WO2018116363A1 - ラマンプローブおよびラマンスペクトル測定装置 - Google Patents

ラマンプローブおよびラマンスペクトル測定装置 Download PDF

Info

Publication number
WO2018116363A1
WO2018116363A1 PCT/JP2016/087850 JP2016087850W WO2018116363A1 WO 2018116363 A1 WO2018116363 A1 WO 2018116363A1 JP 2016087850 W JP2016087850 W JP 2016087850W WO 2018116363 A1 WO2018116363 A1 WO 2018116363A1
Authority
WO
WIPO (PCT)
Prior art keywords
raman
fiber
illumination fiber
light
spectrum
Prior art date
Application number
PCT/JP2016/087850
Other languages
English (en)
French (fr)
Inventor
佐藤 亮
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2016/087850 priority Critical patent/WO2018116363A1/ja
Priority to JP2018557257A priority patent/JPWO2018116363A1/ja
Publication of WO2018116363A1 publication Critical patent/WO2018116363A1/ja
Priority to US16/429,537 priority patent/US10670530B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides

Definitions

  • the present invention relates to a Raman probe and a Raman spectrum measuring apparatus.
  • an optical fiber has been used for laser light irradiation and light reception of Raman scattered light.
  • the component materials such as silica that make up the optical fiber also generate Raman scattered light by the laser light that guides the optical fiber. Therefore, the Raman spectrum of the optical fiber includes noise in the observed spectrum acquired using the optical fiber.
  • the observation spectrum includes background light signals derived from light other than the Raman scattered light to be observed, such as Rayleigh scattered light and autofluorescence, as noise. Therefore, methods for reducing noise included in the observed spectrum have been proposed (see, for example, Patent Documents 1 and 2 and Non-Patent Document 1).
  • an optical filter that cuts the Raman scattered light generated by the optical fiber and transmits only the laser light is provided at the tip of the irradiation optical fiber.
  • a Raman probe provided with an optical filter that transmits Raman scattered light from a tissue and cuts off reflected light of a laser beam is disclosed. According to such a configuration, the Raman spectrum of the observation target having a high signal-to-noise ratio from which the Raman spectrum of the optical fiber has been removed can be acquired.
  • Non-Patent Document 1 discloses that a background light signal included in an observation spectrum is obtained by fitting a spectrum waveform of the background light included in the observation spectrum with a third-order to seventh-order higher-order polynomial and subtracting the fitting waveform from the observation spectrum. A method of removing is disclosed.
  • Patent Documents 1 and 2 it is necessary to arrange a small optical filter at the tip of a thin probe having a diameter of about 2 mm.
  • the background derived from Rayleigh scattered light, autofluorescence, etc. which is significantly smaller in the wavelength dependency of the intensity than the observation target such as biological tissue or Raman scattering of the optical fiber, is broad.
  • the optical signal can be removed, it is difficult to remove the Raman spectrum of the optical fiber.
  • in order to remove the Raman spectrum of the optical fiber from the observed spectrum by signal processing in addition to the optimization of the subtraction coefficient for subtracting the spectrum of the background light signal described in Non-Patent Document 1 from the observed spectrum.
  • the present invention has been made in view of the above-described circumstances, and includes a Raman probe capable of acquiring a Raman spectrum of an observation target having a high signal-to-noise ratio with a small amount of calculation while having a simple configuration.
  • An object is to provide a Raman spectrum measuring apparatus.
  • One aspect of the present invention is a Raman probe that guides laser light from a laser light source and emits the laser light toward an observation target and receives Raman scattered light of the observation target excited by the laser light,
  • a first illumination fiber that guides the laser light incident from a laser light source, and is arranged in series with the first illumination fiber, and guides the light emitted from the first illumination fiber including the laser light.
  • a second illumination fiber that emits light and emits toward the observation target; a coupling optical system that optically couples the first illumination fiber and the second illumination fiber; the first illumination fiber; Among the light emitted between the second illumination fibers and emitted from the first illumination fiber, light having a wavelength equal to or less than a predetermined wavelength including the laser light is transmitted, and from the predetermined wavelength
  • An optical filter that blocks light having a long wavelength; and a condensing fiber that collects light from the observation object including Raman scattered light of the observation object, wherein the first illumination fiber and the second illumination fiber include
  • the second illumination fiber and the condensing fiber are made of the same material, and the optical filter is configured to emit Raman scattered light from the first illumination fiber excited by the laser light. Among them, a Raman probe that transmits Raman scattered light whose Raman shift amount is smaller than a predetermined Raman shift amount of the Raman spectrum to be observed.
  • the laser light incident on the first illumination fiber is incident on the second illumination fiber via the coupling optical system, is irradiated on the observation target from the second illumination fiber, and is excited by the laser light.
  • the Raman scattered light to be observed is collected by the collecting fiber. Therefore, by observing the light collected by the collecting fiber, an observation spectrum including the Raman spectrum to be observed can be obtained.
  • the observation spectrum includes the first and second illumination fibers and the collected light.
  • the Raman spectrum of the optical fiber is also included.
  • Raman scattered light of the first illumination fiber Raman scattered light having a Raman shift amount smaller than a predetermined Raman shift amount of the Raman spectrum to be observed is selected by the optical filter. Therefore, the intensity of the Raman band derived from the first illumination fiber appears in the Raman shift region different from the Raman band derived from the observation target in the observation spectrum of the light collected by the collecting fiber.
  • the intensity of the Raman band derived from the first illumination fiber the known Raman spectrum derived from the first and second illumination fibers and the collecting fiber can be reduced from the observed spectrum based on a simple algorithm.
  • the Raman spectrum of the observation target having a high signal-to-noise ratio can be acquired.
  • the optical filter transmits Raman scattered light having a Raman shift amount of 700 cm ⁇ 1 or less in the Raman scattered light of the first illumination fiber, and the Raman shift amount is 800 cm ⁇ 1 or more. Raman scattered light may be blocked. By doing so, the Raman scattered light of the first illumination fiber that has passed through the optical filter appears in the Raman shift region of 700 cm ⁇ 1 or less in the observation spectrum.
  • the Raman band derived from biological tissue It is possible to prevent the Raman band derived from the first illumination fiber from being superimposed. Thereby, it can be set as the suitable structure for acquisition of the Raman spectrum of a biological tissue.
  • the material of the first illumination fiber may be fluorinated plastic, acrylic resin, or single crystal sapphire
  • the material of the second illumination fiber and the condensing fiber may be silica.
  • the cost can be reduced by adopting a general silica optical fiber as the second illumination fiber and the condensing fiber arranged close to the observation target at the time of use.
  • the Raman probe according to any one of the above, a laser light source that supplies the laser light to the first illumination fiber, and light collected by the condensing fiber are detected, A detection unit that acquires observation spectrum data including a Raman spectrum to be observed, and a reflected light of light emitted from the second illumination fiber is collected by the collection fiber and detected by the detection unit. A storage unit for storing the reflection spectrum of the Raman probe; and the reflection spectrum from the observation spectrum so that the intensity of the band of the Raman scattered light of the first illumination fiber transmitted through the optical filter is equal to or less than a predetermined threshold value. It is a Raman spectrum measuring apparatus provided with the calculating part which subtracts a spectrum.
  • 1 is an overall configuration diagram of a Raman probe and a Raman spectrum measuring apparatus according to an embodiment of the present invention. It is a figure which shows typically the spectrum of the light inject
  • the Raman spectrum measuring apparatus 100 spectroscopically analyzes the laser light source 2, the Raman probe 1 that irradiates the observation target S with laser light and receives light from the observation target S, and the light received by the Raman probe 1.
  • a spectroscope (detector) 3 a coupling optical system 4 disposed between the Raman probe 1 and the spectroscope 3, and light for detecting observation spectrum light and acquiring observation spectrum data
  • a detector (detector) 5 is provided.
  • the laser light source 2 is, for example, a semiconductor laser light source that outputs near-infrared laser light.
  • the Raman probe 1 includes a first illumination fiber 61 and a second illumination fiber 62 arranged in series in order from the proximal end side, a condensing fiber 7 arranged in parallel with the illumination fibers 61 and 62, and a first The coupling optical system 8 and the optical filter 9 are provided between the illumination fiber 61 and the second illumination fiber 62.
  • the proximal end of the first illumination fiber 61 is connected to the laser light source 2, and the distal end of the first illumination fiber 61 is optically coupled to the proximal end of the second illumination fiber 62 via the coupling optical system 8. Yes.
  • the second illumination fiber 62 and the collection fiber 7 are bundled together at the distal end side, and the distal end portion of the second illumination fiber 62 and the distal end portion of the collection fiber 7 are placed in the probe head 1a at the distal end portion of the Raman probe 1. Is housed.
  • the second illumination fiber 62 and the condensing fiber 7 are branched from each other at an intermediate position in the longitudinal direction, and the base end of the condensing fiber 7 is optically coupled to the spectroscope 3 via the coupling optical system 4.
  • the laser light incident on the first illumination fiber 61 from the laser light source 2 is guided through the first illumination fiber 61, the coupling optical system 8, and the second illumination fiber 62, and directed from the probe head 1a toward the observation target S. It comes to be injected. Further, the Raman scattered light excited in the observation object S by the laser light irradiation is collected by the condensing fiber 7, guided through the condensing fiber 7 and the coupling optical system 4, and incident on the spectroscope 3. It has become.
  • the first illumination fiber 61 and the second illumination fiber 62 are made of different materials, and the second illumination fiber 62 and the collecting fiber 7 are made of the same material.
  • the material of the first illumination fiber 61 is selected according to the composition of the observation object S. Specifically, at least a part of the Raman scattered light of the first illumination fiber 61 excited by the laser light is based on a predetermined Raman shift amount in the Raman scattered light of the observation target S excited by the laser light L.
  • the material of the first illumination fiber 61 is selected so as to have a small Raman shift amount.
