WO2018122439A1 - PROCEDIMIENTO DE OBTENCIÓN DE CATALIZADORES DE FÓRMULA My(Ce1-xLxO2-x/2)1-y PARA SU USO EN LA REACCIÓN INVERSA DE DESPLAZAMIENTO DE GAS DE AGUA Y OXIDACIÓN PARCIAL DE METANO A GAS DE SÍNTESIS MEDIANTE MÉTODO DE COMBUSTIÓN EN DISOLUCIÓN - Google Patents

PROCEDIMIENTO DE OBTENCIÓN DE CATALIZADORES DE FÓRMULA My(Ce1-xLxO2-x/2)1-y PARA SU USO EN LA REACCIÓN INVERSA DE DESPLAZAMIENTO DE GAS DE AGUA Y OXIDACIÓN PARCIAL DE METANO A GAS DE SÍNTESIS MEDIANTE MÉTODO DE COMBUSTIÓN EN DISOLUCIÓN Download PDF

Info

Publication number
WO2018122439A1
WO2018122439A1 PCT/ES2017/070863 ES2017070863W WO2018122439A1 WO 2018122439 A1 WO2018122439 A1 WO 2018122439A1 ES 2017070863 W ES2017070863 W ES 2017070863W WO 2018122439 A1 WO2018122439 A1 WO 2018122439A1
Authority
WO
WIPO (PCT)
Prior art keywords
lanthanide
compound according
compound
value
catalyst
Prior art date
Application number
PCT/ES2017/070863
Other languages
English (en)
French (fr)
Inventor
María Consuelo ÁLVAREZ GALVÁN
Martín DAPENA OSPINA
José Antonio ALONSO ALONSO
Loreto TRONCOSO AGUILERA
Vanesa CASCOS JIMÉNEZ
José Miguel Campos Martín
José Luis García Fierro
Horacio FALCÓN RICHENI
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Consejo Nacional De Investigaciones Científicas Y Técnicas (Conicet)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Consejo Nacional De Investigaciones Científicas Y Técnicas (Conicet) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Priority to CA3048958A priority Critical patent/CA3048958A1/en
Priority to US16/474,706 priority patent/US11253847B2/en
Priority to EP17885475.8A priority patent/EP3586959A4/en
Priority to CN201780085953.4A priority patent/CN110267741A/zh
Priority to AU2017385802A priority patent/AU2017385802A1/en
Publication of WO2018122439A1 publication Critical patent/WO2018122439A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane

