WO2018120849A1 - 背光模块的制造方法 - Google Patents

背光模块的制造方法 Download PDF

Info

Publication number
WO2018120849A1
WO2018120849A1 PCT/CN2017/097481 CN2017097481W WO2018120849A1 WO 2018120849 A1 WO2018120849 A1 WO 2018120849A1 CN 2017097481 W CN2017097481 W CN 2017097481W WO 2018120849 A1 WO2018120849 A1 WO 2018120849A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide plate
quantum dot
light guide
backlight module
light
Prior art date
Application number
PCT/CN2017/097481
Other languages
English (en)
French (fr)
Inventor
李嘉航
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Priority to US15/580,149 priority Critical patent/US20180299609A1/en
Publication of WO2018120849A1 publication Critical patent/WO2018120849A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present application relates to a method of fabricating a backlight module, and more particularly to a method of fabricating a backlight module that can seal a quantum dot material in a light guide plate.
  • a liquid crystal display is mostly a backlight type liquid crystal display, which is composed of a liquid crystal display panel and a backlight module.
  • the liquid crystal display panel is composed of two transparent substrates and a liquid crystal sealed between the substrates.
  • a quantum dot is a nano crystal having a diameter of 10 nanometers (nm) or less, composed of a semiconductor material, and causes a quantum confinement effect. Compared to typical phosphors, quantum dots produce denser light in narrower bands.
  • the quantum dots When the excited electrons are transported from the conduction band to the valence band, the quantum dots emit light and have a characteristic that the wavelength of light changes according to the particle size even for the same material. Since the wavelength of light changes according to the size of the quantum dot, light having a desired wavelength region can be obtained by controlling the size of the quantum dot.
  • Quantum Dot Enhancement Film is an optical component currently used in backlight modules to make the color of the display more precise.
  • the principle is to set a considerable number of two kinds of quantum dots on the film, and use blue light as a backlight source.
  • blue light When blue light is irradiated to two kinds of quantum dots, it will be converted into red light and green light respectively, and the generated red light and green light will be generated.
  • Color mixing with blue light is white light. By changing the ratio of converting blue light to red light and green light, the color mixing effect can be closer to the actual color, thus making the display color more precise. Therefore, how to use quantum dot materials to achieve high efficiency and high productivity design is one of the most important issues at present.
  • an object of the present application is to provide a method of manufacturing a backlight module in which a quantum dot material is sealed in a light guide plate.
  • a method for manufacturing a backlight module according to the present application includes:
  • Providing a light guide plate comprising a bottom surface and a plurality of dot recesses arranged in two dimensions, wherein the dot recesses are located on the bottom surface;
  • a light source is disposed on one side of the light guide plate.
  • the substrate and the light guide plate may be integrated by using a laser.
  • an optical film is disposed on the light guide plate.
  • the light guide plate has a mixture of the quantum dot material and a printing solvent.
  • the quantum dot material is a III-V quantum dot material.
  • the quantum dot material is a quantum dot material of Group II-VI.
  • the printing solvent material is an ink material.
  • the substrate includes a reflective surface to reflect light.
  • the substrate has a refractive index coefficient that is less than or equal to a refractive index coefficient of the light guide plate to form total reflection, and to reflect light.
  • the light excited by the light source has a wavelength of 435 to 470 nanometers.
  • the quantum dot material has a yellow quantum dot material and a green quantum dot material.
  • each of the dot recesses further includes a barrier gel to seal the quantum dot material to avoid moisture.
  • Another object of the present application is to provide a method for manufacturing a backlight module, including:
  • Providing a light guide plate comprising a bottom surface and a plurality of dot recesses arranged in two dimensions, wherein the dot recesses are located on the bottom surface;
  • the quantum dot material having a yellow quantum dot material and a green quantum dot material
  • a substrate is disposed on the bottom surface of the light guide plate, and the quantum dot material is sealed in the dot recess of the light guide plate by using the substrate, when the substrate is disposed on the bottom surface of the light guide plate, Integrating the substrate and the light guide plate with a laser, wherein a refractive index coefficient of the substrate is less than or equal to a refractive index coefficient of the light guide plate;
  • a light source is disposed on one side of the light guide plate, and the light excited by the light source has a wavelength of 435 to 470 nanometers;
  • the denser the arrangement density of the dot recesses the farther away from the light source, the denser the density of the dot recesses is;
  • each of the dot recesses further comprises a barrier glue for sealing the quantum dot material.
  • the beneficial effects of the present application are to provide a method for manufacturing a backlight module, which seals a quantum dot material on a light guide plate to realize quantum Point (QD) backlight module and display device.
  • QD quantum Point
  • Fig. 1a is a graph showing the light intensity of a band in which a quantum dot emits light.
  • Figure 1b is a schematic diagram of a quantum dot lamp.
  • Figure 1c is a schematic diagram of a quantum film.
  • FIG. 2 is a schematic view showing the optical design of a light guide plate using a quantum dot material according to an embodiment of the present application.
  • FIG. 3 is a spectrum display diagram of a white light source that is excited by a blue light source to convert red, green, and blue colors with high color saturation according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a design manner of a printing dot according to an embodiment of the present application.
  • FIG. 5 is a structural diagram of a display having a light guide plate according to an embodiment of the present application.
  • FIG. 6 is a schematic view of a light guide plate according to an embodiment of the present application.
  • FIG. 7 is a schematic view of a light guide plate having a quantum dot material according to an embodiment of the present application.
  • the word “comprising” is to be understood to include the component, but does not exclude any other component.
  • “on” means located above or below the target component, and does not mean that it must be on the top based on the direction of gravity.
  • FIG. 1a is a display diagram of light intensity in a wavelength band in which a quantum dot emits light
  • FIG. 1b is a schematic diagram of a quantum dot lamp tube
  • FIG. 1c is a schematic diagram of a quantum film.
  • the wide color gamut is one of the current developments in display technology
  • Quantum Dot (hereinafter referred to as QD) quantum dot display is a kind of extended display color gamut. Display mode, display using QD luminescent material technology, usually due to the characteristics of narrower emission wavelength (110, 111, 112, 113, 114 wavelengths in Figure 1a).
