WO2018120710A1 - Oled显示面板及其制造方法、显示装置 - Google Patents

Oled显示面板及其制造方法、显示装置 Download PDF

Info

Publication number
WO2018120710A1
WO2018120710A1 PCT/CN2017/091036 CN2017091036W WO2018120710A1 WO 2018120710 A1 WO2018120710 A1 WO 2018120710A1 CN 2017091036 W CN2017091036 W CN 2017091036W WO 2018120710 A1 WO2018120710 A1 WO 2018120710A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
light emitting
emitting unit
color
Prior art date
Application number
PCT/CN2017/091036
Other languages
English (en)
French (fr)
Inventor
齐永莲
曲连杰
贵炳强
赵合彬
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/735,974 priority Critical patent/US10439007B2/en
Publication of WO2018120710A1 publication Critical patent/WO2018120710A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to an OLED display panel, a method of manufacturing the same, and a display device.
  • OLED display technology is different from the light-emitting principle of liquid crystal display (LCD) technology.
  • OLED display technology has the advantages of self-illumination, wide viewing angle, high contrast, low power consumption, and extremely high reaction speed.
  • Organic light-emitting diodes can be classified into monochrome, colorful and full-color according to color, and the preparation of full-color organic light-emitting diodes is the most difficult.
  • a flexible full-color OLED display panel using a top emission structure mainly includes a base substrate, an organic light-emitting layer formed on the base substrate, a thin film transistor (TFT) structure for driving the organic light-emitting layer, and The organic light-emitting layer is subjected to a thin film encapsulation (TFE) thin film encapsulation layer or the like.
  • TFE thin film encapsulation
  • the organic light emitting layer includes a red light emitting unit, a green light emitting unit, and a blue light emitting unit.
  • the red light emitting unit, the green light emitting unit, and the blue light emitting unit are all organic electroluminescent layers formed by an evaporation process, which are expensive, and require a high-precision metal mask (FMM). It is not easy to realize large-scale flexible manufacturing, and the yield is low and the cost is high.
  • the OLED display panel of the related art needs to attach a circular polarizer after completing the packaging, but circularly polarized light The sheet is not easily bent and thick, and is not conducive to achieving an optimum flexibility for a flexible display panel.
  • the present disclosure provides an OLED display panel, a method of manufacturing the same, and a display device, which can realize large-scale flexible fabrication, improve yield, reduce cost, and achieve a higher color gamut than the related art OLED display panel.
  • an OLED display panel including:
  • the first light-emitting unit, the second light-emitting unit, and the third light-emitting unit located on the light-emitting side of the organic light-emitting layer are respectively configured to emit the first color light and the second color under the action of the third color light
  • the light and the third color light, the first color light, the second color light, and the third color light are mixed into white light.
  • the OLED display panel further includes: a thin film encapsulation layer for encapsulating the organic light emitting layer and each of the light emitting units.
  • the third color light is blue light
  • the first light emitting unit is a first transparent material layer doped with red quantum dots
  • the second light emitting unit is second transparent doped with green quantum dots.
  • a material layer, the third light emitting unit being a third transparent material layer doped with blue quantum dots.
  • the third color light is blue light
  • the first light emitting unit is a first transparent material layer doped with red quantum dots
  • the second light emitting unit is second transparent doped with green quantum dots.
  • a material layer the third light emitting unit being a colorless fourth transparent material layer.
  • the third light emitting unit is a colorless fourth transparent material layer
  • the third light emitting unit and the thin film encapsulation layer are of a unitary structure and the same material.
  • the organic light emitting layer is an entire organic electroluminescent layer structure formed by vapor deposition and covering the entire substrate; the first light emitting unit and the second light emitting unit are both A photoluminescent layer structure formed by photolithography or inkjet printing.
  • the OLED display panel further includes: an anti-reflection film layer formed on a light exiting side of the thin film encapsulation layer for reducing the reflectivity of external light.
  • the anti-reflection film layer comprises:
  • a first color filter layer disposed corresponding to the first light emitting unit
  • a second color filter layer disposed corresponding to the second light emitting unit
  • a third color filter layer disposed corresponding to the third light emitting unit.
  • the first color filter layer, the second color filter layer, and the third color filter layer are organic color filters formed by an evaporation method, an inkjet printing method, or a photolithography method.
  • Light layer is organic color filters formed by an evaporation method, an inkjet printing method, or a photolithography method.
  • an embodiment of the present disclosure provides a display device including the above OLED display panel.
  • an implementation of the present disclosure provides a method of fabricating an OLED display panel, including:
  • anode layer Forming an anode layer, a cathode layer, and an organic light-emitting layer between the anode layer and the cathode layer on the base substrate, the organic light-emitting layer being used between the anode layer and the cathode layer
  • the third color light is emitted by the electric field
  • first light emitting unit Forming a first light emitting unit, a second light emitting unit, and a third light emitting unit independent of each other on a light emitting side of the organic light emitting layer, wherein the first light emitting unit, the second light emitting unit, and the third light emitting unit are respectively used in the The first color light, the second color light, and the third color light are emitted by the third color light, and the first color light, the second color light, and the third color light are mixed into white light.
  • the method further includes: forming a thin film encapsulation layer by using a thin film encapsulation layer, the thin film encapsulation layer for encapsulating the organic light emitting layer and each of the light emitting units.
  • the first light emitting unit, the second light emitting unit, and the third light emitting unit are formed independently on the light emitting side of the organic light emitting layer, and specifically include: photolithography or inkjet printing The first light emitting unit and the second light emitting unit are formed.
  • the third light emitting unit and the thin film encapsulation layer are the same material, and the third light emitting unit and the thin film encapsulation layer are integrally formed at the same time.
  • the method further includes forming the third light emitting unit by photolithography or inkjet printing.
  • anode layer forming an anode layer, a cathode layer, and an organic light-emitting layer between the anode layer and the cathode layer on the substrate, specifically comprising:
  • An organic light-emitting layer covering the entire substrate is formed on the base substrate by evaporation.
  • the method further includes: forming an anti-reflection film layer for reducing the reflectivity of external light on the light-emitting side of the thin film encapsulation layer.
  • an anti-reflection film layer for reducing the reflectivity of external light is formed on the light-emitting side of the thin film encapsulation layer, and specifically includes:
  • the OLED display panel provided by the present disclosure forms an organic light-emitting layer on the base substrate, and the organic light-emitting layer is an organic electroluminescent layer, preferably formed by evaporation, and capable of electric fields in the cathode layer and the anode layer.
  • the third color light is emitted under driving, and the first light emitting unit and the second light emitting unit may be photoluminescent layers in the three light emitting units formed on the light emitting side of the organic light emitting layer (the third light emitting unit may also be photoluminescence) Layer), emitting the first color light and the second color light under the excitation of the organic light-emitting layer, in addition to being formed by evaporation, or by other processes (for example, photolithography, inkjet printing, etc.) Therefore, in the related art, the three light-emitting units in the OLED display panel are formed by evaporation, the material is expensive, and the FMM Mask needs to be prepared, and it is not easy to realize large-scale flexible production, and the problem of low yield and high cost; In the embodiment provided by the present disclosure, the first light emitting unit and the second light emitting unit in the OLED display panel are photoluminescent layers (the third light emitting unit may also be photoinduced) Layer), the light emitted by the organic light emitting layer