Definitions

  • PROCEDURE FOR OBTAINING MY FORMULA CATCHUZERS (Ce 1- FOR USE IN THE REVERSE REACTION OF DISPLACEMENT OF
  • the invention relates to the process for obtaining catalysts by the method of combustion in solution, to the catalysts obtained by said process and to their particular use in the inverse reaction of displacement of water gas and in the partial oxidation of methane in gas of synthesis.
  • the present invention is in the area of the green industry aimed at reducing CO2 planet.
  • Carbon dioxide is the main source of greenhouse gases. To reduce their emissions, the progressive replacement of the use of fossil fuels by renewable energy sources is unavoidable.
  • the current use of CO 2 is limited to a few processes: the synthesis of urea, salicylic acid and polycarbonates, but this only corresponds to a small percentage of potential CO 2 , useful to be transformed into chemical and combustible products.
  • numerous efforts are being made to consider it as a resource instead of as a waste, investing in the development of new technologies that boost its recycling.
  • the second stage would consist in the catalytic hydrogenation of CO 2 / CO mixtures, to produce hydrocarbons, through the Fischer-Tropsch reaction, or methanol, by hydrogenation of CO.
  • Methanol is a basic compound for the production of a wide variety of chemicals, such as dimethyl ether, a substitute for diesel fuel and liquefied petroleum gases (LPG) [M. Aresta, A. Dibenedetto, A. Angelini, Chem.
  • the rWGS reaction has been investigated successfully, using, among other active phases, noble metals [SS Kim, HH Lee, SC Hong, Appl. Catal., A (2012) 423-424, 100.] [SS Kim, KH Park, SC Hong, Fuel Process. Technol (2013) 108, 47], as well as nickel [B. Lu, K. Kawamoto, RSC Adv. (2012) 2, 6800. [L. Wang, S. Zhang, Y. Liu, J. Rare Earths (2008) 26, 66.] and cobalt [L. Wang, H. Liu, Y. Chen, R. Zhang, S. Yang, Chem. Lett. (2013) 42, 682-683].
  • the support plays a fundamental role in the reaction, since the existence of oxygen vacancies promotes the adsorption of carbon dioxide.
  • a requirement of the support is that it is reducible and that it has oxygen storage capacity.
  • One of the reducible oxides used successfully in this reaction as a constituent of the support is CeO 2 [12,14,17], A. Goguet, FC Meunier, D. Tibiletti, JP Breen, R. Burch, J. Phys. Chem. B. 108 (20240-20246) [L. Wang, H. Liu, Y. Chen, R. Zhang, S. Yang, Chem. Lett. (2013) 42, 682-683].
  • the most accepted reaction mechanism is based on the adsorption of CO 2 on an oxygen vacancy of the support, resulting in a carbonate with an oxygen from the support network, and then desorbed as carbon monoxide and leave the oxygen vacancy occupied.
  • the preparation method plays an important role in the synthesis of active and stable catalysts.
  • the coprecipitation method compared to the impregnation or precipitation-deposit method, results in a better catalytic behavior, attributed to a greater contact between the active phase and the existing oxygen vacancies in the support [L. Wang, H. Liu, Y. Liu, Y. Chen, S. Yang, J. Rare Earths 31 (2013) 559].
  • patent CN 1031833466 presents an invention relating to a method for synthesizing a catalyst, based on nickel and cerium, for the inverse reaction of water gas shift, in which the activation of the catalyst with pure CO 2 is carried out , with high activity and stability, as well as low cost.
  • CN 103418392 discloses the invention of a catalyst for reverse water gas shift and preparation, by the sol-gel method, using citric acid.
  • the catalyst consists of cobalt as active phase and CeO 2 as support, as well as potassium as auxiliary agent. They indicate that the prepared catalyst has a high activity, good selectivity and stability for the rWGS reaction.
  • these catalysts are of the mass type, without internal porosity. This is a disadvantage since in this type of systems, the dispersion of the active phases is low and it would be necessary to use a high amount of catalyst. Therefore, the synthesis of mesostructured oxides is a challenge, not only in the field of catalysis, but also in the field of fuel cells and sensors.
  • the combustion-based catalyst synthesis method is proposed as a very interesting route, since it would form a material with high porosity, so that the amount of catalyst required would be significantly lower , thus with a high thermal resistance, indispensable requirement, given the high temperatures necessary to carry out the reaction.
  • This combustion synthesis is an exothermic redox reaction, in which oxidation and reduction reactions occur simultaneously, between an oxidant and a fuel. Only when the oxidant and the fuel are intimately mixed in a fixed proportion, can combustion be initiated. In several cases, the heat needed to start the reaction is generated internally. In other cases, it must be provided by an external source.
  • SCS solution combustion synthesis
  • the solution of the reagents is preheated with an external heat source at moderate temperatures ( ⁇ 150-350 ° C), causing evaporation of water; when a critical temperature is reached, the solution turns on and the temperature increases very quickly (up to 104 ° C / second) to values higher than 1000 ° C. Simultaneously, the reaction converts the mixture of precursors into materials with the desired composition and with large porosity, small particle size and with high degree of cristalinity.
  • the decrease in oil reserves has increased interest in the use of natural gas as an energy resource (through the so-called "hydrogen economy") and as a source of chemical products.
  • CPOM partial catalytic oxidation of methane
  • hydrocarbon production by Fischer-Tropsch synthesis, and in methanol synthesis, a fundamental raw material in the chemical industry (APE York, T. Xiao, and MLH Green. Topics in Catalysis Vol. 22, (2003) 345-358 ).
  • Catalysts based on supported metallic nickel are active for CPOM, however they suffer a greater deactivation by coke formation and sintering. If we compare its activity with that of catalysts with a noble metal (Pt, Pd, Ir, Ru or Rh) as an active phase, it is observed that the latter show greater activity and stability, however, these types of catalysts are very expensive in comparison with those based on nickel, thus limiting its use in industrial processes (C. Berger-Karin et al. J. Catal. 280 (2011), 116). In order for this process to be implemented at the industrial level, it is necessary to develop economic, active and stable catalysts, so as to reduce the deactivation phenomena.
  • a noble metal Pt, Pd, Ir, Ru or Rh
  • the present invention provides a process for obtaining a dinner oxide substituted with a lanthanide L (from La to Lu), and trio and / or scandium, in the positions of Ce.
  • L 3+ partially replacing Ce 4+ induces the generation of oxygen vacancies in the crystalline network, which are essential for the fixation of various gas molecules, as described above.
  • this invention also involves the deposition of nanoparticles of a precious or semi-precious metal selected from groups 8, 9, 10 and 11 of the periodic table of the elements in metallic form on the surface of the cerium oxide, preferably the metal is Select from nickel, copper and platinum, which represent active centers.
  • cermet type materials can be used as catalysts in various reactions.
  • the catalysts have a high activity per catalyst mass for the inverse reaction reactions of displacement of water gas and partial oxidation of methane to synthesis gas.
  • the synthesis method gives rise to materials with high macroporosity and nanoparticles, which increases the dispersion of the active phase.
  • the process for obtaining the present invention reduces the formation of hot spots, which would have an important effect on improving stability and controlling temperature at the industrial level.
  • the present invention relates to a process for obtaining a compound of formula:
  • L is selected from a lanthanide, Y or Se
  • step (a) a molar ratio between 0.7 and 1.0 of fuel with respect to total nitrates
  • nitrates in the aqueous solution of step (a) is essential for the combustion method to work, whereby, in the present process of the invention, aqueous nitrates of Ce and L, Y or Se are used.
  • aqueous nitrates of Ce and L, Y or Se are used.
  • water soluble salts of a metal selected from Ni, Ru, Rh, Pd, Ir, Pt, Ag, Au or Cu are nitrates, chlorides, sulfates and coordination compounds.
  • nitrates can be used, as well as soluble salts of inorganic complexes (coordination compounds) such as dihydroxy tetraamin platinum (II) ((NH 3 ) 4 Pt (OH) 2 x H 2 O) and tetramine nitrate platinum (II ) (Pt (NH 3 ) 4 (NO 3 ) 2 ).
  • coordination compounds such as dihydroxy tetraamin platinum (II) ((NH 3 ) 4 Pt (OH) 2 x H 2 O) and tetramine nitrate platinum (II ) (Pt (NH 3 ) 4 (NO 3 ) 2 ).
  • nickel (II) nitrate (N0 3 ) -6H 2 Cv nitrate is used as a water soluble salt.
  • it is used as a soluble Cu salt in water copper nitrate (II), Cu (N0 3 ) 2 -6H 2 O.
  • a salt selected from dihydroxy tetraamin platinum (II) ((NH 3 ) 4 Pt (OH) 2 x H 2 O) and tetratin platinum nitrate (II) is used as the water soluble Pt salt )
  • the compound of formula M y (Ce. X L x O 2 - x e) yy obtained has a value of x other than 0 and therefore there will always be positions of the Ce replaced by a lanthanide Y or Se.
  • That lanthanide element L is preferably selected from the following elements: La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. More preferably the lanthanide is selected from Gd and La. When in a preferred embodiment the lanthanide L is Gd, preferably x has a value between 0.05 and 0.2
  • the lanthanide L is Gd, preferably, and has a value between 0.001 and 0.15, preferably between 0.03 and 0.15.
  • the lanthanide L is La, preferably x has a value between 0.05 and 0.2
  • the lanthanide L is La, preferably, and has a value between 0.001 and 0.15, preferably between 0.03 and 0.15.
  • the lanthanide L is Sm, preferably x has a value between 0.05 and 0.2
  • the lanthanide L is Sm, preferably, and has a value between 0.001 and 0.15.
  • the fuel used in step (a) is selected from glycine, citric acid, urea; and a combination of the above. More preferably glycine is used as fuel in step (a) of the process of the invention.
  • the term "fuel” is used to perform the synthesis by combustion in solution, so that, when the water present in the solution evaporates, the ignition of the fuel occurs, reaching more than 1000 ° C in the reaction medium despite applying only 300 ° C to the reaction.
  • This method causes the generation of high purity products with high macroporosity.
  • means are used to prevent water present in the solution from evaporating completely.
  • step (c) is carried out at a temperature between 200 ° C and 500 ° C.
  • M is a selected metal selected from Ni, Ru, Rh, Pd, Ir, Pt, Ag, Au or Cu,
  • L is selected from a lanthanide, Y or Se.
  • the compound of the present invention is preferably characterized in that it has a porosity percentage of between 70% and 95% and an average pore diameter of between 0.5 ⁇ m and 5 ⁇ m. This porosity is a key factor in catalytic behavior because it results in a very high active surface area per unit mass of catalyst, which results in an increase in catalytic activity.
  • a preferred embodiment of the compound refers to a compound of formula M and (Cei.
  • the lanthanide L is selected from La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu.
  • the lanthanide element is Gd; more preferably
  • ⁇ X has a value between 0.05 and 0.2
  • the lanthanide is La; more preferably
  • ⁇ And has a value between 0.001 and 0.15, even more preferably and has a value between 0.03 and 0.15.
  • the lanthanide element is Sm; more preferably
  • the compound of the present invention has been obtained by the procedure described above.
  • step (a) of the process of the present invention nitrate of nickel.
  • step (a) of the process of the present invention copper nitrate
  • step (a) of the process of the present invention dihydroxy tetra-amin-Platinum (ll) is used.
  • this refers to the use of the compound described above, as a catalyst.
  • a preferred use of the compound refers to its use as a catalyst in the inverse gas gas displacement reaction.
  • reverse reaction of displacement of water gas is understood as that reaction in which CO 2 is used as a reagent together with H 2 which in the presence of a catalyst produces CO and water.
  • a compound of the formula as described above is used
  • the formula compound is used as
  • the compound of formula is used as
  • Another preferred use of the compound of the present invention described above refers to its use as a catalyst in the reaction of partial oxidation of methane to synthesis gas.
  • x is non-zero and the lanthanide is Gd or Sm.
  • Fig. 2. Represents the conversion rate of CO 2 over the reaction time (rWGS reaction) for the catalyst
  • Example 2 1,044 grams of glycine, 0.039 grams of nickel nitrate (Ni (N0 3 ) 2 -6H 2 O), 2,553 grams of cerium nitrate (Ce (N0 3 ) 3 -6H is mixed in a beaker 2 O), 0.224 grams of gadolinium nitrate (Gd (N0 3 ) 3 -6H 2 O. Then 25 ml ⁇ of distilled water is added to dissolve the above compounds.
  • the vessel is placed with the mixture of the previous reagents on a heating plate with another inverted beaker covering the previous one and aluminum foil at its base, the temperature of the plate is then increased to 300 degrees Celsius and wait a few minutes until combustion synthesis occurs in solution, forming a cermet type material, with a microspongeous morphology, and constituted by nanoparticles of metallic nickel supported on a mixed oxide of cerium and gadolinium. This material is called
  • Example 3 1,037 grams of glycine, 0.078 grams of nickel nitrate (Ni (N0 3 ) 2 -6H 2 O), 2,501 grams of cerium nitrate (Ce (N0 3 ) 3 -6H is mixed in a beaker 2 O), 0.220 grams of gadolinium nitrate (Gd (N0 3 ) 3 -6H 2 O. Then 25 ml ⁇ of distilled water is added to dissolve the above compounds. The vessel is placed with the mixture of the previous reagents on a heating plate with another inverted beaker covering the previous one and aluminum foil in its base.
  • the temperature of the plate is then increased to 300 degrees Celsius and it is expected a few minutes until synthesis by combustion in solution occurs, forming a cermet-like material, with a microspongeous morphology, and constituted by nanoparticles of metallic nickel supported on a mixed oxide of dinner and gadolinium.
  • This material is called
  • the vessel is placed with the mixture of the previous reagents on a heating plate with another inverted beaker covering the previous one and aluminum foil at its base, the temperature of the plate is then increased up to 300 degrees Celsius and waiting a few minutes until combustion synthesis occurs in solution, forming a cermet type material, consisting of nanoparticles of metallic nickel supported on a mixed oxide of cerium and gadolinium.
  • This material is called (Ni) oi (Ce 0 , eGcio, iOi, 95) or, 9.
  • the vessel is placed with the mixture of the previous reagents on a heating plate with another inverted beaker covering the previous one and aluminum foil at its base, the temperature of the plate is then increased to 300 degrees Celsius and wait a few minutes until combustion synthesis occurs in solution, forming a cermet type material, with a morphology microsponjosa, and constituted by nanoparticles of metallic nickel supported on a mixed oxide of ceno and lanthanum.
  • This material is called (Ni) or, i (Ce 0 , gLao, iOi, g5) or, g-
  • the vessel is placed with the reagent mixture above on a heating plate with another beaker of inverted size covering the previous one and aluminum foil in its base. Then the plate temperature is increased to 300 degrees Celsius and wait a few minutes until the synthesis occurs combustion in solution, forming a cermet type material, with a microspongeous morphology, and constituted by nanoparticles of metallic nickel supported on a mixed oxide of cerium and gadolinium. This material is called
  • the vessel is placed with the mixture of the previous reagents on a heating plate with another beaker of larger inverted size covering the previous one and aluminum foil in its base. Then the temperature of the plate is increased to 300 degrees Celsius and wait a few minutes until the synthesis by combustion in solution, forming a cermet type material, with a microspongeous morphology, and constituted by nanoparticles of metallic nickel supported on a mixed oxide of cerium and gadolinium.
  • This material is called Example 8
  • the vessel with the mixture of the previous reagents is placed on a heating plate with another beaker of inverted size covering the previous one and aluminum foil at its base, then the plate temperature is increased to 300 degrees Celsius and wait a few minutes until synthesis by combustion in solution occurs, forming a cermet type material, with a microspongeous morphology, and constituted by nanoparticles of metallic nickel supported on a mixed oxide of cerium and gadolinium.
  • This material is called (Cu) o, oi (Ceo, 9Gdo, iOi, 95) 0.99
  • the conversion of CO 2 and catalytic stability varies depending on the proportion of nickel.
  • the nickel-free catalyst is the one that, after requiring an induction period of about 3 hours, increases its activity towards a stable conversion close to 26%.
  • the other catalysts have, at the beginning of the reaction, a similar conversion between 55 and 59%, but they experience a different behavior throughout the reaction.
  • the one with the lowest proportion of nickel is slightly deactivated,
  • the catalyst consisting of metallic nickel supported on ceria doped with lanthanum ((Ni) 0 , i (Ceo, gLao, iOi, gs) or, g) shows high activity and stability, when compared with its gadolinium-doped analog ((Ni ) 0 .i (Ce 0 , 9 Lao, iOi, 95) 0.9).
  • Table 1 Shows the percentage of conversion of CO 2 over the reaction time (rVYGS reaction) for different catalysts.
  • the platinum-based one is somewhat less selective to carbon monoxide, forming, under these reaction conditions, a small proportion of methane.
  • the reaction conditions are identical to those used in Example 6. According to the results obtained, the catalyst increases its activity to a conversion value of CO 2 very close to the thermodynamic equilibrium in the first 4 hours of reaction, to then experience a deactivation of less than 6% conversion in the next 4 hours. Thereafter, its activity remains practically stable for 92 hours. See Figure 2.
  • reaction mixture consisting of N 2 : 40%; CH 4 : 40% and O 2 : 20% (molar). Before passing the reaction gas mixture, the temperature is increased from room temperature to 700 ° C, under a nitrogen flow rate of 40 and maintained
  • Catalyst with a molar ratio Mixed Noxxide equal to 2:98 shows a deactivation of the same with the reaction time.
  • the catalyst with a mixed Nkoxide ratio equal to 10:90 greater stability is observed, as well as higher CH 4 conversion values and hydrogen yield. The values found are very close to the thermodynamic equilibrium for these reaction conditions.
  • the protocol to determine the porosity, surface area and average pore size by mercury porosimetry was as follows: The sample was degassed at 80 degrees Celsius for 3 hours. A sample amount between 20 and 40 mg was introduced into a sample holder of a mercury porosimeter (Autopore IV mercury porosimeter, Micromeritics). Next, mercury intrusion porosimetry was performed, which is an adsorption technique that uses mercury as ascorporeal. Through the application of pressure, mercury is forced into the pores of the solid. The value of the volume of intruded mercury allows to calculate the area, distribution by pore sizes and percentage of porosity of the material. This technique is used when the material under study has mesopores (2-50 nm) and macropores (> 50nm). The analysis conditions used were: surface tension: 484 din / cm); contact angle: 141 degrees; Maximum pressure: 60000 psi. Fig. 3 shows the pore size distribution of the compounds of formula
  • Table 5 Shows the total pore area in m 2 / g, the percentage of porosity and the average pore diameter in ⁇ m for each of the following catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La invención se refiere al procedimiento de obtención de unos catalizadores por el método de combustión en disolución, a los catalizadores obtenidos por dicho procedimiento y a su uso particular en la reacción inversa de desplazamiento de gas de agua y en la oxidación parcial del metano en gas de síntesis. Por tanto, entendemos que la presente invención se sitúa en el área de la industria verde dirigida a la reducción de CO2 del planeta.

