WO2018120877A1 - 偏转轴相交于反射镜表面的低高度双轴偏转装置及方法 - Google Patents

偏转轴相交于反射镜表面的低高度双轴偏转装置及方法 Download PDF

Info

Publication number
WO2018120877A1
WO2018120877A1 PCT/CN2017/099189 CN2017099189W WO2018120877A1 WO 2018120877 A1 WO2018120877 A1 WO 2018120877A1 CN 2017099189 W CN2017099189 W CN 2017099189W WO 2018120877 A1 WO2018120877 A1 WO 2018120877A1
Authority
WO
WIPO (PCT)
Prior art keywords
deflection
mirror
piezoelectric ceramic
elastic
ring
Prior art date
Application number
PCT/CN2017/099189
Other languages
English (en)
French (fr)
Inventor
徐明龙
宋思扬
田征
冯勃
邵恕宝
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2018120877A1 publication Critical patent/WO2018120877A1/zh
Priority to US16/411,047 priority Critical patent/US10634871B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/198Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors with means for adjusting the mirror relative to its support
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0858Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by piezoelectric means

Definitions

  • the invention relates to a biaxial deflection mirror device and an implementation method thereof, in particular to a low-level biaxial deflection device and method for intersecting a deflection axis with a mirror surface.
  • piezoelectric ceramics and flexible hinge structures can be used to achieve multi-axis deflection.
  • the current technology still has some problems.
  • the piezoelectric deflection mechanism currently on the market generally has a relatively high longitudinal dimension, and the required installation space is required. The depth is large, and the height also limits the fundamental frequency of the structure, reducing reliability.
  • an object of the present invention is to provide a low height at which the yaw axis intersects the surface of the mirror.
  • the dual-axis deflection device and method use a piezoelectric ceramic to drive the mirror device, and adopt a sinking mirror mounting structure, so that the structural deflection center is located on the mirror surface, and the device also has a compact structure, especially having a height. Low, fast deflection response and high precision.
  • a low-profile biaxial deflection device with a yaw axis intersecting the surface of the mirror comprising a base 1, a first fixed support 2-1 mounted on the base 1, a second fixed support 2-2, and a third fixed support 2 - 3 and the fourth fixed support 2 - 4, the first elastic kit ring 3 - 1 fixed at one end to the first fixed support 2 - 1 , and the first end fixed to the second fixed support 2 - 2 a second elastic kite ring 3 ⁇ 2, a third elastic parison ring 3 ⁇ 3 fixed at one end to the third fixed support 2 ⁇ 3, and a fourth elastic parison shaped at one end fixed to the fourth fixed support 2 ⁇ 4 Ring 3 ⁇ 4, first piezoelectric ceramic 4 ⁇ 1 horizontally mounted in the first elastic par piece ring 3 ⁇ 1, and second piezoelectric ceramic 4 ⁇ 2 horizontally mounted in the second elastic par piece ring 3 ⁇ 2 a third piezoelectric ceramic 4-3 mounted horizontally in the third elastic sprocket ring 3 ⁇ 3, and a fourth piezoelectric
  • the low-axis biaxial deflection device with the yaw axis intersecting the mirror surface realizes a biaxial deflection method, and differentially drives the third piezoelectric ceramic 4-3 and the fourth piezoelectric ceramic 4-4 to push the deflection support 5 Movement, that is, deflection about the X-axis direction; differentially driving the first piezoelectric ceramic 4-1 and the second piezoelectric ceramic 4-2, pushing the deflection support 5 to move, that is, achieving deflection around the y-axis direction, achieving deflection
  • the shaft intersects the biaxial deflection of the surface of the mirror 7.
  • the specific method is: when the mirror 7 is deflected in the forward direction around the X axis, the third piezoelectric ceramic 4 ⁇ 3 and the fourth piezoelectric ceramic 4 ⁇ 4 operate in a differential manner, and the fourth piezoelectric ceramic 4 ⁇ 4 extends.
  • the third piezoelectric ceramic 4-3 is shortened, and the linear displacement output of the piezoelectric ceramic is applied to the third elastic kit ring 3 ⁇ 3 and the fourth elastic kit ring 3 ⁇ 4, and the third elastic kit ring 3 - 3 is elongated in the short axis direction, and the short axis direction of the fourth elastic kit ring 3 - 4 is shortened, and the deflection support base 5 is displaced in the negative direction along the Y axis, and the deflection support base 5 and the mirror carrier 6 are subjected to the first
  • the principle is the same, when the X-axis is deflected negatively, the third piezoelectric ceramic 4 ⁇ 3 and the fourth piezoelectric ceramic 4 ⁇ 4 also work in a differential manner, and the fourth piezoelectric ceramic 4 ⁇ 4 is shortened
  • first piezoelectric ceramic 4 ⁇ 1 and the second piezoelectric ceramic 4 ⁇ 2 work in a differential manner, and when one piezoelectric ceramic is elongated, the other piezoelectric ceramic is shortened in an equal amount, that is, the carrying mirror 7 is realized around the Y.
  • the electric ceramic 4 ⁇ 3 and the fourth piezoelectric ceramic 4 ⁇ 4 work together to realize the control of the biaxial deflection of the mirror. Since the yaw axis X and the yaw axis Y intersect on the upper surface of the mirror 7, the mirror longitudinal direction is reduced. Optical path control error caused by displacement.
  • the present invention has the following advantages:
  • Piezoelectric ceramic is used to push the flexible hinge to realize mirror deflection. There is no friction and gap error, and the deflection adjustment response is fast and the precision is high.