  • FIG. 1 is a schematic structural diagram of an OLED display panel provided in some embodiments of the present disclosure
  • FIG. 2 is a schematic structural diagram of an OLED display panel provided in some embodiments of the present disclosure.
  • FIG. 3 is a spectrum diagram of blue light emitted by an organic light emitting layer of an OLED display panel according to an embodiment of the present disclosure, which excites a first light emitting unit and a second light emitting unit;
  • the three-color light-emitting unit in the organic light-emitting layer of the OLED display panel of the related art is an organic electroluminescent layer formed by an evaporation process, and the material is expensive, and it is not easy to realize large-scale flexible fabrication, low yield, and high cost.
  • the present disclosure provides an OLED display panel and a method of fabricating the same that can realize large-scale flexible fabrication, improve yield, reduce cost, and achieve a higher color gamut than the related art OLED display panel.
  • an OLED display panel provided by the present disclosure includes:
  • the mutually independent first light emitting unit 301, the second light emitting unit 302, and the third light emitting unit 303 located on the light emitting side of the organic light emitting layer 200 can respectively emit the first color light under the action of the light of the third color
  • the second color light and the third color light, the first color light, the second color light, and the third color light can be mixed into white light.
  • a plurality of sets of three-color light-emitting units may be disposed on the light-emitting side of the organic light-emitting layer 200, and each set of three-color light-emitting units may be arranged in a matrix and respectively correspond to the respective pixel regions.
  • the OLED display panel provided by the present disclosure forms an organic light-emitting layer 200 on the base substrate 100, and the organic light-emitting layer 200 is an organic electroluminescent layer, which can be formed by an evaporation process or the like, and can be formed on the cathode layer 202 and the anode.
  • the third color light is emitted by the electric field of the layer 201, and the first light emitting unit 301 and the second light emitting unit 302 formed on the light emitting side of the organic light emitting layer 200 may be a photoluminescent layer (the third light emitting unit 303 may also be The photoluminescent layer) emits the first color light and the second color light under the excitation of the light of the organic light emitting layer 200.
  • the first light emitting unit 301 and the second light emitting unit 302 may be formed by using an evaporation method.
  • Other process formation eg lithography, inkjet Printing and other processes
  • the three-color light-emitting unit in the OLED display panel is formed by an evaporation process, the material is expensive, and the FMM needs to be prepared, and it is not easy to realize large-scale flexible production, and the yield is low and the cost is high.
  • the first light emitting unit 301 and the second light emitting unit 302 in the OLED display panel are photoluminescent layers (the third light emitting unit 303 may also be a photoluminescent layer), which is organic
  • the third light emitting unit 303 may also be a photoluminescent layer
  • the light emitted by the light-emitting layer 200 is excited to emit fluorescence, the half-width is narrower, and the spectrum is more pure, so that a higher color gamut than the OLED display panel formed by the vapor deposition process in the related art can be realized.
  • the OLED display panel further includes: a thin film encapsulation layer 400 for encapsulating the organic light emitting layer 200 and each of the light emitting units.
  • a thin film encapsulation layer 400 is covered on the organic light-emitting layer 200 and each of the light-emitting units by a TEF package (thin film package) to block the damage of the organic light-emitting layer 200 and the light-emitting units by moisture.
  • the light of the third color is blue light
  • the first light emitting unit 301 includes a first transparent material layer doped with red quantum dots
  • the second The light emitting unit 302 includes a second transparent material layer doped with green quantum dots
  • the third light emitting unit 303 includes a colorless fourth transparent material layer.
  • the light emitted by the organic light-emitting layer 200 is blue light
  • the first light-emitting unit 301 is formed by doping a transparent material layer of quantum dots of different colors to realize photoluminescence, and emits red light and green light respectively by blue light excitation of the organic light emitting layer 200.
  • the third light emitting unit 303 may be a colorless transparent material layer directly formed into undoped quantum dots, and the blue light emitted by the organic light emitting layer 200 may be directly transmitted through the third light emitting unit 303.
  • the third light emitting unit 303 and the thin film encapsulation layer 400 are integrated, and the thin film encapsulation layer 400 and the third light emitting unit 303 are made of the same material.
  • the shape and range of each of the third light emitting unit 303 and the thin film encapsulation layer 400 are not shown in FIG. 1 , and the shape and range thereof can be referred to FIG. 2 , and the difference is compared with the structure of FIG. 2 .
  • the third light emitting unit 303 is the same material as the thin film encapsulation layer 400 in FIG.
  • the third light emitting unit 303 is a colorless transparent material layer, for the sake of simplicity
  • the third light emitting unit 303 may not be separately fabricated, but after forming the organic light emitting layer 200, the first light emitting unit 301, and the second light emitting unit 302, performing a TFE packaging process to form the In the thin film encapsulation layer 400, the third light emitting unit 303 is integrally formed in a region corresponding to the third light emitting unit 303.
  • the third light emitting unit 303 can also be separately fabricated, that is, the first light emitting unit 301, the second light emitting unit 302, and the third light emitting unit 303 are prepared first, and then prepared.
  • the organic light emitting layer 200 is an entire layer of an organic electroluminescent layer structure formed by vapor deposition and covering the entire substrate 100;
  • the first light emitting unit 301 and the second light emitting unit 302 are photoluminescent layer structures formed by photolithography or inkjet printing.
  • the organic light emitting layer 200 (ie, the blue electroluminescent layer) may be formed by vapor deposition on the entire surface, the first light emitting unit 301.
  • the second light-emitting unit 302 is formed by adding a transparent material layer doped with quantum dots, adding the quantum dots to the transparent adhesive layer, and correspondingly coating the transparent adhesive layers doped with quantum dots of different colors by a photolithography process and an inkjet printing process.
  • the first and second light emitting units 301 and 302 are respectively formed on the regions of the first and second light emitting units 302, and then the TFE packaging process is performed to simultaneously form the third light emitting unit 302 and the thin film encapsulation layer 400.
  • the first light emitting unit 301 and the second light emitting unit 302 can be formed by a photolithography process and an inkjet printing process, it is not necessary to prepare an FMM, and it is easy to realize large-scale flexible fabrication with high yield and low cost.
  • the third light emitting unit 303 is a colorless transparent material layer. In other embodiments provided by the present disclosure, the third light emitting unit 303 may also be doped by doping. A third transparent material layer having blue quantum dots is formed, as shown in FIG. 2, and, optionally, the third light emitting unit 303 can also adopt a photolithography process similar to the first and second light emitting units 301 and 302. Or a photoluminescent layer formed by an inkjet printing process.
  • the OLED display panel further includes: an anti-reflection film layer formed on a light exiting side of the thin film encapsulation layer 400 for reducing the reflectance of external light.
  • an anti-reflection film layer is further prepared on the light-emitting side of the film encapsulation layer 400, and Reducing reflection from external light incidence and excitation of fluorescence.