Description

PROCEDIMIENTO DE OBTENCIÓN DE CATAUZADORES DE FÓRMULA My(Ce1- PARA SU USO EN LA REACCIÓN INVERSA DE DESPLAZAMIENTO DE
Figure imgf000002_0001
GAS DE AGUA Y OXIDACIÓN PARCIAL DE METANO A GAS DE SÍNTESIS MEDIANTE MÉTODO DE COMBUSTIÓN EN DISOLUCIÓN
La invención se refiere al procedimiento de obtención de unos catalizadores por el método de combustión en disolución, a los catalizadores obtenidos por dicho procedimiento y a su uso particular en la reacción inversa de desplazamiento de gas de agua y en la oxidación parcial del metano en gas de síntesis.
Por tanto, entendemos que la presente invención se sitúa en el área de la industria verde dirigida a la reducción de CO2 del planeta.
ESTADO DE LA TÉCNICA
El dióxido de carbono constituye la fuente principal de gases de efecto invernadero. Para reducir sus emisiones, se hace ineludible la sustitución progresiva del uso de los combustibles de origen fósil por fuentes de energía renovable. El uso actual del CO2 se limita a unos pocos procesos: la síntesis de urea, de ácido salicílico y de policarbonatos, pero éste sólo corresponde a un pequeño porcentaje del CO2 potencial, útil para ser transformado en productos químicos y combustibles. En la actualidad, se están realizando numerosos esfuerzos para considerarlo como un recurso en vez de como un residuo, invirtiendo en el desarrollo de nuevas tecnologías que impulsen su reciclado.
Uno de los procesos más prometedores para su valorización es la producción de hidrocarburos líquidos y oxigenados, que presentan una excelente densidad de energía volumétrica, a partir de CO2 (provenientes de centrales térmicas o de la combustión, pirólisis o gasificación de residuos de biomasa, tales como agrícolas, forestales, ganaderos, urbanos, etc) y de H2 renovable (que se podría generar por electrólisis, ciclos termoquímicos, gasificación de biomasa, reformado de alcoholes y polioles, etc). La reducción de CO2 con H2 es una aplicación que da solución a dos problemas: el reciclado del carbón y el almacenamiento de H2. Este es un proceso en dos etapas, en el que la primera e imprescindible es la reacción inversa de desplazamiento de gas de agua (Reverse Water-Gas shift, rWGS, CO2 + H2 ¾ CO + H2O), que permite activar la estable molécula de dióxido de carbono y transformarla en un compuesto más reactivo, monóxido de carbono. La segunda etapa consistiría en la hidrogenación catalítica de mezclas CO2/CO, para producir hidrocarburos, a través de la reacción Fischer-Tropsch, o metanol, por hidrogenación de CO. El metanol constituye un compuesto básico para la producción una gran variedad de productos químicos, como el dimetil éter, sustitutivo del combustible diésel y de gases licuados del petróleo (LPG) [M. Aresta, A. Dibenedetto, A. Angelini, Chem. Rev. (2014) 114, 1709-1742] [M. D. Porosoff, B. Yan, J.G. Chen, Energy Environ. Sci. (2016) 9, 62-73]. La reacción inversa de desplazamiento de gas de agua es ligeramente endotérmica (ΔΗ° = 41,2 kJ/mol) y en equilibrio. Esto hace que se vea favorecida por el uso de temperaturas de reacción elevadas, y próximas a 700-800°C. A temperaturas inferiores a 600°C, la termodinámica favorecería la reacción de metanación (CO2 + 3
Figure imgf000003_0001
Para conseguir conversiones elevadas y una cinética favorable, se hace imperativo el uso de un catalizador que sea activo y estable a estas altas temperaturas.
La reacción de rWGS se ha investigado con éxito, utilizando, entre otras fases activas, metales nobles [S.S. Kim, H.H. Lee, S.C. Hong, Appl. Catal., A (2012) 423-424, 100.] [S. S. Kim, K. H. Park, S. C. Hong, Fuel Process. Technol. (2013) 108, 47], así como níquel [B. Lu, K. Kawamoto, RSC Adv. (2012) 2, 6800. [L. Wang, S. Zhang, Y. Liu, J. Rare Earths (2008) 26, 66.] y cobalto [L. Wang, H. Liu, Y. Chen, R. Zhang, S. Yang, Chem. Lett. (2013) 42, 682-683]. El soporte juega un papel fundamental en la reacción, ya que la existencia de vacantes de oxígeno promueve la adsorción de dióxido de carbono. Así, un requerimiento del soporte es que sea reducible y que presente capacidad de almacenamiento de oxígeno. Uno de los óxidos reducibles utilizados con éxito en esta reacción como constituyente del soporte es CeO2 [12,14,17], A. Goguet, F.C. Meunier, D. Tibiletti, J.P. Breen, R. Burch, J. Phys. Chem. B. 108 (20240-20246) [L. Wang, H. Liu, Y. Chen, R. Zhang, S. Yang, Chem. Lett. (2013) 42, 682-683].
Por otro lado, el mecanismo de reacción más aceptado, se basa en la adsorción del CO2 sobre una vacante de oxígeno del soporte, dando lugar a un carbonato con un oxígeno de la red del soporte, para después desorberse como monóxido de carbono y dejar la vacante de oxígeno ocupada. El hidrógeno se adsorbe disociativamente sobre el platino y se difunde hasta un oxígeno del soporte, donde se recombina formando vapor de agua y creando una vacante de oxígeno [W. Wang, S. Wang, X. Ma, J. Gong, Chem. Soc. Rev., 2011 , Vol. 40, págs 3703 -3727]. Teniendo en cuenta que el mecanismo de reacción más plausible es bifuncional según el cual tanto el metal de transición como el óxido que constituye el soporte tienen una acción cooperativa, es necesario aumentar la interacción metal-soporte, con una maximización del área de contacto entre estos. Por ello, el método de preparación juega un papel importante en la síntesis de catalizadores activos y estables. Así, el método de coprecipitación, frente al de impregnación o precipitación-depósito, da lugar a un mejor comportamiento catalítico, atribuido a un mayor contacto entre la fase activa y las vacantes de oxígeno existentes en el soporte [L. Wang, H. Liu, Y. Liu, Y. Chen, S. Yang, J. Rare Earths 31 (2013) 559]. Así, la patente CN 103183346, presenta una invención relativa a un método para sintetizar un catalizador, basado en níquel y cerío, para la reacción inversa de water gas shift, en la que se realiza la activación del catalizador con CO2 puro, con elevada actividad y estabilidad, así como bajo coste. En la bibliografía existen otros compuestos también basados en un metal o un óxido de metal depositado sobre cena dopada con Gd para otros usos que no son catalizadores, como son un compuesto de fórmula NiO-Ceo.gGdo.iC^-c que se utiliza como ánodo en células de combustible de estado sólido y que se obtiene por homogenización del óxido dopado de ceria con Gd y NiO en molino de bolas ["Electrochemical characterízation of Ni-Ce0.9Gd0.1O2d for SOFC anodes" Bettina Rfscha, Hengyong Tua, Andreas O. Stfrmera, Axel C. Müller and Ulrich Stimming, Solid State lonics 175 (2004) 113-117]
La patente CN 103418392 (A) revela la invención de un catalizador para reverse water gas shift y preparación, por el método sol-gel, utilizando ácido cítrico. El catalizador está constituido por cobalto como fase activa y CeO2 como soporte, así como potasio como agente auxiliar. Indican que el catalizador preparado presenta una elevada actividad, buenas selectividad y estabilidad para la reacción de rWGS. Sin embargo, estos catalizadores son de tipo másico, sin porosidad interna. Esto constituye una desventaja ya que en este tipo de sistemas, la dispersión de las fases activas es baja y sería necesario utilizar una elevada cantidad de catalizador. Por ello, la síntesis de óxidos mesoestructurados es un reto, no sólo en el campo de la catálisis, sino también en el de pilas de combustible y sensores. Con el fin de aumentar la dispersión de la fase activa, el método de síntesis de catalizadores basado en la combustión se plantea como una vía muy interesante, ya que formaría un material con elevada porosidad, de modo que la cantidad de catalizador requerida sería significativamente inferior, así con una elevada resistencia térmica, requerimiento indispensable, dadas las elevadas temperaturas necesarias para llevar a cabo la reacción.
Esta síntesis por combustión es una reacción redox exotérmica, en la que se producen reacciones de oxidación y reducción simultáneamente, entre un oxidante y un combustible. Sólo cuando el oxidante y el combustible están íntimamente mezclados en una proporción fija, se puede iniciar la combustión. En varios casos, el calor necesario para iniciar la reacción es generado internamente. En otros casos, debe ser aportado por una fuente externa. El método de combustión en disolución (SCS, solution combustión synthesis), desarrollada por Patil y colaboradores [Patil, K.C., Mimani, T.: Solution combustión synthesis of nanoscale oxides and their composites. Mater. Phys. Meen. 4, 134-137 (2001)], se basa en una reacción de combustión autosostenida (el calor liberado es mayor al requerido para la reacción y las reacciones se producen a altas temperaturas) entre un combustible y un oxidante. Típicamente el oxidante consiste en un precursor metálico de tipo nitrato, y el combustible en glicina, urea, ácido cítrico etc. En este tipo de síntesis de combustión en disolución, los reactivos se disuelven en agua, para alcanzar una homogeneización molecular en el medio de reacción. La disolución de los reactivos es precalentada con una fuente de calor externa a temperaturas moderadas (~150-350°C), causando la evaporación del agua; cuando se alcanza una temperatura crítica, la disolución se autoenciende y la temperatura se incrementa de manera muy rápida (hasta 104 °C/segundo) hasta valores superiores a los 1000°C. Simultáneamente, la reacción convierte la mezcla de precursores en materiales con la composición deseada y con gran porosidad, pequeño tamaño de partícula y con elevado grado de crístalinidad. La disminución de las reservas de petróleo ha aumentado el interés por la utilización de gas natural como recurso energético (a través de la llamada "Economía del hidrógeno") y como fuente de productos químicos. La obtención de gas de síntesis (CO e hidrógeno) por oxidación parcial catalítica de metano (CPOM), reacción ligeramente exotérmica, ofrece un incentivo económico frente a la vía industrial actual: el reformado con vapor de agua, proceso muy endotérmico. Además, la CPOM produce una relación que es idónea para ser utilizada directamente en la