  • the predetermined Raman shift amount is set as follows. That is, many Raman bands derived from proteins such as collagen in biological tissues and biological components such as carbohydrates, lipids, and nucleic acids are present from 800 cm ⁇ 1 to 1800 cm ⁇ 1. A lower limit value of 800 cm ⁇ 1 Raman shift value is set. Therefore, as the material of the first illumination fiber 61, a material that generates Raman scattering with a Raman shift amount smaller than 800 cm ⁇ 1 in which the Raman band of the biological tissue component can be seen is selected. Such a material is fluorinated plastic (fully fluorinated plastic), acrylic resin (polymethyl methacrylate resin: PMMA), or single crystal sapphire.
  • the material of the second illumination fiber 62 and the collection fiber 7 is preferably a material whose Raman spectrum does not overlap with the Raman spectrum of the first illumination fiber 61.
  • the material of the second illumination fiber 62 and the condensing fiber 7 is preferably silica having a low hydroxyl group content.
  • the coupling optical system 8 includes a lens 8 a that converts light emitted as a divergent light beam from the tip of the first illumination fiber 61 into a parallel light beam, and the parallel light beam formed by the lens 8 a is based on the second illumination fiber 62.
  • This is a collimating optical system composed of a combination with a lens 8b that collects light at the end.
  • the optical filter 9 is a dielectric multilayer filter that selectively transmits light having a wavelength equal to or shorter than a predetermined wavelength.
  • the optical filter 9 is preferably disposed between the lenses 8a and 8b in which the light emitted from the first illumination fiber 61 becomes a parallel light flux.
  • the detachable part 10 is provided between the second illumination fiber 62 and the coupling optical system 8 and between the condensing fiber 7 and the coupling optical system 4.
  • the second illumination fiber 62 and the collecting fiber 7 can be exchanged by attaching / detaching the attaching / detaching portion 10.
  • the attachment / detachment unit 10 has an FC connector or an SMA connector, and can be attached / detached by an FC connector or an SMA connector provided on the end surfaces of the second illumination fiber 62 and the collection fiber 7.
  • the first illumination fiber 61 made of a special material such as a fluorinated plastic, an acrylic resin, or single crystal sapphire is not replaced, and is made of a relatively inexpensive material.
  • the second illumination fiber 62 and the collecting fiber 7 can be exchanged.
  • the light emitted from the tip of the first illumination fiber 61 is excited by the laser light L incident from the laser light source 2 and the laser light L guided through the first illumination fiber 61, as shown in FIG. And the Raman scattered light R1 of the constituent material of the first illumination fiber 61.
  • the monochromatic laser light L is narrow-band light
  • the Raman scattered light R1 is broadband light.
  • the optical filter 9 is a short-wavelength transmission filter having spectral transmittance characteristics as shown in FIG. 3, and blocks the Raman scattered light having a Raman shift amount of 800 cm ⁇ 1 or more out of the Raman scattered light R1, thereby preventing the Raman shift.
  • the Raman scattered light having an amount of 700 cm ⁇ 1 or less is transmitted, and the laser light L is transmitted.
  • the optical filter 9 has a part of the Raman scattering on the short wavelength side of which the Raman shift amount is 700 cm ⁇ 1 or less among the laser light L and the Raman scattered light R1 generated on the longer wavelength side than the laser light L.
  • the light R1 ′ is selectively transmitted. Therefore, as shown in FIG. 4, part of the Raman scattered light R ⁇ b> 1 ′ also enters the second illumination fiber 62 together with the laser light L.
  • Raman scattered light R2 of the constituent material of the second illumination fiber 62 excited by the laser light L guided through the second illumination fiber 62 is included.
  • Part of the laser light L irradiated to the observation target S from the second illumination fiber 62 is reflected or diffusely reflected on the surface of the observation target S, and the other part propagates through the observation target S for observation.
  • part of the Raman scattered lights R1 ′ and R2 of the first and second illumination fibers 62 emitted from the second illumination fiber 62 are also reflected on the observation object S.
  • the condensing fiber 7 condenses these lights L, Robj, R1 ', and R2.
  • FIG. 7, FIG. 8 and FIG. 9 show the position P1 (the emission position of the first illumination fiber 61), P2 (incident position of the second illumination fiber 62), and P3 (second illumination fiber) in FIG. 62 shows the light spectrum at P4 (the emission position of the condensing fiber 7).
  • the spectra of FIGS. 6, 7, 8 and 9 show the first illuminating fiber 61 as a fully fluorinated optical fiber made of fluorinated plastic that does not contain a CH bond (for example, FONTEX fiber manufactured by Asahi Glass Co., Ltd.).
  • the second illumination fiber 62 and the collecting fiber 7 are obtained by using a silica optical fiber having a low hydroxyl group (OH group) content, and the wavelength emitted from the laser light source 2 Raman shift values for the wavelength of the laser beam 785nm indicates a 650 cm -1 or more 1750 cm -1 or less.
  • This Raman shift range corresponds to a region indicated by a hatched portion in the spectrum of Raman scattered light R1 of the constituent material of the first illumination fiber 61 schematically shown in FIG.
  • the spectrum of the light emitted from the first illumination fiber 61 is as shown in FIG. 6, and a Raman band derived from a fluorinated plastic appears.
  • the Raman shift in the peak value of the Raman band described as FP in FIG. 6 is 692 cm ⁇ 1
  • this Raman band FP is derived from the carbon-fluorine (CF) bond of the fluorinated plastic.
  • the optical filter 9 transmits light having a Raman shift value of 700 cm ⁇ 1 or less and blocks light having a Raman shift value of 800 cm ⁇ 1 or more. Therefore, as shown in FIG.
  • the spectrum of the light incident on the second illumination fiber 62 includes the Raman band FP derived from the fluorinated plastic, and the Raman shift is within the Raman band derived from the fluorinated plastic. Does not include the Raman band of 800 cm -1 or more.
  • the spectrum of the light emitted from the second illumination fiber 62 includes a Raman band FP derived from a CF bond of fluorinated plastic that has passed through the optical filter 9, and the second illumination fiber.
  • Silica-derived Raman band Si which is a constituent material of 62, is included.
  • FIG. 9 shows the spectrum of light emitted from the proximal end of the collection fiber 7 when the observation target is a living tissue (connective tissue), and the configuration of the observation target S in addition to the Raman spectrum of the fiber constituent material.
  • a Raman band Obj derived from a biomolecule such as collagen as a component is further added.
  • the spectrum of the light incident on the spectroscope 3 is a superposition of the fluoroplastic, silica, and the Raman spectrum to be observed. Further, in addition to the Raman spectrum, a background light signal derived from background light such as Rayleigh scattered light of the laser light L or autofluorescence of the observation target S is added, so the spectrum of light incident on the spectroscope 3 is shown in FIG. As shown in the spectrum, it has a baseline that gradually increases in intensity toward the short wavelength side where the Raman shift is small.
  • the coupling optical system 4 is a collimating optical system composed of a pair of lenses 4 a and 4 b, for example, like the coupling optical system 8, and collects light emitted from the proximal end of the collecting fiber 7 to enter the spectroscope 3. An image is formed at the position of the slit. An optical filter 15 that blocks the reflected light of the laser light L and transmits the other light is disposed between the lenses 4a and 4b.
  • the spectroscope 3 spatially separates the light incident from the condensing fiber 7 via the coupling optical system 4 for each wavelength, and re-images the obtained spectrum on the light receiving surface of the photodetector 5.
  • the photodetector 5 is a camera including an imaging device in which photoelectric conversion elements such as CCD elements are two-dimensionally arranged, and is attached to the spectroscope 3.
  • the photodetector 5 obtains observation spectrum data by converting light incident on the light receiving surface from the spectroscope 3 into an electric signal by a photoelectric conversion element.
  • the observation spectrum acquired at this time includes the Raman spectrum of the observation object S and the first illumination fiber 61, the second illumination fiber 62, and the collection fiber 7, which are superimposed on each other, as well as the Rayleigh scattering and the self-spectrum. And a spectrum of background light such as fluorescence.
  • the Raman spectrum measuring apparatus 100 further includes a control unit 11, a storage unit 12, a calculation unit 13, and a display unit 14.
  • the control unit 11 controls the irradiation intensity and irradiation timing of the laser light on the observation target S by controlling the output intensity and output timing of the laser light from the laser light source 2.
  • the control unit 11 controls the center wavelength of the spectroscope 3 and the light detection conditions (for example, exposure time and gain) by the photodetector 5.
  • the storage unit 12 stores reflection spectrum data of the Raman probe 1.
  • Reflection spectrum data is obtained by irradiating light emitted from the probe head 1a onto an object such as a low-Raman scatterer that generates only Raman scattering that is sufficiently smaller than the Raman scattering of a metal plate or biological tissue, and reflected from the object.
  • the light is collected by the collecting fiber 7, and the collected light is dispersed by the spectroscope 3 and detected by the photodetector 5, and is obtained by the first illumination fiber 61 and the second illumination fiber 61. Only the Raman spectrum data of the illumination fiber 62 and the condensing fiber 7 are included.
  • the reflection spectrum data may be stored in the storage unit 12 in advance, or may be acquired before the observation spectrum is acquired and stored in the storage unit 12.
  • FIG. 10 shows the reflection spectrum Ref ( ⁇ ) of the Raman probe 1.
  • the reflection spectrum Ref ( ⁇ ) in FIG. 10 uses a fluorinated plastic optical fiber as the first illumination fiber 61, and the second illumination fiber 62 and the condensing fiber, as in the spectra in FIGS. 7 as has been obtained using the silica optical fiber, the Raman shift value for the wavelength of the laser light indicates a range of 650 cm -1 or more 1750 cm -1 or less.
  • the storage unit 12 also stores observation spectrum data acquired by the photodetector 5.
  • the calculation unit 13 calculates the Raman spectrum of the observation target S using the observation spectrum data and the reflection spectrum data of the Raman probe 1 stored in the storage unit 12. Specifically, the calculation unit 13 calculates the difference spectrum Sub ( ⁇ ) by subtracting the reflection spectrum Ref ( ⁇ ) from the observed spectrum Obj ( ⁇ ) based on the following equation (1).
  • A is a coefficient.
  • Sub ( ⁇ ) Obj ( ⁇ ) ⁇ A ⁇ Ref ( ⁇ ) (1)
  • FIG. 11 shows the difference spectrum Sub ( ⁇ ) calculated using the observed spectrum Obj ( ⁇ ) in FIG. 9 and the reflection spectrum Ref ( ⁇ ) in FIG.
  • the intensity of the Raman band FP derived from the fluorinated plastic (C—F bond) changes according to the values of the coefficient A of 0.5, 0.67, and 0.75.
  • the calculation unit 13 calculates the intensity of the Raman band derived from the first illumination fiber 61 in the difference spectrum Sub ( ⁇ ) (for example, the Raman band FP derived from CF bond having a Raman shift of 692 cm ⁇ 1 ). Calculate and compare the calculated intensity with a predetermined threshold.