  • the anti-reflection film layer is an organic color filter layer
  • the method includes:
  • a first color filter layer 501 disposed corresponding to the first light emitting unit 301;
  • a third color filter layer 503 disposed corresponding to the third light emitting unit 303.
  • an organic color filter layer can be formed on the thin film encapsulation layer 400, the organic color filter layer is an organic layer, and the thickness is ⁇ 3 um, so that the overall thickness of the OLED display panel is reduced. It is also easy to achieve bending.
  • the anti-reflection film layer may be formed by other methods.
  • the anti-reflection film layer may also be a circular polarizer, but the circular polarizer is not easily bent, and is thick, which is disadvantageous for Achieve the best flexibility.
  • the first color filter layer 501, the second color filter layer 502, and the third color filter layer 503 are all steamed.
  • the first color filter layer 501, the second color filter layer 502, and the third color filter layer 503 may be formed by an evaporation, inkjet printing, or photolithography process.
  • the first color filter layer 501, the second color filter layer 502, and the third color filter layer 503 are formed by photolithography;
  • the second light emitting unit 302 is formed by photolithography, and the first color filter layer 501 and the mask may be directly prepared by using a mask plate for preparing the first light emitting unit 301 and the second light emitting unit 302.
  • the first color light-emitting layer 502 if the first light-emitting unit 301, the second light-emitting unit 302, and the third light-emitting unit 303 are formed by photolithography, the first light-emitting unit 301 can be directly prepared.
  • the OLED display panel provided in the embodiment of the present disclosure may further include: a PI film 101 , a low temperature polysilicon thin film transistor (LIPS TFT) 102 , and the like located on the substrate substrate 100 .
  • a PI film 101 a low temperature polysilicon thin film transistor (LIPS TFT) 102 , and the like located on the substrate substrate 100 .
  • LIPS TFT low temperature polysilicon thin film transistor
  • FIG. 3 is a spectrum diagram of the blue light emitted by the organic light emitting layer 200 of the OLED display panel according to the embodiment of the present disclosure to excite the first light emitting unit 301 and the second light emitting unit 302;
  • FIG. 4 is a table showing organic light emission.
  • the blue light luminance value of the light-emitting unit 302 and the organic color filter layer (Blue EL+film+CF).
  • the first light-emitting unit 301 is deactivated by the organic light-emitting layer 200, and the first light-emitting unit 301 emits pure red light at about 640 nm, and its relative intensity is about 0.02.
  • the blue light is not completely absorbed by the first light emitting unit 301 and the second light emitting unit 302, so it is necessary to add an organic color filter layer (ie, the first color filter layer 501, the second color filter layer 502, and The third color filter layer 503) filters out the remaining unabsorbed blue light.
  • an organic color filter layer ie, the first color filter layer 501, the second color filter layer 502, and The third color filter layer 503 filters out the remaining unabsorbed blue light.
  • the blue light brightness is reduced to 17.34, 26.24, and 62.03, and the color coordinates are as shown in Table 4, wherein 17.34, 26.24 and 62.03 are the blue light luminance values when the thickness of the organic color filter layer is 4 ⁇ m, 3 ⁇ m, and 2 ⁇ m, and the thickness of the organic color filter layer is different, and the blue light luminance value and the color coordinate (x, y) are also different.
  • Also provided in an embodiment of the present disclosure is a display device including the OLED display panel provided in the above embodiments of the present disclosure.
  • a method of fabricating an OLED display panel is further provided in an embodiment of the present disclosure, the method comprising:
  • An anode layer 201, a cathode layer 202, and an organic light-emitting layer 200 between the anode layer 201 and the cathode layer 202 are formed on the base substrate 100, and the organic light-emitting layer 200 can be in the anode layer 201.
  • first light emitting unit 301 Forming a first light emitting unit 301, a second light emitting unit 302, and a third light emitting unit 303 that are independent of each other on the light emitting side of the organic light emitting layer 200, the first light emitting unit 301, the second light emitting unit 302, and the third light emitting unit 303, respectively, capable of emitting first color light, second color light, and third color light under excitation of the light of the third color, wherein the first color light, the second color light, and the third color light can be mixed into white light .
  • the method further includes: forming a thin film encapsulation layer 400 by using a thin film encapsulation method, the thin film encapsulation layer 400 for encapsulating the organic light emitting layer 200, the first light emitting unit 301, the second light emitting unit 302, and The third light emitting unit 303.
  • the anode layer 201, the cathode layer 202, and the organic light-emitting layer 200 between the anode layer 201 and the cathode layer 202 are formed on the base substrate 100, and specifically include:
  • the organic light-emitting layer 200 covering the entire base substrate 100 is formed on the base substrate 100, that is, the organic light-emitting layer 200 is formed on the base substrate 100 by vapor deposition on the entire surface.
  • first light emitting unit 301, the second light emitting unit 302, and the third light emitting unit 303 are formed independently of each other on the light emitting side of the organic light emitting layer 200, and specifically include: sequentially forming by photolithography or inkjet printing.
  • the first light emitting unit 301 and the second light emitting unit 302 form a thin film encapsulation layer 400 by a thin film encapsulation method, and form an integrated structure and the same with the thin film encapsulation layer 400 in a region corresponding to the third light emitting unit 303.
  • the third light emitting unit 303 of material is described inkjet printing.
  • the third light emitting unit 303 is formed by photolithography or inkjet printing.
  • the first light emitting unit 301 and the second light emitting unit 302 are formed by photolithography, and specifically include:
  • a photoresist (first transparent material) doped with red quantum dots is spin-coated, and then photolithography is performed, followed by baking to form the first transparent material layer doped with red quantum dots.
  • a first light-emitting unit 301 is obtained;
  • a photoresist (second transparent material) doped with green quantum dots is spin-coated, and then photolithography is performed, followed by baking to form the second transparent material doped with red quantum dots.
  • the layer, that is, the second light emitting unit 302 is obtained.
  • first light emitting unit 301 and the second light emitting unit 302 may also perform inkjet printing on the glue doped with red quantum dots and the glue doped with green quantum dots to form the first.
  • the method further includes forming an anti-reflection film layer for reducing the reflectance of external light on the light-emitting side of the thin film encapsulation layer 400.
  • an anti-reflection film layer for reducing the reflectance of external light is formed on the light-emitting side of the thin film encapsulation layer 400, and specifically includes:
  • a third color filter layer 503 is formed corresponding to the third light emitting unit 303.
  • the first color filter layer 501, the second color filter layer 502, and the third color filter layer 503 may be formed by an evaporation, inkjet printing, or photolithography process.
  • the first color filter layer 501, the second color filter layer 502, and the third color filter layer 503 are formed by photolithography;
  • the second light emitting unit 302 is formed by photolithography, and the first color filter layer 501 can be prepared by using a mask plate for preparing the first light emitting unit 301 and the second light emitting unit 302.
  • the first color light-emitting layer 502 if the first light-emitting unit 301, the second light-emitting unit 302, and the third light-emitting unit 303 are formed by photolithography, the first light-emitting unit 301 can be directly prepared.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种OLED显示面板及其制造方法、显示装置。OLED显示面板包括:衬底基板(100);形成在衬底基板(100)上的阳极层(201)、阴极层(202)以及位于阳极层(201)和阴极层(202)之间的有机发光层(200),有机发光层(200)发出第三颜色光;位于有机发光层(200)的出光侧的相互独立的第一发光单元(301)、第二发光单元(302)和第三发光单元(303),分别在第三颜色光的作用下发出第一颜色光、第二颜色光和第三颜色光,该第一颜色光、第二颜色光和第三颜色光混合成白光。

