WO2018123189A1 - Radiation imaging device, method for manufacturing radiation imaging device, and imaging system - Google Patents

Radiation imaging device, method for manufacturing radiation imaging device, and imaging system Download PDF

Info

Publication number
WO2018123189A1
WO2018123189A1 PCT/JP2017/036226 JP2017036226W WO2018123189A1 WO 2018123189 A1 WO2018123189 A1 WO 2018123189A1 JP 2017036226 W JP2017036226 W JP 2017036226W WO 2018123189 A1 WO2018123189 A1 WO 2018123189A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation imaging
panel
substrate
wiring
radiation
Prior art date
Application number
PCT/JP2017/036226
Other languages
French (fr)
Japanese (ja)
Inventor
知貴 小松
尚志郎 猿田
石井 孝昌
知昭 市村
智之 大池
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2018123189A1 publication Critical patent/WO2018123189A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present invention relates to a radiation imaging apparatus, a manufacturing method thereof, and an imaging system.
  • Some radiation imaging apparatuses enable processing to acquire two image data for the same subject and form one radiation image based on the difference between them. Specifically, two image data are acquired under different radiation doses, and a desired target region is observed by taking a difference between them using a predetermined coefficient, or an observation target is changed by changing the coefficient. Can be changed (eg from an organ to a bone). Such image processing is called energy subtraction processing or the like.
  • each sensor panel is connected and fixed with a wiring portion (for example, COF) for reading out image data in the end region.
  • This fixing is realized by, for example, bonding by pressure bonding or the like, and can be performed using a predetermined jig.
  • Patent Document 1 when the wiring part is fixed to one sensor panel, interference occurs between the jig used for the fixing and the other sensor panel, and the fixing is appropriately performed. May be difficult. Further, when the wiring part is peeled off in one sensor panel, the same problem may occur when the wiring part is re-fixed.
  • An object of the present invention is to provide a technique advantageous in appropriately realizing the connection of the wiring portions in a radiation imaging apparatus including two sensor panels.
  • One aspect of the present invention relates to a radiation imaging apparatus, which includes a first panel having a first radiation imaging unit disposed on a first substrate, and a second radiation imaging unit disposed on a second substrate.
  • the first panel and the second panel have both a region overlapping each other and a region not overlapping each other in plan view with respect to the upper surface of the first substrate, and At least a part of the first radiation imaging unit and at least a part of the second radiation imaging unit are arranged so as to be located in the overlapping region in the plan view, and the first panel is in the plan view.
  • a first connection part configured to connect a first wiring part for reading a signal from the first radiation imaging part in a region not overlapping with the second panel; In plan view In a region not overlapping with the first panel Te, and having a second connection configured to connect the second wiring portion for reading a signal from the second radiation image pickup unit.
  • FIG. 1A is a perspective view showing a structure of a radiation imaging apparatus 1R as a reference example.
  • the radiation imaging apparatus 1R includes two sensor panels 11 and 12 arranged in parallel to each other.
  • the sensor panel 11 is one of the upper sides of the two sensor panels 11 and 12 in this reference example.
  • the sensor panel 11 includes a substrate 110 and a radiation imaging unit 111.
  • the substrate 110 a glass substrate is used in this reference example, but as another example, a plastic substrate may be used, and the substrate 110 may be made of a known insulating material.
  • the substrate 110 (or the sensor panel 11) has a rectangular shape in plan view.
  • plane view refers to a plan view with respect to the upper surface (or a plane parallel thereto) of the substrate 110 and may be expressed as an orthogonal projection in a direction perpendicular to the upper surface.
  • the radiation imaging unit 111 is provided on the substrate 110 using amorphous silicon or the like.
  • the radiation imaging unit 111 includes a plurality of radiation detection elements arranged in a matrix (so as to form a plurality of rows and a plurality of columns) on the substrate 110.
  • the sensor panel 11 is a panel that performs radiation imaging using an indirect conversion method (a method of detecting radiation by converting radiation into light and converting the light into an electrical signal).
  • a PIN sensor is used for each radiation detection element, but as another example, a known photoelectric conversion element such as a MIS sensor may be used.
  • the sensor panel 11 may be configured by disposing one or more CCD / CMOS image sensor chips on a support substrate.
  • each radiation detection element is connected to one or more thin film transistors for reading out the electric signal to form a single pixel
  • the radiation imaging unit 111 can also be expressed as a pixel array.
  • the radiation imaging unit 111 may be expressed as a sensor array.
  • a plurality of wiring portions 141 are connected to the end portion of the substrate 110.
  • COF Chip On Film (Flexible)
  • FPC Flexible Print Circuit
  • TAB Tunnel Automated Bonding
  • the other sensor panel 12 is one of the lower sides of the two sensor panels 11 and 12 in this reference example, and the sensor panel 12 has the same configuration as the sensor panel 11 described above.
  • the sensor panel 12 includes a substrate 120 corresponding to the substrate 110 and a radiation imaging unit 121 corresponding to the radiation imaging unit 111. Although details will be described later, like the sensor panel 11, a plurality of wiring portions 142 are connected to the end portion of the substrate 120.
  • each of the radiation detection elements of the radiation edge imaging unit 111 and each of the radiation detection elements of the radiation edge imaging unit 121 overlap each other.
  • the radiation imaging apparatus 1R includes a drive unit (vertical scanning circuit or the like) for driving each radiation detection element, and a readout unit (reading unit) for reading out an electrical signal from each radiation detection element.
  • These drive unit and readout unit are arranged outside the sensor panel 11 via the wiring unit 141 (at other positions not on the substrate 110).
  • COF is used for the wiring portion 141. Therefore, one or both of the driving unit and the reading unit are arranged on the wiring units 141 and 142, respectively, or part or all of the functions can be realized on the wiring units 141 and 142.
  • the driving unit and the reading unit may be provided along two adjacent sides on the substrate 110 (two sides forming an angle between them). The same applies to the sensor panel 12.
  • the radiation imaging apparatus 1R further includes a filter 13 disposed between the sensor panel 11 and the sensor panel 12.
  • the filter 13 is a plate or thin film that absorbs part of the energy of the radiation irradiated to the device 1R.
  • a material using lanthanoid specifically, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, etc.
  • a lanthanoid compound may be used, or a resin to which lanthanoid and / or particles of the compound are added may be used.
  • Radiation is irradiated from above in FIG. 1A. That is, an unillustrated subject (subject) is placed or lying on the sensor panel 11 side, and radiation that has passed through (passed through) the subject first enters the sensor panel 11 and is detected. Thereafter, the radiation transmitted through the sensor panel 11 and the filter 13 enters the sensor panel 12 and is detected.
  • the sensor panels 11 and 12 can acquire two pieces of image data at a time by one radiation imaging.
  • the radiation dose (intensity) incident on the sensor panel 12 is smaller than the radiation dose incident on the sensor panel 11 because a part of the radiation energy is absorbed by the filter 13. Therefore, the image data obtained from the sensor panel 11 and the image data obtained from the sensor panel 12 both show image information about the same subject, but there is a difference in data value (signal value) between them. Arise. And it becomes possible to perform an energy subtraction process using these two image data. Specifically, the region to be inspected can be observed by performing arithmetic processing on these two image data using a predetermined coefficient, and the observation object can be changed to another region by changing this coefficient. It can also be changed.
  • FIG. 1B is a top view of the radiation imaging apparatus 1R.
  • the wiring part 141 and the wiring part 142 are arranged so as not to overlap each other in plan view.
  • the outer edge of the substrate 110 (or the outer edge of the sensor panel 11) and the outer edge of the substrate 120 (or the outer edge of the sensor panel 12) substantially overlap each other.
  • the plurality of wiring portions 141 are arranged along two adjacent sides of the substrate 110 in plan view.
  • the plurality of wiring portions 142 are arranged along two sides that are adjacent to each other on the substrate 120 and do not overlap with the two sides of the substrate 110 on which the plurality of wiring portions 141 are arranged in plan view. Is done.
  • each wiring part 141 has a portion that is inside the outer edge of the substrate 120 in a plan view
  • each wiring part 142 has a portion that is inside the outer edge of the substrate 110. That is, a part of each wiring part 141 arranged at the end of the substrate 110 overlaps with the substrate 120, and a part of each wiring part 142 arranged at the end of the substrate 120 overlaps with the substrate 110. In the drawing, a portion of each wiring part 142 overlapping the substrate 110 is indicated by a broken line.
  • the sensor panels 11 and 12 may each have a front-side irradiation type configuration or a back-side irradiation type configuration.
  • 2A to 2C show sectional views taken along line XX in FIG. 1B as first to third examples of reference examples.
  • the sensor panels 11 and 12 both have a surface irradiation type configuration.
  • the sensor panel 11 includes a protective film 112 disposed on the substrate 110 so as to cover the radiation imaging unit 111, a scintillator 113 disposed on the protective film 112, and the protective film 112 and the scintillator 113.
  • a protective film 114 is further included.
  • the sensor panel 12 includes a protective film 122 disposed on the substrate 120 so as to cover the radiation imaging unit 121, a scintillator 123 disposed on the protective film 122, and a protective film covering the protective film 122 and the scintillator 123. 124.
  • the scintillator 113 is positioned on the radiation incident side with respect to the substrate 110 and the radiation imaging unit 111, and the scintillator 123 is positioned on the radiation incident side with respect to the substrate 120 and the radiation imaging unit 121.
  • Each is arranged so as to be located. That is, the sensor panels 11 and 12 are arranged such that the substrate 110 and the scintillator 123 are positioned between the scintillator 113 and the substrate 120.
  • the filter 13 is disposed between the substrate 110 and the protective film 124, and couples (fixes) the sensor panels 11 and 12 to each other via an adhesive (not shown) (for example, an acrylic adhesive resin).
  • the radiation transmitted through the subject is converted into light by the scintillator 113, and this light is detected by the radiation imaging unit 111, thereby obtaining image data.
  • the radiation that has passed through the sensor panel 11 and the filter 13 is converted into light by the scintillator 123, and this light is detected by the radiation imaging unit 121, thereby obtaining image data.
  • a phosphor material that generates light upon receiving radiation is used.
  • CsI Tl (thallium-added cesium iodide) or the like is used as the material of the scintillators 113 and 123.
  • the scintillators 113 and 123 are formed using a vacuum deposition apparatus (conditions: pressure of about 10 ⁇ 5 [Pa], temperature of about 180 [° C.]).
  • the protective films 112 and 122 are made of a material that is advantageous for protecting the upper surfaces of the sensor panels 11 and 12 and has light transmittance. Thereby, the light from the scintillators 113 and 123 passes through the protective films 112 and 122 and enters the radiation imaging units 111 and 121, respectively.
  • a silicone resin, a polyimide resin, a polyamide resin, an epoxy resin, a resin containing an organic substance such as paraxylylene or acrylic, or the like is used as a material for the protective films 112 and 122.
  • the protective films 114 and 124 are made of a material that is advantageous for preventing the deliquescence of the scintillators 113 and 123 and having light reflectivity. Thereby, the protective film 114 reflects the light generated in the scintillator 113 toward the radiation imaging unit 111, and the protective film 124 reflects the light generated in the scintillator 123 toward the radiation imaging unit 121.
  • a protective film 114 and 124 in which a resin film is bonded to a metal thin film such as Ag, Cu, Au, Al, or Ni is used.
  • the resin material include polyethylene terephthalate, polycarbonate, vinyl chloride, polyethylene naphthalate, polyimide, and acrylic.
  • the protective films 114 and 124 are respectively formed by laminating so as to cover the upper and side surfaces of the scintillators 113 and 123 (conditions: temperature of about 85 to 95 [° C.], pressure of 4 [hPa] or less). Further, the protective films 114 and 124 further include an adhesive layer.
  • an adhesive layer for example, polyimide, epoxy, polyolefin, polyester, polyurethane, and polyamide hot melt resins are used. With this adhesive layer, the protective films 114 and 124 are fixed by crimping at the ends.
  • the sensor panel 11 further includes a connecting portion 115 at the end of the substrate 110.
  • the wiring unit 141 is fixed at the connection unit 115 and configured to be able to exchange signals with the radiation imaging unit 111 or supply power to the radiation imaging unit 111.
  • the sensor panel 12 further includes a connection portion 125 at the end of the substrate 120, and the wiring portion 142 is fixed at the connection portion 125, and exchanges signals with the radiation imaging unit 121 or the radiation imaging unit 121. It is configured to be able to supply power.
  • the connection portions 115 and 125 are electrode pads here, but may be any one that realizes electrical contact with external wiring.
  • the sensor panel 12 has a surface irradiation type configuration (similar to the first example).
  • the sensor panel 11 has a backside illumination type configuration. Specifically, the sensor panel 11 is arranged such that the scintillator 113 is positioned on the opposite side of the radiation incident side with respect to the substrate 110 and the radiation imaging unit 111, that is, the sensor panel 11 is vertically moved as compared with the first example. Arranged in an inverted form. That is, the sensor panels 11 and 12 are arranged such that the scintillator 113 and the scintillator 123 are positioned between the substrate 110 and the substrate 120. In this case, the filter 13 is disposed between the protective film 114 and the protective film 124, and couples the sensor panels 11 and 12 to each other via an adhesive.
  • the sensor panel 11 has a surface irradiation type configuration (similar to the first example).
  • the sensor panel 12 has a back-illuminated configuration (similar to the sensor panel 11 of the second example).
  • the sensor panel 12 is arranged in an upside down manner compared to the first example. That is, the sensor panels 11 and 12 are arranged such that the substrate 110 and the substrate 120 are positioned between the scintillator 113 and the scintillator 123.
  • the filter 13 is disposed between the substrate 110 and the substrate 120, and couples the sensor panels 11 and 12 to each other via an adhesive.
  • the sensor panel 11 can obtain image data as in the first example.
  • the radiation transmitted through the sensor panel 11 and the filter 13 passes through the substrate 120 and the radiation imaging unit 121 and enters the scintillator 123, and is converted into light by the scintillator 123.
