WO2018116870A1 - 放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム - Google Patents

放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム Download PDF

Info

Publication number
WO2018116870A1
WO2018116870A1 PCT/JP2017/044182 JP2017044182W WO2018116870A1 WO 2018116870 A1 WO2018116870 A1 WO 2018116870A1 JP 2017044182 W JP2017044182 W JP 2017044182W WO 2018116870 A1 WO2018116870 A1 WO 2018116870A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
rotating
rotation
distance information
distance
Prior art date
Application number
PCT/JP2017/044182
Other languages
English (en)
French (fr)
Inventor
辻井 修
中野 浩太
亮 藤本
哲雄 島田
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2018116870A1 publication Critical patent/WO2018116870A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]

Definitions

  • the present invention relates to a radiation imaging apparatus, a radiation imaging system, a radiation imaging method, and a program.
  • a mammogram device is standardly used as a radiation imaging device for breast cancer.
  • the mammogram device has reduced lesion detection sensitivity and specificity because the lesion and the mammary gland structure overlap.
  • Tomosynthesis and breast-only CT are attracting attention as techniques to compensate for the disadvantages of this mammogram device.
  • a feature of these devices is that they provide a 3D image of the breast so that the lesion and mammary gland structure can be separated and observed.
  • Japanese Patent Application Laid-Open No. 2004-151820 discloses that even if the actual rotation center of the X-ray fan beam deviates from the ideal rotation center, the amount of deviation is corrected by the correcting means.
  • Japanese Patent Application Laid-Open No. 2004-228688 discloses that a shift of the rotation center and distortion of a projection image are corrected to obtain a difference image, a contrast of a projection image and a reconstructed image, and a high-resolution image.
  • Non-Patent Document 1 a technique is disclosed in which an alignment phantom is placed in an imaging region and scanning is performed to obtain an X-ray ray formula for each projection image.
  • the radiation imaging apparatus may require a high resolution image.
  • a high resolution image For example, in breast-only CT, it is necessary to depict microcalcifications because of the need to replace mammograms in screening. Therefore, a special mechanism is required to suppress the displacement of the mechanism unit in the radiation imaging apparatus.
  • the radiation imaging apparatus of the present invention includes a radiation generating means for generating radiation, a rotating means for rotating at least one of the radiation detecting means for detecting the radiation, a fixing means for rotatably holding the rotating means, and the rotation A distance sensor for acquiring distance information between the rotating means and the fixing means in a radial direction and a thrust direction with respect to a rotating direction of the means;
  • 1 is an external view of a radiation imaging system according to a first embodiment of the present invention. It is a front view inside the imaging
  • FIG. 1 is an external view of the radiation imaging system according to the first embodiment.
  • An imaging unit 6 that captures a radiographic image is held by a support unit 3.
  • the rotating frame is covered with a cover part.
  • the cover part includes a front cover 130 and a side cover 140. At the center of the front cover 130 is a hole 7 for inserting a breast.
  • the radiation generator and radiation detector are fixed to the rotating frame, and the projection data is photographed by rotating 360 degrees around the breast as the subject.
  • FIG. 2 is a front view of the inside of the photographing unit of the first embodiment.
  • the support column 3 holds the imaging unit 6.
  • the imaging unit 6 includes a fixed frame (fixed unit) 10 and a rotating frame 11.
  • the fixed frame (fixed portion) 10 holds the rotating frame 11 in a rotatable manner.
  • Mounted on the rotating frame 11 are a radiation generation unit 12 that generates radiation and a radiation detection unit 13 that detects radiation.
  • a subject 15 is arranged in an imaging region in the radiation beam 14 formed by the radiation generator 12 and the radiation detector 13.
  • the radiation beam 14 is rotated by the rotation of the rotating frame 11 that rotates the radiation generation unit 12 and the radiation detection unit 13, and projection data of the subject 15 in the 360-degree direction is captured.
  • the control unit 16 stores the projection data in the data storage unit 17.
  • the control unit 16 controls the timing of reading projection data from the radiation detection unit 13 according to the rotation angle of the rotating frame 11.
  • the control unit 16 acquires distance information from the distance sensor 18 at the same timing as recording or reading of projection data.
  • the control unit 16 controls the timing at which the distance sensor 18 acquires the distance information according to the rotation angle of the rotating frame 11.
  • the distance sensor 18 acquires distance information between the rotating frame 11 and the fixed frame 10 in the radial direction and the thrust direction with respect to the rotating direction of the rotating frame 11. That is, the distance information is distance information between the fixed frame 10 and the rotating frame 11 in the radial direction and the thrust direction with respect to the rotating direction of the rotating frame 11.
  • the distance information may be acquired by a plurality of distance sensors. In FIG. 2, three distance sensors 18 are mounted. As the distance sensor 18, a contact type or laser type sensor is used.
  • Projection data recording timing is determined by the radiation pulse exposure position. In breast dedicated CT, high resolution is required, so pulsed radiation is used. The exposure position is defined by the rise and fall of the radiation pulse. Recording is performed at the same timing as the projection data recording.
  • the control unit 16 controls the timing at which the radiation generating unit 12 emits radiation according to the rotation angle of the rotating frame 11.
  • the distance sensor 18 obtains distance information at at least one of the three timings of the rising edge, the falling edge, and the center of the rising edge and the falling edge of the radiation pulse (pulse signal) that defines the irradiation timing. Control the timing.
  • the timing for measuring and storing the distance information is controlled by transmitting from the control unit 16 a synchronization signal synchronized with the radiation pulse. Since the radiation pulse width (unit: msec) is determined before the start of imaging, for example, even when the timing at which distance information is measured and recorded is set at a time delayed by a half pulse width from the fall of the radiation pulse. Good.
  • the timing for recording the distance information may be at least one of the three timings at the rise of the radiation pulse, the fall of the radiation pulse, and the center of the rise and fall of the radiation pulse.
  • the distance information in the radial direction and the thrust direction is acquired at three positions.
  • FIG. 3A shows a side view of the inside of the photographing unit 6 of the first embodiment.
  • An imaging system frame 19 is fixed to the rotating frame 11, and the radiation generation unit 12 and the radiation detection unit 13 are installed in the imaging system frame 19.
  • the rotating frame 11 is rotatably attached to the fixed frame 10 via a bearing 20.
  • a subject (breast) 15 is inserted from the hole 7 of the front cover 130 of FIG.
  • the front cover 130 is attached to the fixed frame 10.
  • the subject 15 is structurally fixed to the fixed frame 10.
  • the distance sensor 18 records a backlash generated between the fixed frame 10 and the rotating frame 11.
  • the distance sensor 18 measures the distance between the fixed frame 10 and the rotating frame 11 in the radial direction and the thrust direction.
  • the distance information is measured by the distance sensor 18 by the distance reading unit 21 and the distance measurement surface 22 shown in FIG. 3B.
  • the distance reading unit 21 is installed on the rotating frame 11, and the distance measuring surface 22 is a surface on the fixed frame 10.
  • the distance reading unit 21 is installed on the rotating frame 11, since both the control unit 16 and the distance reading unit 21 are on the rotating frame 11, a synchronization signal for controlling the timing for measuring and storing the distance information is rotated. It is transmitted by wire on the frame 11. Considering the transmission speed and accuracy of the synchronization signal and the simplicity and cost of the configuration, it is preferable to transmit the synchronization signal by wire rather than wirelessly.
  • the control unit 16 is on the rotating frame 11, and the distance reading unit 21 is on the fixed frame 10. It is necessary to transmit a synchronization signal via the frame 10. Specifically, it is necessary to transmit the synchronization signal via a slip ring or a cable bear (registered trademark).
  • a slip ring has an advantage that it can be continuously rotated in one direction, an expensive slip ring is required for high-speed data communication.
  • control unit 16 and the distance reading unit 21 are both installed on the rotating frame 11 side. That is, the distance sensor 18 is installed on the rotating frame 11 side and rotates together with the rotating frame 11. For example, the rotating side surface of the rotating frame 11 rotates along the side surface of the fixed frame 10. The distance sensor 18 is installed on the rotating side surface and measures the distance to the side surface of the fixed frame 10 in the radial direction and the thrust direction.
  • the rotating frame 11 is rotated by the rotation-on signal.
  • the timing of distance measurement is defined by the timing of radiation exposure by radiation pulses.
  • the radiation exposure by the radiation pulse is performed for each rotation angle determined by the control unit 16.
