WO2018123494A1 - Electric power supply device, method for controlling electric power supply device, electric power supply system, and communication base station backup system - Google Patents

Electric power supply device, method for controlling electric power supply device, electric power supply system, and communication base station backup system Download PDF

Info

Publication number
WO2018123494A1
WO2018123494A1 PCT/JP2017/043915 JP2017043915W WO2018123494A1 WO 2018123494 A1 WO2018123494 A1 WO 2018123494A1 JP 2017043915 W JP2017043915 W JP 2017043915W WO 2018123494 A1 WO2018123494 A1 WO 2018123494A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
switch
storage battery
signal
Prior art date
Application number
PCT/JP2017/043915
Other languages
French (fr)
Japanese (ja)
Inventor
新太郎 蒲
眞己 樋口
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to AU2017386331A priority Critical patent/AU2017386331A1/en
Publication of WO2018123494A1 publication Critical patent/WO2018123494A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/08Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems requiring starting of a prime-mover
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power supply device, a control method for the power supply device, a power supply system, and a communication base station backup system.
  • a power supply system including a lead storage battery is known (see, for example, Patent Document 1).
  • a lead storage battery is charged by a commercial power supply, and when the commercial power supply fails, the lead storage battery discharges the load equipment.
  • the problem of the present invention is to improve the stability and durability of the power supply system.
  • a power supply device that is attached to a device that supplies power from a power source to a load
  • the power supply device including a switching unit and a power storage device, wherein the switching unit is electrically connected to the device.
  • An input terminal connectable to the load, an output terminal electrically connectable to the load, a first line for supplying the power input from the input terminal to the output terminal, and the first line.
  • the connection portion to the output terminal is electrically connected, and the power failure is not detected.
  • the power storage device includes a power storage unit including a power storage element, and the connection unit is connected to the connection unit.
  • the second switch has an off function that turns off when at least one of the control signal and the external input signal is a signal that turns off the second switch, and both the control signal and the external input signal
  • a power supply device having at least one of an on function that is turned on in the case of a signal that turns on a second switch.
  • mode of this invention has a 1st storage battery, is connected with said 1st power supply apparatus while having a 1st electric power supply apparatus which supplies the electric power from a power supply to load, and a 2nd storage battery,
  • a second power supply device that supplies power from the power source to a load, and the first power supply device includes a first switch and a switching unit having an output terminal that can be electrically connected to the load;
  • An off function that turns off when at least one of the supplied external input signals is a signal that turns off the second switch, and both the control signal and the external input signal turn on the second switch.
  • the power supply system may be a communication base station backup system using a lithium ion battery as the first storage battery and a lead storage battery as the second storage battery.
  • the stability and durability of the entire power supply system can be improved by attaching the power supply device to a device (for example, an existing device including a lead storage battery).
  • a device for example, an existing device including a lead storage battery.
  • FIG. 10A It is a block diagram which shows the function structure of a control apparatus. It is a flowchart which shows operation
  • FIG. 1 is a perspective view showing a schematic configuration of a second power supply apparatus 200 as an existing apparatus.
  • the second power supply apparatus 200 includes a rack 210 such as a 19-inch rack, for example, and a main component 205 is mounted in the rack 210.
  • a door 211 is attached to the front surface of the rack 210. The door 211 is closed during normal operation, and the door 211 is opened during maintenance. The door 211 may not be provided on the rack 210.
  • a first storage unit 201 in which the main component 205 of the second power supply device 200 is stored, and a second storage unit 202 in which the first power supply device is stored.
  • FIG. 1 illustration of internal structures of the first storage unit 201 and the second storage unit 202 is omitted.
  • the second storage unit 202 may be provided in the rack 210 in advance as a storage unit dedicated to the first power supply device, or a space in the rack 210 may be used as the second storage unit 202 as necessary.
  • a space may be opened by organizing the inside of the rack 210, and the space may be used as the second storage unit 202.
  • the second storage unit 202 may be provided in a rack different from the rack 210.
  • FIG. 2 is a perspective view showing a schematic configuration of the first power supply apparatus 100.
  • the first power supply device 100 includes a switching unit 700 and the power storage device 1.
  • the switching unit 700 includes a substantially rectangular parallelepiped exterior body 101 and is unitized by storing main components in the exterior body 101. “Unitization” means that components are connected to form an assembly.
  • the power storage device 1 is arranged under the switching unit 700.
  • the power storage device 1 is unitized by housing main components such as a first storage battery, a control unit, and a switch, which will be described later, in an exterior body 101.
  • the first power supply device 100 having the switching unit 700 and the power storage device 1 is added to the existing second power supply device 200, for example, so that the electric capacity, stability, and durability of the entire power supply system are increased. Increase sex.
  • a pair of handles 102 for attaching / detaching the exterior body 101 to / from the rack 210 are provided on the front surface of the exterior body 101 of the switching unit 700.
  • the power storage device 1 may also have a handle.
  • a terminal group 110 for electrically connecting the main components of the first power supply device 100 and the main components 205 of the second power supply device 200. Is provided.
  • a storage battery terminal 119 is provided on the front surface of the exterior body 101 in the vicinity of the terminal group 110, which is electrically connected to a first line described later.
  • the storage battery terminal 119 is electrically connected to the terminals 150 a and 150 b of the first storage battery via the wiring member 604.
  • the storage battery terminal 119 functions as a connection portion described later.
  • FIG. 3 is a block diagram illustrating an outline of a control configuration of the second power supply apparatus 200.
  • FIG. 3 shows a state before the first power supply device 100 is attached.
  • the second power supply device 200 includes a second AC / DC converter 230, a second storage battery 240, and terminals 250 and 251.
  • the second AC / DC converter 230 is electrically connected to a switching unit 220 outside the second power supply apparatus 200 via a terminal 251.
  • the switching unit 220 is a circuit that switches AC power supplied from each of the commercial power supply 300 and the generator 400 and outputs it downstream.
  • the second AC / DC converter 230 is a converter that converts alternating current into direct current, and converts alternating current power supplied via the switching unit 220 into second direct current power.
  • the second AC / DC converter 230 supplies the converted second DC power to the second storage battery 240 and the load 500.
  • the second storage battery 240 is a storage battery such as a lead storage battery, for example.
  • the second storage battery 240 stores power using the supplied second DC power, and supplies DC power to the load 500 via the terminal 250 by discharging.
  • FIG. 4 is a block diagram showing an outline of a control configuration of the second power supply apparatus 200 to which the first power supply apparatus 100 is attached.
  • the switching unit 700 includes a DC input terminal 111, an AC input terminal 112, an output terminal 113, a first line 130, and a second line 120.
  • the second line 120 is a power system for supplying the second DC power input from the DC input terminal 111 to the output terminal 113.
  • a second diode 122 is provided in the second line 120.
  • the second line 120 is preferably arranged in the exterior body 101 of the switching unit 700.
  • the first line 130 is a power system for converting AC power input from the AC input terminal 112 into first DC power and supplying it to the output terminal 113.
  • the connection point between the first line 130 and the second line 120 is preferably disposed in the exterior body 101 of the switching unit 700.
  • the first line 130 is provided with a power failure detection unit 160, a delay unit 170, a first AC / DC converter 133, a switch 145, and a first diode 134.
  • a power failure detection unit 160 and the delay unit 170 are provided in the first line 130.
  • the power failure detection unit 160 and the delay unit 170 are provided in a separate system from the first line 130. Also good.
  • the first AC / DC converter 133 may be disposed outside the exterior body 101 of the switching unit 700. That is, the first AC / DC converter 133 may be provided separately from the switching unit 700, and may be provided between the terminal 251 and the AC input terminal 112, for example.
  • a control unit is provided in the power storage device described later, and functions such as automatic recovery of the power storage device when the commercial power supply 300 recovers from a power failure are realized by the control unit of the power storage device.
  • the power failure detection unit 160 is connected between the AC input terminal 112 in the first line 130 and the switch 145.
  • the power failure detection unit 160 is a power failure detector that does not output a signal when there is a power failure and continues to output a signal when there is no power failure. Specifically, the power failure detection unit 160 continues to output a signal to the delay unit 170 when there is a voltage between the AC input terminal 112 and the first AC / DC converter 133, and when the voltage disappears (power failure) At this time, no signal is output to the delay unit 170.
  • the power failure detection unit 160 may be connected between the terminal 251 and the switch 145. In this case, the power failure detection unit 160 outputs a signal to the delay unit 170 when there is a voltage at the terminal 251.
  • the delay unit 170 is a delay circuit that switches conduction or interruption by the switch 145 with a delay from the timing at which a power failure is detected. That is, the delay unit 170 switches ON / OFF of the switch 145 with a delay from the signal switching timing in the power failure detection unit 160. Specifically, the delay unit 170 outputs the signal to the switch 145 when the signal is input from the power failure detection unit 160, and outputs the signal to the switch 145 when the signal is not input. Do not output. The switch 145 is turned on / off depending on the presence or absence of this signal.
  • the timing for switching the presence / absence of a signal is delayed by a predetermined time from the timing at which the presence / absence of the signal is actually switched in the power failure detection unit 160. That is, in the state where the presence or absence of the signal from the power failure detection unit 160 is stable, the presence or absence of the signal for the switch 145 is switched in the delay unit 170.
  • the switch 145 (first switch) is a switch for switching ON / OFF the power of the first line 130 based on the presence / absence of a signal from the delay unit 170. Specifically, the switch 145 is provided between the connection part 180 in the first line 130 and the first diode 134. The switch 145 is turned off when a signal is input from the delay unit 170 and turns off the power of the first line 130. On the other hand, the switch 145 is turned on when the signal from the delay unit 170 is not input (power failure), and the power of the first line 130 is turned on.
  • the switch 145 electrically connects the connection unit 180 to the output terminal 113 when the power failure detection unit 160 detects a power failure, and when the power failure detection unit 160 does not detect the power failure, The electrical continuity from the connection unit 180 to the output terminal 113 is interrupted.
  • the switch 145 electrically connects the connection unit 180 to the output terminal 113 when a power failure of the commercial power supply 300 is detected, and when the power failure of the commercial power supply 300 is not detected, The electrical continuity from the connection unit 180 to the output terminal 113 is interrupted.
  • DC power from the first storage battery 150 is supplied to the load 500 during a power failure.
  • the first storage battery 150 may be a lithium ion battery.
  • the charging voltage of the first storage battery 150 is set higher than the charging voltage of the second storage battery 240.
  • the discharge end voltage of the first storage battery 150 is set higher than the discharge end voltage of the second storage battery 240.
  • the charge voltage of the first storage battery 150 is 56.7 V
  • the discharge end voltage is 46.2 V
  • the charge voltage of the second storage battery 240 is 54.0
  • the discharge end voltage is 43.2 V.
  • FIG. 5 is a flowchart showing the flow of the control method of the first power supply apparatus 100.
  • FIG. 6 is a timing chart showing the load voltage change and the ON / OFF switching timing of each part when the control method of FIG. 5 is executed.
  • the switching unit 220 of the existing second power supply apparatus 200 switches the power supply source for the first power supply apparatus 100 from the commercial power supply 300 to the generator 400 when the commercial power supply 300 has a power failure is illustrated. To do.
  • the power failure detection unit 160 continues to output a signal, so that the delay unit 170 also turns off the switch 145 based on the signal. It continues (S201). This is the “power supply by commercial power supply” period shown in FIG.
  • a part of the AC power supplied from the commercial power source 300 is converted into second DC power by the second AC / DC converter 230, and the second line 120 is connected via the terminal 250 and the DC input terminal 111. To be supplied. Thereby, a part of the AC power is supplied to the load 500. At this time, since the second DC power is also supplied to the second storage battery 240, the second storage battery 240 is charged.
  • this step S201 supplies power to the load 500 via the second line 120 when the second line 120, which is a line different from the first line 130, receives AC power from the commercial power supply 300. This is the first step.
  • step S202 when the signal output from the power failure detection unit 160 is continued (step S202; NO), the state is maintained.
  • the switch 145 is switched from OFF to ON (step S203).
  • step S203 the delay unit 170 delays the signal switching timing in the power failure detection unit 160 and switches the switch 145 from OFF to ON (see FIG. 6).
  • step S204 the switch 145 is turned on, and the first storage battery 150 is discharged (S204).
  • the first state is a state in which DC power from the first storage battery 150 is supplied to the load 500.
  • the steps S203 and S204 are the second for supplying power to the load 500 from the first storage battery 150 connected to the first line 130 without interrupting the power supply to the load 500. It is a step.
  • step S205 when the first storage battery 150 has a voltage different from that of the second storage battery 240 (step S205; NO), the first state is continued.
  • step S205; YES both the first storage battery 150 and the second storage battery 240 are discharged (step S206). That is, when the voltage supplied to the load 500 becomes equal to or lower than the first voltage value, power supply from the second storage battery 240 is started. Thereby, DC power flows from the first storage battery 150 to the first line 130, DC power flows from the second storage battery 240 to the second line 120, and DC power is supplied to the load 500.
  • This is the “power supply by the first storage battery and the second storage battery” period shown in FIG. 6. During this period, the first storage battery 150 and the second storage battery 240 simultaneously supply power to the load 500.
  • step S207 when the first storage battery 150 is not equal to or lower than the discharge end voltage (predetermined value) (step S207; NO), the simultaneous power feeding state is continued.
  • step S207; YES When the first storage battery 150 becomes equal to or lower than the discharge end voltage (step S207; YES), the discharge of the first storage battery 150 is stopped, and DC power is supplied to the load 500 only from the second storage battery 240 (step S207). S208).
  • these steps S207 and S208 are performed without switching between the first line 130 and the second line 120 when the voltage of the first storage battery 150 becomes equal to or lower than the second voltage value smaller than the first voltage value. Only the power supply of the storage battery 240 is used.
  • the power failure detection unit 160 outputs a signal to the delay unit 170 (step S209).
  • a signal is also output to the switch 145 via the delay unit 170, so that the switch 145 is turned OFF and the process proceeds to step S202.
  • This is the “power recovery” period shown in FIG. Note that the power recovery period here includes power recovery of the commercial power supply 300.
  • the switching unit 700 can be easily retrofitted to the second power supply apparatus 200. Can be attached. Therefore, another power system can be easily added to the second power supply apparatus 200. Moreover, since the connection part 180 to which the 1st storage battery 150 is connected is provided in the 1st line 130 of the switching unit 700, if the 1st storage battery 150 is connected with this connection part 180, it will be 2nd electric power. It is also possible to add the first storage battery 150 to the supply device 200.
  • the second storage battery (lead storage battery) 240 of the second power supply apparatus 200 which is an existing apparatus, is a battery having a relatively large capacity so that it can cope with a backup during a long-time power failure.
  • the battery capacity of the first storage battery (lithium ion battery) 150 is set for backup when the commercial power supply 300 is in a short power failure. For this reason, the capacity of the first storage battery 150 is smaller than the capacity of the second storage battery 240. In the case of the same capacity between the lithium ion battery and the lead storage battery, the lithium ion battery is smaller and lighter. Also, the smaller the battery capacity, the smaller and lighter.
  • the volume which the 1st storage battery 150 occupies can be made small compared with the 2nd storage battery 240. If the capacity
  • the delay unit 170 switches the conduction or interruption by the switch 145 with a delay from the timing when the power failure of the commercial power supply 300 is detected, even if instantaneous voltage drops (instant interruptions) frequently occur, It is possible to prevent the switch 145 from being activated each time. That is, chattering of the switch 145 can be prevented.
  • the first power supply device 100 to which the first storage battery 150 is connected is added to the second power supply device 200, even if the commercial power supply 300 is stopped, power supply by the first storage battery 150 is performed.
  • the storage battery 150 can be used reliably. That is, since it is possible to stably supply power to the load 500 from the added first power supply apparatus 100, the first storage battery 150 can be used without replacing the entire facility.
  • the switching unit 700 includes the second line 120 .
  • the second line 120 may not be provided in the switching unit 700.
  • the second storage battery 240 may be directly connected to the load 500. Even in this case, when the first storage battery 150 reaches the end-of-discharge voltage, the power supply from the second storage battery 240 can be switched.
  • the first power supply apparatus 100 including the switching unit 700 and the first storage battery 150
  • the first power supply apparatus 100 can also be applied to a communication base station backup system.
  • a communication base station backup system For example, when a power outage occurs at a communication base station, not only data communication cannot be performed at the time of a power outage, but also after power recovery, data communication before the power outage must be performed again, which is inefficient. This is a serious problem in developing countries where power supply conditions are poor. If the first power supply apparatus 100 is installed in a communication base station as a communication base station backup system, power supply to the communication base station can be stabilized, and communication can be stabilized.
  • the second power supply apparatus 200 may be installed together with the first power supply apparatus 100 instead of the existing apparatus.
  • the rack 210 the case where the 2nd storage battery 240 was arrange
  • the lead storage battery is heavier than the lithium ion battery. Maintenance work can be performed efficiently.
  • the power storage device 1 may be a power storage device set including a plurality of power storage devices.
  • FIG. 7 is a perspective view showing an overall external view of the power storage device set 1000.
  • FIG. 8 is a block diagram showing a functional configuration of the power storage device set 1000.
  • the Z-axis direction is shown as the vertical direction, and in the following, the Z-axis direction is described as the vertical direction. However, depending on the use mode, the Z-axis direction may not be the vertical direction. The direction is not limited to the vertical direction.
  • the X axis direction may be the vertical direction. The same applies to the following drawings.
  • the power storage device set 1000 can charge electricity from the outside and discharge electricity to the outside.
  • the power storage device set 1000 is connected to an electric power system such as the commercial power source 300 and the load 500, charges electricity from the commercial power source 300, and discharges electricity to the load 500.
  • the switching unit 700 described above is not shown.
  • the power storage device set 1000 includes a plurality of power storage devices 1 (three power storage devices 1A to 1C in the present embodiment), and is used for, for example, a power storage application or a power supply application.
  • the power storage device 1 is suitably used as a stationary power supply device.
  • the power storage device 1 includes a power storage unit 40 and a control device 90 that controls charging or discharging of the power storage unit 40.
  • the control device 90 controls charging or discharging of one power storage unit 40 among one or more power storage units 40 (three power storage units 40). In other words, the control device 90 is provided for each of the one or more power storage units 40.
  • the power storage unit 40 is a battery unit that can charge or discharge electric power.
  • the power storage unit 40 includes one or more power storage elements 153 connected in series.
  • the plurality of power storage units 40 included in the plurality of power storage devices 1 are connected in parallel by the power line 3.
  • the control device 90 has a switch 91 provided in the charging or discharging current path of the power storage unit 40, and controls charging / discharging of the power storage unit 40 by turning the switch 91 on and off.
  • the plurality of control devices 90 included in the plurality of power storage devices 1 are daisy chain connected in a loop shape by communication lines 2 such as an RS-232 cable and an RS-485 cable.
  • the standard of the communication line 2 is not particularly limited, and may be a serial communication cable or a parallel communication cable.
  • FIG. 9 is a block diagram illustrating a functional configuration of the control device 90.
  • the control device 90 is a device that controls charging / discharging of the power storage unit 40 including the power storage element 153. As shown in FIG. 9, the control device 90 includes a switch 91, a control unit 92, an external input terminal 83, and an external output terminal 84.
  • the switch 91 (second switch) is a charging / discharging path of the power storage unit 40 and is provided on the power supply line 62 connected to the power supply line 3 via the external connection terminal 203.
  • the switch 91 is turned off when at least one of the control signal and the external input signal is a signal for turning off the switch 91, and both the control signal and the external input signal turn on the switch 91. It has at least one (both in the present embodiment) of an on function that is turned on in the case of a signal. Further, in the present embodiment, when an abnormality occurs in any of the three power storage units 40, the switch 91 provided in the charging or discharging current path of each power storage unit 40 in which the abnormality has occurred is turned off.
  • the control unit 92 is, for example, a one-chip microcomputer such as a CPU (Central Processing Unit) including a memory such as a ROM (Read Only Memory) that holds a control program and a processor that executes the control program.
  • the control unit 92 includes an end voltage determination unit 191, a power recovery determination unit 192, and an abnormality determination unit 193.
  • the control unit 92 outputs a control signal for turning off the switch 91 when the end voltage determination unit 191 determines that the voltage of the power storage unit 40 is equal to or lower than the discharge end voltage.
  • the external output signal output from the external output terminal 84 is an off signal.
  • the control unit 92 When the power recovery determination unit 192 determines that the power system connected to the power storage unit 40 has recovered power, the control unit 92 outputs a control signal that turns on the switch 91. In this case, if the external input signal is an on signal, the external output signal output from the external output terminal 84 is also an on signal. If the external input signal is an off signal, the external output signal output from the external output terminal 84 is also an off signal.
  • the control unit 92 When the abnormality determination unit 193 determines that an abnormality has occurred in the power storage unit 40, the control unit 92 outputs a control signal that turns off the switch 91.
  • the external output signal depends only on the external input signal among the control signal and the external input signal. That is, if the external input signal is an off signal, the external output signal is also an off signal, and if the external input signal is an on signal, the external output signal is also an on signal.
  • the end voltage determination unit 191 determines whether or not the voltage of the power storage unit 40 is equal to or lower than the discharge end voltage.
  • the discharge end voltage is the minimum voltage of the power storage unit 40 that can be safely discharged.
  • the method for measuring the voltage of the power storage unit 40 is not particularly limited.
  • the power recovery determination unit 192 determines whether or not the power system connected to the power storage unit 40 has recovered power. For example, the power recovery determination unit 192 measures the voltage of the external connection terminal 203 and determines that the power system has recovered when the measured voltage is equal to or higher than a predetermined voltage. Note that the method for determining power recovery is not particularly limited.
  • the abnormality determination unit 193 determines whether or not an abnormality has occurred in the power storage unit 40.
  • the abnormality that occurs in the power storage unit 40 is, for example, an overcurrent due to an overload or a short circuit or a heat generation that exceeds the allowable temperature of the power storage element 153.
  • the abnormality determination unit 193 detects the amount of current flowing through the power supply line 62 using a Hall element (not shown) provided in the power supply line 62, and if the detected current amount is equal to or greater than a predetermined amount, It is determined that an abnormality has occurred.
  • the abnormality determination part 193 detects the temperature of the electrical storage element 153, for example using a thermistor (not shown), and when the detected temperature is more than predetermined temperature, it determines with the electrical storage unit 40 having abnormality.
  • a control signal is supplied to the switch 91 (S10).
  • the control unit 92 supplies a control signal, a discharge signal, and a charge signal to the switch 91.
  • an external input signal is supplied to the external input terminal 83 (S20).
  • the external input terminal 83 connected to the external output terminal 84 of the power storage device 1 in the previous stage via the communication line 2 supplies an external input signal to the switch 91 or the control unit 92.
  • step S30 when at least one of the control signal and the external input signal is a signal for turning off the switch 91 (when “at least one is an off signal” in S31). Then, an off function for turning off the switch 91 is executed (S32). At this time, an off signal is output from the external output terminal 84 as an external output signal.
  • both the control signal and the external input signal are signals that turn on the switch 91 (in the case of “both on signals” in S31)
  • an on function that turns on the switch 91 is executed (S33). At this time, an ON signal is output from the external output terminal 84 as an external output signal.
  • FIG.11 and FIG.12 is a figure which shows typically the state of the electrical storage apparatus set 1000 at the time of a power failure.
  • the power storage device set 1000 supplies power to the load 500. That is, the power storage device set 1000 performs power backup when the commercial power supply 300 is powered down. At this time, since the respective switches 91 of the plurality of power storage devices 1 are turned on, a discharge current flows from each of the plurality of power storage units 40 connected in parallel to the load 500.
  • the power storage device 1 here, the power storage device 1B in which the voltage of the power storage unit 40 is equal to or lower than the discharge end voltage appears.
  • the switch 91 is turned off and an off signal is output as an external output signal.
  • the switch 91 is turned off. Furthermore, in control device 90 of power storage device 1C, an off signal is output as an external output signal.
  • the switch 91 is turned off, and an off signal is output as the external output signal.
  • the power storage device set 1000 if there is at least one power storage device 1 in which the voltage of the power storage unit 40 is equal to or lower than the discharge end voltage among the plurality of power storage devices 1, the power storage units of all the power storage devices 1 are used. The discharge current from 40 stops in conjunction.
  • the timing at which the voltages of the plurality of power storage units 40 become equal to or lower than the end-of-discharge voltage can be different from each other due to the influence of variations in the capacity of the power storage units 40. For this reason, when the discharge currents from the plurality of power storage units 40 do not stop in conjunction with each other and stop at an independent timing when the voltage of each power storage unit 40 is equal to or lower than the discharge current, the following problems may occur. There is.
  • the discharge current from each power storage unit 40 is stopped at an independent timing, the discharge current is sequentially stopped from the power storage unit 40 having a small capacity.
  • the current supplied to the load 500 is constant, as the number of power storage units 40 whose discharge current is stopped increases, the current of another power storage unit 40 connected in parallel with the power storage unit 40 is increased. Sharing becomes large. That is, the amount of discharge current from the other power storage unit 40 increases.
  • the power storage unit 40 that has the latest timing of being equal to or lower than the discharge end voltage has a very large current (overcurrent) corresponding to the total amount of discharge currents supplied by the other power storage units 40. There is a risk of malfunction due to overcurrent.
  • a discharge current of 40 A per parallel flows at the time of rating
  • a power storage unit with the slowest timing that is equal to or lower than the discharge end voltage is allowed in the power storage unit.
  • the discharge currents from all the power storage devices 1 are stopped in conjunction with each other. It is possible to reduce the occurrence of problems due to the above.
  • the external input signal supplied from the external input terminal 83 may be a signal for turning on and off the switch 91 without being input to the control unit 92 or the like.
  • the time required for the switch 91 to switch from ON to OFF after switching from the ON signal to the OFF signal of the external input signal can be made very short (for example, about several tens of ⁇ S). The same applies when switching from off to on.
  • an external input signal supplied from the external input terminal 83 is input to the control unit 92 (CPU or the like) and supplied as a signal for turning on and off the switch 91 after some processing is performed on the computer. May be.
  • a predetermined time for example, several tens of mS
  • mS a predetermined time
  • 13 and 14 are diagrams schematically showing the state of the power storage device set 1000 at the time of power recovery.
  • each switch 91 of the plurality of power storage devices 1 is off. Thereafter, as shown in FIG. 13, when the commercial power supply 300 recovers from the power failure, the power storage device 1 (here, the power storage device 1 ⁇ / b> C) that is determined to be recovered by the control device 90 appears.
  • the power storage device 1C the external output signal output from the power storage device 1B is input as an external input signal, and the external output signal is an off signal. For this reason, even in the power storage device 1 ⁇ / b> C that has detected power recovery, the switch 91 remains off.
  • the timing at which it is determined that the connected power system has recovered can be different from each other due to the influence of variations in the characteristics of the analog elements constituting the power storage device 1. For this reason, the supply of the charging current to the plurality of power storage units 40 is not started in conjunction with each other, and is started at an independent timing at which it is determined that the power system connected to each power storage unit 40 has recovered.
  • the following problems may occur.
  • the supply of the charging current is stopped until it is determined that all the power storage devices 1 have recovered, and when it is determined that all the power storage devices 1 have recovered, the charging current Supply starts in conjunction with each other. For this reason, generation
  • FIG. 15 is a diagram schematically showing a state of the power storage device set 1000 when an abnormality occurs in the present embodiment.
  • power storage device 1 in this case, power storage device 1A
  • switch 91 is turned off and the external output signal is turned on.
  • power storage device 1B in which the external output signal output from power storage device 1A is input as an external input signal
  • switch 91 remains on and the external output signal also remains on. Therefore, in power storage devices 1B and 1C other than power storage device 1A, switch 91 remains on. Therefore, only the power storage unit 40 in which an abnormality has occurred can stop the discharge current.
  • the power storage unit 40 in which an abnormality has occurred can be continuously discharged by another power storage unit 40 while being disconnected from the load 500.
  • At least one of the control signal and the external input signal is applied to the switch 91 provided in the charging or discharging current path (in the present embodiment, the negative power supply line 62) of the power storage unit 40.
  • At least one of an off function that turns off when the signal turns off the switch 91 and an on function that turns on when both the control signal and the external input signal turn on the switch 91 are included.
  • the switches 91 provided in each of the charging or discharging current paths are turned off all at once by an external input signal, or all at once by an external input signal. Therefore, since all the power storage units 40 start or stop charging or discharging all at once, the occurrence of problems in the power storage units 40 can be reduced.
  • control device 90 controls charging or discharging of one power storage unit 40, and an external output terminal 84 externally turns on a switch 91 of another control device 90 when the switch 91 is turned on.
  • an output signal is output and the switch 91 is turned off, an external output signal that turns off the switch 91 of another control device 90 is output.
  • the other switches 91 corresponding to other power storage units 40 are also turned off in conjunction with each other.
  • the switch 91 corresponding to one power storage unit 40 is turned on, the other switches 91 corresponding to other power storage units 40 are also turned on in conjunction with each other. Therefore, since all the power storage units 40 can be charged or discharged in conjunction with each other, the occurrence of problems with the power storage units 40 can be reduced. That is, according to this configuration, the other switch 91 provided in the charging or discharging current path of the other power storage unit 40 can be controlled by the external output signal, so that the installation work at the installation site can be performed easily and reliably. it can.
  • a signal for turning off the switch 91 is input as an external input signal.
  • the switches 91 provided in each of the charging or discharging current paths are turned off all at once. Therefore, since each power storage unit 40 is disconnected from the load 500 at the same time, the occurrence of problems with the power storage unit 40 can be reduced.
  • the switches 91 provided in each of the charging or discharging current paths are turned on at the same time when the power is restored, so that the power storage units 40 are connected to the power system all at once. Therefore, it is possible to reduce the occurrence of problems of the power storage unit 40 at the time of power recovery.
  • a signal for turning off the switch 91 may be input as an external input signal.
  • the switches 91 provided in each of the charging or discharging current paths are turned off at the same time when the power is restored, so that the power storage units 40 are simultaneously disconnected from the power system. For this reason, generation
  • the switch 91 provided in the charging or discharging current path of the storage unit 40 in which an abnormality has occurred is turned off.
  • all the other power storage units 40 start or stop all at once while disconnecting the power storage unit 40 in which an abnormality has occurred from the commercial power supply 300 or the load 500.
  • the occurrence of problems can be reduced. That is, even if some of the power storage units 40 are abnormal, the other power storage units 40 are continuously charged and discharged, and N + 1 redundant design is achieved.
  • the present invention can be applied to a power supply device (power supply unit) attached to an existing device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