  • the light is reflected by the protective layer 124 toward the radiation imaging unit 121 and detected by the radiation imaging unit 121, thereby obtaining image data.
  • the fixing of the wiring part 141 to the connecting part 115 and the fixing of the wiring part 142 to the connecting part 125 are realized by, for example, bonding by pressure bonding (conditions: temperature about 180 [° C.], pressure About 3 [MPa]).
  • pressure bonding condition: temperature about 180 [° C.], pressure About 3 [MPa]
  • the crimping head 21 is pressed against the wiring part 141, and at that time, the substrate 110 (particularly, the part opposite to the connection part 115 to be fixed).
  • the backup member 22 Is preferably supported by the backup member 22.
  • the backup member 22 interferes with the sensor panel 12.
  • the crimping head 21 when the wiring part 142 is fixed to the connection part 125 by crimping, generally, the crimping head 21 is pressed against the wiring part 142, and at that time, the substrate 120 (in particular, the side opposite to the connection part 125 to be fixed). Is preferably supported by the backup member 22. However, in the first example, the crimping head 21 interferes with the sensor panel 11.
  • 3B to 3C correspond to the second to third examples, respectively, and a step of connecting and fixing the wiring part 141 to the connecting part 115 and manufacturing the wiring imaging unit 1R 2 to 1R 3 and the wiring part.
  • a state in which the step of connecting and fixing 142 to the connecting portion 125 is performed is shown in the same manner as FIG. 3A.
  • the crimping head 21 interferes with the sensor panel 12, and when the wiring part 142 is fixed to the connection part 125 by crimping.
  • the crimping head 21 interferes with the sensor panel 11.
  • the backup member 22 interferes with the sensor panel 12, and the wiring portion 142 is fixed to the connection portion 125 by pressure bonding. At this time, the backup member 22 interferes with the sensor panel 11.
  • any of the first to third examples there is a possibility that the crimping of the wiring portions 141 and 142 to the connection portions 115 and 125 cannot be properly realized (a sufficient pressure cannot be applied). there is a possibility.). This may cause peeling of the wiring portions 141 and / or 142.
  • FIG. 4A shows a state in the first example when peeling occurs in the wiring portions 141 and 142 and repair is necessary.
  • FIG. 4B shows a state in the second example when the wiring portions 141 and 142 are peeled off and repair is necessary.
  • the resins 31 and 32 are formed using the jig 30, and the connection portions 115 and 125 to which the wiring portions 141 and 142 are fixed are respectively connected to the resins 31 and 32.
  • the aspect which seals by is shown.
  • the resin 31 is formed so as to cover the wiring part 141 and the connection part 115
  • the resin 32 is formed so as to cover the wiring part 142 and the connection part 125.
  • the jig 30 may interfere with the sensor panel 11, and this may cause the sealing process to be difficult.
  • a radiation imaging apparatus (hereinafter referred to as a radiation imaging apparatus 1) that makes it possible to appropriately connect and fix the wiring parts 141 and 142 to the connection parts 115 and 125, respectively, with reference to some embodiments. )
  • a radiation imaging apparatus 1 that makes it possible to appropriately connect and fix the wiring parts 141 and 142 to the connection parts 115 and 125, respectively, with reference to some embodiments.
  • the description will be made focusing on differences from the above-described reference example, and the contents omitted here shall appropriately conform to the contents of the above-described reference example.
  • FIG. 6A is a perspective view showing a structure of a radiation imaging apparatus 1 according to the present embodiment (referred to as “apparatus 1 1 ” for distinction from other embodiments described later), and FIG. 6B is a radiation imaging apparatus.
  • 1 is a top view of one.
  • This embodiment is different from the reference example described above in that the sensor panels 11 and 12 are mainly arranged so as to have a relatively shifted positional relationship.
  • the sensor panels 11 and 12 both have a rectangular shape and are arranged so as to shift in a diagonal direction.
  • the diagonal direction is a direction from a certain corner in the rectangular shape toward the opposite corner.
  • an angle C1 formed by two adjacent sides of the substrate 110 on which the plurality of wiring portions 141 are arranged is the angle of the substrate 120 on which the plurality of wiring portions 142 are arranged. It is located diagonally with respect to the angle C2 formed by two adjacent sides.
  • the sensor panels 11 and 12 are arranged so as to be shifted by a predetermined distance in a direction in which the angles C1 and C2 are separated from each other. Thereby, each wiring part 141 does not overlap with the board
  • the radiation imaging unit 111 is provided in advance so as to be eccentric on the substrate 110, that is, is located away from two adjacent sides of the substrate 110 on which the plurality of wiring units 141 are arranged.
  • the radiation imaging unit 121 is provided in advance so as to be eccentric on the substrate 120, that is, is located away from two adjacent sides of the substrate 120 on which the plurality of wiring units 142 are arranged.
  • the radiation edge imaging units 111 and 121 each include a plurality of radiation detection elements arranged in a matrix.
  • Each of the radiation detection elements of the radiation edge imaging unit 111 overlaps with each of the radiation detection elements of the radiation edge imaging unit 121 in plan view.
  • each pixel value which comprises the image data obtained from the sensor panel 11 can be appropriately associated with each pixel value which constitutes the image data obtained from the sensor panel 12, and the radiation image is obtained by energy subtraction processing. Appropriate acquisition is possible.
  • the radiation imaging unit 111 may be disposed in the central part on the substrate 110 and the radiation imaging unit 121 may be disposed in the central part on the substrate 120. That is, the radiation imaging units 111 and 121 do not have to be eccentric on the substrates 110 and 120, respectively.
  • the sensor panels 11 and 12 have a part of the radiation imaging unit 111 (a plurality of radiation detection elements) and a part of the radiation imaging unit 121 (a plurality of radiation detection elements) overlap each other. In this way, they may be shifted in a diagonal direction.
  • the energy subtraction process may be performed using the portions corresponding to the overlapping portions of the radiation imaging units 111 and 121 of the two image data obtained from the sensor panels 11 and 12, respectively.
  • two sensor panels having a known structure can be used.
  • FIG. 7A shows a cross-sectional view taken along line XX in FIG. 6B.
  • the radiation imaging apparatus 1 1, the sensor panel 11 and 12 are both a configuration of a front-illuminated.
  • the present embodiment is mainly different in the following points. That is, the sensor panel 11 in plan view, has a region R1 overlapping the sensor panel 12, both of the regions R2 1 which does not overlap the sensor panel 12.
  • the sensor panel 12 is viewed in plan, it has an area R1 overlaps the sensor panel 11, both of the regions R2 2 not overlapping with the sensor panel 11.
  • the connection portion 115 is provided in the region R2 1 which does not overlap the substrate 120 of the substrate 110, also, the connecting portion 125 is provided in a region R2 2 that does not overlap the substrate 110 of the substrate 120.
  • the radiation imaging apparatus 1 1 can be obtained by the following procedure. First, after preparing the sensor panels 11 and 12, respectively, in plan view, they are arranged in parallel and coupled so that a region R1 where they overlap each other and R2 1 and R2 2 where they do not overlap each other are formed. To do. Here, the connection portion 115 is located in the region R2 1, the connecting portion 125 is positioned in the region R2 2. A filter 13 is disposed between the sensor panels 11 and 12, and couples the sensor panels 11 and 12 with an adhesive. Then, connect the wiring portion 141 in the region R2 1 to the connection portion 115, also connects the wire 142 in the region R2 2 to the connecting portion 125.
  • FIG. 7B shows a state in which the process of fixing the wiring part 141 to the connection part 115 by crimping and the process of fixing the wiring part 142 to the connection part 125 by crimping are performed for this embodiment.
  • the crimping fixed to the connection portion 115 of the wiring portion 141 since the case of the crimping fixed to the connection portion 115 of the wiring portion 141, connecting portion 115 in a region R2 1 which does not overlap with the sensor panel 12 of the sensor panel 11 is provided, the backup member 22 Interference with the sensor panel 12 can be prevented.
  • connection portion 125 of the wire 142 when performing the crimping fixed to the connection portion 125 of the wire 142, since the connecting portion 125 is provided in a region R2 2 which does not overlap with the sensor panel 11 of the sensor panel 12, the sensor panel 11 of the compression bonding head 21 Interference with can be prevented. Therefore, as shown in FIG. 7C, even if the wiring portions 141 and / or 142 are peeled off and repair is necessary, when the fixing is performed by the crimping using the crimping head 21 and the backup member 22. Can prevent the interference.
  • the wiring part 142 when the wiring part 142 is fixed to the connection part 125 by pressure bonding, the wiring part 142 is connected to the connection part 125 by the pressure bonding head 21 while supporting the portion of the substrate 120 opposite to the connection part 125 by the backup member 22. Press vertically against the top surface of 120.
  • connecting portions 125 are provided in the region R2 2, it is possible to prevent interference with the sensor panel 11 of the compression bonding head 21.
  • the connection part 125 to which the wiring part 142 is fixed is sealed with the resin 32, when the jig 30 is brought close to the connection part 125, interference with the sensor panel 11 of the jig 30 can be prevented.
  • the case of fixing by pressure bonding and sealing with resin is illustrated, but according to the configuration of the present embodiment, when any other fixing method is performed, the interference of the jig that realizes it is prevented. Is possible.
  • FIG. 8A is a cross-sectional view of the radiation imaging apparatus 1 2, shows similar Figure 7A.
  • the radiation imaging apparatus 1 2 the sensor panel 11 takes a configuration of a backside illuminated sensor panel 12 takes the configuration of a front-illuminated. That is, the present embodiment, the configuration of the second example described above (see FIG. 2B), the relative position of the sensor panel 11 and 12 as regions R1, R2 1 and R2 2 are formed is shifted It is in shape.
  • FIG. 8B shows a state in which the process of fixing the wiring part 141 to the connection part 115 by crimping and the process of fixing the wiring part 142 to the connection part 125 by crimping are respectively performed in this embodiment.
  • the crimping fixed to the connection portion 115 of the wiring portion 141 since the case of the crimping fixed to the connection portion 115 of the wiring portion 141, connecting portion 115 in a region R2 1 which does not overlap with the sensor panel 12 of the sensor panel 11 is provided, bonding head 21 Interference with the sensor panel 12 can be prevented.
  • connection portion 125 of the wire 142 since the connecting portion 125 is provided in a region R2 2 which does not overlap with the sensor panel 11 of the sensor panel 12, the sensor panel 11 of the compression bonding head 21 Interference with can be prevented. Therefore, as shown in FIG. 8C, even if the wiring portions 141 and / or 142 are peeled off and need to be repaired, when re-fixing by crimping using the crimping head 21 and the backup member 22, Can prevent the interference.
  • FIG. 8D shows a mode in which the resins 31 and 32 are formed using the jig 30, and the connection portions 115 and 125 to which the wiring portions 141 and 142 are fixed are sealed with the resins 31 and 32, respectively, as in FIG. 7D. Show. According to the present embodiment, it is possible to prevent the interference (see FIG. 5B) of the jig 30 described above.
  • FIG. 9A is a sectional view of a radiation imaging device 1 3 shows similarly Figure 7A.
  • the radiation imaging apparatus 1 3 the sensor panel 11 takes a configuration of a front-illuminated
  • the sensor panel 12 takes the configuration of a back-illuminated type. That is, the present embodiment, the configuration of the third example described above (see FIG. 2C), the relative position of the sensor panel 11 and 12 as regions R1, R2 1 and R2 2 are formed is shifted It is in shape.
  • connection portion 125 of the wire 142 when performing the crimping fixed to the connection portion 125 of the wire 142, since the connecting portion 125 is provided in a region R2 2 which does not overlap with the sensor panel 11 of the sensor panel 12, the sensor panel 11 of the backup member 22 Interference with can be prevented. Therefore, as shown in FIG. 9C, even when the wiring portions 141 and / or 142 are peeled off and repair is necessary, when the fixing is performed by the crimping using the crimping head 21 and the backup member 22, Can prevent the interference.
  • FIG. 9D shows a mode in which the resin 31 and 32 are formed using the jig 30, and the connection portions 115 and 125 to which the wiring portions 141 and 142 are fixed are sealed with the resins 31 and 32, respectively, as in FIG. 7D. Show.
  • the present embodiment there is a low possibility of the interference of the jig 30 described above. Therefore, after the above-described crimping has properly fixed the wiring part 141 and the like to the connection part 115 and the like, they are sealed, and the fixing is reinforced by the resins 31 and 32 so that the peeling does not occur. Is possible.
  • each sensor panel 11 and 12 has a configuration of an indirect conversion method.
  • the above contents can also be applied to the configuration of a direct conversion method (method of directly converting radiation into an electrical signal).
  • the configuration in which the wiring part 141 or 142 is disposed along two adjacent sides of the substrate 110 or 120 in plan view is shown.
  • the above contents can also be applied to a configuration in which the wiring portion 141 or 142 is disposed along two opposite sides, or a configuration in which the wiring portion 141 or 142 is disposed on only one side.
  • the wiring portions 141 and 142 are exemplified as having flexibility. However, the above contents can also be applied to the case where the wiring portions 141 and 142 are not flexible (for example, a rigid wiring board).
  • the radiation imaging apparatus described in the above embodiment can be applied to an imaging system for performing so-called X-ray imaging.
  • X-rays are typically used as radiation, but alpha rays, beta rays, and the like may be used.
  • X-rays 611 generated by the X-ray tube 610 (radiation source) pass through the chest 621 of the subject 620 (patient) and enter the radiation imaging apparatus 630.
  • the X-ray 611 incident on the device 630 includes information inside the patient 620, and the device 630 can obtain electrical information corresponding to the X-ray 611. This electrical information is converted into a digital signal, and then subjected to predetermined signal processing, for example, by an image processor 640 (signal processing unit).
  • a user can observe a radiographic image corresponding to this electrical information on, for example, a display 650 (display unit) in a control room.
  • the user can transfer the radiographic image or the data thereof to a remote place by a predetermined communication means 660, and can observe the radiographic image on the display 651 in another place such as a doctor room.
  • the user can record the radiographic image or the data thereof on a predetermined recording medium.
  • the user can record the radiation image or the data on the film 671 by the film processor 670.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