  • a rotation angle reading unit (not shown) is arranged on the rotation frame 11 and faces a rotation angle measurement surface arranged circumferentially on the fixed frame 10. Each time the rotation angle reading unit reads the rotation angle measurement surface by the rotation of the rotation frame 11, an encoder signal is generated.
  • the control unit 16 determines the rotation angle at which the radiation is exposed based on the number of imaging angles (number of views) when the rotating frame 11 makes one rotation.
  • the control unit 16 counts the encoder signal from the rotation angle reading unit, outputs a synchronization signal when the rotation angle reaches a predetermined rotation angle, and synchronizes with a predetermined timing of the radiation pulse with a predetermined pulse width and duty ratio.
  • Expose radiation When the number of views is 1000, the radiation pulse is output 1000 times and the radiation is exposed 1000 times. In response to the radiation exposure, the control unit 16 reads an image signal from the radiation detection unit 13.
  • the distance sensor 18 measures and records distance information in synchronization with a predetermined timing of the radiation pulse.
  • the radiation pulse has a width of 10 msec to 20 msec.
  • the distance sensor 18 measures and records the distance information at three timings: rising of the radiation pulse, 5 msec after the rising, and falling of the radiation pulse.
  • the distance sensor 18 may measure and record the distance information at at least one of these three timings. In this case, distance information may be recorded at the center of the rise and fall of the radiation pulse.
  • FIG. 4 is a diagram showing a calibration flow of the present embodiment.
  • a ray table in which the ray formula of radiation and distance information are associated (linked) is created at each imaging angle (projection angle).
  • a command for performing calibration imaging of the alignment phantom and the number of views (calibration data) are input from a display input unit (not shown) (step S101).
  • the number of views (first view number) in calibration may not be the same as the number of views (second view number) in the shooting flow described later.
  • the ray formula of the projection angle of the radiation irradiated in the imaging flow may be calculated by interpolating the data of the ray distance table created by calibration.
  • Alignment phantoms are installed in the imaging area of the imaging unit 6 (step S102).
  • the alignment phantom may be the one described in Non-Patent Document 1.
  • an alignment phantom has a plurality of tungsten spheres arranged in acrylic.
  • the instruction to start capturing the radiation image of the alignment phantom is issued from the display input unit, and the rotating frame 11 rotates (step S103).
  • the control unit 16 releases the interlock of the radiation generation unit 12, activates the radiation detection unit 13, resets the encoder, and starts rotating the rotating frame 11.
  • an encoder signal is generated.
  • the control unit 16 counts up the encoder signal (step S104). Each time the count reaches the specified value q1, a radiation pulse is generated with a predetermined pulse width (step S105).
  • the distance information (first distance information) is measured and recorded in synchronization with a predetermined timing of the radiation pulse, and the distance information (first distance information) is acquired by the rotation (first rotation) of the rotating frame 11.
  • the control unit 16 acquires an image signal of the radiation image from the radiation detection unit 13 (step S107).
  • the radiation image shows the shadow of the alignment phantom.
  • the counting up of the encoder signal, generation of radiation pulses, acquisition of distance information, and acquisition of radiation images are repeated the number of times corresponding to the rotation angle (projection angle).
  • the ray formula of the radiation at each rotation angle is calculated (step S108).
  • the control unit 16 calculates a radiation ray formula (first ray formula) in the radiation image (first radiation image) acquired by the first rotation of the rotating frame 11.
  • Non-Patent Document 1 the method described in Non-Patent Document 1 is applied as the light ray calculation method, but other known calculation methods may be applied.
  • nine parameters such as SID (Source Image Distance) and SOD (Source Object Distance) that define the ray of radiation are calculated, but are not limited thereto.
  • the ray formula (9 parameters in this embodiment) calculated in step S108 and the distance information measured in step S106 are associated with each rotation angle (projection angle) (step S109).
  • the table associated in step S109 is referred to as a light ray distance table (light ray distance information).
  • the control unit 16 acquires the first distance information and the first light beam expression by rotating the rotating frame 11 around the alignment phantom.
  • the control unit 16 generates ray distance information that associates the first distance information acquired by the first rotation with the first ray type according to the rotation angle of the rotating frame 11.
  • step S110 The above processing ends normally, and calibration shooting ends (step S110).
  • FIG. 5 is a diagram showing a photographing flow for photographing a subject according to the present embodiment.
  • imaging of the subject 15 at each projection angle is performed, and before reconstructing the radiation image, the ray formula of the radiation at each projection angle of the subject 15 is determined using the ray distance table.
  • a radiation image of the subject 15 is reconstructed based on the determined ray formula.
  • the control unit 16 corrects the shift of the rotating frame 11 with respect to the fixed frame 10 according to the distance information, and reconstructs a radiographic image of the subject 15.
  • a command for photographing the subject 15 and the number of views (subject data) are issued from a display input unit (not shown) (step S201).
  • the number of views (second view number) in photographing the subject 15 may not be the same as the number of views (first view number) in calibration.
  • the ray formula of the projection angle of the radiation irradiated by photographing the subject 15 may be calculated by interpolating the data of the ray distance table created by calibration.
  • the subject 15 is placed in the shooting area of the shooting unit 6 (step S202).
  • An instruction to start capturing a radiographic image of the subject 15 is issued from the display input unit, and the rotating frame 11 rotates (step S203).
  • the control unit 16 releases the interlock of the radiation generation unit 12, activates the radiation detection unit 13, resets the encoder, and starts rotating the rotating frame 11.
  • an encoder signal is generated.
  • the control unit 16 counts up the encoder signal (step S204). Each time the count reaches the specified value q2, a radiation pulse is generated with a predetermined pulse width (step S205).
  • the distance information is measured and recorded in synchronization with the predetermined timing of the radiation pulse, and the distance information (second distance information) is acquired by the second rotation of the rotating frame 11 (step S206).
  • the control unit 16 acquires an image signal of the radiation image from the radiation detection unit 13 (step S207).
  • a shadow of the subject (breast) 15 is reflected in the radiation image.
  • a radiographic image (second radiographic image) of the subject 15 is acquired by the second rotation of the rotating frame 11.
  • the counting up of the encoder signal, generation of radiation pulses, acquisition of distance information, and acquisition of radiation images are repeated the number of times corresponding to the rotation angle (projection angle).
  • the radiation ray formula (in this embodiment, nine parameters) of each rotation angle (projection angle) is calculated (step S208).
  • the light ray equation (second light ray equation) in step S208 the light ray distance table (light ray distance data) created in step S109 of the calibration flow is used.
  • the ray formula (in this embodiment, nine parameters) calculated in step S208 and the radiation image of the subject 15 acquired in step S207 are associated with each rotation angle (projection angle) (step S209).
  • the radiographic image of the subject 15 is forward projected or back projected to calculate a reconstructed image of the subject 15 (step S210).
  • shooting is completed (step S211).
  • the coordinate system of the reference (O, X, Y, Z) of the alignment phantom or subject 15 is represented by (X, Y, Z).
  • the coordinates of the reference (S, X ′, Y ′, Z ′) of the radiation focus (projection) are represented by (X ′, Y ′, Z ′), and the detection surface of the radiation detection unit 13 from the radiation focus S.
  • S ′ C, L
  • the length of the perpendicular line from the radiation focus S to the detection surface of the radiation detection unit 13 is represented by D.
  • (Xs, Ys, Zs) is an offset of the radiation focus S with respect to the coordinate system O of the subject 15.
  • ( ⁇ , ⁇ , ⁇ ) is the Euler angle between the coordinate system O of the subject 15 and the coordinate system of the radiation focus S.
  • (Cs, Ls) is the position of the point where the perpendicular from the radiation focus S to the detection surface of the radiation detection unit 13 intersects the detection surface of the radiation detection unit 13.
  • D is the length of a perpendicular line from the radiation focus S to the detection surface of the radiation detection unit 13.
  • step S108 of the calibration flow the first ray formula when the rotation angle (projection angle) is 0 degree is described as (Xs0, Ys0, Zs0, ⁇ 0, ⁇ 0, ⁇ 0, Cs0, Ls0, D0). .
  • step S106 when the projection angle is 0 degree, the measurement values (first distance information) in the radial direction and the thrust direction of the distance sensor 18 installed at the position of the rotation frame 11 at the rotation angle 0 degree are obtained.