  • the current method for using quantum dot technology to achieve the requirements of a wide color gamut display is roughly divided into the following two technologies.
  • the first technology is a quantum dot lamp (QD tube) technology, that is, a quantum dot material package.
  • QD tube quantum dot lamp
  • a blue light-emitting diode (Light-emitting diode) 120 is used as a light source for exciting the quantum dot material (as shown in FIG. 1b). After the blue light excites the quantum dot material, the electron point emits red and green. The light of the spectrum gives white light of the red, green and blue three-color spectrum.
  • Another quantum dot technology is called quantum thin film (QD film) technology.
  • quantum thin film technology encapsulates quantum dot materials in thin film materials, like a sandwich structure, with a protective layer film on top and bottom, and a quantum dot material in the middle.
  • a blue light emitting diode when incident on the quantum film, the quantum dot material in the quantum film is excited to emit a red-green spectrum, thereby achieving the purpose of generating a white light source.
  • a conventional backlight module 130 includes a backing plate 146, and a baffle 132 connected to the backing plate 146 and surrounding a receiving space.
  • a light guide plate 140 in the accommodating space a quantum dot reinforced film 138 disposed on the surface of the light guide plate 140 and located in the accommodating space, a light emitting diode blue light source 142 disposed in the accommodating space, A reflector 144 disposed on the bottom surface of the light guide plate 140, and a plurality of optical films 134, 136 stacked on the light guide plate 140.
  • the light emitted by the light source of the backlight module 130 is transmitted through the light guide plate 140.
  • the reflection of the optical film 134, 136 causes the light to penetrate the quantum dot reinforced film from the light guide plate 140. At 138, there is also a chance to be reflected and penetrate the quantum dot enhancement film 138 again. The light penetrates the quantum dot enhancement film 138 through multiple refractions, and the light is mixed to generate correcting light, and then passes through the optical film. Slices 134, 136. In addition, when light passes through the light guide plate 140 and is reflected by the reflector 144, it returns to the light guide plate 140, and is refracted to penetrate the quantum dot enhancement film 138 to generate correcting light.
  • quantum dot lamp technology is generally used as the backlight of the display, however, as above As described, the quantum dot lamp needs to undergo two conversions of light (light-emitting diode light to the quantum dot tube surface, and the quantum dot tube surface to the light guide plate), so the effect on the light efficiency conversion is not good, plus the tube In the appearance of the display, due to the multiple lamps, it is difficult to design a narrow frame in the structure, which is difficult to generalize in the current market.
  • the design method of the quantum thin film is used, the water vapor can not be completely and effectively isolated due to the use of the thin film encapsulation method. Therefore, even if there is a colloid that is isolated from moisture, there is a problem of a failure region around the quantum film ( That is, in the failure region, the quantum dot material cannot be excited, and the excitation efficiency of the quantum film in the blue light-emitting diode is only "once" The excitation process of the light path leads to lower luminous efficiency. Therefore, it is generally required to be combined with a Double Brightness Enhanced Film (DBEF) film material, so that the blue light can partially reciprocate between the reflection sheet and the DBEF. The quantum dot material is continuously excited to obtain a design with high luminous efficiency, but this design method needs to be matched with DBEF, which will greatly increase the design cost of the display and is not widely used.
  • DBEF Double Brightness Enhanced Film
  • FIG. 2 is a schematic diagram of optical design of a light guide plate using a quantum dot material according to an embodiment of the present application
  • FIG. 3 is a spectrum display diagram of a white light source for red, green, and blue with high color saturation excited by a blue light source according to an embodiment of the present application; .
  • the present application mainly provides an optical design method using quantum dot materials, which distributes quantum dot materials on one side of the light guide plate 200 and utilizes the light guide plate 200 .
  • the blue light emitting diode light source 210 of the Light Guide Plate 200 is distributed through a specific light guide plate 200, and the blue light emitting diode light source is uniformly converted into a surface light source, as shown in FIG. 2 .
  • the light source 210 is at the mesh point 212. Since the mesh point 212 breaks the structure of the total reflection of the light guide plate 200, at the mesh point 212, we can regard it as a tiny light source, and convert the blue light source 210 of the light emitting diode into a planar light source.
  • the red and green quantum dot particle material 220 is coated, and the red, green and blue white light source spectrum can be converted by the excitation of the blue light source 210. (310, 312, 314), as shown in Figure 3.
  • the coated quantum dot material 220 is sealed with the barrier rubber 222 capable of isolating moisture, and the quantum dot material 220 is sealed in the mesh 212 of the light guide plate 200 to form a light guide plate 200 having a red and green narrow band. .
  • FIG. 4 is a schematic view showing a design of a printing dot according to an embodiment of the present application
  • FIG. 5 is a structural diagram of a display having a light guide plate according to an embodiment of the present application.
  • an excitation light source 515 is required in the present application, which is generally a blue light emitting diode with a shorter wavelength band. Generally, blue light in the 430 nm to 470 nm band is selected as the excitation light source 515.
  • the excitation light source 515 is coupled to a light guide plate 514.
  • the material of the light guide plate 514 can be generally selected from PMMA or MS series, and the thickness of the light guide plate 514 can be matched with the size setting of the LED package. At present, the mainstream thickness is 0.5mm ⁇ 3.0mm, and different designs are made according to different display sizes. Generally speaking, a larger size TV will be equipped with a light guide plate of 2.0mm or more. After that, the selected light guide plate blank plate (not yet printed dot), and the mixture of yellow and green quantum dot materials and printing solvent, using the stencil making, printing, baking, and other dot production processes, will design the dots. The position, distributed on one side of the light guide plate, completes the light guide plate having the light-emitting characteristics of the quantum dot material.
  • the quantum dot material is a III-V group or a II-VI quantum dot material.
  • the printing solvent material can be an ink or other material that can be used as a screen printing.
  • the light guide plate 514 has a mixture of a quantum dot material 220 and a printing solvent, and is manufactured by using a screen. , baking, and other dot production process, the designed dot 412 position, distributed on one side of the light guide plate 514, can complete the light guide plate 514 having the light-emitting characteristics of the quantum dot material 220.
  • the quantum dot material 220 is a III-V group or a II-VI quantum dot material 220.