Description

OLED显示面板及其制造方法、显示装置
相关申请的交叉引用
本申请主张在2016年12月27日在中国提交的中国专利申请号No.201611228029.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,尤其涉及一种OLED显示面板及其制造方法、显示装置。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)显示技术与液晶显示(Liquid Crystal Display,LCD)技术的发光原理不同。OLED显示技术具有自发光、广视角、高对比度、较低耗电、极高反应速度等优点。有机发光二极管依色彩可分为单色、多彩及全彩等种类,其中全彩有机发光二极管的制备最为困难。
相关技术中,采用顶发射结构的柔性全彩OLED显示面板主要包括衬底基板、形成于衬底基板上的有机发光层、用于驱动有机发光层的薄膜晶体管(Thin Film Transistor,TFT)结构及将有机发光层进行薄膜封装(Thin Film Encapsulation,TFE)的薄膜封装层等。其中,有机发光层包括红色发光单元、绿色发光单元和蓝色发光单元。
在相关技术中,红色发光单元、绿色发光单元和蓝色发光单元均为通过蒸镀工艺形成的有机电致发光层,材料昂贵,且需要制备高精度金属掩模板(Fine Metal Mask,FMM),不容易实现大尺寸的柔性制作,良率低,成本贵;此外,相关技术中的OLED显示面板为了防止外界光照射进入引起的反射,需要在完成封装之后贴一个圆偏光片,但是,圆偏光片不易弯折,而且较厚,针对柔性显示面板来说,不利于实现最佳的柔性效果。
发明内容
本公开提供了一种OLED显示面板及其制造方法、显示装置,能够实现大尺寸的柔性制作,提高良率,降低成本,并能够实现比相关技术中OLED显示面板更高的色域。
一方面,本公开实施例给出了一种OLED显示面板,包括:
衬底基板;
形成在所述衬底基板上的阳极层、阴极层以及位于所述阳极层和所述阴极层之间的有机发光层,所述有机发光层用于发出第三颜色光;
位于所述有机发光层的出光侧的相互独立的第一发光单元、第二发光单元和第三发光单元,分别用于在所述第三颜色光的作用下发出第一颜色光、第二颜色光和第三颜色光,所述第一颜色光、第二颜色光和第三颜色光混合成白光。
可选的,所述OLED显示面板还包括:用于封装所述有机发光层和各个发光单元的薄膜封装层。
可选的,所述第三颜色光为蓝光,所述第一发光单元为掺杂有红色量子点的第一透明材料层,所述第二发光单元为掺杂有绿色量子点的第二透明材料层,所述第三发光单元为掺杂有蓝色量子点的第三透明材料层。
可选的,所述第三颜色光为蓝光,所述第一发光单元为掺杂有红色量子点的第一透明材料层,所述第二发光单元为掺杂有绿色量子点的第二透明材料层,所述第三发光单元为无色的第四透明材料层。
可选的,当所述第三发光单元为无色的第四透明材料层时,所述第三发光单元与所述薄膜封装层为一体结构且材料相同。
可选的,所述有机发光层为采用蒸镀方式形成、覆盖整个所述衬底基板的一整层有机电致发光层结构;所述第一发光单元和所述第二发光单元均为采用光刻方式或喷墨打印方式形成的光致发光层结构。
可选的,所述OLED显示面板还包括:形成于所述薄膜封装层的出光侧,用于降低外界光的反射率的防反射膜层。
可选的,所述防反射膜层包括:
与第一发光单元对应设置的第一颜色滤光层;
与所述第二发光单元对应设置的第二颜色滤光层;
与所述第三发光单元对应设置的第三颜色滤光层。
可选的,所述第一颜色滤光层、所述第二颜色滤光层和所述第三颜色滤光层均为采用蒸镀方式、喷墨打印方式或光刻方式形成的有机彩色滤光层。
另一方面,本公开实施例给出了一种显示装置,包括上述的OLED显示面板。
再一方面,本公开实施李给出了一种OLED显示面板的制造方法,包括:
提供一衬底基板;
在所述衬底基板上形成阳极层、阴极层以及位于所述阳极层和所述阴极层之间的有机发光层,所述有机发光层用于在所述阳极层与所述阴极层之间的电场驱动下发出第三颜色光;
在所述有机发光层的出光侧形成相互独立的第一发光单元、第二发光单元和第三发光单元,所述第一发光单元、第二发光单元和第三发光单元分别用于在所述第三颜色光的作用下发出第一颜色光、第二颜色光和第三颜色光,所述第一颜色光、第二颜色光和第三颜色光混合成白光。
可选的,所述方法还包括:采用薄膜封装方式形成薄膜封装层,所述薄膜封装层用于封装所述有机发光层和各个发光单元。
可选的,所述方法中,在所述有机发光层的出光侧形成相互独立的第一发光单元、第二发光单元和第三发光单元,具体包括:采用光刻方式或喷墨打印方式依次形成所述第一发光单元和所述第二发光单元。
可选的,所述第三发光单元和所述薄膜封装层同材料,所述第三发光单元和所述薄膜封装层一体同时形成。
可选的,所述方法还包括采用光刻方式或喷墨打印方式形成所述第三发光单元。
可选的,所述方法中,在所述衬底基板上形成阳极层、阴极层以及位于所述阳极层和所述阴极层之间的有机发光层,具体包括:
采用蒸镀方式在所述衬底基板上形成覆盖整个衬底基板的有机发光层。
可选的,所述的方法还包括:在所述薄膜封装层的出光侧形成用于降低外界光的反射率的防反射膜层。
可选的,在所述薄膜封装层的出光侧形成用于降低外界光的反射率的防反射膜层,具体包括:
采用蒸镀方式、喷墨打印方式或光刻方式依次在与第一发光单元对应设置形成第一颜色滤光层、在与所述第二发光单元对应形成第二颜色滤光层、在与所述第三发光单元对应形成第三颜色滤光层。
本公开所提供的OLED显示面板,其在衬底基板上形成一层有机发光层,该有机发光层为有机电致发光层,优选可以通过蒸镀方式形成,能够在阴极层和阳极层的电场驱动下发出第三颜色光,而在该有机发光层的出光侧形成的三个发光单元中第一发光单元和第二发光单元可以为光致发光层(第三发光单元也可以为光致发光层),在有机发光层的光激发下发出第一颜色光和第二颜色光,除了可以采用蒸镀方式形成之外,还可以采用其他工艺形成(例如:光刻、喷墨打印等工艺),从而解决了相关技术中OLED显示面板中三个发光单元均采用蒸镀方式形成,材料昂贵,且需要制备FMM Mask,不容易实现大尺寸的柔性制作,良率低、成本贵的问题;并且,本公开所提供的实施例中,OLED显示面板中第一发光单元、第二发光单元为光致发光层(第三发光单元也可以为光致发光层),由有机发光层发出的光激发发出荧光,半峰宽更窄,光谱更纯,可以实现比相关技术中采用蒸镀工艺形成的OLED显示面板更高的色域。
附图说明
图1为本公开一些实施例中提供的OLED显示面板的结构示意图;
图2为本公开一些实施例中提供的OLED显示面板的结构示意图;
图3为本公开一些实施例中所提供的OLED显示面板的有机发光层发出的蓝光激发第一发光单元和第二发光单元发光的光谱图;
图4所示为有机发光层未设置所述第一发光单元、所述第二发光单元及有机彩色滤光层时的蓝光亮度值以及有机发光层在设置有所述第一发光单元、所述第二发光单元及有机彩色滤光层时的蓝光亮度值对比表。