  • R0 (0) and TH0 (0) When the projection angle is 0 degree, the measured values (first distance information) in the radial direction and the thrust direction of the distance sensor 18 installed at the position of the rotation angle 90 of the rotating frame 11 are R0 (90). And TH0 (90).
  • the distance sensor 18 is installed at a position where the rotation angle of the rotating frame 11 is 0 degrees and 90 degrees.
  • step S206 of the photographing flow when the projection angle is 0 degree, the measurement values (second distance information) in the radial direction and the thrust direction of the distance sensor 18 installed at the position of the rotation angle of the rotation frame 11 are 0 degrees. Are R1 (0) and TH1 (0). When the projection angle is 0 degree, the measurement values (second distance information) in the radial direction and the thrust direction of the distance sensor 18 installed at the position of the rotation angle of the rotation frame 11 are 90 degrees. And TH1 (90).
  • step S208 of the imaging flow the control unit 16 uses the second ray formula (Xs1, Ys1, Zs1, ⁇ 1, ⁇ 1, ⁇ 1, Cs1, Ls1, D1) when the rotation angle (projection angle) is 0 degrees. ) Is calculated by the equation (1).
  • Xs1 Xs0 + ⁇ (R1 (0) ⁇ R0 (0))
  • Ys1 Ys0 + ⁇ (R1 (90) ⁇ R0 (90))
  • ⁇ , ⁇ , and ⁇ are constants of about 0.5 and correspond to the ratio between the circumference of the rotating frame 11 and the SID.
  • the control unit 16 calculates the second light ray equation from the first light ray equation based on the difference between the first distance information and the second distance information.
  • the positional relationship between the radiation focus S and the radiation detection unit 13 does not change and the Euler angle between the coordinate system O and the coordinate system of the radiation focus S does not change. Further, the position of the point where the perpendicular line from the radiation focus S to the detection surface of the radiation detection unit 13 intersects the detection surface of the radiation detection unit 13 and the length of the perpendicular line from the radiation focus S to the detection surface of the radiation detection unit 13 do not change. It is assumed that. The movement of the rotating frame 11 with respect to the fixed frame 10 is reflected in the movement of the radiation focus S.
  • the ray formula calculated at each rotation angle (projection angle) according to the number of views is associated with the radiation image of the subject 15 in Step S209. .
  • the ray equation for each projection angle ⁇ may be calculated by equation (2).
  • control unit 16 calculates the second light equation from the first light equation based on the function of the rotation angle of the rotating frame 11, the first distance information, and the second distance information.
  • the control unit 16 Based on the first distance information and the second distance information, the control unit 16 obtains the second radiation from the first light ray expression of the radiation in the first radiation image according to the expression (1) or the expression (2). A second ray formula in the image is calculated. The control unit 16 reconstructs a radiographic image of the subject 15 based on the light beam method (second light beam method).
  • control unit 16 may generate a radiation image for gain correction from the radiation image reconstructed based on the light beam method (second light beam method).
  • the radiation generation unit 12 obtains distance information and a radiation image while irradiating the radiation, thereby gain based on the second ray formula.
  • a correction radiation image is generated.
  • the radiation beam misalignment of radiation is influenced by the distortion of the rotating frame 11 and the bending of the radiation generating unit 12 and the radiation detecting unit 13 fixed to the rotating frame 11 in addition to the backlash of the bearing and the like.
  • a function of the rotation angle ⁇ and the distance information (the measured value Rn in the radial direction and the measured value THn in the thrust direction)
  • the ray formula is calculated using Formula (3).
  • Xs1 Xsa + F1 ( ⁇ , Rn, THn)
  • Ys1 Ysa + F2 ( ⁇ , Rn, THn)
  • Cs1 Csa + F7 ( ⁇ , Rn, THn)
  • Ls1 Lsa + F8 ( ⁇ , Rn, THn)
  • D1 Da + F9 ( ⁇ , Rn, THn) (3)
  • Xsa, Ysa, Zsa, ⁇ a, ⁇ a, Csa, Lsa, Da represent an average ray equation (for example, an average value) obtained by a plurality of calibrations.
  • F1 to F9 are functions derived from the rotation angle ⁇ , the radial measurement value Rn, and the thrust measurement value THn by a plurality of calibrations.
  • the ray formula at each projection angle ⁇ when the subject 15 is photographed is calculated using the formula (3) from the radial measurement value Rn and the thrust measurement value THn.
  • control unit 16 determines, based on the rotation angle of the rotating frame 11 and the function of the plurality of distance information, from the average of the radiation beam type in the plurality of radiation images acquired by the plurality of rotations of the rotating frame 11.
  • the ray formula in the radiographic image of the subject 15 is calculated.
  • the control unit 16 acquires a plurality of distance information and a radiation beam type by rotating the rotating frame 11 a plurality of times around the alignment phantom.
  • the distance phantom data is generated by calibrating the alignment phantom, and the light ray formula is generated from the light distance data based on the distance information when the subject 15 is photographed.
  • a high-accuracy radiographic image can be reconstructed by reconstructing the radiographic image of the subject 15 using the corrected ray formula.
  • FIG. 7 is a diagram illustrating an arrangement of distance sensors in the radiation imaging system according to the second embodiment.
  • four distance sensors 181, 182, 183, and 184 are arranged on the rotating frame 11 at intervals of 90 degrees in the rotating direction of the rotating frame 11.
  • Each distance sensor can measure and store distance information between the fixed frame 10 and the rotating frame 11 in the radial direction and the thrust direction with respect to the rotating direction of the rotating frame 11.
  • the three-dimensional position of the rotating frame 11 can be specified with redundancy as compared with the case of providing two distance sensors.
  • R (0) and TH (0) are measured as the measured values in the radial direction and the thrust direction of the distance sensor 181 installed at the position where the rotation angle of the rotating frame 11 is 0 degree.
  • R (90) and TH (90) are measured as measured values in the radial direction and the thrust direction of the distance sensor 182 installed at the position of the rotation angle of the rotation frame 11 at 90 degrees.
  • R (180) and TH (180) are measured as measured values in the radial direction and the thrust direction of the distance sensor 183 installed at the position of the rotation angle of the rotation frame 11 of 180 degrees.
  • R (270) and TH (270) are measured as measured values in the radial direction and the thrust direction of the distance sensor 184 installed at the position of the rotation angle 270 degrees of the rotating frame 11.
  • the measured values in the radial direction are R (0), R (90), R (180), R (270), and the thrust direction in the light ray expression when photographing the subject 15.
  • TH (0), TH (90), TH (180), and TH (270) may be considered.
  • the distance reading unit 21 of the distance sensor 18 is arranged on the rotating frame 11 side, but the distance reading unit 21 of the distance sensor 18 is fixed outside the rotating frame 11. It may be arranged on the frame 10 side.
  • the radiation generator 12 and the radiation detector 13 are arranged on the rotating frame 11 side, it is preferable that the radiation exposure timing and the radiation image acquisition timing are generated on the rotating frame 11 side. Moreover, since it is preferable to acquire distance information according to the timing of radiation exposure, it is preferable that the distance reading unit 21 is also on the rotating frame 11 side.
  • the distance reading unit 185 and the distance information storage unit 186 that stores the distance information measured by the distance reading unit 185 may be arranged on the fixed frame 10 side.
  • the rotating side surface of the rotating frame 11 rotates along the side surface of the fixed frame 10.
  • the distance sensor 18 is installed on the fixed frame 10 and measures the distance to the rotating side surface in the radial direction and the thrust direction.
  • a circuit on the rotating frame 11 side and a circuit on the outside of the rotating frame 11 (for example, the fixed frame 10 side). It is sufficient to match the times.
  • a time signal is output from the rotating frame 11 side (for example, the control unit 16) to the fixed frame 10 side (for example, the distance information storage unit 186), and the times of the rotating frame 11 and the fixed frame 10 are made coincident.
  • the control unit 16 matches the times of the control unit 16 and the distance sensor 18, controls the timing at which the radiation generation unit 12 emits radiation according to the time, and the distance sensor 18 determines the distance information according to the time. To get.
  • the hole 7 is provided in the front cover 130, but there is no cover on the opposite side 150 of the front cover 130, and the photographer can turn the rotating frame from the opposite side 150 of the front cover 130. 11 central imaging areas can be easily accessed.
  • the present invention supplies software (programs) for realizing the functions of the above-described embodiments to a system or apparatus via a network or various storage media, and a computer (CPU, MPU, etc.) of the system or apparatus reads the program. May be executed.
  • the present invention can also be realized by a process in which one or more processors in a computer of a system or apparatus read and execute a program, and can also be realized by a circuit (for example, an ASIC) that realizes one or more functions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本発明の放射線撮影装置は、放射線を発生させる放射線発生手段及び前記放射線を検出する放射線検出手段の少なくとも1つを回転させる回転手段と、前記回転手段を回転可能に保持する固定手段と、前記回転手段の回転方向に対するラジアル方向及びスラスト方向において、前記回転手段と前記固定手段との距離情報を取得する距離センサとを備える。