  • the printing solvent material can be an ink or other material that can be used as a screen printing.
  • the printing dot 412 on the light guide plate 410 is an optical simulation process for uniformly distributing the blue light incident on the side light into a distribution of the planar light source. design.
  • a backlight module 400 includes a light source 515, a light guide plate 514, a light emitting unit package 518, and a quantum dot sealing package 517.
  • the light source 515 has a blue light emitting diode as an excitation light source.
  • the light guide plate 514 includes a bottom surface 410 and a plurality of two-dimensionally arranged mesh dots 412.
  • the mesh dots 412 are located on the bottom surface 410, and each of the mesh dots 412 includes a quantum.
  • Point material 220, and the quantum dot material 220 is screen printed on the bottom surface 410 of the light guide plate 514, distributed through the mesh point 412 of the light guide plate 514, and uniformly converts the line light source of the backlight module 400 into a surface light source.
  • the light emitting unit package 518 includes a light source substrate and a plurality of light emitting unit chips mounted on the light source substrate; the quantum dot sealing package 517 is disposed in a light emitting direction of the light emitting unit package 518.
  • the backlight module 400 is a light source. The closer to the source, the more dense the dots 412 are, the farther away from the source, the denser the dots 412 are.
  • the quantum dot material 220 has a yellow quantum dot material and a green quantum dot material. Each dot 412 also includes a barrier gel 222 for sealing the quantum dot material 220.
  • a quantum dot display 500 includes: a light guide plate 514, which uses a light emitting diode blue light source 515 to excite red and green light, and is connected to an optical film 512 (such as reflection).
  • a sheet, a diffuser, a lens, and a reflector 516, and a display panel 510, can be designed with a high color saturation display.
  • FIG. 6 is a schematic view of a light guide plate according to an embodiment of the present application.
  • the quantum dot sealing package 517 is directly bonded to the light emitting unit package 518 .
  • the sealing member 517 is a strip tube or a flat tube.
  • the plurality of light emitting unit chips are aligned in one or more columns.
  • the plurality of light emitting unit chips are arranged in a straight line, a curved line or a predetermined pattern.
  • the quantum dots include silicon (Si)-based nanocrystals, II-VI based compound semiconductor nanocrystals, and III-V based compound semiconductor nanocrystals. And one of its mixtures.
  • the plurality of light emitting unit chips are light emitting diode chips.
  • the light source substrate is a printed circuit board, and wherein the plurality of light emitting unit chips are directly mounted on the light source substrate.
  • the light source substrate is a printed circuit board, wherein each one or more of the light emitting unit chip packages are packaged into a chip package, and wherein the chip package is mounted on the substrate .
  • the plurality of light emitting unit chips are blue light emitting diode chips
  • the quantum dots comprise: a first quantum dot whose size allows a peak wavelength in a green light band; and a second Quantum dots, whose size allows the peak wavelength to be in the red light band.
  • the blue light excited by the light source has a wavelength of 435 to 470 nanometers.
  • a light guide plate 710 having a quantum dot material includes a substrate 712 and a plurality of dot recesses 714 arranged in two dimensions, and the dot recess 714 is located on the substrate 712.
  • the dot recess 714 is filled with the quantum dot material 716, and is distributed through the dot recess 714 of the light guide plate 710 to uniformly convert the line light source of the backlight module into a surface light source.
  • the dot recess 714 is formed on the bottom surface of the light guide plate 710, and each of the dot recesses 714 is filled with the quantum dot material 716.
  • the substrate 712 is disposed on the bottom surface of the light guide plate 710 and seals the quantum dot material 716 in the dot recess 714 of the light guide plate.
  • the manufacturing method of the backlight module of the present application may include: providing a light guide plate 710, the light guide plate 710 includes a bottom surface and a plurality of dot recesses 714 arranged in two dimensions, wherein the dot recesses 714 are located at a bottom surface; a filled quantum dot material 716 in each of the dot recesses 714; a substrate 712 disposed on a bottom surface of the light guide plate 710, and the substrate 712 is used to seal the quantum dot material 716 to the
  • the dot recess 714 of the light guide plate 710 is disposed; and a light source is disposed at one side of the light guide plate 710.
  • a seam between the substrate 712 and the light guide plate 710 may be irradiated with a laser to engage the substrate 712 and the guide.
  • the light panel 710 is integrated.
  • the substrate 712 can include a reflective surface to reflect light.
  • the reflective surface may be formed of a high reflectivity material such as silver, aluminum, gold, chromium, copper, indium, antimony, nickel, platinum, rhodium, iridium, tin, antimony, tungsten, manganese, an alloy of any combination thereof, and yellowing resistance. And a heat resistant white reflective paint or any combination of the above materials to reflect light.
  • the refractive index coefficient of the substrate 712 can be less than or equal to the refractive index coefficient of the light guide plate to form total reflection between the light guide plate 710 and the substrate 712, and can reflect light.
  • the light excited by the light source has, for example, a wavelength of 435 to 470 nanometers.
  • the quantum dot material can have, for example, a yellow quantum dot material and a green quantum dot material.
  • each of the dot recesses 714 further includes a barrier gel to seal the quantum dot material 716 to avoid moisture.
  • the light source of the present application may be, for example, a Cold Cathode Fluorescent Lamp (CCFL), a Hot Cathode Fluorescent Lamp (HCFL), a Light-Emitting Diode (LED), or an Organic Light Emitting (Organic Light Emitting). Diode, OLED), Flat Fluorescent Lamp (FFL), Electro-Luminescence (EL), Light Bar, laser source, or any combination of the above.
  • the backlight module of the present application may further comprise an optical film, such as: a diffusion sheet, a prism sheet, a Turning Prism Sheet, a Brightness Enhancement Film (BEF), and a Reflective Brightening Film (Dual Brightness). Enhancement Film (DBEF), a non-multilayer film reflective polarizer (DRPF) or any combination of the above, which is disposed on the light guide plate to improve the optical effect of light emitted from the light guide plate.
  • CCFL Cold Cathode Fluorescent Lamp
  • HCFL Hot Cathode Fluorescent
  • the beneficial effect of the application is that the quantum dot material is introduced as the excitation light source, and the additional component cost is not needed; and the quantum dot material can be repeatedly excited by the principle of total reflection of the light guide plate, and the red and green light conversion efficiency is increased.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种背光模块的制造方法,制造方法包括:提供一导光板(710),包括一底面及多个以二维排列的网点凹部(714),此网点凹部(714)位于此底面;填充量子点材料(716)于每一此网点凹部(714)内;设置一基板(712)于此导光板(710)的底面上,并利用此基板(712)来将此量子点材料(716)密封于此导光板(710)的网点凹部(714)内;以及设置一光源于此导光板(710)的一侧。