In a radiation imaging device provided with two sensor panels, the present invention provides an advantageous feature for suitably realizing connection of wiring parts thereof. The radiation imaging device of the present invention is provided with a first panel for which a first radiation imaging unit is arranged on a first substrate, and a second panel for which a second radiation imaging unit is arranged on a second substrate. The first panel and the second panel are arranged so that, in a plan view with respect to the top surface of the first substrate, there is an area of mutual overlap, and an area of no mutual overlap, and also so that at least a portion of the first radiation imaging unit and at least a portion of the second radiation imaging unit are positioned in the overlapping area in the plan view. The first panel has a first connection part to which there is connected a first wiring part for reading signals from the first radiation imaging unit in the area where there is no overlap with the second panel in the plan view, and the second panel has a second connection part to which there is connected a second wiring part for reading signals from the second radiation imaging unit in the area where there is no overlap with the first panel in the plan view.

Description

放射線撮像装置、その製造方法および撮像システムRadiation imaging apparatus, manufacturing method thereof, and imaging system
 本発明は、放射線撮像装置、その製造方法および撮像システムに関する。 The present invention relates to a radiation imaging apparatus, a manufacturing method thereof, and an imaging system.
 放射線撮像装置のなかには、同一の被写体について2つの画像データを取得し、それらの差分に基づいて1つの放射線画像を形成する処理を可能にするものがある。具体的には、2つの画像データは互いに異なる放射線量の下で取得され、所定の係数を用いてそれらの差分をとることにより所望の対象部位を観察し、又は、係数を変えることにより観察対象を(例えば臓器から骨に)変更することができる。このような画像処理は、エネルギーサブトラクション処理等と称される。 Some radiation imaging apparatuses enable processing to acquire two image data for the same subject and form one radiation image based on the difference between them. Specifically, two image data are acquired under different radiation doses, and a desired target region is observed by taking a difference between them using a predetermined coefficient, or an observation target is changed by changing the coefficient. Can be changed (eg from an organ to a bone). Such image processing is called energy subtraction processing or the like.
特開2010-101805号公報JP 2010-101805 A
 特許文献1には、互いに平行に配置された2つのセンサパネルを備える放射線撮像装置の構造が記載されており、特許文献1によれば、この構造により、2つの画像データを一度に取得することが可能となる。 Patent Document 1 describes a structure of a radiation imaging apparatus that includes two sensor panels arranged in parallel to each other. According to Patent Document 1, two image data can be acquired at a time using this structure. Is possible.
 ところで、各センサパネルには、その端部領域において、画像データを読み出すための配線部(例えばCOF)が接続され固定される。この固定は、例えば、圧着で貼り合わせること等によって実現され、所定の冶具を用いて為されうる。 By the way, each sensor panel is connected and fixed with a wiring portion (for example, COF) for reading out image data in the end region. This fixing is realized by, for example, bonding by pressure bonding or the like, and can be performed using a predetermined jig.
 しかしながら、特許文献1の構造によれば、一方のセンサパネルについて配線部の固定を行う際に、この固定に用いる冶具と他方のセンサパネルとの干渉等が生じ、この固定を適切に実施することが難しい場合がある。また、一方のセンサパネルにおいて配線部が剥離した場合にその配線部を再固定する際にも、同様の問題が生じる場合がある。 However, according to the structure of Patent Document 1, when the wiring part is fixed to one sensor panel, interference occurs between the jig used for the fixing and the other sensor panel, and the fixing is appropriately performed. May be difficult. Further, when the wiring part is peeled off in one sensor panel, the same problem may occur when the wiring part is re-fixed.
 本発明の目的は、2つのセンサパネルを備える放射線撮像装置において、それらの配線部の接続を適切に実現するのに有利な技術を提供することにある。 An object of the present invention is to provide a technique advantageous in appropriately realizing the connection of the wiring portions in a radiation imaging apparatus including two sensor panels.
 本発明の一つの側面は放射線撮像装置にかかり、前記放射線撮像装置は、第1基板上に第1放射線撮像部が配された第1パネルと、第2基板上に第2放射線撮像部が配された第2パネルとを備え、前記第1パネルと前記第2パネルとは、前記第1基板の上面に対する平面視において互いに重なる領域と互いに重ならない領域との双方を有するように、且つ、前記第1放射線撮像部の少なくとも一部と前記第2放射線撮像部の少なくとも一部とが前記平面視において前記重なる領域に位置するように、配されており、前記第1パネルは、前記平面視において前記第2パネルとは重ならない領域に、前記第1放射線撮像部から信号を読み出すための第1配線部を接続するように構成された第1接続部を有し、前記第2パネルは、前記平面視において前記第1パネルとは重ならない領域に、前記第2放射線撮像部から信号を読み出すための第2配線部を接続するように構成された第2接続部を有することを特徴とする。 One aspect of the present invention relates to a radiation imaging apparatus, which includes a first panel having a first radiation imaging unit disposed on a first substrate, and a second radiation imaging unit disposed on a second substrate. The first panel and the second panel have both a region overlapping each other and a region not overlapping each other in plan view with respect to the upper surface of the first substrate, and At least a part of the first radiation imaging unit and at least a part of the second radiation imaging unit are arranged so as to be located in the overlapping region in the plan view, and the first panel is in the plan view. A first connection part configured to connect a first wiring part for reading a signal from the first radiation imaging part in a region not overlapping with the second panel; In plan view In a region not overlapping with the first panel Te, and having a second connection configured to connect the second wiring portion for reading a signal from the second radiation image pickup unit.
 本発明によれば、2つのセンサパネルを備える放射線撮像装置において、それらの配線部の接続を適切に実現することができる。 According to the present invention, in a radiation imaging apparatus including two sensor panels, it is possible to appropriately realize connection of those wiring portions.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
放射線撮像装置の構成の参考例を説明するための図である。 参考例の構造のバリエーションを説明するための図である。 参考例の構造において配線部の固定を行う際の態様の例を説明するための図である。 参考例の構造において配線部が剥離した場合の態様の例を説明するための図である。 参考例の構造において配線部の固定を行う際の態様の例を説明するための図である。 実施形態に係る放射線撮像装置の構成の例を説明するための図である。 実施形態に係る放射線撮像装置の構造、及び、この構造において配線部の固定を行う際の態様の例を説明するための図である。 実施形態に係る放射線撮像装置の構造、及び、この構造において配線部の固定を行う際の態様の例を説明するための図である。 実施形態に係る放射線撮像装置の構造、及び、この構造において配線部の固定を行う際の態様の例を説明するための図である。 撮像システムの構成例を説明するための図である。
The accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
, It is a figure for demonstrating the reference example of a structure of a radiation imaging device. , , It is a figure for demonstrating the variation of the structure of a reference example. , , It is a figure for demonstrating the example of the aspect at the time of fixing a wiring part in the structure of a reference example. , It is a figure for demonstrating the example of the aspect when a wiring part peels in the structure of a reference example. , It is a figure for demonstrating the example of the aspect at the time of fixing a wiring part in the structure of a reference example. , It is a figure for demonstrating the example of a structure of the radiation imaging device which concerns on embodiment. , , , It is a figure for demonstrating the example of the structure at the time of fixing the structure of the radiation imaging device which concerns on embodiment, and a wiring part in this structure. , , , It is a figure for demonstrating the example of the structure at the time of fixing the structure of the radiation imaging device which concerns on embodiment, and a wiring part in this structure. , , , It is a figure for demonstrating the example of the structure at the time of fixing the structure of the radiation imaging device which concerns on embodiment, and a wiring part in this structure. It is a figure for demonstrating the structural example of an imaging system.
 以下、添付図面を参照しながら本発明の好適な実施形態について説明する。なお、各図は、構成ないし構造を説明する目的で記載された模式図に過ぎず、図示された各部材の寸法は必ずしも現実のものを反映するものではない。また、各図において、同一の部材または同一の構成要素には同一の参照番号を付しており、以下、重複する内容については説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. Each figure is only a schematic diagram described for the purpose of explaining the configuration or structure, and the dimensions of the illustrated members do not necessarily reflect actual ones. Moreover, in each figure, the same reference number is attached | subjected to the same member or the same component, and description is abbreviate | omitted about the overlapping content hereafter.
  (参考例)
 本発明のいくつかの実施形態を説明するに先立って、本発明の理解を容易にするため、図1A~5Bを参照しながら参考例を述べる。図1Aは、参考例として、放射線撮像装置1Rの構造を示す斜視図である。放射線撮像装置1Rは、互いに平行に配された2つのセンサパネル11及び12を備える。
(Reference example)
Prior to describing some embodiments of the present invention, a reference example will be described with reference to FIGS. 1A-5B to facilitate understanding of the present invention. FIG. 1A is a perspective view showing a structure of a radiation imaging apparatus 1R as a reference example. The radiation imaging apparatus 1R includes two sensor panels 11 and 12 arranged in parallel to each other.
 一方のセンサパネル11は、本参考例では、2つのセンサパネル11及び12のうちの上方側の1つである。センサパネル11は、基板110および放射線撮像部111を有する。基板110には、本参考例ではガラス基板が用いられるが、他の例としてプラスチック基板が用いられてもよく、基板110は公知の絶縁材料で構成されればよい。本参考例では、基板110(又は、センサパネル11)は、平面視において矩形形状を有する。なお、本明細書において、「平面視」とは、基板110の上面(又はそれと平行な面)に対する平面視をいい、この上面と垂直な方向での正射影と表現されてもよい。 One sensor panel 11 is one of the upper sides of the two sensor panels 11 and 12 in this reference example. The sensor panel 11 includes a substrate 110 and a radiation imaging unit 111. As the substrate 110, a glass substrate is used in this reference example, but as another example, a plastic substrate may be used, and the substrate 110 may be made of a known insulating material. In this reference example, the substrate 110 (or the sensor panel 11) has a rectangular shape in plan view. Note that in this specification, “plan view” refers to a plan view with respect to the upper surface (or a plane parallel thereto) of the substrate 110 and may be expressed as an orthogonal projection in a direction perpendicular to the upper surface.
 放射線撮像部111は、アモルファスシリコン等を用いて基板110上に設けられる。本参考例では、放射線撮像部111は、基板110上に行列状に(複数の行および複数の列を形成するように)配された複数の放射線検出素子を含む。本参考例では、センサパネル11は間接変換方式(放射線を光に変換し、その光を電気信号に変換することにより放射線を検出する方式)で放射線撮像を行うパネルである。本参考例では、各放射線検出素子にPINセンサが用いられるが、他の例として、MISセンサ等の公知の光電変換素子が用いられてもよい。或いは、他の例として、センサパネル11は、支持基板上に1以上のCCD/CMOSイメージセンサチップを配置して構成されてもよい。 The radiation imaging unit 111 is provided on the substrate 110 using amorphous silicon or the like. In the present reference example, the radiation imaging unit 111 includes a plurality of radiation detection elements arranged in a matrix (so as to form a plurality of rows and a plurality of columns) on the substrate 110. In this reference example, the sensor panel 11 is a panel that performs radiation imaging using an indirect conversion method (a method of detecting radiation by converting radiation into light and converting the light into an electrical signal). In this reference example, a PIN sensor is used for each radiation detection element, but as another example, a known photoelectric conversion element such as a MIS sensor may be used. Alternatively, as another example, the sensor panel 11 may be configured by disposing one or more CCD / CMOS image sensor chips on a support substrate.
 また、本参考例では、各放射線検出素子は、上記電気信号を読み出すための1以上の薄膜トランジスタに接続されて単一の画素を形成し、放射線撮像部111は画素アレイとも表現されうる。或いは、放射線撮像部111はセンサアレイと表現されてもよい。 Further, in this reference example, each radiation detection element is connected to one or more thin film transistors for reading out the electric signal to form a single pixel, and the radiation imaging unit 111 can also be expressed as a pixel array. Alternatively, the radiation imaging unit 111 may be expressed as a sensor array.
 詳細は後述とするが、基板110の端部では複数の配線部141が接続される。本参考例では、配線部141には、COF(Chip On Film(Flexible))が用いられる。他の例として、FPC(Flexible Print Circuit)やTAB(Tape Automated Bonding)等の他の可撓性の配線が、配線部141として用いられてもよい。 Although details will be described later, a plurality of wiring portions 141 are connected to the end portion of the substrate 110. In this reference example, COF (Chip On Film (Flexible)) is used for the wiring part 141. As another example, other flexible wiring such as FPC (Flexible Print Circuit) and TAB (Tape Automated Bonding) may be used as the wiring unit 141.
 他方のセンサパネル12は、本参考例では、2つのセンサパネル11及び12のうちの下方側の1つであり、センサパネル12は、上述のセンサパネル11同様の構成を有する。センサパネル12は、基板110に対応する基板120と、放射線撮像部111に対応する放射線撮像部121とを有する。また、詳細は後述とするが、センサパネル11同様、基板120の端部では複数の配線部142が接続される。 The other sensor panel 12 is one of the lower sides of the two sensor panels 11 and 12 in this reference example, and the sensor panel 12 has the same configuration as the sensor panel 11 described above. The sensor panel 12 includes a substrate 120 corresponding to the substrate 110 and a radiation imaging unit 121 corresponding to the radiation imaging unit 111. Although details will be described later, like the sensor panel 11, a plurality of wiring portions 142 are connected to the end portion of the substrate 120.
 また、平面視において、放射縁撮像部111の放射線検出素子の個々と、放射縁撮像部121の放射線検出素子の個々とは、互いに重なる。 In a plan view, each of the radiation detection elements of the radiation edge imaging unit 111 and each of the radiation detection elements of the radiation edge imaging unit 121 overlap each other.
 本参考例では不図示とするが、放射線撮像装置1Rは、各放射線検出素子を駆動するための駆動部(垂直走査回路等)、及び、各放射線検出素子から電気信号を読み出すための読出部(信号増幅器、サンプリング回路、水平走査回路等)を更に備える。これら駆動部および読出部は、センサパネル11については、配線部141を介して外部に(基板110上ではない他の位置に)配される。前述のとおり、本参考例では、配線部141にCOFが用いられる。よって、上記駆動部および読出部の一方もしくは双方は、配線部141及び142にそれぞれ配され、又は、それらの機能の一部もしくは全部は、配線部141及び142上で実現されうる。なお、他の例として、上記駆動部および読出部を、基板110上の隣り合う2辺(それらの間で角を形成する2辺)にそれぞれ沿って設けることも可能である。以上のことは、センサパネル12についても同様である。 Although not shown in the present reference example, the radiation imaging apparatus 1R includes a drive unit (vertical scanning circuit or the like) for driving each radiation detection element, and a readout unit (reading unit) for reading out an electrical signal from each radiation detection element. A signal amplifier, a sampling circuit, a horizontal scanning circuit, and the like. These drive unit and readout unit are arranged outside the sensor panel 11 via the wiring unit 141 (at other positions not on the substrate 110). As described above, in this reference example, COF is used for the wiring portion 141. Therefore, one or both of the driving unit and the reading unit are arranged on the wiring units 141 and 142, respectively, or part or all of the functions can be realized on the wiring units 141 and 142. As another example, the driving unit and the reading unit may be provided along two adjacent sides on the substrate 110 (two sides forming an angle between them). The same applies to the sensor panel 12.
 放射線撮像装置1Rは、センサパネル11とセンサパネル12との間に配されたフィルタ13を更に備える。フィルタ13には、装置1Rに対して照射された放射線のエネルギーの一部を吸収する板材ないし薄膜が用いられる。フィルタ13には、例えばランタノイドを用いた材料(具体的には、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム等)が用いられる。これと共に又はこれに代替して、ランタノイドの化合物が用いられてもよいし、ランタノイド及び/又はその化合物の粒子が添加された樹脂が用いられてもよい。 The radiation imaging apparatus 1R further includes a filter 13 disposed between the sensor panel 11 and the sensor panel 12. The filter 13 is a plate or thin film that absorbs part of the energy of the radiation irradiated to the device 1R. For the filter 13, for example, a material using lanthanoid (specifically, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, etc.) is used. In addition to or in place of this, a lanthanoid compound may be used, or a resin to which lanthanoid and / or particles of the compound are added may be used.
