attained is formed in the both end surfaces of the axial direction of a laminated body. Other configurations and operational effects are the same as those in the first and second embodiments.
(変形例5)
 次に、軸方向と直交方向におけるフィルタの断面において、傾斜壁が占める断面積よりも平行壁が占める断面積が小さいフィルタについて説明する。まず、図4~図8を参照して説明する。
(Modification 5)
Next, a filter in which the cross-sectional area occupied by the parallel wall is smaller than the cross-sectional area occupied by the inclined wall in the cross section of the filter in the direction orthogonal to the axial direction will be described. First, a description will be given with reference to FIGS.
 図4~図8に例示されるように、フィルタ1の軸方向と直交方向の断面においては、傾斜壁21の断面によって形成される領域の面積Saと、平行壁22の断面によって形成される領域の面積Sbが存在する。例えば図5~図7に示す各断面図において、傾斜壁21の断面は、X軸方向と平行に伸びる領域であり、細かい斜線ハッチングにて示された領域である。この領域が傾斜壁21の断面積Saである。すなわち、フィルタ1の軸方向と直交方向の任意断面において、傾斜壁21の断面積の合計がSaである。 As illustrated in FIGS. 4-8, in the axial direction and orthogonal direction of the cross-section of the filter 1 is formed and the area S a of the region formed by the cross section of the inclined wall 21, the cross section of the parallel walls 22 there is an area S b of the area. For example, in each of the cross-sectional views shown in FIGS. 5 to 7, the cross section of the inclined wall 21 is a region extending in parallel with the X-axis direction, and is a region indicated by fine hatching. This region is the cross-sectional area S a of the inclined wall 21. That is, in any cross section in the axial direction and orthogonal direction of the filter 1, the sum of the cross-sectional area of the inclined wall 21 is S a.
 一方、平行壁22の断面は、Y軸方向と平行に伸びる領域であり、粗い斜線ハッチングにて示された領域である。この領域が平行壁22の断面積S2である。すなわち、フィルタ1の軸方向と直交方向の任意断面において、平行壁22の断面積の合計がSbである。 On the other hand, the cross section of the parallel wall 22 is a region extending in parallel with the Y-axis direction, and is a region indicated by rough hatching. This region is the cross-sectional area S 2 of the parallel wall 22. That is, in any cross section in the axial direction and orthogonal direction of the filter 1, the sum of the cross-sectional area of the parallel walls 22 is S b.
 軸方向の任意位置における軸方向と直交方向のフィルタ1の断面において、Sa>Sbの関係を満足することが好ましい。この場合には、フィルタ1内における平行壁22の占有体積を小さくすることができる。そのため、ガスを透過し難い平行壁22によるガス流れの妨げを緩和することができる。これにより、圧損の更なる低減が可能になる。また、排ガスG中のPMは、傾斜壁21に捕集されるため、上記のように平行壁22の占有面積を相対的に減らしても捕集率の低下を防止できる。すなわち、捕集率の低下を防止しつつ、圧損を低下させることができる。 It is preferable that the relationship of S a > S b is satisfied in the cross section of the filter 1 in the direction orthogonal to the axial direction at an arbitrary position in the axial direction. In this case, the occupied volume of the parallel wall 22 in the filter 1 can be reduced. Therefore, the obstruction of the gas flow by the parallel wall 22 that is difficult to permeate the gas can be alleviated. Thereby, the pressure loss can be further reduced. Moreover, since PM in the exhaust gas G is collected by the inclined wall 21, even if the occupation area of the parallel wall 22 is relatively reduced as described above, it is possible to prevent the collection rate from being lowered. That is, the pressure loss can be reduced while preventing the collection rate from decreasing.
 Sa>Sbの関係を満足するために、例えば傾斜壁の数よりも平行壁の数を少なくすることができる。その例を図29に示す。図29は、フィルタ1の端面11、12の正面図を示す。図29において、X軸と平行に伸びる線のうち、太線は、紙面と直交方向における手前にある接続部214、213を示し、細線は、紙面と直交方向における奥にある接続部213、214を示す。流入端面11と流出端面12とでは、X軸方向に平行に伸びる太線と細線の位置が半ピッチずれるが、実質的に等価な図となる。 In order to satisfy the relationship of S a > S b , for example, the number of parallel walls can be made smaller than the number of inclined walls. An example is shown in FIG. FIG. 29 is a front view of the end faces 11 and 12 of the filter 1. In FIG. 29, of the lines extending in parallel with the X axis, the thick lines indicate the connection portions 214 and 213 in the front direction in the direction orthogonal to the paper surface, and the thin lines indicate the connection portions 213 and 214 in the back direction in the direction orthogonal to the paper surface. Show. On the inflow end surface 11 and the outflow end surface 12, the positions of the thick line and the thin line extending in parallel to the X-axis direction are shifted by a half pitch, but the figures are substantially equivalent.