Description

放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム
 本発明は、放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラムに関する。
 例えば、乳がんの放射線撮影装置として、マンモグラム装置が標準的に使用されている。しかし、マンモグラム装置は、デンスブレスト(乳腺の多い***)の場合は、病変部と乳腺構造が重なり合うため、病変検出の感度や特異度が低下することが知られている。このマンモグラム装置の欠点を補う技術として、トモシンセシスや***専用CTが注目されている。これらの装置の特徴は、***の3D画像を提供することにより、病変部と乳腺構造を分離して観察できるようにするものである。
 ***専用CTにおいて、下記の技術が開示されている。特許文献1には、X線ファンビームの実際の回転中心が理想の回転中心に対しずれが生じても、補正手段によりそのずれ量を補正することが開示されている。特許文献2には、回転中心のずれ及び投影像のゆがみなどが補正されて、差分画像や投影像及び再構成像のコントラストや高解像度の画像を得ることが開示されている。
 また、撮影領域内にアライメント用ファントムを配置してスキャンを行い、各投影画像のX線の光線式を求める技術が開示されている(非特許文献1)。
特開平4-325144号公報 特開2002-291726号公報
A.Rougee, C.Picard, Y.Trousset, C.Ponchut, Geometrical calibration for 3D X-ray imaging, SPIE
 放射線撮影装置には、高分解能の画像が要求される場合がある。例えば、***専用CTでは、検診においてマンモグラムに代替する必要性から、微小石灰化の描出が必要である。そのため、放射線撮影装置における機構部のずれを抑えるために特殊な機構が必要になる。
 本発明では、特殊な機構を必要とせずに、放射線撮影装置における機構部の回転に起因する距離情報に基づいて、放射線撮影装置における機構部によるずれを補正することを目的とする。
 本発明の放射線撮影装置は、放射線を発生させる放射線発生手段及び前記放射線を検出する放射線検出手段の少なくとも1つを回転させる回転手段と、前記回転手段を回転可能に保持する固定手段と、前記回転手段の回転方向に対するラジアル方向及びスラスト方向において、前記回転手段と前記固定手段との距離情報を取得する距離センサとを備える。
 放射線撮影装置における機構部の回転に起因する距離情報に基づいて、放射線撮影装置における機構部によるずれを補正することができる。
本発明の第1の実施形態に係る放射線撮影システムの外観図である。 本発明の第1の実施形態に係る撮影部内部の正面図である。 本発明の第1の実施形態に係る撮影部内部の側面図である。 本発明の第1の実施形態に係る距離センサ配置の一例を示す図である。 本発明の第1の実施形態に係る信号のタイミングの一例を示す図である。 本発明の第1の実施形態に係るキャリブレーションフローの一例を示すフロー図である。 本発明の第1の実施形態に係る撮影フローの一例を示すフロー図である。 本発明の第1の実施形態に係る光線式の算出を説明する図である。 本発明の第2の実施形態に係る距離センサ配置の一例を示す図である。 距離センサが回転フレームの外側に配置される例を示す図である。
 (第1の実施形態)
 図1は、第1の実施形態の放射線撮影システムの外観図である。放射線画像の撮影を行う撮影部6は、支柱部3で保持されている。撮影部6内には、回転フレーム(図示しない)があり、回転フレームの中央に撮影領域が設定されている。回転フレームはカバー部で覆われている。カバー部は、前面カバー130と側面カバー140を含む。前面カバー130の中央には、***を挿入するための孔部7がある。
 回転フレームには、放射線発生部と放射線検出部が固定されており、被写体である***の周囲を360度回転して、投影データを撮影する。回転フレームの中央には、撮影領域があり、撮影領域に収まるように、***保持部(図示しない)が配置される。
 図2は、第1の実施形態の撮影部の内部の正面図である。支柱部3は撮影部6を保持する。撮影部6は、固定フレーム(固定部)10と回転フレーム11より構成される。固定フレーム(固定部)10は、回転フレーム11を回転可能に保持する。回転フレーム11には、放射線を発生させる放射線発生部12と放射線を検出する放射線検出部13が搭載される。
 放射線発生部12と放射線検出部13で形成される放射線ビーム14中の撮影領域に、被写体15が配置される。放射線発生部12及び放射線検出部13を回転させる回転フレーム11の回転により放射線ビーム14が回転し、被写体15の360度方向の投影データが撮影される。制御部16は、投影データをデータ記憶部17に記憶する。
 制御部16は、回転フレーム11の回転角度に応じて、放射線検出部13から投影データを読み取るタイミングを制御する。制御部16は、投影データの記録又は読み取りと同じタイミングで、距離センサ18から距離情報を取得する。
 制御部16は、回転フレーム11の回転角度に応じて、距離センサ18が距離情報を取得するタイミングを制御する。距離センサ18は、回転フレーム11の回転方向に対するラジアル方向及びスラスト方向において、回転フレーム11と固定フレーム10との距離情報を取得する。つまり、距離情報は、回転フレーム11の回転方向に対するラジアル方向とスラスト方向の固定フレーム10と回転フレーム11との距離情報である。距離情報は、複数の距離センサで取得されてもよい。図2では、3つの距離センサ18が搭載されている。距離センサ18には、接触式やレーザ式などのセンサが用いられる。
 投影データ記録のタイミングは、放射線パルスの曝射位置で決定される。***専用CTでは、高分解能が要求されるので、パルス放射線が使用される。曝射位置は、放射線パルスの立ち上りと立ち下りで規定される。投影データの記録と同じタイミングで記録される。
 距離情報は、放射線パルスの立ち上り、放射線パルスの立ち下り、及び放射線パルスの立ち上がりと立ち下りの中央の3つのタイミングで計測及び記録される。制御部16は、回転フレーム11の回転角度に応じて、放射線発生部12が放射線を照射するタイミングを制御する。制御部16は、放射線を照射するタイミングを規定する放射線パルス(パルス信号)の立ち上がり、立ち下がり、及び立ち上がり及び立ち下がりの中央の3つのタイミングの少なくとも1つで、距離センサ18が距離情報を取得するタイミングを制御する。
 距離情報を計測及び記憶するタイミングは、放射線パルスに同期させる同期信号が制御部16から送信されることにより、制御される。放射線パルス幅(単位はmsec)は、撮影開始前に決定されているので、例えば、放射線パルスの立ち下りから半パルス幅遅延した時刻に、距離情報が計測及び記録されるタイミングが設定されてもよい。距離情報を記録するタイミングは、放射線パルスの立ち上り、放射線パルスの立ち下り、及び放射線パルスの立ち上がりと立ち下りの中央の3つのタイミングの少なくとも1つであればよい。
 図2では、3つの位置で、ラジアル方向及びスラスト方向の距離情報が取得される。3つの位置の距離情報を使用することにより、固定フレーム10に対する回転フレーム11の3次元空間上の位置を特定(計算)することが可能である。
 図3Aは、第1の実施形態の撮影部6の内部の側面図を表わす。回転フレーム11には、撮影系フレーム19が固定されており、撮影系フレーム19に放射線発生部12及び放射線検出部13が設置されている。回転フレーム11は、ベアリング20を介して固定フレーム10に回転可能に取り付けられる。被写体(***)15は、図2の前面カバー130の孔部7から挿入される。前面カバー130は、固定フレーム10に取り付けられている。
 被写体15は、構造的に、固定フレーム10に固定されていることになる。この状態で、回転フレーム11が固定フレーム10に対して回転する際に、ベアリング20に起因するガタが生じる。放射線パルスのタイミングで、距離センサ18が、固定フレーム10と回転フレーム11との間に生じるガタを記録する。この場合、距離センサ18は、固定フレーム10と回転フレーム11との間の距離をラジアル方向及びスラスト方向に計測する。複数の距離センサ18が設けられることで、回転フレーム11の3次元上の位置を特定することができる。ここで、3次元上の位置は、固定フレーム10の位置を基準とする。
 距離センサ18による距離情報の計測は、図3Bに示す距離読取部21と距離計測面22により行われる。本実施形態では、距離読取部21は回転フレーム11上に設置され、距離計測面22は固定フレーム10上の面である。
 距離読取部21が回転フレーム11上に設置されれば、制御部16と距離読取部21とがともに回転フレーム11上にあるため、距離情報を計測及び記憶するタイミングを制御する同期信号が、回転フレーム11上において有線で送信される。同期信号の伝達速度や正確性及び構成の簡素性や費用を考慮すると、無線より有線で同期信号を送信するほうが好適である。
 一方、距離読取部21が固定フレーム10上に設置されれば、制御部16が回転フレーム11上にあり、距離読取部21が固定フレーム10にあるため、有線を用いる場合、回転フレーム11から固定フレーム10を介して、同期信号を送信する必要がある。具体的には、同期信号をスリップリングやケーブルベア(登録商標)を介して送信する必要がある。スリップリングは一方向に連続回転させられるメリットはあるが、高速のデータ通信をするためには、高価なスリップリングが必要となる。
 したがって、制御部16と距離読取部21とがともに回転フレーム11側に設置されることが好ましい。つまり、距離センサ18は、回転フレーム11側に設置され、回転フレーム11とともに回転する。例えば、回転フレーム11の回転側面は、固定フレーム10の側面に沿って回転する。距離センサ18は、回転側面に設置され、ラジアル方向及びスラスト方向の固定フレーム10の側面までの距離を計測する。
 図3Cに示すように、回転オン信号により、回転フレーム11が回転する。距離計測のタイミングは、放射線パルスによる放射線曝射のタイミングで規定される。放射線パルスによる放射線曝射は、制御部16が決定する回転角ごとに行われる。