 放射線は、図1Aにおいて上方側から照射される。即ち、不図示の被写体(被検者)はセンサパネル11側に配され又は横臥し、被写体を透過(通過)した放射線は、まず、センサパネル11に入射し、検出される。その後、センサパネル11及びフィルタ13を透過した放射線がセンサパネル12に入射し、検出される。 Radiation is irradiated from above in FIG. 1A. That is, an unillustrated subject (subject) is placed or lying on the sensor panel 11 side, and radiation that has passed through (passed through) the subject first enters the sensor panel 11 and is detected. Thereafter, the radiation transmitted through the sensor panel 11 and the filter 13 enters the sensor panel 12 and is detected.
 上述の構成によれば、センサパネル11及び12により、1回の放射線撮影で一度に2つの画像データを取得することができる。このとき、センサパネル12に入射する放射線量(強度)は、フィルタ13で放射線のエネルギーの一部が吸収されるため、センサパネル11に入射する放射線量よりも小さくなる。よって、センサパネル11から得られる画像データと、センサパネル12から得られる画像データとは、いずれも同一の被写体についての画像情報を示すが、それらの間にはデータ値(信号値)に差が生じる。そして、これら2つの画像データを用いてエネルギーサブトラクション処理を行うことが可能となる。具体的には、これら2つの画像データに対して所定の係数を用いて演算処理を行うことによって検査対象の部位を観察することができ、また、この係数を変えることによって観察対象を他の部位に変更することもできる。 According to the above configuration, the sensor panels 11 and 12 can acquire two pieces of image data at a time by one radiation imaging. At this time, the radiation dose (intensity) incident on the sensor panel 12 is smaller than the radiation dose incident on the sensor panel 11 because a part of the radiation energy is absorbed by the filter 13. Therefore, the image data obtained from the sensor panel 11 and the image data obtained from the sensor panel 12 both show image information about the same subject, but there is a difference in data value (signal value) between them. Arise. And it becomes possible to perform an energy subtraction process using these two image data. Specifically, the region to be inspected can be observed by performing arithmetic processing on these two image data using a predetermined coefficient, and the observation object can be changed to another region by changing this coefficient. It can also be changed.
 図1Bは、放射線撮像装置1Rの上面図である。配線部141と配線部142とは、平面視において互いに重ならないように配される。本参考例では、基板110の外縁(又は、センサパネル11の外縁)と基板120の外縁(又は、センサパネル12の外縁)とは互いに実質的に重なっている。そして、複数の配線部141は、平面視において、基板110の隣り合う2辺のそれぞれに沿って配される。また、複数の配線部142は、平面視において、基板120の隣り合う2辺であって複数の配線部141が配された基板110の上記2辺とは重ならない2辺のそれぞれに沿って配される。 FIG. 1B is a top view of the radiation imaging apparatus 1R. The wiring part 141 and the wiring part 142 are arranged so as not to overlap each other in plan view. In this reference example, the outer edge of the substrate 110 (or the outer edge of the sensor panel 11) and the outer edge of the substrate 120 (or the outer edge of the sensor panel 12) substantially overlap each other. The plurality of wiring portions 141 are arranged along two adjacent sides of the substrate 110 in plan view. In addition, the plurality of wiring portions 142 are arranged along two sides that are adjacent to each other on the substrate 120 and do not overlap with the two sides of the substrate 110 on which the plurality of wiring portions 141 are arranged in plan view. Is done.
 図1Bから分かるように、平面視において、各配線部141は、基板120の外縁より内側になる部分を有し、また、各配線部142は、基板110の外縁より内側になる部分を有する。即ち、基板110の端部に配された各配線部141の一部は、基板120と重なり、また、基板120の端部に配された各配線部142の一部は、基板110と重なる。図中では、各配線部142のうち基板110と重なっている部分を破線で示す。 As can be seen from FIG. 1B, each wiring part 141 has a portion that is inside the outer edge of the substrate 120 in a plan view, and each wiring part 142 has a portion that is inside the outer edge of the substrate 110. That is, a part of each wiring part 141 arranged at the end of the substrate 110 overlaps with the substrate 120, and a part of each wiring part 142 arranged at the end of the substrate 120 overlaps with the substrate 110. In the drawing, a portion of each wiring part 142 overlapping the substrate 110 is indicated by a broken line.
 なお、前述のとおり、他の例として、放射線撮像部111及び121は、それぞれ、複数の放射線検出素子の他、各放射線検出素子を駆動するための駆動部、及び、各放射線検出素子から電気信号を読み出すための読出部を更に含んでもよい。その場合、複数の配線部141が配された2辺の一方に沿って駆動部が配され、他方に沿って読出部が配され、同様に、複数の配線部142が配された2辺の一方に沿って駆動部が配され、他方に沿って読出部が配されればよい。 As described above, as another example, the radiation imaging units 111 and 121 include a plurality of radiation detection elements, a drive unit for driving each radiation detection element, and an electrical signal from each radiation detection element, respectively. May be further included. In that case, the drive unit is arranged along one of the two sides where the plurality of wiring units 141 are arranged, the reading unit is arranged along the other side, and similarly, the two sides where the plurality of wiring units 142 are arranged are arranged. A drive unit may be arranged along one side, and a reading unit may be arranged along the other side.
 センサパネル11及び12は、それぞれ、表面照射型の構成をとってもよいし、裏面照射型の構成をとってもよい。図2A~2Cは、図1Bにおける線X-Xでの断面図を、参考例の第1~第3の例として示す。 The sensor panels 11 and 12 may each have a front-side irradiation type configuration or a back-side irradiation type configuration. 2A to 2C show sectional views taken along line XX in FIG. 1B as first to third examples of reference examples.
 図2Aに示される第1の例の放射線撮像装置1R(区別のため、「1R」とする)では、センサパネル11及び12は、いずれも表面照射型の構成を有する。具体的には、センサパネル11は、基板110上に放射線撮像部111を覆うように配された保護膜112と、保護膜112の上に配されたシンチレータ113と、保護膜112及びシンチレータ113を覆う保護膜114とを更に有する。また、センサパネル12は、基板120上に放射線撮像部121を覆うように配された保護膜122と、保護膜122の上に配されたシンチレータ123と、保護膜122及びシンチレータ123を覆う保護膜124とを更に有する。そして、センサパネル11及び12は、基板110及び放射線撮像部111に対してシンチレータ113が放射線の入射側に位置し、且つ、基板120及び放射線撮像部121に対してシンチレータ123が放射線の入射側に位置するように、それぞれ配される。即ち、センサパネル11及び12は、シンチレータ113と基板120との間に基板110及びシンチレータ123が位置するように、配される。また、フィルタ13は、基板110と保護膜124との間に配され、不図示の接着剤(例えば、アクリル系の粘着樹脂)を介して、センサパネル11及び12を互いに結合(固定)する。 In the radiation imaging apparatus 1R of the first example shown in FIG. 2A (for distinction, “1R 1 ”), the sensor panels 11 and 12 both have a surface irradiation type configuration. Specifically, the sensor panel 11 includes a protective film 112 disposed on the substrate 110 so as to cover the radiation imaging unit 111, a scintillator 113 disposed on the protective film 112, and the protective film 112 and the scintillator 113. A protective film 114 is further included. The sensor panel 12 includes a protective film 122 disposed on the substrate 120 so as to cover the radiation imaging unit 121, a scintillator 123 disposed on the protective film 122, and a protective film covering the protective film 122 and the scintillator 123. 124. In the sensor panels 11 and 12, the scintillator 113 is positioned on the radiation incident side with respect to the substrate 110 and the radiation imaging unit 111, and the scintillator 123 is positioned on the radiation incident side with respect to the substrate 120 and the radiation imaging unit 121. Each is arranged so as to be located. That is, the sensor panels 11 and 12 are arranged such that the substrate 110 and the scintillator 123 are positioned between the scintillator 113 and the substrate 120. The filter 13 is disposed between the substrate 110 and the protective film 124, and couples (fixes) the sensor panels 11 and 12 to each other via an adhesive (not shown) (for example, an acrylic adhesive resin).
 このような構成によれば、センサパネル11では、被検者を透過した放射線は、シンチレータ113で光に変換され、この光は放射線撮像部111で検出され、それにより画像データが得られる。また、センサパネル12では、センサパネル11及びフィルタ13を透過した放射線が、シンチレータ123で光に変換され、この光は放射線撮像部121で検出され、それにより画像データが得られる。 According to such a configuration, in the sensor panel 11, the radiation transmitted through the subject is converted into light by the scintillator 113, and this light is detected by the radiation imaging unit 111, thereby obtaining image data. In the sensor panel 12, the radiation that has passed through the sensor panel 11 and the filter 13 is converted into light by the scintillator 123, and this light is detected by the radiation imaging unit 121, thereby obtaining image data.
 シンチレータ113及び123には、放射線を受けて光を発生する蛍光体材料が用いられる。典型的な例として、CsI:Tl(タリウム添加ヨウ化セシウム)等が、シンチレータ113及び123の材料として用いられる。シンチレータ113及び123は、真空蒸着装置を用いて形成される(条件:圧力10-5[Pa]程度、温度180[℃]程度)。 For the scintillators 113 and 123, a phosphor material that generates light upon receiving radiation is used. As a typical example, CsI: Tl (thallium-added cesium iodide) or the like is used as the material of the scintillators 113 and 123. The scintillators 113 and 123 are formed using a vacuum deposition apparatus (conditions: pressure of about 10 −5 [Pa], temperature of about 180 [° C.]).
 保護膜112及び122には、センサパネル11及び12の上面をそれぞれ保護するのに有利であり且つ光透過性を有する材料が用いられる。これにより、シンチレータ113及び123からの光は、それぞれ、保護膜112及び122を透過して放射線撮像部111及び121に入射する。典型的な例として、シリコーン系樹脂、ポリイミド系樹脂、ポリアミド系樹脂、エポキシ系樹脂、パラキシリレンやアクリル等の有機物質を含む樹脂等が、保護膜112及び122の材料として用いられる。 The protective films 112 and 122 are made of a material that is advantageous for protecting the upper surfaces of the sensor panels 11 and 12 and has light transmittance. Thereby, the light from the scintillators 113 and 123 passes through the protective films 112 and 122 and enters the radiation imaging units 111 and 121, respectively. As a typical example, a silicone resin, a polyimide resin, a polyamide resin, an epoxy resin, a resin containing an organic substance such as paraxylylene or acrylic, or the like is used as a material for the protective films 112 and 122.
 保護膜114及び124には、シンチレータ113及び123の潮解をそれぞれ防止するのに有利であり且つ光反射性を有する材料が用いられる。これにより、保護膜114は、シンチレータ113で発生した光を放射線撮像部111に向けて反射し、また、保護膜124は、シンチレータ123で発生した光を放射線撮像部121に向けて反射する。典型的な例として、Ag、Cu、Au、Al、Ni等の金属薄膜に樹脂のフィルムを貼り合わせたものが、保護膜114及び124として用いられる。樹脂の材料には、例えば、ポリエチレンテレフタレート、ポリカーボネート、塩化ビニル、ポリエチレンナフタレート、ポリイミド、アクリル等が用いられる。保護膜114及び124は、それぞれ、ラミネート加工により、シンチレータ113及び123の上面と側面とを覆うように形成される(条件:温度85~95[℃]程度、圧力4[hPa]以下)。また、保護膜114及び124は、更に接着層を含み、この接着層には、例えば、ポリイミド系、エポキシ系、ポリオレフィン系、ポリエステル系、ポリウレタン系、ポリアミド系のホットメルト樹脂が用いられる。この接着層により、保護膜114及び124は、それぞれ、端部において圧着で固定されている。 The protective films 114 and 124 are made of a material that is advantageous for preventing the deliquescence of the scintillators 113 and 123 and having light reflectivity. Thereby, the protective film 114 reflects the light generated in the scintillator 113 toward the radiation imaging unit 111, and the protective film 124 reflects the light generated in the scintillator 123 toward the radiation imaging unit 121. As a typical example, a protective film 114 and 124 in which a resin film is bonded to a metal thin film such as Ag, Cu, Au, Al, or Ni is used. Examples of the resin material include polyethylene terephthalate, polycarbonate, vinyl chloride, polyethylene naphthalate, polyimide, and acrylic. The protective films 114 and 124 are respectively formed by laminating so as to cover the upper and side surfaces of the scintillators 113 and 123 (conditions: temperature of about 85 to 95 [° C.], pressure of 4 [hPa] or less). Further, the protective films 114 and 124 further include an adhesive layer. For this adhesive layer, for example, polyimide, epoxy, polyolefin, polyester, polyurethane, and polyamide hot melt resins are used. With this adhesive layer, the protective films 114 and 124 are fixed by crimping at the ends.
 センサパネル11は、基板110端部において接続部115を更に有する。配線部141は、接続部115において固定され、放射線撮像部111との間での信号の授受または放射線撮像部111への電力供給を可能に構成される。同様に、センサパネル12は、基板120端部において接続部125を更に有し、配線部142は、接続部125において固定され、放射線撮像部121との間での信号の授受または放射線撮像部121への電力供給を可能に構成される。接続部115及び125は、ここでは電極パッドであるが、外部の配線との電気接触を実現するものであればよい。 The sensor panel 11 further includes a connecting portion 115 at the end of the substrate 110. The wiring unit 141 is fixed at the connection unit 115 and configured to be able to exchange signals with the radiation imaging unit 111 or supply power to the radiation imaging unit 111. Similarly, the sensor panel 12 further includes a connection portion 125 at the end of the substrate 120, and the wiring portion 142 is fixed at the connection portion 125, and exchanges signals with the radiation imaging unit 121 or the radiation imaging unit 121. It is configured to be able to supply power. The connection portions 115 and 125 are electrode pads here, but may be any one that realizes electrical contact with external wiring.
 図2Bに示される第2の例の放射線撮像装置1R(区別のため、「1R」とする)では、センサパネル12は表面照射型の構成を有する(第1の例同様)のに対して、センサパネル11は裏面照射型の構成を有する。具体的には、センサパネル11は、基板110及び放射線撮像部111に対してシンチレータ113が放射線の入射側とは反対側に位置するように配され、即ち、第1の例と比べて上下が反転した形で配される。即ち、センサパネル11及び12は、基板110と基板120との間にシンチレータ113及びシンチレータ123が位置するように、配される。この場合、フィルタ13は、保護膜114と保護膜124の間に配され、接着剤を介してセンサパネル11及び12を互いに結合する。 In the radiation imaging apparatus 1R of the second example shown in FIG. 2B (for distinction, “1R 2 ”), the sensor panel 12 has a surface irradiation type configuration (similar to the first example). The sensor panel 11 has a backside illumination type configuration. Specifically, the sensor panel 11 is arranged such that the scintillator 113 is positioned on the opposite side of the radiation incident side with respect to the substrate 110 and the radiation imaging unit 111, that is, the sensor panel 11 is vertically moved as compared with the first example. Arranged in an inverted form. That is, the sensor panels 11 and 12 are arranged such that the scintillator 113 and the scintillator 123 are positioned between the substrate 110 and the substrate 120. In this case, the filter 13 is disposed between the protective film 114 and the protective film 124, and couples the sensor panels 11 and 12 to each other via an adhesive.
 このような構成によれば、センサパネル11では、被検者を透過した放射線は、基板110及び放射線撮像部111を透過してシンチレータ113に入射し、シンチレータ113で光に変換される。そして、この光は、保護層114により放射線撮像部111に向かって反射され、放射線撮像部111で検出され、それにより画像データが得られる。センサパネル12については、第1の例同様である。 According to such a configuration, in the sensor panel 11, the radiation transmitted through the subject passes through the substrate 110 and the radiation imaging unit 111 and enters the scintillator 113, and is converted into light by the scintillator 113. The light is reflected by the protective layer 114 toward the radiation imaging unit 111 and detected by the radiation imaging unit 111, thereby obtaining image data. The sensor panel 12 is the same as in the first example.
 図2Cに示される第3の例の放射線撮像装置1R(区別のため、「1R」とする)では、センサパネル11は表面照射型の構成を有する(第1の例同様)のに対して、センサパネル12は裏面照射型の構成を有する(第2の例のセンサパネル11同様)。具体的には、センサパネル12は、第1の例と比べて上下が反転した形で配される。即ち、センサパネル11及び12は、シンチレータ113とシンチレータ123との間に基板110及び基板120が位置するように、配される。この場合、フィルタ13は、基板110と基板120との間に配され、接着剤を介してセンサパネル11及び12を互いに結合する。 In the radiation imaging apparatus 1R of the third example shown in FIG. 2C (for distinction, “1R 3 ”), the sensor panel 11 has a surface irradiation type configuration (similar to the first example). The sensor panel 12 has a back-illuminated configuration (similar to the sensor panel 11 of the second example). Specifically, the sensor panel 12 is arranged in an upside down manner compared to the first example. That is, the sensor panels 11 and 12 are arranged such that the substrate 110 and the substrate 120 are positioned between the scintillator 113 and the scintillator 123. In this case, the filter 13 is disposed between the substrate 110 and the substrate 120, and couples the sensor panels 11 and 12 to each other via an adhesive.
 このような構成によれば、センサパネル11では、第1の例同様にして画像データが得られる。そして、センサパネル12では、センサパネル11及びフィルタ13を透過した放射線が、基板120及び放射線撮像部121を透過してシンチレータ123に入射し、シンチレータ123で光に変換される。そして、この光は、保護層124により放射線撮像部121に向かって反射され、放射線撮像部121で検出され、それにより画像データが得られる。 According to such a configuration, the sensor panel 11 can obtain image data as in the first example. In the sensor panel 12, the radiation transmitted through the sensor panel 11 and the filter 13 passes through the substrate 120 and the radiation imaging unit 121 and enters the scintillator 123, and is converted into light by the scintillator 123. The light is reflected by the protective layer 124 toward the radiation imaging unit 121 and detected by the radiation imaging unit 121, thereby obtaining image data.