Description

背光模块的制造方法 技术领域
本申请涉及一种背光模块的制造方法,特别是涉及一种可将量子点材料密封於导光板内的背光模块的制造方法。
背景技术
近年来,随着科技的进步,许多不同的显示设备,例如液晶显示器(Liquid Crystal Display,LCD)或电激发光(Electro Luminenscence,EL)显示设备已广泛地应用于平面显示器。以液晶显示器为例,液晶显示器大部分为背光型液晶显示器,其是由液晶显示面板及背光模块(backlight module)所组成。液晶显示面板是由两片透明基板以及被封于基板之间的液晶所构成。量子点是直径等于或小于10纳米(nm)的纳米晶体(nano crystal),由半导体材料组成,并引起量子限制效应(quantum confinement effect)。相较于典型的磷(phosphor),量子点在较窄的波段产生更密集的光。激态的电子从导带传输到价带时,量子点发出光,并具有即使为相同材料也会有光波长按粒子尺寸而改变的特性。由于光波长按照量子点尺寸而改变,故通过控制量子点尺寸可获得具有所需波长区域的光。
量子点增强薄膜(Quantum Dot Enhancement Film,QDEF)是目前使用于背光模块,并用以使显示器的颜色呈现更精准的光学组件。其原理是在薄膜上设置数量相当多的两种量子点,并且以蓝光作为背光光源,蓝光照射到两种量子点时会分别转换为红光及绿光,所产生的红光及绿光会与蓝光一同混色为白光,通过改变将蓝光转换为红光及绿光的比例,能使混色的效果更接近实际颜色,因而使得显示器的呈色更加精准。因此,如何利用量子点材料,来达成高效率,且具备高生产性的设计方式,为目前重要的课题之一。
发明内容
为了解决上述技术问题,本申请的目的在于,提供一种将量子点材料密封於导光板内的背光模块的制造方法。
本申请的目的及解决其技术问题是采用以下技术方案来实现的。依据本申请提出的一种背光模块的制造方法,包括:
提供一导光板,包括一底面及多个以二维排列的网点凹部,所述网点凹部位于所述底面;
填充量子点材料于每一所述网点凹部内;
设置一基板于所述导光板的底面上,并利用所述基板来将所述量子点材料密封於所述导光板的网点凹部内;以及
设置一光源于所述导光板的一侧。
在一些实施例中,当设置所述基板于所述导光板的底面上时,可利用激光来接合所述基板及所述导光板成一体。
在一些实施例中,所述导光板上设置有一光学膜片。
在一些实施例中,所述导光板具有所述量子点材料与印刷溶剂的混合物。
在一些实施例中,所述量子点材料为III-V族的量子点材料。
在一些实施例中,所述量子点材料为II-VI族的量子点材料。
在一些实施例中,所述印刷溶剂材料为油墨材料。
在一些实施例中,所述基板包括一反射面,以反射光线。
在一些实施例中,所述基板的折射率系数小于或等于所述导光板的折射率系数,以形成全反射,而可反射光线。
在一些实施例中,所述光源激发出的光具有435至470纳米的波长。
在一些实施例中,越靠近所述光源处,所述网点凹部的设置密度越疏,越远离所述光源处,所述网点凹部的设置密度越密,使得背光模块所提供的背光可更均匀。
在一些实施例中,所述量子点材料具有黄量子点材料和绿量子点材料。
在一些实施例中,每一所述网点凹部还包括阻隔胶,用以将所述量子点材料密封,以避免水气。
本申请的又一目的为提供一种背光模块的制造方法,包括:
提供一导光板,包括一底面及多个以二维排列的网点凹部,所述网点凹部位于所述底面;
填充量子点材料于每一所述网点凹部内,所述量子点材料具有黄量子点材料和绿量子点材料;
设置一基板于所述导光板的底面上,并利用所述基板来将所述量子点材料密封於所述导光板的网点凹部内,当设置所述基板于所述导光板的底面上时,利用激光来接合所述基板及所述导光板成一体,其中所述基板的折射率系数小于或等于所述导光板的折射率系数;以及
设置一光源于所述导光板的一侧,所述光源激发出的光具有435至470纳米的波长;
其中,越靠近所述光源处,所述网点凹部的设置密度越疏,越远离所述光源处,所述网点凹部的设置密度越密;
其中,每一所述网点凹部还包括阻隔胶,用以将所述量子点材料密封。
本申请的有益效果是提供一种背光模块的制造方法将量子点材料密封于导光板上,以实现量子 点(QD)背光模块及显示装置。
附图说明
图1a为范列性的量子点发出光的波段的光强度的显示图。
图1b为范列性的量子点灯管示意图。
图1c为范列性的量子薄膜示意图。
图2是本申请一实施例的利用量子点材料的导光板光学设计示意图。
图3是本申请一实施例的利用蓝光光源激发转换出具有高色饱和度的红绿蓝的白光光源频谱显示图。
图4是本申请一实施例的印刷网点设计方式示意图。
图5是本申请一实施例的具有导光板的显示器架构图。
图6是本申请一实施例的具有导光板的示意图。
图7是本申请一实施例的具有量子点材料的导光板示意图。
具体实施方式
以下各实施例的说明是参考附加的图式,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。
附图和说明被认为在本质上是示出性的,而不是限制性的。在图中,结构相似的单元是以相同标号表示。另外,为了理解和便于描述,附图中示出的每个组件的尺寸和厚度是任意示出的,但是本申请不限于此。
在附图中,为了清晰起见,夸大了层、膜、面板、区域等的厚度。在附图中,为了理解和便于描述,夸大了一些层和区域的厚度。将理解的是,当例如层、膜、区域或基底的组件被称作“在”另一组件“上”时,所述组件可以直接在所述另一组件上,或者也可以存在中间组件。
另外,在说明书中,除非明确地描述为相反的,否则词语“包括”将被理解为意指包括所述组件,但是不排除任何其它组件。此外,在说明书中,“在......上”意指位于目标组件上方或者下方,而不意指必须位于基于重力方向的顶部上。
为更进一步阐述本申请为达成预定申请目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本申请提出的一种背光模块及其应用的显示装置其具体实施方式、结构、特征及其功效,详细说明如后。
