WO2018116875A1 - Method for forming electrode of pefc-type fuel cell, and fuel cell - Google Patents

Method for forming electrode of pefc-type fuel cell, and fuel cell Download PDF

Info

Publication number
WO2018116875A1
WO2018116875A1 PCT/JP2017/044287 JP2017044287W WO2018116875A1 WO 2018116875 A1 WO2018116875 A1 WO 2018116875A1 JP 2017044287 W JP2017044287 W JP 2017044287W WO 2018116875 A1 WO2018116875 A1 WO 2018116875A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrolyte membrane
membrane
roll
fuel cell
Prior art date
Application number
PCT/JP2017/044287
Other languages
French (fr)
Japanese (ja)
Inventor
松永 正文
Original Assignee
エムテックスマート株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エムテックスマート株式会社 filed Critical エムテックスマート株式会社
Priority to CN201780078210.4A priority Critical patent/CN110100341B/en
Publication of WO2018116875A1 publication Critical patent/WO2018116875A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes

Definitions

  • the present invention relates to a method of forming an electrode for a PEFC (Polymer Electrolyte Membrane Fuel Cell) type fuel cell, and a fuel cell manufactured by the method. More specifically, the present invention relates to a CCM (Catalyst coated membrane) type electrolyte membrane / electrode forming method.
  • coating by this invention Atomization (including fiberization) application including roll coating, die coating, screen printing, curtain coating, dispensing, inkjet, and spraying, electrostatic atomization (including fiberization) application Including a method of applying particles and fibers such as the above to an object to be coated, and also includes a micro curtain application.
  • a micro curtain is a wide-angle pattern airless spray nozzle that can be used to traverse the coating object and spray nozzle using the liquid film before spraying when liquid is sprayed at a relatively low pressure of around 0.3 MPa.
  • overspray particles are not generated on the coated surface. It changes to a mist when the distance increases after passing through the object.
  • atomization fibrosis
  • atomization is applied by a method of producing particles and fibers by spinning liquids and melts with ultrasonic waves, electrospinning spins, centrifugal force with rotating bodies, melt-blown methods, etc. If necessary, it refers to a method of attaching or applying them to an object with the aid of compressed air.
  • an electrolyte solution which is a kind of ionomer, and a fine powder composed of carbon particles or platinum supported on carbon fibers are mixed in an electrolyte membrane, applied as an electrode catalyst ink to GDL (Gas diffusion layer), and then pressed onto the electrolyte membrane. Or applied to a release film such as PTFE and transferred to an electrolyte membrane.
  • GDL Gas diffusion layer
  • a release film such as PTFE
  • Patent Document 1 is a method invented by the present inventor, in which an electrode ink is sprayed in a state in which an electrolyte membrane for roll-to-roll is unwound and adsorbed on a heated adsorption drum or adsorption belt.
  • a method of laminating and drying by the above has been proposed. Since the electrolyte membrane is adsorbed and heated by heating the adsorption drum or the like, it is laminated as a thin film by spraying or the like, so that the solvent volatilizes instantly when the spray particles are applied to the electrolyte membrane and leveled.
  • the electrolyte is not damaged and adhesion is increased, so that the interface resistance between the electrode and the electrolyte membrane can be lowered to the limit, so that an ideal CCM can be formed.
  • the electrolyte membrane is sucked between the adsorbing drum and the electrolyte by interposing a breathable paper or film wider than the electrolyte membrane, the entire surface of the electrolyte membrane should be kept without leaving adsorption marks on the porous body such as the adsorbing drum.
  • uniform suction has also been a proposal for uniform suction.
  • Patent Document 2 is also a method invented by the present inventor, in which a film as an electrode-shaped mask is bonded to both surfaces of an electrolyte film for roll-to-roll (Roll to Roll) to form electrode-shaped concave portions
  • a method in which electrode ink is laminated and wound up while being unwound and adsorbed by a heated adsorption roll or adsorption belt.
  • a method for forming an electrode by filling a catalyst-shaped recess in an electrode-shaped recess formed between a mask and an electrolyte membrane.
  • the electrolyte membrane is sensitive to moisture and the like, and when the electrode catalyst ink is applied, it is deformed in an instant. Therefore, as described above, the electrolyte membrane is adsorbed to a heating adsorption belt or a heating adsorption roll. Attempts have been made to apply with a spray nozzle or slot nozzle while moving without deformation. However, even if the adsorption roll was polished with a polishing apparatus to a roundness of several microns or less at room temperature, the roll was greatly deformed when heated, and the roundness was extremely poor.
  • the coating amount after drying of the catalyst is a thin film such as 0.1 milligram per square centimeter at the anode and 0.3 milligram at the cathode, so even if the roundness of the roll is 3 microns, the electrolyte membrane and the nozzle tip It is necessary to make the wet film thick so as not to be affected by the distance. Therefore, it can be expected that the solid content of the electrolyte solution and the catalyst needs to be, for example, 15% or less.
  • the electrolyte membrane is usually manufactured by a casting method, there is a back sheet of a supporting substrate, so that the coating for forming one electrode can be applied by spraying or slot nozzle without deforming the electrolyte membrane.
  • the electrolyte membrane is as thin as 25 microns or less, or even 15 microns or less, and stretches when pulled, and as described above, it is extremely difficult to form electrodes on the opposite side because of the extremely delicate substrate that easily deforms with moisture in the air. It was extremely difficult to wind up the electrolyte membrane with electrodes formed on both sides of the membrane.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a high-quality and durable PEFC fuel cell membrane electrode assembly (MEA) manufacturing method and MEA. . More specifically, an electrode ink is directly applied to a roll-to-roll electrolyte membrane to produce a high-performance membrane / electrode assembly, and thus a high-performance fuel cell.
  • MEA PEFC fuel cell membrane electrode assembly
  • the present invention is a method for forming an electrode on one side of an electrolyte membrane by continuously or intermittently moving a long electrolyte membrane supported by a backsheet to apply an electrode ink, on the opposite side of the backsheet surface
  • a first step of attaching a reinforcing tape to both sides of the electrolyte membrane surface a second step of applying a first electrode ink to the electrolyte membrane on the surface of the reinforcing tape, and a first electrode ink
  • a method for producing a membrane / electrode assembly for a fuel cell characterized in that an electrolyte membrane / electrode assembly is produced using a sheet.
  • the present invention is a method of continuously or intermittently moving a long electrolyte membrane supported by a backsheet to apply electrode ink to form an electrode on one side of the electrolyte, on the opposite side of the backsheet surface.
  • Applying the first electrode ink; drying the first electrode ink to form the first electrode; preparing a breathable substrate that supports the first electrode; and the electrolyte membrane A step of bonding the electrode non-application portion on both sides of the application surface of the first electrode ink and the breathable substrate with an adhesive or an adhesive interposed therebetween, and a longitudinal section from the central portion other than the both sides
  • a fuel cell membrane characterized by producing an electrolyte membrane / electrode assembly using the composite sheet comprising a step of forming a gas-permeable base material, an electrode ink, an electrolyte membrane, and a composite sheet in close contact as a backsheet layer Electrode assembly To provide a process for the preparation of chromatography.
  • the present invention includes a step of adsorbing the air permeable substrate side of the composite sheet to a heat adsorbing roll or a heat adsorbing belt, a step of peeling the back sheet, and heat sucking the electrolyte membrane through the air permeable substrate.
  • the second electrode ink is applied to the electrolyte membrane on the opposite surface of the first electrode, and the second electrode ink is dried to form the second electrode.
  • a release-treated substrate for supporting the second electrode is laminated on the second electrode, or the breathable substrate is previously released.
