WO2018113463A1 - 一种小型化光环形器 - Google Patents

一种小型化光环形器 Download PDF

Info

Publication number
WO2018113463A1
WO2018113463A1 PCT/CN2017/111616 CN2017111616W WO2018113463A1 WO 2018113463 A1 WO2018113463 A1 WO 2018113463A1 CN 2017111616 W CN2017111616 W CN 2017111616W WO 2018113463 A1 WO2018113463 A1 WO 2018113463A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
beam splitter
optical
degree faraday
component
Prior art date
Application number
PCT/CN2017/111616
Other languages
English (en)
French (fr)
Inventor
陈佩娟
Original Assignee
陈佩娟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201621396439.1U external-priority patent/CN206649185U/zh
Priority claimed from CN201611176985.9A external-priority patent/CN108205173A/zh
Application filed by 陈佩娟 filed Critical 陈佩娟
Priority to US16/471,553 priority Critical patent/US11346988B2/en
Publication of WO2018113463A1 publication Critical patent/WO2018113463A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2746Optical coupling means with polarisation selective and adjusting means comprising non-reciprocal devices, e.g. isolators, FRM, circulators, quasi-isolators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators

Definitions

  • the invention patent belongs to the technical field of optical fiber communication, and in particular relates to a miniaturized optical circulator.
  • optical circulators are commonly used in optical communication systems and optical measurement systems.
  • the optical circulator is a multi-port input-output non-reciprocal optic device that allows optical signals to be transmitted only sequentially along a specified port, ie When an optical signal is input from a specified port, it can only be output from another specific port. If the output is not in the order of the specified port, the loss of the optical signal is very large, and the optical signal is isolated.
  • optical circulator Due to this transmission characteristic of the optical circulator, it is an important device in two-way communication, and it can be used to separate the optical signals of forward transmission and reverse transmission in the same optical fiber, thereby achieving the purpose of single-fiber bidirectional communication.
  • the optical circulator includes three ports of a transmitting end 1, a receiving end 3 and a common end 2, and is composed of a first polarizing beam splitter 41, a second polarizing beam splitter 42, a third polarizing beam splitter 43, and a reflection.
  • An optical path composed of a mirror 5, a half wave plate 6, a magnetic ring 7, a magnetic rotating sheet 8, and the like.
  • the polarized light beam is received from the transmitting end of the optical circulator through the first polarizing beam splitter, the magnetic rotating optical sheet, the 22.5° half wave plate 9, and the second polarizing beam splitter, and is received by the common end; the parallel direction polarized light incident at the common end is subjected to the second polarization
  • the beam splitter, the magnetizer, the 22.5° half-wave plate, the first polarization beam splitter, the 45° half-wave plate, and the third polarization beam splitter are received by the receiving end, and the vertically polarized light passes through the second polarizing beam splitter, the mirror, The third polarization beam splitter is then received by the receiving end.
  • optical circulator Due to the transmission characteristics of the optical circulator, we can integrate it into the optical device to separate the optical signals of the forward transmission and the reverse transmission in the same optical fiber, thereby achieving the purpose of single-fiber two-way communication.
  • the above prior art is a typical representative optical circulator solution, but such a commercial optical ring type is bulky, and it is difficult to integrate it into the same small optical component, which hinders the market application of the device.
  • the existing commercial optical circulators use more optical components, and the price is higher, which also limits their application.
  • the object of the present invention is to provide a miniaturized optical circulator.
  • the optical circulator of the present invention uses fewer optical components, is small in size, can be integrated into the same small optical component, and the cost is also greatly reduced, thereby solving the present problem.
  • the optical circulator has many optical components, large volume, inconvenient integration, and high price.
  • an embodiment of the present invention provides a miniaturized optical circulator including a port T1, a port T2, a port T3 (common terminal, a receiving end, a transmitting end), and an optical component, wherein the optical component includes a polarization beam splitter, a 45 degree Faraday rotator and a second polarization beam splitter; when the optical signal is input from the port T1 (common terminal) and output through the optical component from the port T2 (receiving end), forming a first optical path, the first optical path
  • the optical signal passes through the first polarization beam splitter and is separated into a first polarization component and a second polarization component whose polarization directions are perpendicular to each other, and the first polarization component first passes through the 45 degree Faraday rotation piece to reach the second polarization beam splitter, and is second.