 ところで、上述の放射線撮像装置1R~1Rを製造するのに際して、以下に例示される困難が生じる可能性がある。 By the way, when manufacturing the above-described radiation imaging apparatuses 1R 1 to 1R 3 , the following difficulty may occur.
 図3Aは、上記第1の例に対応し、放射線撮像装置1Rの製造時において、配線部141を接続部115に接続し固定する工程、及び、配線部142を接続部125に接続し固定する工程をそれぞれ行う様子を示す。なお、ここでは説明のため、これらの工程を行う様子を同時に図示するが、これらの工程は、互いに異なるタイミングで順に為されうる。 Figure 3A corresponds to the first example, and connected at the time of manufacturing the radiation imaging device 1R 1, step of fixing connecting the wiring portion 141 to the connecting portion 115, and the wiring portion 142 to the connecting portion 125 fixed A state of performing each of the steps is shown. Here, for the purpose of explanation, the manner in which these steps are performed is shown at the same time, but these steps may be sequentially performed at different timings.
 配線部141の接続部115への固定、及び、配線部142の接続部125への固定は、1つの例として、圧着で張り合わせることにより実現される(条件:温度180[℃]程度、圧力3[MPa]程度)。例えば、配線部141を接続部115に圧着により固定する場合、一般には、圧着ヘッド21を配線部141に押しつけ、その際、基板110(特に、固定対象である接続部115とは反対側の部分)をバックアップ部材22により支持することが好ましい。しかしながら、第1の例では、バックアップ部材22がセンサパネル12と干渉してしまう。また、例えば、配線部142を接続部125に圧着により固定する場合、一般には、圧着ヘッド21を配線部142に押しつけ、その際、基板120(特に、固定対象である接続部125とは反対側の部分)をバックアップ部材22により支持することが好ましい。しかしながら、第1の例では、圧着ヘッド21がセンサパネル11と干渉してしまう。 The fixing of the wiring part 141 to the connecting part 115 and the fixing of the wiring part 142 to the connecting part 125 are realized by, for example, bonding by pressure bonding (conditions: temperature about 180 [° C.], pressure About 3 [MPa]). For example, when the wiring part 141 is fixed to the connection part 115 by crimping, generally, the crimping head 21 is pressed against the wiring part 141, and at that time, the substrate 110 (particularly, the part opposite to the connection part 115 to be fixed). ) Is preferably supported by the backup member 22. However, in the first example, the backup member 22 interferes with the sensor panel 12. For example, when the wiring part 142 is fixed to the connection part 125 by crimping, generally, the crimping head 21 is pressed against the wiring part 142, and at that time, the substrate 120 (in particular, the side opposite to the connection part 125 to be fixed). Is preferably supported by the backup member 22. However, in the first example, the crimping head 21 interferes with the sensor panel 11.
 このことは、上記第2~第3の例においても同様である。図3B~3Cは、それぞれ上記第2~第3の例に対応し、放射線撮像装置1R~1Rの製造時において、配線部141を接続部115に接続し固定する工程、及び、配線部142を接続部125に接続し固定する工程を行う様子を、図3A同様に示す。第2の例では、配線部141を接続部115に圧着により固定する際に、圧着ヘッド21がセンサパネル12と干渉してしまい、また、配線部142を接続部125に圧着により固定する際に、圧着ヘッド21がセンサパネル11と干渉してしまう。また、第3の例では、配線部141を接続部115に圧着により固定する際に、バックアップ部材22がセンサパネル12と干渉してしまい、また、配線部142を接続部125に圧着により固定する際に、バックアップ部材22がセンサパネル11と干渉してしまう。 The same applies to the second to third examples. 3B to 3C correspond to the second to third examples, respectively, and a step of connecting and fixing the wiring part 141 to the connecting part 115 and manufacturing the wiring imaging unit 1R 2 to 1R 3 and the wiring part. A state in which the step of connecting and fixing 142 to the connecting portion 125 is performed is shown in the same manner as FIG. 3A. In the second example, when the wiring part 141 is fixed to the connection part 115 by crimping, the crimping head 21 interferes with the sensor panel 12, and when the wiring part 142 is fixed to the connection part 125 by crimping. The crimping head 21 interferes with the sensor panel 11. In the third example, when the wiring portion 141 is fixed to the connection portion 115 by pressure bonding, the backup member 22 interferes with the sensor panel 12, and the wiring portion 142 is fixed to the connection portion 125 by pressure bonding. At this time, the backup member 22 interferes with the sensor panel 11.
 よって、上記第1~第3の例のいずれにおいても、接続部115及び125に対する配線部141及び142の圧着をそれぞれ適切に実現することができない可能性がある(十分な圧力を加えることができない可能性がある。)。このことは、配線部141及び/又は142の剥離の原因となる可能性がある。 Therefore, in any of the first to third examples, there is a possibility that the crimping of the wiring portions 141 and 142 to the connection portions 115 and 125 cannot be properly realized (a sufficient pressure cannot be applied). there is a possibility.). This may cause peeling of the wiring portions 141 and / or 142.
 図4Aは、第1の例において、配線部141及び142に剥離が発生し、修復が必要になった場合の様子を示している。図4Bは、第2の例において、配線部141及び142に剥離が発生し、修復が必要になった場合の様子を示している。なお、ここでは説明を省略するが、第3の例においても同様である。 FIG. 4A shows a state in the first example when peeling occurs in the wiring portions 141 and 142 and repair is necessary. FIG. 4B shows a state in the second example when the wiring portions 141 and 142 are peeled off and repair is necessary. Although not described here, the same applies to the third example.
 また、上記剥離が発生した箇所に対して再び圧着を行う場合にも同様のことが生じ得、他の冶具を用いて修復処理を行う際においても、その冶具のセンサパネル11又は12との干渉が同様に生じうる。 In addition, the same thing can occur when pressure is applied again to the place where the peeling occurs, and interference with the sensor panel 11 or 12 of the jig is also possible when performing repair processing using another jig. Can occur as well.
 図5A~5Bは、それぞれ、第1~第2の例において、冶具30を用いて樹脂31及び32を形成し、配線部141及び142が固定された接続部115及び125をそれぞれ樹脂31及び32により封止する態様を示す。樹脂31は、配線部141及び接続部115を覆うように形成され、また、樹脂32は、配線部142及び接続部125を覆うように形成される。 5A to 5B, respectively, in the first and second examples, the resins 31 and 32 are formed using the jig 30, and the connection portions 115 and 125 to which the wiring portions 141 and 142 are fixed are respectively connected to the resins 31 and 32. The aspect which seals by is shown. The resin 31 is formed so as to cover the wiring part 141 and the connection part 115, and the resin 32 is formed so as to cover the wiring part 142 and the connection part 125.
 しかしながら、図5A~5Bの例では、冶具30がセンサパネル11と干渉してしまう可能性があり、このことは、封止処理を困難にする原因となりうる。 However, in the example of FIGS. 5A to 5B, the jig 30 may interfere with the sensor panel 11, and this may cause the sealing process to be difficult.
 なお、このことは、前述の圧着による固定に代替して、配線部141及び142をそれぞれ接続部115及び125に接触させた状態で、それらをそれぞれ樹脂31及び32により固定する場合においても、上記冶具30の干渉が生じる可能性がある。その他、所定の締結具を用いて配線部141及び142を物理的に固定する場合においても同様である。 Note that this is also true when the wiring portions 141 and 142 are in contact with the connecting portions 115 and 125, respectively, instead of the above-described fixing by crimping, and are fixed by the resins 31 and 32, respectively. There is a possibility that interference of the jig 30 may occur. The same applies to the case where the wiring portions 141 and 142 are physically fixed using a predetermined fastener.
 以下、いくつかの実施形態を参照しながら、配線部141及び142をそれぞれ接続部115及び125に適切に接続し固定することを実現可能にする放射線撮像装置(以下、放射線撮像装置1とする。)を述べる。なお、以下では、理解を容易にするため上記参考例と異なる点に着目して説明するものとし、ここで省略される内容は、適宜、上記参考例の内容に準拠するものとする。 Hereinafter, a radiation imaging apparatus (hereinafter referred to as a radiation imaging apparatus 1) that makes it possible to appropriately connect and fix the wiring parts 141 and 142 to the connection parts 115 and 125, respectively, with reference to some embodiments. ) In the following, for ease of understanding, the description will be made focusing on differences from the above-described reference example, and the contents omitted here shall appropriately conform to the contents of the above-described reference example.
  (第1実施形態)
 図6Aは、本実施形態に係る放射線撮像装置1(後述の他の実施形態との区別のため「装置1」とする。)の構造を示す斜視図であり、図6Bは、放射線撮像装置1の上面図である。本実施形態は、主に、センサパネル11及び12が、相対的にシフトした位置関係になるように配される、という点で前述の参考例と異なる。
(First embodiment)
FIG. 6A is a perspective view showing a structure of a radiation imaging apparatus 1 according to the present embodiment (referred to as “apparatus 1 1 ” for distinction from other embodiments described later), and FIG. 6B is a radiation imaging apparatus. 1 is a top view of one. This embodiment is different from the reference example described above in that the sensor panels 11 and 12 are mainly arranged so as to have a relatively shifted positional relationship.
 具体的には、センサパネル11及び12は、いずれも矩形形状を有しており、互いに対角方向にシフトするように配される。対角方向とは、矩形形状における或る角から、それとは反対側の角に向かう方向である。本実施形態では、図6Bを参照すると、平面視において、複数の配線部141が配された基板110の隣り合う2辺が形成する角C1は、複数の配線部142が配された基板120の隣り合う2辺が形成する角C2に対して、対角方向に位置する。そして、センサパネル11及び12は、これら角C1及びC2が互いに離れる方向に所定距離だけシフトして配されている。これにより、平面視において、各配線部141は基板120とは重ならないし、また、各配線部142は基板110とは重ならない。 Specifically, the sensor panels 11 and 12 both have a rectangular shape and are arranged so as to shift in a diagonal direction. The diagonal direction is a direction from a certain corner in the rectangular shape toward the opposite corner. In this embodiment, referring to FIG. 6B, in a plan view, an angle C1 formed by two adjacent sides of the substrate 110 on which the plurality of wiring portions 141 are arranged is the angle of the substrate 120 on which the plurality of wiring portions 142 are arranged. It is located diagonally with respect to the angle C2 formed by two adjacent sides. The sensor panels 11 and 12 are arranged so as to be shifted by a predetermined distance in a direction in which the angles C1 and C2 are separated from each other. Thereby, each wiring part 141 does not overlap with the board | substrate 120 in planar view, and each wiring part 142 does not overlap with the board | substrate 110. FIG.
 また、平面視において、放射線撮像部111は、基板110上において偏心するように予め設けられ、即ち、複数の配線部141が配された基板110の隣り合う2辺から離れるように位置する。同様に、放射線撮像部121は、基板120上において偏心するように予め設けられ、即ち、複数の配線部142が配された基板120の隣り合う2辺から離れるように位置する。これにより、平面視において、放射縁撮像部111及び121が互いに重なるようにセンサパネル11及び12を配置した場合、各配線部141が基板120と重ならず且つ各配線部142が基板110と重ならないようにすることができる。 Further, in plan view, the radiation imaging unit 111 is provided in advance so as to be eccentric on the substrate 110, that is, is located away from two adjacent sides of the substrate 110 on which the plurality of wiring units 141 are arranged. Similarly, the radiation imaging unit 121 is provided in advance so as to be eccentric on the substrate 120, that is, is located away from two adjacent sides of the substrate 120 on which the plurality of wiring units 142 are arranged. Thus, when the sensor panels 11 and 12 are arranged so that the radiation edge imaging units 111 and 121 overlap each other in plan view, each wiring unit 141 does not overlap the substrate 120 and each wiring unit 142 overlaps the substrate 110. It can be avoided.
 前述のとおり、放射縁撮像部111及び121は、それぞれ、行列状に配された複数の放射線検出素子を含む。放射縁撮像部111の放射線検出素子の個々は、平面視において、放射縁撮像部121の放射線検出素子の個々と重なる。これにより、センサパネル11から得られた画像データを構成する各画素値を、センサパネル12から得られた画像データを構成する各画素値に適切に関連付けることができ、エネルギーサブトラクション処理により放射線画像を適切に取得可能となる。 As described above, the radiation edge imaging units 111 and 121 each include a plurality of radiation detection elements arranged in a matrix. Each of the radiation detection elements of the radiation edge imaging unit 111 overlaps with each of the radiation detection elements of the radiation edge imaging unit 121 in plan view. Thereby, each pixel value which comprises the image data obtained from the sensor panel 11 can be appropriately associated with each pixel value which constitutes the image data obtained from the sensor panel 12, and the radiation image is obtained by energy subtraction processing. Appropriate acquisition is possible.
 他の実施形態として、放射線撮像部111は基板110上の中央部に配され且つ放射線撮像部121は基板120上の中央部に配されてもよい。即ち、放射線撮像部111及び121はそれぞれ基板110及び120上において偏心していなくてもよい。この場合、平面視において、センサパネル11及び12は、放射線撮像部111(の複数の放射線検出素子)の一部と、放射線撮像部121(の複数の放射線検出素子)の一部とが互いに重なるように、互いに対角方向にシフトして配されればよい。また、この場合、センサパネル11及び12から得られた2つの画像データのうち、それぞれ放射線撮像部111及び121の上記互いに重なった一部に対応する部分を用いて、エネルギーサブトラクション処理を行えばよい。この例によれば、公知の構造のセンサパネルを2つ用いることが可能となる。 As another embodiment, the radiation imaging unit 111 may be disposed in the central part on the substrate 110 and the radiation imaging unit 121 may be disposed in the central part on the substrate 120. That is, the radiation imaging units 111 and 121 do not have to be eccentric on the substrates 110 and 120, respectively. In this case, in the plan view, the sensor panels 11 and 12 have a part of the radiation imaging unit 111 (a plurality of radiation detection elements) and a part of the radiation imaging unit 121 (a plurality of radiation detection elements) overlap each other. In this way, they may be shifted in a diagonal direction. In this case, the energy subtraction process may be performed using the portions corresponding to the overlapping portions of the radiation imaging units 111 and 121 of the two image data obtained from the sensor panels 11 and 12, respectively. . According to this example, two sensor panels having a known structure can be used.
 図7Aは、図6Bにおける線X-Xでの断面図を示す。本実施形態では、放射線撮像装置1において、センサパネル11及び12は、いずれも表面照射型の構成をとる。前述の第1の例(図2A参照)との関係では、本実施形態は主に以下の点で異なる。即ち、センサパネル11は、平面視において、センサパネル12と重なる領域R1と、センサパネル12とは重ならない領域R2との双方を有する。また、センサパネル12は、平面視において、センサパネル11と重なる領域R1と、センサパネル11とは重ならない領域R2との双方を有する。そして、接続部115は、基板110の基板120とは重ならない領域R2に設けられ、また、接続部125は、基板120の基板110とは重ならない領域R2に設けられる。 FIG. 7A shows a cross-sectional view taken along line XX in FIG. 6B. In this embodiment, the radiation imaging apparatus 1 1, the sensor panel 11 and 12 are both a configuration of a front-illuminated. In relation to the first example described above (see FIG. 2A), the present embodiment is mainly different in the following points. That is, the sensor panel 11 in plan view, has a region R1 overlapping the sensor panel 12, both of the regions R2 1 which does not overlap the sensor panel 12. The sensor panel 12 is viewed in plan, it has an area R1 overlaps the sensor panel 11, both of the regions R2 2 not overlapping with the sensor panel 11. The connection portion 115 is provided in the region R2 1 which does not overlap the substrate 120 of the substrate 110, also, the connecting portion 125 is provided in a region R2 2 that does not overlap the substrate 110 of the substrate 120.
 放射線撮像装置1は、以下の手順で得られる。まず、センサパネル11及び12をそれぞれ準備した後、平面視において、それらが互いに重なる領域R1と、それらが互いに重ならないR2及びR2とが形成されるように、それらを平行に配置し結合する。ここで、接続部115は領域R2に位置し、接続部125は領域R2に位置する。センサパネル11及び12の間には、フィルタ13が配置され、接着剤を介してセンサパネル11及び12を結合する。その後、領域R2において配線部141を接続部115に接続し、また、領域R2において配線部142を接続部125に接続する。 The radiation imaging apparatus 1 1 can be obtained by the following procedure. First, after preparing the sensor panels 11 and 12, respectively, in plan view, they are arranged in parallel and coupled so that a region R1 where they overlap each other and R2 1 and R2 2 where they do not overlap each other are formed. To do. Here, the connection portion 115 is located in the region R2 1, the connecting portion 125 is positioned in the region R2 2. A filter 13 is disposed between the sensor panels 11 and 12, and couples the sensor panels 11 and 12 with an adhesive. Then, connect the wiring portion 141 in the region R2 1 to the connection portion 115, also connects the wire 142 in the region R2 2 to the connecting portion 125.