  • the intensity of the Raman band calculated here may be either the peak maximum value or the band area intensity.
  • the calculation unit 13 changes the value of the coefficient A and calculates the difference spectrum Sub ( ⁇ ) again.
  • the calculation unit 13 repeats the change of the value of the coefficient A and the calculation of the difference spectrum Sub ( ⁇ ) until the intensity of the Raman band FP becomes a predetermined threshold value or less.
  • the predetermined threshold is set to a value equivalent to the intensity of the observed spectrum Obj ( ⁇ ) in the vicinity of the periphery of the Raman band FP.
  • the intensity of the Raman band FP is an area intensity
  • the intensity of the Raman band FP of the observed spectrum Obj ( ⁇ ) is FPint (Obj ( ⁇ ))
  • the intensity of the Raman band FP of the difference spectrum Sub ( ⁇ ) is FPint (Sub As ( ⁇ ))
  • FPint (Sub ( ⁇ )) where FPint (Sub ( ⁇ )) / FPint (Obj ( ⁇ )) is sufficiently smaller than 1 is set as a predetermined threshold value.
  • a difference spectrum Sub ( ⁇ ) is finally obtained so that the intensity of the Raman band FP derived from the first illumination fiber 61 is equivalent to the intensity of the background light. That is, the difference spectrum Sub ( ⁇ ) from which the Raman spectrum of the first illumination fiber 61 has been removed is obtained.
  • the Raman spectra of the second illumination fiber 62 and the collection fiber 7 are also removed at the same time.
  • the calculation unit 13 When the intensity of the Raman band FP is equal to or less than the predetermined threshold, the calculation unit 13 then fits the baseline of the difference spectrum Sub ( ⁇ ) by a polynomial using the least square method, as shown by the dotted waveform in FIG. Thus, the polynomial fitting waveform Fit ( ⁇ ) is calculated.
  • the calculation of Fit ( ⁇ ) is described in, for example, Non-Patent Document 1 ("Automated method for subtraction of fluorescence from biological Raman spectra.”, Applied Spectroscopy, Vol. 57, Issue 11, pp.1363-1367). The method is used.
  • the polynomial fitted to the difference spectrum Sub ( ⁇ ) is executed by the least square method, and the fitted polynomial is set to f ( ⁇ ).
  • Sub ( ⁇ ) the intensity comparison between Sub ( ⁇ ) and f ( ⁇ ) is performed for each wavelength channel. Then, by selecting Sub ( ⁇ ) or f ( ⁇ ) having a smaller intensity, a new waveform Subnew ( ⁇ ) is created. What is necessary is just to repeat the operation
  • the polynomial fitting waveform Fit ( ⁇ ) calculated in this way approximately represents the background light signal in the difference spectrum Sub ( ⁇ ).
  • the calculation unit 13 subtracts the polynomial fitting waveform Fit ( ⁇ ) from the difference spectrum Sub ( ⁇ ), thereby obtaining the observation spectrum Obj ( ⁇ ) shown in FIG. 9 like the Raman spectrum shown in FIG. It is possible to obtain the Raman spectrum of the observation target S from which the Raman spectra of the first illumination fiber 61, the second illumination fiber 62, and the collection fiber 7, and the background light signal due to Rayleigh scattered light or autofluorescence are removed.
  • the Raman band group Obj described in the Raman spectrum shown in FIG. 14 is the main Raman band of the biological tissue (connective tissue) that is the observation target S.
  • Raman bands of collagen polypeptide backbone having a peak near 815 cm -1, 850 cm -1 Raman band of collagen proline having a peak in the vicinity of the Raman bands are proline of collagen having a peak near 920cm -1, 1005cm Raman bands of proteins phenylalanine having a peak in the vicinity of -1, 1240 cm -1 and 1260 cm -1
  • Raman band having a peak in the vicinity of the collagen polypeptide backbone Raman bands methyl group of proteins having a peak near 1450 cm -1
  • a Raman band having a methylene group and a peak near 1650 cm ⁇ 1 is a Raman band of a collagen polypeptide skeleton.
  • the Raman probe 1 and the Raman spectrum measuring apparatus 100 configured as described above will be described.
  • laser light is output from the laser light source 2
  • the laser light guided through the first illumination fiber 61 and the second illumination fiber 62 is irradiated to the observation object S, and Raman scattered light is excited in the observation object S.
  • the Raman scattered light of the observation object S is collected by the condensing fiber 7, dispersed in the spectroscope 3, and detected by the photodetector 5.
  • the laser light guides the first illumination fiber 61, so that the Raman scattered light of the first illumination fiber 61 is added to the laser light. Then, of the Raman scattered light of the first illumination fiber 61, the Raman scattered light having a Raman shift value of 800 cm ⁇ 1 or more is removed by the optical filter 9, and a part of the Raman scattered light of the first illumination fiber 61 is removed. The light enters the second illumination fiber 62.
  • the Raman scattered light of the second illumination fiber 62 is further added to the laser light.
  • the observation target S is irradiated with the Raman scattered light of the illumination fibers 61 and 62 together with the laser light, and the Raman scattered light of the illumination fibers 61 and 62 together with the Raman scattered light of the observation target S is also collected by the collecting fiber 7. Collected by.
  • the reflected light of the laser light guides the condensing fiber 7 to the light incident on the spectroscope 3 from the condensing fiber 7, so that the Raman scattered light of the condensing fiber 7 is further added.
  • an observation spectrum in which the Raman spectrum of the fibers 61, 62, and 7 is superimposed on the Raman spectrum of the observation object S is acquired by the photodetector 5.
  • the acquired observation spectrum is stored in the storage unit 12 and then subjected to calculation processing in the calculation unit 13.
  • the calculation unit 13 reads the reflection spectrum Ref ( ⁇ ) and the observation spectrum Obj ( ⁇ ) from the storage unit 12 (steps S1 and S2), and sets the coefficient A (step S3).
  • the difference spectrum Sub ( ⁇ ) is calculated by subtracting the reflection spectrum Ref ( ⁇ ) obtained by multiplying the observed spectrum Obj ( ⁇ ) by the coefficient A (step S4).
  • the coefficient A is changed (step S6) and the difference spectrum Sub ( ⁇ ) Is repeated (step S4).
  • steps S3 to S6 a differential spectrum Sub ( ⁇ ) obtained by removing the Raman spectra of the first illumination fiber 61, the second illumination fiber 62, and the condensing fiber 7 from the observed spectrum Obj ( ⁇ ) is obtained.
  • step S7 the polynomial fitting waveform Fit ( ⁇ ) of the difference spectrum Sub ( ⁇ ) is calculated (step S7), and the polynomial fitting waveform Fit ( ⁇ ) is subtracted from the difference spectrum Sub ( ⁇ ) (step S8).
  • step S7 and S8 the background light signal is removed from the difference spectrum Sub ( ⁇ ), and the Raman spectrum of the observation object S is obtained.
  • the intensity of the Raman band derived from the first illumination fiber 61 that appears in the Raman shift region different from the Raman band derived from the observation target S is obtained.
  • the Raman spectra of the optical fibers 61, 62, and 7 are accurately removed from the observed spectrum with a small amount of calculation.
  • the background light signal is removed by subtracting the polynomial fitting waveform Fit ( ⁇ ) from the obtained difference spectrum Sub ( ⁇ ).
  • the optical filter 9 is disposed between the first illumination fiber 61 and the second illumination fiber 62, the optical filter 9 is different from the case where the optical filter is provided at the tip of the second illumination fiber 62. There is no need for downsizing and the structure is not complicated.
  • the reason why the Raman spectrum derived from the constituent materials of all the optical fibers 61, 62, and 7 can be simultaneously removed from the observed spectrum based on the intensity of the Raman band of the first illumination fiber 61 is as follows. Explained.
  • the length of the first illumination fiber 61 is defined as L 1
  • the Raman scattering cross section of the unit length of the material of the first illumination fiber 61 is defined as ⁇ 1.
  • the intensity of Raman scattered light generated in the first illumination fiber 61 is expressed as L 1 ⁇ 1 I.
  • the length of the second illumination fiber 62 is L 2
  • the Raman scattering cross section of the unit length of the material of the second illumination fiber 62 is ⁇ 2
  • the first illumination fiber 61 and the second illumination fiber 62 are Is defined as ⁇
  • the intensity of the Raman scattered light generated in the second illumination fiber 62 is expressed as ⁇ L 2 ⁇ 2 I. Therefore, the power of the light emitted from the probe head 1a to the observation object S is expressed as I + L 1 ⁇ 1 I + ⁇ L 2 ⁇ 2 I.
  • the reflectance of light on the surface of the observation target S is ⁇
  • the length of the condensing fiber 7 is L 3
  • the light recovery efficiency by the condensing fiber 7 is ⁇
  • the intensity of Raman scattered light from the observation target S is S.
  • the signal intensity (reflection spectrum) of the reflected light obtained by reflecting the light emitted from the probe head 1a with the reflecting plate having the reflectance ⁇ ′ and dispersing and detecting the reflected light is expressed by the following formula (2 ′ ).
  • the Raman band of the living tissue appears on the longer wavelength side than 700 cm ⁇ 1 , and 700 cm ⁇ . There are few Raman bands on the shorter wavelength side than 1, and the intensity is weak.
  • the Raman band FP of the CF bond of fluorinated plastic has a Raman shift of 692 cm ⁇ 1. Do not overlap.
  • the Raman band of C-COO bond of polymethyl methacrylate has a Raman shift located at 602 cm ⁇ 1, and the Raman band of biological tissue. And do not overlap.
  • the Raman band of sapphire has a Raman shift located at 646 cm ⁇ 1 and does not overlap with the Raman band of biological tissue.
  • a Raman band at 692cm -1 of fluoroplastic, Raman band of 602cm -1 of PMMA or of a single crystal sapphire 646Cm -1 Referring to the Raman band, determining the coefficient A such that the intensity of the Raman band becomes a noise level means determining the coefficient A that satisfies ⁇ A ⁇ ′ ⁇ 0 in the equation (2). Under this condition, the terms ⁇ L2 ⁇ 2I and ⁇ L3 ⁇ 2I in the equation (3) are also erased at the same time.
  • the Raman spectrum of the first illumination fiber 61 but also the silica spectrum of the second illumination fiber 62 made of silica and the condensing fiber 7 can be removed, and only the Raman scattered light Sin of the observation object S can be obtained. it can.
  • the Raman band from the silica fiber structure material as illustrated with the Si band 8, and 860 cm -1 from 780 cm -1, and 1100 cm -1 from of 1020 cm -1, br 1250 cm -1 from 1,120 cm -1 It appears as a romantic band. Therefore, the Raman bands derived from living tissue appear in the same Raman shift region as the silica Raman band and overlap each other. For example, the Raman bands of collagen in the connective tissue, 815cm -1, 855cm -1, 880cm -1, 920cm -1, 940cm -1, 1100cm from 1000 cm -1 -1, a peak from 1230 cm -1 to 1300 cm -1 Therefore, it overlaps with the Raman band of silica.
  • the Raman scattered light Sin of the living tissue and the equation (2) Is the sum of the first term, the second term, and the third term, and ⁇ L1 ⁇ 1I + ⁇ L2 ⁇ 2I + ⁇ L3 ⁇ 2I are superimposed on each other depending on the Raman shift. It becomes difficult. As described above, it is not always easy to accurately remove the Raman spectra of the illumination fibers 61 and 62 and the condensing fiber 7 based on the Raman band intensity of silica, and an optimization algorithm or the like is required to obtain sufficient accuracy. It takes execution time.
  • the Raman spectra of all the optical fibers 61, 62, and 7 are obtained by referring to the Raman band derived from the first illumination fiber 61 that does not overlap the Raman band derived from the living tissue.
  • the Raman spectrum of the observation object S can be calculated with a simple algorithm with high accuracy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