Figure imgf000006_0001
producción de hidrocarburos, por la síntesis Fischer-Tropsch, y en la síntesis de metanol, materia prima fundamental en la industria química (A.P.E. York, T. Xiao, and M.L.H. Green. Topics in Catalysis Vol. 22, (2003) 345-358).
Los catalizadores basados en níquel metálico soportado son activos para la CPOM, sin embargo sufren una mayor desactivación por formación de coque y sinterízación. Si comparamos su actividad con la de catalizadores con un metal noble (Pt, Pd, Ir, Ru o Rh) como fase activa se observa que estos últimos muestran una mayor actividad y estabilidad, sin embargo, este tipo de catalizadores son muy caros en comparación con los basados en níquel, limitando por tanto su uso en procesos industriales (C. Berger-Karin et al. J. Catal. 280 (2011), 116). Para que este proceso pueda ser implantado a nivel industrial es necesario desarrollar catalizadores económicos, activos y estables, de modo que disminuyan los fenómenos de desactivación. Estudios previos indican que una elevada dispersión de la fase activa es clave para obtener un buen comportamiento catalítico ya que la formación de coque se ve promovida por partículas metálicas grandes (J. Barbero et al., Catal. Lett. 87 (2003), 211) Por otro lado, la utilización de promotores basados en óxidos con elevada movilidad iónica, como CeO2, o diversos lantánidos, aumentaría la reactividad y la estabilidad. (M. D. Salazar-Villapando et al. Int. J Hydrogen Energy, 34 (2009), 9723). La movilidad del oxígeno en estos catalizadores parece crucial para aumentar su reactividad en este proceso (B.C. Enger, R. Ledeng, A. Holmen, Applied Catalysis A: General 346 (2008) 1-27).
Por otro lado, otro reto en la actualidad es disminuir la formación de puntos calientes (hot spots), que son el resultado de la combinación de una elevada velocidad espacial y de una reacción exotérmica, que dificultaría el control del proceso a escala industrial (Y. H. Hu and E. Ruckenstein / Adv. Catal. 48 (2004) 297-345).
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención proporciona un procedimiento para la obtención de un óxido de ceno sustituido con un lantánido L (de La a Lu), ytrío y/o escandio, en las posiciones del Ce. La introducción de L3+ reemplazando parcialmente a Ce4+ induce la generación de vacantes de oxígeno en la red cristalina, que son esenciales para la fijación de diversas moléculas de gas, como se ha descrito anteriormente. Además, esta invención también involucra el depósito de nanopartículas de un metal precioso o semiprecioso seleccionado de entre los grupos 8, 9, 10 y 11 de la tabla periódica de los elementos en forma metálica sobre la superficie del óxido de cerío, preferiblemente el metal se selecciona de entre níquel, cobre y platino, que representan centros activos. Estos materiales tipo cermet pueden ser utilizados como catalizadores en diversas reacciones.
Este procedimiento de obtención o síntesis por combustión en disolución, da lugar a catalizadores que no requieren de una etapa previa de activación de la fase activa, ya que se obtiene, directamente, el metal en estado metálico.
Además, los catalizadores presentan una elevada actividad por masa de catalizador para las reacciones de reacción inversa de desplazamiento de gas de agua y oxidación parcial de metano a gas de síntesis.
Por otro lado, el método de síntesis da lugar a materiales con elevada macroporosidad y nanoparticulados, lo que aumenta la dispersión de la fase activa.
Por último, el procedimiento de obtención de la presente invención reduce la formación de puntos calientes, lo que incidiría de manera importante en mejora de la estabilidad y en el control de la temperatura a nivel industrial.
Por tanto, en un primer aspecto, la presente invención se refiere a un procedimiento de obtención de un compuesto de fórmula:
Figure imgf000007_0001
donde M es un metal seleccionado de entre Ni, Ru, Rh, Pd, Ir, Pt, Ag, Au o Cu, donde x = 0,0 - 0,4 e y = 0,001 - 0,6, preferiblemente y = 0,02 - 0,6,
y donde L se selecciona de entre un lantánido, Y o Se,
caracterizado por que comprende las siguientes etapas:
a) disolver en la mínima cantidad de agua, cantidades estequiométricas de · Nitrato de Ce,
• sal soluble en agua de un metal seleccionado de entre Ni, Ru, Rh,
Pd, Ir, Pt, Ag, Au o Cu,
. Nitrato de L, Y o Se
y añadir a la disolución de la etapa (a) un relación molar de entre 0,7 y 1 ,0 de combustible con respecto a los nitratos totales,
b) agitar a temperatura ambiente hasta disolución completa de la disolución obtenida en (a), y
c) calentar la disolución obtenida en (b) a una temperatura de entre 200 °C y 600 °C.
La presencia de nitratos en la solución acuosa de la etapa (a) es esencial para que funcione el método de combustión, por lo que, en el presente procedimiento de la invención se utilizan nitratos acuosos de Ce y de L, Y o Se. Ejemplo de sales solubles en agua de un metal seleccionado de entre Ni, Ru, Rh, Pd, Ir, Pt, Ag, Au o Cu son nitratos, cloruros, sulfates y compuestos de coordinación.
Como precursores del platino se pueden utilizar nitratos, así como sales solubles de complejos inorgánicos (compuestos de coordinación) como dihidroxi tetraamin platino (II) ((NH3)4Pt(OH)2 xH2O) y nitrato de tetraamin platino (II) (Pt(NH3)4(NO3)2).
Por tanto, preferiblemente en el procedimiento de la invención se utiliza como sal de Ni soluble en agua el nitrato de níquel (II) Ni(N03)-6H2Cv Preferiblemente en el procedimiento de la invención se utiliza como sal de Cu soluble en agua el nitrato de cobre (II), Cu(N03)2-6H2O.
Preferiblemente, en el procedimiento de la invención se utiliza como sal de Pt soluble en agua una sal seleccionada de entre dihidroxi tetraamin platino (II) ((NH3)4Pt(OH)2 xH2O) y nitrato de tetraamin platino (II)
Figure imgf000008_0001
En otra realización preferida del procedimiento de la presente invención, el compuesto de formula My(Ce .xLxO2-xe)i.y que se obtiene presenta un valor de x distinto de 0 y, por tanto, siempre existirán posiciones del Ce sustituidas por un lantánido Y o Se.
Ese elemento lantánido L se selecciona preferiblemente de entre los siguientes elementos: La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb y Lu. Más preferiblemente el lantánido se selecciona de entre Gd y La. Cuando en una realización preferida el lantánido L es Gd, preferiblemente x tiene un valor de entre 0,05 y 0,2
Cuando en otra realización preferente el lantánido L es Gd, preferiblemente, y tiene un valor de entre 0,001 y 0,15, preferiblemente de entre 0,03 y 0,15.
Cuando en una realización preferida el lantánido L es La, preferiblemente x tiene un valor de entre 0,05 y 0,2
Cuando en otra realización preferente el lantánido L es La, preferiblemente, y tiene un valor de entre 0,001 y 0, 15, preferiblemente de entre 0,03 y 0, 15.
Cuando en una realización preferida el lantánido L es Sm, preferiblemente x tiene un valor de entre 0,05 y 0,2 Cuando en otra realización preferente el lantánido L es Sm, preferiblemente, y tiene un valor de entre 0,001 y 0,15.
En otra realización preferida del procedimiento de la presente invención el combustible utilizado en la etapa (a) se selecciona de entre glicina, ácido cítrico, urea; y una combinación de los anteriores. Más preferiblemente se utiliza glicina como combustible en la etapa (a) del procedimiento de la invención.
En la presente invención se utiliza el término "combustible" para realizar la síntesis por combustión en disolución, de manera que, al evaporar el agua presente en la disolución, se produce la ignición del combustible, alcanzando más de 1000 °C en el medio de reacción a pesar de aplicar únicamente 300 °C a la reacción. Este método provoca la generación de productos de gran pureza y con una elevada macroporosidad. En una realización preferida de la etapa (c) del procedimiento de la presente invención, se utilizan medios para evitar que el agua presente en la disolución se evapore completamente.
En otra realización preferida del procedimiento de la presente invención la etapa (c) se lleva a cabo a una temperatura de entre 200 °C y 500 °C.
Otro aspecto de la presente invención se refiere a un compuesto caracterizado por la fórmula caracterizado por que
Figure imgf000010_0003
• M es un metal seleccionado seleccionado de entre Ni, Ru, Rh, Pd, Ir, Pt, Ag, Au o Cu,
• x = 0,0 - 0,4 e y = 0,001 - 0,6, preferiblemente y = 0,02 - 0,6, y
• L se selecciona de entre un lantánido, Y o Se.
En otra realización preferida del compuesto de la presente invención el compuesto está caracterizado por que
• M es Ni y
• su fórmula es
Figure imgf000010_0001
o donde x = 0,0 - 0,4 e y = 0,005 - 0,6, preferiblemente y = 0,02 - 0,6, o y donde L se selecciona de entre un lantánido, Y o Se.
En otra realización preferida del compuesto de la presente invención el compuesto está caracterizado por que
• M es Cu y
• su fórmula es
Figure imgf000010_0002
o donde x = 0,0 - 0,4 e y = 0,005 - 0,6, preferiblemente y = 0,02 - 0,6, o y donde L se selecciona de entre un lantánido, Y o Se.
En otra realización preferida del compuesto de la presente invención el compuesto está caracterizado por que
· M es Pt y • se obtiene un compuesto de fórmula
Figure imgf000011_0002
o donde x = 0,0 - 0,4 e y = 0,001 - 0,6, preferiblemente y = 0,02 - 0,6, o y donde L se selecciona de entre un lantánido, Y o Se. Por otro lado, el compuesto de la presente invención está preferiblemente caracterizado por que presenta un porcentaje de porosidad de entre 70 % y 95 % y un diámetro medio de poro de entre 0,5 μm y 5 μm. Esta porosidad es un factor clave en el comportamiento catalítico porque da lugar a un área superficial activa muy elevada por unidad de masa de catalizador, lo que produce un aumento de la actividad catalítica.