  • a method of manufacturing a membrane / electrode assembly for a fuel cell is provided.
  • the present invention includes a step of superposing a breathable base material on the surface on which the reinforcing tape is pasted and forming the first electrode and sucking with a suction roll or a suction belt, a step of peeling a back sheet from the electrolyte surface,
  • the method includes a step of applying a second electrode ink while heating and adsorbing an electrolyte membrane on the opposite surface of the first electrode, and a step of drying the second electrode ink to form a second electrode.
  • the present invention is a method for producing a membrane / electrode assembly, characterized in that the adhesive or pressure-sensitive adhesive interposed on both sides of the breathable substrate is applied in a porous manner to the breathable substrate.
  • the adhesive or pressure-sensitive adhesive includes a slight pressure-sensitive adhesive and has at least solvent resistance.
  • the present invention uses a membrane / electrode assembly in which an anode electrode is formed on one side of a fuel cell electrolyte membrane moved by a roll to roll and an electrode containing a cathode electrode catalyst is formed on the opposite side of the anode electrode.
  • a first step in which a reinforcing film is applied to both ends of an electrolyte membrane provided with a back sheet, and the reinforcing film is adsorbed by a heating adsorption roll or a heating adsorption belt.
  • a fuel cell using a membrane / electrode assembly characterized by finally winding up an electrolyte membrane on which electrodes of both electrodes are formed.
  • the present invention relates to a fuel cell using a membrane / electrode assembly in which an anode electrode is formed on one side of a fuel cell electrolyte membrane that is moved by a roll-to-roll and an electrode containing a cathode electrode catalyst is formed on one side.
  • a step of forming a second electrode by applying a catalyst to the opposite surface of the first electrode, a step of drying or pressure bonding the electrode, and an electrolyte membrane on which electrodes of both electrodes are formed Provided is a fuel cell using a membrane / electrode assembly characterized by winding.
  • the catalyst is platinum and the support is carbon having mesoporous.
  • an electrode ink can be directly applied to each surface of an electrolyte membrane, even if it is a delicate and extremely thin electrolyte membrane of, for example, 15 microns or less. Furthermore, since the electrode ink applied to the electrolyte membrane by heating and sucking to reduce the load on the electrolyte membrane wets the electrolyte membrane, 99% or more of the solvent amount can be volatilized within 3 seconds, for example. This is ideal because the adhesion between the film and the electrode can be increased and the interface resistance can be lowered to the maximum.
  • the impact pulse method which is a pulsed spray belonging to the spray method and adds speed to the spray particles and is a registered trademark of MTEC Smart Co., Ltd., is adopted, the adhesion of the catalyst to the electrolyte membrane is Further increase.
  • the amount of one layer of electrode per square centimeter can be adjusted to 0.001 to 0.3 milligram by the spray method, particularly the impact pulse method, so that, for example, 2 to 30 layers of electrode ink can be laminated.
  • the coating amount per layer can be reduced by a combination of the spray method using an impact pulse and a heating adsorption drum.
  • the solid content of the electrode ink made of alcohol can even be 10% or less, for example, 3% or less by weight.
  • the merit of making the solid content concentration as described above is that the thinner the film is laminated, the less the load on the electrolyte membrane and the more uniform the coating amount per unit area, leading to improved fuel cell performance.
  • the present invention is heated at, for example, 50 to 120 ° C. through a microporous air-permeable substrate, for example, dust-free paper, and can be sucked with, for example, a commercially available vacuum pump having a vacuum degree of 60 KPa or more, so that the electrolyte membrane is damaged Membrane / electrode assemblies that are not only defect-free can be manufactured.
  • the adhesive can be applied to both sides of the breathable base material by using a gravure roll or the like to interspers the adhesive to make it porous. A slight pressure-sensitive adhesive that can be easily removed in the process can be used.
  • the vacuum pump may be selected from Orion's KRF, KHA, KHH, etc., which have been adopted in commercially available CCM applications in the fuel cell industry since around 2002, for example.
  • the electrode ink is directly laminated on the electrolyte membrane which is easily deformed and difficult to handle with an extremely thin film which is not expected at the time of the patent application of the liquid coating and drying method disclosed in Japanese Patent Application Laid-Open No. 2004-351413. It is to produce a stable membrane / electrode assembly.
  • FIG. 1 is a schematic cross-sectional view of a membrane / electrode assembly according to an embodiment of the present invention. It is this schematic of unwinding, 1st electrode ink application
  • a reinforcing tape 3 is attached to the electrolyte membrane 1 provided with the back sheet 2.
  • the reinforcing tape can be made of any material as long as it can withstand heating and a solvent atmosphere and does not leave a residue when peeled off.
  • FIG. 2 shows a structure in which the first electrode 4 is formed by applying the first electrode ink to the electrolyte membrane at a location other than the reinforcing tape attached to the electrolyte membrane in the configuration of FIG.
  • first electrode 4 is formed by applying the first electrode ink to the electrolyte membrane at a location other than the reinforcing tape attached to the electrolyte membrane in the configuration of FIG.
  • FIG. 3 is a view in which FIG. 2 is reversed and the breathable base material 2 is laminated on the first electrode surface 4.
  • an adhesive such as a slight adhesive is applied to the surface of the reinforcing tape 3 in advance, the electrolyte membrane can be bonded.
  • FIG. 4 is a diagram in which the first electrode is formed on the electrolyte membrane 1 supported by the back sheet 2 without attaching the reinforcing tape.
  • FIG. 5 is a view in which the breathable substrate 6 to which the adhesive 7 has been applied in advance on both sides of the breathable substrate 6 is attached to a portion of the electrolyte membrane 1 where no electrode is formed.
  • a back sheet 2 is left on top of the electrolyte membrane 1. The back sheet 2 may be adsorbed when an air-permeable substrate is adsorbed on an adsorption roll described later.
  • FIG. 6 shows a state in which the back electrode of FIG. 5 is peeled off, and the second electrode is dried by applying the second electrode ink to the electrolyte membrane adsorbed through the air-permeable sheet 6 on the heating adsorption roll described later.
  • FIG. 7 is a diagram of a membrane / electrode assembly manufactured according to the present invention. It is obtained by peeling the breathable sheet 6 of FIG. 6 from the electrolyte membrane 1. A first electrode 4 and a second electrode are formed on the electrolyte membrane 1.
  • the electrolyte film supported by the back sheet is fed out from the unwinding roll stock 10 and sent to the suction heating roll 20 while being pressed by the guide roll 1 and sucked and heated, and then the electrode ink is spray coated from the coating head 21. After being sufficiently dried, it is detached from the adsorbing roll and the guide roll and wound up as a winding roll stock 11.
  • the application method is not limited to spraying. Further, when the drying process is in a subsequent process, the drying here may not be sufficient.
  • the adsorption heating roll may be an adsorption heating belt. Further, the adsorption heating may be performed by using only the adsorption drum or the adsorption belt, and the heating of the electrolyte membrane may be performed only by the steps after the application.
  • FIG. 9 is a system having multiple functions as shown in FIG. 8.
  • the air-permeable base 6 is fed together with the unwinding roll stock 10, and the back sheet 2 is peeled off while being pressed and adsorbed by the guide roll and the suction heating roll 20. Then, the electrolyte membrane moves while being adsorbed by heating, and after the second electrode ink is applied with a coating head and dried to form the second electrode, it is detached from the guide roll and wound up.
  • the breathable substrate 6 is peeled off and wound up separately. In that case, another electrode support base material 8 can be moved and wound up, laminating
  • a membrane / electrode assembly for a PEFC fuel cell can be manufactured with high quality by the CCM method.