  • the polarization beam splitter is reflected back and passes through at least the 45 degree Faraday rotator and the first polarization beam splitter to reach the port T2 (receiving end); after the second polarization component is separated, at least one reflection of the first polarization beam splitter reaches the port T2 (receiving end); when the optical signal is input from the port T3 (transmitting end) and output through the optical component from the port T1 (common end), the second optical path and the light of the second optical path are formed. Number sequentially passes through the second polarization beam splitter, 45 a first Faraday rotator and polarization beam splitter plate, a port T1 (common) output.
  • the optical component further includes a reflective polarization controller.
  • the optical signal is separated by a first polarization splitter into first polarization components and second polarization directions perpendicular to each other.
  • the polarization component, the first polarization component enters the 45 degree Faraday rotator, is reflected back by the second polarization beam splitter, passes through the 45 degree Faraday rotator and the first polarization beam splitter again, and is also output by the port T2; the second polarization component enters the reflection
  • the polarization controller is reflected back and then output from the port T2 after passing through the first polarization beam splitter. .
  • another alternative manner of using a reflective polarization controller is that the optical signal is separated by a first polarization splitter into a first polarization component and a second polarization component whose polarization directions are perpendicular to each other, the first polarization.
  • the component enters the 45-degree Faraday rotator, is reflected back by the second polarization beam splitter, passes through the 45-degree Faraday rotator again and re-enters the first polarization beam splitter, is reflected into the reflective polarization controller and is then reflected back, and then passes through the first
  • the polarization beam splitter is also output by port T2; the second polarization component is output directly from port T2.
  • the first polarization beam splitter and the second polarization beam splitter are polarization beam splitters or polarization beam splitting cubes.
  • the reflective polarization controller is composed of a 1/4 wave plate and a reflector.
  • the 1/4 wave plate can be replaced by any N/4 wave plate such as 1/2 wave plate, 3/4 wave plate, etc., where N is a natural number such as 1, 2, 3, 4... or 45
  • N is a natural number such as 1, 2, 3, 4... or 45
  • the Faraday rotation piece is replaced.
  • the reflective polarization controller is composed of a 45-degree Faraday rotator and a polarization beam splitter.
  • the optical signal entering the input end of the reflective polarization controller passes through the 45-degree Faraday rotator. It is reflected back to the 45-degree Faraday rotator by the polarizing beam splitter, and passes through the 45-degree Faraday rotator again and outputs.
  • the reflector may employ a mirror, in particular a total reflection lens.
  • the miniaturized optical circulator comprises a plurality of light-passing devices, and the plurality of light-passing devices are disposed between the first polarizing beam splitter and the reflective polarization controller, or are installed Within the reflective polarization controller; it may also be disposed between the first polarization beam splitter and the 45 degree Faraday rotation sheet, or between the 45 degree Faraday rotation sheet and the second polarization beam splitter.
  • the miniaturized optical circulator of the present invention has the following advantages over the prior art: the invention greatly reduces the volume of the existing optical circulator, making it possible to integrate in a small optical component; The components and processes used in the invention are extremely mature and low in cost.
  • FIG. 1 is a schematic view of a single-fiber bidirectional transmission optical circulator of the present invention
  • FIG. 2 is a schematic diagram of an optical signal transmitted from a T3 port to a T1 port according to a first embodiment of the present invention
  • FIG. 3 is a schematic diagram of an optical signal transmitted from a T1 port to a T2 port according to a first embodiment of the present invention
  • FIG. 4 is a schematic diagram of an optical signal transmitted from a T3 port to a T1 port according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of an optical signal transmitted from a T1 port to a T2 port according to a second embodiment of the present invention
  • Figure 6 is a schematic illustration of a prior art optical circulator.
  • the miniaturized optical circulator of the present invention comprises a common end, a receiving end, a transmitting end, and an optical component consisting of a first polarizing beam splitter, a reflective polarization controller, a 45 degree Faraday rotator and a second polarizing beam splitter.