图1a为已知量子点发出光的波段的光强度的显示图、图1b为范列性的量子点灯管示意图及图1c为范列性的量子薄膜示意图。参阅图1a,为了符合人眼对于显示色彩更高的需求,广色域是目前显示技术上亟欲发展的项目之一,Quantum Dot(以下简称QD)量子点显示器是扩展显示器色域的一种显示方式,利用QD发光材料技术的显示器,通常因具备较窄发光波长的特性(如图1a中的110,111,112,113,114波长)。
参阅图1b及图1c,目前利用量子点技术来达到广色域显示器需求的方法,大致分为以下两种技术,第一种技术为量子点灯管(QD tube)技术,即将量子点材料封装在玻璃灯管122内,再利用蓝光发光二极管发光二极管(Light-emitting diode)120,作为激发量子点材料的光源(如图1b所示),蓝光激发量子点材料后,电子点会发出红绿光谱的光,即可得到红绿蓝三色光谱的白光。另一种量子点技术称为量子薄膜(QD film)技术,量子薄膜技术顾名思义,其将量子点材料封装在薄膜材料中,如同三明治结构,上下为保护层薄膜,中间则置放量子点材料(如图1c所示),当蓝光发光二极管入射入此量子薄膜,会激发量子薄膜中的量子点材料,发出红绿光谱,而达到产生白光光源的目的。
参阅图1c,为一种现有的背光模块130,包含有一背板146,一连接于所述背板146并与一背板146共同围绕出一容置空间的挡板132、一设置于所述容置空间中的导光板140、一设置于所述导光板140表面且位于所述容置空间中的量子点增强薄膜138、一设置于所述容置空间中的发光二极管蓝光源142、一设置于所述导光板140底面的反射件144,及多数彼此迭置于所述导光板140上的光学膜片134,136。所述背光模组130的光源所发出的光线会经由所述导光板140传递,通过所述光学膜片134,136的反射作用,使得光线自所述导光板140穿透所述量子点增强薄膜138时,还有机会被反射而再次穿透所述量子点增强薄膜138,光线经过多次折射穿透所述量子点增强薄膜138,经过混光作用产生补正光,再穿过所述光学膜片134,136。另外,当光线经过所述导光板140并被所述反射件144而反射时,会回到所述导光板140内,并再次经过折射而穿透所述量子点增强薄膜138产生补正光。
上述两种量子点显示器的设计方式均有其缺陷,为了避免量子点材料在水气环境中会失效的问题,一般而言会使用量子点灯管技术来作为显示器的背光源,然而,如上所述,量子点灯管需要经过两次光的转换(发光二极管光到量子点灯管面,以及量子点灯管面到导光板),因此在光效率转换方面效果不佳,再加上灯管在显示器外观上,由于多一支灯管,结构上无法设计窄边框,在目前的市场很难普遍性的推广。另一方面,若利用量子薄膜的设计方式,由于使用薄膜封装的方式,无法完全有效的隔绝水气,因此在量子薄膜的四周,即使有隔离水气的胶体,仍会有失效区域的问题(即在失效区域,无法激发量子点材料),且量子薄膜在蓝光发光二极管的激发效率,由于仅有“一次 光路径”的激发过程,导致发光效率更低,因此一般而言还需要搭配一反射式增亮膜(Double Brightness Enhanced Film,DBEF)薄膜材料使用,让蓝光可以在反射片以及DBEF间部分往返,不断激发量子点材料,来得到高发光效率的设计,但是此设计方式需要搭配DBEF,会大幅增加显示器的设计成本,而不广被使用。
图2是本申请一实施例的利用量子点材料的导光板光学设计示意图及图3是本申请一实施例的利用蓝光光源激发转换出具有高色饱和度的红绿蓝的白光光源频谱显示图。参阅图2及图3,在本申请一实施例中,本申请的主要提供一种利用量子点材料的光学设计方法,将量子点材料分布于导光板200的一侧,并利用导光板200的特性,将导入导光板LGP(Light Guide Plate)200的蓝光发光二极管光源210,通过特定的导光板200网点212分布,均匀的将蓝光发光二极管线光源,转换成面光源,如图2所示。由图2可知,光源210在网点212处,由于网点212破坏导光板200全反射的结构,因此在网点212处,我们可以视为一微小光源,将发光二极管的蓝光光源210转换成平面光源。我们在导光板200网点212处,涂布好红光以及绿光的量子点粒子材料220,即可通过蓝光光源210的激发,转换出具有高色饱和度的红,绿,蓝的白光光源频谱(310,312,314),如图3所示。此外,再将涂布好的量子点材料220,利用可以隔绝水气的阻隔胶222,将量子点材料220密封于导光板200的网点212中,形成可以具有红,绿窄波段的导光板200。
图4是本申请一实施例的印刷网点设计方式示意图及图5是本申请一实施例的具有导光板的显示器架构图。参阅图4及图5,在本申请一实施例中,本申请的需要一激发光源515,通常为具备较短波段的蓝光发光二极管,一般而言选用430nm~470nm波段的蓝光作为激发光源515。并将上述所述激发光源515耦合至一导光板514,所述导光板514的材质通常可以选用PMMA或是MS系列,所述导光板514的厚度则可搭配发光二极管封装的尺寸大小设定,目前较为主流的厚度为0.5mm~3.0mm,按照不同的显示器尺寸做不同的设计,一般而言,较大尺寸的电视会搭配2.0mm以上的导光板。之后将选定后的导光板空板(尚未印刷网点),以及黄,绿量子点材料与印刷溶剂的混合物,利用网板制作,印刷,烘烤,等网点制作工艺流程,将设计好的网点位置,分布在导光板的一侧,即可完成具有量子点材料发光特性的导光板。所述量子点材料为III-V族,或是II-VI族的量子点材料。所述印刷溶剂材料可为油墨或其他可以作为网印的材料。
请参阅图2、图4及图5,在本申请一实施例中,一种导光板的制造方法,所述导光板514具有量子点材料220与印刷溶剂的混合物,并利用网板制作,印刷,烘烤,等网点制作工艺流程,将设计好的网点412位置,分布在导光板514的一侧,即可完成具有量子点材料220发光特性的导光板514。所述量子点材料220为III-V族,或是II-VI族的量子点材料220。所述印刷溶剂材料可为油墨或其他可以作为网印的材料。
请参照图4,在本申请一实施例中,在所述导光板410上的印刷网点412则为透过光学仿真过程,用以将侧光入射的蓝光,均匀分布为平面光源的一种分布设计。