ラマンプローブ(1)は、直列に配列され互いに異なる材質からなる第1の照明ファイバ(61)および第2の照明ファイバ(62)と、第1および第2の照明ファイバ(61,62)を光学的に結合する結合光学系(8)と、第2の照明ファイバ(62)と同一の材質からなり観察対象からのラマン散乱光を集める集光ファイバ(7)と、第1および第2の照明ファイバ(61,62)の間に配置され、第1の照明ファイバ(61)を導光するレーザ光と、該レーザ光によって励起される第1の照明ファイバ(61)のラマン散乱光の内、ラマンシフト量が観察対象のラマンスペクトルの所定のラマンシフト量よりも小さいラマン散乱光とを選択的に透過させる光学フィルタ(9)とを備える。

Description

ラマンプローブおよびラマンスペクトル測定装置
 本発明は、ラマンプローブおよびラマンスペクトル測定装置に関するものである。
 従来、生体組織のような観察対象のラマンスペクトルの測定において、レーザ光の照射用およびラマン散乱光の受光用に光ファイバが使用されている。光ファイバを構成するシリカ等の構成材も、光ファイバを導光するレーザ光によってラマン散乱光を発生させるため、光ファイバを使用して取得された観測スペクトルには、光ファイバのラマンスペクトルも雑音として含まれる。さらに、観測スペクトルには、レイリー散乱光や自家蛍光等の、観察対象のラマン散乱光以外の光に由来する背景光信号が雑音として含まれる。そこで、観測スペクトルに含まれる雑音を低減する方法が提案されている(例えば、特許文献1および2、ならびに非特許文献1参照。)。
 特許文献1,2には、照射用の光ファイバの先端に、光ファイバが発生するラマン散乱光をカットし、レーザ光のみを透過させる光学フィルタを設け、受光用の光ファイバの先端に、生体組織のラマン散乱光を透過させ、レーザ光の反射光をカットする光学フィルタを設けたラマンプローブが開示されている。このような構成によれば、光ファイバのラマンスペクトルが除去された、信号雑音比の高い観察対象のラマンスペクトルを取得することができる。
 非特許文献1には、観測スペクトルに含まれる背景光のスペクトル波形を3次から7次の高次多項式でフィッティングし、フィッティング波形を観測スペクトルから引き算することによって、観測スペクトルに含まれる背景光信号を除去する方法が開示されている。
米国特許第7647092号明細書 米国特許第7184142号明細書
Chad A. Lieber、外1名、"Automated method for subtraction of fluorescence from biological Raman spectra."、Applied Spectroscopy、2003年11月、Vol. 57、Issue 11、pp.1363-1367
 しかしながら、特許文献1,2においては、直径2mm程度の細径のプローブの先端に小型の光学フィルタを配置する必要があり、構造が複雑になるとともにコストが高くなるという問題がある。
 非特許文献1の方法によれば、生体組織のような観察対象や光ファイバのラマン散乱に比して強度の波長依存性が大幅に小さくブロードな、レイリー散乱光や自家蛍光等に由来する背景光信号の除去は可能であるが、光ファイバのラマンスペクトルを除去することは困難である。さらに、光ファイバのラマンスペクトルを観測スペクトルから信号処理で除去するためには、非特許文献1に記載される背景光信号のスペクトルを観測スペクトルから引算するための引算係数の最適化に加えて、光ファイバのラマンスペクトルについても、観測スペクトルから引算するための引算係数の最適化計算を繰り返して実行する必要がある。そのため、計算量が多くなり、リアルタイム測定には不向きである。また、高速で処理するためには、計算能力の高い特別な計算機が必要となるという問題がある。
 本発明は、上述した事情に鑑みてなされたものであって、簡易な構成でありながら、少ない計算量で信号雑音比の高い観察対象のラマンスペクトルの取得を可能とするラマンプローブおよびこれを備えるラマンスペクトル測定装置を提供することを目的とする。
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明の一態様は、レーザ光源からのレーザ光を導光して観察対象に向けて射出するとともに前記レーザ光によって励起された前記観察対象のラマン散乱光を受光するラマンプローブであって、前記レーザ光源から入射された前記レーザ光を導光する第1の照明ファイバと、該第1の照明ファイバと直列に配列され、前記レーザ光を含む前記第1の照明ファイバから射出された光を導光し前記観察対象に向けて射出する第2の照明ファイバと、前記第1の照明ファイバと前記第2の照明ファイバとを光学的に結合する結合光学系と、前記第1の照明ファイバと前記第2の照明ファイバとの間に配置され、前記第1の照明ファイバから射出された光のうち、前記レーザ光を含む所定の波長以下の波長を有する光を透過させ、前記所定の波長よりも長い波長を有する光を遮断する光学フィルタと、前記観察対象のラマン散乱光を含む前記観察対象からの光を集める集光ファイバとを備え、前記第1の照明ファイバおよび前記第2の照明ファイバが、互いに異なる材質からなり、前記第2の照明ファイバおよび前記集光ファイバが、互いに同一の材質からなり、前記光学フィルタは、前記レーザ光によって励起される前記第1の照明ファイバのラマン散乱光の内、そのラマンシフト量が、前記観察対象のラマンスペクトルの所定のラマンシフト量よりも小さいラマン散乱光を透過させるラマンプローブである。
 本態様によれば、第1の照明ファイバに入射したレーザ光は、結合光学系を介して第2の照明ファイバに入射し、該第2の照明ファイバから観察対象に照射され、レーザ光によって励起された観察対象のラマン散乱光が集光ファイバによって集められる。したがって、集光ファイバによって集められた光を分光することによって、観察対象のラマンスペクトルを含む観測スペクトルが得られる。このときに、各ファイバを導光するレーザ光によって第1および第2の照明ファイバならびに集光ファイバのラマン散乱光が励起されるので、観測スペクトルには、第1および第2の照明ファイバならびに集光ファイバのラマンスペクトルも含まれる。
 この場合に、第1の照明ファイバのラマン散乱光の内、観察対象のラマンスペクトルの所定のラマンシフト量よりも小さいラマンシフト量を有するラマン散乱光が、光学フィルタによって選択される。したがって、集光ファイバによって集められた光の観測スペクトルにおいて、観察対象由来のラマンバンドとは異なるラマンシフト領域に、第1の照明ファイバ由来のラマンバンドの強度が現れる。この第1の照明ファイバ由来のラマンバンドの強度を参照することによって、第1および第2の照明ファイバならびに集光ファイバ由来の既知のラマンスペクトルを、観測スペクトルから簡便なアルゴリズムに基づいて少ない計算量で精度良く除去することができ、信号雑音比の高い観察対象のラマンスペクトルを取得することができる。
 上記態様においては、前記光学フィルタは、前記第1の照明ファイバのラマン散乱光の内、ラマンシフト量が700cm-1以下であるラマン散乱光を透過させ、ラマンシフト量が800cm-1以上であるラマン散乱光を遮断してもよい。
 このようにすることで、光学フィルタを透過した第1の照明ファイバのラマン散乱光は、観測スペクトルにおいて700cm-1以下のラマンシフト領域に現れる。生体組織のラマンスペクトルにおいて、タンパク質のアミノ酸側鎖や主鎖、脂質および核酸に由来するラマンバンドの多くは800cm-1よりも大きいラマンシフト量を有するので、観測スペクトルにおいて、生体組織由来のラマンバンドに第1の照明ファイバ由来のラマンバンドが重畳することが防止される。これにより、生体組織のラマンスペクトルの取得に好適な構成とすることができる。
 上記態様においては、前記第1の照明ファイバの材質が、フッ化プラスチック、アクリル樹脂、または単結晶サファイアであり、前記第2の照明ファイバおよび前記集光ファイバの材質が、シリカであってもよい。
 フッ化プラスチック、アクリル樹脂(ポリメタクリル酸メチル基:PMMA)、および単結晶サファイアのラマンスペクトルと、シリカのラマンスペクトルとの間には、互いにラマンバンドが重畳しないラマンシフト領域が存在する。したがって、フッ化プラスチック、PMMAまたは単結晶サファイアのラマン散乱光を参照することで、各ファイバのラマンスペクトルを精度良く除去し、観察対象のラマンスペクトルを精度良く算出することができる。また、使用時に観察対象に近接して配置される第2の照明ファイバおよび集光ファイバとして一般的なシリカ製の光ファイバを採用することで、低コスト化することができる。
 本発明の他の態様は、上記いずれかに記載のラマンプローブと、前記第1の照明ファイバに前記レーザ光を供給するレーザ光源と、前記集光ファイバによって集められた光を検出して、前記観察対象のラマンスペクトルを含む観測スペクトルのデータを取得する検出部と、前記第2の照明ファイバから射出された光の反射光を前記集光ファイバによって集めて前記検出部によって検出することによって取得された前記ラマンプローブの反射スペクトルを記憶する記憶部と、前記光学フィルタを透過した前記第1の照明ファイバのラマン散乱光のバンドの強度が所定の閾値以下となるように、前記観測スペクトルから前記反射スペクトルを引き算する演算部とを備えるラマンスペクトル測定装置である。
 本発明によれば、簡易な構成でありながら、少ない計算量で信号雑音比の高い観察対象のラマンスペクトルを取得することができるという効果を奏する。