  • the structure has a low longitudinal height and a compact structure, which is convenient for installation and use in a small space, especially in a case where the longitudinal depth is low.
  • the yaw axes are orthogonal to each other, and the yaw axis is coplanar with the mirror surface, which reduces the optical path control error caused by the longitudinal translation of the mirror surface.
  • Figure 1 is a schematic view of the structure of the present invention.
  • Figure 2 is a schematic view of the explosion of the present invention.
  • Figure 3 is a plan view of the present invention.
  • Figure 4 is a schematic diagram of the principle of the present invention.
  • a low-profile dual-axis deflection device with a yaw axis intersecting the surface of the mirror includes a base 1 and a first fixed support 2-1 mounted on the base 1. a second fixed support 2-2, a third fixed support 2-3 and a fourth fixed support 2-4, and a first elastic form ring 3 ⁇ 1 fixed at one end to the first fixed support 2 ⁇ 1, a second elastic par piece ring 3-2 fixed at one end to the second fixed support 2-2, one end fixed at the third a third elastic sprocket ring 3 ⁇ 3 on the fixed support 2 ⁇ 3, and a fourth elastic sprocket ring 3 ⁇ 4 fixed at one end to the fourth fixed support 2 ⁇ 4, horizontally mounted on the first elastic sprocket ring
  • a second connecting base 8-2 connected and fixed to the second fixed support 2-2, connected to the mirror carrying platform 6 via a flexible hinge and fixed to the third fixed support 2-3 a pedestal 8 ⁇ 3, a fourth connecting station 8 ⁇ 4 connected to the mirror carrying platform 6 via a flexible hinge and fixed to the fourth fixed support 2 ⁇ 4;
  • the second elastic par piece ring 3 ⁇ 2 is located on the X axis and is symmetric about the Y axis
  • the third elastic par piece ring 3 ⁇ 3 and the fourth elastic par piece ring 3 ⁇ 4 are located on the Y axis and are symmetric about the X axis;
  • the mirror 7 is mounted in a settling manner, and is mounted inside the mirror carrying platform 6, and the upper surface of the mirror 7 is connected to the first connecting base 8-1, the second connecting base 8-2, and the third connecting platform 8-3.
  • the flexible hinge center line connected to the fourth connecting station 8-4 is in the same plane to ensure that the yaw axis meets
  • the low-profile biaxial deflection device with the yaw axis intersecting the mirror surface described above can realize the biaxial deflection with the mirror center as the deflection center; when the mirror (7) mirror is deflected forward about the X axis, the third pressure
  • the electric ceramic 4 ⁇ 3 and the fourth piezoelectric ceramic 4 ⁇ 4 adopt the differential side Working, the fourth piezoelectric ceramic 4-4 is elongated, the third piezoelectric ceramic 4-3 is shortened, and the linear displacement output of the piezoelectric ceramic is applied to the third elastic kit ring 3 ⁇ 3 and the fourth elastic kite.
  • the third elastic zither ring 3 ⁇ 3 is elongated in the short axis direction
  • the fourth elastic sprocket ring 3 ⁇ 4 is shortened in the short axis direction
  • the deflection support 5 is displaced in the negative direction along the Y axis, and the deflection support is supported.
  • the seat 5 and the mirror carrying platform 6 are supported by the first connecting platform 8-1, the second connecting platform 8-2, the third connecting platform 8-3, the fourth connecting platform 8 ⁇ 4 and the flexible hinge thereof.
  • the mirror 7 is deflected forward in the X-axis; as in the principle, when the X-axis is deflected negatively, the third piezoelectric ceramic 4-3 and the fourth piezoelectric ceramic 4-4 also operate in a differential manner, fourth The piezoelectric ceramic 4-4 is shortened, and the third piezoelectric ceramic 4-3 is equally elongated, that is, the negative deflection of the carrying mirror 7 about the X-axis is achieved.
  • the first piezoelectric ceramic 4 ⁇ 1 and the second piezoelectric ceramic 4 ⁇ 2 work in a differential manner, and when one piezoelectric ceramic is elongated, the other piezoelectric ceramic is shortened in an equal amount, that is, the carrying mirror 7 is realized around the Y.
  • the biaxial deflection of the shaft; the first piezoelectric ceramic 4-1, the second piezoelectric ceramic 4-2, the third piezoelectric ceramic 4-3 and the fourth piezoelectric ceramic 4-4 cooperate to achieve biaxial deflection of the mirror
  • the control since the yaw axis X and the yaw axis Y intersect on the upper surface of the mirror 7, reduces the optical path control error due to the longitudinal displacement of the mirror.
  • the operation principle of the device for pushing the deflection of the mirror 7 is described.
  • the structure pushes the mirror 7 to deflect around the Y-axis which is coplanar with the mirror surface
  • the first piezoelectric ceramic 4-1 is elongated
  • the first A elastic kite ring 3 ⁇ 1 is elongated in the long axis direction, and the short axis direction is shortened
  • the second piezoelectric ceramic 4 ⁇ 2 is shortened, which drives the second elastic kit ring to shorten the long axis direction, and the short axis direction is elongated, and the elastic shape is elastic.
  • the short axis direction of the ring 3 ⁇ 1 shortens the pulling of the deflection support base 5, and the short axis direction of the elastic kite ring 3 ⁇ 2 is elongated to push the deflection support base 5, the deflection support base 5 and the mirror bearing stage 6 And the mirror 7 is deflected about the Y-axis coplanar with the mirror 7 under the constraints of the first connecting station 8-1 and its flexible hinge, and the second connecting table 8-2 and its flexible hinge.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Prostheses (AREA)