请参照图2、图4及图5,在本申请一实施例中,一种背光模块400包括:一光源515、一导光板514、一发光单元封装件518及一量子点密封封装件517。所述光源515,以蓝色发光二极管作为激发光源;所述导光板514包括一底面410及多个以二维排列的网点412,该些网点412位于所述底面410,每一网点412包括量子点材料220,并将所述量子点材料220网印在所述导光板514的底面410,通过所述导光板514的网点412分布,均匀的将所述背光模块400的线光源转换成面光源;所述发光单元封装件518,包括光源基板和安装于所述光源基板上的多个发光单元芯片;所述量子点密封封装件517,置于所述发光单元封装件518的发光方向上。所述背光模块400为光源。且越靠近所述光源处,其网点412密度越疏,越远离所述光源处,其网点412密度越密。所述量子点材料220具有黄量子点材料和绿量子点材料。每一网点412还包括阻隔胶222,用以将所述量子点材料220密封。
请参照图5,在本申请的一实施例中,一具有量子点显示器500包括:一导光板514,利用一发光二极管蓝光光源515激发出红绿光,并连接一光学膜片512(如反射片,扩散片,菱镜片)与一反射器516,以及一显示面板510,即可设计一具备高色彩饱和度显示器。
图6是本申请一实施例的具有导光板的示意图。请参照图6,在本申请的一实施例中,所述量子点密封封装件517直接接合于所述发光单元封装件518。
请参照图6,在本申请的一实施例中,所述密封构件517是条状管或平板状管。
在本申请的一实施例中,所述多个发光单元芯片为对齐成一列或多个列。
在本申请的一实施例中,所述多个发光单元芯片排列成直线、曲线或预定图案。
在本申请的一实施例中,所述量子点包括以硅(Si)为基础的纳米晶体、以II-VI族为基础的化合物半导体纳米晶体、以III-V族为基础的化合物半导体纳米晶体和其混合物的其中之一。
在本申请的一实施例中,所述多个发光单元芯片是发光二极管芯片。
在本申请的一实施例中,所述光源基板为印刷电路板,以及其中所述多个发光单元芯片直接安装于所述光源基板上。
在本申请的一实施例中,所述光源基板为印刷电路板,其中每一个或多个所述发光单元芯片封装件封装成芯片封装件,以及其中所述芯片封装件安装于所述基板上。
在本申请的一实施例中,所述多个发光单元芯片是蓝色发光二极管芯片,以及其中所述量子点包括:第一量子点,其尺寸允许峰值波长在绿光的波段;和第二量子点,其尺寸允许峰值波长在红光的波段。
在本申请的一实施例中,所述光源激发出的蓝光具有435至470纳米的波长。
图7是本申请一实施例的具有量子点材料的导光板示意图。请参照图7,在本申请的一实施例中,一具有量子点材料的导光板710,包括一基板712及多个以二维排列的网点凹部714,网点凹部714位于所述基板712,每一网点凹部714填充有量子点材料716,通过所述导光板710的网点凹部714分布,均匀的将所述背光模块的线光源转换成面光源。
具体地,所述网点凹部714形成于导光板710的底面,每一所述网点凹部714填充有量子点材料716。基板712是设置於所述导光板710的底面上,并将所述量子点材料716密封於所述导光板的网点凹部714内。
具体地,如图7所示,本申请背光模块的制造方法可包括:提供一导光板710,导光板710包括一底面及多个以二维排列的网点凹部714,所述网点凹部714位于所述底面;填充量子点材料716于每一所述网点凹部714内;设置一基板712于所述导光板710的底面上,并利用所述基板712来将所述量子点材料716密封於所述导光板710的网点凹部714内;以及设置一光源于所述导光板710的一侧。
在一些实施例中,当设置所述基板于所述导光板的底面上时,可利用激光来照射基板712及所述导光板710之间的接缝,以接合所述基板712及所述导光板710成一体。
在一些实施例中,所述基板712可包括一反射面,以反射光线。反射面可由高反射率材料所形成,例如银、铝、金、铬、铜、铟、铱、镍、铂、铼、铑、锡、钽、钨、锰、上述任意组合的合金、耐黄化且耐热的白色反射漆料或上述材料的任意组合,以反射光线。
在一些实施例中,所述基板712的折射率系数可小于或等于所述导光板的折射率系数,以形成全反射于导光板710及基板712之间,而可反射光线。
在一些实施例中,所述光源激发出的光例如具有435至470纳米的波长。
在一些实施例中,越靠近所述光源处,所述网点凹部714的设置密度越疏,越远离所述光源处,所述网点凹部714的设置密度越密,使得背光模块所提供的背光可更均匀。
在一些实施例中,所述量子点材料可例如具有黄量子点材料和绿量子点材料。
在一些实施例中,每一所述网点凹部714还包括阻隔胶,用以将所述量子点材料716密封,以避免水气。
本申请的光源可例如为冷阴极荧光灯管(Cold Cathode Fluorescent Lamp,CCFL)、热阴极荧光灯(Hot Cathode Fluorescent Lamp,HCFL)、发光二极管(Light-Emitting Diode,LED)、有机发光二极管(Organic Light Emitting Diode,OLED)、平面荧光灯(Flat Fluorescent Lamp,FFL)、电激发光组件(Electro-Luminescence;EL)、发光灯条(Light Bar)、激光光源或上述的任意组合。 本申请的背光模组还可包括光学膜片,例如为:扩散片、棱镜片、逆棱镜片(Turning Prism Sheet)、增亮膜(Brightness Enhancement Film,BEF)、反射式增亮膜(Dual Brightness Enhancement Film,DBEF)、非多层膜式反射偏光片(Diffused Reflective Polarizer Film,DRPF)或上述的任意组合,其设置于导光板上,用以改善由导光板出光的光学效果。
本申请的有益效果是引进量子点材料作为激发光源,不需增加额外组件成本;并可利用导光板全反射原理,重复激发量子点材料,增加红,绿光转换效率。
“在一些实施例中”及“在各种实施例中”等用语被重复地使用。所述用语通常不是指相同的实施例;但它亦可以是指相同的实施例。“包含”、“具有”及“包括”等用词是同义词,除非其前后文意显示出其它意思。
以上所述,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的限制,虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本申请技术方案的范围内。

