WO2018120065A1 - 动态时分双工的设置装置、方法以及通信*** - Google Patents

动态时分双工的设置装置、方法以及通信*** Download PDF

Info

Publication number
WO2018120065A1
WO2018120065A1 PCT/CN2016/113609 CN2016113609W WO2018120065A1 WO 2018120065 A1 WO2018120065 A1 WO 2018120065A1 CN 2016113609 W CN2016113609 W CN 2016113609W WO 2018120065 A1 WO2018120065 A1 WO 2018120065A1
Authority
WO
WIPO (PCT)
Prior art keywords
time division
network device
dynamic time
division duplex
indication information
Prior art date
Application number
PCT/CN2016/113609
Other languages
English (en)
French (fr)
Inventor
汪巍崴
周华
王昕�
Original Assignee
富士通株式会社
汪巍崴
周华
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 汪巍崴, 周华, 王昕� filed Critical 富士通株式会社
Priority to CN201680090411.1A priority Critical patent/CN109891983A/zh
Priority to PCT/CN2016/113609 priority patent/WO2018120065A1/zh
Publication of WO2018120065A1 publication Critical patent/WO2018120065A1/zh
Priority to US16/418,626 priority patent/US20190274053A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a device, a method, and a communication system for setting up a time division duplex (TDD).
  • TDD time division duplex
  • dynamic TDD supports dynamically allocating uplink and downlink configurations of data transmissions as a basic unit (eg, a slot), so each network device (eg, gNB)
  • the direction of transmission with the user equipment may be dynamically changed with one time unit (eg, one time slot) as a basic unit.
  • a data transmission direction of a network device is a downlink (DL, Downlink), and a next time unit ( For example, the second time slot) the data transmission direction of the network device may become uplink (UL, Uplink).
  • DL downlink
  • UL uplink
  • the network device gNB1 uses dynamic TDD to send downlink data to the user equipment UE1 of the cell (cell 1), and the serving cell (cell) 2)
  • User equipment 2 uses dynamic TDD to send uplink data to network equipment gNB2; cross-link interference may occur between UE1 and UE2, and cross-link interference may also occur between gNB1 and gNB2.
  • network devices can coordinate with each other. For example, if gNB2 knows that the transmission direction of gNB1 between the time slot and UE1 is downlink, the transmission direction between gNB2 and UE2 can also be scheduled to be downlink or not transmitted in the time slot, thereby reducing cross-link. interference.
  • the uplink and downlink transmission direction of a certain slot is configured by the network device in the first one or several symbols of the time slot (or a previous time slot of the time slot). If the traditional backhaul is used to exchange such information (for example, the transmission direction information), since the delay of the non-ideal backhaul is relatively large, it is difficult to notify the neighbor network device in a short time.
  • Embodiments of the present invention provide a device, a method, and a communication system for setting a dynamic time division duplex.
  • the cell can be divided into a dynamic TDD area and a static TDD area semi-statically, thereby effectively suppressing cross-link interference of the dynamic TDD system.
  • a method for setting dynamic time division duplexing including:
  • the network device configures one or more user equipments in the serving cell to use dynamic time division duplexing according to the strength indication information.
  • a dynamic time division duplex setting device including:
  • An intensity indication receiving unit configured to receive, by the one or more user equipments, strength indication information that is sent if the strength of the received signal is greater than a first threshold and/or the strength of the cross-link interference is less than a second threshold;
  • a resource configuration unit configured to configure one or more user equipments in the serving cell to use dynamic time division duplexing according to the strength indication information.
  • a method for setting a dynamic time division duplex including:
  • User equipment performs measurement of cross-link interference and/or measurement of received signals
  • the user equipment sends the strength indication information to the network device if the strength of the received signal is greater than the first threshold and/or the strength of the cross-link interference is less than the second threshold;
  • the user equipment determines that the network device is configured to use dynamic time division duplexing for data transmission.
  • a dynamic time division duplex setting device including:
  • a measurement unit that performs measurement of cross-link interference and/or measurement of received signals
  • an intensity indication sending unit configured to send the strength indication information to the network device if the strength of the received signal is greater than the first threshold and/or the strength of the cross-link interference is less than the second threshold;
  • a resource determining unit that determines that the network device is configured to use dynamic time division duplexing for data transmission.
  • a communication system including:
  • a network device comprising the dynamic time division duplex setting device of the second aspect above;
  • User equipment comprising the dynamic time division duplex setting device of the fourth aspect above.
  • the beneficial effects of the embodiments of the present invention are: configuring the user equipment using dynamic TDD according to the strength indication information, and dividing the dynamic TDD area semi-statically, and different dynamic TDD areas are isolated; thereby performing dynamic TDD user equipment in the neighboring cell The distance between the two is large, so that the cross-link interference of the dynamic TDD system can be effectively suppressed.
  • FIG. 1 is a schematic diagram of the transmission direction of dynamic TDD
  • FIG. 2 is a schematic diagram of the use of dynamic TDD in an NR system
  • FIG. 3 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a method for setting a dynamic TDD according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of a dynamic TDD area and a static TDD area according to Embodiment 1 of the present invention.
  • FIG. 6 is another schematic diagram of a dynamic TDD area and a static TDD area according to Embodiment 1 of the present invention.
  • FIG. 7 is a diagram showing an example of a dynamic time slot according to Embodiment 1 of the present invention.
  • FIG. 8 is another schematic diagram of a method for setting a dynamic TDD according to Embodiment 1 of the present invention.
  • FIG. 9 is a schematic diagram of a method for setting a dynamic TDD according to Embodiment 2 of the present invention.
  • FIG. 10 is a schematic diagram of a device for setting a dynamic TDD according to Embodiment 3 of the present invention.
  • FIG. 11 is a schematic diagram of a device for setting a dynamic TDD according to Embodiment 4 of the present invention.
  • FIG. 12 is a schematic diagram of a network device according to Embodiment 5 of the present invention.
  • FIG. 13 is a schematic diagram of a user equipment according to Embodiment 5 of the present invention.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or chronological order of the elements, and these elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising,” “comprising,” “having,” or “an” are used to distinguish different elements from the title, but do not indicate the spatial arrangement or chronological order of the elements, and these elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the term “communication network” or “wireless communication network” may refer to a network that conforms to any communication standard such as Long Term Evolution (LTE), Enhanced Long Term Evolution (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA), High-Speed Packet Access (HSPA), and the like.
  • LTE Long Term Evolution
  • LTE-A Enhanced Long Term Evolution
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system may be performed according to any phase of the communication protocol, and may include, for example but not limited to, the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G, and future. 5G, New Radio (NR), etc., and/or other communication protocols currently known or to be developed in the future.
  • the term "network device” refers to, for example, a device in a communication system that accesses a terminal device to a communication network and provides a service for the terminal device.
  • the network device may include but is not limited to the following devices: a base station (BS, Base Station), Access Point (AP, Access Point), Transmission and Reception Point (TRP), Broadcast Transmitter, Mobile Management Entity (MME, Mobile Management Entity), Gateway, Server, Wireless Network Control RNC (Radio Network Controller), Base Station Controller (BSC), and so on.
  • BS Base Station
  • AP Access Point
  • TRP Transmission and Reception Point
  • MME Mobile Management Entity
  • Gateway Gateway
  • BSC Base Station Controller
  • the base station may include, but is not limited to, a Node B (NodeB or NB), an evolved Node B (eNodeB or eNB), and a 5G base station (gNB), and the like, and may further include a Remote Radio Head (RRH). , Remote Radio Unit (RRU), relay or low power node (eg femto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • base station may include some or all of their functions, and each base station may provide communication coverage for a particular geographic area.
  • the term "cell” can refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "user equipment” (UE) or “Terminal Equipment” (TE) refers to, for example, a device that accesses a communication network through a network device and receives a network service.
  • the user equipment may be fixed or mobile, and may also be referred to as a mobile station (MS, Mobile Station), a terminal, a subscriber station (SS, Subscriber Station), an access terminal (AT, Access Terminal), a station, and the like.
  • the user equipment may include, but is not limited to, a cellular phone (Cellular Phone), a personal digital assistant (PDA, Personal Digital Assistant), a wireless modem, a wireless communication device, a handheld device, a machine type communication device, a laptop computer, Cordless phones, smart phones, smart watches, digital cameras, and more.
  • a cellular phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem Wireless Fidelity
  • a wireless communication device a handheld device
  • a machine type communication device a laptop computer
  • Cordless phones smart phones, smart watches, digital cameras, and more.