Abstract

[Problem] To manufacture a membrane electrode assembly in which an electrolyte solution and a catalyst are carried in an electrolyte membrane that is thin and deforms even in air, the membrane electrode assembly being manufactured by applying an electrode ink composed of carbon and water, or water and an alcohol-based material. [Solution] Reinforcing tape is provided on both ends of an electrode ink-coated surface of an electrolyte membrane to which a back sheet is attached, thereby forming a first electrode. Since the reinforcing tape is attached to both sides of an electrolyte membrane even if the back sheet of the electrolyte membrane is peeled off so as to form the opposite polarity, a strong suction is achieved by interposing an air-permeable substrate between a heating and adsorbing roll and the reinforcing tape, and thus the electrolyte membrane does not deform even when electrode ink is applied to form a second electrode. Also, since an adhesive can be provided, instead of the reinforcing tape, on both sides of the air-permeable substrate, and uncoated portions of both sides of the electrolyte membrane can be laminated, a more improved effect can be achieved.

Description

PEFC型燃料電池の電極形成方法及び燃料電池PEFC TYPE ELECTRODE FORMATION METHOD AND FUEL CELL
 本発明はPEFC(Polymer Electrolyte membrane Fuel Cell)型燃料電池の電極形成方法、及びその方法により製造された燃料電池に関する。
更に詳細にはCCM( Catalyst coated membrane)式電解質膜・電極形成方法に係る。本発明による塗布とは特に限定しないが、ロールコート、ダイコート、スクリーンプリンティング、カーテンコート、ディスペンス、インクジェット、スプレイを含む霧化(含む繊維化)施与、静電霧化(含む繊維化)施与等の粒子や繊維を被塗物に塗布する工法を含み、マイクロカーテン施与も含む。
マイクロカーテンとは広角パターンのエアレススプレイノズル等で液体などを0.3MPa前後の比較的低圧でスプレイする際、霧になる前の液膜の部分を使用して被塗物とスプレイノズルをトラバースして塗布する方法であって塗面にオーバースプレイ粒子は発生しない。被塗物を通り過ぎて距離が離れると霧状に変化する。
また霧化(繊維化)施与とはスプレイによる粒子化以外に、液体や溶融体などを超音波、エレクトロスピニングなどのスピン、回転体による遠心力、メルトブローン方式などで粒子や繊維をつくりだす方法により必要により圧縮エアの力を借りて(air assist)対象物にそれらを付着あるいは塗布する工法を指す。
The present invention relates to a method of forming an electrode for a PEFC (Polymer Electrolyte Membrane Fuel Cell) type fuel cell, and a fuel cell manufactured by the method.
More specifically, the present invention relates to a CCM (Catalyst coated membrane) type electrolyte membrane / electrode forming method. Although it does not specifically limit with the application | coating by this invention, Atomization (including fiberization) application including roll coating, die coating, screen printing, curtain coating, dispensing, inkjet, and spraying, electrostatic atomization (including fiberization) application Including a method of applying particles and fibers such as the above to an object to be coated, and also includes a micro curtain application.
A micro curtain is a wide-angle pattern airless spray nozzle that can be used to traverse the coating object and spray nozzle using the liquid film before spraying when liquid is sprayed at a relatively low pressure of around 0.3 MPa. In this method, overspray particles are not generated on the coated surface. It changes to a mist when the distance increases after passing through the object.
In addition to atomization (spraying), atomization (fibrosis) is applied by a method of producing particles and fibers by spinning liquids and melts with ultrasonic waves, electrospinning spins, centrifugal force with rotating bodies, melt-blown methods, etc. If necessary, it refers to a method of attaching or applying them to an object with the aid of compressed air.
 従来、電解質膜にアイオノマーの一種である電解質溶液と、カーボン粒子やカーボン繊維に担持した白金等とからなる微粉を混合し電極触媒インクとしてGDL(Gas diffusion layer)に塗布して電解質膜に圧着したり、PTFEなどの離形フィルムに塗布して電解質膜に転写したりしていた。前記圧着方法や転写方式は液体が介在しないため電解質膜と電極の間抵抗が生じ燃料電池の性能を落としていた。それを解決する為CCM方式の電極触媒インクを電解質膜に直接塗布する方法が提案されている。 Conventionally, an electrolyte solution, which is a kind of ionomer, and a fine powder composed of carbon particles or platinum supported on carbon fibers are mixed in an electrolyte membrane, applied as an electrode catalyst ink to GDL (Gas diffusion layer), and then pressed onto the electrolyte membrane. Or applied to a release film such as PTFE and transferred to an electrolyte membrane. In the pressure bonding method and the transfer method, since no liquid is present, resistance between the electrolyte membrane and the electrode is generated and the performance of the fuel cell is deteriorated. In order to solve this problem, a method of directly applying a CCM type electrode catalyst ink to an electrolyte membrane has been proposed.
 特許文献1は本発明者により発明された方法であって、ロール・ツー・ロール(Roll to Roll)用の電解質膜を巻き出して加熱した吸着ドラムや吸着ベルトに吸着した状態で電極インクをスプレイ等により積層塗布し乾燥させる方法が提案されている。吸着ドラムなどの加熱により電解質膜が吸着加熱された状態でスプレイ等により薄膜で積層されるのでスプレイ粒子は電解質膜に塗着しレベリングした瞬間に溶媒が瞬時に揮発する。そのため電解質にダメージを与えずまた密着性がたかまるので電極と電解質膜の界面抵抗が極限まで低くできるので理想的なCCMが形成できる。また吸着ドラムと電解質の間に電解質膜より幅の広い通気性の紙やフィルムを介在させて電解質膜を吸引するので吸着ドラムなどの多孔体の吸着痕を残さないようにして電解質膜面全体を均一に吸引する提案もなされている。 Patent Document 1 is a method invented by the present inventor, in which an electrode ink is sprayed in a state in which an electrolyte membrane for roll-to-roll is unwound and adsorbed on a heated adsorption drum or adsorption belt. A method of laminating and drying by the above has been proposed. Since the electrolyte membrane is adsorbed and heated by heating the adsorption drum or the like, it is laminated as a thin film by spraying or the like, so that the solvent volatilizes instantly when the spray particles are applied to the electrolyte membrane and leveled. As a result, the electrolyte is not damaged and adhesion is increased, so that the interface resistance between the electrode and the electrolyte membrane can be lowered to the limit, so that an ideal CCM can be formed. Also, because the electrolyte membrane is sucked between the adsorbing drum and the electrolyte by interposing a breathable paper or film wider than the electrolyte membrane, the entire surface of the electrolyte membrane should be kept without leaving adsorption marks on the porous body such as the adsorbing drum. There has also been a proposal for uniform suction.
 特許文献2も本発明者により発明された方法であってロール・ツー・ロール(Roll to Roll)用の電解質膜の両面に電極形状のマスクとしてのフィルムを貼り合わせたて電極形状の凹部を形成し、それを巻き出して加熱した吸着ロールや吸着ベルトで吸着しながら電極インクを積層塗布して巻き取る方法が提案されている。またマスクと電解質膜間で形成された電極形状の凹部に触媒微粉を充填して電極形成を行う方法も提案されている。この方法においても電極インクを塗布する際は通気性基材を介して電解質膜を加熱した吸着ドラムなどで吸引しながら電極インクを塗布することを推奨している。 Patent Document 2 is also a method invented by the present inventor, in which a film as an electrode-shaped mask is bonded to both surfaces of an electrolyte film for roll-to-roll (Roll to Roll) to form electrode-shaped concave portions However, there has been proposed a method in which electrode ink is laminated and wound up while being unwound and adsorbed by a heated adsorption roll or adsorption belt. There has also been proposed a method for forming an electrode by filling a catalyst-shaped recess in an electrode-shaped recess formed between a mask and an electrolyte membrane. Also in this method, when applying the electrode ink, it is recommended to apply the electrode ink while sucking the electrolyte membrane through a breathable substrate with a heated adsorption drum or the like.
 CCM方式は理想的であるが、電解質膜は湿気などに敏感であり電極触媒インクを塗布すると一瞬にして変形する為、前述のように加熱吸着ベルトや加熱吸着ロールなどに電解質膜を吸着させて変形しないようにして移動しながらスプレイノズルやスロットノズルなどで塗布する試みがなされている。しかし室温で真円度を数ミクロン以下に研磨装置で研磨した吸着ロールであっても加熱すると複雑な構造故ロールは大きくたわみ変形して真円度が極めて悪かった。そのため液膜を介して接触するスリットやスロットノズルと呼ばれる方法で行うとノズル先端と電解質膜との距離が変化し距離が離れ過ぎる箇所が発生する。そのような現象が起きると電極インクの塗布量は極めて少ないため、溶媒量の多い粘度の低い電極インクを薄膜で塗布する関係からポーラス状の塗布面になり均一な塗布を得ることは極めて困難であった。その課題を解決するために本発明者等によりその発明された特開2010-149257ではアプリケーション温度に加熱した状態で吸着ロール表面を研磨し真円度を5ミクロン以下にできる方法が提案されている。また常温で吸着ロールを研磨したと推定さる特開2015-15258では電解質膜を吸着するロールを冷却して電極インクを電解質膜にスリットノズルで塗布し、ロールを回転移動して冷却ロールに吸着された電解質膜上の電極インクを熱風や赤外線で加熱する方法が提案されている。しかしこの方法では触媒の乾燥後の塗布量はアノードで平方センチ当たり例えば0.1ミリグラム、カソードで0.3ミリグラムと薄膜であるためロールの真円度を3ミクロンとしても電解質膜とノズル先端との距離に影響されないようなウェット膜を厚くする必要が要求される。そのため電解質溶液と触媒を合した固形分を例えば15パーセント以下にする必要があることが予想できる。そうすると乾燥ゾーンまでの間、溶媒(水とアルコール系の混合溶媒)による電解質膜の湿潤と変形を抑えるための強力な真空ポンプによる吸着があっても電解質膜の界面では溶媒によるダメージがあることは想像に難くない。 