 図29に例示されるフィルタ1は、実施形態1と同様にXY断面の外縁形状が四角形のセル3を有する。対向する一対のセル壁2が軸方向Zに対して傾斜して伸びる傾斜壁21によって形成されている。一方、対向する残りの2つのセル壁2が軸方向Zに対して平行に伸びる平行壁22によって形成されている。 29, the filter 1 illustrated in FIG. 29 has the cells 3 whose outer edge shape of the XY cross section is a square as in the first embodiment. A pair of opposing cell walls 2 are formed by inclined walls 21 extending in an inclined manner with respect to the axial direction Z. On the other hand, the remaining two cell walls 2 facing each other are formed by parallel walls 22 extending parallel to the axial direction Z.
 図29に例示されるように、傾斜壁21と平行壁22とは例えば直交する。これらの傾斜壁21及び平行壁22に囲まれるセル3は、端面11、12における外縁形状が四角形となる。本例のフィルタ1は、端面11、12において筒状外皮10の内側を直線的に区画する平行壁22の数が傾斜壁21の数よりも少ない。その結果、流入端面11、流出端面12におけるセル3の開口部の形状は、図29に例示されるように長方形になる。 As illustrated in FIG. 29, the inclined wall 21 and the parallel wall 22 are orthogonal to each other, for example. The cell 3 surrounded by the inclined wall 21 and the parallel wall 22 has a rectangular outer edge shape on the end surfaces 11 and 12. In the filter 1 of this example, the number of parallel walls 22 that linearly divide the inside of the cylindrical outer skin 10 on the end faces 11 and 12 is smaller than the number of inclined walls 21. As a result, the shape of the opening of the cell 3 in the inflow end surface 11 and the outflow end surface 12 is rectangular as illustrated in FIG.
 上述のように平行壁22の数を減らすことにより、Sa>Sbの関係を満足させることができる。そのため、フィルタ1内における平行壁22の占有体積を小さくすることができ、平行壁22によるガス流れの妨げを緩和することができる。そのため、圧損の低下が可能になる。また、この場合には、例えば流入端面11におけるセル3の開口面積を大きくすることができる。かかる観点からも、圧損の更なる低減が可能になる。また、平行壁22の数は、所望の強度を維持できる範囲内において調整することができる。 By reducing the number of parallel walls 22 as described above, the relationship of S a > S b can be satisfied. Therefore, the occupied volume of the parallel wall 22 in the filter 1 can be reduced, and the obstruction of the gas flow by the parallel wall 22 can be reduced. Therefore, the pressure loss can be reduced. In this case, for example, the opening area of the cell 3 on the inflow end face 11 can be increased. From this viewpoint, the pressure loss can be further reduced. Moreover, the number of the parallel walls 22 can be adjusted within a range in which a desired strength can be maintained.
 また、Sa>Sbの関係を満足するための他の構成として、例えば軸方向Zと直交方向におけるフィルタ1の断面において、平行壁22の厚みT2を傾斜壁21の厚みT1よりも小さくすることができる。つまり、T1<T2の関係を満足させればよい。この場合にも、フィルタ1内における平行壁22の占有体積を小さくすることができる。その結果、圧損の更なる低下が可能になる。 Further, as another configuration for satisfying the relationship of S a > S b , for example, in the cross section of the filter 1 in the direction orthogonal to the axial direction Z, the thickness T 2 of the parallel wall 22 is made larger than the thickness T 1 of the inclined wall 21. Can be small. That is, the relationship of T 1 <T 2 may be satisfied. Also in this case, the volume occupied by the parallel walls 22 in the filter 1 can be reduced. As a result, the pressure loss can be further reduced.
 本例のようにSa>Sbの関係を満足する場合には、平行壁22を、傾斜壁21よりも単位厚み当たりの強度が高い材質によって形成することが特に好ましい。この場合には、平行壁22自体の強度が向上するため、平行壁22の数を少なくしても強度低下はより一層防止される。したがって、強度低下をより一層防止しつつ圧損の向上が可能になる。 When the relationship of S a > S b is satisfied as in this example, it is particularly preferable that the parallel wall 22 is formed of a material having a higher strength per unit thickness than the inclined wall 21. In this case, since the strength of the parallel wall 22 itself is improved, even if the number of the parallel walls 22 is reduced, the strength reduction is further prevented. Therefore, the pressure loss can be improved while further preventing the strength from being lowered.
 平行壁の数の少ないフィルタ1は、上述の硬化工程において、傾斜部間の空間内への平行壁形成材料の充填高さを例えば実施形態1よりも大きくし、その他は実施形態1と同様にして製造することができる。また、フィルタ1は、上述の切断工程において、傾斜構造体片209を実施形態1よりも大きな幅で行い、その他は実施形態2と同様にして製造することができる。 In the filter 1 having a small number of parallel walls, the filling height of the parallel wall forming material into the space between the inclined portions is made larger than that in the first embodiment, for example, in the above-described curing process, and the others are the same as in the first embodiment. Can be manufactured. Further, the filter 1 can be manufactured in the same manner as in the second embodiment except that the inclined structure piece 209 has a larger width than that in the first embodiment in the above-described cutting step.