具体实施方式
为使本公开实施例的技术方案和优点更加清楚,下面将结合附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
针对相关技术中OLED显示面板的有机发光层中三色发光单元均为采用蒸镀工艺形成的有机电致发光层,存在材料昂贵、不容易实现大尺寸的柔性制作、良率低、成本贵的问题,本公开提供了一种OLED显示面板及其制造方法,其能够实现大尺寸的柔性制作,提高良率,降低成本,并能够实现比相关技术中OLED显示面板更高的色域。
如图1所示,本公开所提供的一种OLED显示面板包括:
衬底基板100;
形成在所述衬底基板100上的阳极层201、阴极层202;
位于所述阳极层201和所述阴极层202之间的有机发光层200,所述有机发光层200能够在所述阳极层201与所述阴极层202之间的电场驱动下发出第三颜色的光;
位于所述有机发光层200的出光侧的相互独立的第一发光单元301、第二发光单元302和第三发光单元303,能够在所述第三颜色的光的作用下分别发出第一颜色光、第二颜色光和第三颜色光,所述第一颜色光、第二颜色光和第三颜色光能够混合成白光。
需要说明的是,有机发光层200的出光侧可以设置多组三色发光单元,各组三色发光单元可以呈矩阵排布、分别对应各个像素区域。
本公开所提供的OLED显示面板,其在衬底基板100上形成有机发光层200,该有机发光层200为有机电致发光层,可以通过蒸镀工艺等方式形成,能够在阴极层202和阳极层201的电场驱动下发出第三颜色光,而在该有机发光层200的出光侧形成的第一发光单元301和第二发光单元302可以为光致发光层(第三发光单元303也可以为光致发光层),在有机发光层200的光激发下发出第一颜色光和第二颜色光,第一发光单元301和第二发光单元302除了可以采用蒸镀方式形成之外,还可以采用其他工艺形成(例如:光刻、喷墨打 印等工艺),从而解决了相关技术中OLED显示面板中三色发光单元均采用蒸镀工艺形成,材料昂贵,且需要制备FMM,不容易实现大尺寸的柔性制作,良率低、成本贵的问题;并且,本公开所提供的实施例中,OLED显示面板中第一发光单元301、第二发光单元302为光致发光层(第三发光单元303也可以为光致发光层),由有机发光层200发出的光激发发出荧光,半峰宽更窄,光谱更纯,可以实现比相关技术中采用蒸镀工艺形成的OLED显示面板更高的色域。
在本公开所提供的一些实施例中,如图1所示,所述OLED显示面板还包括:用于封装所述有机发光层200和各发光单元的薄膜封装层400。
采用上述方案,通过TEF封装(薄膜封装),在有机发光层200和各发光单元之上覆盖一层薄膜封装层400,以阻挡水汽对有机发光层200及各发光单元的伤害。
在本公开所提供的一些实施例中,可选的,所述第三颜色的光为蓝光,所述第一发光单元301包括掺杂有红色量子点的第一透明材料层,所述第二发光单元302包括掺杂有绿色量子点的第二透明材料层,所述第三发光单元303包括无色的第四透明材料层。
采用上述方案,由于蓝光的波长短、能量高,红色和绿色的荧光是受蓝光激发才可产生,因此,在上述实施例中,有机发光层200所发出的光为蓝光,而第一发光单元301、第二发光单元302分别是通过掺杂不同颜色量子点的透明材料层来形成,实现光致发光的功能,并通过有机发光层200的蓝光激发,而分别发出红光和绿光,所述第三发光单元303则可以是直接制作成不掺杂量子点的无色的透明材料层,由有机发光层200发出的蓝光可以直接透射过所述第三发光单元303。
在上述实施例中,可选的,如图1所示,所述第三发光单元303与所述薄膜封装层400为一体结构,所述薄膜封装层400和所述第三发光单元303同材料。需要说明的是,图1中未示出第三发光单元303和薄膜封装层400各自的形状和范围,其形状和范围均可以参考图2中所示,相比于图2的结构的区别在于,图1中所述第三发光单元303与所述薄膜封装层400同材料。
采用上述方案,由于所述第三发光单元303为无色的透明材料层,为了简 化工艺,所述第三发光单元303可以不单独制作,而是在形成所述有机发光层200、所述第一发光单元301和所述第二发光单元302之后,进行TFE封装工艺形成所述薄膜封装层400时在对应所述第三发光单元303的区域一体形成所述第三发光单元303。在其他实施例中,所述第三发光单元303相比于所述薄膜封装层400也可以单独制作,即先制备第一发光单元301、第二发光单元302和第三发光单元303,再制备用于封装所述有机发光层200和各色发光单元的薄膜封装层400,其中,所述第三发光单元303和所述薄膜封装层400采用相同的无色透明材料。
此外,在本公开所提供的一些实施例中,可选的,所述有机发光层200为采用蒸镀方式形成、覆盖整个所述衬底基板100的一整层有机电致发光层结构;所述第一发光单元301和所述第二发光单元302为采用光刻方式或喷墨打印方式形成的光致发光层结构。
采用上述方案,在本公开实施例所提供的OLED显示面板中,可以通过蒸镀工艺整面蒸镀形成所述有机发光层200(即,蓝光电致发光层),所述第一发光单元301、第二发光单元302则是通过制备掺杂量子点的透明材料层,将量子点加入透明胶层中,通过光刻工艺、喷墨打印工艺将掺杂不同颜色量子点的透明胶层在对应第一、第二发光单元302的区域上分别形成第一、第二发光单元301和302,之后进行TFE封装工艺同时形成第三发光单元302和薄膜封装层400。由于第一发光单元301、第二发光单元302可以采用光刻工艺、喷墨打印工艺来形成,因而不需要制备FMM,容易实现大尺寸的柔性制作,良率高,成本低。
需要说明的是,在上述实施例中,所述第三发光单元303是无色的透明材料层,在本公开所提供的其他实施例中,所述第三发光单元303也可以是通过掺杂有蓝色量子点的第三透明材料层来形成,如图2所示,并且,可选的,所述第三发光单元303也可以类似第一、第二发光单元301和302采用光刻工艺或喷墨打印工艺来形成的光致发光层。
此外,在本公开所提供的一些实施例中,所述OLED显示面板还包括:形成于所述薄膜封装层400的出光侧,用于降低外界光的反射率的防反射膜层。
采用上述方案,在薄膜封装层400的出光侧再制备一层防反射膜层,可以 减少外界光入射带来的反射和对荧光的激发。
可选的,如图1所示,在本公开所提供的一些实施例中,所述防反射膜层为有机彩色滤光层,其包括:
与第一发光单元301对应设置的第一颜色滤光层501;
与所述第二发光单元302对应设置的第二颜色滤光层502;
以及,与所述第三发光单元303对应设置的第三颜色滤光层503。
采用上述方案,在封装完成之后,在薄膜封装层400上面可以形成有机彩色滤光层,该有机彩色滤光层为有机层,且厚度≤3um,所以OLED显示面板不仅整体厚度得到了减小,还容易实现弯折。