 回転角を計測するために、回転フレーム11上に回転角読取部(図示せず)が配置され、固定フレーム10上に円周状に配置された回転角測定面と対向する。回転フレーム11の回転により回転角読取部が回転角測定面を読み込むごとに、エンコーダ信号が生成される。
 制御部16は、回転フレーム11が1回転するときの撮影角度の数(ビュー数)を基準に、放射線を曝射する回転角を決定する。制御部16は、回転角読取部からのエンコーダ信号をカウントし、所定の回転角になったら、同期信号を出力し、放射線パルスの所定のタイミングに同期させて、所定のパルス幅及びデューティー比で放射線を曝射させる。ビュー数が1000である場合は、放射線パルスを1000回出力し、1000回放射線を曝射させる。放射線の曝射に応じて、制御部16は、放射線検出部13からの画像信号を読み取る。
 また、距離センサ18は、放射線パルスの所定のタイミングに同期して、距離情報を計測及び記録する。放射線パルスは、10msecから20msecの幅を有している。例えば、パルス幅が10msecの場合、放射線パルスの立ち上り、立ち上りから5msec後、及び放射線パルスの立ち下りの3つのタイミングで、距離センサ18は距離情報を計測及び記録する。これらの3つのタイミングのうち少なくとも1つのタイミングで、距離センサ18は距離情報を計測及び記録してもよい。この場合、放射線パルスの立ち上がりと立ち下がりの中央で、距離情報が記録されてもよい。
 図4は、本実施形態のキャリブレーションフローを示す図である。キャリブレーションフローでは、各撮影角度(投影角度)において放射線の光線式と距離情報とが関連付けられた(リンクされた)光線テーブルが作成される。アライメント用ファントムのキャリブレーション撮影を行う命令及びビュー数(キャリブレーションデータ)が、図示しない表示入力部から入力される(ステップS101)。
 キャリブレーションにおけるビュー数(第1のビュー数)は、後述の撮影フローにおけるビュー数(第2のビュー数)と同じでなくてもよい。撮影フローで照射された放射線の投影角度の光線式は、キャリブレーションにより作成された光線距離テーブルのデータを補間することにより、算出されてもよい。
 アライメント用ファントムが撮影部6の撮影領域に設置される(ステップS102)。アライメント用ファントムは、非特許文献1に記載されたものでよい。例えば、アライメント用ファントムは、アクリル中にタングステン球を複数配置したものである。
 アライメント用ファントムの放射線画像の撮影開始の指示が表示入力部から行われ、回転フレーム11が回転する(ステップS103)。制御部16は、放射線発生部12のインターロックを解除し、放射線検出部13の起動を行い、エンコーダをリセットして、回転フレーム11の回転を開始する。
 回転フレーム11の回転(第1の回転)が始まると、エンコーダ信号が発生する。制御部16は、エンコーダ信号のカウントアップを行う(ステップS104)。カウントが規定値q1になるたびに、放射線パルスが所定のパルス幅で発生する(ステップS105)。
 放射線パルスの所定のタイミングに同期して、距離情報(第1の距離情報)が計測及び記録され、回転フレーム11の回転(第1の回転)により距離情報(第1の距離情報)が取得される(ステップS106)。放射線パルスに応じて、制御部16は、放射線画像の画像信号を、放射線検出部13から取得する(ステップS107)。放射線画像には、アライメント用ファントムの陰影が写り込んでいる。回転フレーム11の回転(第1の回転)により、アライメント用ファントムの放射線画像(第1の放射線画像)が取得される。
 エンコーダ信号のカウントアップ、放射線パルスの発生、距離情報の取得、及び放射線画像の取得は、回転角度(投影角度)に応じたビュー数の回数繰り返される。
 放射線画像を解析することにより、各回転角度(投影角度)の放射線の光線式が計算される(ステップS108)。制御部16は、回転フレーム11の第1の回転により取得された放射線画像(第1の放射線画像)における放射線の光線式(第1の光線式)を算出する。
 本実施形態では、光線式の計算方法として、非特許文献1に記載されている方法が適用されるが、他の公知の計算方法が適用されてもよい。非特許文献1では、放射線の光線を規定するSID(Source Image Distance)やSOD(Source Object Distance)などの9個のパラメータが算出されるが、これらに限られない。
 ステップS108で算出された光線式(本実施形態では、9個のパラメータ)とステップS106で計測された距離情報が、回転角度(投影角度)ごとに関連付けられる(ステップS109)。ステップS109で関連付けられたテーブルを光線距離テーブル(光線距離情報)と呼ぶ。制御部16は、アライメント用ファントムの周りで回転フレーム11を回転させることにより、第1の距離情報及び第1の光線式を取得する。制御部16は、回転フレーム11の回転角度に応じて、第1の回転により取得された第1の距離情報を第1の光線式に関連付ける光線距離情報を生成する。
 以上の処理が正常に終了して、キャリブレーション撮影が終了する(ステップS110)。
 図5は、本実施形態の被写体を撮影する撮影フローを示す図である。撮影フローでは、被写体15の各投影角度における撮影を行い、放射線画像を再構成する前に、光線距離テーブルを利用して、被写体15の各投影角度における放射線の光線式を決定する。決定された光線式に基づいて、被写体15の放射画像が再構成される。制御部16は、距離情報に応じて、固定フレーム10に対する回転フレーム11のずれを補正し、被写体15の放射線画像を再構成する。
 被写体15の撮影を行う命令及びビュー数(被写体データ)が、図示しない表示入力部から行われる(ステップS201)。被写体15の撮影におけるビュー数(第2のビュー数)は、キャリブレーションにおけるビュー数(第1のビュー数)と同じでなくてもよい。被写体15の撮影で照射された放射線の投影角度の光線式は、キャリブレーションにより作成された光線距離テーブルのデータを補間することにより、算出されてもよい。
 被写体15が撮影部6の撮影領域に設置される(ステップS202)。被写体15の放射線画像の撮影開始の指示が表示入力部から行われ、回転フレーム11が回転する(ステップS203)。制御部16は、放射線発生部12のインターロックを解除し、放射線検出部13の起動を行い、エンコーダをリセットして、回転フレーム11の回転を開始する。
 回転フレーム11の回転(第2の回転)が始まると、エンコーダ信号が発生する。制御部16は、エンコーダ信号のカウントアップを行う(ステップS204)。カウントが規定値q2になるたびに、放射線パルスが所定のパルス幅で発生する(ステップS205)。
 放射線パルスの所定のタイミングに同期して、距離情報が計測及び記録され、回転フレーム11の第2の回転により距離情報(第2の距離情報)が取得される(ステップS206)。放射線パルスに応じて、制御部16は、放射線画像の画像信号を、放射線検出部13から取得する(ステップS207)。放射線画像には、被写体(***)15の陰影が写り込んでいる。回転フレーム11の第2の回転により、被写体15の放射線画像(第2の放射線画像)が取得される。
 エンコーダ信号のカウントアップ、放射線パルスの発生、距離情報の取得、及び放射線画像の取得は、回転角度(投影角度)に応じたビュー数の回数繰り返される。
 被写体15の放射線画像の撮影における距離情報を解析することにより、各回転角度(投影角度)の放射線の光線式(本実施形態では、9個のパラメータ)が計算される(ステップS208)。ステップS208における光線式(第2の光線式)の計算では、上記のキャリブレーションフローのステップS109で作成された光線距離テーブル(光線距離データ)が使用される。
 ステップS208で算出された光線式(本実施形態では、9個のパラメータ)とステップS207で取得された被写体15の放射線画像が、回転角度(投影角度)ごとに関連付けられる(ステップS209)。
 ステップS208で算出された光線式に基づいて、被写体15の放射線画像を順投影又は逆投影して、被写体15の再構成画像が計算される(ステップS210)。再構成画像が完成すると、撮影が完了する(ステップS211)。
 次に、図6を用いて、ステップS208における光線式の算出について、非特許文献1に記載されている方法に則って詳述する。図6に示すように、アライメント用ファントム又は被写体15の基準(O,X,Y,Z)の座標系は、(X,Y,Z)で表される。また、放射線焦点(投影)の基準(S,X’,Y’,Z’)の座標は、(X’,Y’,Z’)で表され、放射線焦点Sから放射線検出部13の検出面への垂線が放射線検出部13の検出面と交わる点は、S’(C,L)で表わされる。また、放射線焦点Sから放射線検出部13の検出面への垂線の長さは、Dで表される。
 ここで、Z軸を回転軸として、回転フレーム11が回転することを想定する。光線式は、(Xs,Ys,Zs,Θ,φ,Ψ,Cs,Ls,D)で記述される。ここで、(Xs,Ys,Zs)は、被写体15の座標系Oに対する放射線焦点Sのオフセットである。(Θ,φ,Ψ)は、被写体15の座標系Oと放射線焦点Sの座標系とのオイラー角である。(Cs,Ls)は、放射線焦点Sから放射線検出部13の検出面への垂線が放射線検出部13の検出面と交わる点の位置である。Dは、放射線焦点Sから放射線検出部13の検出面への垂線の長さである。
 キャリブレーションフローのステップS108で、回転角度(投影角度)が0度の場合の第1の光線式は、(Xs0,Ys0,Zs0,Θ0,φ0,Ψ0,Cs0,Ls0,D0)で記述される。
 また、ステップS106で、投影角度が0度の場合において、回転フレーム11の回転角度0度の位置に設置されている距離センサ18のラジアル方向及びスラスト方向の計測値(第1の距離情報)をR0(0)及びTH0(0)とする。また、投影角度が0度の場合において、回転フレーム11の回転角度90度の位置に設置されている距離センサ18のラジアル方向及びスラスト方向の計測値(第1の距離情報)をR0(90)及びTH0(90)とする。ここで、距離センサ18は、回転フレーム11の回転角度が0度と90度の位置に設置されている。