[Problem] To improve the durability and stability of an electric power supply system. [Solution] An electric power supply system, provided with a first electric power supply device and a second electric power supply device for supplying electric power from a power source to a load. The second electric power supply device has a second storage cell and is connected to the first electric power supply device. The first electric power supply device is provided with: a switching unit having an output terminal that can be electrically connected to a first switch and the load; and a power storage device having a first storage cell, a control unit, a second switch, and an external input terminal. The second switch has at least one of: an OFF function of switching off when a control signal from the control unit and/or an external input signal supplied to the external input terminal from the exterior is a signal for switching off the second switch; and an ON function of switching on when both of the control signal and the external input signal are signals for switching on the second switch. When an outage of the power source is sensed, the first switch closes and an electric connection is established between the first storage cell and the output terminal.

Description

電力供給装置、電力供給装置の制御方法、電力供給システム及び通信基地局バックアップシステムPower supply apparatus, power supply apparatus control method, power supply system, and communication base station backup system
 本発明は、電力供給装置、電力供給装置の制御方法、電力供給システム及び通信基地局バックアップシステムに関する。 The present invention relates to a power supply device, a control method for the power supply device, a power supply system, and a communication base station backup system.
 従来、鉛蓄電池を備えた電力供給システムが知られている(例えば特許文献1参照)。この電力供給システムでは、商用電源によって鉛蓄電池を充電しており、商用電源が停電すると、鉛蓄電池から負荷設備に対して放電を行うようになっている。 Conventionally, a power supply system including a lead storage battery is known (see, for example, Patent Document 1). In this power supply system, a lead storage battery is charged by a commercial power supply, and when the commercial power supply fails, the lead storage battery discharges the load equipment.
特開2011-083053号公報JP 2011-083053 A
 発展途上国などの商用電源の安定供給が困難な地域では、停電が頻発するために鉛蓄電池の充放電のサイクル数が多くなり、鉛蓄電池が早く劣化してしまう。 In areas such as developing countries where stable supply of commercial power is difficult, power failures occur frequently, leading to an increase in the number of charge / discharge cycles of the lead-acid battery, and the lead-acid battery quickly deteriorates.
 本発明の課題は、電力供給システムの安定性と耐久性を向上することである。 The problem of the present invention is to improve the stability and durability of the power supply system.
 本発明の一態様によれば、電源からの電力を負荷に供給する装置に対して取り付けられる電力供給装置であって、スイッチングユニットと、蓄電装置とを備え、前記スイッチングユニットは、前記装置に電気的に接続可能な入力端子と、前記負荷に電気的に接続可能な出力端子と、前記入力端子から入力された前記電力を前記出力端子まで供給する第一ラインと、前記第一ラインに設けられた接続部と、前記第一ラインに設けられ、前記電源の停電が検知された場合には前記接続部から前記出力端子までを電気的に導通させ、前記電源の停電が検知されていない場合には前記接続部から前記出力端子までの電気的な導通を遮断する第一スイッチと、を備え、前記蓄電装置は、蓄電素子を備える蓄電ユニットと、前記接続部に接続される前記蓄電ユニットの充放電経路と、前記充放電経路に設けられた第二スイッチと、前記第二スイッチに制御信号を供給する制御部と、外部入力信号が供給される外部入力端子と、を備え、前記第二スイッチは、前記制御信号及び前記外部入力信号の少なくとも一方が当該第二スイッチをオフとする信号の場合にオフとなるオフ機能、及び、前記制御信号及び前記外部入力信号のいずれも当該第二スイッチをオンとする信号の場合にオンとなるオン機能、の少なくとも一方を有する電力供給装置が提供される。 According to one aspect of the present invention, there is provided a power supply device that is attached to a device that supplies power from a power source to a load, the power supply device including a switching unit and a power storage device, wherein the switching unit is electrically connected to the device. An input terminal connectable to the load, an output terminal electrically connectable to the load, a first line for supplying the power input from the input terminal to the output terminal, and the first line. In the case where a power failure is detected, provided in the first line and when the power failure is detected, the connection portion to the output terminal is electrically connected, and the power failure is not detected. Includes a first switch that cuts off electrical continuity from the connection unit to the output terminal, and the power storage device includes a power storage unit including a power storage element, and the connection unit is connected to the connection unit. A charging / discharging path of the electric unit, a second switch provided in the charging / discharging path, a control unit for supplying a control signal to the second switch, and an external input terminal to which an external input signal is supplied, The second switch has an off function that turns off when at least one of the control signal and the external input signal is a signal that turns off the second switch, and both the control signal and the external input signal There is provided a power supply device having at least one of an on function that is turned on in the case of a signal that turns on a second switch.
 本発明の他の一態様によれば、第一蓄電池を有し、電源からの電力を負荷に供給する第一電力供給装置と、第二蓄電池を有するとともに前記第一電力供給装置と接続され、前記電源からの電力を負荷に供給する第二電力供給装置とを備え、前記第一電力供給装置は、第一スイッチと、前記負荷に電気的に接続可能な出力端子とを有するスイッチングユニットと、前記第一蓄電池と、制御部と、第二スイッチと、外部入力端子とを有する蓄電装置とを備え、前記第二スイッチは、前記制御部から供給される制御信号及び外部から前記外部入力端子に供給される外部入力信号の少なくとも一方が当該第二スイッチをオフとする信号の場合にオフとなるオフ機能、及び、前記制御信号及び前記外部入力信号のいずれも当該第二スイッチをオンとする信号の場合にオンとなるオン機能、の少なくとも一方を有し、前記電源の停電が検知された場合には、前記第一スイッチが閉じて前記第一蓄電池と前記出力端子とを電気的に導通させる電力供給システムが提供される。電力供給システムは、第一蓄電池としてリチウムイオン電池を用い、第二蓄電池として鉛蓄電池を用いた通信基地局バックアップシステムであってもよい。 According to the other one aspect | mode of this invention, it has a 1st storage battery, is connected with said 1st power supply apparatus while having a 1st electric power supply apparatus which supplies the electric power from a power supply to load, and a 2nd storage battery, A second power supply device that supplies power from the power source to a load, and the first power supply device includes a first switch and a switching unit having an output terminal that can be electrically connected to the load; A power storage device having the first storage battery, a control unit, a second switch, and an external input terminal, wherein the second switch is connected to a control signal supplied from the control unit and from the outside to the external input terminal; An off function that turns off when at least one of the supplied external input signals is a signal that turns off the second switch, and both the control signal and the external input signal turn on the second switch. At least one of an ON function that is turned ON in the case of a signal, and when a power failure is detected, the first switch is closed to electrically connect the first storage battery and the output terminal A power supply system is provided. The power supply system may be a communication base station backup system using a lithium ion battery as the first storage battery and a lead storage battery as the second storage battery.
 本発明の態様によれば、装置(例えば、鉛蓄電池を備える既設装置)に対して電力供給装置を取り付けることで、電力供給システム全体としての安定性と耐久性を向上することができる。制御部を蓄電装置に設け、スイッチングユニットの構成を簡素化することで、スイッチングユニットの製造コストを低減できる。 According to the aspect of the present invention, the stability and durability of the entire power supply system can be improved by attaching the power supply device to a device (for example, an existing device including a lead storage battery). By providing the control unit in the power storage device and simplifying the configuration of the switching unit, the manufacturing cost of the switching unit can be reduced.
既設装置としての第二電力供給装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the 2nd electric power supply apparatus as an existing apparatus. 第一電力供給装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of a 1st electric power supply apparatus. 第二電力供給装置の制御構成の概略を示すブロック図である。It is a block diagram which shows the outline of the control structure of a 2nd electric power supply apparatus. スイッチングユニットの制御構成の概略を示すブロック図である。It is a block diagram which shows the outline of the control structure of a switching unit. 第一電力供給装置の制御方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the control method of a 1st electric power supply apparatus. 図5の制御方法実行時における負荷電圧変化及び各部のON/OFF切替タイミングを示すタイミングチャートである。It is a timing chart which shows the load voltage change at the time of execution of the control method of Drawing 5, and the ON / OFF switching timing of each part. 蓄電装置セットの全体外観図を示す斜視図である。It is a perspective view which shows the whole external view of an electrical storage apparatus set. 蓄電装置セットの機能構成を示すブロック図である。It is a block diagram which shows the function structure of an electrical storage apparatus set. 制御装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of a control apparatus. 制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of a control apparatus. 図10Aの出力処理における詳細な動作を示すフローチャートである。It is a flowchart which shows the detailed operation | movement in the output process of FIG. 10A. 停電時の蓄電装置セットの状態を模式的に示す図である。It is a figure which shows typically the state of the electrical storage apparatus set at the time of a power failure. 停電時の蓄電装置セットの状態を模式的に示す図である。It is a figure which shows typically the state of the electrical storage apparatus set at the time of a power failure. 復電時の蓄電装置セットの状態を模式的に示す図である。It is a figure which shows typically the state of the electrical storage apparatus set at the time of a power recovery. 復電時の蓄電装置セットの状態を模式的に示す図である。It is a figure which shows typically the state of the electrical storage apparatus set at the time of a power recovery. 異常発生時の蓄電装置セットの状態を模式的に示す図である。It is a figure which shows typically the state of the electrical storage apparatus set at the time of abnormality occurrence.
 以下、図面を参照しながら、本発明の実施の形態を説明する。まず、後述する第一電力供給装置が取り付けられる、第二電力供給装置200について説明する。図1は、既設装置としての第二電力供給装置200の概略構成を示す斜視図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, the 2nd power supply apparatus 200 to which the 1st power supply apparatus mentioned later is attached is demonstrated. FIG. 1 is a perspective view showing a schematic configuration of a second power supply apparatus 200 as an existing apparatus.
 図1に示すように、第二電力供給装置200は、例えば19インチラックなどのラック210を備え、当該ラック210内に主要構成部205が搭載されている。ラック210の前面には、扉211が取り付けられており、通常時に扉211が閉ざされ、メンテナンス時などには扉211が開かれる。なお、この扉211はラック210に設けられていなくてもよい。 As shown in FIG. 1, the second power supply apparatus 200 includes a rack 210 such as a 19-inch rack, for example, and a main component 205 is mounted in the rack 210. A door 211 is attached to the front surface of the rack 210. The door 211 is closed during normal operation, and the door 211 is opened during maintenance. The door 211 may not be provided on the rack 210.
 ラック210内には、第二電力供給装置200の主要構成部205が収納される第一収納部201と、第一電力供給装置が収納される第二収納部202とが設けられている。図1においては、第一収納部201と第二収納部202との内部構造の図示は省略している。第二収納部202は、第一収納部201の上方に配置されているが、第一収納部201と第二収納部202との位置関係は、上下が逆であってもよい。第二収納部202は、第一電力供給装置専用の収納部としてラック210に予め設けられていてもよいし、ラック210内にある空間を必要に応じて第二収納部202としてもよい。ラック210内を整理することで空間をあけ、その空間を第二収納部202として使用してもよい。第二収納部202は、ラック210とは別のラックに設けられてもよい。 In the rack 210, there are provided a first storage unit 201 in which the main component 205 of the second power supply device 200 is stored, and a second storage unit 202 in which the first power supply device is stored. In FIG. 1, illustration of internal structures of the first storage unit 201 and the second storage unit 202 is omitted. Although the second storage unit 202 is disposed above the first storage unit 201, the positional relationship between the first storage unit 201 and the second storage unit 202 may be upside down. The second storage unit 202 may be provided in the rack 210 in advance as a storage unit dedicated to the first power supply device, or a space in the rack 210 may be used as the second storage unit 202 as necessary. A space may be opened by organizing the inside of the rack 210, and the space may be used as the second storage unit 202. The second storage unit 202 may be provided in a rack different from the rack 210.
 図2は、第一電力供給装置100の概略構成を示す斜視図である。第一電力供給装置100は、スイッチングユニット700と、蓄電装置1とを備えている。スイッチングユニット700は、略直方体状の外装体101を備えており、この外装体101内に主要構成部が収納されることでユニット化されている。「ユニット化」とは、構成部品(コンポーネント)を接続してアッセンブリーを形成することを意味する。スイッチングユニット700の下に、蓄電装置1が配置されている。蓄電装置1は、後述する第一蓄電池、制御部、スイッチ等の主要構成部が外装体101に収納されることでユニット化されている。これらスイッチングユニット700と蓄電装置1とを有する第一電力供給装置100は、例えば既設の第二電力供給装置200に対して増設されることで、電力供給システム全体としての電気容量、安定性及び耐久性を高める。 FIG. 2 is a perspective view showing a schematic configuration of the first power supply apparatus 100. The first power supply device 100 includes a switching unit 700 and the power storage device 1. The switching unit 700 includes a substantially rectangular parallelepiped exterior body 101 and is unitized by storing main components in the exterior body 101. “Unitization” means that components are connected to form an assembly. Under the switching unit 700, the power storage device 1 is arranged. The power storage device 1 is unitized by housing main components such as a first storage battery, a control unit, and a switch, which will be described later, in an exterior body 101. The first power supply device 100 having the switching unit 700 and the power storage device 1 is added to the existing second power supply device 200, for example, so that the electric capacity, stability, and durability of the entire power supply system are increased. Increase sex.
 スイッチングユニット700の外装体101の前面には、当該外装体101をラック210に対して着脱するための一対の取っ手102が設けられている。スイッチングユニット700に加え、蓄電装置1も取っ手を有してもよい。外装体101の前面における一対の取っ手102の間には、第一電力供給装置100の主要構成部と、第二電力供給装置200の主要構成部205とを電気的に接続するための端子群110が設けられている。外装体101の前面には、後述する第一ラインに導通する蓄電池用端子119が端子群110の近傍に設けられている。蓄電池用端子119には、第一蓄電池の端子150a、150bが配線部材604を介して電気的に接続されている。蓄電池用端子119が、後述する接続部として機能する。 A pair of handles 102 for attaching / detaching the exterior body 101 to / from the rack 210 are provided on the front surface of the exterior body 101 of the switching unit 700. In addition to the switching unit 700, the power storage device 1 may also have a handle. Between the pair of handles 102 on the front surface of the exterior body 101, a terminal group 110 for electrically connecting the main components of the first power supply device 100 and the main components 205 of the second power supply device 200. Is provided. On the front surface of the exterior body 101, a storage battery terminal 119 is provided in the vicinity of the terminal group 110, which is electrically connected to a first line described later. The storage battery terminal 119 is electrically connected to the terminals 150 a and 150 b of the first storage battery via the wiring member 604. The storage battery terminal 119 functions as a connection portion described later.
 次に、第二電力供給装置200及び第一電力供給装置100の制御構成の概略について説明する。まず、第二電力供給装置200について説明する。図3は、第二電力供給装置200の制御構成の概略を示すブロック図である。図3は、第一電力供給装置100が取り付けられる前の状態を示している。図3に示すように、第二電力供給装置200は、第二AC/DCコンバータ230と、第二蓄電池240と、端子250、251とを備える。 Next, an outline of the control configuration of the second power supply apparatus 200 and the first power supply apparatus 100 will be described. First, the second power supply apparatus 200 will be described. FIG. 3 is a block diagram illustrating an outline of a control configuration of the second power supply apparatus 200. FIG. 3 shows a state before the first power supply device 100 is attached. As shown in FIG. 3, the second power supply device 200 includes a second AC / DC converter 230, a second storage battery 240, and terminals 250 and 251.