 図7Bは、本実施形態について、配線部141を接続部115に圧着で固定する工程、及び、配線部142を接続部125に圧着で固定する工程をそれぞれ行う様子を示す。本実施形態によれば、配線部141の接続部115への固定を圧着により行う場合、センサパネル11のセンサパネル12と重ならない領域R2に接続部115が設けられているため、バックアップ部材22のセンサパネル12との干渉を防ぐことができる。同様に、配線部142の接続部125への固定を圧着により行う場合、センサパネル12のセンサパネル11と重ならない領域R2に接続部125が設けられているため、圧着ヘッド21のセンサパネル11との干渉を防ぐことができる。よって、図7Cに示されるように、仮に配線部141及び/又は142の剥離が発生し、修復が必要になった場合でも、圧着ヘッド21及びバックアップ部材22を用いて圧着により再固定する際には上記干渉を防ぐことできる。 FIG. 7B shows a state in which the process of fixing the wiring part 141 to the connection part 115 by crimping and the process of fixing the wiring part 142 to the connection part 125 by crimping are performed for this embodiment. According to this embodiment, since the case of the crimping fixed to the connection portion 115 of the wiring portion 141, connecting portion 115 in a region R2 1 which does not overlap with the sensor panel 12 of the sensor panel 11 is provided, the backup member 22 Interference with the sensor panel 12 can be prevented. Similarly, when performing the crimping fixed to the connection portion 125 of the wire 142, since the connecting portion 125 is provided in a region R2 2 which does not overlap with the sensor panel 11 of the sensor panel 12, the sensor panel 11 of the compression bonding head 21 Interference with can be prevented. Therefore, as shown in FIG. 7C, even if the wiring portions 141 and / or 142 are peeled off and repair is necessary, when the fixing is performed by the crimping using the crimping head 21 and the backup member 22. Can prevent the interference.
 図7Dは、冶具30を用いて樹脂31及び32を形成し、配線部141及び142が固定された接続部115及び125をそれぞれ樹脂31及び32により封止する場合の態様を示す。本実施形態によれば、前述の冶具30の干渉(図5A参照)を防ぐことが可能となる。 FIG. 7D shows a mode in which the resins 31 and 32 are formed using the jig 30 and the connection portions 115 and 125 to which the wiring portions 141 and 142 are fixed are sealed with the resins 31 and 32, respectively. According to the present embodiment, it is possible to prevent the interference (see FIG. 5A) of the jig 30 described above.
 本実施形態によれば、2つのセンサパネル11及び12を備える放射線撮像装置1において、それらの配線部141及び142をそれぞれ接続部115及び125に対して適切に接続し固定することが可能となる。例えば、配線部141を接続部115に圧着で固定する場合、基板110の接続部115とは反対側の部分をバックアップ部材22で支持しながら、圧着ヘッド21で配線部141を接続部115に基板110の上面に対して垂直方向に押し付ける。ここで、接続部115が領域R2に設けられていることにより、バックアップ部材22のセンサパネル12との干渉を防ぐことができる。また、配線部142を接続部125に圧着で固定する場合、基板120の接続部125とは反対側の部分をバックアップ部材22で支持しながら、圧着ヘッド21で配線部142を接続部125に基板120の上面に対して垂直方向に押し付ける。ここで、接続部125が領域R2に設けられていることにより、圧着ヘッド21のセンサパネル11との干渉を防ぐことができる。更に、配線部142が固定された接続部125を樹脂32で封止する場合には、冶具30を接続部125に近接させる際、冶具30のセンサパネル11との干渉を防ぐこともできる。ここでは、圧着による固定および樹脂による封止を行う場合を例示したが、本実施形態の構成によれば、その他の如何なる固定方法を実施する場合においても、それを実現する冶具の干渉を防ぐことが可能となる。 According to this embodiment, the radiation imaging apparatus 1 1 comprising two sensor panels 11 and 12, and their wiring portions 141 and 142 can be properly connected and fixed to each connection part 115 and 125 Become. For example, when the wiring portion 141 is fixed to the connection portion 115 by pressure bonding, the wiring portion 141 is connected to the connection portion 115 by the pressure bonding head 21 while supporting the portion of the substrate 110 opposite to the connection portion 115 with the backup member 22. Press vertically against the top surface of 110. Here, by connecting portions 115 are provided in the region R2 1, it is possible to prevent interference with the sensor panel 12 of the backup member 22. Further, when the wiring part 142 is fixed to the connection part 125 by pressure bonding, the wiring part 142 is connected to the connection part 125 by the pressure bonding head 21 while supporting the portion of the substrate 120 opposite to the connection part 125 by the backup member 22. Press vertically against the top surface of 120. Here, by connecting portions 125 are provided in the region R2 2, it is possible to prevent interference with the sensor panel 11 of the compression bonding head 21. Furthermore, when the connection part 125 to which the wiring part 142 is fixed is sealed with the resin 32, when the jig 30 is brought close to the connection part 125, interference with the sensor panel 11 of the jig 30 can be prevented. Here, the case of fixing by pressure bonding and sealing with resin is illustrated, but according to the configuration of the present embodiment, when any other fixing method is performed, the interference of the jig that realizes it is prevented. Is possible.
  (第2実施形態)
 図8A~8Dを参照しながら第2実施形態に係る放射線撮像装置1を述べる。本実施形態によっても、第1実施形態同様の効果が得られうる。
(Second Embodiment)
It describes a radiation imaging device 1 2 according to the second embodiment with reference to FIGS. 8A ~ 8D. Also according to this embodiment, the same effects as those of the first embodiment can be obtained.
 図8Aは、放射線撮像装置1の断面図を、図7A同様に示す。本実施形態では、放射線撮像装置1において、センサパネル11は裏面照射型の構成をとり、センサパネル12は表面照射型の構成をとる。即ち、本実施形態は、前述の第2の例(図2B参照)の構成から、領域R1、R2及びR2が形成されるようにセンサパネル11及び12の相対的な位置がシフトされた形になっている。 8A is a cross-sectional view of the radiation imaging apparatus 1 2, shows similar Figure 7A. In this embodiment, the radiation imaging apparatus 1 2, the sensor panel 11 takes a configuration of a backside illuminated sensor panel 12 takes the configuration of a front-illuminated. That is, the present embodiment, the configuration of the second example described above (see FIG. 2B), the relative position of the sensor panel 11 and 12 as regions R1, R2 1 and R2 2 are formed is shifted It is in shape.
 図8Bは、本実施形態について、配線部141を接続部115に圧着で固定する工程、及び、配線部142を接続部125に圧着で固定する工程をそれぞれ行う様子を、図7B同様に示す。本実施形態によれば、配線部141の接続部115への固定を圧着により行う場合、センサパネル11のセンサパネル12と重ならない領域R2に接続部115が設けられているため、圧着ヘッド21のセンサパネル12との干渉を防ぐことができる。同様に、配線部142の接続部125への固定を圧着により行う場合、センサパネル12のセンサパネル11と重ならない領域R2に接続部125が設けられているため、圧着ヘッド21のセンサパネル11との干渉を防ぐことができる。よって、図8Cに示されるように、仮に配線部141及び/又は142の剥離が発生し、修復が必要になった場合でも、圧着ヘッド21及びバックアップ部材22を用いて圧着により再固定する際には上記干渉を防ぐことできる。 FIG. 8B shows a state in which the process of fixing the wiring part 141 to the connection part 115 by crimping and the process of fixing the wiring part 142 to the connection part 125 by crimping are respectively performed in this embodiment. According to this embodiment, since the case of the crimping fixed to the connection portion 115 of the wiring portion 141, connecting portion 115 in a region R2 1 which does not overlap with the sensor panel 12 of the sensor panel 11 is provided, bonding head 21 Interference with the sensor panel 12 can be prevented. Similarly, when performing the crimping fixed to the connection portion 125 of the wire 142, since the connecting portion 125 is provided in a region R2 2 which does not overlap with the sensor panel 11 of the sensor panel 12, the sensor panel 11 of the compression bonding head 21 Interference with can be prevented. Therefore, as shown in FIG. 8C, even if the wiring portions 141 and / or 142 are peeled off and need to be repaired, when re-fixing by crimping using the crimping head 21 and the backup member 22, Can prevent the interference.
 図8Dは、冶具30を用いて樹脂31及び32を形成し、配線部141及び142が固定された接続部115及び125をそれぞれ樹脂31及び32により封止する場合の態様を、図7D同様に示す。本実施形態によれば、前述の冶具30の干渉(図5B参照)を防ぐことが可能となる。 FIG. 8D shows a mode in which the resins 31 and 32 are formed using the jig 30, and the connection portions 115 and 125 to which the wiring portions 141 and 142 are fixed are sealed with the resins 31 and 32, respectively, as in FIG. 7D. Show. According to the present embodiment, it is possible to prevent the interference (see FIG. 5B) of the jig 30 described above.
  (第3実施形態)
 図9A~9Dを参照しながら第3実施形態に係る放射線撮像装置1を述べる。本実施形態によっても、第1実施形態同様の効果が得られうる。
(Third embodiment)
It describes a radiation imaging device 1 3 according to the third embodiment with reference to FIGS. 9A ~ 9D. Also according to this embodiment, the same effects as those of the first embodiment can be obtained.
 図9Aは、放射線撮像装置1の断面図を、図7A同様に示す。本実施形態では、放射線撮像装置1において、センサパネル11は表面照射型の構成をとり、センサパネル12は裏面照射型の構成をとる。即ち、本実施形態は、前述の第3の例(図2C参照)の構成から、領域R1、R2及びR2が形成されるようにセンサパネル11及び12の相対的な位置がシフトされた形になっている。 9A is a sectional view of a radiation imaging device 1 3 shows similarly Figure 7A. In this embodiment, the radiation imaging apparatus 1 3, the sensor panel 11 takes a configuration of a front-illuminated, the sensor panel 12 takes the configuration of a back-illuminated type. That is, the present embodiment, the configuration of the third example described above (see FIG. 2C), the relative position of the sensor panel 11 and 12 as regions R1, R2 1 and R2 2 are formed is shifted It is in shape.
 図9Bは、本実施形態について、配線部141を接続部115に圧着で固定する工程、及び、配線部142を接続部125に圧着で固定する工程をそれぞれ行う様子を、図7B同様に示す。本実施形態によれば、配線部141の接続部115への固定を圧着により行う場合、センサパネル11のセンサパネル12と重ならない領域R2に接続部115が設けられているため、バックアップ部材22のセンサパネル12との干渉を防ぐことができる。同様に、配線部142の接続部125への固定を圧着により行う場合、センサパネル12のセンサパネル11と重ならない領域R2に接続部125が設けられているため、バックアップ部材22のセンサパネル11との干渉を防ぐことができる。よって、図9Cに示されるように、仮に配線部141及び/又は142の剥離が発生し、修復が必要になった場合でも、圧着ヘッド21及びバックアップ部材22を用いて圧着により再固定する際には上記干渉を防ぐことできる。 FIG. 9B shows a state in which the process of fixing the wiring part 141 to the connection part 115 by crimping and the process of fixing the wiring part 142 to the connection part 125 by crimping are respectively performed in this embodiment. According to this embodiment, since the case of the crimping fixed to the connection portion 115 of the wiring portion 141, connecting portion 115 in a region R2 1 which does not overlap with the sensor panel 12 of the sensor panel 11 is provided, the backup member 22 Interference with the sensor panel 12 can be prevented. Similarly, when performing the crimping fixed to the connection portion 125 of the wire 142, since the connecting portion 125 is provided in a region R2 2 which does not overlap with the sensor panel 11 of the sensor panel 12, the sensor panel 11 of the backup member 22 Interference with can be prevented. Therefore, as shown in FIG. 9C, even when the wiring portions 141 and / or 142 are peeled off and repair is necessary, when the fixing is performed by the crimping using the crimping head 21 and the backup member 22, Can prevent the interference.
 図9Dは、冶具30を用いて樹脂31及び32を形成し、配線部141及び142が固定された接続部115及び125をそれぞれ樹脂31及び32により封止する場合の態様を、図7D同様に示す。本実施形態では、前述の冶具30の干渉が生じる可能性が低い。そのため、上記圧着により配線部141等の接続部115等への固定が適切に為された後、それらを封止すると共に、それらの剥離が発生しないように樹脂31及び32によりそれらの固定を補強することが可能である。 9D shows a mode in which the resin 31 and 32 are formed using the jig 30, and the connection portions 115 and 125 to which the wiring portions 141 and 142 are fixed are sealed with the resins 31 and 32, respectively, as in FIG. 7D. Show. In the present embodiment, there is a low possibility of the interference of the jig 30 described above. Therefore, after the above-described crimping has properly fixed the wiring part 141 and the like to the connection part 115 and the like, they are sealed, and the fixing is reinforced by the resins 31 and 32 so that the peeling does not occur. Is possible.
  (変形例)
 以上の内容は、実施形態及び参考例の態様に限られない。例えば、実施形態及び参考例では、各センサパネル11及び12が間接変換方式の構成を示した。しかしながら、以上の内容は、直接変換方式(放射線を直接的に電気信号に変換する方式)の構成にも適用可能である。
(Modification)
The above contents are not limited to the aspects of the embodiment and the reference example. For example, in the embodiment and the reference example, each sensor panel 11 and 12 has a configuration of an indirect conversion method. However, the above contents can also be applied to the configuration of a direct conversion method (method of directly converting radiation into an electrical signal).
 また、実施形態及び参考例では、配線部141又は142が平面視において基板110又は120の隣り合う2辺に沿って配された構成を示した。しかしながら、以上の内容は、配線部141又は142が互いに対向する2辺に沿って配された構成、或いは、配線部141又は142が1辺のみに配された構成にも適用可能である。 In the embodiment and the reference example, the configuration in which the wiring part 141 or 142 is disposed along two adjacent sides of the substrate 110 or 120 in plan view is shown. However, the above contents can also be applied to a configuration in which the wiring portion 141 or 142 is disposed along two opposite sides, or a configuration in which the wiring portion 141 or 142 is disposed on only one side.
 また、実施形態及び参考例では、配線部141及び142は、可撓性を有するものとして例示された。しかしながら、以上の内容は、配線部141及び142が可撓性を有しない構成(例えばリジッド配線板)の場合にも適用可能である。 In the embodiment and the reference example, the wiring portions 141 and 142 are exemplified as having flexibility. However, the above contents can also be applied to the case where the wiring portions 141 and 142 are not flexible (for example, a rigid wiring board).
  (放射線撮像システム)
 図10に例示されるように、上述の実施形態で述べた放射線撮像装置は、いわゆるレントゲン撮影を行うための撮像システムに適用されうる。放射線には、典型的にはX線が用いられるが、アルファ線、ベータ線等が用いられてもよい。X線チューブ610(放射線源)で発生したX線611は、被検者620(患者)の胸部621を透過し、放射線撮像装置630に入射する。装置630に入射したX線611には患者620の体内の情報が含まれており、装置630によりX線611に応じた電気的情報が得られる。この電気的情報は、ディジタル信号に変換された後、例えばイメージプロセッサ640(信号処理部)によって所定の信号処理が為される。ユーザ(医師等)は、この電気的情報に応じた放射線画像を、例えばコントロールルームのディスプレイ650(表示部)で観察することができる。ユーザは、放射線画像又はそのデータを、所定の通信手段660により遠隔地へ転送することができ、この放射線画像を、例えばドクタールーム等の他の場所のディスプレイ651で観察することもできる。また、ユーザは、この放射線画像又はそのデータを所定の記録媒体に記録することもでき、例えば、フィルムプロセッサ670によってフィルム671に記録することもできる。
(Radiation imaging system)
As illustrated in FIG. 10, the radiation imaging apparatus described in the above embodiment can be applied to an imaging system for performing so-called X-ray imaging. X-rays are typically used as radiation, but alpha rays, beta rays, and the like may be used. X-rays 611 generated by the X-ray tube 610 (radiation source) pass through the chest 621 of the subject 620 (patient) and enter the radiation imaging apparatus 630. The X-ray 611 incident on the device 630 includes information inside the patient 620, and the device 630 can obtain electrical information corresponding to the X-ray 611. This electrical information is converted into a digital signal, and then subjected to predetermined signal processing, for example, by an image processor 640 (signal processing unit). A user (such as a doctor) can observe a radiographic image corresponding to this electrical information on, for example, a display 650 (display unit) in a control room. The user can transfer the radiographic image or the data thereof to a remote place by a predetermined communication means 660, and can observe the radiographic image on the display 651 in another place such as a doctor room. In addition, the user can record the radiographic image or the data thereof on a predetermined recording medium. For example, the user can record the radiation image or the data on the film 671 by the film processor 670.
  (その他)
 以上、いくつかの好適な態様を例示したが、本発明はこれらの例に限られるものではなく、本発明の趣旨を逸脱しない範囲で、その一部が変更されてもよい。また、本明細書に記載された個々の用語は、本発明を説明する目的で用いられたものに過ぎず、本発明は、その用語の厳密な意味に限定されるものでないことは言うまでもなく、その均等物をも含みうる。
(Other)
As mentioned above, although some suitable aspects were illustrated, this invention is not limited to these examples, The one part may be changed in the range which does not deviate from the meaning of this invention. In addition, it is needless to say that each term described in this specification is merely used for the purpose of describing the present invention, and the present invention is not limited to the strict meaning of the term. The equivalent can also be included.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2016年12月27日提出の日本国特許出願特願2016-254089を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims priority on the basis of Japanese Patent Application No. 2016-254089 filed on Dec. 27, 2016, the entire contents of which are incorporated herein by reference.
 1:放射線撮像装置、11:第1センサパネル、110:第1基板、111:第1放射線撮像部、115:第1接続部、141:第1配線部、12:第2センサパネル、120:第2基板、121:第2放射線撮像部、125:第2接続部、142:第2配線部。 1: radiation imaging device, 11: first sensor panel, 110: first substrate, 111: first radiation imaging unit, 115: first connection unit, 141: first wiring unit, 12: second sensor panel, 120: 2nd board | substrate, 121: 2nd radiation imaging part, 125: 2nd connection part, 142: 2nd wiring part.