 また、平行壁の厚みは、例えば硬化工程におけるレーザ光の透過強度を変更したり、成形シートの厚みを変更したりすることにより調整することができる。本例において、その他の構成及び作用効果は、実施形態1、実施形態2と同様である。 Further, the thickness of the parallel wall can be adjusted, for example, by changing the laser beam transmission intensity in the curing step or changing the thickness of the molded sheet. In this example, other configurations and operational effects are the same as those in the first and second embodiments.
(比較例1)
 次に、実施形態1及び変形例のフィルタとの比較用のフィルタの例について説明する。図30及び図31に例示されるように、本例のフィルタ9は、軸方向Zに傾斜して伸びる傾斜壁を有していない。フィルタ9は、円筒状の外皮90と、外皮内を区画するセル壁91と、セル壁91に囲まれて円筒状の外皮の軸方向Zに伸びるガス流路を形成するセル92とを有する。各セル92は、4つのセル壁91に囲まれており、対向するセル壁91を2組有し、各セル壁91は直交している。軸方向Zと直交する断面でのセル92の形状は、四角形、より具体的には正方形である。
(Comparative Example 1)
Next, an example of a filter for comparison with the filter of the first embodiment and the modification will be described. As illustrated in FIG. 30 and FIG. 31, the filter 9 of this example does not have an inclined wall that extends while being inclined in the axial direction Z. The filter 9 includes a cylindrical outer skin 90, a cell wall 91 that partitions the inner skin, and a cell 92 that is surrounded by the cell wall 91 and forms a gas flow path extending in the axial direction Z of the cylindrical outer skin. Each cell 92 is surrounded by four cell walls 91, has two sets of opposing cell walls 91, and each cell wall 91 is orthogonal. The shape of the cell 92 in the cross section orthogonal to the axial direction Z is a quadrangle, more specifically, a square.
 各セル92における軸方向Zにおける両端面93、94のうちのいずれか一方は、ガスを透過しない閉塞部材95によって閉塞している。閉塞部材95が流出端面94に設けられたセル92は、流入端面93には開口しており、排ガスが流入する流入セル921となる。一方、閉塞部材95が流入端面93に設けられたセル92は、流出端面94には開口しており、排ガスが流出する流出セル922となる。 Any one of both end faces 93 and 94 in the axial direction Z of each cell 92 is blocked by a blocking member 95 that does not transmit gas. The cell 92 in which the closing member 95 is provided on the outflow end surface 94 is open to the inflow end surface 93 and becomes an inflow cell 921 into which exhaust gas flows. On the other hand, the cell 92 in which the closing member 95 is provided on the inflow end surface 93 is open to the outflow end surface 94 and becomes an outflow cell 922 from which exhaust gas flows out.
 流入セル921と流出セル922とは、交互に近接する。近接する2つの流入セル921と流出セル922とは、1つのセル壁91を共有している。流入セル921に流入した排ガスは、この流入セル921と共有するセル壁91を通過し流出セル922に至る。そして、排ガスGは、流出セル922を通って流出端面94から排出される。 The inflow cell 921 and the outflow cell 922 are alternately close to each other. Two adjacent inflow cells 921 and outflow cells 922 share one cell wall 91. The exhaust gas flowing into the inflow cell 921 passes through the cell wall 91 shared with the inflow cell 921 and reaches the outflow cell 922. The exhaust gas G is discharged from the outflow end surface 94 through the outflow cell 922.
 本例のフィルタ9は、セル壁91が軸方向Zに平行に伸び、セル壁91に囲まれたセル92は、上述のように両端面93、94において交互に閉塞している。したがって、流入端面93においては、すべてのセル92のうちの半分が開口するものの、残りの半分は閉塞部材95によって閉塞している。そのため、上述の実施形態1、変形例1~5のフィルタに比べて流入端面93における圧損が大きくなる。流出端面94においても、セル92の半分が開口し、残りの半分が閉塞する。 In the filter 9 of this example, the cell walls 91 extend parallel to the axial direction Z, and the cells 92 surrounded by the cell walls 91 are alternately closed at the end faces 93 and 94 as described above. Therefore, in the inflow end face 93, half of all the cells 92 are opened, but the other half is closed by the closing member 95. Therefore, the pressure loss at the inflow end face 93 is larger than that of the filter of the first embodiment and the first to fifth modifications. Also on the outflow end surface 94, half of the cells 92 are open and the other half are closed.
 図31においては、セル壁91を通過する排ガスGの流速の大きさを、セル壁91を横切る矢印の長さによって表している。以下、セル壁91を通過する排ガスGの流速のことを壁透過流速という。同図に例示されるように、閉塞部材95が設けられた流入端面93及び流出端面94に近づくについて、壁透過速度が大きくなり、フィルタ9の軸方向Zの中央においては、壁透過流速が小さくなる。その結果、壁透過流速のバラツキが大きくなり、圧損が増大する。 In FIG. 31, the magnitude of the flow velocity of the exhaust gas G passing through the cell wall 91 is represented by the length of the arrow that crosses the cell wall 91. Hereinafter, the flow rate of the exhaust gas G passing through the cell wall 91 is referred to as a wall permeation flow rate. As illustrated in the figure, the wall permeation speed increases as it approaches the inflow end face 93 and the outflow end face 94 provided with the closing member 95, and the wall permeation flow speed is small at the center in the axial direction Z of the filter 9. Become. As a result, the variation in the wall permeation flow rate increases and the pressure loss increases.