 第二AC/DCコンバータ230には、端子251を介して、第二電力供給装置200の外部にある切替部220が電気的に接続されている。切替部220は、商用電源300と発電機400とのそれぞれから供給された交流電力を切り替えて下流に出力する回路である。第二AC/DCコンバータ230は、交流を直流に変換する変換装置であり、切替部220を介して供給された交流電力を第二直流電力に変換する。第二AC/DCコンバータ230は、変換した第二直流電力を第二蓄電池240及び負荷500に供給する。第二蓄電池240は、例えば鉛蓄電池などの蓄電池であり、供給された第二直流電力により蓄電するとともに、放電することにより端子250を介して負荷500に直流電力を供給する。 The second AC / DC converter 230 is electrically connected to a switching unit 220 outside the second power supply apparatus 200 via a terminal 251. The switching unit 220 is a circuit that switches AC power supplied from each of the commercial power supply 300 and the generator 400 and outputs it downstream. The second AC / DC converter 230 is a converter that converts alternating current into direct current, and converts alternating current power supplied via the switching unit 220 into second direct current power. The second AC / DC converter 230 supplies the converted second DC power to the second storage battery 240 and the load 500. The second storage battery 240 is a storage battery such as a lead storage battery, for example. The second storage battery 240 stores power using the supplied second DC power, and supplies DC power to the load 500 via the terminal 250 by discharging.
 図4は、第一電力供給装置100が取り付けられた第二電力供給装置200の制御構成の概略を示すブロック図である。図4に示すように、スイッチングユニット700は、直流入力端子111と、交流入力端子112と、出力端子113と、第一ライン130と、第二ライン120とを備えている。 FIG. 4 is a block diagram showing an outline of a control configuration of the second power supply apparatus 200 to which the first power supply apparatus 100 is attached. As shown in FIG. 4, the switching unit 700 includes a DC input terminal 111, an AC input terminal 112, an output terminal 113, a first line 130, and a second line 120.
 第二ライン120は、直流入力端子111から入力された第二直流電力を出力端子113まで供給するための電力系統である。第二ライン120には、第二ダイオード122が設けられている。第二ライン120は、スイッチングユニット700の外装体101の中に配置されていることが好ましい。 The second line 120 is a power system for supplying the second DC power input from the DC input terminal 111 to the output terminal 113. A second diode 122 is provided in the second line 120. The second line 120 is preferably arranged in the exterior body 101 of the switching unit 700.
 第一ライン130は、交流入力端子112から入力された交流電力を第一直流電力に変換して出力端子113まで供給するための電力系統である。第一ライン130と第二ライン120の接続点は、スイッチングユニット700の外装体101の中に配置されていることが好ましい。 The first line 130 is a power system for converting AC power input from the AC input terminal 112 into first DC power and supplying it to the output terminal 113. The connection point between the first line 130 and the second line 120 is preferably disposed in the exterior body 101 of the switching unit 700.
 第一ライン130には、停電検出部160と、遅延部170と、第一AC/DCコンバータ133と、スイッチ145と、第一ダイオード134とが設けられている。停電検出部160と、遅延部170とが第一ライン130に備えられている場合を例示したが、停電検出部160と遅延部170とは、第一ライン130とは別系統で設けられていてもよい。 The first line 130 is provided with a power failure detection unit 160, a delay unit 170, a first AC / DC converter 133, a switch 145, and a first diode 134. Although the case where the power failure detection unit 160 and the delay unit 170 are provided in the first line 130 is illustrated, the power failure detection unit 160 and the delay unit 170 are provided in a separate system from the first line 130. Also good.
 第一AC/DCコンバータ133は、スイッチングユニット700の外装体101の外に配置されてもよい。つまり、第一AC/DCコンバータ133は、スイッチングユニット700とは別に設けられてもよく、例えば、端子251と交流入力端子112との間に設けられてもよい。後述する蓄電装置の中に制御部を設け、商用電源300が停電から復電する際の蓄電装置の自動復帰等の機能は、蓄電装置の制御部が実現する。こうしてスイッチングユニット700の構成を簡素化することで、スイッチングユニット700をアナログ回路部品のみで構成することも可能となる。そのようなスイッチングユニット700は、製造コストを低減できることに加えて、動作の信頼性をいっそう向上できる。また、メンテナンスも容易である。 The first AC / DC converter 133 may be disposed outside the exterior body 101 of the switching unit 700. That is, the first AC / DC converter 133 may be provided separately from the switching unit 700, and may be provided between the terminal 251 and the AC input terminal 112, for example. A control unit is provided in the power storage device described later, and functions such as automatic recovery of the power storage device when the commercial power supply 300 recovers from a power failure are realized by the control unit of the power storage device. By simplifying the configuration of the switching unit 700 in this way, the switching unit 700 can be configured with only analog circuit components. Such a switching unit 700 can further reduce the manufacturing cost, and further improve the operation reliability. Also, maintenance is easy.
 停電検出部160は、第一ライン130における交流入力端子112と、スイッチ145との間に接続されている。停電検出部160は、停電である場合には信号を出力せず、停電でない場合には信号を出力し続ける停電検出器である。具体的には、停電検出部160は、交流入力端子112と第一AC/DCコンバータ133間に電圧がある場合には遅延部170に信号を出力し続けており、電圧がなくなった場合(停電時)には遅延部170に信号を出力しない。停電検出部160は、端子251と、スイッチ145との間に接続されてもよい。この場合、停電検出部160は、端子251に電圧がある時に遅延部170に信号を出力する。 The power failure detection unit 160 is connected between the AC input terminal 112 in the first line 130 and the switch 145. The power failure detection unit 160 is a power failure detector that does not output a signal when there is a power failure and continues to output a signal when there is no power failure. Specifically, the power failure detection unit 160 continues to output a signal to the delay unit 170 when there is a voltage between the AC input terminal 112 and the first AC / DC converter 133, and when the voltage disappears (power failure) At this time, no signal is output to the delay unit 170. The power failure detection unit 160 may be connected between the terminal 251 and the switch 145. In this case, the power failure detection unit 160 outputs a signal to the delay unit 170 when there is a voltage at the terminal 251.
 遅延部170は、停電を検知したタイミングよりも遅延させて、スイッチ145による導通又は遮断を切り替える遅延回路である。つまり、遅延部170は、停電検出部160での信号切替タイミングよりも遅延させて、スイッチ145のON/OFFを切り替える。具体的には、遅延部170は、停電検出部160から信号が入力されている状態では、その信号をスイッチ145に出力し、信号が入力されていない状態では、スイッチ145に対しても信号を出力しない。この信号の有無によってスイッチ145のON/OFFが切り替えられる。遅延部170では、信号の有無を切り替えるタイミングが、実際に停電検出部160で信号の有無が切り替わったタイミングよりも所定時間だけ遅れて行われている。つまり、停電検出部160からの信号の有無が安定した状態で、遅延部170ではスイッチ145に対する信号の有無が切り替わる。 The delay unit 170 is a delay circuit that switches conduction or interruption by the switch 145 with a delay from the timing at which a power failure is detected. That is, the delay unit 170 switches ON / OFF of the switch 145 with a delay from the signal switching timing in the power failure detection unit 160. Specifically, the delay unit 170 outputs the signal to the switch 145 when the signal is input from the power failure detection unit 160, and outputs the signal to the switch 145 when the signal is not input. Do not output. The switch 145 is turned on / off depending on the presence or absence of this signal. In the delay unit 170, the timing for switching the presence / absence of a signal is delayed by a predetermined time from the timing at which the presence / absence of the signal is actually switched in the power failure detection unit 160. That is, in the state where the presence or absence of the signal from the power failure detection unit 160 is stable, the presence or absence of the signal for the switch 145 is switched in the delay unit 170.
 スイッチ145(第一スイッチ)は、遅延部170からの信号の有無に基づいて、第一ライン130の電力のON/OFFを切り替えるスイッチである。具体的には、スイッチ145は、第一ライン130における接続部180と、第一ダイオード134との間に設けられている。スイッチ145は、遅延部170から信号が入力されている状態ではOFFとなり、第一ライン130の電力をOFFとする。他方、スイッチ145は、遅延部170からの信号が入力されていない状態(停電)でONとなり、第一ライン130の電力をONとする。 The switch 145 (first switch) is a switch for switching ON / OFF the power of the first line 130 based on the presence / absence of a signal from the delay unit 170. Specifically, the switch 145 is provided between the connection part 180 in the first line 130 and the first diode 134. The switch 145 is turned off when a signal is input from the delay unit 170 and turns off the power of the first line 130. On the other hand, the switch 145 is turned on when the signal from the delay unit 170 is not input (power failure), and the power of the first line 130 is turned on.
 つまり、スイッチ145は、停電検出部160が停電を検知した場合には、接続部180から出力端子113までを電気的に導通させて、停電検出部160が停電を検知していない場合には、接続部180から出力端子113までの電気的な導通を遮断する。換言すると、スイッチ145は、商用電源300の停電が検知された場合には、接続部180から出力端子113までを電気的に導通させて、商用電源300の停電が検知されていない場合には、接続部180から出力端子113までの電気的な導通を遮断する。これにより、停電時には第一蓄電池150からの直流電力が負荷500に供給される。第一蓄電池150は、リチウムイオン電池であってもよい。 That is, the switch 145 electrically connects the connection unit 180 to the output terminal 113 when the power failure detection unit 160 detects a power failure, and when the power failure detection unit 160 does not detect the power failure, The electrical continuity from the connection unit 180 to the output terminal 113 is interrupted. In other words, the switch 145 electrically connects the connection unit 180 to the output terminal 113 when a power failure of the commercial power supply 300 is detected, and when the power failure of the commercial power supply 300 is not detected, The electrical continuity from the connection unit 180 to the output terminal 113 is interrupted. As a result, DC power from the first storage battery 150 is supplied to the load 500 during a power failure. The first storage battery 150 may be a lithium ion battery.
 電力供給が不安定な地域では、瞬間的な電圧降下(瞬断)が頻繁に起こるが、その都度スイッチ145が切り替わると、スイッチ145に負担をかけ好ましくない。上述したように、停電検出部160からの信号の有無が安定した状態で、遅延部170からスイッチ145に対する信号の有無が切り替われば、頻繁にスイッチ145が切り替わることが抑えられる。これにより、スイッチ145のチャタリングが防止される。つまり、遅延回路はチャタリング除去回路とも言える。 In regions where power supply is unstable, instantaneous voltage drops (instant interruptions) frequently occur. However, if the switch 145 is switched each time, a burden is placed on the switch 145, which is not preferable. As described above, if the presence / absence of the signal from the power failure detection unit 160 is stable and the presence / absence of the signal from the delay unit 170 to the switch 145 is switched, frequent switching of the switch 145 can be suppressed. Thereby, chattering of the switch 145 is prevented. That is, the delay circuit can be said to be a chattering removal circuit.
 第一蓄電池150の充電電圧は、第二蓄電池240の充電電圧よりも高く設定されている。また、第一蓄電池150の放電終止電圧は、第二蓄電池240の放電終止電圧よりも高く設定されている。例えば、第一蓄電池150の充電電圧を56.7V、放電終止電圧を46.2Vとし、第二蓄電池240の充電電圧を54.0、放電終止電圧を43.2Vとする。これにより、第一ライン130の電力がONとなると、まず第一ライン130の第一蓄電池150から負荷500に電力が供給される。その後、第一蓄電池150の電圧が、第二蓄電池240の充電電圧まで低下すると、それ以降においては、第一蓄電池150と第二蓄電池240との両方から負荷500に電力が供給される。その後、第一蓄電池150が放電終止電圧に達すると、第二蓄電池240のみから負荷500に電力が供給される。このように、第一蓄電池150と第二蓄電池240との特性の違いによって、負荷500に対する電力供給が自動で切り替わるようになっている。 The charging voltage of the first storage battery 150 is set higher than the charging voltage of the second storage battery 240. The discharge end voltage of the first storage battery 150 is set higher than the discharge end voltage of the second storage battery 240. For example, the charge voltage of the first storage battery 150 is 56.7 V, the discharge end voltage is 46.2 V, the charge voltage of the second storage battery 240 is 54.0, and the discharge end voltage is 43.2 V. As a result, when the power of the first line 130 is turned on, power is first supplied from the first storage battery 150 of the first line 130 to the load 500. Then, when the voltage of the 1st storage battery 150 falls to the charge voltage of the 2nd storage battery 240, electric power is supplied to the load 500 from both the 1st storage battery 150 and the 2nd storage battery 240 after that. Thereafter, when the first storage battery 150 reaches the end-of-discharge voltage, power is supplied to the load 500 only from the second storage battery 240. As described above, the power supply to the load 500 is automatically switched due to the difference in characteristics between the first storage battery 150 and the second storage battery 240.
 次に、スイッチングユニット700を備えた第一電力供給装置100の制御方法について説明する。図5は、第一電力供給装置100の制御方法の流れを示すフローチャートである。図6は図5の制御方法実行時における負荷電圧変化及び各部のON/OFF切替タイミングを示すタイミングチャートである。ここでは、商用電源300が停電になった場合に、既設の第二電力供給装置200の切替部220が第一電力供給装置100に対する電力供給元を商用電源300から発電機400に切り替える場合を例示する。 Next, a method for controlling the first power supply apparatus 100 including the switching unit 700 will be described. FIG. 5 is a flowchart showing the flow of the control method of the first power supply apparatus 100. FIG. 6 is a timing chart showing the load voltage change and the ON / OFF switching timing of each part when the control method of FIG. 5 is executed. Here, a case where the switching unit 220 of the existing second power supply apparatus 200 switches the power supply source for the first power supply apparatus 100 from the commercial power supply 300 to the generator 400 when the commercial power supply 300 has a power failure is illustrated. To do.
 まず、第一電力供給装置100のスイッチングユニット700は、商用電源300から受電中であると、停電検出部160が信号を出力し続けているので、それに基づいて遅延部170もスイッチ145をOFFとし続けている(S201)。これは図6に示す「商用電源による給電」期間である。 First, when the switching unit 700 of the first power supply device 100 is receiving power from the commercial power supply 300, the power failure detection unit 160 continues to output a signal, so that the delay unit 170 also turns off the switch 145 based on the signal. It continues (S201). This is the “power supply by commercial power supply” period shown in FIG.
 具体的には、商用電源300から供給された交流電力の一部は、第二AC/DCコンバータ230によって第二直流電力に変換されて、端子250及び直流入力端子111を介して第二ライン120に供給される。これにより、交流電力の一部は、負荷500に供給される。なお、このとき、第二直流電力は第二蓄電池240にも供給されるため、第二蓄電池240が蓄電される。 Specifically, a part of the AC power supplied from the commercial power source 300 is converted into second DC power by the second AC / DC converter 230, and the second line 120 is connected via the terminal 250 and the DC input terminal 111. To be supplied. Thereby, a part of the AC power is supplied to the load 500. At this time, since the second DC power is also supplied to the second storage battery 240, the second storage battery 240 is charged.
 商用電源300から供給された交流電力のその他の一部は、交流入力端子112を介して第一ライン130に供給される。このとき、第一ライン130では、スイッチ145がOFFであるので、交流電力が第一AC/DCコンバータ133によって第一直流電力に変換されて、第一蓄電池150に供給される。 Other part of the AC power supplied from the commercial power supply 300 is supplied to the first line 130 via the AC input terminal 112. At this time, in the first line 130, since the switch 145 is OFF, the AC power is converted into the first DC power by the first AC / DC converter 133 and supplied to the first storage battery 150.
 つまり、このステップS201は、第一ライン130とは別のラインである第二ライン120が商用電源300から交流電力を受電している状態では、第二ライン120を介して負荷500に電力を供給する第一ステップである。 That is, this step S201 supplies power to the load 500 via the second line 120 when the second line 120, which is a line different from the first line 130, receives AC power from the commercial power supply 300. This is the first step.
 次いで、停電検出部160からの信号出力が継続されている場合(ステップS202;NO)には、その状態が維持される。停電検出部160からの信号出力が停止された場合(ステップS202;YES)、つまり停電が発生した場合には、スイッチ145がOFFからONに切り替えられる(ステップS203)。具体的には、ステップS203においては、遅延部170によって、停電検出部160での信号切替タイミングよりも遅延させて、スイッチ145がOFFからONに切り替えられる(図6参照)。この遅延時間中においては、第二蓄電池240から負荷500に給電が行われる。そして、遅延時間が経過すると、スイッチ145がONとなるので第一蓄電池150が放電する(S204)。これにより第一ライン130には、第一蓄電池150から直流電力が流れ、負荷500に対して直流電力が供給される。これは図6に示す「第一蓄電池による給電(第一状態)」期間である。ここで第一状態とは、第一蓄電池150からの直流電力が負荷500に供給されている状態である。 Next, when the signal output from the power failure detection unit 160 is continued (step S202; NO), the state is maintained. When the signal output from the power failure detection unit 160 is stopped (step S202; YES), that is, when a power failure occurs, the switch 145 is switched from OFF to ON (step S203). Specifically, in step S203, the delay unit 170 delays the signal switching timing in the power failure detection unit 160 and switches the switch 145 from OFF to ON (see FIG. 6). During this delay time, power is supplied from the second storage battery 240 to the load 500. When the delay time elapses, the switch 145 is turned on, and the first storage battery 150 is discharged (S204). Thereby, DC power flows from the first storage battery 150 to the first line 130, and DC power is supplied to the load 500. This is the “power supply by the first storage battery (first state)” period shown in FIG. 6. Here, the first state is a state in which DC power from the first storage battery 150 is supplied to the load 500.