 撮影フローのステップS206で、投影角度が0度の場合において、回転フレーム11の回転角度0度の位置に設置されている距離センサ18のラジアル方向及びスラスト方向の計測値(第2の距離情報)をR1(0)及びTH1(0)とする。また、投影角度が0度の場合において、回転フレーム11の回転角度90度の位置に設置されている距離センサ18のラジアル方向及びスラスト方向の計測値(第2の距離情報)をR1(90)及びTH1(90)とする。
 この場合、制御部16は、撮影フローのステップS208において、回転角度(投影角度)が0度の場合の第2の光線式(Xs1,Ys1,Zs1,Θ1,φ1,Ψ1,Cs1,Ls1,D1)を、式(1)により算出する。
Xs1=Xs0+α(R1(0)-R0(0))
Ys1=Ys0+β(R1(90)-R0(90))
Zs1=Zs0+γ(TH1(0)-TH0(0))
Θ1=Θ0
Φ1=Φ0
Ψ1=Ψ0
Cs1=Cs0
Ls1=Ls0
D1=D0                       ・・・・・(1)
 ここで、α,β,γは、0.5程度の定数で、回転フレーム11の円周とSIDの比率に相当する。このように、制御部16は、第1の距離情報と第2の距離情報との差に基づいて、第1の光線式から、第2の光線式を算出する。
 また、式(1)では、放射線焦点Sと放射線検出部13との位置関係が変化せず、座標系Oと放射線焦点Sの座標系とのオイラー角が変化しないことを前提にしている。また、放射線焦点Sから放射線検出部13の検出面への垂線が放射線検出部13の検出面と交わる点の位置及び放射線焦点Sから放射線検出部13の検出面への垂線の長さが変化しないことを前提にしている。固定フレーム10に対する回転フレーム11の移動は、放射線焦点Sの移動に反映されている。
 投影フローにおける各投影角度で、式(1)を計算することにより、ステップS209において、ビュー数に応じた各回転角度(投影角度)で算出された光線式が、被写体15の放射線画像に関連付けられる。この場合、各投影角度ζの光線式は、式(2)により計算されてもよい。
Xs1=Xs0+α(R1(0)-R0(0))・cos(ζ)
Ys1=Ys0+β(R1(90)-R0(90))・cos(ζ)
Zs1=Zs0+γ(TH1(0)-TH0(0))
Θ1=Θ0
Φ1=Φ0
Ψ1=Ψ0
Cs1=Cs0
Ls1=Ls 0
D1=D0                       ・・・・・(2)
 このように、制御部16は、回転フレーム11の回転角度、第1の距離情報、及び第2の距離情報の関数に基づいて、第1の光線式から、第2の光線式を算出する。
 式(1)又は式(2)により、制御部16は、第1の距離情報及び第2の距離情報に基づいて、第1の放射線画像における放射線の第1の光線式から、第2の放射線画像における第2の光線式を算出する。制御部16は、光線式(第2の光線式)に基づいて、被写体15の放射線画像を再構成する。
 なお、制御部16は、光線式(第2の光線式)に基づいて再構成された放射線画像から、ゲイン補正用の放射線画像を生成してもよい。この場合、撮影領域にアライメント用ファントムや被写体15を配置しない状態で、放射線発生部12が放射線を照射しながら、距離情報及び放射線画像を取得することにより、第2の光線式に基づいて、ゲイン補正用の放射線画像を生成する。
 式(1)及び式(2)では、回転フレーム11を固定フレーム10に対して回転可能に設置するためのベアリングなどのガタに起因する回転フレーム11の移動と放射線の光線式との関係を補正する場合を説明した。
 ただし、放射線の光線式のズレは、ベアリングなどのガタ以外に、回転フレーム11の歪みや回転フレーム11に固定された放射線発生部12及び放射線検出部13の撓みにも影響される。この場合は、定式化することが難しい場合があるので、キャリブレーションフローを複数回行うことで、回転角度ζと距離情報(ラジアル方向の計測値Rn及びスラスト方向の計測値THn)の関数により、例えば式(3)を用いて光線式を計算する。
Xs1=Xsa+F1(ζ,Rn,THn)
Ys1=Ysa+F2(ζ,Rn,THn)
Zs1=Zsa+F3(ζ,Rn,THn)
Θ1=Θa+F4(ζ,Rn,THn)
Φ1=Φa+F5(ζ,Rn,THn)
Ψ1=Ψa+F6(ζ,Rn,THn)
Cs1=Csa+F7(ζ,Rn,THn)
Ls1=Lsa+F8(ζ,Rn,THn)
D1=Da+F9(ζ,Rn,THn)           ・・・・・(3)
 ここで、Xsa,Ysa,Zsa,Θa,Φa,Ψa,Csa,Lsa,Daは、複数回のキャリブレーションによる平均的な光線式(例えば、平均値)を表わしている。F1乃至F9は、複数回のキャリブレーションによる回転角度ζ、ラジアル方向の計測値Rn、及びスラスト方向の計測値THnから導出される関数である。被写体15を撮影した時の各投影角度ζでの光線式は、ラジアル方向の計測値Rn及びスラスト方向の計測値THnから、式(3)を用いて算出される。
 このように、制御部16は、回転フレーム11の回転角度及び複数の距離情報の関数に基づいて、回転フレーム11の複数の回転により取得された複数の放射線画像における放射線の光線式の平均から、被写体15の放射線画像における光線式を算出する。制御部16は、アライメント用ファントムの周りで回転フレーム11を複数回転させることにより、複数の距離情報及び放射線の光線式を取得する。
 高精度の放射線画像を再構成するためには、放射線発生部12と放射線検出部13との位置関係を正確に把握することが重要である。そこで、アライメント用ファントムをキャリブレーションすることにより光線距離データを生成し、被写体15の撮影する際の距離情報に基づいて、光線距離データから光線式を生成する。補正された光線式を用いて、被写体15の放射線画像を再構成することで、高精度の放射線画像を再構成することができる。
 (第2の実施形態)
 図7は、第2の実施形態の放射線撮影システムにおける距離センサの配置を示す図である。図7に示すように、回転フレーム11の回転方向に90度間隔で4つの距離センサ181,182,183,184が回転フレーム11に配置される。各距離センサは、回転フレーム11の回転方向に対するラジアル方向とスラスト方向の固定フレーム10と回転フレーム11との距離情報を計測及び記憶可能である。距離センサを4つ設けることで、距離センサを2つ設ける場合より、冗長性を持って回転フレーム11の3次元上の位置を特定することができる。
 回転フレーム11の回転角度0度の位置に設置されている距離センサ181のラジアル方向及びスラスト方向の計測値をR(0)及びTH(0)が計測される。回転フレーム11の回転角度90度の位置に設置されている距離センサ182のラジアル方向及びスラスト方向の計測値をR(90)及びTH(90)が計測される。
 回転フレーム11の回転角度180度の位置に設置されている距離センサ183のラジアル方向及びスラスト方向の計測値をR(180)及びTH(180)が計測される。また、回転フレーム11の回転角度270度の位置に設置されている距離センサ184のラジアル方向及びスラスト方向の計測値をR(270)及びTH(270)が計測される。
 式(1)乃至式(3)において、被写体15を撮影する際の光線式に、ラジアル方向の計測値をR(0),R(90),R(180),R(270)及びスラスト方向TH(0),TH(90),TH(180),TH(270)が考慮されてもよい。
 第1の実施形態及び第2の実施形態では、距離センサ18の距離読取部21は回転フレーム11側に配置されているが、距離センサ18の距離読取部21が回転フレーム11の外側である固定フレーム10側に配置されてもよい。
 放射線発生部12及び放射線検出部13は、回転フレーム11側に配置されるので、放射線曝射のタイミング及び放射線画像取得のタイミングは、回転フレーム11側で生成されることが好ましい。また、放射線曝射のタイミングに応じて距離情報を取得することが好ましいので、距離読取部21も回転フレーム11側にあることが好ましい。
 ただし、空間的な制約から、距離読取部21を回転フレーム11の外側に配置する要請がある。例えば、図8に示すように、距離読取部185及び距離読取部185により計測された距離情報を記憶する距離情報記憶部186が、固定フレーム10側に配置されてもよい。
 回転フレーム11の回転側面は、固定フレーム10の側面に沿って回転する。距離センサ18は、固定フレーム10に設置され、ラジアル方向及びスラスト方向の回転側面までの距離を計測する。
 この場合、放射線曝射のタイミングに応じて距離読取部185が距離情報を計測するタイミングを制御するために、回転フレーム11側の回路と回転フレーム11の外側(例えば、固定フレーム10側)の回路の時刻を一致させればよい。例えば、回転フレーム11側(例えば、制御部16)から固定フレーム10側(例えば、距離情報記憶部186)へ時刻信号を出力し、回転フレーム11と固定フレーム10の時刻を一致させる。
 制御部16は、制御部16と距離センサ18との時刻を一致させ、時刻に応じて、放射線発生部12が放射線を照射するタイミングを制御し、距離センサ18は、時刻に応じて、距離情報を取得する。
 また、図1に示すように、前面カバー130に孔部7が設けられているが、前面カバー130の反対側150にはカバーがなく、撮影技師は、前面カバー130の反対側150から回転フレーム11の中央の撮影領域に容易にアクセスできる。
 本発明は、上記の実施形態の機能を実現するソフトウェア(プログラム)をネットワーク又は各種記憶媒体を介してシステム又は装置に供給し、システム又は装置のコンピュータ(CPUやMPUなど)がプログラムを読み出すことにより実行されてもよい。また、本発明は、システム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能であり、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 この出願は2016年12月19日に出願された日本国特許出願第2016-245666からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。