  • the user equipment may also be a machine or device that performs monitoring or measurement, and may include, but is not limited to, a Machine Type Communication (MTC) terminal, In-vehicle communication terminal, device to device (D2D, Device to Device) terminal, machine to machine (M2M, Machine to Machine) terminal, and the like.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • FIG. 3 is a schematic diagram of a communication system according to an embodiment of the present invention, illustrating a case where a user equipment and a network device are taken as an example.
  • the communication system 300 may include a network device 301 and a user equipment 302 (for simplicity)
  • Figure 3 only uses a user equipment as an example.
  • an existing service or a service that can be implemented in the future can be performed between the network device 301 and the user equipment 302.
  • these services may include, but are not limited to, enhanced mobile broadband (eMBB, Enhanced Mobile Broadband), massive machine type communication (mMTC), and high-reliability low-latency communication (URLLC, Ultra-Reliable and Low-Latency Communication).
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC Ultra-Reliable and Low-Latency Communication
  • the uplink and downlink data transmission may be performed by using the dynamic TDD between the network device 301 and the user equipment 302.
  • the embodiment of the invention provides a method for setting a dynamic TDD, which is applied to a network device.
  • 4 is a schematic diagram of a method for setting a dynamic TDD according to an embodiment of the present invention. As shown in FIG. 4, the setting method includes:
  • Step 401 The network device receives strength indication information that is sent by one or more user equipments when the strength of the received signal is greater than a first threshold and/or the strength of cross-link interference is less than a second threshold.
  • Step 402 The network device configures one or more user equipments in the serving cell to use dynamic TDD according to the strength indication information.
  • an area formed by one or more user equipments in the serving cell using the dynamic TDD is referred to as a dynamic TDD area.
  • the dynamic TDD area can be divided semi-statically, and different dynamic TDD areas can be isolated.
  • the dynamic TDD area of the serving cell there is a static TDD area between the dynamic TDD area of the serving cell and the dynamic TDD area of the neighbor cell.
  • the user equipment in the static TDD area is served in a static TDD manner, that is, the uplink and downlink configuration of the time slot does not change dynamically.
  • FIG. 5 is a schematic diagram of a dynamic TDD area and a static TDD area according to an embodiment of the present invention
  • FIG. 6 is another schematic diagram of a dynamic TDD area and a static TDD area according to an embodiment of the present invention.
  • the coverage of a cell can be divided into two areas: a static TDD area and a dynamic TDD area.
  • the static TDD area may be served by gNB1 or by gNB2.
  • the dynamic TDD area and the static TDD area referred to in the embodiment of the present invention are not limited to the physical area, and may be, for example, a virtual area (or a collection). That is, an area formed by one or more user equipments using dynamic TDD may be referred to as a dynamic TDD area, and an area formed by one or more user equipments using static TDD may be referred to as a static TDD area.
  • the gNB may pre-divide an area according to the distance or the signal strength, and all the user equipments in the area are scheduled to use the dynamic TDD, and the user equipments in the cell outside the area are scheduled to use the static TDD;
  • the invention is not limited thereto.
  • different dynamic TDD areas may also be blank areas, that is, uplink and downlink scheduling without data transmission.
  • the network device may send time domain location information indicating dynamic TDD to one or more user equipments in the serving cell, so that the user equipment using the dynamic TDD may be configured or scheduled.
  • the present invention is not limited thereto. For specific how to perform dynamic TDD configuration or scheduling, reference may be made to related technologies.
  • a network device e.g., gNB
  • the network device may configure the user equipment to perform measurement of cross-link interference; and receive measurement result information of cross-link interference sent by the user equipment and/or a first indication indicating whether there is cross-link interference. information.
  • the gNB can configure the measurement of the cross-link interference to the user equipment, and then report the measurement result by the user equipment.
  • the gNB can also configure the location of the time-frequency resource that the user equipment performs measurement.
  • the threshold may be, for example, a gNB in the configuration.
  • SINR Signal to Interfere plus Noise Ratio
  • the threshold may be, for example, sent by the gNB when configuring the cross-link interference measurement.
  • the device to the user.
  • the invention is not limited thereto, and other conditions may also be included.
  • the network device may further reconfigure one or more user equipments according to the measurement result information and/or the first indication information to adjust the dynamic time division duplex area.
  • the gNB can perform adjustment of the dynamic TDD area based on the measurement results. If the measurement result indicates that the cross-link interference is serious, the gNB can narrow the range of the dynamic TDD area; conversely, if the measurement result indicates that the cross-link interference is relatively small, the gNB can expand the range of the dynamic TDD area.
  • the user equipment may further report the first indication information indicating whether there is cross-link interference, for example, whether there is an indication message of serious cross-link interference; then the gNB adjusts the dynamic according to the received indication message. TDD area.
  • the indication information may also be sent between the network devices. That is, the network device may send second indication information indicating whether there is cross-link interference to the neighbor network device, so that the neighbor network device adjusts the corresponding dynamic time division duplex region.
  • gNB1 may send an indication message about cross-link interference in the dynamic TDD area, and then gNB2 receiving the indication message adjusts the setting of the corresponding dynamic TDD area.
  • Table 1 is an example of two gNBs adjusting dynamic TDD regions.
  • the indication message may be generated based on the combination of at least one condition or a plurality of conditions: the cross-link interference reported by the serving user equipment of the gNB, and the interference is large; the user equipment of the gNB reports that there is a large cross-link interference.
  • the invention is not limited thereto, and other conditions may also be included.
  • the network device can negotiate with the neighbor network device for the time domain location of the dynamic TDD.
  • gNB1 may send information to neighbor gNB2, which includes the location of the time slot (which may be referred to as a dynamic time slot) that gNB1 serves as a serving cell in a dynamic TDD manner. And/or, it may also include the location of the time slot (which may be referred to as a static time slot) that the gNB1 serves the serving cell in a static TDD manner.
  • FIG. 7 is a diagram showing an example of a dynamic time slot according to an embodiment of the present invention.
  • a time period may include 4 time slots, and the gNB may be used in the first two time slots (first and second time slots).
  • Static TDD for UEs in the static TDD area
  • the gNB adopts dynamic TDD in the last two slots (third and fourth slots) (for dynamic TDD) Regional UE).
  • gNB1 will send a message to neighbor gNB2 indicating that gNB1 will serve the user equipment in its cell in the third and fourth time slots by means of dynamic TDD. By this message, gNB2 can be at the same time. Gap to use dynamic TDD.
  • the network device may send, to the neighbor network device, third indication information indicating a time domain location for performing dynamic TDD, and further, may receive the acknowledgement information sent by the neighbor network device;
  • gNB1 sends an indication message to gNB2 indicating the location of the gNB1 dynamic time slot, and then gNB2 can set the same dynamic time slot and send an acknowledgement message to gNB1.
  • the network device may send the third indication information indicating the time domain location of the dynamic time division duplex to the neighbor network device, and receive the recommendation sent by the neighbor network device to perform dynamic time division duplexing.
  • Fourth indication information of the domain location and determining a time domain location for performing dynamic time division duplexing according to the third indication information and/or the fourth indication information;
  • gNB1 sends an indication message to gNB2 indicating the location of the dynamic time slot of gNB1. If gNB2 has different settings, it can send a suggested dynamic time slot location to gNB1, and gNB1 can send an acknowledgement message to accept the dynamic time slot suggested by gNB2. s position.
  • the two gNBs can select the intersection of the dynamic slot positions of the two as the position of the negotiated dynamic slot.
  • the network device may send third indication information indicating a time domain location for dynamic time division duplexing to the neighbor network device, and receive the rejection information sent by the neighbor network device.
  • one gNB can send a reject message to another gNB (gNB2).
  • gNB1 can send a reject message to another gNB (gNB2).
  • gNB2 can send a reject message to another gNB (gNB2).
  • gNB2 can send a reject message to another gNB (gNB2).
  • dynamic TDD cannot be used on any gNB.
  • the network device may also determine the user equipment in the dynamic TDD area. For example, the gNB needs to know which user equipments are in the dynamic TDD area so that it can know which user equipments the dynamic TDD can be applied to.
  • the network device can configure the user equipment to measure the strength of the cross-link interference and/or Measurement of the strength of the received signal.
  • the user equipment may send the strength indication information to the network device if the strength of the received signal is greater than the first threshold and/or the strength of the cross-link interference is less than the second threshold.
  • the network device may determine the user equipment that sent the strength indication information as the user equipment in the dynamic TDD area.