Claims (16)

  1.  第1基板上に第1放射線撮像部が配された第1パネルと、第2基板上に第2放射線撮像部が配された第2パネルとを備え、
     前記第1パネルと前記第2パネルとは、前記第1基板の上面に対する平面視において互いに重なる領域と互いに重ならない領域との双方を有するように、且つ、前記第1放射線撮像部の少なくとも一部と前記第2放射線撮像部の少なくとも一部とが前記平面視において前記重なる領域に位置するように、配されており、
     前記第1パネルは、前記平面視において前記第2パネルとは重ならない領域に、前記第1放射線撮像部から信号を読み出すための第1配線部が接続される第1接続部を有し、
     前記第2パネルは、前記平面視において前記第1パネルとは重ならない領域に、前記第2放射線撮像部から信号を読み出すための第2配線部が接続される第2接続部を有する
     ことを特徴とする放射線撮像装置。
    A first panel in which a first radiation imaging unit is disposed on a first substrate; and a second panel in which a second radiation imaging unit is disposed on a second substrate;
    The first panel and the second panel have at least a part of the first radiation imaging unit so as to have both a region overlapping each other and a region not overlapping each other in plan view with respect to the upper surface of the first substrate. And at least a part of the second radiation imaging unit are arranged so as to be located in the overlapping region in the plan view,
    The first panel has a first connection part to which a first wiring part for reading a signal from the first radiation imaging part is connected to a region that does not overlap with the second panel in the plan view,
    The second panel has a second connection part to which a second wiring part for reading a signal from the second radiation imaging part is connected to an area that does not overlap the first panel in the plan view. Radiation imaging device.
  2.  前記第1パネルと前記第2パネルとの間に配され、放射線を吸収するフィルタを更に備える
     ことを特徴とする請求項1に記載の放射線撮像装置。
    The radiation imaging apparatus according to claim 1, further comprising a filter that is disposed between the first panel and the second panel and absorbs radiation.
  3.  前記第1配線部および前記第2配線部はそれぞれ可撓性を有する
     ことを特徴とする請求項1または請求項2に記載の放射線撮像装置。
    The radiation imaging apparatus according to claim 1, wherein each of the first wiring unit and the second wiring unit has flexibility.
  4.  前記第1配線部は前記第1接続部に対して圧着され、
     前記第2配線部は前記第2接続部に対して圧着された
     ことを特徴とする請求項3に記載の放射線撮像装置。
    The first wiring portion is crimped to the first connection portion;
    The radiation imaging apparatus according to claim 3, wherein the second wiring portion is crimped to the second connection portion.
  5.  前記第1配線部は前記第1接続部において樹脂で固定され、
     前記第2配線部は前記第2接続部において樹脂で固定された
     ことを特徴とする請求項3または請求項4に記載の放射線撮像装置。
    The first wiring portion is fixed with resin at the first connection portion,
    The radiation imaging apparatus according to claim 3, wherein the second wiring portion is fixed with resin at the second connection portion.
  6.  前記第1放射線撮像部は、前記第1基板上に行列状に配された複数の第1放射線検出素子を含み、
     前記第2放射線撮像部は、前記第2基板上に行列状に配された複数の第2放射線検出素子を含み、
     前記平面視において、前記複数の第1放射線検出素子の少なくとも一部と、前記複数の第2放射線検出素子の少なくとも一部とが重なっている
     ことを特徴とする請求項1から請求項5のいずれか1項に記載の放射線撮像装置。
    The first radiation imaging unit includes a plurality of first radiation detection elements arranged in a matrix on the first substrate,
    The second radiation imaging unit includes a plurality of second radiation detection elements arranged in a matrix on the second substrate,
    6. The device according to claim 1, wherein at least a part of the plurality of first radiation detection elements and at least a part of the plurality of second radiation detection elements overlap in the plan view. A radiation imaging apparatus according to claim 1.
  7.  前記第1パネルは、前記第1基板上に前記第1放射線撮像部を覆うように配された第1シンチレータを更に有し、
     前記第2パネルは、前記第2基板上に前記第2放射線撮像部を覆うように配された第2シンチレータを更に有し、
     前記第1パネルと前記第2パネルとは、前記第1シンチレータと前記第2基板との間に前記第1基板および前記第2シンチレータが位置するように配された
     ことを特徴とする請求項1から請求項6のいずれか1項に記載の放射線撮像装置。
    The first panel further includes a first scintillator disposed on the first substrate so as to cover the first radiation imaging unit,
    The second panel further includes a second scintillator disposed on the second substrate so as to cover the second radiation imaging unit.
    The first panel and the second panel are arranged such that the first substrate and the second scintillator are positioned between the first scintillator and the second substrate. The radiation imaging apparatus according to claim 6.
  8.  前記第1パネルは、前記第1基板上に前記第1放射線撮像部を覆うように配された第1シンチレータを更に有し、
     前記第2パネルは、前記第2基板上に前記第2放射線撮像部を覆うように配された第2シンチレータを更に有し、
     前記第1パネルと前記第2パネルとは、前記第1基板と前記第2基板との間に前記第1シンチレータおよび前記第2シンチレータが位置するように配された
     ことを特徴とする請求項1から請求項6のいずれか1項に記載の放射線撮像装置。
    The first panel further includes a first scintillator disposed on the first substrate so as to cover the first radiation imaging unit,
    The second panel further includes a second scintillator disposed on the second substrate so as to cover the second radiation imaging unit.
    The first panel and the second panel are arranged such that the first scintillator and the second scintillator are positioned between the first substrate and the second substrate. The radiation imaging apparatus according to claim 6.
  9.  前記第1パネルは、前記第1基板上に前記第1放射線撮像部を覆うように配された第1シンチレータを更に有し、
     前記第2パネルは、前記第2基板上に前記第2放射線撮像部を覆うように配された第2シンチレータを更に有し、
     前記第1パネルと前記第2パネルとは、前記第1シンチレータと前記第2シンチレータとの間に前記第1基板および前記第2基板が位置するように配された
     ことを特徴とする請求項1から請求項6のいずれか1項に記載の放射線撮像装置。
    The first panel further includes a first scintillator disposed on the first substrate so as to cover the first radiation imaging unit,
    The second panel further includes a second scintillator disposed on the second substrate so as to cover the second radiation imaging unit.
    The first panel and the second panel are arranged such that the first substrate and the second substrate are positioned between the first scintillator and the second scintillator. The radiation imaging apparatus according to claim 6.
  10.  前記第1パネル及び前記第2パネルは、前記平面視において、いずれも矩形形状であり、互いに対角方向にシフトした位置になるように配されている
     ことを特徴とする請求項1から請求項9のいずれか1項に記載の放射線撮像装置。
    The first panel and the second panel each have a rectangular shape in the plan view, and are arranged so as to be shifted to each other in a diagonal direction. The radiation imaging apparatus according to any one of 9.
  11.  請求項1から請求項10のいずれか1項に記載の放射線撮像装置と、
     前記放射線撮像装置からの画像データを処理するプロセッサと、を具備する
     ことを特徴とする撮像システム。
    The radiation imaging apparatus according to any one of claims 1 to 10,
    An imaging system comprising: a processor that processes image data from the radiation imaging apparatus.
  12.  第1基板上に第1放射線撮像部が配された第1パネルと、第2基板上に第2放射線撮像部が配された第2パネルとを備える放射線撮像装置の製造方法であって、
     前記第1パネルと前記第2パネルとを、前記第1基板の上面に対する平面視において互いに重なる領域と互いに重ならない領域との双方を有するように、且つ、前記第1放射線撮像部の少なくとも一部と前記第2放射線撮像部の少なくとも一部とが前記平面視において前記重なる領域に位置するように、配置して結合する工程を含み、
     前記第1パネルは、前記平面視において前記第2パネルとは重ならない領域に、前記第1放射線撮像部から信号を読み出すための第1配線部が接続される第1接続部を有し、
     前記第2パネルは、前記平面視において前記第1パネルとは重ならない領域に、前記第2放射線撮像部から信号を読み出すための第2配線部が接続される第2接続部を有する
     ことを特徴とする放射線撮像装置の製造方法。
    A method for manufacturing a radiation imaging apparatus comprising: a first panel in which a first radiation imaging unit is disposed on a first substrate; and a second panel in which a second radiation imaging unit is disposed on a second substrate,
    The first panel and the second panel have at least a part of the first radiation imaging unit so as to have both a region overlapping each other and a region not overlapping each other in plan view with respect to the upper surface of the first substrate. And arranging and coupling so that at least a part of the second radiation imaging unit is located in the overlapping region in the plan view,
    The first panel has a first connection part to which a first wiring part for reading a signal from the first radiation imaging part is connected to a region that does not overlap with the second panel in the plan view,
    The second panel has a second connection part to which a second wiring part for reading a signal from the second radiation imaging part is connected to an area that does not overlap the first panel in the plan view. A method for manufacturing a radiation imaging apparatus.
  13.  前記結合する工程の後に、前記第1配線部を前記第1接続部に対して圧着で固定する工程と、
     前記結合する工程の後に、前記第2配線部を前記第2接続部に対して圧着で固定する工程と、を更に含む
     ことを特徴とする請求項12に記載の放射線撮像装置の製造方法。
    A step of fixing the first wiring portion to the first connection portion by crimping after the joining step;
    The method of manufacturing a radiation imaging apparatus according to claim 12, further comprising a step of fixing the second wiring portion to the second connection portion by crimping after the joining step.
  14.  前記第1配線部を固定する工程では、圧着ヘッドにより前記第1配線部を前記第1接続部に対して押し付けると共にバックアップ部材により前記第1パネルの前記第1接続部とは反対側の部分を支持することによって前記第1配線部を固定し、
     前記第2配線部を固定する工程では、圧着ヘッドにより前記第2配線部を前記第2接続部に対して押し付けると共にバックアップ部材により前記第2パネルの前記第2接続部とは反対側の部分を支持することによって前記第2配線部を固定する
     ことを特徴とする請求項13に記載の放射線撮像装置の製造方法。
    In the step of fixing the first wiring portion, the first wiring portion is pressed against the first connection portion by a crimping head, and a portion of the first panel opposite to the first connection portion is pressed by a backup member. Fixing the first wiring part by supporting,
    In the step of fixing the second wiring portion, the second wiring portion is pressed against the second connection portion by a crimping head, and a portion of the second panel opposite to the second connection portion is pressed by a backup member. The method of manufacturing a radiation imaging apparatus according to claim 13, wherein the second wiring part is fixed by supporting the second wiring part.
  15.  前記結合する工程の後に、前記第1配線部と前記第1接続部とを樹脂で封止する工程と、
     前記結合する工程の後に、前記第1配線部と前記第1接続部とを樹脂で封止する工程と、を更に含む
     ことを特徴とする請求項12から請求項14のいずれか1項に記載の放射線撮像装置の製造方法。
    Sealing the first wiring portion and the first connection portion with a resin after the joining step;
    The method according to any one of claims 12 to 14, further comprising a step of sealing the first wiring portion and the first connection portion with a resin after the joining step. Method of manufacturing a radiation imaging apparatus.
  16.  前記第1配線部を封止する工程では、前記第1配線部を前記第1接続部に接触させた状態で、樹脂を形成するための冶具を前記第1接続部に近接させ、該樹脂を前記第1配線部および前記第1接続部を覆うように形成し、
     前記第2配線部を封止する工程では、前記第2配線部を前記第2接続部に接触させた状態で、樹脂を形成するための冶具を前記第2接続部に近接させ、該樹脂を前記第2配線部および前記第2接続部を覆うように形成する
     ことを特徴とする請求項15に記載の放射線撮像装置の製造方法。
    In the step of sealing the first wiring portion, a jig for forming a resin is brought close to the first connection portion in a state where the first wiring portion is in contact with the first connection portion, and the resin is Forming the first wiring part and the first connection part so as to cover;
    In the step of sealing the second wiring portion, a jig for forming a resin is brought close to the second connection portion in a state where the second wiring portion is in contact with the second connection portion, and the resin is The method of manufacturing a radiation imaging apparatus according to claim 15, wherein the second wiring part and the second connection part are covered.
PCT/JP2017/036226 2016-12-27 2017-10-05 Radiation imaging device, method for manufacturing radiation imaging device, and imaging system WO2018123189A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-254089 2016-12-27
JP2016254089A JP2018107343A (en) 2016-12-27 2016-12-27 Radiation imaging device, manufacturing method thereof and imaging system