Although the CCM method is ideal, the electrolyte membrane is sensitive to moisture and the like, and when the electrode catalyst ink is applied, it is deformed in an instant. Therefore, as described above, the electrolyte membrane is adsorbed to a heating adsorption belt or a heating adsorption roll. Attempts have been made to apply with a spray nozzle or slot nozzle while moving without deformation. However, even if the adsorption roll was polished with a polishing apparatus to a roundness of several microns or less at room temperature, the roll was greatly deformed when heated, and the roundness was extremely poor. For this reason, when a method called a slit or slot nozzle that contacts through a liquid film is used, the distance between the nozzle tip and the electrolyte membrane changes, and a portion where the distance is too far is generated. When such a phenomenon occurs, the amount of electrode ink applied is extremely small. Therefore, it is extremely difficult to obtain a porous coating surface due to the application of electrode ink with a large amount of solvent and low viscosity as a thin film. there were. In order to solve the problem, invented by the present inventors, in Japanese Patent Application Laid-Open No. 2010-149257, a method is proposed in which the surface of the suction roll is polished to a roundness of 5 microns or less while being heated to the application temperature. . In Japanese Patent Application Laid-Open No. 2015-15258, which presumed that the adsorption roll was polished at room temperature, the roll that adsorbs the electrolyte membrane was cooled, electrode ink was applied to the electrolyte membrane with a slit nozzle, and the roll was rotated and adsorbed by the cooling roll. A method of heating the electrode ink on the electrolyte membrane with hot air or infrared rays has been proposed. However, in this method, the coating amount after drying of the catalyst is a thin film such as 0.1 milligram per square centimeter at the anode and 0.3 milligram at the cathode, so even if the roundness of the roll is 3 microns, the electrolyte membrane and the nozzle tip It is necessary to make the wet film thick so as not to be affected by the distance. Therefore, it can be expected that the solid content of the electrolyte solution and the catalyst needs to be, for example, 15% or less. Then, even if there is adsorption by a powerful vacuum pump to suppress the wetting and deformation of the electrolyte membrane by the solvent (mixed solvent of water and alcohol) until the drying zone, there is damage due to the solvent at the interface of the electrolyte membrane Not hard to imagine.
特開2004-351413JP 2004-351413 A 特開2005-63780JP 2005-63780 A
 電解質膜は通常キャスティング工法で製造されるため支持基材のバックシートがあるため片方の電極形成のための塗布は電解質膜を変形させることなくスプレイでもスロットノズルでも塗布できる。しかし電解質膜は25ミクロン以下更には15ミクロン以下と薄くまた引っ張ると伸びがあり、上記のごとく空気中の水分で簡単に変形する極めてデリケートな基材のため反対面の電極形成は極めて難しくまた電解質膜の両サイドに電極形成された電解質膜を巻き取ることは極めて難しかった。 Since the electrolyte membrane is usually manufactured by a casting method, there is a back sheet of a supporting substrate, so that the coating for forming one electrode can be applied by spraying or slot nozzle without deforming the electrolyte membrane. However, the electrolyte membrane is as thin as 25 microns or less, or even 15 microns or less, and stretches when pulled, and as described above, it is extremely difficult to form electrodes on the opposite side because of the extremely delicate substrate that easily deforms with moisture in the air. It was extremely difficult to wind up the electrolyte membrane with electrodes formed on both sides of the membrane.
 本発明は前述の課題を解決するためになされたもので、本発明の目的は高品質で耐久性のあるPEFC型燃料電池用膜電極アッセンブリー(MEA)の製造方法とMEAを提供することである。
より具体的にはロール・ツー・ロール(Roll to Roll)の電解質膜に直接電極インクを塗布し高性能の膜・電極アッセンブリーを製造し、ひいては高性能の燃料電池を製造することにある。
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a high-quality and durable PEFC fuel cell membrane electrode assembly (MEA) manufacturing method and MEA. .
More specifically, an electrode ink is directly applied to a roll-to-roll electrolyte membrane to produce a high-performance membrane / electrode assembly, and thus a high-performance fuel cell.
 本発明はバックシートで支持された長尺の電解質膜を連続的または間欠的に移動して電極インクを塗布し電解質膜の片側に電極を形成する方法であって、前記バックシート面の反対側の電解質膜面の両サイドに補強テープを貼りつける第一の工程と、前記補強テープを貼り付けた面の電解質膜に第一の電極インクを塗布する第二の工程と、第一の電極インクを乾燥させて第一の電極を形成する第三の工程と、少なくとも片側の電極が形成された両サイドの縦断面が補強テープ、電解質膜、バックシートの層からなる複合シートであって該複合シートを使用して電解質膜・電極アッセンブリーを製造することを特徴とする燃料電池の膜・電極アッセンブリーの製造方法を提供する。 The present invention is a method for forming an electrode on one side of an electrolyte membrane by continuously or intermittently moving a long electrolyte membrane supported by a backsheet to apply an electrode ink, on the opposite side of the backsheet surface A first step of attaching a reinforcing tape to both sides of the electrolyte membrane surface, a second step of applying a first electrode ink to the electrolyte membrane on the surface of the reinforcing tape, and a first electrode ink A composite sheet composed of a reinforcing tape, an electrolyte membrane, and a back sheet layer, wherein the longitudinal section on both sides where the electrode on at least one side is formed is a third step of forming a first electrode by drying Provided is a method for producing a membrane / electrode assembly for a fuel cell, characterized in that an electrolyte membrane / electrode assembly is produced using a sheet.
 本発明はバックシートで支持された長尺の電解質膜を連続的または間欠的に移動して電極インクを塗布し電解質の片側に電極を形成する方法であって、前記バックシート面の反対側に第一の電極インクを塗布する工程と、第一の電極インクを乾燥して第一の電極を形成する工程と、第一の電極を支持する通気性基材を準備する工程と、前記電解質膜の第一の電極インクの塗布面の両サイドの電極非塗布部と前記通気性基材を接着剤または粘着剤を介在させて貼り合わせる工程と、前記両サイド以外の中央部よりの縦断面が通気性基材、電極インク、電解質膜、バックシート層として密着した複合シートにする工程とからなり該複合シートを使用して電解質膜・電極アッセンブリーを製造することを特徴とする燃料電池の膜・電極アッセンブリーの製造方法を提供する。 The present invention is a method of continuously or intermittently moving a long electrolyte membrane supported by a backsheet to apply electrode ink to form an electrode on one side of the electrolyte, on the opposite side of the backsheet surface. Applying the first electrode ink; drying the first electrode ink to form the first electrode; preparing a breathable substrate that supports the first electrode; and the electrolyte membrane A step of bonding the electrode non-application portion on both sides of the application surface of the first electrode ink and the breathable substrate with an adhesive or an adhesive interposed therebetween, and a longitudinal section from the central portion other than the both sides A fuel cell membrane characterized by producing an electrolyte membrane / electrode assembly using the composite sheet comprising a step of forming a gas-permeable base material, an electrode ink, an electrolyte membrane, and a composite sheet in close contact as a backsheet layer Electrode assembly To provide a process for the preparation of chromatography.
 本発明は加熱吸着ロールまたは加熱吸着ベルトに前記複合シートの通気性基材側を吸着する工程と、前記バックシートを剥離する工程と、前記電解質膜を前記通気性基材を介して加熱吸引しながら前記第一の電極の反対面の電解質膜上に第二の電極インクを塗布する工程と、前記第二の電極インクを乾燥させて第二の電極を形成する工程ととからなることを特徴とする燃料電池の膜・電極アッセンブリーの製造方法を提供する。 The present invention includes a step of adsorbing the air permeable substrate side of the composite sheet to a heat adsorbing roll or a heat adsorbing belt, a step of peeling the back sheet, and heat sucking the electrolyte membrane through the air permeable substrate. The second electrode ink is applied to the electrolyte membrane on the opposite surface of the first electrode, and the second electrode ink is dried to form the second electrode. A method for producing a membrane / electrode assembly of a fuel cell is provided.
 本発明は前記膜・電極アッセンブリーを巻き取るにあたり前記第二の電極を支持するための離形処理された基材を前記第二の電極に積層して、または前記通気性基材があらかじめ離形処理されていることを特徴とする燃料電池の膜・電極アッセンブリーの製造方法を提供する。 In the present invention, when winding up the membrane / electrode assembly, a release-treated substrate for supporting the second electrode is laminated on the second electrode, or the breathable substrate is previously released. Provided is a method of manufacturing a membrane / electrode assembly for a fuel cell.
 本発明は前記補強テープを貼り付け第一の電極を形成させた面に通気性基材を重ねて吸着ロールまたは吸着ベルトで吸引する工程と、バックシートを前記電解質面から剥離する工程と、前記第一の電極の反対面の電解質膜を加熱吸着しながら第二の電極インクを塗布する工程と、前記第二の電極インクを乾燥させて第二の電極を形成する工程とからなることを特徴とする燃料電池の膜・電極アッセンブリーの製造方法を提供する。 The present invention includes a step of superposing a breathable base material on the surface on which the reinforcing tape is pasted and forming the first electrode and sucking with a suction roll or a suction belt, a step of peeling a back sheet from the electrolyte surface, The method includes a step of applying a second electrode ink while heating and adsorbing an electrolyte membrane on the opposite surface of the first electrode, and a step of drying the second electrode ink to form a second electrode. A method for producing a membrane / electrode assembly of a fuel cell is provided.
 本発明は前記通気性基材の両サイドに介在した接着剤または粘着剤は通気性基材にポーラス状に塗布されていることを特徴とする膜・電極アッセンブリーの製造方法。 The present invention is a method for producing a membrane / electrode assembly, characterized in that the adhesive or pressure-sensitive adhesive interposed on both sides of the breathable substrate is applied in a porous manner to the breathable substrate.