  • the gNB can configure the user equipment to measure the strength of the transmit signal of the gNB (ie, the received signal of the UE); if the strength is greater than a certain threshold (for example, can be configured by the gNB), the user equipment sends the report information (the information may be a The indication information indicates that the signal strength of the gNB is greater than the set threshold value, or a message containing the measurement result). In this way, the gNB can determine that the user equipment is in the dynamic TDD area.
  • a certain threshold for example, can be configured by the gNB
  • the gNB can configure the user equipment to measure the strength of the cross-link interference. If the interference strength is less than a certain threshold (for example, can be configured by the gNB), the user equipment sends a report message (the information may be an indication message indicating interference). The intensity is less than the set threshold or a message containing the measurement result). In this way, the gNB can determine that the user equipment is in the dynamic TDD area.
  • a certain threshold for example, can be configured by the gNB
  • the user equipment sends a report message (the information may be an indication message indicating interference).
  • the intensity is less than the set threshold or a message containing the measurement result). In this way, the gNB can determine that the user equipment is in the dynamic TDD area.
  • the gNB can also configure the location of time-frequency resources for user equipment to make measurements (eg, cross-link interference measurements and/or receive signal measurements).
  • the gNB may send the configuration information to the user equipment, and after receiving the configuration information, the UE may perform cross-link interference measurement and/or receive signal measurement on the configured time-frequency resource.
  • FIG. 8 is another schematic diagram of a method for setting a dynamic TDD according to an embodiment of the present invention. As shown in FIG. 8, the setting method includes:
  • Step 801 The network device negotiates with the neighbor network device to perform a time domain location of the dynamic TDD.
  • Step 802 The network device configures the user equipment to perform measurement.
  • Step 803 The user equipment performs measurement.
  • the user equipment can perform measurement of cross-link interference as well as measurement of received signals.
  • the strength indication information may be sent to the network device if the strength of the received signal is greater than the first threshold and/or the strength of the cross-link interference is less than the second threshold.
  • Step 804 The network device receives the strength indication information reported by the user equipment.
  • the network device may determine the user equipment that sent the strength indication information as the user equipment in the dynamic TDD area; but the present invention is not limited thereto, for example, the signal strength may be reselected from the N user equipments that sent the strength indication information.
  • the strongest M user devices M is less than N, and so on.
  • Step 805 The network device configures one or more user equipments in the serving cell to use dynamic TDD.
  • user equipment configured to perform dynamic TDD within a serving cell forms a dynamic TDD area.
  • Step 806 The network device receives the cross-link interference measurement result and/or the indication information reported by the user equipment.
  • the user equipment may perform the measurement of the cross-link interference and report the measurement result according to the configuration of step 802.
  • the user equipment does not report the measurement result, and may report the indication information only when the cross-link interference is relatively serious, indicating that there is a comparison. Severe cross-link interference.
  • Step 807 the network device adjusts the dynamic TDD area
  • the network device can narrow the dynamic TDD area; if the cross-link interference is not too serious or small, the dynamic TDD area can be maintained or the dynamic TDD area can be expanded.
  • Step 808 The network device sends the indication information to the neighbor network device, so that the neighbor network device adjusts the corresponding dynamic TDD area.
  • FIG. 8 only schematically illustrates the embodiment of the present invention, but the present invention is not limited thereto.
  • the order of execution between the various steps can be appropriately adjusted, and other steps can be added or some of the steps can be reduced.
  • Those skilled in the art can appropriately modify the above based on the above contents, and are not limited to the above description of FIG.
  • the user equipment that uses the dynamic TDD is configured according to the strength indication information, and the dynamic TDD area can be divided semi-statically, and the different dynamic TDD areas are isolated; and the distance between the user equipments of the dynamic TDD by the neighboring cells is determined. Larger, so that cross-link interference of dynamic TDD systems can be effectively suppressed.
  • the embodiment of the present invention provides a method for setting a dynamic TDD, which is applied to a user equipment, and the same content of the embodiment of the present invention is not described herein.
  • FIG. 9 is a schematic diagram of a method for setting a dynamic TDD according to an embodiment of the present invention. As shown in FIG. 9, the setting method includes:
  • Step 901 The user equipment performs measurement of cross-link interference and/or measurement of the received signal.
  • Step 902 The user equipment sends the strength indication information to the network device if the strength of the received signal is greater than the first threshold and/or the strength of the cross-link interference is less than the second threshold;
  • Step 903 The user equipment determines that the network device is configured to use the dynamic TDD for data transmission.
  • an area formed by one or more user equipments using dynamic TDD in a serving cell is referred to as a dynamic TDD area.
  • the dynamic TDD area can be divided semi-statically, and different dynamic TDD areas can be isolated. For example, the movement of the service community There is a static TDD area between the TDD area and the dynamic TDD area of the neighbor cell.
  • the user equipment may receive configuration information configured by the network device to perform measurement of cross-link interference and/or measurement of a received signal; and transmit measurement result information of cross-link interference to the network device and / or indicate whether there is a first indication of cross-link interference.
  • the user equipment may receive time domain location information sent by the network device to perform dynamic TDD, thereby determining that data transmission is performed using dynamic TDD.
  • the user equipment that uses the dynamic TDD is configured according to the strength indication information, and the dynamic TDD area can be divided semi-statically, and the different dynamic TDD areas are isolated; and the distance between the user equipments of the dynamic TDD by the neighboring cells is determined. Larger, so that cross-link interference of dynamic TDD systems can be effectively suppressed.
  • the embodiment of the present invention provides a device for setting up a dynamic TDD.
  • the device for setting the dynamic TDD may be, for example, a network device, or may be a component or component of a network device.
  • the same contents of the third embodiment and the first embodiment will not be described again.
  • FIG. 10 is a schematic diagram of a device for setting a dynamic TDD according to an embodiment of the present invention.
  • the setting device 1000 for a dynamic TDD includes:
  • the strength indication receiving unit 1001 receives the strength indication information sent by the one or more user equipments when the strength of the received signal is greater than the first threshold and/or the strength of the cross-link interference is less than the second threshold;
  • the resource configuration unit 1002 configures one or more user equipments in the serving cell to use dynamic TDD according to the strength indication information.
  • an area formed by one or more user equipments using dynamic TDD in a serving cell is referred to as a dynamic TDD area.
  • the dynamic TDD area can be divided semi-statically, and different dynamic TDD areas can be isolated. For example, there is a static TDD area between the dynamic TDD area of the serving cell and the dynamic TDD area of the neighbor cell.
  • the resource configuration unit 1002 is specifically configured to: send time domain location information indicating dynamic time division duplexing to one or more user equipments in the serving cell.
  • the setting device 1000 of the dynamic TDD may further include:
  • a measurement configuration unit 1003 that configures the user equipment to perform measurements of cross-link interference and/or measurements of received signals.
  • the setting device 1000 of the dynamic TDD may further include:
  • the measurement information receiving unit 1004 receives the measurement result information of the cross-link interference sent by the user equipment and/or the first indication information indicating whether there is cross-link interference.
  • the resource configuration unit 1002 is further configured to reconfigure one or more user equipments according to the measurement result information and/or the first indication information to adjust the dynamic TDD area.
  • the setting device 1000 of the dynamic TDD may further include:
  • the indication sending unit 1005 sends second indication information indicating whether there is cross-link interference to the neighbor network device, so that the neighbor network device adjusts the corresponding dynamic TDD area.
  • the setting device 1000 of the dynamic TDD may further include:
  • the location negotiating unit 1006 negotiates with the neighbor network device for the time domain location of the dynamic TDD.
  • the location negotiating unit 1006 may send, to the neighbor network device, third indication information indicating a time domain location for performing dynamic time division duplexing;
  • the location negotiating unit 1006 may send, to the neighbor network device, third indication information indicating a time domain location for performing dynamic time division duplexing, and receiving acknowledgement information sent by the neighbor network device;