Abstract

一种偏转轴相交于反射镜(7)表面的低高度双轴偏转装置及方法,偏转装置主要由三个部分组成:用于固定安装的底座(1)和固定支座(2-1到2-4);提供偏转驱动的弹性筝形环(3-1到3-4)和偏转支撑座(5),以及反射镜承载台(6)、反射镜(7)以及约束反射镜承载台(6)产生偏转位移的柔性铰链和其连接台(8-1到8-4)。四个压电陶瓷(4-1到4-4)实现偏转角度的输出控制,具有控制精度高,响应快的特点;压电陶瓷(4-1到4-4)分为两组,采用差动的方式驱动同组的压电陶瓷(4-1和4-2或4-3和4-4),即可实现对应的单轴偏转位移,同时驱动四个压电陶瓷(4-1到4-4)即可实现反射镜(7)的双轴偏转;装置采用反射镜(7)沉降的结构形式,偏转轴相交于反射镜(7)表面,因此减少了偏转时镜面纵向位移所带来的光路控制误差;同时,结构具有低矮、紧凑的结构特征,所需的安装使用空间小。

Description

偏转轴相交于反射镜表面的低高度双轴偏转装置及方法 技术领域
本发明涉及一种双轴偏转反射镜装置及其实施方法,具体为一种偏转轴相交于反射镜表面的低高度双轴偏转装置及方法。
背景技术
近年来,天文望远镜、显微镜、等精密光学***在航天工程、生育技术等领域中的应用日益广泛,对精密光路控制提出了更高的使用需求。针对这种需求,可以使用压电陶瓷与柔性铰链结构配合实现多轴偏转,但是目前的技术仍然存在一些问题,首先,目前市面上的压电偏转机构纵向尺寸一般较高,所需要的安装空间纵深较大,同时高度也限制了结构基频,降低了可靠性。其次,受限于目前所采用的柔性铰链位置设计,反射镜输出偏角时,镜面中心会产生高度方向的位移,反射光点所在的镜面中心与结构偏转轴不相交,因此精度还有待提高。
发明内容
为了克服上述现有技术存在的问题,消除反射光点与结构偏转轴不重合所造成的光路控制误差,同时降低结构高度,本发明的目的在于提供一种偏转轴相交于反射镜表面的低高度双轴偏转装置及方法,使用压电陶瓷对反射镜装置进行驱动,采用沉降式反射镜安装结构,使得结构偏转中心位于反射镜面上,同时,该装置还具有紧凑的结构形式,特别是具有高度较低,偏转响应速度快,精度高的特点。
为达到上述目的,本发明所采用的技术方案是:
一种偏转轴相交于反射镜表面的低高度双轴偏转装置,包括底座1,安装在底座1上的第一固定支座2‐1、第二固定支座2‐2、第三固定支座2‐3和第四固定支座2‐4,一端固定在第一固定支座2‐1上的第一弹性筝形环3‐1,一端固定在第二固定支座2‐2上的第二弹性筝形环3‐2,一端固定在第三固定支座2‐3上的第三弹性筝形环3‐3,一端固定在第四固定支座2‐4上的第四弹性筝形环3‐4,水平安装于第一弹性筝形环3‐1内的第一压电陶瓷4‐1,水平安装于第二弹性筝形环3‐2内的第二压电陶瓷4‐2,水平安装于第三弹性筝形环3‐3内的第三压电陶瓷4‐3,水平安装于第四弹性筝形环3‐4内的第四压电陶瓷4‐4,通过柔性铰链与第一弹性筝形环3‐1、第二弹性筝形环3‐2,第三弹性筝形环3‐3和第四弹性筝形环3‐4连接的偏转支撑座5,与偏转支撑座5固定连接的反射镜承载台6,放置在反射镜承载台6上方的反射镜7,通过柔性铰链与反射镜承载台6连接且固定在第一固定支座2‐1上的第一连接台8‐1,通过柔性铰链与