本発明の一実施形態に係るラマンプローブおよびラマンスペクトル測定装置の全体構成図である。 第1の照明ファイバから射出される光のスペクトルを模式的に示す図である。 光学フィルタの分光透過特性を模式的に示す図である。 第2の照明ファイバに入射する光のスペクトルを模式的に示す図である。 第2の照明ファイバから射出される光のスペクトルを模式的に示す図である。 第1の照明ファイバがフッ化プラスチックを構成材とする光ファイバのときに、第1の照明ファイバから射出される光のスペクトルの一例を示す図である。 第1の照明ファイバがフッ化プラスチックを構成材とする光ファイバのときに、第2の照明ファイバに入射する光のスペクトルの一例を示す図である。 第1の照明ファイバがフッ化プラスチックを構成材とする光ファイバのときに、第2の照明ファイバから射出される光のスペクトルの一例を示す図である。 第1の照明ファイバがフッ化プラスチックを構成材とする光ファイバのときに、集光ファイバから射出され光検出器によって検出される観測スペクトルの一例を示す図である。 第1の照明ファイバがフッ化プラスチックを構成材とする光ファイバのときに、ラマンプローブのラマン散乱光の反射スペクトルの一例を示す図である。 第1の照明ファイバがフッ化プラスチックを構成材とする光ファイバのときに、観測スペクトルから反射スペクトルを引き算して得られた差分スペクトルの一例を示す図である。 第1の照明ファイバがフッ化プラスチックを構成材とする光ファイバのときに、図11に示される係数A=0.5であるときの差分スペクトルを拡大した図である。 差分スペクトル(実線)の多項式フィッティング波形(点線)を示す図である。 観察対象が生体組織(結合組織)であるときに、差分スペクトルから多項式フィッティング波形を引き算して得られた観察対象のラマンスペクトルを示す図である。 図1のラマンスペクトル測定装置による観測スペクトルの解析方法を説明するフローチャートである。
 以下に、本発明の一実施形態に係るラマンプローブ1およびこれを備えるラマンスペクトル測定装置100について図面を参照して説明する。
 本実施形態に係るラマンスペクトル測定装置100は、レーザ光源2と、観察対象Sにレーザ光を照射し観察対象Sからの光を受光するラマンプローブ1と、ラマンプローブ1によって受光された光を分光する分光器(検出部)3と、ラマンプローブ1と分光器3との間に配置された結合光学系4と、分光器3によって分光された光を検出して観測スペクトルのデータを取得する光検出器(検出部)5とを備えている。
 レーザ光源2は、例えば、近赤外のレーザ光を出力する半導体レーザ光源である。
 ラマンプローブ1は、基端側から順に直列に配列された第1の照明ファイバ61および第2の照明ファイバ62と、該照明ファイバ61,62と並列に配置された集光ファイバ7と、第1の照明ファイバ61と第2の照明ファイバ62との間に配置された結合光学系8および光学フィルタ9とを備えている。
 第1の照明ファイバ61の基端はレーザ光源2に接続され、第1の照明ファイバ61の先端は、結合光学系8を介して第2の照明ファイバ62の基端に光学的に結合されている。第2の照明ファイバ62および集光ファイバ7は先端側において1本に束ねられ、ラマンプローブ1の先端部のプローブヘッド1a内に第2の照明ファイバ62の先端部および集光ファイバ7の先端部が収容されている。第2の照明ファイバ62および集光ファイバ7は、長手方向の途中位置において互いに分岐し、集光ファイバ7の基端は結合光学系4を介して分光器3と光学的に結合されている。
 レーザ光源2から第1の照明ファイバ61に入射したレーザ光は、第1の照明ファイバ61、結合光学系8および第2の照明ファイバ62を導光し、プローブヘッド1aから観察対象Sに向けて射出されるようになっている。また、レーザ光の照射によって観察対象Sにおいて励起されたラマン散乱光は、集光ファイバ7によって集められ、該集光ファイバ7および結合光学系4を導光し、分光器3に入射するようになっている。
 第1の照明ファイバ61と第2の照明ファイバ62は、互いに異なる材質から形成され、第2の照明ファイバ62と集光ファイバ7は、互いに同一の材質から形成されている。第1の照明ファイバ61の材質は、観察対象Sの組成に応じて選択される。具体的には、レーザ光によって励起される第1の照明ファイバ61のラマン散乱光の内の少なくとも一部が、レーザ光Lによって励起される観察対象Sのラマン散乱光における所定のラマンシフト量よりも小さいラマンシフト量を有するように、第1の照明ファイバ61の材質が選択される。
 観察対象Sが生体組織である場合には、上記所定のラマンシフト量は次のように設定される。すなわち、生体組織中のコラーゲンなどのタンパク質や、糖質、脂質および核酸などの生体成分に由来するラマンバンドは、800cm-1から1800cm-1に多く存在するので、所定のラマンシフト量としてはその下限値である800cm-1のラマンシフト値を設定する。したがって、第1の照明ファイバ61の材質としては、上記生体組織の成分のラマンバンドが見られる800cm-1よりも小さいラマンシフト量のラマン散乱を発生する材質が選択される。このような材質は、フッ化プラスチック(全フッ素プラスチック)、アクリル樹脂(ポリメタクリル酸メチル樹脂:PMMA)、または単結晶サファイアである。
 第2の照明ファイバ62および集光ファイバ7の材質は、そのラマンスペクトルが第1の照明ファイバ61のラマンスペクトルと重畳しない材質が好ましい。このような第2の照明ファイバ62と集光ファイバ7の材質は、水酸基含有量が少ないシリカであることが好ましい。
 結合光学系8は、第1の照明ファイバ61の先端から発散光束として射出される光を平行光束に変換するレンズ8aと、該レンズ8aによって形成された平行光束を第2の照明ファイバ62の基端に集光させるレンズ8bとの組み合わせからなるコリメート光学系である。
 光学フィルタ9は、所定の波長以下の波長を有する光を選択的に透過させる誘電体多層膜フィルタである。光学フィルタ9は、好ましくは、第1の照明ファイバ61から射出される光が平行光束となるレンズ8a,8bの間に配置される。
 第2の照明ファイバ62と結合光学系8との間、および、集光ファイバ7と結合光学系4との間には、着脱部10がそれぞれ設けられている。着脱部10の着脱によって第2の照明ファイバ62および集光ファイバ7は交換可能になっている。着脱部10はFCコネクタまたはSMAコネクタを有しており、第2の照明ファイバ62および集光ファイバ7の端面に設けられたFCコネクタまたはSMAコネクタにより着脱できる。このようにすることで、ラマンプローブ1において、フッ化プラスチックやアクリル樹脂、あるいは単結晶サファイア等の特殊な材質で構成される第1の照明ファイバ61は非交換とし、比較的安価な材質で構成される第2の照明ファイバ62および集光ファイバ7を交換可能にできる。
 ここで、ラマンプローブ1の光路の各位置における光の成分について説明する。
 第1の照明ファイバ61の先端から射出された光には、図2に示されるように、レーザ光源2から入射したレーザ光Lと、第1の照明ファイバ61を導光するレーザ光Lによって励起された、第1の照明ファイバ61の構成材のラマン散乱光R1とが含まれる。単色のレーザ光Lは狭帯域の光であり、ラマン散乱光R1は広帯域の光である。
 光学フィルタ9は、図3に示されるような分光透過率特性を有する短波長透過フィルタであり、ラマン散乱光R1のうち、ラマンシフト量が800cm-1以上のラマン散乱光を遮光し、ラマンシフト量が700cm-1以下のラマン散乱光を透過させると共に、レーザ光Lを透過させるようになっている。このように光学フィルタ9は、レーザ光Lと、該レーザ光Lよりも長波長側に発生するラマン散乱光R1の内、ラマンシフト量が700cm-1以下の短波長側の一部のラマン散乱光R1’とを選択的に透過させる。したがって、図4に示されるように、一部のラマン散乱光R1’も、レーザ光Lと一緒に第2の照明ファイバ62に入射する。
 第2の照明ファイバ62の先端から観察対象Sに向けて射出される光には、図5に示されるように、第2の照明ファイバ62の基端に入射した光L,R1’に加えて、第2の照明ファイバ62を導光するレーザ光Lによって励起された、第2の照明ファイバ62の構成材のラマン散乱光R2が含まれる。
 第2の照明ファイバ62から観察対象Sに照射されたレーザ光Lのうち、一部は、観察対象Sの表面において反射または拡散反射され、他の一部は、観察対象Sを伝播して観察対象Sの構成成分のラマン散乱光Robjを励起する。さらに、第2の照明ファイバ62から射出された第1および第2の照明ファイバ62のラマン散乱光R1’,R2の一部も、観察対象Sにおいて反射される。集光ファイバ7は、これらの光L,Robj,R1’,R2を集光する。集光ファイバ7の基端から射出され分光器3に入射する光には、集光ファイバ7を導光するレーザ光Lの反射光によって励起された集光ファイバ7の構成材のラマン散乱光がさらに含まれる。
 図6、図7、図8および図9は、図1の位置P1(第1の照明ファイバ61の射出位置)、P2(第2の照明ファイバ62の入射位置)、P3(第2の照明ファイバ62の射出位置)およびP4(集光ファイバ7の射出位置)における光のスペクトルをそれぞれ示している。ここで、図6、図7、図8および図9のスペクトルは、第1の照明ファイバ61としてCH結合を含有しない全フッ素化型のフッ化プラスチック製光ファイバ(例えば、旭硝子社製FONTEXファイバ)を使用し、第2の照明ファイバ62および集光ファイバ7として、水酸基(OH基)含有割合の低いシリカ製光ファイバを使用して取得されたものであって、レーザ光源2から射出される波長785nmのレーザ光の波長に対するラマンシフト値が650cm-1以上1750cm-1以下の範囲を示している。このラマンシフト範囲は、図2において模式的に示す、第1の照明ファイバ61の構成材のラマン散乱光R1のスペクトルにおいて、斜線部で示す領域に相当する。