 つまり、このステップS203、S204が、商用電源300が停止すると、負荷500への電力供給を途絶えさせることなく、第一ライン130に接続された第一蓄電池150から負荷500に電力を供給する第二ステップである。 That is, when the commercial power supply 300 is stopped, the steps S203 and S204 are the second for supplying power to the load 500 from the first storage battery 150 connected to the first line 130 without interrupting the power supply to the load 500. It is a step.
 次いで、第一蓄電池150が第二蓄電池240と異なる電圧である場合(ステップS205;NO)には、第一状態が継続される。第一蓄電池150と第二蓄電池240とが同じ電圧になった場合(ステップS205;YES)には、第一蓄電池150と第二蓄電池240との両者が放電する(ステップS206)。つまり、負荷500に供給される電圧が第一電圧値以下となると、第二蓄電池240からの電力供給が開始される。これにより、第一ライン130には、第一蓄電池150から直流電力が流れ、第二ライン120には第二蓄電池240から直流電力が流れて、負荷500に対して直流電力が供給される。これは、図6に示す「第一蓄電池及び第二蓄電池による給電」期間である。この期間は、負荷500に対して第一蓄電池150と第二蓄電池240とが同時に給電する同時給電状態となっている。 Next, when the first storage battery 150 has a voltage different from that of the second storage battery 240 (step S205; NO), the first state is continued. When the first storage battery 150 and the second storage battery 240 have the same voltage (step S205; YES), both the first storage battery 150 and the second storage battery 240 are discharged (step S206). That is, when the voltage supplied to the load 500 becomes equal to or lower than the first voltage value, power supply from the second storage battery 240 is started. Thereby, DC power flows from the first storage battery 150 to the first line 130, DC power flows from the second storage battery 240 to the second line 120, and DC power is supplied to the load 500. This is the “power supply by the first storage battery and the second storage battery” period shown in FIG. 6. During this period, the first storage battery 150 and the second storage battery 240 simultaneously supply power to the load 500.
 次いで、第一蓄電池150が放電終止電圧(所定値)以下でない場合(ステップS207;NO)には、同時給電状態が継続される。第一蓄電池150が放電終止電圧以下となった場合(ステップS207;YES)には、第一蓄電池150の放電が停止して、第二蓄電池240のみから負荷500に直流電力が供給される(ステップS208)。 Next, when the first storage battery 150 is not equal to or lower than the discharge end voltage (predetermined value) (step S207; NO), the simultaneous power feeding state is continued. When the first storage battery 150 becomes equal to or lower than the discharge end voltage (step S207; YES), the discharge of the first storage battery 150 is stopped, and DC power is supplied to the load 500 only from the second storage battery 240 (step S207). S208).
 つまり、このステップS207、S208は、第一蓄電池150の電圧が、第一電圧値よりも小さい第二電圧値以下となると、第一ライン130と第二ライン120との切り替えをすることなく第二蓄電池240の電力供給のみとしている。 In other words, these steps S207 and S208 are performed without switching between the first line 130 and the second line 120 when the voltage of the first storage battery 150 becomes equal to or lower than the second voltage value smaller than the first voltage value. Only the power supply of the storage battery 240 is used.
 その後、発電機400からの電力供給が行わると、停電検出部160が遅延部170に対して信号を出力する(ステップS209)。これにより、遅延部170を介してスイッチ145にも信号が出力されるので、スイッチ145はOFFとなって、ステップS202に移行する。これは図6に示す「復電」期間である。なお、ここでの復電期間には、商用電源300の復電も含む。 Thereafter, when power is supplied from the generator 400, the power failure detection unit 160 outputs a signal to the delay unit 170 (step S209). As a result, a signal is also output to the switch 145 via the delay unit 170, so that the switch 145 is turned OFF and the process proceeds to step S202. This is the “power recovery” period shown in FIG. Note that the power recovery period here includes power recovery of the commercial power supply 300.
 以上のように、スイッチングユニット700の交流入力端子112と、出力端子113と、第一ライン130とがユニット化されているので、第二電力供給装置200に対してスイッチングユニット700を後付けで簡単に取り付けることができる。したがって、第二電力供給装置200に対して、別の電力系統を簡単に増設することができる。また、スイッチングユニット700の第一ライン130には、第一蓄電池150が接続される接続部180が備えられているので、この接続部180に対して第一蓄電池150を接続すれば、第二電力供給装置200に対して第一蓄電池150を増設することも可能である。 As described above, since the AC input terminal 112, the output terminal 113, and the first line 130 of the switching unit 700 are unitized, the switching unit 700 can be easily retrofitted to the second power supply apparatus 200. Can be attached. Therefore, another power system can be easily added to the second power supply apparatus 200. Moreover, since the connection part 180 to which the 1st storage battery 150 is connected is provided in the 1st line 130 of the switching unit 700, if the 1st storage battery 150 is connected with this connection part 180, it will be 2nd electric power. It is also possible to add the first storage battery 150 to the supply device 200.
 ここで、既設装置である第二電力供給装置200の第二蓄電池(鉛蓄電池)240は、想定される長時間停電時のバックアップに対応できるように比較的、容量の大きな電池となっている。第一蓄電池(リチウムイオン電池)150は、商用電源300の短時間停電時のバックアップ用に電池容量が設定されている。このため、第一蓄電池150の容量は第二蓄電池240の容量よりも小さい。リチウムイオン電池と鉛蓄電池とでは、同容量の場合、リチウムイオン電池の方が小型で軽量である。また、電池容量が小さいほど小型で軽量となる。したがって、第一蓄電池150がリチウムイオン電池で、第二蓄電池240が鉛蓄電池の場合、第一蓄電池150が占める体積は第二蓄電池240に比較して小さくすることができる。第一蓄電池150の容量を小さくできると、第一蓄電池150の充電電流も小さく設定できる。これにより、第一AC/DCコンバータ133の容量も小さくできる。以上のことにより、第一電力供給装置100のコストを抑えつつ、第一電力供給装置100及び第二電力供給装置200を長期間安定して稼働させることできるようになる。 Here, the second storage battery (lead storage battery) 240 of the second power supply apparatus 200, which is an existing apparatus, is a battery having a relatively large capacity so that it can cope with a backup during a long-time power failure. The battery capacity of the first storage battery (lithium ion battery) 150 is set for backup when the commercial power supply 300 is in a short power failure. For this reason, the capacity of the first storage battery 150 is smaller than the capacity of the second storage battery 240. In the case of the same capacity between the lithium ion battery and the lead storage battery, the lithium ion battery is smaller and lighter. Also, the smaller the battery capacity, the smaller and lighter. Therefore, when the 1st storage battery 150 is a lithium ion battery and the 2nd storage battery 240 is a lead storage battery, the volume which the 1st storage battery 150 occupies can be made small compared with the 2nd storage battery 240. If the capacity | capacitance of the 1st storage battery 150 can be made small, the charging current of the 1st storage battery 150 can also be set small. Thereby, the capacity | capacitance of the 1st AC / DC converter 133 can also be made small. As described above, the first power supply device 100 and the second power supply device 200 can be stably operated for a long time while suppressing the cost of the first power supply device 100.
 遅延部170が、商用電源300の停電を検知したタイミングよりも遅延させて、スイッチ145による導通又は遮断を切り替えているので、瞬間的な電圧降下(瞬断)が頻繁に起こったとしても、その度にスイッチ145が作動しないようにすることができる。つまり、スイッチ145のチャタリングを防止することができる。 Since the delay unit 170 switches the conduction or interruption by the switch 145 with a delay from the timing when the power failure of the commercial power supply 300 is detected, even if instantaneous voltage drops (instant interruptions) frequently occur, It is possible to prevent the switch 145 from being activated each time. That is, chattering of the switch 145 can be prevented.
 第一蓄電池150が接続された第一電力供給装置100を第二電力供給装置200に増設した場合に、商用電源300が停止したとしても、第一蓄電池150による電力供給が行われるので、第一蓄電池150を確実に活用することができる。つまり、増設された第一電力供給装置100から負荷500に対して安定した電力供給が可能となるため、設備全体を置き換えなくても、第一蓄電池150を活用することができる。 When the first power supply device 100 to which the first storage battery 150 is connected is added to the second power supply device 200, even if the commercial power supply 300 is stopped, power supply by the first storage battery 150 is performed. The storage battery 150 can be used reliably. That is, since it is possible to stably supply power to the load 500 from the added first power supply apparatus 100, the first storage battery 150 can be used without replacing the entire facility.
 スイッチングユニット700が第二ライン120を備えている場合を例示した。代替的に、第二ライン120は、スイッチングユニット700に設けられていなくてもよい。この場合、負荷500に対して第二蓄電池240が直接接続されていてもよい。この場合においても、第一蓄電池150が放電終止電圧に達すると、第二蓄電池240からの給電に切り替えることができる。 The case where the switching unit 700 includes the second line 120 is illustrated. Alternatively, the second line 120 may not be provided in the switching unit 700. In this case, the second storage battery 240 may be directly connected to the load 500. Even in this case, when the first storage battery 150 reaches the end-of-discharge voltage, the power supply from the second storage battery 240 can be switched.
 スイッチングユニット700と第一蓄電池150とを備えた第一電力供給装置100を例示したが、この第一電力供給装置100を通信基地局バックアップシステムに適用することも可能である。例えば、通信基地局で停電が発生すると、単に停電時にデータ通信が行えなくなるだけでなく、復電後においても、停電前のデータ通信を再度行わなければならず、非効率である。これは、電力供給事情の悪い発展途上国では、深刻な問題である。上記の第一電力供給装置100を通信基地局バックアップシステムとして通信基地局に設置すれば、通信基地局に対する電力供給を安定化することができ、通信の安定化も実現することが可能である。 Although the first power supply apparatus 100 including the switching unit 700 and the first storage battery 150 has been illustrated, the first power supply apparatus 100 can also be applied to a communication base station backup system. For example, when a power outage occurs at a communication base station, not only data communication cannot be performed at the time of a power outage, but also after power recovery, data communication before the power outage must be performed again, which is inefficient. This is a serious problem in developing countries where power supply conditions are poor. If the first power supply apparatus 100 is installed in a communication base station as a communication base station backup system, power supply to the communication base station can be stabilized, and communication can be stabilized.
 第二電力供給装置200が既設装置である場合を例示したが、第二電力供給装置200は既設でなく、第一電力供給装置100とともに設置されてもよい。ラック210内において、第二蓄電池240が、第一蓄電池150よりも上方に配置される場合を例示した。例えば、第二蓄電池240が鉛蓄電池、第一蓄電池150がリチウムイオン電池である場合、鉛蓄電池は、リチウムイオン電池よりも重量があるので、鉛蓄電池が下方に配置されていれば、交換などのメンテナンス作業を効率的に行うことが可能である。 Although the case where the second power supply apparatus 200 is an existing apparatus has been illustrated, the second power supply apparatus 200 may be installed together with the first power supply apparatus 100 instead of the existing apparatus. In the rack 210, the case where the 2nd storage battery 240 was arrange | positioned upwards rather than the 1st storage battery 150 was illustrated. For example, when the second storage battery 240 is a lead storage battery and the first storage battery 150 is a lithium ion battery, the lead storage battery is heavier than the lithium ion battery. Maintenance work can be performed efficiently.
 蓄電装置1は、複数の蓄電装置からなる蓄電装置セットであってもよい。図7は、蓄電装置セット1000の全体外観図を示す斜視図である。図8は、蓄電装置セット1000の機能構成を示すブロック図である。 The power storage device 1 may be a power storage device set including a plurality of power storage devices. FIG. 7 is a perspective view showing an overall external view of the power storage device set 1000. FIG. 8 is a block diagram showing a functional configuration of the power storage device set 1000.
 なお、図7では、Z軸方向を上下方向として示しており、以下ではZ軸方向を上下方向として説明するが、使用態様によってはZ軸方向が上下方向にならない場合も考えられるため、Z軸方向は上下方向となることには限定されない。例えば、X軸方向が上下方向になってもかまわない。以下の図においても、同様である。 In FIG. 7, the Z-axis direction is shown as the vertical direction, and in the following, the Z-axis direction is described as the vertical direction. However, depending on the use mode, the Z-axis direction may not be the vertical direction. The direction is not limited to the vertical direction. For example, the X axis direction may be the vertical direction. The same applies to the following drawings.
 蓄電装置セット1000は、外部からの電気を充電し、また外部へ電気を放電することができる。蓄電装置セット1000は、商用電源300等の電力系統及び負荷500に接続され、商用電源300からの電気を充電し、負荷500へ電気を放電する。図8では、上述したスイッチングユニット700の図示を省略している。蓄電装置セット1000は、複数の蓄電装置1(本実施形態では3つの蓄電装置1A~1C)を備え、例えば、電力貯蔵用途や電源用途などに使用される。 The power storage device set 1000 can charge electricity from the outside and discharge electricity to the outside. The power storage device set 1000 is connected to an electric power system such as the commercial power source 300 and the load 500, charges electricity from the commercial power source 300, and discharges electricity to the load 500. In FIG. 8, the switching unit 700 described above is not shown. The power storage device set 1000 includes a plurality of power storage devices 1 (three power storage devices 1A to 1C in the present embodiment), and is used for, for example, a power storage application or a power supply application.
 蓄電装置1は、据置用の電源装置として好適に使用される。この蓄電装置1は、蓄電ユニット40と、当該蓄電ユニット40の充電または放電を制御する制御装置90とを備えている。本実施形態では、制御装置90は、1以上の蓄電ユニット40(3つの蓄電ユニット40)のうち一の蓄電ユニット40の充電または放電を制御する。言い換えると、1以上の蓄電ユニット40の各々について制御装置90が設けられている。 The power storage device 1 is suitably used as a stationary power supply device. The power storage device 1 includes a power storage unit 40 and a control device 90 that controls charging or discharging of the power storage unit 40. In the present embodiment, the control device 90 controls charging or discharging of one power storage unit 40 among one or more power storage units 40 (three power storage units 40). In other words, the control device 90 is provided for each of the one or more power storage units 40.
 蓄電ユニット40は、電力を充電または放電することができる電池ユニットである。蓄電ユニット40は、直列に接続された1以上の蓄電素子153を備える。複数の蓄電装置1が備える複数の蓄電ユニット40は、電源線3によって並列に接続されている。 The power storage unit 40 is a battery unit that can charge or discharge electric power. The power storage unit 40 includes one or more power storage elements 153 connected in series. The plurality of power storage units 40 included in the plurality of power storage devices 1 are connected in parallel by the power line 3.
 制御装置90は、蓄電ユニット40の充電または放電電流経路に設けられたスイッチ91を有し、当該スイッチ91をオン及びオフすることで蓄電ユニット40の充放電を制御する。複数の蓄電装置1が備える複数の制御装置90は、RS-232用ケーブル、RS-485用ケーブル等の通信線2によってループ状にデイジーチェーン接続されている。なお、通信線2の規格は特に限定されず、シリアル通信用のケーブルであってもかまわないし、パラレル通信用のケーブルであってもかまわない。次に、制御装置90の詳細な構成について、説明する。 The control device 90 has a switch 91 provided in the charging or discharging current path of the power storage unit 40, and controls charging / discharging of the power storage unit 40 by turning the switch 91 on and off. The plurality of control devices 90 included in the plurality of power storage devices 1 are daisy chain connected in a loop shape by communication lines 2 such as an RS-232 cable and an RS-485 cable. The standard of the communication line 2 is not particularly limited, and may be a serial communication cable or a parallel communication cable. Next, a detailed configuration of the control device 90 will be described.
 図9は、制御装置90の機能構成を示すブロック図である。制御装置90は、蓄電素子153を備える蓄電ユニット40の充放電を制御する装置である。図9に示すように、制御装置90は、スイッチ91と、制御部92と、外部入力端子83と、外部出力端子84とを備える。 FIG. 9 is a block diagram illustrating a functional configuration of the control device 90. The control device 90 is a device that controls charging / discharging of the power storage unit 40 including the power storage element 153. As shown in FIG. 9, the control device 90 includes a switch 91, a control unit 92, an external input terminal 83, and an external output terminal 84.