反射镜承载台6连接且固定在第二固定支座2‐2上的第二连接台8‐2,通过柔性铰链与反射镜承载台6连接且固定在第三固定支座2‐3上的第三连接台8‐3,通过柔性铰链与反射镜承载台6连接且固定在第四固定支座2‐4上的第四连接台8‐4;所述第一弹性筝形环3‐1和第二弹性筝形环3‐2位于X轴上且关于Y轴对称,第三弹性筝形环3‐3和第四弹性筝形环3‐4位于Y轴上且关于X轴对称;所述反射镜7采用了沉降的安装方式,安装在反射镜承载台6的内部,且反射镜 7的上表面与第一连接台8‐1、第二连接台8‐2、第三连接台8‐3和第四连接台8‐4所连接的柔性铰链中线处于同一平面,以保证偏转轴线交汇于反射镜表面。
所述的偏转轴相交于反射镜表面的低高度双轴偏转装置实现双轴偏转的方法,差动驱动第三压电陶瓷4‐3与第四压电陶瓷4‐4,推动偏转支撑座5运动,即实现围绕X轴方向的偏转;差动驱动第一压电陶瓷4‐1与第二压电陶瓷4‐2,推动偏转支撑座5运动,即实现围绕y轴方向的偏转,实现偏转轴相交于反射镜7表面的双轴偏转。
具体方法为:使反射镜7镜面绕X轴正向偏转时,第三压电陶瓷4‐3与第四压电陶瓷4‐4采用差动的方式工作,第四压电陶瓷4‐4伸长,第三压电陶瓷4‐3等量缩短,压电陶瓷的线性位移输出加载于第三弹性筝形环3‐3和第四弹性筝形环3‐4上,第三弹性筝形环3‐3短轴方向伸长,第四弹性筝形环3‐4短轴方向缩短,推动偏转支撑座5沿Y轴负向产生位移,偏转支撑座5以及反射镜承载台6由于受到第一连接台8‐1、第二连接台8‐2、第三连接台8‐3、第四连接台8‐4及其柔性铰链的约束作用,承载反射镜7绕X轴正向偏转;与之原理相同,绕X轴负向偏转时,第三压电陶瓷4‐3与第四压电陶瓷4‐4也采用差动的方式工作,第四压电陶瓷4‐4缩短,第三压电陶瓷4‐3等量伸长,即实现承载反射镜7绕X轴负向偏转;
同理,第一压电陶瓷4‐1与第二压电陶瓷4‐2采用差动方式工作,一个压电陶瓷伸长时另一个压电陶瓷等量缩短,即实现承载反射镜7绕Y轴双向偏转;第一压电陶瓷4‐1、第二压电陶瓷4‐2、第三压 电陶瓷4‐3和第四压电陶瓷4‐4协同工作,即实现对反射镜双轴偏转的控制,由于偏转轴X和偏转轴Y相交于反射镜7上表面,因此减少了由于镜面纵向位移所带来的光路控制误差。
和现有技术相比较,本发明具有如下优点:
1、采用压电陶瓷推动柔性铰链实现镜面偏转,无摩擦、间隙所带来的误差,偏转调节响应速度快,精度高。
2、结构纵向高度较低,结构紧凑,便于在狭小空间,特别是纵向深度较低的场合安装使用。
3、偏转轴相互正交,且偏转轴与镜面共面,减小了镜面纵向平移所导致的光路控制误差。
附图说明
图1为本发明的结构示意图。
图2为本发明的***示意图。
图3为本发明的俯视图。
图4为本发明的原理示意图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细说明。