Claims (19)

  1.  放射線を発生させる放射線発生手段及び前記放射線を検出する放射線検出手段の少なくとも1つを回転させる回転手段と、
     前記回転手段を回転可能に保持する固定手段と、
     前記回転手段の回転方向に対するラジアル方向及びスラスト方向において、前記回転手段と前記固定手段との距離情報を取得する距離センサと
     を備えることを特徴とする放射線撮影装置。
  2.  前記距離情報に応じて、前記固定手段に対する前記回転手段のずれを補正し、被写体の放射線画像を再構成する制御手段を備えることを特徴とする請求項1に記載の放射線撮影装置。
  3.  前記回転手段の回転角度に応じて、前記距離センサが前記距離情報を取得するタイミングを制御する制御手段を備える請求項1又は2に記載の放射線撮影装置。
  4.  前記制御手段は、
     前記回転手段の第1の回転により取得された第1の放射線画像における前記放射線の第1の光線式を算出し、
     前記回転手段の前記回転角度に応じて、前記第1の回転により取得された第1の距離情報を前記第1の光線式に関連付ける光線距離情報を生成することを特徴とする請求項2又は3に記載の放射線撮影装置。
  5.  前記制御手段は、前記回転手段の第1の回転により取得された第1の距離情報及び前記回転手段の第2の回転により取得された第2の距離情報に基づいて、前記回転手段の前記第1の回転により取得された第1の放射線画像における前記放射線の第1の光線式から、前記回転手段の前記第2の回転により取得された第2の放射線画像における第2の光線式を算出することを特徴とする請求項2乃至4の何れか1項に記載の放射線撮影装置。
  6.  前記制御手段は、アライメント用ファントムの周りで前記回転手段を回転させることにより、前記第1の距離情報及び前記第1の光線式を取得することを特徴とする請求項5に記載の放射線撮影装置。
  7.  制御手段は、前記第1の距離情報と前記第2の距離情報との差に基づいて、前記第1の光線式から、前記第2の光線式を算出することを特徴とする請求項5に記載の放射線撮影装置。
  8.  制御手段は、前記回転手段の回転角度、前記第1の距離情報、及び前記第2の距離情報の関数に基づいて、前記第1の光線式から、前記第2の光線式を算出することを特徴とする請求項5に記載の放射線撮影装置。
  9.  前記制御手段は、前記回転手段の回転角度及び前記回転手段の複数の回転により取得された複数の距離情報の関数に基づいて、前記回転手段の前記複数の回転により取得された複数の放射線画像における前記放射線の光線式の平均から、被写体の放射線画像における光線式を算出することを特徴とする請求項2乃至4の何れか1項に記載の放射線撮影装置。
  10.  前記制御手段は、アライメント用ファントムの周りで前記回転手段を複数回転させることにより、前記複数の距離情報及び前記放射線の光線式を取得することを特徴とする請求項9に記載の放射線撮影装置。
  11.  前記距離センサは、前記回転手段に設置され、前記回転手段とともに回転することを特徴とする請求項1乃至10の何れか1項に記載の放射線撮影装置。
  12.  前記回転手段の回転側面は、前記固定手段の側面に沿って回転し、
     前記距離センサは、
     前記回転側面に設置され、
     前記ラジアル方向及び前記スラスト方向の前記固定手段の側面までの距離を計測することを特徴とする請求項1乃至11の何れか1項に記載の放射線撮影装置。
  13.  前記回転手段の回転側面は、前記固定手段の側面に沿って回転し、
     前記距離センサは、
     前記固定手段に設置され、
     前記ラジアル方向及び前記スラスト方向の前記回転側面までの距離を計測することを特徴とする請求項1乃至11の何れか1項に記載の放射線撮影装置。
  14.  前記制御手段は、
     前記回転手段の回転角度に応じて、前記放射線発生手段が前記放射線を照射するタイミングを制御し、
     前記放射線を照射するタイミングを規定するパルス信号の立ち上がり、立ち下がり、及び前記立ち上がり及び前記立ち下がりの中央の3つのタイミングの少なくとも1つで、前記距離センサが前記距離情報を取得するタイミングを制御することを特徴とする請求項2乃至13の何れか1項に記載の放射線撮影装置。
  15.  前記制御手段は、前記制御手段と前記距離センサとの時刻を一致させ、前記時刻に応じて、前記放射線発生手段が前記放射線を照射するタイミングを制御し、
     前記距離センサは、前記時刻に応じて、前記距離情報を取得することを特徴とする請求項13に記載の放射線撮影装置。
  16.  前記制御手段は、前記第2の光線式に基づいて再構成された放射線画像から、ゲイン補正用の放射線画像を生成することを特徴とする請求項5に記載の放射線撮影装置。
  17.  放射線を発生させる放射線発生手段と、
     前記放射線を検出する放射線検出手段と
     前記放射線発生手段及び前記放射線検出手段の少なくとも1つを回転させる回転手段と、
     前記回転手段を回転可能に保持する固定手段と、
     前記回転手段の回転方向に対するラジアル方向及びスラスト方向において、前記回転手段と前記固定手段との距離情報を取得する距離センサと、
     を備えることを特徴とする放射線撮影システム。
  18.  放射線を発生させる放射線発生手段及び前記放射線を検出する放射線検出手段の少なくとも1つを含む回転手段を回転させる工程と、
     前記回転手段の回転方向に対するラジアル方向及びスラスト方向において、前記回転手段を回転可能に保持する固定手段と前記回転手段との距離情報を取得する工程と、
     を備えることを特徴とする放射線撮影方法。
  19.  コンピュータを請求項1乃至16の何れか1項に記載の放射線撮影装置の各手段として機能させるためのプログラム。
PCT/JP2017/044182 2016-12-19 2017-12-08 放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム WO2018116870A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016245666A JP2018099175A (ja) 2016-12-19 2016-12-19 放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム
JP2016-245666 2016-12-19