(実験例)
 本例においては、実施形態1、変形例1、及び変形例2と同様のパターンで形成された傾斜壁を有する3種類のフィルタの壁透過流速をシミュレーションにより計測し、比較例1と比較する。
(Experimental example)
In this example, the wall permeation flow rates of three types of filters having inclined walls formed in the same pattern as in the first embodiment, the first modification, and the second modification are measured by simulation and compared with the first comparative example.
 試料E1は、実施形態1のフィルタに相当し、傾斜壁21が流入端面11から流出端面12まで直線的かつ連続的に傾斜し、対向する傾斜壁21同士が両端面11、12のうち一方において直接接続するフィルタ1である(図1~図9参照)。本例において壁透過流速の計測に用いた試料E1の実際の形状、寸法は、次の通りである。 The sample E1 corresponds to the filter of the first embodiment, the inclined wall 21 is linearly and continuously inclined from the inflow end surface 11 to the outflow end surface 12, and the opposing inclined walls 21 are in one of the both end surfaces 11 and 12. The filter 1 is directly connected (see FIGS. 1 to 9). In this example, the actual shape and size of the sample E1 used for measuring the wall permeation flow velocity are as follows.
 試料E1のフィルタ1は、円柱形状であり、直径Φは118.4mm、軸方向Zの長さは118.4mmである。セル壁2の厚み、すなわち、傾斜壁21の厚みT1及び平行壁22の厚みT2は、いずれも0.203mmである(図9、図3参照)。傾斜壁21の接続部213、214におけるY軸方向の厚みT3は0.444mmであり、接続部213、214の軸方向Zの幅W1は0.200mmである(図9参照)。傾斜壁21の傾斜角度θ、すなわち、傾斜壁21と軸方向Zとがなす角度θは0.97°である(図9参照)。端面11、12におけるセル3の外縁形状は正方形であり、外縁の一辺の長さL1は1.576mmである(図4参照)。 The filter 1 of the sample E1 has a cylindrical shape, the diameter Φ is 118.4 mm, and the length in the axial direction Z is 118.4 mm. The thickness of the cell walls 2, i.e., the thickness T 2 of the thickness T 1 and parallel walls 22 of the inclined wall 21 are both 0.203 mm (see FIG. 9, FIG. 3). The thickness T 3 in the Y-axis direction of the connecting portions 213 and 214 of the inclined wall 21 is 0.444 mm, and the width W 1 in the axial direction Z of the connecting portions 213 and 214 is 0.200 mm (see FIG. 9). The inclination angle θ of the inclined wall 21, that is, the angle θ formed between the inclined wall 21 and the axial direction Z is 0.97 ° (see FIG. 9). The outer edge shape of the cell 3 on the end faces 11 and 12 is a square, and the length L 1 of one side of the outer edge is 1.576 mm (see FIG. 4).
 試料E2は、変形例1のフィルタに相当し、傾斜壁21が軸方向Zの両端面11、12に曲線的に傾斜し、湾曲構造の接続部213、214を有するフィルタ1である。壁透過流速の計測に用いた試料E2における傾斜壁21の実際の形成パターンを図32に示す。図32において、横軸は流入端面11から流出端面12までのフィルタの軸方向Zの長さを示す。縦軸は、径方向の幅であり、より具体的には、例えば中央に位置する任意の流入側接続部214からのY軸方向の距離を示す。図32において、接続部213、214の厚みが小さくなっているが、接続部213、214の厚みは任意に変更可能である。その他の形状及び寸法は、試料E1と同様である。 Sample E2 corresponds to the filter of the first modification, and is the filter 1 in which the inclined wall 21 is curvedly inclined to both end faces 11 and 12 in the axial direction Z and has connection portions 213 and 214 having a curved structure. FIG. 32 shows an actual formation pattern of the inclined wall 21 in the sample E2 used for measuring the wall permeation flow velocity. In FIG. 32, the horizontal axis indicates the length in the axial direction Z of the filter from the inflow end surface 11 to the outflow end surface 12. The vertical axis is the width in the radial direction, and more specifically indicates the distance in the Y-axis direction from, for example, an arbitrary inflow side connecting portion 214 located at the center. In FIG. 32, although the thickness of the connection parts 213 and 214 is small, the thickness of the connection parts 213 and 214 can be changed arbitrarily. Other shapes and dimensions are the same as those of the sample E1.