如图1、图2和图3所示,本发明一种偏转轴相交于反射镜表面的低高度双轴偏转装置,包括底座1,安装在底座1上的第一固定支座2‐1、第二固定支座2‐2、第三固定支座2‐3和第四固定支座2‐4,一端固定在第一固定支座2‐1上的第一弹性筝形环3‐1,一端固定在第二固定支座2‐2上的第二弹性筝形环3‐2,一端固定在第三 固定支座2‐3上的第三弹性筝形环3‐3,一端固定在第四固定支座2‐4上的第四弹性筝形环3‐4,水平安装于第一弹性筝形环3‐1内的第一压电陶瓷4‐1,水平安装于第二弹性筝形环3‐2内的第二压电陶瓷4‐2,水平安装于第三弹性筝形环3‐3内的第三压电陶瓷4‐3,水平安装于第四弹性筝形环3‐4内的第四压电陶瓷4‐4,通过柔性铰链与第一弹性筝形环3‐1、第二弹性筝形环3‐2,第三弹性筝形环3‐3和第四弹性筝形环3‐4连接的偏转支撑座5,与偏转支撑座5固定连接的反射镜承载台6,放置在反射镜承载台6上方的反射镜7,通过柔性铰链与反射镜承载台6连接且固定在第一固定支座2‐1上的第一连接台8‐1,通过柔性铰链与反射镜承载台6连接且固定在第二固定支座2‐2上的第二连接台8‐2,通过柔性铰链与反射镜承载台6连接且固定在第三固定支座2‐3上的第三连接台8‐3,通过柔性铰链与反射镜承载台6连接且固定在第四固定支座2‐4上的第四连接台8‐4;所述第一弹性筝形环3‐1和第二弹性筝形环3‐2位于X轴上且关于Y轴对称,第三弹性筝形环3‐3和第四弹性筝形环3‐4位于Y轴上且关于X轴对称;所述反射镜7采用了沉降的安装方式,安装在反射镜承载台6的内部,且反射镜7的上表面与第一连接台8‐1、第二连接台8‐2、第三连接台8‐3和第四连接台8‐4所连接的柔性铰链中线处于同一平面,以保证偏转轴线交汇于反射镜表面。
上述所述的偏转轴相交于反射镜表面的低高度双轴偏转装置,能实现以镜面中心作为偏转中心的双轴偏转;使反射镜(7)镜面绕X轴正向偏转时,第三压电陶瓷4‐3与第四压电陶瓷4‐4采用差动的方 式工作,第四压电陶瓷4‐4伸长,第三压电陶瓷4‐3等量缩短,压电陶瓷的线性位移输出加载于第三弹性筝形环3‐3和第四弹性筝形环3‐4上,第三弹性筝形环3‐3短轴方向伸长,第四弹性筝形环3‐4短轴方向缩短,推动偏转支撑座5沿Y轴负向产生位移,偏转支撑座5以及反射镜承载台6由于受到第一连接台8‐1、第二连接台8‐2,第三连接台8‐3,第四连接台8‐4及其柔性铰链的约束作用,承载反射镜7绕X轴正向偏转;与之原理相同,绕X轴负向偏转时,第三压电陶瓷4‐3与第四压电陶瓷4‐4也采用差动的方式工作,第四压电陶瓷4‐4缩短,第三压电陶瓷4‐3等量伸长,即实现承载反射镜7绕X轴负向偏转。
同理,第一压电陶瓷4‐1与第二压电陶瓷4‐2采用差动方式工作,一个压电陶瓷伸长时另一个压电陶瓷等量缩短,即实现承载反射镜7绕Y轴双向偏转;第一压电陶瓷4‐1、第二压电陶瓷4‐2、第三压电陶瓷4‐3和第四压电陶瓷4‐4协同工作,即实现对反射镜双轴偏转的控制,由于偏转轴X和偏转轴Y相交于反射镜7上表面,因此减少了由于镜面纵向位移所带来的光路控制误差。
如图4所示,描述了该装置推动反射镜7偏转的工作原理,当结构推动反射镜7围绕与镜面共面的Y轴发生偏转时,第一压电陶瓷4‐1伸长,带动第一弹性筝形环3‐1长轴方向伸长,短轴方向缩短,第二压电陶瓷4‐2缩短,带动第二弹性筝形环长轴方向缩短,短轴方向伸长,弹性筝形环3‐1的短轴方向缩短拉动偏转支撑座5,弹性筝形环3‐2的短轴方向伸长推动偏转支撑座5,偏转支撑座5、反射镜承载台6 以及反射镜7在第一连接台8‐1及其柔性铰链,以及第二连接台8‐2及其柔性铰链的约束下,将围绕与反射镜7共面的Y轴发生偏转。