当然可以理解的是,所述防反射膜层还可以是采用其他方式来形成,例如:所述防反射膜层还可以是圆偏光片,但是圆偏光片不易弯折,而且较厚,不利于实现最佳的柔性效果。
此外,在本公开所提供的一些实施例中,可选的,所述第一颜色滤光层501、所述第二颜色滤光层502和所述第三颜色滤光层503均为采用蒸镀方式、喷墨打印方式或光刻方式形成的有机彩色滤光层。
采用上述方案,所述第一颜色滤光层501、所述第二颜色滤光层502和所述第三颜色滤光层503可以是采用蒸镀、喷墨打印或光刻工艺来形成的普通的有机彩色滤光层(CF)。优选的,所述第一颜色滤光层501、所述第二颜色滤光层502和所述第三颜色滤光层503采用光刻方式形成;此时,若所述第一发光单元301、所述第二发光单元302采用光刻方式形成,可以直接利用制备所述第一发光单元301、所述第二发光单元302的掩膜板来制备所述第一颜色滤光层501和所述第二颜色滤光层502;若所述第一发光单元301、所述第二发光单元302、所述第三发光单元303均通过光刻方式形成,可以直接利用制备所述第一发光单元301、所述第二发光单元302、所述第三发光单元303的掩膜板来制备所述第一颜色滤光层501、所述第二颜色滤光层502和所述第三颜色滤光层503;从而节省了掩膜板费用,降低成本。
此外,需要说明的是,如图1所示,本公开实施例中提供的OLED显示面板还可以包括:位于衬底基板100之上的PI膜101、低温多晶硅薄膜晶体管(LIPS TFT)102等。
图3所示为本公开一些实施例中所提供的OLED显示面板的有机发光层200发出的蓝光激发第一发光单元301和第二发光单元302发光的光谱图;图4表格所示为有机发光层200未设置所述第一发光单元301、所述第二发光单元302及有机彩色滤光层时的蓝光亮度值以及有机发光层200在设置有所述第一发光单元301、所述第二发光单元302及有机彩色滤光层(Blue EL+film+CF)时的蓝光亮度值。
从图3中可以看出,采用有机发光层200去激发第一发光单元301,第一发光单元301在640nm左右发出纯的红光,其相对强度大约为0.02。图4表格说明:有机发光层200在通电4.5V时,其亮度为627.6cd/m2,其色坐标为x=0.133,y=0.0549;在激发第一发光单元301和第二发光单元302之后,如图2所示,蓝光未被第一发光单元301和第二发光单元302完全吸收,故需要增加有机彩色滤光层(即:第一颜色滤光层501、第二颜色滤光层502和第三颜色滤光层503)来滤掉剩余未被吸收的蓝光,在增加有机彩色滤光层之后,蓝光亮度减小至17.34、26.24和62.03,色坐标如表格4所示,其中,17.34、26.24、62.03分别为有机彩色滤光层厚度为4μm、3μm、2μm时的蓝光亮度值,有机彩色滤光层厚度不同,蓝光亮度值和色坐标(x,y)也不同。
本公开实施例中还提供了一种显示装置,其包括本公开上述实施例中所提供的OLED显示面板。
在本公开的实施例中还提供了一种OLED显示面板的制造方法,所述方法包括:
提供一衬底基板100;
在所述衬底基板100上形成阳极层201、阴极层202及位于所述阳极层201和所述阴极层202之间的有机发光层200,所述有机发光层200能够在所述阳极层201与所述阴极层202之间的电场驱动下发出第三颜色的光;
在所述有机发光层200的出光侧形成相互独立的第一发光单元301、第二发光单元302和第三发光单元303,所述第一发光单元301、第二发光单元302和第三发光单元303能够在所述第三颜色的光的激发下分别发出第一颜色光、第二颜色光和第三颜色光,所述第一颜色光、第二颜色光和第三颜色光能够混合成白光。
进一步的,所述的方法还包括:采用薄膜封装方式形成薄膜封装层400,所述薄膜封装层400用于封装所述有机发光层200和所述第一发光单元301、第二发光单元302和第三发光单元303。
进一步的,在所述衬底基板100上形成阳极层201、阴极层202以及位于所述阳极层201和所述阴极层202之间的有机发光层200,具体包括:采用蒸镀方式在所述衬底基板100上形成覆盖整个衬底基板100的有机发光层200,也就是说,在衬底基板100上采用整面蒸镀的方式形成所述有机发光层200。
进一步的,在所述有机发光层200的出光侧形成相互独立的第一发光单元301、第二发光单元302和第三发光单元303,具体包括:采用光刻方式或喷墨打印方式依次形成所述第一发光单元301和所述第二发光单元302,在采用薄膜封装方式形成薄膜封装层400同时,在对应所述第三发光单元303的区域形成与所述薄膜封装层400一体结构且同一材料的所述第三发光单元303。
其中,需要说明的是,在上述方法中,在所述第三发光单元303与所述薄膜封装层400不是一体结构时,采用光刻方式或喷墨打印方式形成所述第三发光单元303。
还需要说明的是,在上述方法中,采用光刻方式形成所述第一发光单元301和所述第二发光单元302,具体包括:
在有机发光层200之上,旋涂掺杂有红色量子点的光刻胶(第一透明材料),然后进行光刻,后烘,形成所述掺杂有红色量子点的第一透明材料层,即得到第一发光单元301;旋涂掺杂有绿色量子点的光刻胶(第二透明材料),然后进行光刻,后烘,形成所述掺杂有红色量子点的第二透明材料层,即得到第二发光单元302。
需要理解的是,所述第一发光单元301和所述第二发光单元302也可以是将掺杂有红色量子点的胶水和掺杂有绿色量子点的胶水分别进行喷墨打印,形成第一发光单元301和第二发光单元302。
进一步的,所述的方法还包括:在所述薄膜封装层400的出光侧形成用于降低外界光的反射率的防反射膜层。
进一步的,在所述薄膜封装层400的出光侧形成用于降低外界光的反射率的防反射膜层,具体包括:
采用蒸镀方式、喷墨打印方式或光刻方式依次在与第一发光单元301对应设置形成第一颜色滤光层501、在与所述第二发光单元302对应形成第二颜色滤光层502、在与所述第三发光单元303对应形成第三颜色滤光层503。
采用上述方案,所述第一颜色滤光层501、所述第二颜色滤光层502和所述第三颜色滤光层503可以是采用蒸镀、喷墨打印或光刻工艺来形成的普通的彩膜层。优选的,所述第一颜色滤光层501、所述第二颜色滤光层502和所述第三颜色滤光层503采用光刻方式形成;此时,若所述第一发光单元301、所述第二发光单元302采用光刻方式形成,可以直接利用制备所述第一发光单元301、所述第二发光单元302的掩膜板来制备所述第一颜色滤光层501、所述第二颜色滤光层502;若所述第一发光单元301、所述第二发光单元302、所述第三发光单元303均通过光刻方式形成,可以直接利用制备所述第一发光单元301、所述第二发光单元302、所述第三发光单元303的掩膜板来制备所述第一颜色滤光层501、所述第二颜色滤光层502和所述第三颜色滤光层503;从而节省了掩膜板费用,降低成本。
以上所述仅是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本公开的保护范围。