 試料E3は、変形例2のフィルタに相当し、傾斜壁21が端面11、12よりも軸方向の内側において接続して閉塞したフィルタ1である(図24参照)。壁透過流速の計測に用いた試料E3における各寸法は、次の通りである。流入側接続部214と流出側接続部213との間の軸方向Zにおける距離、すなわち、傾斜壁21が形成された領域の軸方向の長さは108.4mmであり、流入側平行壁215の長さ及び流出側平行壁216の長さはいずれも5.0mmである。傾斜壁21と軸方向Zとのなす角、すなわち傾斜角度は1.06°である。また、試料E3においては、非連通領域Anc=5.0mm、連通領域Ac=108.4mmである(図24参照)。その他の形状及び寸法は、試料E1と同様である。 Sample E3 corresponds to the filter of the second modification, and is the filter 1 in which the inclined wall 21 is connected and closed inside the end surfaces 11 and 12 in the axial direction (see FIG. 24). Each dimension in the sample E3 used for the measurement of the wall permeation flow velocity is as follows. The distance in the axial direction Z between the inflow side connection portion 214 and the outflow side connection portion 213, that is, the length in the axial direction of the region where the inclined wall 21 is formed is 108.4 mm. The length and the length of the outflow side parallel wall 216 are both 5.0 mm. The angle between the inclined wall 21 and the axial direction Z, that is, the inclination angle is 1.06 °. In the sample E3, the non-communication area Anc = 5.0 mm and the communication area Ac = 108.4 mm (see FIG. 24). Other shapes and dimensions are the same as those of the sample E1.
 試料C1は、比較例1のフィルタに相当し、全てのセル壁が軸方向に平行に伸び、両末端において各セルが交互に閉塞部材によって閉塞したフィルタ9である(図30及び図31参照)。壁透過流速の計測に用いた試料C1における各寸法は、傾斜壁がない点を除いて、試料E1と同様である。 Sample C1 corresponds to the filter of Comparative Example 1, and is a filter 9 in which all cell walls extend in the axial direction and each cell is alternately closed by a closing member at both ends (see FIGS. 30 and 31). . Each dimension in the sample C1 used for the measurement of the wall permeation flow velocity is the same as that of the sample E1 except that there is no inclined wall.
 試料E1~E3の各寸法は代表例であり、フィルタ1の寸法はこれらに限定されるものではなく、適宜変更可能である。各試料のフィルタにおける流入端面からの軸方向の距離と、壁透過流速との関係をシミュレーションにより求めた。シミュレーションの測定条件は、以下の通りである。ガス流量:32m3/min、温度:900℃、上流圧力:60kPa。その結果を図33に示す。 The dimensions of the samples E1 to E3 are representative examples, and the dimensions of the filter 1 are not limited to these and can be changed as appropriate. The relationship between the axial distance from the inflow end face in the filter of each sample and the wall permeation flow velocity was obtained by simulation. The measurement conditions for the simulation are as follows. Gas flow rate: 32 m 3 / min, temperature: 900 ° C., upstream pressure: 60 kPa. The result is shown in FIG.
 試料C1のように、傾斜壁を有しておらず、全てのセル壁91が軸方向Zに対して平行に伸び、各セル92が端面93、94のいずれか一方に設けられた閉塞部材95により閉塞したフィルタ9においては、図33に示されるように壁透過流速のばらつきが大きくなる(図30及び図31参照)。具体的には、流入端面93及び流出端面94に近づくにつれて壁透過流速が大きくなり、各端面93、94において最大になる。一方、軸方向Zの中央において最小になる。試料C1においては、壁透過流速の最小値と最大値の幅が大きく、壁透過流速のばらつきが大きい。そのため、圧損が大きくなる。 Like the sample C 1, there is no inclined wall, all the cell walls 91 extend in parallel to the axial direction Z, and each cell 92 is provided on one of the end faces 93 and 94. As shown in FIG. 33, the filter 9 closed by this increases the variation in the wall permeation flow velocity (see FIGS. 30 and 31). Specifically, the wall permeation flow velocity increases as it approaches the inflow end surface 93 and the outflow end surface 94, and is maximized at each end surface 93, 94. On the other hand, it becomes minimum at the center in the axial direction Z. In the sample C1, the minimum value and the maximum value of the wall permeation flow rate are large, and the variation in the wall permeation flow rate is large. Therefore, the pressure loss increases.
 一方、試料E1~試料E3のように、傾斜壁21と、平行壁22とを有するフィルタ1においては、上述の試料C1に比べて壁透過流速のばらつきが小さく、圧損が小さくなる。図33より知られるように、試料E1~E3を比較すると、壁透過流速のばらつきは、試料E3、試料E1、試料E2の順で小さくなる。 On the other hand, in the filter 1 having the inclined wall 21 and the parallel wall 22 as in the samples E1 to E3, the variation in the wall permeation flow velocity is small and the pressure loss is small as compared with the sample C1 described above. As can be seen from FIG. 33, when the samples E1 to E3 are compared, the variation in the wall permeation flow velocity decreases in the order of the sample E3, the sample E1, and the sample E2.