Claims (3)

  1. 一种偏转轴相交于反射镜表面的低高度双轴偏转装置,其特征在于:包括底座(1),安装在底座(1)上的第一固定支座(2‐1)、第二固定支座(2‐2)、第三固定支座(2‐3)和第四固定支座(2‐4),一端固定在第一固定支座(2‐1)上的第一弹性筝形环(3‐1),一端固定在第二固定支座(2‐2)上的第二弹性筝形环(3‐2),一端固定在第三固定支座(2‐3)上的第三弹性筝形环(3‐3),一端固定在第四固定支座(2‐4)上的第四弹性筝形环(3‐4),水平安装于第一弹性筝形环(3‐1)内的第一压电陶瓷(4‐1),水平安装于第二弹性筝形环(3‐2)内的第二压电陶瓷(4‐2),水平安装于第三弹性筝形环(3‐3)内的第三压电陶瓷(4‐3),水平安装于第四弹性筝形环(3‐4)内的第四压电陶瓷(4‐4),通过柔性铰链与第一弹性筝形环(3‐1)、第二弹性筝形环(3‐2),第三弹性筝形环(3‐3)和第四弹性筝形环(3‐4)连接的偏转支撑座(5),与偏转支撑座(5)固定连接的反射镜承载台(6),放置在反射镜承载台(6)上方的反射镜(7),通过柔性铰链与反射镜承载台(6)连接且固定在第一固定支座(2‐1)上的第一连接台(8‐1),通过柔性铰链与反射镜承载台(6)连接且固定在第二固定支座(2‐2)上的第二连接台(8‐2),通过柔性铰链与反射镜承载台(6)连接且固定在第三固定支座(2‐3)上的第三连接台(8‐3),通过柔性铰链与反射镜承载台(6)连接且固定在第四固定支座(2‐4)上的第四连接台(8‐4);所述第一弹性筝形环(3‐1)和第二弹性筝形环(3‐2)位于X轴上且关于Y轴对称,第三弹性筝形环(3‐3)和第四弹性筝形环(3‐4)位于Y轴上且关于X轴对称;所述反射镜(7)采用了沉降的安装方式,安装在反射镜承载台(6)的内部,且反射镜(7)的上表面与第一连接台(8‐1)、第二连接台(8‐2)、第三连接台(8‐3)和第四连接台(8‐4)所连接的柔性铰链中线处于同一平面,以保证偏转轴线交汇于反射镜表面。
  2. 一种利用权利要求1所述的偏转轴相交于反射镜表面的低高度双轴偏 转装置实现双轴偏转的方法,其特征在于:差动驱动第三压电陶瓷(4‐3)与第四压电陶瓷(4‐4),推动偏转支撑座(5)运动,即实现围绕X轴方向的偏转;差动驱动第一压电陶瓷(4‐1)与第二压电陶瓷(4‐2),推动偏转支撑座(5)运动,即实现围绕y轴方向的偏转,实现偏转轴相交于反射镜(7)表面的双轴偏转。
  3. 根据权利要求2所述的方法,其特征在于:所述实现围绕X轴方向的偏转的具体方法为:使反射镜(7)镜面绕X轴正向偏转时,第三压电陶瓷(4‐3)与第四压电陶瓷(4‐4)采用差动的方式工作,第四压电陶瓷(4‐4)伸长,第三压电陶瓷(4‐3)等量缩短,压电陶瓷的线性位移输出加载于第三弹性筝形环(3‐3)和第四弹性筝形环(3‐4)上,第三弹性筝形环(3‐3)短轴方向伸长,第四弹性筝形环(3‐4)短轴方向缩短,推动偏转支撑座(5)沿Y轴负向产生位移,偏转支撑座(5)以及反射镜承载台(6)由于受到第一连接台(8‐1)、第二连接台(8‐2)、第三连接台(8‐3)、第四连接台(8‐4)及其柔性铰链的约束作用,承载反射镜(7)绕X轴正向偏转;与之原理相同,绕X轴负向偏转时,第三压电陶瓷(4‐3)与第四压电陶瓷(4‐4)也采用差动的方式工作,第四压电陶瓷(4‐4)缩短,第三压电陶瓷(4‐3)等量伸长,即实现承载反射镜(7)绕X轴负向偏转;
    所述实现围绕y轴方向的偏转,同理,第一压电陶瓷(4‐1)与第二压电陶瓷(4‐2)采用差动方式工作,一个压电陶瓷伸长时另一个压电陶瓷等量缩短,即实现承载反射镜(7)绕Y轴双向偏转;
    第一压电陶瓷(4‐1)、第二压电陶瓷(4‐2)、第三压电陶瓷(4‐3)和第四压电陶瓷(4‐4)协同工作,即实现对反射镜双轴偏转的控制,由于偏转轴X和偏转轴Y相交于反射镜(7)上表面,因此减少了由于镜面纵向位移所带来的光路控制误差。
PCT/CN2017/099189 2016-12-27 2017-08-26 偏转轴相交于反射镜表面的低高度双轴偏转装置及方法 WO2018120877A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/411,047 US10634871B2 (en) 2016-12-27 2019-05-13 Low-profile dual-axis deflection device having deflection axes intersecting at mirror surface and method for achieving dual-axila deflection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611224947.6 2016-12-27
CN201611224947.6A CN106526785B (zh) 2016-12-27 2016-12-27 偏转轴相交于反射镜表面的低高度双轴偏转装置及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/411,047 Continuation US10634871B2 (en) 2016-12-27 2019-05-13 Low-profile dual-axis deflection device having deflection axes intersecting at mirror surface and method for achieving dual-axila deflection