Una realización preferida del compuesto se refiere a un compuesto de fórmula My(Cei.
donde x es distinto de 0, es decir, en un compuesto siempre existirán
Figure imgf000011_0001
posiciones del Ce sustituidas por un lantánido o por Y o por Se.
En una realización preferida del compuesto el lantánido L se selecciona de entre La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb y Lu.
Preferiblemente, el elemento lantánido es Gd; más preferiblemente
· x tiene un valor de entre 0,05 y 0,2; e
• y tiene un valor de entre 0,001 y 0,15, aún más preferiblemente y tiene un valor de entre 0,03 y 0,15.
En otra realización preferida del compuesto el lantánido es La; más preferiblemente
• x tiene un valor de entre 0,05 y 0,2; o
· y tiene un valor de entre 0,001 y 0,15, aún más preferiblemente y tiene un valor de entre 0,03 y 0,15.
Preferiblemente, el elemento lantánido es Sm; más preferiblemente
• x tiene un valor de entre 0,05 y 0,2 o
« y tiene un valor de entre 0,001 y 0,15.
Preferiblemente el compuesto de la presente invención se ha obtenido mediante el procedimiento descrito anteriormente. Cuando el compuesto tiene la formula donde M es Ni, x = 0,0 - 0,4 e
Figure imgf000012_0001
y = 0,005 - 0,6, preferiblemente y = 0,02 - 0,6, y donde L se selecciona de entre un lantánido, Y o Se, entonces en la etapa (a) del procedimiento de la presente invención se utiliza nitrato de níquel.
Cuando el compuesto tiene la formula
Figure imgf000012_0002
donde M es Cu, x = 0,0 - 0,4 e y = 0,005 - 0,6 y donde L se selecciona de entre un lantánido, Y o Se, entonces en la etapa (a) del procedimiento de la presente invención se utiliza nitrato de cobre. Cuando el compuesto tiene la formula donde M es Pt, x = 0,0 - 0,4 e
Figure imgf000012_0003
y = 0,001 - 0,6 y donde L se selecciona de entre un lantánido, Y o Se, entonces en la etapa (a) del procedimiento de la presente invención se utiliza dihidroxi tetra-amin- Platino(ll). En un tercer aspecto de la invención, ésta se refiere al uso del compuesto descrito anteriormente, como catalizador.
Un uso preferido del compuesto se refiere a su uso como catalizador en la reacción inversa de desplazamiento de gas de agua.
En la presente invención se entiende por "reacción inversa de desplazamiento de gas de agua" como aquella reacción en la que se utiliza el CO2 como reactivo junto a H2 que en presencia de un catalizador produce CO y agua. Preferiblemente en la reacción inversa de desplazamiento de gas de agua se utiliza un compuesto de fórmula como el descrito anteriormente caracterizado
Figure imgf000012_0004
porque x es distinto de cero y el lantánido es Gd o La.
Preferiblemente el compuesto de formula se utiliza como
Figure imgf000012_0005
catalizador en la reacción inversa de desplazamiento de gas de agua .
Preferiblemente, el compuesto de formula se utiliza como
Figure imgf000012_0006
catalizador en la reacción inversa de desplazamiento de gas de agua. Preferiblemente, el compuesto de fórmula se utiliza como
Figure imgf000013_0001
catalizador en la reacción inversa de desplazamiento de gas de agua.
Otro uso preferido del compuesto de la presente invención descrito anteriormente se refiere a su uso como catalizador en la reacción de oxidación parcial de metano a gas de síntesis.
En la presente invención se entiende por "reacción de oxidación parcial de metano a gas de síntesis" como aquella reacción que utiliza CH como reactivo que junto a O2, en una cierta proporción (CH4/O2 = 2, molar), en presencia de un catalizador produce gas de síntesis.
Preferiblemente en la reacción de oxidación parcial de metano a gas de síntesis se utiliza un compuesto de fórmula como el descrito anteriormente
Figure imgf000013_0002
caracterizado por que x es distinto de cero y el lantánido es Gd o Sm.
Preferiblemente se utiliza el compuesto de formula como
Figure imgf000013_0003
catalizador de la reacción de oxidación parcial de metano a gas de síntesis. Las ventajas del uso como catalizador de los compuestos de la presente invención son las mostradas a continuación, y comprobadas en los datos experimentales descritos en los ejemplos:
• Una elevada actividad por masa de catalizador en las reacciones de reacción inversa de desplazamiento de gas de agua y reacción de oxidación parcial de metano a gas de síntesis,
• la conversión del CO2 es de entre un 50 % y 60 %, encontrándose los valores más altos próximos al equilibrio termodinámico de la reacción inversa de desplazamiento de gas de agua para las condiciones de reacción especificadas;
• la conversión del CH y rendimiento a hidrógeno obtenidas, se encuentran, con ciertos catalizadores, en valores próximos al equilibrio termodinámico de la reacción de oxidación parcial de metano a gas de síntesis para las condiciones de reacción especificadas;
• fáciles de preparar, no necesitan etapa de activación en atmósfera reductora, materiales nanoestructurados,
elevada macroporosidad,
estables en las severas condiciones en las que se lleva a cabo en la reacción inversa de desplazamiento de gas de agua
• la actividad se mantiene inalterada tras ciclos de trabajo de 100 h en la reacción inversa de desplazamiento de gas de agua
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Fig. 1. M ¡orografía SEM del catalizador tras la síntesis por el método de combustión en disolución
Figure imgf000014_0003
Fig. 2. Representa el porcentaje de conversión del CO2 a lo largo del tiempo de reacción (reacción rWGS) para el catalizador
Figure imgf000014_0002
Fig. 3. Distribución de tamaño de poros de los compuestos de fórmula
Figure imgf000014_0001
EJEMPLOS
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que pone de manifiesto la mejora en las condiciones de síntesis y actividad catalítica. Ejemplo 1
Se mezcla, en un vaso de precipitado, 1,051 gramos de glicina, 2,606 gramos de nitrato de cerio (Ce(N03)3-6H2O), 0,229 gramos de nitrato de gadolinio (Gd(N03)3-6H2O. A continuación se añade 25 ml_ de agua destilada, para disolver los compuestos anteriores. Se coloca el vaso con la mezcla de los reactivos anteriores sobre una placa calefactora con otro vaso de precipitado de mayor tamaño invertido cubriendo el anterior y papel de aluminio en su base. A continuación se aumenta la temperatura de la placa hasta 300 grados centígrados y se espera unos minutos hasta que se produce la síntesis por combustión a partir de la disolución, formándose un óxido mixto de cerio y gadolinio. Este material se denomina
Figure imgf000015_0001
Ejemplo 2 Se mezcla, en un vaso de precipitado, 1,044 gramos de glicina, 0,039 gramos de nitrato de níquel (Ni(N03)2-6H2O), 2,553 gramos de nitrato de cerio (Ce(N03)3-6H2O), 0,224 gramos de nitrato de gadolinio (Gd(N03)3-6H2O. A continuación se añade 25 mi¬ de agua destilada, para disolver los compuestos anteriores. Se coloca el vaso con la mezcla de los reactivos anteriores sobre una placa calefactora con otro vaso de precipitado de mayor tamaño invertido cubriendo el anterior y papel de aluminio en su base. A continuación se aumenta la temperatura de la placa hasta 300 grados centígrados y se espera unos minutos hasta que se produce la síntesis por combustión en disolución, formándose un material de tipo cermet, con una morfología microesponjosa, y constituido por nanopartículas de níquel metálico soportado sobre un óxido mixto de cerio y gadolinio. Este material se denomina
Figure imgf000015_0002
Ejemplo 3 Se mezcla, en un vaso de precipitado, 1,037 gramos de glicina, 0,078 gramos de nitrato de níquel (Ni(N03)2-6H2O), 2,501 gramos de nitrato de cerio (Ce(N03)3-6H2O), 0,220 gramos de nitrato de gadolinio (Gd(N03)3-6H2O. A continuación se añade 25 mi¬ de agua destilada, para disolver los compuestos anteriores. Se coloca el vaso con la mezcla de los reactivos anteriores sobre una placa calefactora con otro vaso de precipitado de mayor tamaño invertido cubriendo el anterior y papel de aluminio en su base. A continuación se aumenta la temperatura de la placa hasta 300 grados centígrados y se espera unos minutos hasta que se produce la síntesis por combustión en disolución, formándose un material de tipo cermet, con una morfología microesponjosa, y constituido por nanopartículas de níquel metálico soportado sobre un óxido mixto de ceno y gadolinio. Este material se denomina
Su micrografía SEM (obtenida por Microscopía Electrónica
Figure imgf000016_0001
de Barrido, Scanning Electron Microscopy) se muestra, a modo de ejemplo en la figura 1. Ejemplo 4
Se mezcla, en un vaso de precipitado, 1 ,016 gramos de glicina, 0,194 gramos de nitrato de níquel (Ni(N03)2-6H2O), 2,345 gramos de nitrato de cerio (Ce(N03)3-6H2O), 0,206 gramos de nitrato de gadolinio (Gd(N03)3-6H2O. A continuación se añade 25 ml_ de agua destilada, para disolver los compuestos anteriores. Se coloca el vaso con la mezcla de los reactivos anteriores sobre una placa calefactora con otro vaso de precipitado de mayor tamaño invertido cubriendo el anterior y papel de aluminio en su base. A continuación se aumenta la temperatura de la placa hasta 300 grados centígrados y se espera unos minutos hasta que se produce la síntesis por combustión en disolución, formándose un material de tipo cermet, constituido por nanopartículas de níquel metálico soportado sobre un óxido mixto de cerio y gadolinio. Este material se denomina (Ni)o.i(Ce0,eGcio,iOi,95)o,9.
Ejemplo 5
Se mezcla, en un vaso de precipitado, 1 ,016 gramos de glicina, 0,194 gramos de nitrato de níquel (Ni(N03)2-6H2O), 2,345 gramos de nitrato de cerio (Ce(N03)3-6H2O), 0,260 gramos de nitrato de lantano (La(N03)3'6H2O. A continuación se añade 25 mi¬ de agua destilada, para disolver los compuestos anteriores. Se coloca el vaso con la mezcla de los reactivos anteriores sobre una placa calefactora con otro vaso de precipitado de mayor tamaño invertido cubriendo el anterior y papel de aluminio en su base. A continuación se aumenta la temperatura de la placa hasta 300 grados centígrados y se espera unos minutos hasta que se produce la síntesis por combustión en disolución, formándose un material de tipo cermet, con una morfología microesponjosa, y constituido por nanopartículas de níquel metálico soportado sobre un óxido mixto de ceno y lantano. Este material se denomina (Ni)o,i(Ce0,gLao,iOi,g5)o,g-