 本発明では接着剤または粘着剤は微粘着剤も含み少なくとも耐溶剤性があることを特徴とする膜・電極アッセンブリーの製造方法を提供する。 In the present invention, there is provided a method for producing a membrane / electrode assembly, wherein the adhesive or pressure-sensitive adhesive includes a slight pressure-sensitive adhesive and has at least solvent resistance.
 本発明はロール・ツー・ロール(Roll to Roll)で移動する燃料電池用電解質膜の片側にアノード極を、アノード極の反対側にカソード極の触媒を含む電極を形成した膜・電極アッセンブリーを用いてなる燃料電池であって,バックシートを備えた電解質膜の両端に補強用フィルムを施与する第一の工程と、加熱吸着ロールまたは加熱吸着ベルトでバックシートを吸着して前記補強用フィルムが施与された面に触媒を塗布する第二の工程と、触媒を乾燥または圧着する第三の工程と、
吸着機構を備え回転移動するロールまたはベルトに前記第一の電極面を通気性シートを介して吸着する第四の工程と、前記電解質膜の電極形成の反対面のバックシートを剥離する第五の工程と、前記第一の電極の反対面の電解質膜を前記通気性基材を介して加熱吸引しながら触媒を塗布して第二の電極を形成する第六の工程と、電極を乾燥または圧着する第七の工程と、両極の電極が形成された電解質膜を最終的に巻取ることを特徴とする膜・電極アッセンブリーを用いてなる燃料電池を提供する。
The present invention uses a membrane / electrode assembly in which an anode electrode is formed on one side of a fuel cell electrolyte membrane moved by a roll to roll and an electrode containing a cathode electrode catalyst is formed on the opposite side of the anode electrode. A first step in which a reinforcing film is applied to both ends of an electrolyte membrane provided with a back sheet, and the reinforcing film is adsorbed by a heating adsorption roll or a heating adsorption belt. A second step of applying a catalyst to the applied surface; a third step of drying or crimping the catalyst;
A fourth step of adsorbing the first electrode surface to a rotating roll or belt provided with an adsorption mechanism via a breathable sheet; and a fifth step of peeling a back sheet on the opposite side of the electrolyte membrane electrode formation A sixth step of forming a second electrode by applying a catalyst while heating and sucking the electrolyte membrane on the opposite surface of the first electrode through the breathable substrate, and drying or crimping the electrode And a fuel cell using a membrane / electrode assembly characterized by finally winding up an electrolyte membrane on which electrodes of both electrodes are formed.
 本発明はロール・ツー・ロール(Roll to Roll)で移動する燃料電池用電解質膜の片側にアノード極を、片側にカソード極の触媒を含む電極を形成した膜・電極アッセンブリーを用いてなる燃料電池であって、バックシートを備えた電解質膜の両サイドの一部を除いて触媒を塗布して第一の電極を形成する工程と、前記触媒を乾燥または圧着する工程と、予め両サイドに粘着加工を施与した通気性基材を準備する工程と、前記通気性基材の両サイドの粘着加工した位置と前記第一電極形成面の両サイドの未塗布部を重ねて吸着ロールまたは吸着ベルトで吸引する工程と、バックシートを剥離する工程と、前記吸着ロールまたは吸着ベルトを加熱し、または吸着加熱ロールまたは吸着加熱ベルトに移動して前記通気性基材を介して前記電解質膜を吸着する工程と、前記第一の電極の反対面に触媒を塗布して第二の電極を形成する工程と、電極を乾燥または圧着する工程と、両極の電極が形成された電解質膜を最終的に巻取ることを特徴とする膜・電極アッセンブリーを用いてなる燃料電池を提供する。
本発明では前記触媒が白金であって担体がメソポーラスを有するカーボンであること。
The present invention relates to a fuel cell using a membrane / electrode assembly in which an anode electrode is formed on one side of a fuel cell electrolyte membrane that is moved by a roll-to-roll and an electrode containing a cathode electrode catalyst is formed on one side. A step of applying a catalyst except a part of both sides of an electrolyte membrane provided with a backsheet to form a first electrode, a step of drying or pressure-bonding the catalyst, A step of preparing a breathable base material that has been subjected to processing; an adhesive roll or a suction belt by overlapping the adhesively processed positions on both sides of the breathable base material and the uncoated portions on both sides of the first electrode forming surface; Suction step, peeling back sheet, heating the adsorption roll or adsorption belt, or moving to the adsorption heating roll or adsorption heating belt to absorb the electrolyte membrane through the breathable substrate. A step of forming a second electrode by applying a catalyst to the opposite surface of the first electrode, a step of drying or pressure bonding the electrode, and an electrolyte membrane on which electrodes of both electrodes are formed Provided is a fuel cell using a membrane / electrode assembly characterized by winding.
In the present invention, the catalyst is platinum and the support is carbon having mesoporous.
 本発明の燃料電池の膜・電極アッセンブリーの製造方法によればデリケートで例えば15ミクロン以下と極薄の電解質膜であっても直接電解質膜にそれぞれの面に電極インクを塗布できる。更に電解質膜の負荷を低減するため加熱吸引して電解質膜に塗布された電極インクが電解質膜を濡らした後瞬時に、例えば3秒以内に溶媒量の99パーセント以上を揮発することができるので、膜と電極の密着性を高め、界面抵抗を最大に低くできるので理想的である。 According to the method of manufacturing a fuel cell membrane / electrode assembly of the present invention, an electrode ink can be directly applied to each surface of an electrolyte membrane, even if it is a delicate and extremely thin electrolyte membrane of, for example, 15 microns or less. Furthermore, since the electrode ink applied to the electrolyte membrane by heating and sucking to reduce the load on the electrolyte membrane wets the electrolyte membrane, 99% or more of the solvent amount can be volatilized within 3 seconds, for example. This is ideal because the adhesion between the film and the electrode can be increased and the interface resistance can be lowered to the maximum.
 また本発明ではスプレイ法に属するパルス的スプレイであってスプレイ粒子に更にスピードを付加した工法でありエムテックスマート株式会社の商標登録であるインパクトパルス工法を採用すれば電解質膜への触媒の密着性は更に高まる。 Further, in the present invention, if the impact pulse method, which is a pulsed spray belonging to the spray method and adds speed to the spray particles and is a registered trademark of MTEC Smart Co., Ltd., is adopted, the adhesion of the catalyst to the electrolyte membrane is Further increase.
 更に本発明ではスプレイ法、特にインパクトパルス工法により平方センチメートル当たりの1層の電極量を0.001~0.3ミリグラムに調整できるので例えば2~30層の電極インクの薄膜積層ができる。インパクトパルスによるスプレイ法と加熱吸着ドラムなどとの組み合わせで1層当たりの塗布量を少なくできるが、更に1層当たりの塗布量を少なくするには例えば白金触媒担持のカーボンと、電解質溶液と、水とアルコールからなる電極インクの固形分量を重量比で10%以下例えば3%以下にすることさえできる。 Furthermore, in the present invention, the amount of one layer of electrode per square centimeter can be adjusted to 0.001 to 0.3 milligram by the spray method, particularly the impact pulse method, so that, for example, 2 to 30 layers of electrode ink can be laminated. The coating amount per layer can be reduced by a combination of the spray method using an impact pulse and a heating adsorption drum. However, in order to further reduce the coating amount per layer, for example, platinum catalyst-supported carbon, electrolyte solution, water And the solid content of the electrode ink made of alcohol can even be 10% or less, for example, 3% or less by weight.
 固形分濃度を上記のようにするメリットはより薄膜にして積層すればするほど電解質膜の負荷が少なく単位面積当たりの塗布量がより均一になるので燃料電池の性能アップにつながる。 The merit of making the solid content concentration as described above is that the thinner the film is laminated, the less the load on the electrolyte membrane and the more uniform the coating amount per unit area, leading to improved fuel cell performance.
 さらに本発明ではマイクロポーラスの通気性基材、例えば無塵紙を介して例えば50乃至120℃で加熱し、例えば市販の安価な60KPa以上の真空度の真空ポンプで吸引できるので電解質膜にダメージを与えないばかりか欠陥のない膜・電極アッセンブリーを製造できる。また前記通気性基材の両サイドに粘着剤を施与する方法はグラビアロールなどを使用して粘着剤を点在させてポーラス状にすると貼り付けた電解質膜まで吸着もできるので粘着剤は後工程で剥離させやすい微粘着剤を使用することができる。 Furthermore, in the present invention, it is heated at, for example, 50 to 120 ° C. through a microporous air-permeable substrate, for example, dust-free paper, and can be sucked with, for example, a commercially available vacuum pump having a vacuum degree of 60 KPa or more, so that the electrolyte membrane is damaged Membrane / electrode assemblies that are not only defect-free can be manufactured. In addition, the adhesive can be applied to both sides of the breathable base material by using a gravure roll or the like to interspers the adhesive to make it porous. A slight pressure-sensitive adhesive that can be easily removed in the process can be used.
 真空ポンプは市販の安価な例えば2002年ごろから燃料電池業界のCCMアプリケーションで採用されているオリオン社のKRF、KHA、KHHなどから選択するとよい。 The vacuum pump may be selected from Orion's KRF, KHA, KHH, etc., which have been adopted in commercially available CCM applications in the fuel cell industry since around 2002, for example.
 本発明は特開2004-351413の液体の塗布及び乾燥方法の特許出願時の想定外の極薄膜で変形しやすく扱いづらい電解質膜に直接電極インクをスプレイ方法等により薄膜で積層して品質的に安定した膜・電極アッセンブリーを製造することである。 In the present invention, the electrode ink is directly laminated on the electrolyte membrane which is easily deformed and difficult to handle with an extremely thin film which is not expected at the time of the patent application of the liquid coating and drying method disclosed in Japanese Patent Application Laid-Open No. 2004-351413. It is to produce a stable membrane / electrode assembly.