Publications (1)

Publication Number Publication Date
WO2018120877A1 true WO2018120877A1 (zh) 2018-07-05

Family

ID=58337451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099189 WO2018120877A1 (zh) 2016-12-27 2017-08-26 偏转轴相交于反射镜表面的低高度双轴偏转装置及方法

Country Status (3)

Country Link
US (1) US10634871B2 (zh)
CN (1) CN106526785B (zh)
WO (1) WO2018120877A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113009686A (zh) * 2021-04-27 2021-06-22 重庆大学 一种多自由度的旋转式控制直推型快速反射镜

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526785B (zh) * 2016-12-27 2017-09-12 西安交通大学 偏转轴相交于反射镜表面的低高度双轴偏转装置及方法
CN107526159B (zh) * 2017-07-27 2019-09-10 中国科学院长春光学精密机械与物理研究所 一种大口径偏摆镜
CN108448809B (zh) * 2018-04-26 2019-11-19 长春萨米特光电科技有限公司 一种基于挠杆和柔性环组成的两轴转动机构
CN110733658A (zh) * 2019-10-24 2020-01-31 南京申威光电技术研究院有限公司 一种视轴稳定装置
CN112327503B (zh) * 2020-11-11 2022-07-08 中国科学院上海光学精密机械研究所 一种光路指向精密调节装置
CN113189737B (zh) * 2021-04-27 2022-12-30 重庆大学 一种滑轨组装型复合控制式的快速反射镜
CN113540975B (zh) * 2021-05-28 2022-11-18 中国电子科技集团公司第四十一研究所 一种光栅俯仰角度定心微调装置
CN117047737B (zh) * 2023-06-12 2024-01-12 中国科学院长春光学精密机械与物理研究所 基于热膨胀原理的差动式六自由度并联微动平台

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102981245A (zh) * 2012-12-25 2013-03-20 中国科学院长春光学精密机械与物理研究所 一种二维透射式快速反射镜
US20130250390A1 (en) * 2012-03-23 2013-09-26 Stanley Electric Co., Ltd. Optical deflector including four coupling bars between support body and frame
CN103913838A (zh) * 2014-02-21 2014-07-09 西安交通大学 二维快速偏转反射镜作动机构及其作动方法
CN104375258A (zh) * 2014-11-14 2015-02-25 中国工程物理研究院总体工程研究所 反射镜背支撑两自由度旋转柔性铰链
CN104849858A (zh) * 2015-05-18 2015-08-19 西安交通大学 旋转中心处于反射面的快速偏转反射镜控制机构及方法
CN106195556A (zh) * 2016-09-22 2016-12-07 中国工程物理研究院总体工程研究所 一种XYθ平面三自由度精密定位平台
CN106526785A (zh) * 2016-12-27 2017-03-22 西安交通大学 偏转轴相交于反射镜表面的低高度双轴偏转装置及方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3150337A (en) * 1961-02-27 1964-09-22 Armec Corp Electro-mechanical resonant device
US4732440A (en) * 1985-10-22 1988-03-22 Gadhok Jagmohan S Self resonant scanning device
US5550669A (en) * 1993-04-19 1996-08-27 Martin Marietta Corporation Flexure design for a fast steering scanning mirror
US5535047A (en) * 1995-04-18 1996-07-09 Texas Instruments Incorporated Active yoke hidden hinge digital micromirror device
US7233424B2 (en) * 2004-08-30 2007-06-19 Dot Intellectual Properties, Llc Steering assembly with electromagnetic actuators
US7742219B2 (en) * 2005-04-11 2010-06-22 Panasonic Corporation Micromachine structure
US20100103499A1 (en) * 2007-04-12 2010-04-29 Thomson Licensing A Corporation Biaxial mirror color selecting micro mirror imager
JP5076232B2 (ja) * 2007-05-09 2012-11-21 船井電機株式会社 形状可変ミラー、光ピックアップ装置
JP5172364B2 (ja) * 2008-01-16 2013-03-27 スタンレー電気株式会社 光偏向器
US9052511B1 (en) * 2012-08-10 2015-06-09 Jeffrey Knirck Method and apparatus for resonant rotational oscillator
CN102981243B (zh) * 2012-11-02 2014-10-29 华中科技大学 一种二维快速控制反射镜
CN105301762B (zh) * 2015-10-30 2017-10-20 西安交通大学 一种低厚度含二级放大的二维快速偏转装置及其偏转方法
CN105301761B (zh) * 2015-10-30 2017-09-12 西安交通大学 基于粗压电纤维复合材料的二维偏转装置及其偏转方法
CN105403999B (zh) * 2015-12-23 2018-08-31 深圳先进技术研究院 基于psd反馈的二维快速控制反射镜及其控制***
US10203475B2 (en) * 2016-10-20 2019-02-12 Raytheon Company Curved magnetic actuators, and systems, and methods for mounting tilt platforms