 第1の照明ファイバ61から射出された光のスペクトルは、図6に示されるようになっており、フッ化プラスチック由来のラマンバンドが現れる。この内、図6においてFPと記載するラマンバンドのピーク値におけるラマンシフトは692cm-1であるが、このラマンバンドFPはフッ化プラスチックの炭素-フッ素(C-F)結合に由来するものである。光学フィルタ9は、図3に示されるように、ラマンシフト値が700cm-1以下である光を透過させ、ラマンシフトが800cm-1以上である光を遮断するようになっている。したがって、第2の照明ファイバ62に入射する光のスペクトルは、図7に示されるように、フッ化プラスチック由来のラマンバンドFPを含み、かつ、フッ化プラスチック由来のラマンバンドの内、ラマンシフトが800cm-1以上のラマンバンドは含まない。
 第2の照明ファイバ62から射出される光のスペクトルには、図8に示されるように、光学フィルタ9を透過したフッ化プラスチックのC-F結合由来のラマンバンドFPと、第2の照明ファイバ62の構成材であるシリカ由来のラマンバンドSiが含まれている。図9は、観察対象が生体組織(結合組織)である場合に、集光ファイバ7の基端から射出される光のスペクトルであって、ファイバ構成材のラマンスペクトルの他に観察対象Sの構成成分であるコラーゲンなど生体分子に由来するラマンバンドObjがさらに加わる。このように、分光器3に入射する光のスペクトルは、フッ化プラスチック、シリカおよび観察対象のラマンスペクトルが重畳されたものとなる。また、ラマンスペクトルの他に、レーザ光Lのレイリー散乱光や観察対象Sの自家蛍光等の背景光に由来する背景光信号も加わるため、分光器3に入射する光のスペクトルは、図9のスペクトルに示されるように、ラマンシフトの小さい短波長側に向かって緩やかに強度上昇するベースラインを有する。
 結合光学系4は、例えば、結合光学系8と同様に、一対のレンズ4a,4bからなるコリメート光学系であり、集光ファイバ7の基端から射出された光を集めて分光器3の入口スリットの位置に結像する。レンズ4a,4bの間には、レーザ光Lの反射光を遮断し、その他を光を透過させる光学フィルタ15が配置されている。
 分光器3は、結合光学系4を介して集光ファイバ7から入射した光を波長毎に空間的に分離し、得られたスペクトルを光検出器5の受光面上に再結像する。
 光検出器5は、例えば、CCD素子のような光電変換素子が2次元的に配列する撮像素子を備えるカメラであり、分光器3に取り付けられている。光検出器5は、分光器3から受光面に入射した光を光電変換素子によって電気信号へ変換して観測スペクトルのデータを取得する。このときに取得される観測スペクトルは、前述したように、互いに重畳された観察対象Sおよび第1の照明ファイバ61、第2の照明ファイバ62、集光ファイバ7のラマンスペクトルと、レイリー散乱や自家蛍光等の背景光のスペクトルとを含む。
 ラマンスペクトル測定装置100は、図1に示されるように、制御部11、記憶部12、演算部13および表示部14をさらに備えている。
 制御部11は、レーザ光源2からのレーザ光の出力強度および出力タイミングを制御することによって、観察対象Sへのレーザ光の照射強度および照射タイミングを制御する。また、制御部11は、分光器3の中心波長、光検出器5による光の検出条件(例えば、露光時間およびゲイン)を制御する。
 記憶部12は、ラマンプローブ1の反射スペクトルのデータを記憶している。反射スペクトルのデータは、プローブヘッド1aから射出された光を金属板や生体組織のラマン散乱に比して十分小さいラマン散乱のみを発生する低ラマン散乱体などの物体へ照射し、物体からの反射光を集光ファイバ7によって集光し、集光された光を分光器3によって分光して光検出器5で検出することによって取得されたものであって、第1の照明ファイバ61、第2の照明ファイバ62および集光ファイバ7のラマンスペクトルのデータのみを含む。反射スペクトルのデータは、予め記憶部12に記憶されていてもよく、観測スペクトルの取得の前に取得して記憶部12に記憶されてもよい。
 図10は、ラマンプローブ1の反射スペクトルRef(λ)を示している。図10の反射スペクトルRef(λ)は、図6から図9のスペクトルと同様に、第1の照明ファイバ61としてフッ化プラスチック製の光ファイバを使用し、第2の照明ファイバ62および集光ファイバ7としてシリカ製の光ファイバを使用して取得されたものであり、レーザ光の波長に対するラマンシフト値が650cm-1以上1750cm-1以下の範囲を示している。また、記憶部12は、光検出器5によって取得された観測スペクトルのデータを記憶する。
 演算部13は、記憶部12に記憶されている観測スペクトルのデータおよびラマンプローブ1の反射スペクトルのデータを使用して、観察対象Sのラマンスペクトルを算出する。
 具体的には、演算部13は、下式(1)に基づいて観測スペクトルObj(λ)から反射スペクトルRef(λ)を引き算して差分スペクトルSub(λ)を算出する。式(1)において、Aは係数である。
 Sub(λ)=Obj(λ)-A×Ref(λ)  ・・・(1)
 図11は、図9の観測スペクトルObj(λ)および図10の反射スペクトルRef(λ)を用いて算出された差分スペクトルSub(λ)を示している。図11に示されるように、係数Aの値0.5,0.67,0.75に応じて、フッ化プラスチック(C-F結合)由来のラマンバンドFPの強度が変化する。図12は、A=0.5であるときの差分スペクトルSub(λ)、図13はA=0.67であるときの差分スペクトルSub(λ)をそれぞれ示している。
 次に、演算部13は、差分スペクトルSub(λ)内の第1の照明ファイバ61由来のラマンバンド(例えば、ラマンシフトが692cm-1であるC-F結合由来のラマンバンドFP)の強度を算出し、算出された強度を所定の閾値と比較する。ここで算出するラマンバンドの強度は、ピーク最大値あるいはバンド面積強度のいずれであってもよい。
 ラマンバンドFPの強度が所定の閾値よりも大きい場合、演算部13は、係数Aの値を変更し、差分スペクトルSub(λ)を再び計算する。演算部13は、ラマンバンドFPの強度が所定の閾値以下になるまで、係数Aの値の変更および差分スペクトルSub(λ)の計算を繰り返す。ラマンバンドFPの強度がピーク値である場合、所定の閾値は、ラマンバンドFPの周辺近傍における観測スペクトルObj(λ)の強度と同等の値に設定される。ラマンバンドFPの強度が面積強度である場合、観測スペクトルObj(λ)のラマンバンドFPの強度をFPint(Obj(λ))とし、差分スペクトルSub(λ)のラマンバンドFPの強度をFPint(Sub(λ))として、FPint(Sub(λ))/FPint(Obj(λ))が1よりも十分小さくなるFPint(Sub(λ))が所定の閾値として設定される。このように上記計算を繰り返した結果、第1の照明ファイバ61由来のラマンバンドFPの強度が、背景光の強度と同等のレベルとなるような差分スペクトルSub(λ)が最終的に得られる。すなわち、第1の照明ファイバ61のラマンスペクトルが除去された差分スペクトルSub(λ)が得られる。このときに、第2の照明ファイバ62および集光ファイバ7のラマンスペクトルも同時に除去されることになる。
 ラマンバンドFPの強度が所定の閾値以下である場合、演算部13は次に、図13の点線波形で示されるように、差分スペクトルSub(λ)のベースラインを多項式で最小二乗法によりフィッティングすることで多項式フィッティング波形Fit(λ)を算出する。Fit(λ)の算出には、例えば、非特許文献1(“Automated method for subtraction of fluorescence from biological Raman spectra.”、Applied Spectroscopy、Vol. 57、Issue 11、pp.1363-1367)に記載される方法が用いられる。差分スペクトルSub(λ)への多項式フィッティングを最小二乗法により実行してフィッティングされた多項式をf(λ)とし、さらにSub(λ)とf(λ)との強度比較を波長チャンネル毎に実施して、より強度の小さいSub(λ)またはf(λ)を選択することで、新規に波形Subnew(λ)を作成する。このSubnew(λ)へ最小二乗法による多項式フィッティングを再度施す作業を反復すれば良い。このようにして算出された多項式フィッティング波形Fit(λ)は、近似的に差分スペクトルSub(λ)における背景光信号を表している。
 次に、演算部13は、差分スペクトルSub(λ)から多項式フィッティング波形Fit(λ)を引き算することによって、図14に示すラマンスペクトルのように、図9に示す観測スペクトルObj(λ)から、第1の照明ファイバ61、第2の照明ファイバ62および集光ファイバ7のラマンスペクトルと、レイリー散乱光や自家蛍光による背景光信号とが除去された観察対象Sのラマンスペクトルを得ることができる。
 図14に示すラマンスペクトルにおいて記されるラマンバンド群Objは、観察対象Sである生体組織(結合組織)の主たるラマンバンドである。例えば、815cm-1近傍にピークを有するラマンバンドはコラーゲンのポリペプチド骨格、850cm-1近傍にピークを有するラマンバンドはコラーゲンのプロリン、920cm-1近傍にピークを有するラマンバンドはコラーゲンのプロリン、1005cm-1近傍にピークを有するラマンバンドはタンパク質のフェニルアラニン、1240cm-1および1260cm-1近傍にピークを有するラマンバンドはコラーゲンのポリペプチド骨格、1450cm-1近傍にピークを有するラマンバンドはタンパク質のメチル基およびメチレン基、1650cm-1近傍にピークを有するラマンバンドはコラーゲンのポリペプチド骨格のラマンバンドである。このように、図14のラマンスペクトルにおいて、観察対象S以外の成分に由来する信号はほとんど除去されている。得られた観察対象Sのラマンスペクトルは、表示部14に表示される。