  • the location negotiating unit 1006 may send, to the neighbor network device, third indication information indicating a time domain location for performing dynamic time division duplexing, and receiving a time domain location recommended by the neighbor network device for performing dynamic time division duplexing. a fourth indication information; and determining, according to the third indication information and/or the fourth indication information, a time domain location for performing dynamic time division duplexing;
  • the location negotiating unit 1006 may send third indication information indicating a time domain location for performing dynamic time division duplexing to the neighbor network device, and receive the rejection information sent by the neighbor network device.
  • the setting device 1000 of the dynamic TDD may further include:
  • the user determining unit 1007 determines the user equipment that sends the strength indication information as the user equipment in the dynamic time division duplex area.
  • the setting device 1000 of the dynamic TDD may further include other components or modules, and for the specific contents of these components or modules, reference may be made to related art.
  • the user equipment that uses the dynamic TDD is configured according to the strength indication information, and the dynamic TDD area can be divided semi-statically, and the different dynamic TDD areas are isolated; and the distance between the user equipments of the dynamic TDD by the neighboring cells is determined. Larger, so that cross-link interference of dynamic TDD systems can be effectively suppressed.
  • the embodiment of the present invention provides a device for setting up a dynamic TDD.
  • the device for setting the dynamic TDD may be a user equipment, or may be a component or component configured in the user equipment.
  • the same contents of the fourth embodiment as those of the first and second embodiments will not be described again.
  • FIG. 11 is a schematic diagram of a device for setting a dynamic TDD according to an embodiment of the present invention. As shown in FIG. 11, the setting device 1100 of the dynamic TDD includes:
  • a measuring unit 1101 that performs measurement of cross-link interference and/or measurement of a received signal
  • the strength indication sending unit 1102 sends the strength indication information to the network device if the strength of the received signal is greater than the first threshold and/or the strength of the cross-link interference is less than the second threshold;
  • a resource determining unit 1103 determines that the network device is configured to use the dynamic TDD for data transmission.
  • an area formed by one or more user equipments in the serving cell using the dynamic TDD is referred to as a dynamic TDD area.
  • the dynamic TDD area can be divided semi-statically, and different dynamic TDD areas can be isolated. For example, there is a static TDD area between the dynamic TDD area of the serving cell and the dynamic TDD area of the neighbor cell.
  • the resource determining unit 1103 is specifically configured to: receive time domain location information that is sent by the network device and that is used to perform dynamic TDD.
  • the setting device 1100 of the dynamic TDD may further include:
  • the measurement configuration receiving unit 1104 receives configuration information of the measurement of the cross-link interference and/or the measurement of the received signal configured by the network device.
  • the setting device 1100 of the dynamic TDD may further include:
  • the measurement information transmitting unit 1105 transmits measurement result information of cross-link interference to the network device and/or first indication information indicating whether there is cross-link interference.
  • the setting device 1100 of the dynamic TDD may further include other components or modules, and for the specific contents of these components or modules, reference may be made to related art.
  • the user equipment that uses the dynamic TDD is configured according to the strength indication information, and the dynamic TDD area can be divided semi-statically, and the different dynamic TDD areas are isolated; and the distance between the user equipments of the dynamic TDD by the neighboring cells is determined. Larger, so that cross-link interference of dynamic TDD systems can be effectively suppressed.
  • the embodiment of the present invention further provides a communication system.
  • the communication system 300 can include:
  • the network device 301 is configured with the setting device 1000 of the dynamic TDD as described in Embodiment 3.
  • the user equipment 302 is configured with the setting device 1100 of the dynamic TDD as described in Embodiment 4.
  • the embodiment of the present invention further provides a network device, which may be, for example, a base station, but the present invention is not limited thereto, and may be other network devices.
  • a network device which may be, for example, a base station, but the present invention is not limited thereto, and may be other network devices.
  • FIG. 12 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • network device 1200 can include a processor 1210 (eg, a central processing unit CPU) and a memory 1220; memory 1220 is coupled to processor 1210.
  • the memory 1220 can store various data; in addition, a program 1230 for information processing is stored, and the program 1230 is executed under the control of the processor 1210.
  • the processor 1210 can be configured to implement the function of the setting device 1000 of the dynamic TDD.
  • processor 1210 can be configured to execute program 1230 to perform control of receiving one or more user equipments if the strength of the received signal is greater than a first threshold and/or the strength of the cross-link interference is less than a second threshold The strength indication information sent; configuring one or more user equipments in the serving cell to use dynamic TDD according to the strength indication information.
  • the network device 1200 may further include: a transceiver 1240, an antenna 1250, and the like; wherein the functions of the foregoing components are similar to the prior art, and details are not described herein again. It should be noted that the network device 1200 does not have to include all the components shown in FIG. 12; in addition, the network device 1200 may further include components not shown in FIG. 12, and reference may be made to the prior art.
  • the embodiment of the present invention further provides a user equipment, but the present invention is not limited thereto, and may be other devices.
  • FIG. 13 is a schematic diagram of a user equipment according to an embodiment of the present invention.
  • the user equipment 1300 can include a processor 1310 and a memory 1320; the memory 1320 stores data and programs and is coupled to the processor 1310.
  • the figure is exemplary; other types of structures may be used in addition to or in place of the structure to implement telecommunications functions or other functions.
  • the processor 1310 can be configured to implement the functions of the setting device 1100 of the dynamic TDD. For example, processor 1310 can be configured to perform control of performing measurements of cross-link interference and/or measurement of received signals; the strength of the received signal is greater than a first threshold and/or the strength of cross-link interference is less than a second Threshold situation And transmitting strength indication information to the network device; and determining that the network device is configured to use the dynamic TDD for data transmission.
  • the user equipment 1300 may further include: a communication module 1330, an input unit 1340, a display 1350, and a power source 1360.
  • the functions of the above components are similar to those of the prior art, and are not described herein again. It should be noted that the user equipment 1300 does not have to include all the components shown in FIG. 13, and the above components are not required; in addition, the user equipment 1300 may further include components not shown in FIG. There are technologies.
  • Embodiments of the present invention also provide a computer readable program, wherein the program causes the network device (e.g., a base station) to perform the dynamic TDD described in Embodiment 1 when the program is executed in a network device (e.g., a base station)
  • the network device e.g., a base station
  • the network device e.g., a base station
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a network device (for example, a base station) to execute the setting method of the dynamic TDD described in Embodiment 1.
  • a network device for example, a base station
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a user equipment, the program causes the user equipment to perform the setting method of the dynamic TDD described in Embodiment 2.
  • An embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a user equipment to perform the setting method of the dynamic TDD described in Embodiment 2.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • the method/apparatus described in connection with the embodiments of the invention may be embodied directly in hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams shown in FIG. 10 and/or one or more combinations of functional block diagrams may correspond to each of the computer program flows.
  • Software modules can also correspond to individual hardware modules. These software modules may correspond to the respective steps shown in FIG. 4, respectively.
  • These hardware modules can be implemented, for example, by curing these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • the software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor to enable the processor to read a letter from the storage medium Information can be written to the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks described in the figures and/or one or more combinations of functional blocks may be implemented as a general purpose processor, digital signal processor (DSP) for performing the functions described herein.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described with respect to the figures and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors One or more microprocessors in conjunction with DSP communication or any other such configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种动态时分双工的设置装置、方法以及通信***。所述设置方法包括:网络设备接收一个或多个用户设备在接收信号的强度大于第一阈值和/或跨链路干扰的强度小于第二阈值的情况下发送的强度指示信息;根据强度指示信息将服务小区内一个或多个用户设备配置为使用动态时分双工。由此,相邻小区进行动态TDD的用户设备之间距离较大,从而可以有效地抑制动态TDD***的跨链路干扰。