Claims (18)

  1. 一种背光模块的制造方法,包括:
    提供一导光板,包括一底面及多个以二维排列的网点凹部,所述网点凹部位于所述底面;
    填充量子点材料于每一所述网点凹部内;
    设置一基板于所述导光板的底面上,并利用所述基板来将所述量子点材料密封於所述导光板的所述网点凹部内;以及
    设置一光源于所述导光板的一侧。
  2. 如权利要求1所述的背光模块的制造方法,其中,当设置所述基板于所述导光板的底面上时,利用激光来接合所述基板及所述导光板成一体。
  3. 如权利要求1所述的背光模块的制造方法,其中,所述导光板上设置有一光学膜片。
  4. 如权利要求1所述的背光模块的制造方法,其中,所述导光板具有所述量子点材料与印刷溶剂的混合物。
  5. 如权利要求4所述的背光模块的制造方法,其中,所述量子点材料为III-V族的量子点材料。
  6. 如权利要求4所述的背光模块的制造方法,其中,所述量子点材料为II-VI族的量子点材料。
  7. 如权利要求4所述的背光模块的制造方法,其中,所述印刷溶剂材料为油墨材料。
  8. 如权利要求1所述的背光模块的制造方法,所述基板包括一反射面。
  9. 如权利要求8所述的背光模块的制造方法,其中,所述反射面由高反射率材料形成。
  10. 如权利要求1所述的背光模块的制造方法,其中,所述基板的折射率系数小于所述导光板的折射率系数。
  11. 如权利要求1所述的背光模块的制造方法,其中,所述基板的折射率系数等于所述导光板的折射率系数。
  12. 如权利要求1所述的背光模块的制造方法,其中,所述光源激发出的光具有435至470纳米的波长。
  13. 如权利要求1所述的背光模块的制造方法,其中,越靠近所述光源处,所述网点凹部的设置密度越疏。
  14. 如权利要求1所述的背光模块的制造方法,其中,越远离所述光源处,所述网点凹部的设置密度越密。
  15. 如权利要求1所述的背光模块的制造方法,其中,所述量子点材料具有黄量子点材料和绿量子点材料。
  16. 如权利要求1所述的背光模块的制造方法,每一所述网点凹部还包括阻隔胶。
  17. 如权利要求16所述的背光模块的制造方法,其中,所述阻隔胶将所述量子点材料密封。
  18. 一种背光模块的制造方法,包括:
    提供一导光板,包括一底面及多个以二维排列的网点凹部,所述网点凹部位于所述底面;
    填充量子点材料于每一所述网点凹部内,所述量子点材料具有黄量子点材料和绿量子点材料;
    设置一基板于所述导光板的底面上,并利用所述基板来将所述量子点材料密封於所述导光板的网点凹部内,当设置所述基板于所述导光板的底面上时,利用激光来接合所述基板及所述导光板成一体,其中所述基板的折射率系数小于或等于所述导光板的折射率系数;以及
    设置一光源于所述导光板的一侧,所述光源激发出的光具有435至470纳米的波长;
    其中,越靠近所述光源处,所述网点凹部的设置密度越疏,越远离所述光源处,所述网点凹部的设置密度越密;
    其中,每一所述网点凹部还包括阻隔胶,用以将所述量子点材料密封。
PCT/CN2017/097481 2016-12-31 2017-08-15 背光模块的制造方法 WO2018120849A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/580,149 US20180299609A1 (en) 2016-12-31 2017-08-15 Method for manufacturing backlight module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611268468.4A CN107065299A (zh) 2016-12-31 2016-12-31 背光模块的制造方法
CN201611268468.4 2016-12-31

Publications (1)

Publication Number Publication Date
WO2018120849A1 true WO2018120849A1 (zh) 2018-07-05

Family

ID=59623705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097481 WO2018120849A1 (zh) 2016-12-31 2017-08-15 背光模块的制造方法

Country Status (3)