 スイッチ91(第二スイッチ)は、蓄電ユニット40の充放電経路であって、外部接続端子203を介して電源線3に接続されている電源線62に設けられている。このスイッチ91は、制御信号及び外部入力信号の少なくとも一方が当該スイッチ91をオフとする信号の場合にオフとなるオフ機能、及び、制御信号及び外部入力信号のいずれも当該スイッチ91をオンとする信号の場合にオンとなるオン機能、の少なくとも一方(本実施形態では両方)を有する。また、本実施形態では、3つの蓄電ユニット40のいずれかに異常が生じた場合、異常が生じた各蓄電ユニット40の充電または放電電流経路に設けられたスイッチ91はオフとなる。 The switch 91 (second switch) is a charging / discharging path of the power storage unit 40 and is provided on the power supply line 62 connected to the power supply line 3 via the external connection terminal 203. The switch 91 is turned off when at least one of the control signal and the external input signal is a signal for turning off the switch 91, and both the control signal and the external input signal turn on the switch 91. It has at least one (both in the present embodiment) of an on function that is turned on in the case of a signal. Further, in the present embodiment, when an abnormality occurs in any of the three power storage units 40, the switch 91 provided in the charging or discharging current path of each power storage unit 40 in which the abnormality has occurred is turned off.
 以下、スイッチ91をオンとする信号をオン信号、スイッチ91をオフとする信号をオフ信号と称する場合がある。制御部92は、例えば、制御プログラムを保持するROM(Read Only Memory)等のメモリと、その制御プログラムを実行するプロセッサとを備える、CPU(Central Processing Unit)等の1チップマイクロコンピュータである。制御部92は、終止電圧判定部191と、復電判定部192と、異常判定部193とを備える。 Hereinafter, a signal for turning on the switch 91 may be referred to as an on signal, and a signal for turning off the switch 91 may be referred to as an off signal. The control unit 92 is, for example, a one-chip microcomputer such as a CPU (Central Processing Unit) including a memory such as a ROM (Read Only Memory) that holds a control program and a processor that executes the control program. The control unit 92 includes an end voltage determination unit 191, a power recovery determination unit 192, and an abnormality determination unit 193.
 制御部92は、終止電圧判定部191によって蓄電ユニット40の電圧が放電終止電圧以下と判定された場合、スイッチ91をオフとする制御信号を出力する。その場合、外部出力端子84から出力される外部出力信号はオフ信号となる。 The control unit 92 outputs a control signal for turning off the switch 91 when the end voltage determination unit 191 determines that the voltage of the power storage unit 40 is equal to or lower than the discharge end voltage. In this case, the external output signal output from the external output terminal 84 is an off signal.
 制御部92は、復電判定部192によって、蓄電ユニット40に接続される電力系統が復電したと判定された場合、スイッチ91をオンとする制御信号を出力する。その場合、外部入力信号がオン信号であれば、外部出力端子84から出力される外部出力信号もオン信号となる。外部入力信号がオフ信号であれば、外部出力端子84から出力される外部出力信号もオフ信号となる。 When the power recovery determination unit 192 determines that the power system connected to the power storage unit 40 has recovered power, the control unit 92 outputs a control signal that turns on the switch 91. In this case, if the external input signal is an on signal, the external output signal output from the external output terminal 84 is also an on signal. If the external input signal is an off signal, the external output signal output from the external output terminal 84 is also an off signal.
 制御部92は、異常判定部193によって蓄電ユニット40に異常が生じたと判定された場合、スイッチ91をオフとする制御信号を出力する。その場合、外部出力信号は、制御信号及び外部入力信号のうち外部入力信号のみに依存する。つまり、外部入力信号がオフ信号であれば外部出力信号もオフ信号となり、外部入力信号がオン信号であれば外部出力信号もオン信号となる。 When the abnormality determination unit 193 determines that an abnormality has occurred in the power storage unit 40, the control unit 92 outputs a control signal that turns off the switch 91. In this case, the external output signal depends only on the external input signal among the control signal and the external input signal. That is, if the external input signal is an off signal, the external output signal is also an off signal, and if the external input signal is an on signal, the external output signal is also an on signal.
 終止電圧判定部191は、蓄電ユニット40の電圧が放電終止電圧以下であるか否かを判定する。ここで、放電終止電圧とは、安全に放電を行うことができる蓄電ユニット40の最小電圧である。蓄電ユニット40の電圧を測定する手法は特に限定されない。 The end voltage determination unit 191 determines whether or not the voltage of the power storage unit 40 is equal to or lower than the discharge end voltage. Here, the discharge end voltage is the minimum voltage of the power storage unit 40 that can be safely discharged. The method for measuring the voltage of the power storage unit 40 is not particularly limited.
 復電判定部192は、蓄電ユニット40に接続される電力系統が復電したか否かを判定する。復電判定部192は、例えば、外部接続端子203の電圧を測定し、測定した電圧が所定の電圧以上の場合に電力系統が復電したと判定する。なお、復電を判定する手法は特に限定されない。 The power recovery determination unit 192 determines whether or not the power system connected to the power storage unit 40 has recovered power. For example, the power recovery determination unit 192 measures the voltage of the external connection terminal 203 and determines that the power system has recovered when the measured voltage is equal to or higher than a predetermined voltage. Note that the method for determining power recovery is not particularly limited.
 異常判定部193は、蓄電ユニット40に異常が生じているか否かを判定する。ここで、蓄電ユニット40に生じる異常とは、例えば、過負荷または短絡等による過電流や、蓄電素子153の許容温度以上の発熱などである。異常判定部193は、例えば、電源線62に設けられたホール素子(不図示)を用いて電源線62に流れる電流量を検出し、検出した電流量が所定量以上の場合、蓄電ユニット40に異常が生じていると判定する。また、異常判定部193は、例えばサーミスタ(不図示)を用いて蓄電素子153の温度を検出し、検出した温度が所定温度以上の場合、蓄電ユニット40に異常が生じていると判定する。 The abnormality determination unit 193 determines whether or not an abnormality has occurred in the power storage unit 40. Here, the abnormality that occurs in the power storage unit 40 is, for example, an overcurrent due to an overload or a short circuit or a heat generation that exceeds the allowable temperature of the power storage element 153. For example, the abnormality determination unit 193 detects the amount of current flowing through the power supply line 62 using a Hall element (not shown) provided in the power supply line 62, and if the detected current amount is equal to or greater than a predetermined amount, It is determined that an abnormality has occurred. Moreover, the abnormality determination part 193 detects the temperature of the electrical storage element 153, for example using a thermistor (not shown), and when the detected temperature is more than predetermined temperature, it determines with the electrical storage unit 40 having abnormality.
 次に、制御装置90の動作について、図10A及び図10Bを用いて説明する。図10Aに示すように、まず、スイッチ91に制御信号を供給する(S10)。本実施形態では、制御部92が、制御信号と放電信号と充電信号とをスイッチ91に供給する。 Next, the operation of the control device 90 will be described with reference to FIGS. 10A and 10B. As shown in FIG. 10A, first, a control signal is supplied to the switch 91 (S10). In the present embodiment, the control unit 92 supplies a control signal, a discharge signal, and a charge signal to the switch 91.
 そして、外部入力端子83に外部入力信号を供給する(S20)。例えば、通信線2を介して前段の蓄電装置1の外部出力端子84と接続された外部入力端子83が、外部入力信号を、スイッチ91に、または制御部92に供給する。 Then, an external input signal is supplied to the external input terminal 83 (S20). For example, the external input terminal 83 connected to the external output terminal 84 of the power storage device 1 in the previous stage via the communication line 2 supplies an external input signal to the switch 91 or the control unit 92.
 その後、スイッチ91をオフとするオフ機能、及び、スイッチ91をオンとするオン機能、の少なくとも一方を実行する(S30)。具体的には、図10Bに示すように、ステップS30では、制御信号及び外部入力信号の少なくとも一方が当該スイッチ91をオフとする信号の場合(S31で「少なくとも一方がオフ信号」の場合)に、スイッチ91をオフとするオフ機能を実行する(S32)。このとき、外部出力端子84からは、外部出力信号としてオフ信号が出力される。一方、制御信号及び外部入力信号のいずれも当該スイッチ91をオンとする信号の場合(S31で「いずれもオン信号」の場合)に、スイッチ91をオンとするオン機能を実行する(S33)。このとき、外部出力端子84からは、外部出力信号としてオン信号が出力される。 Thereafter, at least one of an off function for turning off the switch 91 and an on function for turning on the switch 91 is executed (S30). Specifically, as shown in FIG. 10B, in step S30, when at least one of the control signal and the external input signal is a signal for turning off the switch 91 (when “at least one is an off signal” in S31). Then, an off function for turning off the switch 91 is executed (S32). At this time, an off signal is output from the external output terminal 84 as an external output signal. On the other hand, when both the control signal and the external input signal are signals that turn on the switch 91 (in the case of “both on signals” in S31), an on function that turns on the switch 91 is executed (S33). At this time, an ON signal is output from the external output terminal 84 as an external output signal.
 以下、蓄電装置セット1000において、各蓄電装置1の制御装置90が奏する効果について、図11~図15を用いて具体例を述べつつ説明する。まず、商用電源300(電源系統)の停電時において、蓄電装置セット1000が奏する効果について説明する。図11及び図12は、停電時の蓄電装置セット1000の状態を模式的に示す図である。 Hereinafter, the effects exerted by the control device 90 of each power storage device 1 in the power storage device set 1000 will be described with reference to specific examples with reference to FIGS. First, the effect produced by the power storage device set 1000 during a power failure of the commercial power supply 300 (power supply system) will be described. FIG.11 and FIG.12 is a figure which shows typically the state of the electrical storage apparatus set 1000 at the time of a power failure.
 図11に示すように、商用電源300が停電すると、蓄電装置セット1000は負荷500に電力を供給する。つまり、蓄電装置セット1000は、商用電源300の停電時に電力のバックアップを行う。このとき、複数の蓄電装置1のそれぞれのスイッチ91はオンとなっているため、並列に接続された複数の蓄電ユニット40の各々から負荷500へと放電電流が流れることとなる。 As shown in FIG. 11, when the commercial power supply 300 fails, the power storage device set 1000 supplies power to the load 500. That is, the power storage device set 1000 performs power backup when the commercial power supply 300 is powered down. At this time, since the respective switches 91 of the plurality of power storage devices 1 are turned on, a discharge current flows from each of the plurality of power storage units 40 connected in parallel to the load 500.
 その後、負荷500への電力供給が継続すると、図12に示すように、蓄電ユニット40の電圧が放電終止電圧以下となる蓄電装置1(ここでは蓄電装置1B)が現れる。このとき、当該蓄電装置1Bの制御装置90では、スイッチ91がオフとなるとともに、外部出力信号としてオフ信号が出力される。 Thereafter, when the power supply to the load 500 is continued, as shown in FIG. 12, the power storage device 1 (here, the power storage device 1B) in which the voltage of the power storage unit 40 is equal to or lower than the discharge end voltage appears. At this time, in the control device 90 of the power storage device 1B, the switch 91 is turned off and an off signal is output as an external output signal.
 これにより、外部入力信号として蓄電装置1Bの制御装置90から出力された外部出力信号が入力される蓄電装置1Cの制御装置90では、スイッチ91がオフとなる。さらに、蓄電装置1Cの制御装置90では、外部出力信号としてオフ信号が出力される。 Thereby, in the control device 90 of the power storage device 1C to which the external output signal output from the control device 90 of the power storage device 1B is input as the external input signal, the switch 91 is turned off. Furthermore, in control device 90 of power storage device 1C, an off signal is output as an external output signal.
 これにより、蓄電装置1Cから出力された外部出力信号が入力される蓄電装置1Aにおいても、スイッチ91がオフとなり、外部出力信号としてオフ信号が出力される。 Thus, also in the power storage device 1A to which the external output signal output from the power storage device 1C is input, the switch 91 is turned off, and an off signal is output as the external output signal.
 したがって、本実施形態に係る蓄電装置セット1000では、複数の蓄電装置1のうち蓄電ユニット40の電圧が放電終止電圧以下となる蓄電装置1が1つでもあれば、全ての蓄電装置1の蓄電ユニット40からの放電電流が連動して停止する。 Therefore, in the power storage device set 1000 according to the present embodiment, if there is at least one power storage device 1 in which the voltage of the power storage unit 40 is equal to or lower than the discharge end voltage among the plurality of power storage devices 1, the power storage units of all the power storage devices 1 are used. The discharge current from 40 stops in conjunction.
 ここで、複数の蓄電ユニット40の電圧が放電終止電圧以下となるタイミングは、蓄電ユニット40の容量のバラつき等の影響により、互いに異なるタイミングとなり得る。このため、複数の蓄電ユニット40からの放電電流が連動して停止せずに、各々の蓄電ユニット40の電圧が放電電流以下となる独立のタイミングで停止する場合、次のような問題が生じる虞がある。 Here, the timing at which the voltages of the plurality of power storage units 40 become equal to or lower than the end-of-discharge voltage can be different from each other due to the influence of variations in the capacity of the power storage units 40. For this reason, when the discharge currents from the plurality of power storage units 40 do not stop in conjunction with each other and stop at an independent timing when the voltage of each power storage unit 40 is equal to or lower than the discharge current, the following problems may occur. There is.
 つまり、各々の蓄電ユニット40からの放電電流が独立のタイミングで停止する場合、容量の小さい蓄電ユニット40から放電電流が順次停止する。ここで、負荷500に供給される電流は一定であることが好ましいため、放電電流が停止される蓄電ユニット40が増えるに伴い、当該蓄電ユニット40と並列に接続された他の蓄電ユニット40の電流分担が大きくなる。つまり、他の蓄電ユニット40からの放電電流の電流量が増加する。 That is, when the discharge current from each power storage unit 40 is stopped at an independent timing, the discharge current is sequentially stopped from the power storage unit 40 having a small capacity. Here, since it is preferable that the current supplied to the load 500 is constant, as the number of power storage units 40 whose discharge current is stopped increases, the current of another power storage unit 40 connected in parallel with the power storage unit 40 is increased. Sharing becomes large. That is, the amount of discharge current from the other power storage unit 40 increases.
 したがって、複数の蓄電ユニット40のうち放電終止電圧以下となるタイミングが最も遅い蓄電ユニット40では、他の蓄電ユニット40が供給していた放電電流の合計量に相当する非常に大きな電流(過電流)が流れることとなり、過電流による不具合が発生する虞がある。 Accordingly, among the plurality of power storage units 40, the power storage unit 40 that has the latest timing of being equal to or lower than the discharge end voltage has a very large current (overcurrent) corresponding to the total amount of discharge currents supplied by the other power storage units 40. There is a risk of malfunction due to overcurrent.
 例えば、10個の蓄電ユニットが並列に接続された蓄電装置セットにおいて、定格時に1並列あたり40Aの放電電流が流れる場合、放電終止電圧以下となるタイミングが最も遅い蓄電ユニットでは、蓄電ユニットで許容され得る最大電流(例えば80A)を超える400Aの放電電流(過電流)が流れてしまう。 For example, in a power storage device set in which 10 power storage units are connected in parallel, when a discharge current of 40 A per parallel flows at the time of rating, a power storage unit with the slowest timing that is equal to or lower than the discharge end voltage is allowed in the power storage unit. A discharge current (overcurrent) of 400 A that exceeds the maximum current (for example, 80 A) that can be obtained flows.
 これに対して、本実施形態によれば、蓄電ユニット40の電圧が放電終止電圧以下となる蓄電装置1があれば、全ての蓄電装置1からの放電電流が連動して停止するため、過電流による不具合の発生を低減することができる。 On the other hand, according to the present embodiment, if there is a power storage device 1 in which the voltage of the power storage unit 40 is equal to or lower than the discharge end voltage, the discharge currents from all the power storage devices 1 are stopped in conjunction with each other. It is possible to reduce the occurrence of problems due to the above.
 外部入力端子83から供給される外部入力信号が、制御部92等に入力されることなく、スイッチ91をオン及びオフをするための信号であってもよい。これにより、外部入力信号のオン信号からオフ信号への切り替えからスイッチ91がオンからオフに切り替わるのに要する時間を非常に短時間(例えば数十μS程度)とすることができる。なお、オフからオンに切り替わる際も同様である。 The external input signal supplied from the external input terminal 83 may be a signal for turning on and off the switch 91 without being input to the control unit 92 or the like. As a result, the time required for the switch 91 to switch from ON to OFF after switching from the ON signal to the OFF signal of the external input signal can be made very short (for example, about several tens of μS). The same applies when switching from off to on.