 次に、このように構成されたラマンプローブ1およびラマンスペクトル測定装置100の作用について説明する。
 レーザ光源2からレーザ光が出力されると、第1の照明ファイバ61および第2の照明ファイバ62を導光したレーザ光が観察対象Sに照射され、観察対象Sにおいてラマン散乱光が励起される。観察対象Sのラマン散乱光は、集光ファイバ7によって集められ、分光器3において分光され、光検出器5によって検出される。
 このときに、レーザ光が第1の照明ファイバ61を導光することによって、レーザ光に第1の照明ファイバ61のラマン散乱光が加わる。そして、第1の照明ファイバ61のラマン散乱光の内、800cm-1以上のラマンシフト値を有するラマン散乱光は光学フィルタ9によって除去され、第1の照明ファイバ61の一部のラマン散乱光が第2の照明ファイバ62に入射する。
 続いて、レーザ光が第2の照明ファイバ62を導光することによって、レーザ光には第2の照明ファイバ62のラマン散乱光がさらに加わる。したがって、観察対象Sには、レーザ光と一緒に照明ファイバ61,62のラマン散乱光も照射され、観察対象Sのラマン散乱光と一緒に照明ファイバ61,62のラマン散乱光も集光ファイバ7によって集められる。そして、集光ファイバ7から分光器3に入射する光には、レーザ光の反射光が集光ファイバ7を導光することによって、集光ファイバ7のラマン散乱光がさらに加わる。
 したがって、観察対象Sのラマンスペクトルに、ファイバ61,62,7のラマンスペクトルが重畳した観測スペクトルが光検出器5において取得される。取得された観測スペクトルは、記憶部12に記憶され、続いて演算部13において演算処理に供される。
 演算部13において、図15に示されるように、記憶部12から反射スペクトルRef(λ)および観測スペクトルObj(λ)が読み出され(ステップS1,S2)、係数Aが設定される(ステップS3)。次に、観測スペクトルObj(λ)から係数Aを乗じた反射スペクトルRef(λ)を引き算することによって、差分スペクトルSub(λ)が算出される(ステップS4)。そして、差分スペクトルSub(λ)に含まれる第1の照明ファイバ61由来のラマンバンドの強度が閾値以下になるまで(ステップS5のNO)、係数Aの変更(ステップS6)および差分スペクトルSub(λ)の算出(ステップS4)が繰り返される。ステップS3~S6によって、観測スペクトルObj(λ)から第1の照明ファイバ61、第2の照明ファイバ62、および集光ファイバ7のラマンスペクトルが除去された差分スペクトルSub(λ)が得られる。
 次に、差分スペクトルSub(λ)の多項式フィッティング波形Fit(λ)が算出され(ステップS7)、差分スペクトルSub(λ)から多項式フィッティング波形Fit(λ)が引き算される(ステップS8)。ステップS7,S8によって、差分スペクトルSub(λ)から背景光信号が除去され、観察対象Sのラマンスペクトルが得られる。
 このように、本実施形態によれば、観測スペクトルから反射スペクトルを引き算する際に、観察対象S由来のラマンバンドとは異なるラマンシフト領域に現れる第1の照明ファイバ61由来のラマンバンドの強度を参照することによって、光ファイバ61,62,7のラマンスペクトルが観測スペクトルから少ない計算量で精度良く除去される。さらに、得られた差分スペクトルSub(λ)から多項式フィッティング波形Fit(λ)を引き算することによって、背景光信号が除去される。これにより、演算部13として一般的な計算機を使用した場合であっても、観察対象Sの信号雑音比の高いラマンスペクトルを高速で取得することができるという利点がある。
 また、光学フィルタ9は第1の照明ファイバ61と第2の照明ファイバ62との間に配置されるので、第2の照明ファイバ62の先端に光学フィルタを設ける場合とは異なり、光学フィルタ9を小型化する必要がなく、構造が複雑化することがない。
 上述のように、第1の照明ファイバ61のラマンバンドの強度に基づいて、観測スペクトルから全ての光ファイバ61,62,7の構成材に由来するラマンスペクトルを同時に除去することができる理由を以下に説明する。
 レーザ光源2から出力されるレーザ光の強度をI、第1の照明ファイバ61の長さをL、第1の照明ファイバ61の材料の単位長さのラマン散乱断面積をσと定義すると、第1の照明ファイバ61で発生するラマン散乱光の強度はLσIと表される。また、第2の照明ファイバ62の長さをL、第2の照明ファイバ62の材料の単位長さのラマン散乱断面積をσ、第1の照明ファイバ61と第2の照明ファイバ62との結合効率をβと定義すると、第2の照明ファイバ62で発生するラマン散乱光の強度はβLσ2と表される。したがって、プローブヘッド1aから観察対象Sに照射される光のパワーは、I+LσI+βLσIと表される。
 また、観察対象Sの表面における光の反射率をα、集光ファイバ7の長さをL、集光ファイバ7による光の回収効率をγ、観察対象Sからのラマン散乱光の強度をSinと定義すると、光検出器5において検出される光の信号強度(観測スペクトル)は、下式(2)で表される。
 αγ(LσI+βLσI)+αγLσI+Sin
    =αγLσI+αβγLσI+αγLσI+Sin  ・・・(2)
 一方、プローブヘッド1aから射出される光を反射率α’の反射板で反射させ、反射光を分光および検出することによって取得された反射光の信号強度(反射スペクトル)は、下式(2’)で表される。
 α’γLσI+α’βγLσI+α’γLσI  ・・・(2’)
 式(1)に従って観測スペクトルから反射スペクトルを減算すると、下式(3)が得られる。
 αγLσI+αβγLσI+αγLσI+Sin
   -A×(α’γLσI+α’βγLσI+α’γLσI)
 =(α-Aα’)γLσI+(α-Aα’)βγLσ
   +(α-Aα’)γLσI+Sin  ・・・(3)
 ここで、観察対象Sが結合組織や弾性組織等の間質や細胞などで構成される生体組織である場合、生体組織のラマンバンドの多くは700cm-1よりも長波長側に現れ、700cm-1よりも短波長側のラマンバンドは少なく強度も弱い。ここで、第1の照明ファイバ61がフッ化プラスチックファイバである場合には、フッ化プラスチックのC-F結合のラマンバンドFPはラマンシフトが692cm-1に位置し、生体組織のラマンバンドとは重畳しない。また、第1の照明ファイバがポリメタクリル酸メチル(PMMA)製である場合には、ポリメタクリル酸メチルのC-COO結合のラマンバンドはラマンシフトが602cm-1に位置し、生体組織のラマンバンドとは重畳しない。またさらに、第1の照明ファイバが単結晶サファイアの場合には、サファイアのラマンバンドはラマンシフトが646cm-1に位置し、生体組織のラマンバンドとは重畳しない。
 ここでステップS3~S6の計算において、第1の照明ファイバ61のラマンバンドとして、フッ化プラスチックの692cm-1のラマンバンド、PMMAの602cm-1のラマンバンド、または単結晶サファイアの646cm-1のラマンバンドを参照して、当該ラマンバンドの強度がノイズレベルとなるような係数Aを決定するということは、式(2)においてα-Aα’≒0となる係数Aを決定することを意味し、またこの条件においては式(3)におけるβγL2σ2IおよびγL3σ2Iの項も同時に消去される。これにより、第1の照明ファイバ61のラマンスペクトルのみならず、シリカ製の第2の照明ファイバ62および集光ファイバ7のラマンスペクトルも除去され、観察対象Sのラマン散乱光Sinのみを得ることができる。
 ファイバ構成材のシリカ由来のラマンバンドは、図8においてSiバンドと図示されるように、780cm-1から860cm-1と、1020cm-1から1100cm-1と、1120cm-1から1250cm-1のブロードなラマンバンドとして現れる。したがって、生体組織由来のラマンバンドは、シリカのラマンバンドと同一のラマンシフト領域に現れて互いに重なり合う。例えば、結合組織中のコラーゲンのラマンバンドは、815cm-1、855cm-1、880cm-1、920cm-1、940cm-1、1000cm-1から1100cm-1、1230cm-1から1300cm-1にピークを有するために、シリカのラマンバンドと重畳することになる。
 このような場合、仮に第1の照明ファイバ61、第2の照明ファイバ62、および集光ファイバ7の全てがシリカ製の光ファイバであるとすると、生体組織のラマン散乱光Sinと、式(2)の第1項と第2項と第3項の和であるαγL1σ1I+αβγL2σ2I+αγL3σ2Iは、ラマンシフトによっては互いに重畳してしまうため、生体組織のラマン散乱光と各シリカファイバ由来のラマン散乱光との分離が困難となる。このように、シリカのラマンバンド強度に基づいて照明ファイバ61,62、および集光ファイバ7のラマンスペクトルを精度良く除去することは必ずしも容易でなく、十分な精度を得るためには最適化アルゴリズムなど実行時間を要する。
 これに対し、本実施形態によれば、生体組織由来のラマンバンドとは重ならない第1の照明ファイバ61由来のラマンバンドを参照することによって、全ての光ファイバ61,62,7のラマンスペクトルを同時に除去することができ、観察対象Sのラマンスペクトルを簡単なアルゴリズムによって精度良く算出することができる。
1 ラマンプローブ
2 レーザ光源
3 分光器(検出部)
5 光検出器(検出部)
61 第1の照明ファイバ
62 第2の照明ファイバ
7 集光ファイバ
8 結合光学系
9 光学フィルタ
12 記憶部
13 演算部
100 ラマンスペクトル測定装置
S 観察対象