Country Link
US (1) US20180299609A1 (zh)
CN (1) CN107065299A (zh)
WO (1) WO2018120849A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106597746A (zh) * 2016-12-31 2017-04-26 惠科股份有限公司 背光模块及显示装置
CN106772769A (zh) * 2016-12-31 2017-05-31 惠科股份有限公司 背光模块及其应用的显示设备与导光板的制造方法
CN108873153B (zh) * 2018-07-18 2019-11-12 福州大学 基于量子点体导光板的侧入式背光模组出光控制方法
CN109387980A (zh) * 2018-12-03 2019-02-26 福建捷联电子有限公司 一种新型量子点背光结构
CN109739051A (zh) * 2019-02-21 2019-05-10 深圳市华星光电技术有限公司 量子点液晶显示器
CN112542537B (zh) * 2020-12-02 2022-10-04 深圳市华星光电半导体显示技术有限公司 一种量子点膜层、背光模组及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130024152A (ko) * 2011-08-30 2013-03-08 엘지이노텍 주식회사 라이트 유닛 및 표시장치
CN105929480A (zh) * 2016-04-12 2016-09-07 苏州星烁纳米科技有限公司 一种新的导光板及其应用
CN206114945U (zh) * 2016-04-12 2017-04-19 苏州星烁纳米科技有限公司 一种新的导光板、背光单元和显示装置
CN106597746A (zh) * 2016-12-31 2017-04-26 惠科股份有限公司 背光模块及显示装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8459855B2 (en) * 2008-07-28 2013-06-11 Munisamy Anandan UV LED based color pixel backlight incorporating quantum dots for increasing color gamut of LCD
KR101664507B1 (ko) * 2011-12-08 2016-10-10 엘지이노텍 주식회사 표시장치
KR101971123B1 (ko) * 2012-08-23 2019-04-23 삼성디스플레이 주식회사 나노 형광체 시트 및 백라이트 장치
JP2015046328A (ja) * 2013-08-28 2015-03-12 富士フイルム株式会社 導光板、これを含むバックライトユニットおよび液晶表示装置、ならびに光学シート
KR20150093283A (ko) * 2014-02-06 2015-08-18 삼성디스플레이 주식회사 프레임 및 이를 포함하는 광원모듈
CN104154468B (zh) * 2014-09-01 2016-08-31 深圳市华星光电技术有限公司 背光模组
KR102181888B1 (ko) * 2014-09-03 2020-11-24 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
KR102278308B1 (ko) * 2014-10-15 2021-07-19 삼성디스플레이 주식회사 백라이트 유닛 및 이를 포함한 표시장치
CN104503137A (zh) * 2014-12-30 2015-04-08 深圳市华星光电技术有限公司 背光模块及具有该背光模块的液晶显示器
EP3343279A3 (en) * 2015-01-13 2018-07-25 Samsung Display Co., Ltd Display device
US9964262B2 (en) * 2015-04-01 2018-05-08 Sharp Kabushiki Kaisha Lighting device, display device, and television device
CN105158972A (zh) * 2015-09-10 2015-12-16 深圳市华星光电技术有限公司 导光板及导光板的制备方法
CN105487292A (zh) * 2016-01-15 2016-04-13 京东方科技集团股份有限公司 背光模组、显示装置及其驱动方法
CN105676341B (zh) * 2016-02-25 2019-06-07 福州大学 一种基于蓝光激发的内嵌量子点微结构导光板的背光模组
CN105805694A (zh) * 2016-04-07 2016-07-27 深圳市华星光电技术有限公司 一种量子点光源及量子点背光模组
CN105867026A (zh) * 2016-06-03 2016-08-17 青岛海信电器股份有限公司 量子点光源器件、背光模组及液晶显示装置
US10459146B2 (en) * 2016-06-13 2019-10-29 Innolux Corporation Display device with backlight module and method for manufacturing the same
CN106125398A (zh) * 2016-07-25 2016-11-16 广东普加福光电科技有限公司 一种新型量子点液晶背光源
CN106154398A (zh) * 2016-07-27 2016-11-23 京东方科技集团股份有限公司 一种侧入式背光模组及显示装置
KR102659654B1 (ko) * 2016-09-26 2024-04-23 삼성디스플레이 주식회사 표시 장치
KR20180042505A (ko) * 2016-10-17 2018-04-26 삼성디스플레이 주식회사 백라이트 유닛

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130024152A (ko) * 2011-08-30 2013-03-08 엘지이노텍 주식회사 라이트 유닛 및 표시장치
CN105929480A (zh) * 2016-04-12 2016-09-07 苏州星烁纳米科技有限公司 一种新的导光板及其应用
CN206114945U (zh) * 2016-04-12 2017-04-19 苏州星烁纳米科技有限公司 一种新的导光板、背光单元和显示装置
CN106597746A (zh) * 2016-12-31 2017-04-26 惠科股份有限公司 背光模块及显示装置

Also Published As

Publication number Publication date
US20180299609A1 (en) 2018-10-18
CN107065299A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2018120502A1 (zh) 背光模块及显示装置
WO2018120849A1 (zh) 背光模块的制造方法
US10698263B2 (en) Light source device and display unit
WO2018120602A1 (zh) 背光模块及其应用的显示设备与导光板的制造方法
TWI604239B (zh) 顏色轉換基板、其製造方法及包含其之顯示裝置
KR101809259B1 (ko) 디스플레이 패널 및 그 장치
US8870431B2 (en) Light mixing module
TWI780041B (zh) 一種發光元件及其製造方法
US20060072339A1 (en) Backlight module
CN106501994B (zh) 一种量子点发光器件、背光模组及显示装置
CN116314244A (zh) 像素阵列封装结构
KR20140094806A (ko) 양자점 복합 필름 및 이를 이용한 백라이트 유닛
US20170059129A1 (en) Quantum dot light emitting device, backlight module, and liquid crystal display device
JP2009231273A (ja) 照明装置及びこれを備える表示装置
JP2020520048A (ja) バックライトモジュール用の光変換フィルム、バックライトモジュール及び表示装置
CN109301056B (zh) 一种led光源及其制备方法、背光源、显示装置
JP6324683B2 (ja) 直下型光源装置
JP2010505246A (ja) 発光デバイス
KR101657518B1 (ko) 액정 표시 장치
US11421856B2 (en) Light emitting module, surface light source, and a method of manufacturing light emitting module
US10330265B2 (en) Front light source and display device comprising the front light source
EP2548235B1 (en) Lighting apparatus
Kim et al. Optimal design of a quantum dot color conversion film in LCD backlighting
US20200203320A1 (en) Backlight device and manufacturing method thereof
CN112817213B (zh) 一种基于RGBW的Micro-LED制备***

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15580149

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886128

Country of ref document: EP

Kind code of ref document: A1