 上記のように本発明によればデリケートな電解質に電極インクを直接塗布しても理想的な膜・電極の界面を得ることができ高品質の膜・電極アッセンブリーをひいては燃料電池を製造できる。 As described above, according to the present invention, even when electrode ink is directly applied to a delicate electrolyte, an ideal membrane / electrode interface can be obtained, and a fuel cell can be manufactured with a high quality membrane / electrode assembly.
本発明の実施の形態に係る電解質膜の幅方向に関するバックシート、電解質膜、補強テープの構造の略断面図である。It is a schematic sectional drawing of the structure of the back sheet regarding the width direction of the electrolyte membrane which concerns on embodiment of this invention, electrolyte membrane, and a reinforcement tape. 本発明の実施の形態に係る電解質膜、電極の幅方向に関する略断面図である。It is a schematic sectional drawing regarding the electrolyte membrane which concerns on embodiment of this invention, and the width direction of an electrode. 本発明の実施の形態に係る電解膜、通気性シートの幅方向に関する略断面図である。It is a schematic sectional drawing regarding the width direction of the electrolytic membrane which concerns on embodiment of this invention, and an air permeable sheet. 本発明の実施の形態に関するバックシート、電解質膜、第一の電極の幅方向の略断面図である。It is a schematic sectional drawing of the width direction of the back sheet, electrolyte membrane, and 1st electrode regarding embodiment of this invention. 本発明の実施の形態に関する第二の電極形成のための反転した電解質膜の略断面図である。It is a schematic sectional drawing of the inverted electrolyte membrane for 2nd electrode formation regarding embodiment of this invention. 本発明の実施の形態に関する第二の電極形成した略断面図である。It is the schematic sectional drawing in which the 2nd electrode regarding embodiment of this invention was formed. 本発明の実施の形態に関する膜・電極アッセンブリーの略断面図である。1 is a schematic cross-sectional view of a membrane / electrode assembly according to an embodiment of the present invention. 本発明の実施の形態に関する巻き出し、第一の電極インク塗布乾燥、巻き取りの該略図である。It is this schematic of unwinding, 1st electrode ink application | coating drying, winding-up regarding embodiment of this invention. 本発明の実施の形態に関する巻き出し、第二の電極インク塗布乾燥、巻き取りの概略図である。It is the schematic of unwinding, 2nd electrode ink application | coating drying, and winding-up regarding embodiment of this invention.
 以下、図面を参照して本発明の好適な実施形態について説明する。なお、以下の実施形態は発明の理解を容易にするための一例にすぎず本発明の技術的思想を逸脱しない範囲において当業者により実施可能な付加、置換、変形等を施すことを排除するものではない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. The following embodiments are merely examples for facilitating understanding of the invention, and exclude additions, substitutions, modifications, etc. that can be implemented by those skilled in the art without departing from the technical idea of the present invention. is not.
 図面は本発明の好適な実施の形態を概略的に示している。 The drawings schematically show a preferred embodiment of the present invention.
 図1においてバックシート2を備えた電解質膜1に補強テープ3を貼り付ける。補強テープは加熱や溶媒雰囲気に耐え、剥離した時残渣の残らないものであれば材質を問わない。 In FIG. 1, a reinforcing tape 3 is attached to the electrolyte membrane 1 provided with the back sheet 2. The reinforcing tape can be made of any material as long as it can withstand heating and a solvent atmosphere and does not leave a residue when peeled off.
 図2は図1の構成に電解質膜に貼り付けた補強テープ以外の箇所に電解膜に第一の電極インクを塗布し第一の電極4を形成させたものである。塗布がスプレイの場合は補強テープの上に電極インクが若干付着しても問題ない。 FIG. 2 shows a structure in which the first electrode 4 is formed by applying the first electrode ink to the electrolyte membrane at a location other than the reinforcing tape attached to the electrolyte membrane in the configuration of FIG. When spraying is applied, there is no problem even if electrode ink slightly adheres to the reinforcing tape.
 図3は図2を反転させて通気性基材2を第一の電極面4に積層した図である。補強テープ3の表面に微粘着剤などの粘着剤をあらかじめ施与してあると電解質膜を貼り合わせることができる。 FIG. 3 is a view in which FIG. 2 is reversed and the breathable base material 2 is laminated on the first electrode surface 4. When an adhesive such as a slight adhesive is applied to the surface of the reinforcing tape 3 in advance, the electrolyte membrane can be bonded.
 図4は補強テープを貼り付けないでバックシート2で支持された電解質膜1に第一の電極を形成した図である。 FIG. 4 is a diagram in which the first electrode is formed on the electrolyte membrane 1 supported by the back sheet 2 without attaching the reinforcing tape.
 図5は通気性基材6の両サイドに予め粘着剤7を施与した通気性基材6を電解質膜1の電極形成されていない部位に貼り付けた図である。電解質膜1の上部にはバックシート2が残されている。バックシート2は後述する吸着ロール上で通気性基材を吸着している際に吸着するとよい。 FIG. 5 is a view in which the breathable substrate 6 to which the adhesive 7 has been applied in advance on both sides of the breathable substrate 6 is attached to a portion of the electrolyte membrane 1 where no electrode is formed. A back sheet 2 is left on top of the electrolyte membrane 1. The back sheet 2 may be adsorbed when an air-permeable substrate is adsorbed on an adsorption roll described later.
 図6は図5のバックシートを剥離して、後述する加熱吸着ロール上で通気性シート6を介して吸着された電解質膜に第二の電極インクを塗布して乾燥された第二の電極が形成された図である。 FIG. 6 shows a state in which the back electrode of FIG. 5 is peeled off, and the second electrode is dried by applying the second electrode ink to the electrolyte membrane adsorbed through the air-permeable sheet 6 on the heating adsorption roll described later. FIG.
 図7は本発明により製造された膜・電極アッセンブリーの図である。図6の通気性シート6を電解質膜1から剥離することにより得られる。電解質膜1に第一の電極4と第二の電極が形成されている。 FIG. 7 is a diagram of a membrane / electrode assembly manufactured according to the present invention. It is obtained by peeling the breathable sheet 6 of FIG. 6 from the electrolyte membrane 1. A first electrode 4 and a second electrode are formed on the electrolyte membrane 1.
 図8は巻き出しロールストック10からバックシートで支持された電解質膜が送り出されガイドロール1で圧接しながら吸着加熱ロール20に送られ吸引加熱された状態で塗布ヘッド21から電極インクがスプレイ塗布され、十分乾燥された後、吸着ロールとガイドロールから離脱し巻き取りロールストック11として巻き取られる。塗布方法はスプレイに限定するものではない。また乾燥工程が後工程にある場合ここでの乾燥は十分でなくてもよい。
また吸着加熱ロールは吸着加熱ベルトでよい。また吸着加熱は吸着ドラムまたは吸着ベルトだけでも良く電解質膜の加熱は塗布以降の工程だけでよい。
In FIG. 8, the electrolyte film supported by the back sheet is fed out from the unwinding roll stock 10 and sent to the suction heating roll 20 while being pressed by the guide roll 1 and sucked and heated, and then the electrode ink is spray coated from the coating head 21. After being sufficiently dried, it is detached from the adsorbing roll and the guide roll and wound up as a winding roll stock 11. The application method is not limited to spraying. Further, when the drying process is in a subsequent process, the drying here may not be sufficient.
The adsorption heating roll may be an adsorption heating belt. Further, the adsorption heating may be performed by using only the adsorption drum or the adsorption belt, and the heating of the electrolyte membrane may be performed only by the steps after the application.
 図9は図8に多機能さを併せ持ったシステムで、巻き出しロールストック10と一緒に通気性基材6を送り込みガイドロールと吸着加熱ロール20で圧接して吸着させつつ、バックシート2を剥離して、電解質膜は加熱吸着したまま移動し、塗布ヘッドで第二の電極インクを塗布し、乾燥させて第二の電極を形成した後、ガイドロールから離脱して巻き取られる。通気性基材6は剥離して別に巻き取られる。
その際、別の電極支持基材8をガイドロールと加熱吸着ロール間から電極に積層させながら移動させ巻き取ることができる。尚電極を形成した後通気性基材6と一緒に巻きとる場合、電極支持基材は必要なくなる。
FIG. 9 is a system having multiple functions as shown in FIG. 8. The air-permeable base 6 is fed together with the unwinding roll stock 10, and the back sheet 2 is peeled off while being pressed and adsorbed by the guide roll and the suction heating roll 20. Then, the electrolyte membrane moves while being adsorbed by heating, and after the second electrode ink is applied with a coating head and dried to form the second electrode, it is detached from the guide roll and wound up. The breathable substrate 6 is peeled off and wound up separately.
In that case, another electrode support base material 8 can be moved and wound up, laminating | stacking on an electrode from between a guide roll and a heating adsorption roll. In addition, when it winds together with the air permeable base material 6 after forming an electrode, an electrode support base material becomes unnecessary.
 本発明によればPEFC燃料電池用膜・電極アッセンブリーをCCM方式で高品質で製造できる。 According to the present invention, a membrane / electrode assembly for a PEFC fuel cell can be manufactured with high quality by the CCM method.
1                       電解質膜
2                       バックシート
3、3´                     補強テープ
4                       第一の電極
5                       第二の電極                       
6                       通気性基材(シート)
7、7´                     粘着剤層
8                         電極支持基材 
10                       巻き出しロールストック
11                                                巻き取りロールストック
20                      加熱吸着ロール
21                       塗布ヘッド             
23                      ガイドロール1
24                      ガイドロール2
DESCRIPTION OF SYMBOLS 1 Electrolyte membrane 2 Back sheet 3, 3 'Reinforcement tape 4 1st electrode 5 2nd electrode
6 Breathable substrate (sheet)
7, 7 'Adhesive layer 8 Electrode support substrate
DESCRIPTION OF SYMBOLS 10 Unwinding roll stock 11 Rewinding roll stock 20 Heating adsorption roll 21 Coating head
23 Guide roll 1
24 Guide roll 2