Claims (18)

  1. 一种有机发光二极管(OLED)显示面板,包括:
    衬底基板;
    形成在所述衬底基板上的阳极层、阴极层以及位于所述阳极层和所述阴极层之间的有机发光层,所述有机发光层用于发出第三颜色光;
    位于所述有机发光层的出光侧的相互独立的第一发光单元、第二发光单元和第三发光单元,分别用于在所述第三颜色光的作用下发出第一颜色光、第二颜色光和第三颜色光,所述第一颜色光、第二颜色光和第三颜色光混合成白光。
  2. 根据权利要求1所述的OLED显示面板,还包括:用于封装所述有机发光层和各个发光单元的薄膜封装层。
  3. 根据权利要求2所述的OLED显示面板,其中,
    所述第三颜色光为蓝光,所述第一发光单元为掺杂有红色量子点的第一透明材料层,所述第二发光单元为掺杂有绿色量子点的第二透明材料层,所述第三发光单元为掺杂有蓝色量子点的第三透明材料层。
  4. 根据权利要求2所述的OLED显示面板,其中,
    所述第三颜色光为蓝光,所述第一发光单元为掺杂有红色量子点的第一透明材料层,所述第二发光单元为掺杂有绿色量子点的第二透明材料层,所述第三发光单元为无色的第四透明材料层。
  5. 根据权利要求4所述的OLED显示面板,其特征在于,
    所述第三发光单元与所述薄膜封装层为一体结构且材料相同。
  6. 根据权利要求3或4所述的OLED显示面板,其中,
    所述有机发光层为采用蒸镀方式形成、覆盖整个所述衬底基板的一整层有机电致发光层结构;所述第一发光单元和所述第二发光单元均为采用光刻方式或喷墨打印方式形成的光致发光层结构。
  7. 根据权利要求2所述的OLED显示面板,还包括:形成于所述薄膜封装层的出光侧,用于降低外界光的反射率的防反射膜层。
  8. 根据权利要求7所述的OLED显示面板,其中,
    所述防反射膜层包括:
    与第一发光单元对应设置的第一颜色滤光层;
    与所述第二发光单元对应设置的第二颜色滤光层;
    与所述第三发光单元对应设置的第三颜色滤光层。
  9. 根据权利要求8所述的OLED显示面板,其中,
    所述第一颜色滤光层、所述第二颜色滤光层和所述第三颜色滤光层均为采用蒸镀方式、喷墨打印方式或光刻方式形成的有机彩色滤光层。
  10. 一种显示装置,包括如权利要求1至9任一项所述的OLED显示面板。
  11. 一种有机发光二极管(OLED)显示面板的制造方法,包括:
    提供一衬底基板;
    在所述衬底基板上形成阳极层、阴极层以及位于所述阳极层和所述阴极层之间的有机发光层,所述有机发光层用于发出第三颜色光;
    在所述有机发光层的出光侧形成相互独立的第一发光单元、第二发光单元和第三发光单元,所述第一发光单元、第二发光单元和第三发光单元分别用于在所述第三颜色光的作用下发出第一颜色光、第二颜色光和第三颜色光,所述第一颜色光、第二颜色光和第三颜色光混合成白光。
  12. 根据权利要求11所述的方法,还包括:采用薄膜封装方式形成薄膜封装层,所述薄膜封装层用于封装所述有机发光层和各个发光单元。
  13. 根据权利要求12所述的方法,其中,在所述有机发光层的出光侧形成相互独立的第一发光单元、第二发光单元和第三发光单元,具体包括:采用光刻方式或喷墨打印方式依次形成所述第一发光单元和所述第二发光单元。
  14. 根据权利要求13所述的方法,其中,所述第三发光单元和所述薄膜封装层同材料,所述第三发光单元和所述薄膜封装层一体同时形成。
  15. 根据权利要求13所述的方法,还包括采用光刻方式或喷墨打印方式形成所述第三发光单元。
  16. 根据权利要求11所述的方法,其中,
    在所述衬底基板上形成阳极层、阴极层以及位于所述阳极层和所述阴极层 之间的有机发光层,具体包括:
    采用蒸镀方式在所述衬底基板上形成覆盖整个衬底基板的有机发光层。
  17. 根据权利要求12所述的方法,还包括:在所述薄膜封装层的出光侧形成用于降低外界光的反射率的防反射膜层。
  18. 根据权利要求17所述的方法,其中,
    在所述薄膜封装层的出光侧形成用于降低外界光的反射率的防反射膜层,具体包括:
    采用蒸镀方式、喷墨打印方式或光刻方式依次在与第一发光单元对应设置形成第一颜色滤光层、在与所述第二发光单元对应形成第二颜色滤光层、在与所述第三发光单元对应形成第三颜色滤光层。
PCT/CN2017/091036 2016-12-27 2017-06-30 Oled显示面板及其制造方法、显示装置 WO2018120710A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/735,974 US10439007B2 (en) 2016-12-27 2017-06-30 OLED display panel, method of fabricating the same and display apparatus having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611228029.0A CN106531773A (zh) 2016-12-27 2016-12-27 Oled显示基板及其制造方法、显示装置
CN201611228029.0 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018120710A1 true WO2018120710A1 (zh) 2018-07-05