Ejemplo 6
Se mezcla, en un vaso de precipitado, 1,0473 gramos de glicina, 0.0194 gramos de nitrato de níquel (Ni(N03)2-6H2O), 2,5793 gramos de nitrato de cerio (Ce(N03)3-6H2O), 0.2979 gramos de nitrato de gadolinio (Gd(N03)3-6H2O. A continuación se añade 25 ml_ de agua destilada, para disolver los compuestos anteriores. Se coloca el vaso con la mezcla de los reactivos anteriores sobre una placa calefactora con otro vaso de precipitado de mayor tamaño invertido cubriendo el anterior y papel de aluminio en su base. A continuación se aumenta la temperatura de la placa hasta 300 grados centígrados y se espera unos minutos hasta que se produce la síntesis por combustión en disolución, formándose un material de tipo cermet, con una morfología microesponjosa, y constituido por nanopartículas de níquel metálico soportado sobre un óxido mixto de cerio y gadolinio. Este material se denomina
Figure imgf000017_0001
Ejemplo 7
Se mezcla, en un vaso de precipitado, 1,5620 gramos de glicina, 0,0189 gramos de nitrato de cobre (Cu(N03)2-6H2O), 3,869 gramos de nitrato de cerio (Ce(N03)3-6H2O), 0,4470 gramos de nitrato de gadolinio (Gd(N03)3-6H2O. A continuación se añade 37 mL de agua destilada, para disolver los compuestos anteriores. Se coloca el vaso con la mezcla de los reactivos anteriores sobre una placa calefactora con otro vaso de precipitado de mayor tamaño invertido cubriendo el anterior y papel de aluminio en su base. A continuación se aumenta la temperatura de la placa hasta 300 grados centígrados y se espera unos minutos hasta que se produce la síntesis por combustión en disolución, formándose un material de tipo cermet, con una morfología microesponjosa, y constituido por nanopartículas de níquel metálico soportado sobre un óxido mixto de cerio y gadolinio. Este material se denomina
Figure imgf000017_0002
Ejemplo 8
Se mezcla, en un vaso de precipitado, 1,5620 gramos de glicina, 0,0297 gramos de dihidroxi tetraamin platino (II) ((NH3)4Pt(OH)2'xH2O), 3,8690 gramos de nitrato de cerio (Ce(N03)3-6H2O), 0,4470 gramos de nitrato de gadolinio (Gd(N03)3-6H2O. A continuación se añade 37 mL de agua destilada, para disolver los compuestos anteriores. Se coloca el vaso con la mezcla de los reactivos anteriores sobre una placa calefactora con otro vaso de precipitado de mayor tamaño invertido cubriendo el anterior y papel de aluminio en su base. A continuación se aumenta la temperatura de la placa hasta 300 grados centígrados y se espera unos minutos hasta que se produce la síntesis por combustión en disolución, formándose un material de tipo cermet, con una morfología microesponjosa, y constituido por nanopartículas de níquel metálico soportado sobre un óxido mixto de cerio y gadolinio. Este material se denomina (Cu)o,oi (Ceo,9Gdo,iOi ,95)0.99·
Ejemplo 9
Los materiales preparados según la metodología descrita en los ejemplos 1 a 5 se han ensayado como catalizadores en la reacción inversa de desplazamiento de gas de agua. Estos catalizadores se han elegido para encontrar los límites de uso respecto a las distintas composiciones. El proceso se ha llevado a cabo bajo las siguientes condiciones de reacción: 300000 mLN/h g, 700°C, H2/CO2 = 2, 10% volumen de N2. Se aumenta la temperatura de reacción desde temperatura ambiente hasta la de reacción en la misma mezcla de gases de reacción.
Según los resultados obtenidos (tabla 1), la conversión de CO2 y estabilidad catalítica, varía en función de la proporción de níquel. El catalizador sin níquel es el que, tras requerir de un período de inducción de unas 3 horas, ve aumentada su actividad hacia una conversión estable próxima al 26%. Los otros catalizadores presentan, al comienzo de la reacción, una conversión similar entre el 55 y el 59%, pero experimentan un comportamiento diferente a lo largo de la reacción. Así, aquel con menor proporción de níquel se desactiva ligeramente,
Figure imgf000018_0001
alcanzando, tras 6 horas de reacción, una conversión en torno al 53%, respectivamente. Los otros catalizadores dan lugar a conversiones bastante estables a lo largo de las 6 horas de reacción. Según los resultados obtenidos, se observa una ligera mayor conversión para una proporción molar entre el níquel y el óxido mixto igual a 4:96. Este catalizador experimenta un ligero aumento de la conversión tras 6 horas de reacción, y la conversión obtenida se encuentra, para este tiempo de reacción, prácticamente en el equilibrio termodinámico (que se sitúa en el 59,3% para estas condiciones de reacción). Con respecto a la selectividad a CO (tabla 2), se observa que se encuentra en valores superiores al 96% para todos los catalizadores analizados, siendo CH el compuesto minoritario que se forma y que ajusta el balance de carbono. El catalizador constituido por níquel metálico soportado sobre ceria dopada con lantano ((Ni)0,i(Ceo,gLao,iOi,gs)o,g) muestra elevada actividad y estabilidad, si se compara con su análogo dopado con gadolinio ((Ni)0.i(Ce0,9Lao,iOi ,95)0,9).
Tabla 1. Muestra el porcentaje de conversión del CO2 a lo largo del tiempo reacción (reacción rVYGS) para distintos catalizadores.
Figure imgf000020_0001
Figure imgf000021_0001
Ejemplo 10
Los materiales preparados según la metodología descrita en los ejemplos 6 a 8 se han ensayado como catalizadores en la reacción inversa de desplazamiento de gas de agua. Estos catalizadores se han elegido para analizar la influencia del tipo de fase activa soportada sobre el óxido mixto de cerio-lantánido. El proceso se ha llevado a cabo bajo las siguientes condiciones de reacción: 300000 mLN/h g, 700°C, H2/CO2 = 2, 10% volumen de N2. Se aumenta la temperatura de reacción desde temperatura ambiente hasta la de reacción en la misma mezcla de gases de reacción.
Según los resultados obtenidos (Tabla 3) la conversión de CO2 y selectividad a CO, varían en función del tipo de fase activa. Así, aquellos basado en níquel
Figure imgf000022_0002
producen mayor conversión de CO2 que el basado en cobre Sin embargo,
Figure imgf000022_0001
el basado en platino, es algo menos selectivo a monóxido de carbono, formándose, bajo estas condiciones de reacción, una pequeña proporción de metano.
Figure imgf000023_0001
Ejemplo 11
Se ha determinado la actividad y estabilidad del catalizador (Ni)o.o4(Ce0,gGdo,iOi,g5)o,ge. realizando un test de durabilidad, durante 100 horas de reacción en continuo, para la reacción de rWGS. Las condiciones de reacción son idénticas a las empleadas en el ejemplo 6. Según los resultados obtenidos, el catalizador ve aumentada su actividad hasta un valor de conversión de CO2 muy próximo al equilibrio termodinámico en las primeras 4 horas de reacción, para luego experimentar una desactivación de menos del 6% de conversión en las siguientes 4 horas. A partir de entonces, su actividad permanece prácticamente estable durante 92 horas. Ver Figura 2.
Ejemplo 12
Los materiales
Figure imgf000024_0001
se han ensayado como catalizadores en la reacción de oxidación parcial de metano a gas de síntesis, bajo las siguientes condiciones de reacción: 36600 700°C, utilizando una
Figure imgf000024_0002
mezcla de reacción constituida por N2: 40%; CH4: 40% y O2: 20% (molar). Antes de pasar la mezcla de gases de reacción, la temperatura se aumenta desde temperatura ambiente hasta 700°C, bajo un caudal de nitrógeno de 40 y se mantiene
Figure imgf000024_0003
durante 1 hora.
Los resultados de conversión de metano y rendimiento a hidrógeno en función del tiempo de reacción (6 horas), obtenidos para los catalizadores se muestran en la tabla 4. Para el
Figure imgf000024_0004
catalizador con una relación molar Nhóxido mixto igual a 2:98 se observa una desactivación del mismo con el tiempo de reacción. Por el contrario, para el catalizador con una relación Nkóxido mixto igual a 10:90, se observa una mayor estabilidad, así como valores de conversión de CH4 y rendimiento a hidrógeno superiores. Los valores encontrados se encuentran muy próximos al equilibrio termodinámico para estas condiciones de reacción.
Tabla 4. Muestra el porcentaje de conversión a CH4 y rendimiento a H2 a lo largo del tiempo reacción (reacción oxidación parcial de metano a gas de síntesis) para distintos catalizadores.
Figure imgf000025_0001
Ejemplo 13
Se ha determinado las propiedades texturales de los catalizadores
Figure imgf000026_0001
El protocolo para determinar la porosidad, área superficial y tamaño medio de poro por porosimetría de mercurio fue el siguiente: La muestra se desgasificó a 80 grados centígrados durante 3 horas. Se introdujo una cantidad de muestra comprendida entre 20 y 40 mg en un portamuestras de un porosímetro de mercurio (Autopore IV mercury porosimeter, Micromerítics). A continuación se realizó la porosimetría de intrusión de mercurio, que es una técnica de adsorción que utiliza el mercurio como adsórbate Mediante la aplicación de presión, se fuerza la entrada de mercurio en los poros del sólido. El valor del volumen de mercurio intruido permite calcular el área, distribución por tamaños de poro y porcentaje de porosidad del material. Esta técnica se emplea cuando el material objeto de estudio presenta mesoporos (2-50 nm) y macroporos (> 50nm). Las condiciones de análisis utilizadas fueron: tensión superficial: 484 din/cm); ángulo de contacto: 141 grados; Presión máxima: 60000 psi. La Fig. 3 muestra la distribución de tamaños de poros de los compuestos de fórmula
Figure imgf000026_0002
Tabla 5: Muestra el área total de poro en m2/g, el porcentaje de porosidad y el diámetro medio de poro en μm para cada uno de los siguientes catalizadores
Figure imgf000026_0003
Figure imgf000026_0004