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130250390A1 (en) * 2012-03-23 2013-09-26 Stanley Electric Co., Ltd. Optical deflector including four coupling bars between support body and frame
CN102981245A (zh) * 2012-12-25 2013-03-20 中国科学院长春光学精密机械与物理研究所 一种二维透射式快速反射镜
CN103913838A (zh) * 2014-02-21 2014-07-09 西安交通大学 二维快速偏转反射镜作动机构及其作动方法
CN104375258A (zh) * 2014-11-14 2015-02-25 中国工程物理研究院总体工程研究所 反射镜背支撑两自由度旋转柔性铰链
CN104849858A (zh) * 2015-05-18 2015-08-19 西安交通大学 旋转中心处于反射面的快速偏转反射镜控制机构及方法
CN106195556A (zh) * 2016-09-22 2016-12-07 中国工程物理研究院总体工程研究所 一种XYθ平面三自由度精密定位平台
CN106526785A (zh) * 2016-12-27 2017-03-22 西安交通大学 偏转轴相交于反射镜表面的低高度双轴偏转装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113009686A (zh) * 2021-04-27 2021-06-22 重庆大学 一种多自由度的旋转式控制直推型快速反射镜
CN113009686B (zh) * 2021-04-27 2022-12-30 重庆大学 一种快速反射镜装置

Also Published As

Publication number Publication date
US20190271827A1 (en) 2019-09-05
US10634871B2 (en) 2020-04-28
CN106526785A (zh) 2017-03-22
CN106526785B (zh) 2017-09-12

Similar Documents

Publication Publication Date Title
WO2018120877A1 (zh) 偏转轴相交于反射镜表面的低高度双轴偏转装置及方法
US9557489B2 (en) Optoelectronic component
CN104595642B (zh) 一种二自由度压电驱动纳米定位平台
CN208888449U (zh) 一种潜望式镜头模组
WO2017198047A1 (zh) 一种压电陶瓷驱动的三自由度角度调节装置及调节方法
CN106773022B (zh) 一种二维电调镜装置
CN103837080A (zh) 面向微装配的亚微米精度同轴共焦对准检测方法与装置
CN105203091A (zh) 一种激光陀螺分光光学元件装配装置
CN105403154A (zh) 可实现光学元件主动面形控制的支撑装置
US4826304A (en) Adjustable optical mounting assembly
CN117826395A (zh) 具有柔性导向侧支撑的大口径望远镜拼接镜面支撑装置与支撑方法
CN110560893A (zh) 激光退火光学***
US6902326B1 (en) Off-axis reflective optical apparatus
CN107240423A (zh) 基于柔性铰链的三维纳米工作台
CN205507195U (zh) 一种平面镜调整装置
CN109471234B (zh) 一种用于胶合透镜的治具、定位胶合方法
CN207081483U (zh) 一种连接装置
CN111596268A (zh) 一种激光光束角度偏移探测装置
CN110082904A (zh) 适用于空间环境的高精度和稳定性摆镜装置及其工作方法
CN103759633B (zh) 一种基于微机电***的微干涉平台
CN106707444A (zh) 上支撑调整架
RU85003U1 (ru) Юстировочное устройство
CN106707445A (zh) 光学调整架
JPH0560935A (ja) 光フアイバ光線入射位置調整装置
CN114251352A (zh) 一种柔性铰链

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887682

Country of ref document: EP

Kind code of ref document: A1