Claims (6)

  1.  レーザ光源からのレーザ光を導光して観察対象に向けて射出するとともに前記レーザ光によって励起された前記観察対象のラマン散乱光を受光するラマンプローブであって、
     前記レーザ光源から入射された前記レーザ光を導光する第1の照明ファイバと、
     該第1の照明ファイバと直列に配列され、前記レーザ光を含む前記第1の照明ファイバから射出された光を導光し前記観察対象に向けて射出する第2の照明ファイバと、
     前記第1の照明ファイバと前記第2の照明ファイバとを光学的に結合する結合光学系と、
     前記第1の照明ファイバと前記第2の照明ファイバとの間に配置され、前記第1の照明ファイバから射出された光のうち、前記レーザ光を含む所定の波長以下の波長を有する光を透過させ、前記所定の波長よりも長い波長を有する光を遮断する光学フィルタと、
     前記観察対象のラマン散乱光を含む前記観察対象からの光を集める集光ファイバとを備え、
     前記第1の照明ファイバおよび前記第2の照明ファイバが、互いに異なる材質からなり、
     前記第2の照明ファイバおよび前記集光ファイバが、互いに同一の材質からなり、
     前記光学フィルタは、前記レーザ光によって励起される前記第1の照明ファイバのラマン散乱光の内、ラマンシフト量が前記観察対象のラマンスペクトルの所定のラマンシフト量よりも小さいラマン散乱光を透過させるラマンプローブ。
  2.  前記光学フィルタは、前記第1の照明ファイバのラマン散乱光の内、ラマンシフト量が700cm-1以下であるラマン散乱光を透過させ、ラマンシフト量が800cm-1以上であるラマン散乱光を遮断する請求項1に記載のラマンプローブ。
  3.  前記第1の照明ファイバの材質が、フッ化プラスチックであり、
     前記第2の照明ファイバおよび前記集光ファイバの材質が、シリカである請求項1または請求項2に記載のラマンプローブ。
  4.  前記第1の照明ファイバの材質が、アクリル樹脂であり、
     前記第2の照明ファイバおよび前記集光ファイバの材質が、シリカである請求項1または請求項2に記載のラマンプローブ。
  5.  前記第1の照明ファイバの材質が、単結晶サファイアであり、
     前記第2の照明ファイバおよび前記集光ファイバの材質が、シリカである請求項1または請求項2に記載のラマンプローブ。
  6.  請求項1から請求項5のいずれかに記載のラマンプローブと、
     前記第1の照明ファイバに前記レーザ光を供給するレーザ光源と、
     前記集光ファイバによって集められた光を検出して、前記観察対象のラマンスペクトルを含む観測スペクトルのデータを取得する検出部と、
     前記第2の照明ファイバから射出された光の反射光を前記集光ファイバによって集めて前記検出部によって検出することで取得された前記ラマンプローブの反射スペクトルを記憶する記憶部と、
     前記光学フィルタを透過した前記第1の照明ファイバのラマン散乱光のバンドの強度が所定の閾値以下となるように、前記観測スペクトルから前記反射スペクトルを引き算する演算部とを備えるラマンスペクトル測定装置。
PCT/JP2016/087850 2016-12-19 2016-12-19 ラマンプローブおよびラマンスペクトル測定装置 WO2018116363A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/087850 WO2018116363A1 (ja) 2016-12-19 2016-12-19 ラマンプローブおよびラマンスペクトル測定装置
JP2018557257A JPWO2018116363A1 (ja) 2016-12-19 2016-12-19 ラマンプローブおよびラマンスペクトル測定装置
US16/429,537 US10670530B2 (en) 2016-12-19 2019-06-03 Raman probe and Raman spectrum measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/087850 WO2018116363A1 (ja) 2016-12-19 2016-12-19 ラマンプローブおよびラマンスペクトル測定装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/429,537 Continuation US10670530B2 (en) 2016-12-19 2019-06-03 Raman probe and Raman spectrum measuring device

Publications (1)

Publication Number Publication Date
WO2018116363A1 true WO2018116363A1 (ja) 2018-06-28

Family

ID=62626073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087850 WO2018116363A1 (ja) 2016-12-19 2016-12-19 ラマンプローブおよびラマンスペクトル測定装置

Country Status (3)

Country Link
US (1) US10670530B2 (ja)
JP (1) JPWO2018116363A1 (ja)
WO (1) WO2018116363A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149760A1 (ja) * 2020-01-24 2021-07-29 パナソニックIpマネジメント株式会社 ラマン分光分析方法及びラマン分光分析支援装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10809199B2 (en) * 2018-08-07 2020-10-20 Synaptive Medical (Barbados) Inc. Dynamic raman signal acquisition system, method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040152992A1 (en) * 2003-01-21 2004-08-05 Haishan Zeng In vivo raman endoscopic probe and methods of use
JP2005522293A (ja) * 2002-04-05 2005-07-28 マサチユセツツ・インスチチユート・オブ・テクノロジイ 生物学的組織の分光法のための系および方法
JP2006508358A (ja) * 2002-12-02 2006-03-09 エラスムス・ウニベルジテート・ロッテルダム 組織を測定するための高波数ラマン分光法の使用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131145A (ja) 1998-10-23 2000-05-12 Jasco Corp 分光分析装置
US7647092B2 (en) 2002-04-05 2010-01-12 Massachusetts Institute Of Technology Systems and methods for spectroscopy of biological tissue
US20040073120A1 (en) 2002-04-05 2004-04-15 Massachusetts Institute Of Technology Systems and methods for spectroscopy of biological tissue
JP4041421B2 (ja) 2003-03-25 2008-01-30 独立行政法人理化学研究所 ラマンプローブ及びそれを用いたラマン散乱計測装置
GB0912851D0 (en) * 2009-07-23 2009-08-26 Fotech Solutions Ltd Distributed optical fibre sensing
US8702321B2 (en) * 2009-12-03 2014-04-22 Eric T. Marple Filtered fiber optic probe
US9599507B2 (en) 2013-02-05 2017-03-21 Rafal Pawluczyk Fiber optic probe for remote spectroscopy
ES2877351T3 (es) * 2013-08-07 2021-11-16 Univ Wayne State Instrumento de detección portátil basado en micro-raman y método de detección
US10874333B2 (en) * 2015-09-15 2020-12-29 Massachusetts Institute Of Technology Systems and methods for diagnosis of middle ear conditions and detection of analytes in the tympanic membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005522293A (ja) * 2002-04-05 2005-07-28 マサチユセツツ・インスチチユート・オブ・テクノロジイ 生物学的組織の分光法のための系および方法
JP2006508358A (ja) * 2002-12-02 2006-03-09 エラスムス・ウニベルジテート・ロッテルダム 組織を測定するための高波数ラマン分光法の使用
US20040152992A1 (en) * 2003-01-21 2004-08-05 Haishan Zeng In vivo raman endoscopic probe and methods of use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SANTOS L F ET AL.: "Fiber-Optic Probes for in Vivo Raman Spectroscopy in the High-Wavenumber Region", ANALYTICAL CHEMISTRY, vol. 77, no. 20, October 2005 (2005-10-01), pages 6747 - 6752, XP055496004 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149760A1 (ja) * 2020-01-24 2021-07-29 パナソニックIpマネジメント株式会社 ラマン分光分析方法及びラマン分光分析支援装置

Also Published As

Publication number Publication date
US20190285549A1 (en) 2019-09-19
US10670530B2 (en) 2020-06-02
JPWO2018116363A1 (ja) 2019-10-24

Similar Documents

Publication Publication Date Title
US10874304B2 (en) Semiconductor source based near infrared measurement device with improved signal-to-noise ratio
EP2934291B1 (en) Dental apparatus and method of utilizing the same
US9517015B2 (en) Dental apparatus and method of utilizing the same
US20090131802A1 (en) Contact sensor for fiberoptic raman probes
US20150148630A1 (en) Method and device for detecting fluorescence radiation
JP5476547B2 (ja) ラマン散乱測定装置
JP2004520583A (ja) サンプルを調査する装置及び方法
DK1567852T3 (da) Anvendelse til Raman-spektroskopi ved höje bölgetal til måling af væv
EP2896347B1 (en) Scattered light measurement device
WO2018116363A1 (ja) ラマンプローブおよびラマンスペクトル測定装置
US10010250B2 (en) Dental apparatus and method of utilizing the same
JP4647449B2 (ja) 試料分析装置
JP2002340796A (ja) 目的物の成分濃度測定装置及び方法
US11442014B2 (en) Spectroscopic analysis apparatus
JP2017153841A (ja) 歯垢検出装置及び歯ブラシ
JP2017143955A (ja) 歯垢検知装置
CA2962092C (en) System for the transcutaneous determination of the blood alcohol concentration
JP2004163131A (ja) レーザー光を用いた歯のう蝕の検出装置
KR101033516B1 (ko) 광계측 응용 구강암 조기 진단 시스템 및 그 방법
JP6048950B2 (ja) 濃度測定装置
JP2003102671A (ja) 自家蛍光検出装置
Brede et al. Fluorescence-based calculus detection using a 405-nm excitation wavelength

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924706

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018557257

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924706

Country of ref document: EP

Kind code of ref document: A1