Claims

REIVINDICACIONES
1. Un procedimiento de obtención de un compuesto de fórmula:
Figure imgf000027_0001
donde M es un metal seleccionado de entre Ni, Ru, Rh, Pd, Ir, Pt, Ag, Au o Cu, donde x = 0,0 - 0,4 e y = 0,001 - 0,6,
y donde L se selecciona de entre un lantánido, Y o Se,
caracterizado por que comprende las siguientes etapas:
a) disolver en la mínima cantidad de agua, cantidades estequiométrícas de · Nitrato de Ce,
• sal soluble en agua de un metal seleccionado de entre Ni, Ru, Rh,
Pd, Ir, Pt, Ag, Au o Cu,
. Nitrato de L, Y o Se
y añadir a la disolución de la etapa (a) un relación molar de entre 0,7 y 1 ,0 de combustible con respecto a los nitratos totales,
b) agitar a temperatura ambiente hasta disolución completa de la disolución obtenida en (a), y
c) calentar la disolución obtenida en (b) a una temperatura de entre 200 °C y 600 °C.
2. El procedimiento según la reivindicación 1, caracterizado por que, en la etapa (a), se utiliza como sal de Ni soluble en agua el nitrato de níquel
Figure imgf000027_0005
3. El procedimiento según la reivindicación 1, caracterizado por que, en la etapa (a), se utiliza como sal de Cu soluble en agua el nitrato de cobre
Figure imgf000027_0004
4. El procedimiento según la reivindicación 1, caracterizado por que, en la etapa (a), se utiliza como sal de Pt soluble en agua una sal seleccionada de entre dihidroxi tetraamin platino y nitrato de tetraamin platino (II)
Figure imgf000027_0003
Figure imgf000027_0006
5. El procedimiento según cualquiera de las reivindicaciones 1 a 4, caracterizado por que x es distinto de 0 en el compuesto de fórmula que se obtiene.
Figure imgf000027_0002
6. El procedimiento según la reivindicación 5, caracterizado por que el lantánido se selecciona entre La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb y Lu.
7. El procedimiento según cualquiera de las reivindicaciones 5 ó 6, caracterizado por que el lantánido es Gd.
8. El procedimiento según la reivindicación 7, caracterizado por que
• x tiene un valor de entre 0,05 y 0,2; o
• y tiene un valor de entre 0,001 y 0,15.
9. El procedimiento según cualquiera de las reivindicaciones 5 ó 6, caracterizado por que el lantánido es La.
10. El procedimiento según la reivindicación 9, caracterizado por que
· x tiene un valor de entre 0,05 y 0,2; o
• y tiene un valor de entre 0,001 y 0, 15.
11. El procedimiento según cualquiera de las reivindicaciones 5 ó 6, caracterizado por que el lantánido es Sm.
12. El procedimiento según la reivindicación 11, caracterizado por que
• x tiene un valor de entre 0,05 y 0,2 o
• y tiene un valor de entre 0,001 y 0, 15.
13. El procedimiento según cualquiera de las reivindicaciones 1 a 12, caracterizado por que el combustible utilizado en la etapa (a) se selecciona de entre glicina, urea, ácido cítrico y una combinación de los anteriores.
14. El procedimiento según la reivindicación 13, caracterizado por que la etapa (a) el combustible utilizado es glicina.
15. El procedimiento según cualquiera de las reivindicaciones 1 a 14, caracterizado por que la etapa (c) se lleva a cabo a una temperatura de entre 200 °C y 500 °C.
16. Un compuesto caracterizado por la fórmula caracterizado por
Figure imgf000029_0001
que
• M es un metal seleccionado de entre Ni, Ru, Rh, Pd, Ir, Pt, Ag, Au o Cu,
• x = 0,0 - 0,4 e y = 0,001 - 0,6, y
· L se selecciona de entre un lantánido, Y o Se.
17. El compuesto según la reivindicación 16, caracterizado por que
• M es Ni y
• su fórmula es
Figure imgf000029_0002
o donde x = 0,0 - 0,4 e y = 0,005 - 0,6,
o y donde L se selecciona de entre un lantánido, Y o Se.
18. El compuesto según la reivindicación 16, caracterizado por que
• M es Cu y
· su fórmula es
Figure imgf000029_0003
o donde x = 0,0 - 0,4 e y = 0,005 - 0,6,
o y donde L se selecciona de entre un lantánido, Y o Se.
19. El compuesto según la reivindicación 16, caracterizado por que
· M es Pt y
se obtiene un compuesto de fórmula
Figure imgf000029_0004
o donde x = 0,0 - 0,4 e y = 0,001 - 0,6,
o y donde L se selecciona de entre un lantánido, Y o Se.
20. El compuesto según cualquiera de las reivindicaciones 16 a 20, caracterizado por que presenta un porcentaje de porosidad de entre 70 % y 95 % y un diámetro medio de poro de entre 0,5 \im y 5 μm.
21. El compuesto según cualquiera de las reivindicaciones 16 a 20, caracterizado por que x es distinto de 0.
22. El compuesto según la reivindicación 21 , caracterizado por que el lantánido L se selecciona entre La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb y Lu.
23. El compuesto según cualquiera de las reivindicaciones 21 ó 22, caracterizado por que el lantánido es Gd.
24. El compuesto según la reivindicación 23, caracterizado por que
· x tiene un valor de entre 0,05 y 0,2; e
• y tiene un valor de entre 0,001 y 0,15.
25. El compuesto según cualquiera de las reivindicaciones 21 ó 22, caracterizado por que el lantánido es La.
26. El compuesto según la reivindicación 25, caracterizado por que
• x tiene un valor de entre 0,05 y 0,2; e
• y tiene un valor de entre 0,001 y 0,15.
27. El compuesto según cualquiera de las reivindicaciones 21 ó 22, caracterizado por que el lantánido es Sm.
28. El compuesto según la reivindicación 27, caracterizado por que
• x tiene un valor de entre 0,05 y 0,2; e
· y tiene un valor de entre 0,001 y 0,15.
29. El compuesto según cualquiera de las reivindicaciones 16 a 28, caracterizado por que se obtiene según el procedimiento de las reivindicaciones 1 a 15.
30. El compuesto según la reivindicación 17, caracterizado por que se ha obtenido por el procedimiento según la reivindicación 2.
31. El compuesto según la reivindicación 18, caracterizado por que se ha obtenido por el procedimiento según la reivindicación 3 -
32. El compuesto según la reivindicación 19, caracterizado por que se ha obtenido por el procedimiento según la reivindicación 4.
33. Uso del compuesto según cualquiera de las reivindicaciones 16 a 32, como catalizador.
34. Uso del compuesto según la reivindicación 33 como catalizador en la reacción inversa de desplazamiento de gas de agua.
35. Uso del compuesto según la reivindicación 34, caracterizado por que x es distinto de cero y el lantánido es Gd o La.
36. Uso según la cualquiera de las reivindicaciones 34 o 35, caracterizado por que el catalizador es
Figure imgf000031_0001
37. Uso según cualquiera de las reivindicaciones 34 o 35, caracterizado por que el catalizador es
Figure imgf000031_0002
38. Uso según cualquiera de las reivindicaciones 34 o 35, caracterizado por que el catalizador es
Figure imgf000031_0003
39. Uso del compuesto según la reivindicación 33 como catalizador en la reacción de oxidación parcial de metano a gas de síntesis.
40. Uso del compuesto según la reivindicación 39, caracterizado por que x es distinto de cero y el lantánido es Gd o Sm.
41. Uso del compuesto según cualquiera de las reivindicaciones 39 o 40, donde el catalizador es
Figure imgf000031_0004
PCT/ES2017/070863 2016-12-29 2017-12-28 PROCEDIMIENTO DE OBTENCIÓN DE CATALIZADORES DE FÓRMULA My(Ce1-xLxO2-x/2)1-y PARA SU USO EN LA REACCIÓN INVERSA DE DESPLAZAMIENTO DE GAS DE AGUA Y OXIDACIÓN PARCIAL DE METANO A GAS DE SÍNTESIS MEDIANTE MÉTODO DE COMBUSTIÓN EN DISOLUCIÓN WO2018122439A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3048958A CA3048958A1 (en) 2016-12-29 2017-12-28 Method for producing catalysts of formula my(ce1-xlxo2-x/2)1-y for the use thereof in the reverse water-gas shift reaction and partial oxidation of methane into synthesis gas by means of the method of combustion in solution
US16/474,706 US11253847B2 (en) 2016-12-29 2017-12-28 Method for producing catalysts of formula my(Ce1-xLxO2-x/2)1-y for the use thereof in the reverse water-gas shift reaction and partial oxidation of methane into synthesis gas by means of the method of combustion in solution
EP17885475.8A EP3586959A4 (en) 2016-12-29 2017-12-28 PROCESS FOR OBTAINING CATALYZERS OF FORMULA MY (CE1-XLXO2-X / 2) 1-Y FOR USE IN THE REVERSE REACTION OF GAS DISPLACEMENT TO WATER AND PARTIAL OXIDATION OF METHANE TO SYNTHESIS GAS BY A PROCESS FROM COMBUSTION TO DISSOLUTION
CN201780085953.4A CN110267741A (zh) 2016-12-29 2017-12-28 借助溶液中燃烧的方法生产用于逆水煤气变换反应和甲烷部分氧化为合成气的式My(Ce1-xLxO2-x/2)1-y的催化剂的方法
AU2017385802A AU2017385802A1 (en) 2016-12-29 2017-12-28 Method for producing catalysts of formula My(Ce1-xLxO2-x/2)1-y

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ES201631709 2016-12-29
ESP201631709 2016-12-29
ES201730807A ES2674434B2 (es) 2016-12-29 2017-06-16 PROCEDIMIENTO DE OBTENCIÓN DE CATALIZADORES DE FÓRMULA My(Ce1-xLxO2-x/2)1-y PARA SU USO EN LA REACCIÓN INVERSA DE DESPLAZAMIENTO DE GAS DE AGUA Y OXIDACIÓN PARCIAL DE METANO A GAS DE SÍNTESIS MEDIANTE MÉTODO DE COMBUSTIÓN EN DISOLUCIÓN
ESP201730807 2017-06-16

Publications (1)

Publication Number Publication Date
WO2018122439A1 true WO2018122439A1 (es) 2018-07-05

Family

ID=62645545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070863 WO2018122439A1 (es) 2016-12-29 2017-12-28 PROCEDIMIENTO DE OBTENCIÓN DE CATALIZADORES DE FÓRMULA My(Ce1-xLxO2-x/2)1-y PARA SU USO EN LA REACCIÓN INVERSA DE DESPLAZAMIENTO DE GAS DE AGUA Y OXIDACIÓN PARCIAL DE METANO A GAS DE SÍNTESIS MEDIANTE MÉTODO DE COMBUSTIÓN EN DISOLUCIÓN

Country Status (8)

Country Link
US (1) US11253847B2 (es)
EP (1) EP3586959A4 (es)
CN (1) CN110267741A (es)
AR (1) AR110689A1 (es)
AU (1) AU2017385802A1 (es)
CA (1) CA3048958A1 (es)
ES (1) ES2674434B2 (es)
WO (1) WO2018122439A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11827521B2 (en) 2021-12-14 2023-11-28 Industrial Technology Research Institute Method for selectively chemically reducing CO2 to form CO