Description

动态时分双工的设置装置、方法以及通信*** 技术领域
本发明实施例涉及通信技术领域,特别涉及一种动态时分双工(TDD,Time Division Duplex)的设置装置、方法以及通信***。
背景技术
在新无线(NR,New Radio)***中,动态TDD支持以一个时间单元(例如一个时隙(slot))为基本单元动态地分配数据传输的上下行配置,因此每个网络设备(例如gNB)与用户设备之间的传输方向可能以一个时间单元(例如一个时隙)为基本单元而动态改变。
图1是动态TDD的传输方向的一示意图,如图1所示,在某一个时间单元(例如第1个时隙)网络设备的数据传输方向为下行(DL,Downlink),在下一时间单元(例如第2个时隙)网络设备的数据传输方向可能变为上行(UL,Uplink)。
NR***中如果采用动态TDD,则需要频繁地改变数据传输方向,这可能导致相邻小区间严重的跨链路干扰(CLI,Cross-Link Interference)。
图2是NR***中采用动态TDD的一示意图,如图2所示,例如在某一时隙,网络设备gNB1采用动态TDD向本小区(小区1)的用户设备UE1发送下行数据,服务小区(小区2)的用户设备2采用动态TDD向网络设备gNB2发送上行数据;UE1和UE2之间可能产生跨链路干扰,gNB1和gNB2之间也可能产生跨链路干扰。
为了降低跨链路干扰,网络设备之间可以相互协调。例如,如果gNB2知道gNB1在该时隙与UE1之间的传输方向为下行,则可以在该时隙将gNB2与UE2之间的传输方向也调度为下行或者不进行传输数据,从而降低跨链路干扰。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
但是,发明人发现:在网络设备之间进行协调需要很大的开销;并且还受限于网 络设备间的回路(backhaul)的时延。
例如,采用动态TDD时,某一时隙的上下行传输方向在该时隙的前一个或几个符号(或者该时隙的前一时隙)才被网络设备配置。如果采用传统的通过backhaul来交换这些信息(例如传输方向信息),则由于非理想backhaul的时延比较大,这些信息很难在短时间内通知给邻居网络设备。
本发明实施例提供一种动态时分双工的设置装置、方法以及通信***。可以半静态地将小区划分为动态TDD区域和静态TDD区域,从而有效地抑制动态TDD***的跨链路干扰。
根据本发明实施例的第一个方面,提供一种动态时分双工的设置方法,包括:
网络设备接收一个或多个用户设备在接收信号的强度大于第一阈值和/或跨链路干扰的强度小于第二阈值的情况下发送的强度指示信息;
所述网络设备根据所述强度指示信息将服务小区内一个或多个用户设备配置为使用动态时分双工。
根据本发明实施例的第二个方面,提供一种动态时分双工的设置装置,包括:
强度指示接收单元,其接收一个或多个用户设备在接收信号的强度大于第一阈值和/或跨链路干扰的强度小于第二阈值的情况下发送的强度指示信息;
资源配置单元,其根据所述强度指示信息将服务小区内一个或多个用户设备配置为使用动态时分双工。
根据本发明实施例的第三个方面,提供一种动态时分双工的设置方法,包括:
用户设备进行跨链路干扰的测量和/或接收信号的测量;
所述用户设备在接收信号的强度大于第一阈值和/或跨链路干扰的强度小于第二阈值的情况下,向网络设备发送强度指示信息;以及
用户设备确定被所述网络设备配置为使用动态时分双工进行数据传输。
根据本发明实施例的第四个方面,提供一种动态时分双工的设置装置,包括:
测量单元,其进行跨链路干扰的测量和/或接收信号的测量;
强度指示发送单元,其在接收信号的强度大于第一阈值和/或跨链路干扰的强度小于第二阈值的情况下,向网络设备发送强度指示信息;以及
资源确定单元,其确定被所述网络设备配置为使用动态时分双工进行数据传输。
根据本发明实施例的第五个方面,提供一种通信***,包括:
网络设备,其包括如上第二方面所述的动态时分双工的设置装置;
用户设备,其包括如上第四方面所述的动态时分双工的设置装置。
本发明实施例的有益效果在于:根据强度指示信息配置使用动态TDD的用户设备,可以半静态地划分动态TDD区域,不同的动态TDD区域被隔离开;由此相邻小区进行动态TDD的用户设备之间距离较大,从而可以有效地抑制动态TDD***的跨链路干扰。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本发明实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是动态TDD的传输方向的一示意图
图2是NR***中采用动态TDD的一示意图;
图3是本发明实施例的通信***的一示意图;
图4是本发明实施例1的动态TDD的设置方法的一示意图;
图5是本发明实施例1的动态TDD区域和静态TDD区域的一示意图;
图6是本发明实施例1的动态TDD区域和静态TDD区域的另一示意图;
图7是本发明实施例1的动态时隙的一示例图;
图8是本发明实施例1的动态TDD的设置方法的另一示意图;
图9是本发明实施例2的动态TDD的设置方法的一示意图;
图10是本发明实施例3的动态TDD的设置装置的一示意图;
图11是本发明实施例4的动态TDD的设置装置的一示意图;
图12是本发明实施例5的网络设备的一示意图;
图13是本发明实施例5的用户设备的一示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本发明实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本发明实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本发明实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信***中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本发明实施例中,术语“网络设备”例如是指通信***中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站 (BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本发明实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备。用户设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,用户设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,用户设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
以下通过示例对本发明实施例的场景进行说明,但本发明不限于此。
图3是本发明实施例的通信***的一示意图,示意性说明了以用户设备和网络设备为例的情况,如图3所示,通信***300可以包括网络设备301和用户设备302(为简单起见,图3仅以一个用户设备为例进行说明)。
在本发明实施例中,网络设备301和用户设备302之间可以进行现有的业务或者未来可实施的业务。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB, enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。其中,网络设备301和用户设备302之间可以采用动态TDD进行上下行数据传输。
以下将以gNB和UE为例对本发明实施例进行详细说明。
实施例1
本发明实施例提供一种动态TDD的设置方法,应用于网络设备。图4是本发明实施例的动态TDD的设置方法的一示意图,如图4所示,所述设置方法包括:
步骤401,网络设备接收一个或多个用户设备在接收信号的强度大于第一阈值和/或跨链路干扰的强度小于第二阈值的情况下发送的强度指示信息;
步骤402,网络设备根据强度指示信息将服务小区内一个或多个用户设备配置为使用动态TDD。
在本实施例中,所述服务小区内使用所述动态TDD的一个或多个用户设备所形成的区域称为动态TDD区域。通过强度指示信息来配置使用动态TDD的用户设备,可以半静态地划分动态TDD区域,不同的动态TDD区域可以被隔离开。
例如,服务小区的动态TDD区域与邻居小区的动态TDD区域之间具有静态TDD区域。其中,该静态TDD区域内的用户设备采用静态TDD的方式服务,即时隙的上下行配置不会动态地发生改变。
图5是本发明实施例的动态TDD区域和静态TDD区域的一示意图,图6是本发明实施例的动态TDD区域和静态TDD区域的另一示意图。如图5和6所示,一个小区的覆盖范围可以被分成两个区域:静态TDD区域和动态TDD区域。其中,在图6中,静态TDD区域可能被gNB1服务,也可能被gNB2服务。
值得注意的是,本发明实施例所指的动态TDD区域和静态TDD区域并不限于物理意义上的区域,例如还可以是一种虚拟区域(或称为集合)。即,可以将使用动态TDD的一个或多个用户设备所形成区域称为动态TDD区域,将使用静态TDD的一个或多个用户设备所形成的区域称为静态TDD区域。
例如,gNB可以按照距离或者信号强度预先划分一个区域,将该区域内的用户设备都调度为使用动态TDD,而将该区域外的小区内用户设备都调度为使用静态TDD; 但本发明不限于此。
以上仅以静态TDD区域为例,示意性说明了不同的动态TDD区域被隔离开的情况;但本发明不限于此。例如不同的动态TDD区域之间还可以是空白区域,即不进行数据传输的上下行调度。
在本实施例中,网络设备可以向服务小区内一个或多个用户设备发送指示进行动态TDD的时域位置信息,从而可以配置或调度使用动态TDD的用户设备。但本发明不限于此,关于具体如何进行动态TDD的配置或调度,可以参考相关技术。