 図24に例示されるように、傾斜壁21が端面11、12よりも軸方向Zの内側において接続して閉塞した試料E3のフィルタ1は、傾斜壁21が端面11、12において閉塞する試料E1のフィルタ1に比べて、上述のように流入端面11の開口面積が大きくなる。そのため、図33に示されるとおり、流入端面11側における壁透過流速は試料E3の方が小さくなる。一方、試料E3における傾斜壁21の傾斜角度は、試料E1に比べて大きくなるため、軸方向Zの中央における壁透過流速は試料E3の方が大きくなる。その結果、壁透過流速のバラツキは、試料E1の方が試料E3に比べて小さくなる。 As illustrated in FIG. 24, the filter 1 of the sample E3 in which the inclined wall 21 is connected and closed inside the end surfaces 11 and 12 in the axial direction Z is the sample E1 in which the inclined wall 21 is closed at the end surfaces 11 and 12. Compared to the filter 1, the opening area of the inflow end face 11 is increased as described above. Therefore, as shown in FIG. 33, the sample E3 has a smaller wall permeation flow rate on the inflow end face 11 side. On the other hand, since the inclination angle of the inclined wall 21 in the sample E3 is larger than that in the sample E1, the wall permeation flow velocity at the center in the axial direction Z is larger in the sample E3. As a result, the variation in the wall permeation flow velocity is smaller in the sample E1 than in the sample E3.
 また、試料E2においては、壁透過流速が一定となり、実質的にばらつきがない。その結果、試料E1~E3の中では圧損を最も低下させることが可能になる。 In addition, in the sample E2, the wall permeation flow rate is constant, and there is substantially no variation. As a result, the pressure loss can be reduced most among the samples E1 to E3.
 上述の実施形態1、変形例1~5のフィルタにおける傾斜壁、接続部、平行壁の構成は適宜組み合わせることができる。例えば、変形例1と変形例2とを組み合わせて、曲線状に傾斜する傾斜壁の接続部214、213を軸方向における内側に形成することも可能である。また、変形例1と変形例3とを組み合わせ、曲線状に傾斜する一対の傾斜壁を、接続部において連結部材を介して接続させることができる。 The configurations of the inclined wall, the connecting portion, and the parallel wall in the filters of Embodiment 1 and Modifications 1 to 5 described above can be combined as appropriate. For example, the first and second modifications may be combined to form the inclined wall connecting portions 214 and 213 inclined in a curved shape on the inner side in the axial direction. Moreover, the modification 1 and the modification 3 are combined, and a pair of inclined walls inclined in a curved shape can be connected via a connecting member at the connection portion.
 本開示は、上述の実施形態等に準拠して既述されたが、本開示は当該実施形態等に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組合せや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組合せや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the above-described embodiment, it is understood that the present disclosure is not limited to the embodiment. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (16)

  1.  筒状外皮(10)と、上記筒状外皮の軸方向(Z)に対して傾斜する傾斜壁(21)と、上記軸方向に対して平行な平行壁(22)と、上記筒状外皮の内側において上記傾斜壁及び上記平行壁に囲まれて上記軸方向に伸びるガス流路を形成するセル(3)と、を有する多孔質ハニカムフィルタ(1)の製造方法において、
     坏土(20)を上記軸方向と直交方向に押出成形することにより、上記軸方向に対する傾斜方向(Ds)が交互に逆となる複数の傾斜部(211)と、上記傾斜部同士を接続すると共に押出方向に伸びる複数の接続部(213、214)とを有する傾斜構造体(210)を得る押出工程と、
     焼成により上記平行壁となる複数の平行部(221)を上記傾斜部に対して追加形成することにより、上記傾斜部と上記平行部とを有するハニカム成形体を得る平行部形成工程と、
     上記ハニカム成形体を焼成する焼成工程と、を有する、多孔質ハニカムフィルタの製造方法。
    A cylindrical skin (10), an inclined wall (21) inclined with respect to the axial direction (Z) of the cylindrical skin, a parallel wall (22) parallel to the axial direction, and the cylindrical skin In a manufacturing method of a porous honeycomb filter (1) having a cell (3) that forms a gas flow path extending in the axial direction surrounded by the inclined wall and the parallel wall on the inside,
    By extruding the clay (20) in a direction orthogonal to the axial direction, the inclined portions (211) whose inclination directions (Ds) with respect to the axial direction are alternately reversed are connected to each other. And an extrusion step of obtaining a tilted structure (210) having a plurality of connecting portions (213, 214) extending in the extrusion direction,
    A parallel part forming step of obtaining a honeycomb formed body having the inclined part and the parallel part by additionally forming a plurality of parallel parts (221) to be the parallel wall by firing with respect to the inclined part;
    And a firing step of firing the honeycomb formed body.
  2.  上記平行部形成工程においては、上記接続部の伸長方向と直交する面を有する複数の上記平行部(221)を形成する、請求項1に記載の多孔質ハニカムフィルタの製造方法。 The method for manufacturing a porous honeycomb filter according to claim 1, wherein, in the parallel part forming step, the plurality of parallel parts (221) having a surface orthogonal to the extending direction of the connection part are formed.
  3.  上記平行部形成工程は、上記傾斜部間の空間(Sp)内への平行壁形成材料(220)の充填と、光照射による上記平行壁形成材料の硬化とを繰り返し行うことにより、上記傾斜構造体に上記平行部を形成する硬化工程と、
     上記傾斜構造体の上記傾斜部間から未硬化の上記平行壁形成材料を排出させる排出工程と、を有する、請求項1又は2に記載の多孔質ハニカムフィルタの製造方法。
    The parallel part forming step is performed by repeatedly filling the parallel wall forming material (220) into the space (Sp) between the inclined parts and curing the parallel wall forming material by light irradiation. A curing step of forming the parallel part in the body;
    The method for producing a porous honeycomb filter according to claim 1, further comprising: a discharging step of discharging the uncured parallel wall forming material from between the inclined portions of the inclined structure.