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230005539A (ko) * 2021-07-01 2023-01-10 주식회사 디알엠카탈리스트 메탄 건식 개질용 나노촉매
CN113745540B (zh) * 2021-09-06 2023-05-16 中国矿业大学 一种直接醇类燃料电池阳极重整层及其制备方法和应用
CN114768804B (zh) * 2022-04-10 2023-11-10 南京大学 一种固溶体光热催化co2转化反应的应用
WO2024000468A1 (en) * 2022-06-30 2024-01-04 Bp P.L.C. Palladium and platinum catalysts for reverse water-gas shift processes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020193247A1 (en) * 2001-05-18 2002-12-19 Michael Krumpelt Autothermal hydrodesulfurizing reforming catalyst
CN103183346A (zh) 2012-12-13 2013-07-03 浙江海洋学院 一种逆水煤气变换催化剂用于逆水煤气变换反应的方法
CN103418392A (zh) 2012-05-14 2013-12-04 浙江海洋学院 一种逆水煤气变换催化剂及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101049566A (zh) * 2007-05-23 2007-10-10 天津大学 用于甲烷部分氧化制合成气的Ni基催化剂及其制备方法
WO2013135710A2 (de) * 2012-03-13 2013-09-19 Bayer Intellectual Property Gmbh Verfahren zur durchführung der rwgs-reaktion in einem rohrbündelreaktor
CN103230799B (zh) * 2013-04-08 2016-06-08 中国科学院广州能源研究所 一种用于逆水煤气变换反应的Cu-Zn基催化剂、其制备方法和应用
SG2013050877A (en) * 2013-06-28 2015-01-29 Agency Science Tech & Res Methanation catalyst
CN104971727B (zh) * 2015-06-19 2018-07-20 南昌大学 一种镍基甲烷水蒸气重整制氢催化剂的制备方法
CN105289616A (zh) * 2015-11-04 2016-02-03 上海大学 一种二氧化碳甲烷化Ni/CexZr1-xO2催化剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020193247A1 (en) * 2001-05-18 2002-12-19 Michael Krumpelt Autothermal hydrodesulfurizing reforming catalyst
CN103418392A (zh) 2012-05-14 2013-12-04 浙江海洋学院 一种逆水煤气变换催化剂及其制备方法
CN103183346A (zh) 2012-12-13 2013-07-03 浙江海洋学院 一种逆水煤气变换催化剂用于逆水煤气变换反应的方法

Non-Patent Citations (23)

* Cited by examiner, † Cited by third party
Title
A. GOGUETF.C. MEUNIERD. TIBILETTIJ.P. BREENR. BURCH, J. PHYS. CHEM. B., vol. 108, pages 20240 - 20246
A. P. E. YORKT. XIAOM.L.H. GREEN, TOPICS IN CATALYSIS, vol. 22, 2003, pages 345 - 358
B. LUK. KAWAMOTO, RSC ADV., vol. 2, 2012, pages 6800
B.C. ENGERR. LODENGA. HOLMEN, APPLIED CATALYSIS A: GENERAL, vol. 346, 2008, pages 1 - 27
BETTINA RFSCHAHENGYONG TUAANDREAS O. STFRMERAAXEL C. MULLERULRICH STIMMING: "Electrochemical characterization of Ni-Ce0.9Gd0.102d for SOFC anodes", SOLID STATE IONICS, vol. 175, 2004, pages 113 - 117
C. BERGER-KARIN ET AL., J. CATAL., vol. 280, 2011, pages 116
ISMAGILOV I Z ET AL.: "Nanoscale control during synthesis of Me/La203, Me/CexGdl?xOyand Me/CexZrl?xOy(Me=Ni, Pt, Pd, Rh) catalysts for autothermal reforming of methane", CATALYSIS TODAY, vol. 210, no. 10-18, 20 January 2013 (2013-01-20), XP028561568, ISSN: 0920-5861 *
J. BARBER ET AL., CATAL. LETT., vol. 87, 2003, pages 211
L. WANGH. LIUY. CHENR. ZHANGS. YANG, CHEM. LETT., vol. 42, 2013, pages 682 - 683
L. WANGH. LIUY. LIUY. CHENS. YANG, J. RARE EARTHS, vol. 31, 2013, pages 559
L. WANGS. ZHANGY. [LIU, J. RARE EARTHS, vol. 26, 2008, pages 66
LIDIA PINO ET AL.: "Hydrogen production by methane tri-reforming process over Ni-ceria catalysts: Effect of The-doping", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 104, no. 64-73, 22 February 2011 (2011-02-22), XP028190402, ISSN: 0926-3373 *
M. ARESTAA. DIBENEDETTOA. ANGELINI, CHEM. REV., vol. 114, 2014, pages 1709 - 1742
M. D. POROSOFFB. YANJ.G. CHEN, ENERGY ENVIRON. SCI., vol. 9, 2016, pages 62 - 73
M. D. SALAZAR-VILLAPANDO ET AL., INT. J HYDROGEN ENERGY, vol. 34, 2009, pages 9723
MORFIN FRANCK ET AL.: "Synergy between hydrogen and ceria in Pt- catalyzed CO oxidation: An investigation on Pt-Ce02catalysts synthesized by solution combustion", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 197, no. 2-13, 27 January 2016 (2016-01-27), pages 2 - 13, XP029633093, ISSN: 0926-3373 *
PATIL, K.C.MIMANI, T.: "Solution combustion synthesis of nanoscale oxides and their composites", MATER. PHYS. MECH., vol. 4, 2001, pages 134 - 137, XP002379501
REDDY, LANKELA H. ET AL.: "A rapid microwave-assisted solution combustion synthesis of CuO promoted CeO2-MxOy (M = Zr, The, Pr and Sm) catalysts for CO oxidation", APPLIED CATALYSIS A: GENERAL, vol. 445, 20 August 2012 (2012-08-20), pages 297 - 305, XP055517465 *
S. S. KIMK. H. PARKS. C. HONG, FUEL PROCESS. TECHNOL., vol. 108, 2013, pages 47
S.S. KIMH.H. LEES.C. HONG, APPL. CATAL., 2012, pages 423 - 424
See also references of EP3586959A4
W. WANGS. WANGX. MAJ. GONG, CHEM. SOC. REV., vol. 40, 2011, pages 3703 - 3727
Y. H. HUE. RUCKENSTEIN, ADV. CATAL., vol. 48, 2004, pages 297 - 345

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11827521B2 (en) 2021-12-14 2023-11-28 Industrial Technology Research Institute Method for selectively chemically reducing CO2 to form CO
US11981573B2 (en) 2021-12-14 2024-05-14 Industrial Technology Research Institute Catalyst for selectively chemically reducing CO2 to form CO

Also Published As

Publication number Publication date
ES2674434A1 (es) 2018-06-29
CA3048958A1 (en) 2018-07-05
US20200406246A1 (en) 2020-12-31
AU2017385802A1 (en) 2019-08-08
AR110689A1 (es) 2019-04-24
US11253847B2 (en) 2022-02-22
EP3586959A1 (en) 2020-01-01
CN110267741A (zh) 2019-09-20
EP3586959A4 (en) 2020-10-07
ES2674434B2 (es) 2018-12-04

Similar Documents

Publication Publication Date Title
Zhang et al. Steam reforming of methane: Current states of catalyst design and process upgrading
Bian et al. A review on perovskite catalysts for reforming of methane to hydrogen production
Yi et al. Catalytic removal NO by CO over LaNi0. 5M0. 5O3 (M= Co, Mn, Cu) perovskite oxide catalysts: tune surface chemical composition to improve N2 selectivity
WO2018122439A1 (es) PROCEDIMIENTO DE OBTENCIÓN DE CATALIZADORES DE FÓRMULA My(Ce1-xLxO2-x/2)1-y PARA SU USO EN LA REACCIÓN INVERSA DE DESPLAZAMIENTO DE GAS DE AGUA Y OXIDACIÓN PARCIAL DE METANO A GAS DE SÍNTESIS MEDIANTE MÉTODO DE COMBUSTIÓN EN DISOLUCIÓN
Gao et al. Syngas production via combined dry and steam reforming of methane over Ni-Ce/ZSM-5 catalyst
Sharifianjazi et al. A review on recent advances in dry reforming of methane over Ni-and Co-based nanocatalysts
Sun et al. Ni/Ce–Zr–O catalyst for high CO2 conversion during reverse water gas shift reaction (RWGS)
Muroyama et al. Carbon dioxide methanation over Ni catalysts supported on various metal oxides
Tada et al. Promotion of CO2 methanation activity and CH4 selectivity at low temperatures over Ru/CeO2/Al2O3 catalysts
Summa et al. Dry and steam reforming of methane. Comparison and analysis of recently investigated catalytic materials. A short review.
Su et al. Modifying perovskite-type oxide catalyst LaNiO3 with Ce for carbon dioxide reforming of methane
Niazi et al. Cu, Mg and Co effect on nickel-ceria supported catalysts for ethanol steam reforming reaction
Moradi et al. Effects of partial substitution of Ni by Cu in LaNiO3 perovskite catalyst for dry methane reforming
Hu et al. Hydrogen production by sorption-enhanced steam reforming of acetic acid over Ni/CexZr1− xO2-CaO catalysts
Tao et al. Syngas production by CO2 reforming of coke oven gas over Ni/La2O3–ZrO2 catalysts
Han et al. Highly active and anticoke Ni/CeO2 with ultralow Ni loading in chemical looping dry reforming via the strong metal–support interaction
JP6358716B2 (ja) 燃料電池用途のディーゼル燃料加工からメタンリッチガス生成のためのNi/CGOおよびNi−Ru/CGO系予備改質触媒調合物
Erri et al. Novel perovskite-based catalysts for autothermal JP-8 fuel reforming
Pinzón et al. Ammonia as a carrier for hydrogen production by using lanthanum based perovskites
Rahmat et al. Hydrogen rich syngas from CO2 reforming of methane with steam catalysed by facile fusion-impregnation of iron and cobalt loaded MgAl2O4 catalyst with minimal carbon deposits
Dang et al. Dendritic layered Ni/Al2O3 derived from NiAl2O4 as high-performance catalyst for dry reforming of methane
Abasaeed et al. The influence of Ni stability, redox, and lattice oxygen capacity on catalytic hydrogen production via methane dry reforming in innovative metal oxide systems
Voskanyan et al. Durable ruthenium oxide/ceria catalyst with ultralarge mesopores for low-temperature CO oxidation
Córdoba et al. Preferential oxidation of CO in excess of hydrogen over Au/CeO2-ZrO2 catalysts
JP2004344721A (ja) 酸素含有炭化水素の改質触媒、それを用いた水素又は合成ガスの製造方法及び燃料電池システム

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3048958

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017385802

Country of ref document: AU

Date of ref document: 20171228

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017885475

Country of ref document: EP

Effective date: 20190729