 代替的に、外部入力端子83から供給される外部入力信号が、制御部92(CPU等)に入力されてコンピュータ上で何らかの処理が行われた後にスイッチ91をオン及びオフするための信号として供給されてもよい。この場合、外部入力信号の切り替えからスイッチ91の切り替えに、所定の時間(例えば数十mS)を要するが、システムとして許容できる範囲であればよい。 Alternatively, an external input signal supplied from the external input terminal 83 is input to the control unit 92 (CPU or the like) and supplied as a signal for turning on and off the switch 91 after some processing is performed on the computer. May be. In this case, a predetermined time (for example, several tens of mS) is required from the switching of the external input signal to the switching of the switch 91, but it may be within a range that is acceptable for the system.
 次に、商用電源300(電源系統)の復電時において、蓄電装置セット1000が奏する効果について説明する。図13及び図14は、復電時の蓄電装置セット1000の状態を模式的に示す図である。 Next, the effect of the power storage device set 1000 when the commercial power supply 300 (power supply system) is restored will be described. 13 and 14 are diagrams schematically showing the state of the power storage device set 1000 at the time of power recovery.
 まず、復電前の状態では、複数の蓄電装置1のそれぞれのスイッチ91はオフとなっている。その後、図13に示すように、商用電源300が停電から復電すると、制御装置90によって復電したと判定される蓄電装置1(ここでは蓄電装置1C)が現れる。ここで、当該蓄電装置1Cでは、蓄電装置1Bから出力された外部出力信号が外部入力信号として入力されており、当該外部出力信号はオフ信号となっている。このため、復電を検出した蓄電装置1Cにおいても、スイッチ91はオフのままとなっている。 First, in a state before power recovery, each switch 91 of the plurality of power storage devices 1 is off. Thereafter, as shown in FIG. 13, when the commercial power supply 300 recovers from the power failure, the power storage device 1 (here, the power storage device 1 </ b> C) that is determined to be recovered by the control device 90 appears. Here, in the power storage device 1C, the external output signal output from the power storage device 1B is input as an external input signal, and the external output signal is an off signal. For this reason, even in the power storage device 1 </ b> C that has detected power recovery, the switch 91 remains off.
 その後、図14に示すように、他の蓄電装置(ここでは蓄電装置1A、1B)全ての制御装置90が復電したと判定すると、全ての蓄電装置1の各々から出力される外部出力信号がオン信号となることにより、全ての蓄電装置1のスイッチ91がオンとなる。このように、本実施形態に係る蓄電装置セット1000では、復電時に、全ての蓄電装置1の蓄電ユニット40で連動して充電電流の供給が開始される。 Thereafter, as shown in FIG. 14, when it is determined that all the control devices 90 of the other power storage devices (here, power storage devices 1 </ b> A and 1 </ b> B) have recovered power, the external output signals output from all of the power storage devices 1 are By turning on the signal, the switches 91 of all the power storage devices 1 are turned on. As described above, in the power storage device set 1000 according to the present embodiment, supply of charging current is started in conjunction with the power storage units 40 of all the power storage devices 1 at the time of power recovery.
 ここで、複数の蓄電ユニット40について、接続される電力系統が復電したと判定されるタイミングは、蓄電装置1を構成するアナログ素子の特性のバラつき等の影響により、互いに異なるタイミングとなり得る。このため、複数の蓄電ユニット40への充電電流の供給が連動して開始されずに、各々の蓄電ユニット40に接続される電力系統が復電したと判定される独立のタイミングで開始される場合、次のような問題が生じる虞がある。 Here, with respect to the plurality of power storage units 40, the timing at which it is determined that the connected power system has recovered can be different from each other due to the influence of variations in the characteristics of the analog elements constituting the power storage device 1. For this reason, the supply of the charging current to the plurality of power storage units 40 is not started in conjunction with each other, and is started at an independent timing at which it is determined that the power system connected to each power storage unit 40 has recovered. The following problems may occur.
 つまり、各々の蓄電ユニット40への充電電流の供給が独立のタイミングで開始される場合、複数の蓄電ユニット40のうち復電したと判定されるタイミングが最も早い蓄電ユニット40では、他の蓄電ユニット40に供給されるべき充電電流の合計量に相当する非常に大きな電流(過電流)が流れることとなり、過電流による不具合が発生する虞がある。 That is, when the supply of the charging current to each power storage unit 40 is started at an independent timing, the power storage unit 40 with the earliest timing to determine that the power has been restored among the plurality of power storage units 40 A very large current (overcurrent) corresponding to the total amount of charging current to be supplied to 40 flows, and there is a possibility that a problem due to the overcurrent occurs.
 これに対して、本実施形態によれば、全ての蓄電装置1で復電したと判定されるまで充電電流の供給は停止され、全ての蓄電装置1で復電したと判定されると充電電流の供給が連動して開始される。このため、過電流による不具合の発生を低減することができる。 On the other hand, according to the present embodiment, the supply of the charging current is stopped until it is determined that all the power storage devices 1 have recovered, and when it is determined that all the power storage devices 1 have recovered, the charging current Supply starts in conjunction with each other. For this reason, generation | occurrence | production of the malfunction by overcurrent can be reduced.
 次に、蓄電装置1の異常発生時において、蓄電装置セット1000が奏する効果について説明する。なお、以下では、商用電源300の停電時において蓄電装置1Aで異常が発生した場合について説明するが、商用電源300が停電していないときに異常が発生した場合、または、他の蓄電装置1で異常が発生した場合についても、同様の効果が奏される。 Next, the effect produced by the power storage device set 1000 when an abnormality occurs in the power storage device 1 will be described. In the following, a case where an abnormality occurs in the power storage device 1A at the time of a power failure of the commercial power supply 300 will be described. However, when an abnormality occurs when the commercial power source 300 is not out of power, or in another power storage device 1 Similar effects can be obtained when an abnormality occurs.
 図15は、本実施形態において、異常発生時の蓄電装置セット1000の状態を模式的に示す図である。制御装置90によって異常が発生したと判定された蓄電装置1(ここでは蓄電装置1A)では、スイッチ91はオフとなり、外部出力信号はオン信号となる。このため、蓄電装置1Aから出力された外部出力信号が外部入力信号として入力される蓄電装置1Bでは、スイッチ91はオンのままとなっており、外部出力信号もオン信号のままとなっている。よって、蓄電装置1A以外の蓄電装置1B、1Cでは、スイッチ91はオンのままとなる。したがって、異常が発生した蓄電ユニット40のみ放電電流を停止することができる。 FIG. 15 is a diagram schematically showing a state of the power storage device set 1000 when an abnormality occurs in the present embodiment. In power storage device 1 (in this case, power storage device 1A) that is determined to be abnormal by control device 90, switch 91 is turned off and the external output signal is turned on. For this reason, in power storage device 1B in which the external output signal output from power storage device 1A is input as an external input signal, switch 91 remains on and the external output signal also remains on. Therefore, in power storage devices 1B and 1C other than power storage device 1A, switch 91 remains on. Therefore, only the power storage unit 40 in which an abnormality has occurred can stop the discharge current.
 このように、本実施形態に係る蓄電装置セット1000では、異常が発生した蓄電ユニット40を負荷500から切り離しつつ、他の蓄電ユニット40によって継続して放電することができる。 Thus, in the power storage device set 1000 according to the present embodiment, the power storage unit 40 in which an abnormality has occurred can be continuously discharged by another power storage unit 40 while being disconnected from the load 500.
 以上のように、本実施形態では、蓄電ユニット40の充電または放電電流経路(本実施の形態では、負の電源線62)に設けられたスイッチ91は、制御信号及び外部入力信号の少なくとも一方が当該スイッチ91をオフとする信号の場合にオフとなるオフ機能、及び、制御信号及び外部入力信号のいずれも当該スイッチ91をオンとする信号の場合にオンとなるオン機能、の少なくとも一方(本実施形態では両方)を有する。 As described above, in the present embodiment, at least one of the control signal and the external input signal is applied to the switch 91 provided in the charging or discharging current path (in the present embodiment, the negative power supply line 62) of the power storage unit 40. At least one of an off function that turns off when the signal turns off the switch 91 and an on function that turns on when both the control signal and the external input signal turn on the switch 91 In the embodiment, both are included.
 したがって、充電または放電電流経路の各々に設けられたスイッチ91が外部入力信号によって一斉にオフとなる、または、外部入力信号によって一斉にオンとなる。よって、全ての蓄電ユニット40が一斉に充電または放電を開始する、または、停止することとなるため、蓄電ユニット40の不具合の発生を低減することができる。 Therefore, the switches 91 provided in each of the charging or discharging current paths are turned off all at once by an external input signal, or all at once by an external input signal. Therefore, since all the power storage units 40 start or stop charging or discharging all at once, the occurrence of problems in the power storage units 40 can be reduced.
 本実施形態では、制御装置90が一の蓄電ユニット40の充電または放電を制御し、外部出力端子84からは、スイッチ91がオンとなる場合に他の制御装置90のスイッチ91をオンとする外部出力信号が出力され、スイッチ91がオフとなる場合に他の制御装置90のスイッチ91をオフとする外部出力信号が出力される。 In the present embodiment, the control device 90 controls charging or discharging of one power storage unit 40, and an external output terminal 84 externally turns on a switch 91 of another control device 90 when the switch 91 is turned on. When an output signal is output and the switch 91 is turned off, an external output signal that turns off the switch 91 of another control device 90 is output.
 これにより、一の蓄電ユニット40に対応するスイッチ91がオフとなる場合に他の蓄電ユニット40に対応する他のスイッチ91も連動してオフとなる。または、一の蓄電ユニット40に対応するスイッチ91がオンとなる場合に他の蓄電ユニット40に対応する他のスイッチ91も連動してオンとなる。したがって、全ての蓄電ユニット40が連動して充電または放電することができるため、蓄電ユニット40の不具合の発生を低減することができる。つまり、本構成によれば、外部出力信号により他の蓄電ユニット40の充電または放電電流経路に設けられた他のスイッチ91を制御できるため、設置現場での据付作業を簡易かつ確実に行うことができる。 Thereby, when the switch 91 corresponding to one power storage unit 40 is turned off, the other switches 91 corresponding to other power storage units 40 are also turned off in conjunction with each other. Alternatively, when the switch 91 corresponding to one power storage unit 40 is turned on, the other switches 91 corresponding to other power storage units 40 are also turned on in conjunction with each other. Therefore, since all the power storage units 40 can be charged or discharged in conjunction with each other, the occurrence of problems with the power storage units 40 can be reduced. That is, according to this configuration, the other switch 91 provided in the charging or discharging current path of the other power storage unit 40 can be controlled by the external output signal, so that the installation work at the installation site can be performed easily and reliably. it can.
 具体的には、本実施の形態によれば、1以上の蓄電ユニット40のいずれかの電圧が放電終止電圧以下の場合、外部入力信号として、スイッチ91をオフとする信号が入力される。これにより、いずれかの蓄電ユニット40の電圧が放電終止電圧以下になった場合、充電または放電電流経路の各々に設けられたスイッチ91が一斉にオフとなる。よって、各蓄電ユニット40が一斉に負荷500から切り離されるため、蓄電ユニット40の不具合の発生を低減することができる。 Specifically, according to the present embodiment, when any voltage of one or more power storage units 40 is equal to or lower than the discharge end voltage, a signal for turning off the switch 91 is input as an external input signal. Thereby, when the voltage of any of the power storage units 40 becomes equal to or lower than the discharge end voltage, the switches 91 provided in each of the charging or discharging current paths are turned off all at once. Therefore, since each power storage unit 40 is disconnected from the load 500 at the same time, the occurrence of problems with the power storage unit 40 can be reduced.
 本実施形態によれば、1以上の蓄電ユニット40に接続される電力系統(本実施の形態では商用電源300)が復電した場合、外部入力信号として、スイッチ91をオンとする信号が入力される。これにより、充電または放電電流経路の各々に設けられたスイッチ91が復電時に一斉にオンとなるため、各蓄電ユニット40が一斉に電力系統に接続される。よって、復電時における蓄電ユニット40の不具合の発生を低減することができる。 According to the present embodiment, when the power system (commercial power supply 300 in the present embodiment) connected to one or more power storage units 40 recovers, a signal for turning on the switch 91 is input as an external input signal. The As a result, the switches 91 provided in each of the charging or discharging current paths are turned on at the same time when the power is restored, so that the power storage units 40 are connected to the power system all at once. Therefore, it is possible to reduce the occurrence of problems of the power storage unit 40 at the time of power recovery.
 電力系統が復電した場合、外部入力信号として、スイッチ91をオフとする信号が入力されてもかまわない。これにより、充電または放電電流経路の各々に設けられたスイッチ91が復電時に一斉にオフとなるため、各蓄電ユニット40が一斉に電力系統から切り離される。このため、短時間の停電を経た後の復電時に生じ得る蓄電ユニット40の過充電等の不具合の発生を低減することができる。 When the power system is restored, a signal for turning off the switch 91 may be input as an external input signal. As a result, the switches 91 provided in each of the charging or discharging current paths are turned off at the same time when the power is restored, so that the power storage units 40 are simultaneously disconnected from the power system. For this reason, generation | occurrence | production of malfunctions, such as the overcharge of the electrical storage unit 40 which may arise at the time of a power recovery after passing a short-time power failure, can be reduced.
 本実施の形態によれば、異常が生じた蓄電ユニット40の充電または放電電流経路に設けられたスイッチ91がオフとなる。これにより、異常が生じた蓄電ユニット40を商用電源300または負荷500から切り離しつつ、他の全ての蓄電ユニット40が一斉に充電もしくは放電を開始する、または、停止することとなるため、蓄電ユニット40の不具合の発生を低減することができる。つまり、一部の蓄電ユニット40に異常が生じた場合であっても他の蓄電ユニット40が継続して充放電することとなり、N+1の冗長設計が図られる。 According to the present embodiment, the switch 91 provided in the charging or discharging current path of the storage unit 40 in which an abnormality has occurred is turned off. As a result, all the other power storage units 40 start or stop all at once while disconnecting the power storage unit 40 in which an abnormality has occurred from the commercial power supply 300 or the load 500. The occurrence of problems can be reduced. That is, even if some of the power storage units 40 are abnormal, the other power storage units 40 are continuously charged and discharged, and N + 1 redundant design is achieved.
 なお、上記実施の形態及び上記変形例を任意に組み合わせて構築される形態も、本発明の範囲内に含まれる。 In addition, the form constructed | assembled combining the said embodiment and the said modification arbitrarily is also contained in the scope of the present invention.
 本発明は、既設装置に対して取り付けられる電力供給装置(電力供給ユニット)等に適用できる。 The present invention can be applied to a power supply device (power supply unit) attached to an existing device.
1、1A、1B、1C 蓄電装置
2 通信線
3 電源線
40 蓄電ユニット
62 電源線(充放電経路)
83 外部入力端子
84 外部出力端子
90 制御装置
91 スイッチ(第二スイッチ)
92 制御部
100 第一電力供給装置
101 外装体
102 取っ手
110 端子群
111 直流入力端子
112 交流入力端子(入力端子)
113 出力端子
119 蓄電池用端子
120 第二ライン
122 第二ダイオード
130 第一ライン
133 第一AC/DCコンバータ
134 第一ダイオード
145 スイッチ(第一スイッチ)
150 第一蓄電池(リチウムイオン電池)
150a、150b 端子
153 蓄電素子
160 停電検出部
170 遅延部
180 接続部
191 終止電圧判定部
192 復電判定部
193 異常判定部
200 第二電力供給装置
201 第一収納部
202 第二収納部
203 外部接続端子
205 主要構成部
210 ラック
211 扉
220 切替部
230 第二AC/DCコンバータ
240 第二蓄電池(鉛蓄電池)
250、251 端子
300 商用電源(電源)
400 発電機
500 負荷
604 配線部材
700 スイッチングユニット
1000 蓄電装置セット
1, 1A, 1B, 1C Power storage device 2 Communication line 3 Power supply line 40 Power storage unit 62 Power supply line (charge / discharge path)
83 External input terminal 84 External output terminal 90 Control device 91 Switch (second switch)
92 Control Unit 100 First Power Supply Device 101 Exterior Body 102 Handle 110 Terminal Group 111 DC Input Terminal 112 AC Input Terminal (Input Terminal)
113 Output terminal 119 Storage battery terminal 120 Second line 122 Second diode 130 First line 133 First AC / DC converter 134 First diode 145 Switch (first switch)
150 First storage battery (lithium ion battery)
150a, 150b Terminal 153 Power storage element 160 Power failure detection unit 170 Delay unit 180 Connection unit 191 End voltage determination unit 192 Power recovery determination unit 193 Abnormality determination unit 200 Second power supply device 201 First storage unit 202 Second storage unit 203 External connection Terminal 205 Main component 210 Rack 211 Door 220 Switching unit 230 Second AC / DC converter 240 Second storage battery (lead storage battery)
250, 251 Terminal 300 Commercial power (power)
400 Generator 500 Load 604 Wiring member 700 Switching unit 1000 Power storage device set