在本实施例中,对于两个不同的动态TDD区域来说,从这两个区域中任取一个用户设备,这样的两个用户设备间的距离比较大,因此即使这两个区域都采用动态TDD,也不会产生很大的用户设备与用户设备间的干扰。因此,网络设备(例如gNB)可以针对动态TDD区域内的用户设备采用动态TDD,能够动态地分配传输方向(例如上行或下行)。
在本实施例中,网络设备可以配置用户设备进行跨链路干扰的测量;以及接收所述用户设备发送的跨链路干扰的测量结果信息和/或指示是否有跨链路干扰的第一指示信息。
例如,为了设置一个合适的动态TDD区域,gNB可以向用户设备配置跨链路干扰的测量,然后由用户设备上报测量结果。另外,gNB也可以配置用户设备进行测量的时频资源的位置。
如果测量结果满足下述至少一个条件或多个条件的组合,则表明跨链路干扰比较严重:UE间跨链路干扰的强度大于某一个门限值,该门限值例如可以是gNB在配置跨链路干扰测量时发送给用户设备的;信干噪比(SINR,Signal to Interfere plus Noise Ratio)小于某一个门限值,该门限值例如可以是gNB在配置跨链路干扰测量时发送给用户的设备。但本发明不限于此,还可以包括其他的条件。
在本实施例中,网络设备还可以根据所述测量结果信息和/或所述第一指示信息对一个或多个用户设备进行重新配置,以调整所述动态时分双工区域。
例如,gNB可以根据测量结果来进行动态TDD区域的调整。如果测量结果表明跨链路干扰比较严重,gNB可以缩小动态TDD区域的范围;反之,如果测量结果表明跨链路干扰比较小,gNB可以扩大动态TDD区域的范围。
值得注意的是,上述缩小动态TDD区域的范围可以表示减少采用动态TDD的用 户设备的个数;反之,扩大动态TDD区域的范围可以表示增加采用动态TDD的用户设备的个数;但本发明不限于此。
再例如,除了上报测量结果,用户设备还可以上报指示是否有跨链路干扰的第一指示信息,例如是否有严重跨链路干扰的指示消息;然后gNB根据收到的该指示消息来调整动态TDD区域。
在本实施例中,网络设备之间还可以发送指示信息。即,网络设备可以向邻居网络设备发送指示是否有跨链路干扰的第二指示信息,使得所述邻居网络设备调整对应的动态时分双工区域。
例如,gNB1可以发送关于动态TDD区域内跨链路干扰的指示消息,然后收到该指示消息的gNB2会调整对应的动态TDD区域的设置。
表1是两个gNB调整动态TDD区域的例子。
表1
Figure PCTCN2016113609-appb-000001
这里,指示消息可以基于下述至少一个条件或多个条件的组合而产生:gNB的服务用户设备上报的跨链路干扰,且干扰较大;gNB的用户设备上报了存在较大跨链路干扰的指示消息;gNB发现小区的容量或动态TDD区域内的用户设备容量降低,并且降低量超过了某一个门限值。但本发明不限于此,还可以包括其他的条件。
在本实施例中,网络设备可以与邻居网络设备协商进行动态TDD的时域位置。
例如,gNB1可以向邻居gNB2发送信息,该信息中包含该gNB1以动态TDD方式为服务小区服务的时隙(可以称为动态时隙)的位置。和/或,还可以包含该gNB1以静态TDD方式为服务小区服务的时隙(可以称为静态时隙)的位置。
图7是本发明实施例的动态时隙的一示例图,以图7为例,一个时间段可以包含4个时隙,gNB可以在前两个时隙(第一和第二时隙)采用静态TDD(适用于静态TDD区域的UE),即时隙的DL与UL配置不会动态地发生改变,gNB在最后两个时隙(第三和第四时隙)采用动态TDD(适用于动态TDD区域的UE)。
例如,gNB1将会向邻居gNB2发送一个消息,该消息指示该gNB1将在第三和第四个时隙采用动态TDD的方式服务其小区内的用户设备,通过这个消息,gNB2可以在相同的时隙来采用动态TDD。
在一个实施方式中,网络设备可以向邻居网络设备发送指示进行动态TDD的时域位置的第三指示信息,此外还可以接收所述邻居网络设备发送的确认信息;
例如,gNB1向gNB2发送指示信息指示该gNB1动态时隙的位置,然后gNB2可以设置相同的动态时隙并向gNB1发送确认消息。
在另一个实施方式中,网络设备可以向所述邻居网络设备发送指示进行动态时分双工的时域位置的第三指示信息,并接收所述邻居网络设备发送的建议进行动态时分双工的时域位置的第四指示信息;以及根据第三指示信息和/或第四指示信息确定进行动态时分双工的时域位置;
例如,gNB1向gNB2发送指示信息指示gNB1动态时隙的位置,如果gNB2有着不同的设置,可以发送一个建议的动态时隙的位置给gNB1,gNB1可以发送一个确认消息来接受gNB2建议的动态时隙的位置。
再例如,如果gNB1和gNB2有着不同的动态时隙的配置,且不愿意接受对方的设置,这两个gNB可以选择两者动态时隙位置的交集作为协商后的动态时隙的位置。
在另一个实施方式中,网络设备可以向所述邻居网络设备发送指示进行动态时分双工的时域位置的第三指示信息,并接收所述邻居网络设备发送的拒绝信息。
例如,如果两个gNB无法协商出一个合适的动态时隙的设置,一个gNB(gNB1)可以发送拒绝消息给另一个gNB(gNB2).这种情况下,就无法在任何一个gNB上采用动态TDD的机制。
在本实施例中,网络设备还可以决定处于动态TDD区域的用户设备。例如,gNB需要知道哪些用户设备处在动态TDD区域中,从而可以知道可以应用动态TDD到哪些用户设备。
在本实施例中,网络设备可以配置用户设备进行跨链路干扰的强度的测量和/或 接收信号的强度的测量。用户设备可以在接收信号的强度大于第一阈值和/或跨链路干扰的强度小于第二阈值的情况下,向网络设备发送强度指示信息。网络设备可以将发送了强度指示信息的用户设备确定为处于动态TDD区域的用户设备。
例如,gNB可以配置用户设备测量gNB的发送信号(即UE的接收信号)的强度;如果强度大于某一个门限值(例如可以由gNB配置),用户设备就发送上报信息(该信息可能是一个指示信息,指示gNB的信号强度大于设定的该门限值,或者是包含测量结果的消息)。这样,gNB就可以认定该用户设备在动态TDD区域内。
再例如,gNB可以配置用户设备测量跨链路干扰的强度,如果干扰强度小于某一个门限值(例如可以由gNB配置),用户设备就发送上报信息(该信息可能是一个指示信息,指示干扰强度小于设定的该门限值,或者是包含测量结果的消息)。这样,gNB就可以认定该用户设备在动态TDD区域内。
此外,gNB也可以配置用户设备进行测量(例如跨链路干扰测量和/或接收信号测量)的时频资源的位置。gNB可以向用户设备发送这些配置信息,UE在接收到这些配置信息后,可以在配置的时频资源上进行跨链路干扰测量和/或接收信号测量。
图8是本发明实施例的动态TDD的设置方法的另一示意图,如图8所示,所述设置方法包括:
步骤801,网络设备与邻居网络设备协商进行动态TDD的时域位置;
步骤802,网络设备配置用户设备进行测量;
步骤803,用户设备进行测量;
例如,用户设备可以进行跨链路干扰的测量,也可以进行接收信号的测量。可以在接收信号的强度大于第一阈值和/或跨链路干扰的强度小于第二阈值的情况下,向网络设备发送强度指示信息。
步骤804,网络设备接收用户设备上报的强度指示信息;
例如,网络设备可以将发送了强度指示信息的用户设备确定为处于动态TDD区域的用户设备;但本发明不限于此,例如也可以从发送了强度指示信息的N个用户设备中再挑选信号强度最强的M个用户设备(M小于N),等等。
步骤805,网络设备将服务小区内一个或多个用户设备配置为使用动态TDD;
例如,服务小区内被配置为进行动态TDD的用户设备形成动态TDD区域。
步骤806,网络设备接收用户设备上报的跨链路干扰测量结果和/或指示信息;
例如,用户设备可以根据步骤802的配置进行跨链路干扰的测量并上报测量结果;或者,用户设备不上报测量结果,可以仅在跨链路干扰比较严重的情况下上报指示信息,指示存在比较严重的跨链路干扰。
步骤807,网络设备调整动态TDD区域;
例如,网络设备在跨链路干扰比较严重的情况下,可以缩小动态TDD区域;在跨链路干扰不太严重或者较小的情况下,可以维持动态TDD区域或者扩大动态TDD区域。
步骤808,网络设备向邻居网络设备发送指示信息,使得邻居网络设备调整对应的动态TDD区域。
值得注意的是,以上图8仅对本发明实施例进行了示意性说明,但本发明不限于此。例如可以适当地调整各个步骤之间的执行顺序,此外还可以增加其他的一些步骤或者减少其中的某些步骤。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图8的记载。
由上述实施例可知,根据强度指示信息配置使用动态TDD的用户设备,可以半静态地划分动态TDD区域,不同的动态TDD区域被隔离开;由此相邻小区进行动态TDD的用户设备之间距离较大,从而可以有效地抑制动态TDD***的跨链路干扰。
实施例2
本发明实施例提供一种动态TDD的设置方法,应用于用户设备,本发明实施例与实施例1相同的内容不再赘述。
图9是本发明实施例的动态TDD的设置方法的一示意图,如图9所示,所述设置方法包括:
步骤901,用户设备进行跨链路干扰的测量和/或接收信号的测量;
步骤902,用户设备在接收信号的强度大于第一阈值和/或跨链路干扰的强度小于第二阈值的情况下,向网络设备发送强度指示信息;以及
步骤903,用户设备确定被网络设备配置为使用动态TDD进行数据传输。
在本实施例中,服务小区内使用动态TDD的一个或多个用户设备所形成的区域称为动态TDD区域。通过强度指示信息来配置使用动态TDD的用户设备,可以半静态地划分动态TDD区域,不同的动态TDD区域可以被隔离开。例如,服务小区的动 态TDD区域与邻居小区的动态TDD区域之间具有静态TDD区域。
在本实施例中,用户设备可以接收所述网络设备配置的进行跨链路干扰的测量和/或接收信号的测量的配置信息;以及向所述网络设备发送跨链路干扰的测量结果信息和/或指示是否有跨链路干扰的第一指示信息。
在本实施例中,用户设备可以接收网络设备发送的指示进行动态TDD的时域位置信息,由此可以确定使用动态TDD进行数据传输。