Family

ID=58337625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091036 WO2018120710A1 (zh) 2016-12-27 2017-06-30 Oled显示面板及其制造方法、显示装置

Country Status (3)

Country Link
US (1) US10439007B2 (zh)
CN (1) CN106531773A (zh)
WO (1) WO2018120710A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106531773A (zh) * 2016-12-27 2017-03-22 京东方科技集团股份有限公司 Oled显示基板及其制造方法、显示装置
CN107665639A (zh) * 2017-03-27 2018-02-06 广东聚华印刷显示技术有限公司 Qled发光显示器件
CN108598279B (zh) 2018-04-24 2021-12-07 京东方科技集团股份有限公司 Oled显示基板及其制作方法、显示装置
CN108649055B (zh) * 2018-05-11 2019-08-02 武汉华星光电半导体显示技术有限公司 全彩显示器件及其制备方法
CN110071144A (zh) * 2019-04-08 2019-07-30 深圳市华星光电半导体显示技术有限公司 Oled显示装置及制备方法
CN110911456B (zh) * 2019-11-08 2022-05-03 深圳市华星光电半导体显示技术有限公司 量子点显示面板滤光片
KR20210109694A (ko) * 2020-02-27 2021-09-07 삼성디스플레이 주식회사 표시 장치
CN113345940A (zh) * 2021-05-20 2021-09-03 深圳市华星光电半导体显示技术有限公司 显示面板制作方法及显示面板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103227189A (zh) * 2013-04-09 2013-07-31 北京京东方光电科技有限公司 一种量子点发光二极管显示器件及显示装置
CN103474451A (zh) * 2013-09-12 2013-12-25 深圳市华星光电技术有限公司 彩色oled器件及其制作方法
CN105304684A (zh) * 2015-11-18 2016-02-03 深圳市华星光电技术有限公司 彩色显示装置及其制作方法
CN105576004A (zh) * 2016-02-29 2016-05-11 Tcl集团股份有限公司 一种量子点彩色光转换膜、oled面板及显示装置
US20160204167A1 (en) * 2015-01-09 2016-07-14 Samsung Display Co., Ltd. Display device and manufacturing method thereof
CN106531773A (zh) * 2016-12-27 2017-03-22 京东方科技集团股份有限公司 Oled显示基板及其制造方法、显示装置
CN106684112A (zh) * 2016-11-23 2017-05-17 信利(惠州)智能显示有限公司 有机发光显示装置及其制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576006B (zh) * 2016-03-18 2018-10-19 京东方科技集团股份有限公司 彩膜基板、显示面板和显示装置
CN206727073U (zh) * 2016-12-27 2017-12-08 京东方科技集团股份有限公司 Oled显示基板及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103227189A (zh) * 2013-04-09 2013-07-31 北京京东方光电科技有限公司 一种量子点发光二极管显示器件及显示装置
CN103474451A (zh) * 2013-09-12 2013-12-25 深圳市华星光电技术有限公司 彩色oled器件及其制作方法
US20160204167A1 (en) * 2015-01-09 2016-07-14 Samsung Display Co., Ltd. Display device and manufacturing method thereof
CN105304684A (zh) * 2015-11-18 2016-02-03 深圳市华星光电技术有限公司 彩色显示装置及其制作方法
CN105576004A (zh) * 2016-02-29 2016-05-11 Tcl集团股份有限公司 一种量子点彩色光转换膜、oled面板及显示装置
CN106684112A (zh) * 2016-11-23 2017-05-17 信利(惠州)智能显示有限公司 有机发光显示装置及其制造方法
CN106531773A (zh) * 2016-12-27 2017-03-22 京东方科技集团股份有限公司 Oled显示基板及其制造方法、显示装置

Also Published As

Publication number Publication date
CN106531773A (zh) 2017-03-22
US20190006428A1 (en) 2019-01-03
US10439007B2 (en) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2018120710A1 (zh) Oled显示面板及其制造方法、显示装置
US10374185B2 (en) OLED display device having white OLEDs emitting white light to excite quantum dots
US9472600B2 (en) AMOLED display devices and methods for producing the sub-pixel structure thereof
US9431463B2 (en) Display apparatus
WO2017173683A1 (zh) 电致光致混合发光显示器件及其制作方法
CN102184937B (zh) 一种有机电致发光器件及其制备方法
WO2019127790A1 (zh) 用于woled显示器的彩膜基板及woled显示器
US10692941B2 (en) Organic light emitting diode display
CN108666349B (zh) 彩色滤光基板及其制作方法与woled显示器
WO2014172951A1 (zh) 有机电致发光二极管显示装置
WO2018232948A1 (zh) Oled显示器及其制作方法
TWI378740B (en) Full-color organic light emitting diode display panel and method thereof
WO2016045271A1 (zh) 显示基板及其制备方法、显示装置
CN105304684A (zh) 彩色显示装置及其制作方法
KR20090123536A (ko) 유기 발광 디스플레이 장치
WO2020233284A1 (zh) 显示面板及其制作方法、显示装置
WO2017121131A1 (zh) 阵列基板及其制备方法和显示装置
US20190067379A1 (en) Organic electroluminescence device, manufacturing method of organic electroluminescence device, illumination device, and display device
TW201442217A (zh) 電激發光顯示面板之畫素結構
JP2008226718A (ja) 有機el素子
US20200321560A1 (en) Organic light-emitting device and display device
WO2016061842A1 (zh) 彩色显示器件
US10403686B2 (en) Color film substrate and display device
WO2016197695A1 (zh) 有机发光二极管oled显示器件和具有该显示器件的装置
CN104393013A (zh) 彩色显示器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888779

Country of ref document: EP

Kind code of ref document: A1