Claims (8)

  1.  バックシートで支持された長尺の電解質膜を連続的または間欠的に移動して電極インクを塗布し電解質膜の片側に電極を形成する方法であって、前記バックシート面の反対側の電解質膜面の両サイドに補強テープを貼りつける第一の工程と、前記補強テープを貼り付けた面の電解質膜に第一の電極インクを塗布する第二の工程と、第一の電極インクを乾燥させて第一の電極を形成する第三の工程と、少なくとも片側の電極が形成された両サイドの縦断面が補強テープ、電解質膜、バックシートの層からなる複合シートであって該複合シートを使用して電解質膜・電極アッセンブリーを製造することを特徴とする燃料電池の膜・電極アッセンブリーの製造方法。 A method of forming an electrode on one side of an electrolyte membrane by continuously or intermittently moving a long electrolyte membrane supported by a backsheet to apply an electrode ink, the electrolyte membrane on the opposite side of the backsheet surface A first step of applying a reinforcing tape to both sides of the surface, a second step of applying the first electrode ink to the electrolyte membrane on the surface to which the reinforcing tape is applied, and drying the first electrode ink. A composite sheet comprising a reinforcing tape, an electrolyte membrane, and a back sheet layer, wherein the longitudinal section on both sides where the electrode on at least one side is formed, and the third step of forming the first electrode are used. A method for producing a membrane / electrode assembly for a fuel cell, comprising producing an electrolyte membrane / electrode assembly.
  2.  バックシートで支持された長尺の電解質膜を連続的または間欠的に移動して電極インクを塗布し電解質の片側に電極を形成する方法であって、前記バックシート面の反対側に第一の電極インクを塗布する工程と、第一の電極インクを乾燥して第一の電極を形成する工程と、第一の電極を支持する通気性基材を準備する工程と、前記電解質膜の第一の電極インクの塗布面の両サイドの電極非塗布部と前記通気性基材を接着剤または粘着剤を介在させて貼り合わせる工程と、前記両サイド以外の中央部よりの縦断面が通気性基材、電極インク、電解質膜、バックシート層として密着した複合シートにする工程とからなり該複合シートを使用して電解質膜・電極アッセンブリーを製造することを特徴とする燃料電池の膜・電極アッセンブリーの製造方法。 A method of forming an electrode on one side of an electrolyte by continuously or intermittently moving a long electrolyte membrane supported by a backsheet to apply an electrode ink on the opposite side of the backsheet surface. A step of applying an electrode ink, a step of drying the first electrode ink to form a first electrode, a step of preparing a breathable substrate that supports the first electrode, and a first of the electrolyte membrane The electrode non-application portion on both sides of the electrode ink application surface and the breathable base material are bonded together with an adhesive or an adhesive, and the longitudinal section from the central portion other than the both sides has a breathable base. A fuel cell membrane / electrode assembly comprising: a material, an electrode ink, an electrolyte membrane, and a step of forming an intimate composite sheet as a backsheet layer, wherein the composite sheet is used to produce an electrolyte membrane / electrode assembly. Made Method.
  3.  加熱吸着ロールまたは加熱吸着ベルトに前記複合シートの通気性基材側を吸着する工程と、前記バックシートを剥離する工程と、前記電解質膜を前記通気性基材を介して加熱吸引しながら前記第一の電極の反対面の電解質膜上に第二の電極インクを塗布する工程と、前記第二の電極インクを乾燥させて第二の電極を形成する工程ととからなることを特徴とする請求項2に記載の燃料電池の膜・電極アッセンブリーの製造方法。 A step of adsorbing the breathable substrate side of the composite sheet to a heat adsorbing roll or a heat adsorbing belt; a step of peeling the back sheet; and the first step while heating and sucking the electrolyte membrane through the breathable substrate. The method comprises the steps of: applying a second electrode ink on an electrolyte membrane on the opposite surface of one electrode; and drying the second electrode ink to form a second electrode. Item 3. A method for producing a membrane / electrode assembly for a fuel cell according to Item 2.
  4.  前記膜・電極アッセンブリーを巻き取るにあたり前記第二の電極を支持するための離形処理された基材を前記第二の電極に積層して、または前記通気性基材があらかじめ離形処理されていることを特徴とする請求項3に記載の燃料電池の膜・電極アッセンブリーの製造方法。 In winding up the membrane / electrode assembly, a release-treated base material for supporting the second electrode is laminated on the second electrode, or the breathable base material is pre-released. 4. The method for producing a membrane / electrode assembly for a fuel cell according to claim 3, wherein:
  5.  前記補強テープを貼り付け第一の電極を形成させた面に通気性基材を重ねて吸着ロールまたは吸着ベルトで吸引する工程と、バックシートを前記電解質面から剥離する工程と、前記第一の電極の反対面の電解質膜を加熱吸着しながら第二の電極インクを塗布する工程と、前記第二の電極インクを乾燥させて第二の電極を形成する工程とからなることを特徴とする請求項1の燃料電池に膜・電極アッセンブリーの製造方法。 A step of attaching a breathable base material to the surface on which the first electrode is formed by applying the reinforcing tape and sucking with a suction roll or a suction belt; a step of peeling a back sheet from the electrolyte surface; The method comprises: applying a second electrode ink while heating and adsorbing an electrolyte membrane on the opposite surface of the electrode; and drying the second electrode ink to form a second electrode. A method for producing a membrane / electrode assembly in the fuel cell according to Item 1.
  6.  前記通気性基材の両サイドに介在した接着剤または粘着剤は通気性基材にポーラス状に塗布されていることを特徴とする請求項2に記載の膜・電極アッセンブリーの製造方法。 3. The method for producing a membrane / electrode assembly according to claim 2, wherein the adhesive or pressure-sensitive adhesive interposed on both sides of the breathable substrate is applied to the breathable substrate in a porous shape.
  7.  ロール・ツー・ロール(Roll to Roll)で移動する燃料電池用電解質膜の片側にアノード極を、アノード極の反対側にカソード極の触媒を含む電極を形成した膜・電極アッセンブリーを用いてなる燃料電池であって,バックシートを備えた電解質膜の両端に補強用フィルムを施与する第一の工程と、加熱吸着ロールまたは加熱吸着ベルトでバックシートを吸着して前記補強用フィルムが施与された面に触媒を塗布する第二の工程と、触媒を乾燥または圧着する第三の工程と、吸着機構を備え回転移動するロールまたはベルトに前記第一の電極面を通気性シートを介して吸着する第四の工程と、前記電解質膜の電極形成の反対面のバックシートを剥離する第五の工程と、前記第一の電極の反対面の電解質膜を前記通気性基材を介して加熱吸引しながら触媒を塗布して第二の電極を形成する第六の工程と、電極を乾燥または圧着する第七の工程と、両極の電極が形成された電解質膜を最終的に巻取ることを特徴とする膜・電極アッセンブリーを用いてなる燃料電池。 Fuel using a membrane / electrode assembly in which an anode electrode is formed on one side of a fuel cell electrolyte membrane that is moved in a roll-to-roll manner, and an electrode containing a cathode electrode catalyst is formed on the opposite side of the anode electrode. A first step of applying a reinforcing film to both ends of an electrolyte membrane provided with a back sheet, and the reinforcing film is applied by adsorbing the back sheet with a heating adsorption roll or a heating adsorption belt. A second step of applying the catalyst to the coated surface, a third step of drying or pressure-bonding the catalyst, and adsorbing the first electrode surface to a rotating roll or belt equipped with an adsorption mechanism through a breathable sheet A fourth step, a fifth step of peeling the backsheet on the opposite side of the electrolyte membrane electrode formation, and a heat suction of the electrolyte membrane on the opposite side of the first electrode through the breathable substrate Shina A sixth step of applying a catalyst to form a second electrode, a seventh step of drying or crimping the electrode, and finally winding up the electrolyte membrane on which electrodes of both electrodes are formed, A fuel cell using a membrane / electrode assembly.
  8.  ロール・ツー・ロール(Roll to Roll)で移動する燃料電池用電解質膜の片側にアノード極を、片側にカソード極の触媒を含む電極を形成した膜・電極アッセンブリーを用いてなる燃料電池であって,バックシートを備えた電解質膜の両サイドの一部を除いて触媒を塗布して第一の電極を形成する工程と、前記触媒を乾燥または圧着する工程と、
    予め両サイドに粘着加工を施与した通気性基材を準備する工程と、前記通気性基材の両サイドの粘着加工した位置と前記第一電極形成面の両サイドの未塗布部を重ねて吸着ロールまたは吸着ベルトで吸引する工程と、バックシートを剥離する工程と、前記吸着ロールまたは吸着ベルトを加熱し、または吸着加熱ロールまたは吸着加熱ベルトに移動して前記通気性基材を介して前記電解質膜を吸着する工程と、前記第一の電極の反対面に触媒を塗布して第二の電極を形成する工程と、電極を乾燥または圧着する工程と、両極の電極が形成された電解質膜を最終的に巻取ることを特徴とする膜・電極アッセンブリーを用いてなる燃料電池。
    A fuel cell comprising a membrane / electrode assembly in which an anode electrode is formed on one side of a fuel cell electrolyte membrane moved by a roll-to-roll and an electrode containing a cathode electrode catalyst is formed on one side. , A step of forming a first electrode by applying a catalyst excluding a part of both sides of an electrolyte membrane provided with a back sheet, a step of drying or pressure bonding the catalyst,
    A step of preparing a breathable base material that has been subjected to adhesive processing on both sides in advance, and an adhesive-applied position on both sides of the breathable base material and an uncoated portion on both sides of the first electrode forming surface are overlapped A step of sucking with an adsorbing roll or an adsorbing belt, a step of peeling a back sheet, and heating the adsorbing roll or the adsorbing belt, or moving to an adsorbing heating roll or an adsorbing heating belt and passing through the breathable substrate A step of adsorbing an electrolyte membrane; a step of applying a catalyst to the opposite surface of the first electrode to form a second electrode; a step of drying or pressure-bonding the electrode; and an electrolyte membrane on which electrodes of both electrodes are formed A fuel cell using a membrane / electrode assembly, which is finally wound up.
PCT/JP2017/044287 2016-12-21 2017-12-11 Method for forming electrode of pefc-type fuel cell, and fuel cell WO2018116875A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780078210.4A CN110100341B (en) 2016-12-21 2017-12-11 Method for forming electrode of PEFC type fuel cell and fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016248157A JP6903910B2 (en) 2016-12-21 2016-12-21 Fuel cell manufacturing method, membrane / electrode assembly, fuel cell
JP2016-248157 2016-12-21