由上述实施例可知,根据强度指示信息配置使用动态TDD的用户设备,可以半静态地划分动态TDD区域,不同的动态TDD区域被隔离开;由此相邻小区进行动态TDD的用户设备之间距离较大,从而可以有效地抑制动态TDD***的跨链路干扰。
实施例3
本发明实施例提供一种动态TDD的设置装置,该动态TDD的设置装置例如可以是网络设备,也可以是配置于网络设备的某个或某些部件或者组件。本实施例3与实施例1相同的内容不再赘述。
图10是本发明实施例的动态TDD的设置装置的一示意图,如图10所示,动态TDD的设置装置1000包括:
强度指示接收单元1001,其接收一个或多个用户设备在接收信号的强度大于第一阈值和/或跨链路干扰的强度小于第二阈值的情况下发送的强度指示信息;
资源配置单元1002,其根据强度指示信息将服务小区内一个或多个用户设备配置为使用动态TDD。
在本实施例中,服务小区内使用动态TDD的一个或多个用户设备所形成的区域称为动态TDD区域。通过强度指示信息来配置使用动态TDD的用户设备,可以半静态地划分动态TDD区域,不同的动态TDD区域可以被隔离开。例如,服务小区的动态TDD区域与邻居小区的动态TDD区域之间具有静态TDD区域。
在本实施例中,资源配置单元1002具体可以用于:向所述服务小区内一个或多个用户设备发送指示进行动态时分双工的时域位置信息。
如图10所示,动态TDD的设置装置1000还可以包括:
测量配置单元1003,其配置所述用户设备进行跨链路干扰的测量和/或接收信号的测量。
如图10所示,动态TDD的设置装置1000还可以包括:
测量信息接收单元1004,其接收所述用户设备发送的跨链路干扰的测量结果信息和/或指示是否有跨链路干扰的第一指示信息。
其中,资源配置单元1002还可以用于根据所述测量结果信息和/或所述第一指示信息对一个或多个用户设备进行重新配置,以调整所述动态TDD区域。
如图10所示,动态TDD的设置装置1000还可以包括:
指示发送单元1005,其向邻居网络设备发送指示是否有跨链路干扰的第二指示信息,使得所述邻居网络设备调整对应的动态TDD区域。
如图10所示,动态TDD的设置装置1000还可以包括:
位置协商单元1006,其与邻居网络设备协商进行动态TDD的时域位置。
例如,位置协商单元1006可以向所述邻居网络设备发送指示进行动态时分双工的时域位置的第三指示信息;
或者,位置协商单元1006可以向所述邻居网络设备发送指示进行动态时分双工的时域位置的第三指示信息,并且接收所述邻居网络设备发送的确认信息;
或者,位置协商单元1006可以向所述邻居网络设备发送指示进行动态时分双工的时域位置的第三指示信息,并接收所述邻居网络设备发送的建议进行动态时分双工的时域位置的第四指示信息;以及根据第三指示信息和/或第四指示信息确定进行动态时分双工的时域位置;
或者,位置协商单元1006可以向所述邻居网络设备发送指示进行动态时分双工的时域位置的第三指示信息,并接收所述邻居网络设备发送的拒绝信息。
如图10所示,动态TDD的设置装置1000还可以包括:
用户确定单元1007,其将发送所述强度指示信息的用户设备确定为处于所述动态时分双工区域的用户设备。
值得注意的是,以上仅对与本发明相关的各部件或模块进行了说明,但本发明不限于此。动态TDD的设置装置1000还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
由上述实施例可知,根据强度指示信息配置使用动态TDD的用户设备,可以半静态地划分动态TDD区域,不同的动态TDD区域被隔离开;由此相邻小区进行动态TDD的用户设备之间距离较大,从而可以有效地抑制动态TDD***的跨链路干扰。
实施例4
本发明实施例提供一种动态TDD的设置装置,该动态TDD的设置装置可以是用户设备,也可以是配置于用户设备的某个或某些部件或者组件。本实施例4与实施例1和2相同的内容不再赘述。
图11是本发明实施例的动态TDD的设置装置的一示意图,如图11所示,动态TDD的设置装置1100包括:
测量单元1101,其进行跨链路干扰的测量和/或接收信号的测量;
强度指示发送单元1102,其在接收信号的强度大于第一阈值和/或跨链路干扰的强度小于第二阈值的情况下,向网络设备发送强度指示信息;以及
资源确定单元1103,其确定被所述网络设备配置为使用动态TDD进行数据传输。
在本实施例中,服务小区内使用所述动态TDD的一个或多个用户设备所形成的区域称为动态TDD区域。通过强度指示信息来配置使用动态TDD的用户设备,可以半静态地划分动态TDD区域,不同的动态TDD区域可以被隔离开。例如,服务小区的动态TDD区域与邻居小区的动态TDD区域之间具有静态TDD区域。
在本实施例中,资源确定单元1103具体可以用于:接收所述网络设备发送的指示进行动态TDD的时域位置信息。
如图11所示,动态TDD的设置装置1100还可以包括:
测量配置接收单元1104,其接收所述网络设备配置的进行跨链路干扰的测量和/或接收信号的测量的配置信息。
如图11所示,动态TDD的设置装置1100还可以包括:
测量信息发送单元1105,其向所述网络设备发送跨链路干扰的测量结果信息和/或指示是否有跨链路干扰的第一指示信息。
值得注意的是,以上仅对与本发明相关的各部件或模块进行了说明,但本发明不限于此。动态TDD的设置装置1100还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
由上述实施例可知,根据强度指示信息配置使用动态TDD的用户设备,可以半静态地划分动态TDD区域,不同的动态TDD区域被隔离开;由此相邻小区进行动态TDD的用户设备之间距离较大,从而可以有效地抑制动态TDD***的跨链路干扰。
实施例5
本发明实施例还提供一种通信***,可以参考图3,与实施例1至4相同的内容不再赘述。在本实施例中,通信***300可以包括:
网络设备301,其配置有如实施例3所述的动态TDD的设置装置1000。
用户设备302,其配置有如实施例4所述的动态TDD的设置装置1100。
本发明实施例还提供一种网络设备,例如可以是基站,但本发明不限于此,还可以是其他的网络设备。
图12是本发明实施例的网络设备的构成示意图。如图12所示,网络设备1200可以包括:处理器1210(例如中央处理器CPU)和存储器1220;存储器1220耦合到处理器1210。其中该存储器1220可存储各种数据;此外还存储信息处理的程序1230,并且在处理器1210的控制下执行该程序1230。
其中,处理器1210可以被配置为实现动态TDD的设置装置1000的功能。例如,处理器1210可以被配置为执行程序1230而进行如下的控制:接收一个或多个用户设备在接收信号的强度大于第一阈值和/或跨链路干扰的强度小于第二阈值的情况下发送的强度指示信息;根据强度指示信息将服务小区内一个或多个用户设备配置为使用动态TDD。
此外,如图12所示,网络设备1200还可以包括:收发机1240和天线1250等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1200也并不是必须要包括图12中所示的所有部件;此外,网络设备1200还可以包括图12中没有示出的部件,可以参考现有技术。
本发明实施例还提供一种用户设备,但本发明不限于此,还可以是其他的设备。
图13是本发明实施例的用户设备的示意图。如图13所示,该用户设备1300可以包括处理器1310和存储器1320;存储器1320存储有数据和程序,并耦合到处理器1310。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
其中,处理器1310可以被配置为实现动态TDD的设置装置1100的功能。例如,处理器1310可以被配置为进行如下的控制:进行跨链路干扰的测量和/或接收信号的测量;在接收信号的强度大于第一阈值和/或跨链路干扰的强度小于第二阈值的情况 下,向网络设备发送强度指示信息;以及确定被网络设备配置为使用动态TDD进行数据传输。
如图13所示,该用户设备1300还可以包括:通信模块1330、输入单元1340、显示器1350、电源1360。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,用户设备1300也并不是必须要包括图13中所示的所有部件,上述部件并不是必需的;此外,用户设备1300还可以包括图13中没有示出的部件,可以参考现有技术。
本发明实施例还提供一种计算机可读程序,其中当在网络设备(例如基站)中执行所述程序时,所述程序使得所述网络设备(例如基站)执行实施例1所述的动态TDD的设置方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得网络设备(例如基站)执行实施例1所述的动态TDD的设置方法。
本发明实施例还提供一种计算机可读程序,其中当在用户设备中执行所述程序时,所述程序使得所述用户设备执行实施例2所述的动态TDD的设置方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得用户设备执行实施例2所述的动态TDD的设置方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图10中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合(例如,强度指示接收单元和资源配置单元等),既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图4所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信 息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可***移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本发明所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。