  4.  上記傾斜構造体を上記接続部の伸長方向が鉛直となるように配置した状態で上記硬化工程を行う、請求項3に記載の多孔質ハニカムフィルタの製造方法。 The method for manufacturing a porous honeycomb filter according to claim 3, wherein the curing step is performed in a state in which the inclined structure is arranged so that an extension direction of the connection portion is vertical.
  5.  上記平行壁形成材料が粉末状である、請求項3又は4に記載の多孔質ハニカムフィルタの製造方法。 The method for manufacturing a porous honeycomb filter according to claim 3 or 4, wherein the parallel wall forming material is in a powder form.
  6.  上記平行壁形成材料が光硬化性有機成分を含有する、請求項3~5のいずれか1項に記載の多孔質ハニカムフィルタの製造方法。 The method for producing a porous honeycomb filter according to any one of claims 3 to 5, wherein the parallel wall forming material contains a photocurable organic component.
  7.  上記硬化工程においては、上記平行壁形成材料に光を鉛直方向に照射する、請求項3~6のいずれか1項に記載の多孔質ハニカムフィルタの製造方法。 The method for manufacturing a porous honeycomb filter according to any one of claims 3 to 6, wherein, in the curing step, the parallel wall forming material is irradiated with light in a vertical direction.
  8.  上記平行部形成工程は、上記傾斜構造体を上記軸方向に切断することにより、複数の傾斜構造体片(209)を作製する切断工程と、
     上記傾斜構造体片と、平行壁形成材料を含有する成形シート(225)とを、上記傾斜構造体片の切断面(203)と上記成形シートのシート面(226)とが当接するように交互に積層することにより、上記平行部を形成する積層工程とを、有する、請求項1又は2に記載の多孔質ハニカムフィルタの製造方法。
    The parallel part forming step includes a cutting step of producing a plurality of inclined structure body pieces (209) by cutting the inclined structure body in the axial direction;
    The inclined structure piece and the molded sheet (225) containing the parallel wall forming material are alternately arranged so that the cut surface (203) of the inclined structure piece and the sheet surface (226) of the formed sheet are in contact with each other. The method for producing a porous honeycomb filter according to claim 1, further comprising a lamination step of forming the parallel portion by laminating the layers.
  9.  上記積層工程においては、上記傾斜構造体と上記成形シートとの当接面に有機溶剤を塗布する、請求項8に記載の多孔質ハニカムフィルタの製造方法。 The method for manufacturing a porous honeycomb filter according to claim 8, wherein in the lamination step, an organic solvent is applied to a contact surface between the inclined structure and the molded sheet.
  10.  上記平行壁は上記傾斜壁よりも気孔率が低い、請求項1~9のいずれか1項に記載の多孔質ハニカムフィルタの製造方法。 The method for manufacturing a porous honeycomb filter according to any one of claims 1 to 9, wherein the parallel wall has a lower porosity than the inclined wall.
  11.  上記平行部形成工程においては、上記平行部を上記傾斜部と直交するように形成する、請求項1~10のいずれか1項に記載の多孔質ハニカムフィルタの製造方法。 The method for manufacturing a porous honeycomb filter according to any one of claims 1 to 10, wherein in the parallel part forming step, the parallel part is formed so as to be orthogonal to the inclined part.
  12.  上記坏土がコージェライト原料を含有する、請求項1~11のいずれか1項に記載の多孔質ハニカムフィルタの製造方法。 The method for producing a porous honeycomb filter according to any one of claims 1 to 11, wherein the clay contains a cordierite raw material.
  13.  上記平行部がコージェライト原料を含有する、請求項1~12のいずれか1項に記載の多孔質ハニカムフィルタの製造方法。 The method for producing a porous honeycomb filter according to any one of claims 1 to 12, wherein the parallel part contains a cordierite raw material.
  14.  上記坏土が板状粒子(201)を含有する、請求項1~13のいずれか1項に記載の多孔質ハニカムフィルタの製造方法。 The method for manufacturing a porous honeycomb filter according to any one of claims 1 to 13, wherein the clay contains plate-like particles (201).
  15.  上記焼成工程においては、上記傾斜部及び上記平行部の焼成を行う、請求項1~14のいずれか1項に記載の多孔質ハニカムフィルタの製造方法。 The method for manufacturing a porous honeycomb filter according to any one of claims 1 to 14, wherein the inclined portion and the parallel portion are fired in the firing step.
  16.  さらに、上記ハニカム成形体の外周を覆う筒状の外皮形成材料よりなる筒状部(110)を形成する筒状部形成工程を有し、上記焼成工程においては上記筒状部を有する上記ハニカム成形体を焼成する、請求項1~15のいずれか1項に記載の多孔質ハニカムフィルタの製造方法。 Furthermore, it has a cylindrical part forming step for forming a cylindrical part (110) made of a cylindrical outer shell forming material that covers the outer periphery of the honeycomb molded body, and the honeycomb molding having the cylindrical part in the firing step. The method for manufacturing a porous honeycomb filter according to any one of claims 1 to 15, wherein the body is fired.