Publications (1)

Publication Number Publication Date
WO2018123189A1 true WO2018123189A1 (en) 2018-07-05

Family

ID=62708184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036226 WO2018123189A1 (en) 2016-12-27 2017-10-05 Radiation imaging device, method for manufacturing radiation imaging device, and imaging system

Country Status (2)

Country Link
JP (1) JP2018107343A (en)
WO (1) WO2018123189A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112888969A (en) * 2018-10-18 2021-06-01 浜松光子学株式会社 Radiation imaging apparatus
CN112888968A (en) * 2018-10-18 2021-06-01 浜松光子学株式会社 Radiation imaging apparatus, method for manufacturing radiation imaging apparatus, and method for repairing radiation imaging apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7309858B2 (en) * 2018-09-10 2023-07-18 コーニンクレッカ フィリップス エヌ ヴェ Dual sensor sub-pixel radiation detector
JP7196020B2 (en) * 2019-06-14 2022-12-26 キヤノン株式会社 Radiation detection device and radiography system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033442A (en) * 2000-07-18 2002-01-31 Seiko Epson Corp Semiconductor device, circuit board and electronic apparatus
JP2002217356A (en) * 2001-01-19 2002-08-02 Nec Corp Semiconductor device and method of manufacturing the same
JP2004335581A (en) * 2003-05-01 2004-11-25 Canon Inc Packaging method of radiation imaging device
WO2009069532A1 (en) * 2007-11-26 2009-06-04 Keio University Electronic circuit
JP2010101805A (en) * 2008-10-24 2010-05-06 Fujifilm Corp Radiographic imaging device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033442A (en) * 2000-07-18 2002-01-31 Seiko Epson Corp Semiconductor device, circuit board and electronic apparatus
JP2002217356A (en) * 2001-01-19 2002-08-02 Nec Corp Semiconductor device and method of manufacturing the same
JP2004335581A (en) * 2003-05-01 2004-11-25 Canon Inc Packaging method of radiation imaging device
WO2009069532A1 (en) * 2007-11-26 2009-06-04 Keio University Electronic circuit
JP2010101805A (en) * 2008-10-24 2010-05-06 Fujifilm Corp Radiographic imaging device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112888969A (en) * 2018-10-18 2021-06-01 浜松光子学株式会社 Radiation imaging apparatus
CN112888968A (en) * 2018-10-18 2021-06-01 浜松光子学株式会社 Radiation imaging apparatus, method for manufacturing radiation imaging apparatus, and method for repairing radiation imaging apparatus
US11860323B2 (en) 2018-10-18 2024-01-02 Hamamatsu Photonics K.K. Radiation imaging device
US11996434B2 (en) 2018-10-18 2024-05-28 Hamamatsu Photonics K.K. Radiation imaging device, production method for radiation imaging device, and repair method for radiation imaging device

Also Published As

Publication number Publication date
JP2018107343A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
WO2018123189A1 (en) Radiation imaging device, method for manufacturing radiation imaging device, and imaging system
TWI399860B (en) Radiation photography device
JP4532782B2 (en) Radiation imaging apparatus and system
JP5142943B2 (en) Radiation detection device manufacturing method, radiation detection device and radiation imaging system
US7564112B2 (en) Semiconductor device, radiographic imaging apparatus, and method for manufacturing the same
CN102540235B (en) Radiation detection apparatus and radiation detection system
JP5376897B2 (en) Radiation imaging equipment
US20130308755A1 (en) Radiation detection apparatus and radiation detection system
JP2003339688A (en) Method for assembling tiled detectors for ionizing radiation based image detection
JP3880094B2 (en) Radiation detection apparatus and manufacturing method thereof
US11195874B2 (en) Detach and reattach of a flexible polyimide based X-ray detector
JP2006189377A (en) Scintillator panel, radiation detector, and radiation detection system
US20020195676A1 (en) Flexible substrate, semiconductor device, imaging device, radiation imaging device and radiation imaging system
JP4761587B2 (en) Radiation imaging apparatus and system
JP5660122B2 (en) Radiation detection panel, radiation image detector, method for manufacturing radiation detection panel, and method for manufacturing radiation image detector
US11411041B2 (en) Flexible substrate module and fabrication method
EP3625827B1 (en) Flexible substrate module and fabrication method
WO2018131415A1 (en) Radiation image capturing device, method of manufacturing same, and image capturing system
JP2005000573A (en) X-ray detector and apparatus using the same
JP2006052979A (en) Radiation detection device and scintillator panel
WO2019167648A1 (en) Radiation detector, radiographic imaging device, and method for manufacturing radiation detector
JP2014041116A (en) Radiographic device
JP5366906B2 (en) Radiography equipment
JP2017223632A (en) Radiation detection device and method for manufacturing the same
JP2022092707A (en) Method for manufacturing radiation detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887163

Country of ref document: EP

Kind code of ref document: A1