Claims (18)

  1. 一种动态时分双工的设置装置,包括:
    强度指示接收单元,其接收一个或多个用户设备在接收信号的强度大于第一阈值和/或跨链路干扰的强度小于第二阈值的情况下发送的强度指示信息;
    资源配置单元,其根据所述强度指示信息将服务小区内一个或多个用户设备配置为使用动态时分双工。
  2. 根据权利要求1所述的设置装置,其中,所述服务小区内使用所述动态时分双工的用户设备所形成的区域为动态时分双工区域。
  3. 根据权利要求2所述的设置装置,其中,所述服务小区的动态时分双工区域与邻居小区的动态时分双工区域之间具有静态时分双工区域。
  4. 根据权利要求1所述的设置装置,其中,所述资源配置单元具体用于:向所述服务小区内一个或多个用户设备发送指示进行动态时分双工的时域位置信息。
  5. 根据权利要求1所述的设置装置,其中,所述设置装置还包括:
    测量配置单元,其配置所述用户设备进行跨链路干扰的测量和/或接收信号的测量。
  6. 根据权利要求1所述的设置装置,其中,所述设置装置还包括:
    测量信息接收单元,其接收所述用户设备发送的跨链路干扰的测量结果信息和/或指示是否有跨链路干扰的第一指示信息。
  7. 根据权利要求6所述的设置装置,其中,所述资源配置单元还用于根据所述测量结果信息和/或所述第一指示信息对一个或多个用户设备进行重新配置,以调整动态时分双工区域。
  8. 根据权利要求6所述的设置装置,其中,所述设置装置还包括:
    指示发送单元,其向邻居网络设备发送指示是否有跨链路干扰的第二指示信息,使得所述邻居网络设备调整对应的动态时分双工区域。
  9. 根据权利要求1所述的设置装置,其中,所述设置装置还包括:
    位置协商单元,其与邻居网络设备协商进行动态时分双工的时域位置。
  10. 根据权利要求9所述的设置装置,其中,所述位置协商单元向所述邻居网络设备发送指示进行动态时分双工的时域位置的第三指示信息;
    或者所述位置协商单元向所述邻居网络设备发送指示进行动态时分双工的时域 位置的第三指示信息,并接收所述邻居网络设备发送的确认信息;
    或者,所述位置协商单元向所述邻居网络设备发送指示进行动态时分双工的时域位置的第三指示信息,并接收所述邻居网络设备发送的建议进行动态时分双工的时域位置的第四指示信息;以及根据第三指示信息和/或第四指示信息确定进行动态时分双工的时域位置;
    或者,所述位置协商单元向所述邻居网络设备发送指示进行动态时分双工的时域位置的第三指示信息,并接收所述邻居网络设备发送的拒绝信息。
  11. 根据权利要求1所述的设置装置,其中,所述设置装置还包括:
    用户确定单元,其将发送所述强度指示信息的用户设备确定为处于动态时分双工区域的用户设备。
  12. 一种动态时分双工的设置装置,包括:
    测量单元,其进行跨链路干扰的测量和/或接收信号的测量;
    强度指示发送单元,其在接收信号的强度大于第一阈值和/或跨链路干扰的强度小于第二阈值的情况下,向网络设备发送强度指示信息;以及
    资源确定单元,其确定被所述网络设备配置为使用动态时分双工进行数据传输。
  13. 根据权利要求12所述的设置装置,其中,服务小区内使用所述动态时分双工的一个或多个用户设备所形成的区域为动态时分双工区域。
  14. 根据权利要求13所述的设置装置,其中,所述服务小区的动态时分双工区域与邻居小区的动态时分双工区域之间具有静态时分双工区域。
  15. 根据权利要求12所述的设置装置,其中,所述资源确定单元具体用于:接收所述网络设备发送的指示进行动态时分双工的时域位置信息。
  16. 根据权利要求12所述的设置装置,其中,所述设置装置还包括:
    测量配置接收单元,其接收所述网络设备配置的进行跨链路干扰的测量和/或接收信号的测量的配置信息。
  17. 根据权利要求12所述的设置装置,其中,所述设置装置还包括:
    测量信息发送单元,其向所述网络设备发送跨链路干扰的测量结果信息和/或指示是否有跨链路干扰的第一指示信息。
  18. 一种通信***,所述通信***包括:
    网络设备,其包括如权利要求1所述的动态时分双工的设置装置;
    用户设备,其包括如权利要求12所述的动态时分双工的设置装置。
PCT/CN2016/113609 2016-12-30 2016-12-30 动态时分双工的设置装置、方法以及通信*** WO2018120065A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680090411.1A CN109891983A (zh) 2016-12-30 2016-12-30 动态时分双工的设置装置、方法以及通信***
PCT/CN2016/113609 WO2018120065A1 (zh) 2016-12-30 2016-12-30 动态时分双工的设置装置、方法以及通信***
US16/418,626 US20190274053A1 (en) 2016-12-30 2019-05-21 Apparatus and Method for Configuring Dynamic Time Division Duplex and Communication System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113609 WO2018120065A1 (zh) 2016-12-30 2016-12-30 动态时分双工的设置装置、方法以及通信***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/418,626 Continuation US20190274053A1 (en) 2016-12-30 2019-05-21 Apparatus and Method for Configuring Dynamic Time Division Duplex and Communication System

Publications (1)

Publication Number Publication Date
WO2018120065A1 true WO2018120065A1 (zh) 2018-07-05

Family

ID=62707643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113609 WO2018120065A1 (zh) 2016-12-30 2016-12-30 动态时分双工的设置装置、方法以及通信***

Country Status (3)

Country Link
US (1) US20190274053A1 (zh)
CN (1) CN109891983A (zh)
WO (1) WO2018120065A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020146331A1 (en) * 2019-01-11 2020-07-16 Qualcomm Incorporated Cross-link interference measurement transmission schemes
WO2021142568A1 (en) * 2020-01-13 2021-07-22 Qualcomm Incorporated Uplink power control for cross-link interference scenarios

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106686674B (zh) * 2015-11-05 2019-12-13 索尼公司 无线通信***中的电子设备和无线通信方法
EP3636020A4 (en) * 2017-06-09 2020-12-30 ZTE Corporation SYSTEM AND PROCEDURE FOR MEASURING AND CONTROLLING CROSS CONNECTION FAULTS IN WIRELESS COMMUNICATION
WO2021142578A1 (en) * 2020-01-13 2021-07-22 Qualcomm Incorporated Sidelink transmission of cross-link interference information by a victim user equipment
US20210359829A1 (en) * 2020-05-13 2021-11-18 Qualcomm Incorporated Requesting intended time division duplex configurations

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102948236A (zh) * 2010-06-24 2013-02-27 瑞典爱立信有限公司 无线tdd网络中的时隙分配方法
CN103281789A (zh) * 2010-12-02 2013-09-04 大唐移动通信设备有限公司 一种确定上下行配置的方法、***和设备
CN103974422A (zh) * 2013-02-05 2014-08-06 电信科学技术研究院 一种通信处理方法及装置
US20150109971A1 (en) * 2013-10-22 2015-04-23 Acer Incorporated User equipment and base station having dynamic resource allocation mechanism and multiple connections

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130301423A1 (en) * 2012-05-11 2013-11-14 Alexander Sirotkin Method, system and apparatus of time-division-duplex (tdd) uplink-downlink (ul-dl) interference management
KR101826111B1 (ko) * 2012-05-11 2018-02-06 노키아 솔루션스 앤드 네트웍스 오와이 이종 네트워크에서 업링크-다운링크 간섭을 완화시키는 방법
KR102036298B1 (ko) * 2013-01-21 2019-10-24 삼성전자 주식회사 Tdd을 지원하는 이동통신 시스템에서 tdd 설정 정보를 단말에게 효과적으로 제공하고 상향링크 전송 타이밍을 결정하기 위한 방법 및 장치
WO2015021628A1 (en) * 2013-08-15 2015-02-19 Telefonaktiebolaget L M Ericsson (Publ) Methods, user equipment and radio network node for interference mitigation in a dynamic time division duplex system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102948236A (zh) * 2010-06-24 2013-02-27 瑞典爱立信有限公司 无线tdd网络中的时隙分配方法
CN103281789A (zh) * 2010-12-02 2013-09-04 大唐移动通信设备有限公司 一种确定上下行配置的方法、***和设备
CN103974422A (zh) * 2013-02-05 2014-08-06 电信科学技术研究院 一种通信处理方法及装置
US20150109971A1 (en) * 2013-10-22 2015-04-23 Acer Incorporated User equipment and base station having dynamic resource allocation mechanism and multiple connections

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020146331A1 (en) * 2019-01-11 2020-07-16 Qualcomm Incorporated Cross-link interference measurement transmission schemes
US11277213B2 (en) 2019-01-11 2022-03-15 Qualcomm Incorporated Cross-link interference measurement transmission schemes
WO2021142568A1 (en) * 2020-01-13 2021-07-22 Qualcomm Incorporated Uplink power control for cross-link interference scenarios

Also Published As

Publication number Publication date
US20190274053A1 (en) 2019-09-05
CN109891983A (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
WO2018120065A1 (zh) 动态时分双工的设置装置、方法以及通信***
US20200053749A1 (en) Methods and devices for controlling override of configured grant
WO2018120064A1 (zh) 抑制干扰信息的传输装置、方法以及通信***
WO2019157663A1 (zh) 参考信号资源的发送位置的指示方法、装置及通信***
EP3432678B1 (en) Device and method of configuring a secondary node and reporting in dual connectivity
CN111034287B (zh) 资源配置方法、确定方法及其装置、通信***
WO2019029333A1 (zh) 一种资源调度方法及装置
WO2018126448A1 (zh) 基于动态时分双工的传输装置、方法以及通信***
US11522587B2 (en) Method and device for channel state information feedback
WO2020215922A1 (zh) 直流分量的频域位置的确定方法及装置、存储介质、终端、基站
EP2826191B1 (en) Wireless multi-flow communications in the uplink
JP2024515822A (ja) モビリティ管理方法および通信装置
US11013018B2 (en) Data multiplexing apparatus and method and communication system
EP2773158B1 (en) Method of handling resource exchange and related communication device
EP2763456B1 (en) Method of Handling Interference Measurement in TDD System and Related Communication Device
WO2013123886A1 (zh) 移动性测量的方法和设备
WO2020143514A1 (zh) 一种功率控制的方法以及功率控制的装置
WO2021138762A1 (zh) 通知发送时间信息的方法以及装置
WO2023150971A1 (zh) 发送设备间协作信息的方法、装置和通信***
WO2023141955A1 (zh) 边链路传输方法以及装置
WO2023141952A1 (zh) 边链路传输方法以及装置
WO2022082542A1 (zh) 终端能力的传输方法、装置和***
WO2024092767A1 (zh) 信息接收、信息发送方法以及装置
WO2022082670A1 (zh) 边链路资源选择方法以及装置
WO2022077309A1 (zh) 无线通信方法、装置和***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925588

Country of ref document: EP

Kind code of ref document: A1