PCT/JP2017/045098 2016-12-27 2017-12-15 Porous honeycomb filter production method WO2018123653A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016253335A JP6729357B2 (en) 2016-12-27 2016-12-27 Method for manufacturing porous honeycomb filter
JP2016-253335 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018123653A1 true WO2018123653A1 (en) 2018-07-05

Family

ID=62708221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045098 WO2018123653A1 (en) 2016-12-27 2017-12-15 Porous honeycomb filter production method

Country Status (2)

Country Link
JP (1) JP6729357B2 (en)
WO (1) WO2018123653A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113453842A (en) * 2019-02-15 2021-09-28 康宁股份有限公司 Extrusion die and method of making same
CN114835511A (en) * 2022-06-02 2022-08-02 西安交通大学 Cordierite precursor photocuring paste and preparation method of porous cordierite ceramic with complex structure
DE102022203604A1 (en) 2022-04-11 2023-10-12 Siemens Energy Global GmbH & Co. KG Powder, ceramic wall, reaction chamber and process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7154931B2 (en) * 2018-10-12 2022-10-18 イビデン株式会社 honeycomb structure
CN112192739B (en) * 2020-10-10 2022-04-12 广东萨米特陶瓷有限公司 Terrazzo-like ceramic board manufacturing process and product obtained by using process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133209A (en) * 1984-07-24 1986-02-17 Nippon Denso Co Ltd Porous ceramic structural body
JP2002317618A (en) * 2001-04-24 2002-10-31 Denso Corp Exhaust emission control device and its manufacture
JP2007224884A (en) * 2006-02-27 2007-09-06 Tanaka Kikinzoku Kogyo Kk Diesel exhaust emission control filter
JP2007262985A (en) * 2006-03-28 2007-10-11 Kyocera Corp Particulate filter
JP2011194320A (en) * 2010-03-19 2011-10-06 Ngk Insulators Ltd Honeycomb structure and method for producing honeycomb structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133209A (en) * 1984-07-24 1986-02-17 Nippon Denso Co Ltd Porous ceramic structural body
JP2002317618A (en) * 2001-04-24 2002-10-31 Denso Corp Exhaust emission control device and its manufacture
JP2007224884A (en) * 2006-02-27 2007-09-06 Tanaka Kikinzoku Kogyo Kk Diesel exhaust emission control filter
JP2007262985A (en) * 2006-03-28 2007-10-11 Kyocera Corp Particulate filter
JP2011194320A (en) * 2010-03-19 2011-10-06 Ngk Insulators Ltd Honeycomb structure and method for producing honeycomb structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113453842A (en) * 2019-02-15 2021-09-28 康宁股份有限公司 Extrusion die and method of making same
DE102022203604A1 (en) 2022-04-11 2023-10-12 Siemens Energy Global GmbH & Co. KG Powder, ceramic wall, reaction chamber and process
CN114835511A (en) * 2022-06-02 2022-08-02 西安交通大学 Cordierite precursor photocuring paste and preparation method of porous cordierite ceramic with complex structure

Also Published As

Publication number Publication date
JP6729357B2 (en) 2020-07-22
JP2018103122A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
WO2018123653A1 (en) Porous honeycomb filter production method
JP4528153B2 (en) Method for manufacturing plugged honeycomb structure
US8888883B2 (en) Ceramic honeycomb structures
JP5188433B2 (en) Honeycomb filter
JP5864329B2 (en) Honeycomb structure
WO2012133848A1 (en) Sealed honeycomb structure
WO2012133846A1 (en) Sealed honeycomb structure
WO2012133847A1 (en) Sealed honeycomb structure, and exhaust gas purification device
JP2022070919A (en) Rectangular outlet honeycomb structures, particulate filters, extrusion dies, and method of manufacture thereof
JP2014054623A (en) Plugged honeycomb structure
US10905992B2 (en) Honeycomb structural body, method for manufacturing the same, and exhaust gas purification filter
JP6110750B2 (en) Plugged honeycomb structure
US10870077B2 (en) Porous honeycomb filter
JP2020049428A (en) Honeycomb filter
JP2018167211A (en) Honeycomb structure
JP6144946B2 (en) Honeycomb filter
JP7472911B2 (en) Ceramic Honeycomb Filter
CN113426491B (en) honeycomb structure
JP7145797B2 (en) Manufacturing method of honeycomb structure
JP7165088B2 (en) honeycomb structure
JP2017170384A (en) Honeycomb filter
JP6434753B2 (en) Extrusion mold
WO2016039329A1 (en) Extrusion molding mold
JP2012210614A (en) Plugged honeycomb structure
JP2017089558A (en) Honeycomb structure and manufacturing method of honeycomb structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888135

Country of ref document: EP

Kind code of ref document: A1