Claims (7)

  1.  電源からの電力を負荷に供給する装置に対して取り付けられる電力供給装置であって、
     スイッチングユニットと、
     蓄電装置とを備え、
     前記スイッチングユニットは、
     前記装置に電気的に接続可能な入力端子と、
     前記負荷に電気的に接続可能な出力端子と、
     前記入力端子から入力された前記電力を前記出力端子まで供給する第一ラインと、
     前記第一ラインに設けられた接続部と、
     前記第一ラインに設けられ、前記電源の停電が検知された場合には前記接続部から前記出力端子までを電気的に導通させ、前記電源の停電が検知されていない場合には前記接続部から前記出力端子までの電気的な導通を遮断する第一スイッチと、を備え、
     前記蓄電装置は、
     蓄電素子を備える蓄電ユニットと、
     前記接続部に接続される前記蓄電ユニットの充放電経路と、
     前記充放電経路に設けられた第二スイッチと、
     前記第二スイッチに制御信号を供給する制御部と、
     外部入力信号が供給される外部入力端子と、を備え、
     前記第二スイッチは、前記制御信号及び前記外部入力信号の少なくとも一方が当該第二スイッチをオフとする信号の場合にオフとなるオフ機能、及び、前記制御信号及び前記外部入力信号のいずれも当該第二スイッチをオンとする信号の場合にオンとなるオン機能、の少なくとも一方を有する
     電力供給装置。
    A power supply device attached to a device that supplies power from a power source to a load,
    A switching unit;
    A power storage device,
    The switching unit is
    An input terminal electrically connectable to the device;
    An output terminal electrically connectable to the load;
    A first line for supplying the power input from the input terminal to the output terminal;
    A connecting portion provided in the first line;
    The first line is electrically connected from the connection portion to the output terminal when a power failure of the power source is detected, and from the connection portion when a power failure of the power source is not detected. A first switch that cuts off electrical continuity to the output terminal,
    The power storage device
    A power storage unit comprising a power storage element;
    A charge / discharge path of the power storage unit connected to the connection unit;
    A second switch provided in the charge / discharge path;
    A controller for supplying a control signal to the second switch;
    An external input terminal to which an external input signal is supplied,
    The second switch has an off function that turns off when at least one of the control signal and the external input signal is a signal that turns off the second switch, and both the control signal and the external input signal A power supply device having at least one of an on function that is turned on in the case of a signal that turns on the second switch.
  2.  前記充放電経路に並列接続された複数の前記蓄電装置を有する、請求項1に記載の電力供給装置。 The power supply device according to claim 1, comprising a plurality of power storage devices connected in parallel to the charge / discharge path.
  3.  電源からの電力を第一ライン及び/又は第二ラインを介して前記負荷に供給可能であるスイッチングユニットと、スイッチ、制御部及び外部入力端子を有する蓄電装置とを備え、前記第一ラインに前記蓄電装置の第一蓄電池が接続された電力供給装置の制御方法であって、
     前記第二ラインを介して前記負荷に電力を供給する第一ステップと、
     前記電源が停止すると、前記第一蓄電池から前記負荷に電力を供給する第二ステップと、
     前記第一蓄電池の電圧が第一所定値以下となると、前記第二ラインからの電力供給を開始するとともに、前記第一蓄電池からの電力供給を停止する第三ステップと、
     前記制御部から供給される制御信号及び外部から前記外部入力端子に供給される外部入力信号の少なくとも一方に基づいて前記蓄電装置の前記スイッチを作動する第四ステップとを備える
     電力供給装置の制御方法。
    A switching unit capable of supplying power from a power source to the load via a first line and / or a second line; and a power storage device having a switch, a control unit, and an external input terminal, the first line A method for controlling a power supply device to which a first storage battery of a power storage device is connected,
    A first step of supplying power to the load via the second line;
    When the power supply stops, a second step of supplying power from the first storage battery to the load;
    When the voltage of the first storage battery is equal to or lower than a first predetermined value, the third step of starting the power supply from the second line and stopping the power supply from the first storage battery;
    A fourth step of operating the switch of the power storage device based on at least one of a control signal supplied from the control unit and an external input signal supplied from the outside to the external input terminal. .
  4.  第一蓄電池を有し、電源からの電力を負荷に供給する第一電力供給装置と、
     第二蓄電池を有するとともに前記第一電力供給装置と接続され、前記電源からの電力を負荷に供給する第二電力供給装置とを備え、
     前記第一電力供給装置は、
     第一スイッチと、前記負荷に電気的に接続可能な出力端子とを有するスイッチングユニットと、
     前記第一蓄電池と、制御部と、第二スイッチと、外部入力端子とを有する蓄電装置とを備え、
     前記第二スイッチは、前記制御部から供給される制御信号及び外部から前記外部入力端子に供給される外部入力信号の少なくとも一方が当該第二スイッチをオフとする信号の場合にオフとなるオフ機能、及び、前記制御信号及び前記外部入力信号のいずれも当該第二スイッチをオンとする信号の場合にオンとなるオン機能、の少なくとも一方を有し、
     前記電源の停電が検知された場合には、前記第一スイッチが閉じて前記第一蓄電池と前記出力端子とを電気的に導通させる
     電力供給システム。
    A first power supply device having a first storage battery and supplying power from a power source to a load;
    A second power supply device having a second storage battery and connected to the first power supply device, and supplying power from the power source to a load;
    The first power supply device
    A switching unit having a first switch and an output terminal electrically connectable to the load;
    A power storage device having the first storage battery, a control unit, a second switch, and an external input terminal,
    The second switch is turned off when at least one of a control signal supplied from the control unit and an external input signal supplied from the outside to the external input terminal is a signal for turning off the second switch. And at least one of an on function that turns on when both the control signal and the external input signal are signals that turn on the second switch,
    When a power failure of the power source is detected, the first switch is closed to electrically connect the first storage battery and the output terminal.
  5.  前記電源と、前記スイッチングユニットの入力端子との間に、AC/DCコンバータが設けられている請求項4に記載の電力供給システム。 The power supply system according to claim 4, wherein an AC / DC converter is provided between the power source and an input terminal of the switching unit.
  6.  前記負荷に接続されている電源線に並列接続された複数の前記蓄電装置を有する、請求項4または5に記載の電力供給システム。 The power supply system according to claim 4 or 5, comprising a plurality of the power storage devices connected in parallel to a power line connected to the load.
  7.  前記第一蓄電池としてリチウムイオン電池を有し、前記第二蓄電池として鉛蓄電池を有する請求項4~6のいずれか一項に記載の電力供給システムを備える通信基地局バックアップシステム。 A communication base station backup system comprising the power supply system according to any one of claims 4 to 6, wherein the first storage battery includes a lithium ion battery, and the second storage battery includes a lead storage battery.
PCT/JP2017/043915 2016-12-26 2017-12-07 Electric power supply device, method for controlling electric power supply device, electric power supply system, and communication base station backup system WO2018123494A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2017386331A AU2017386331A1 (en) 2016-12-26 2017-12-07 Power supply apparatus, method for controlling power supply apparatus, power supply system, and communication base station backup system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-251411 2016-12-26
JP2016251411A JP6764104B2 (en) 2016-12-26 2016-12-26 Power supply device, control method of power supply device and power supply system