Publications (1)

Publication Number Publication Date
WO2018116870A1 true WO2018116870A1 (ja) 2018-06-28

Family

ID=62626391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044182 WO2018116870A1 (ja) 2016-12-19 2017-12-08 放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム

Country Status (2)

Country Link
JP (1) JP2018099175A (ja)
WO (1) WO2018116870A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7305476B2 (ja) * 2019-07-26 2023-07-10 シャープ株式会社 ドライヤー
JP2022150461A (ja) 2021-03-26 2022-10-07 株式会社リガク 公差誤差推定装置、方法、プログラム、再構成装置および制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716220A (ja) * 1993-01-27 1995-01-20 Ge Medical Syst Sa X線画像形成装置の幾何学的較正を行うための装置と、それを自動的に行う方法
JP2002315745A (ja) * 2001-02-20 2002-10-29 Siemens Ag コンピュータトモグラフ
JP2007000606A (ja) * 2005-06-23 2007-01-11 Ge Medical Systems Global Technology Co Llc X線ct装置
JP2012024175A (ja) * 2010-07-21 2012-02-09 Toshiba Corp X線コンピュータ断層撮影装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716220A (ja) * 1993-01-27 1995-01-20 Ge Medical Syst Sa X線画像形成装置の幾何学的較正を行うための装置と、それを自動的に行う方法
JP2002315745A (ja) * 2001-02-20 2002-10-29 Siemens Ag コンピュータトモグラフ
JP2007000606A (ja) * 2005-06-23 2007-01-11 Ge Medical Systems Global Technology Co Llc X線ct装置
JP2012024175A (ja) * 2010-07-21 2012-02-09 Toshiba Corp X線コンピュータ断層撮影装置

Also Published As

Publication number Publication date
JP2018099175A (ja) 2018-06-28

Similar Documents

Publication Publication Date Title
US10492755B2 (en) Calibration phantom comprising a reflectance calibration target and a plurality of radio-opaque markers
JP6636923B2 (ja) X線画像装置
JP4904048B2 (ja) イメージング・システムの取得時幾何学的構成のための方法及び装置
JP6388587B2 (ja) 微分位相コントラストイメージングにおけるミスアライメントの対処
JP7229705B2 (ja) X線スキャンジオメトリを決定する方法およびx線画像を取得する方法
BR112012002128B1 (pt) sistema de formação de imagem de raios-x dental extra-oral multi-funcional de sensor individual
JP5702236B2 (ja) X線撮影装置およびそのキャリブレーション方法
EP2633817B1 (en) Image processing device of a computer tomography system
JP7082492B2 (ja) 計測用x線ct装置、及び、その干渉防止方法
US9606072B2 (en) Radiation inspecting apparatus
JP2016182518A (ja) コンピューター断層撮像を制御するための方法及びシステム
JP5060862B2 (ja) 断層撮影装置
WO2018116870A1 (ja) 放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム
WO2019077552A2 (en) CALIBRATION AND QUALITY CONTROL OF A RADIO IMAGING SYSTEM OF NUCLEAR MEDICINE (N-M)
JP2005058309A (ja) コーンビームx線ct装置及びそれに用いるファントム
JPH10234724A (ja) X線ct装置
JP2007139613A (ja) 放射線画像撮像条件の補正装置及び放射線画像撮像条件の補正方法
JP5702240B2 (ja) X線撮影装置およびそのキャリブレーション方法
EP3072448B1 (en) Device and method for generating dental three-dimensional surface image
TWI657802B (zh) 自定位牙齒電腦斷層掃描方法及裝置
KR101794996B1 (ko) 치과용 바이트 블록, 치과용 엑스선 촬영 장치 및 이들의 제어 방법
US10531845B2 (en) Systems and methods for image correction in an X-ray device
EP3370618B1 (en) Dynamic image data treatment in dental imaging devices
JP2010169636A (ja) 形状測定装置
ES2646687B1 (es) Equipo y método de generación de tomografías

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882882

Country of ref document: EP

Kind code of ref document: A1