Publications (1)

Publication Number Publication Date
WO2018116875A1 true WO2018116875A1 (en) 2018-06-28

Family

ID=62626542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044287 WO2018116875A1 (en) 2016-12-21 2017-12-11 Method for forming electrode of pefc-type fuel cell, and fuel cell

Country Status (3)

Country Link
JP (1) JP6903910B2 (en)
CN (1) CN110100341B (en)
WO (1) WO2018116875A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112585798A (en) * 2018-08-21 2021-03-30 玛太克司马特股份有限公司 Method for manufacturing all-solid-state battery
US20230246203A1 (en) * 2018-08-01 2023-08-03 Toray Industries, Inc. Method of manufacturing and device for manufacturing membrane-catalyst assembly

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7395127B2 (en) * 2019-08-23 2023-12-11 エムテックスマート株式会社 Battery manufacturing method and battery
JP2022172677A (en) * 2021-05-06 2022-11-17 エムテックスマート株式会社 Method for manufacturing laminate of membrane electrode assembly and gas-permeable substrate, laminate of membrane electrode assembly and gas-permeable substrate, and method for manufacturing fuel cell
JP2022178501A (en) * 2021-05-20 2022-12-02 エムテックスマート株式会社 Method for manufacturing membrane/electrode assembly, method for manufacturing laminate of membrane/electrode assembly and air-permeable substrate, laminate of membrane/electrode assembly and air-permeable substrate, method for manufacturing fuel cell, and fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129247A (en) * 2008-11-26 2010-06-10 Nissan Motor Co Ltd Method for manufacturing electrode stack of fuel cell
JP2012074315A (en) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd Membrane electrode assembly of solid polymer fuel cell, and manufacturing method of the same
JP2013084427A (en) * 2011-10-07 2013-05-09 Panasonic Corp Method for manufacturing membrane-catalyst layer assembly and method for manufacturing membrane electrode assembly
JP2013161557A (en) * 2012-02-02 2013-08-19 Panasonic Corp Manufacturing method of film-catalyst layer junction and manufacturing apparatus of film-catalyst layer junction

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5928030B2 (en) * 2012-03-15 2016-06-01 凸版印刷株式会社 Manufacturing apparatus for membrane electrode assembly for polymer electrolyte fuel cell
JP2014229370A (en) * 2013-05-20 2014-12-08 大日本スクリーン製造株式会社 Production apparatus and production method of composite membrane
US20160064741A1 (en) * 2014-09-02 2016-03-03 GM Global Technology Operations LLC Electrode design with optimal ionomer content for polymer electrolyte membrane fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129247A (en) * 2008-11-26 2010-06-10 Nissan Motor Co Ltd Method for manufacturing electrode stack of fuel cell
JP2012074315A (en) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd Membrane electrode assembly of solid polymer fuel cell, and manufacturing method of the same
JP2013084427A (en) * 2011-10-07 2013-05-09 Panasonic Corp Method for manufacturing membrane-catalyst layer assembly and method for manufacturing membrane electrode assembly
JP2013161557A (en) * 2012-02-02 2013-08-19 Panasonic Corp Manufacturing method of film-catalyst layer junction and manufacturing apparatus of film-catalyst layer junction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230246203A1 (en) * 2018-08-01 2023-08-03 Toray Industries, Inc. Method of manufacturing and device for manufacturing membrane-catalyst assembly
CN112585798A (en) * 2018-08-21 2021-03-30 玛太克司马特股份有限公司 Method for manufacturing all-solid-state battery

Also Published As

Publication number Publication date
CN110100341B (en) 2022-08-26
CN110100341A (en) 2019-08-06
JP2018101580A (en) 2018-06-28
JP6903910B2 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
WO2018116875A1 (en) Method for forming electrode of pefc-type fuel cell, and fuel cell
WO2018143179A1 (en) Method for manufacturing membrane/electrode assembly of pefc-type fuel cell
JP6984848B2 (en) Manufacturing method of membrane electrode assembly for fuel cells
KR20160030920A (en) Composite film producing apparatus and method of producing composite film
JP2004351413A (en) Method for applying and drying liquid
JP5139695B2 (en) Method of laminating decal comania on carrier film
JP6352727B2 (en) Membrane / catalyst layer assembly manufacturing apparatus and manufacturing method
JP2012104405A (en) Device for producing catalyst coated membrane and method for producing catalyst coated membrane
JP2018020307A (en) Method and device for preparing catalyst coated thin film
CN111033849B (en) Method for manufacturing fuel cell and fuel cell
JP2018101580A5 (en)
JP2015069739A (en) Device and method of manufacturing membrane-catalyst layer assembly
JP2022172677A (en) Method for manufacturing laminate of membrane electrode assembly and gas-permeable substrate, laminate of membrane electrode assembly and gas-permeable substrate, and method for manufacturing fuel cell
JP2005294123A (en) Manufacturing method of membrane electrode conjugate
JP6311041B2 (en) Manufacturing method of membrane / catalyst layer assembly
JP7075087B2 (en) Fuel cell manufacturing method
JP2015015258A (en) Device for manufacturing film-electrode assembly
JP7215697B2 (en) Fuel cell manufacturing equipment
WO2021039308A1 (en) Method for producing battery, and battery
JP6127692B2 (en) Membrane electrode assembly manufacturing apparatus and holding member used for manufacturing membrane electrode assembly
JP2022178501A (en) Method for manufacturing membrane/electrode assembly, method for manufacturing laminate of membrane/electrode assembly and air-permeable substrate, laminate of membrane/electrode assembly and air-permeable substrate, method for manufacturing fuel cell, and fuel cell
WO2021079990A1 (en) Carbonaceous structure forming method and substrate having carbonaceous structure
JP2010251033A (en) Method of manufacturing membrane-catalyst assembly, membrane-catalyst assembly, and fuel cell
CN112909186A (en) Flexible perovskite solar cell and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885025

Country of ref document: EP

Kind code of ref document: A1