Publications (1)

Publication Number Publication Date
WO2018123494A1 true WO2018123494A1 (en) 2018-07-05

Family

ID=62711066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043915 WO2018123494A1 (en) 2016-12-26 2017-12-07 Electric power supply device, method for controlling electric power supply device, electric power supply system, and communication base station backup system

Country Status (3)

Country Link
JP (1) JP6764104B2 (en)
AU (1) AU2017386331A1 (en)
WO (1) WO2018123494A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011340A (en) * 2019-05-07 2019-07-12 江苏吉意信息技术有限公司 Accumulation power supply Hysteresis control system and method, electronic equipment and storage medium
CN113595184A (en) * 2021-07-27 2021-11-02 陕西绿能电子科技有限公司 Annular charging system, charging control method, computer device and storage medium
CN114158115A (en) * 2022-02-10 2022-03-08 为准(北京)电子科技有限公司 Power supply management method, device and system of wireless test equipment
CN114374263A (en) * 2021-12-10 2022-04-19 中国商用飞机有限责任公司 Power supply circuit, aircraft and power supply method
CN116231836A (en) * 2023-05-10 2023-06-06 深圳市驰普科达科技有限公司 Household emergency power supply capable of being used in external mode and power supply equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7470915B2 (en) * 2019-11-26 2024-04-19 パナソニックIpマネジメント株式会社 Battery Storage System
JP7405704B2 (en) 2020-06-17 2023-12-26 ニチコン株式会社 Energy storage system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172864A (en) * 2007-01-09 2008-07-24 Toshiba Corp Uninterruptible power supply facility and its extension method
JP2009071999A (en) * 2007-09-14 2009-04-02 Tdk-Lambda Corp Power storage device
JP2016073020A (en) * 2014-09-26 2016-05-09 株式会社日立情報通信エンジニアリング Uninterruptible power supply and uninterruptible power supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172864A (en) * 2007-01-09 2008-07-24 Toshiba Corp Uninterruptible power supply facility and its extension method
JP2009071999A (en) * 2007-09-14 2009-04-02 Tdk-Lambda Corp Power storage device
JP2016073020A (en) * 2014-09-26 2016-05-09 株式会社日立情報通信エンジニアリング Uninterruptible power supply and uninterruptible power supply system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011340A (en) * 2019-05-07 2019-07-12 江苏吉意信息技术有限公司 Accumulation power supply Hysteresis control system and method, electronic equipment and storage medium
CN113595184A (en) * 2021-07-27 2021-11-02 陕西绿能电子科技有限公司 Annular charging system, charging control method, computer device and storage medium
CN114374263A (en) * 2021-12-10 2022-04-19 中国商用飞机有限责任公司 Power supply circuit, aircraft and power supply method
CN114374263B (en) * 2021-12-10 2023-12-22 中国商用飞机有限责任公司 Power supply circuit, aircraft and power supply method
CN114158115A (en) * 2022-02-10 2022-03-08 为准(北京)电子科技有限公司 Power supply management method, device and system of wireless test equipment
CN114158115B (en) * 2022-02-10 2022-04-19 为准(北京)电子科技有限公司 Power supply management method, device and system of wireless test equipment
CN116231836A (en) * 2023-05-10 2023-06-06 深圳市驰普科达科技有限公司 Household emergency power supply capable of being used in external mode and power supply equipment

Also Published As

Publication number Publication date
AU2017386331A1 (en) 2019-07-18
JP2018107890A (en) 2018-07-05
JP6764104B2 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
WO2018123494A1 (en) Electric power supply device, method for controlling electric power supply device, electric power supply system, and communication base station backup system
JP6677252B2 (en) Control device, power storage device, and control method
WO2008015931A1 (en) Power supply for charging
KR20150085383A (en) Battery system, energy storage system including the battery system
JP6288722B2 (en) Battery system
KR20160081058A (en) Method of checking state of pra
JP2009011082A (en) Power supply system
US10096992B2 (en) Electrical storage system
KR101021598B1 (en) Device of voltage compensation for a momentary power failure
WO2016143296A1 (en) Electricity storage control system and charge/discharge control method
JP4015126B2 (en) DC power supply system
JP2009011083A (en) Storage battery power system
US20150028680A1 (en) Control module for an electrical energy accumulator, energy accumulator unit having such a control module, uninterruptible power supply unit and method for operating a control module
WO2017170782A1 (en) Switching unit, power supply device, communications base station backup system, power supply system, and production method for power supply device
JP6749166B2 (en) Large capacity battery system
JP2008061363A (en) System for charging battery pack
CN111095719A (en) Accumulator device
JP5522378B2 (en) Power supply
JP2009044923A (en) Power supply system
JP2012105414A (en) Switching device, switching device control method and switching device control program
JP7383814B2 (en) Battery rack individual discharge system and method
JP2011176987A (en) Power supply apparatus
JP5757611B2 (en) Uninterruptible power system
JP5845408B2 (en) Photovoltaic power supply system
WO2017170783A1 (en) Switching method for power supply device, control method for power supply device, and power supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017386331

Country of ref document: AU

Date of ref document: 20171207

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17886330

Country of ref document: EP

Kind code of ref document: A1