  • the function of the first polarization beam splitter is to separate the optical signal into a first polarization component whose polarization directions are perpendicular to each other (without loss of generality, which can be assumed to be p-light) and a second polarization component (without loss of generality, which can be assumed to be s-light) ).
  • the first polarization beam splitter can generally be made of a polarization beam splitting cube or a polarization beam splitter.
  • Polarization beam splitting cube also known as polarizing beam splitting prism, is made up of a pair of right-angled triangular prisms.
  • the bonding surface is coated with a polarizing beam splitting dielectric film, which can split the incident unpolarized light into two vertical linearly polarized lights (p-light and s light).
  • p-light passes completely, while the s-light is reflected at an angle of 45 degrees, the exit direction is at an angle of 90 degrees to the p-light, and the polarization directions of the p-light and s are perpendicular to each other.
  • the function of the reflective polarization controller is to change the polarization direction of the incident ray polarization and reflect it so that the polarization direction of the reflected light is orthogonal to the original incident polarization direction by 90 degrees, and is generally made of a 1/4 wave plate plus a mirror.
  • the 1/4 wave plate can be replaced by any N/4 wave plate such as 1/2 wave plate, 3/4 wave plate, etc., where N is 1, 2, 3, 4... Such a natural number can also be replaced by a 45 degree Faraday rotator.
  • the mirrors in the assembly can be replaced by polarizing beamsplitters.
  • the second polarizing beam splitter acts to transmit a certain polarization component and reflect its orthogonal component.
  • the second polarization beam splitter is generally made of a polarization beam splitter, preferably a plate type polarization beam splitter.
  • the polarization reflection direction and the first polarization component are at an angle of 45 degrees (either clockwise or counterclockwise, without loss of generality, in the present invention, a clockwise angle).
  • the miniaturized optical circulator of the present invention has a port T1 as a common end, a port T2 as a receiving end, and a port T3 as a transmitting end.
  • a port T1 When an optical signal is input from the port T1 and output through the optical component from the port T2, it is configured as The first optical path, that is, the optical signal entering the port T1 passes through the first optical path, and is output at the port T2.
  • the optical signal is input from the port T3 and outputted from the port T1 through the optical component, it is configured as a second optical path, that is, the optical signal entering the port T3 passes through the second optical path, and is outputted at the port T1.
  • the first optical path and the second optical path can coexist simultaneously.
  • the input optical signal is linearly polarized light
  • the polarization direction of the input linearly polarized light is consistent with the transmission direction of the second polarizing beam splitter 400.
  • the optical signal After the second rotating polarizer 400 and the 45-degree Faraday rotating piece 300 are sequentially rotated by the port T3, the polarization direction is deflected by 45 degrees, and becomes polarized with the first polarized component (p light), thereby enabling the first polarizing beam splitter 100 to pass. , output from port T1.
  • the optical signal input by the port T1 passes through the first polarization beam splitter 100, and is separated into a first polarization component (p light) and a second polarization component whose polarization directions are perpendicular to each other ( s light), the second polarization component is reflected into the 1/4 wave plate 200, is reflected by the reflector 201 after passing through the 1/4 wave plate 200, and passes through the 1/4 wave plate 200 again, and the polarization direction of the outgoing light signal occurs.
  • p light first polarization component
  • s light second polarization component whose polarization directions are perpendicular to each other
  • the reflector 201 may be a total reflection lens or a highly reflective metal film or a multilayer dielectric film.
  • the reflective polarization controller is made of the 1/4 wave plate 200 and the reflector 201, and a 45 degree Faraday rotation plate can be used instead of the 1/4 wave plate 200 to form a reflective polarization controller.
  • a 45 degree Faraday rotator is used in a reflective polarization controller, the mirrors in the assembly can be replaced by polarizing beamsplitters. After the linearly polarized light passes through the 45-degree Faraday rotator twice, the outgoing light signal is rotated by 90 degrees with respect to the polarization direction of the incident light signal.
  • the 1/4 wave plate can be replaced by any N/4 wave plate such as 1/2 wave plate, 3/4 wave plate, etc., where N is 1, 2, 3, 4... Natural number.
  • a 1/2 wave plate is used in place of the 1/4 wave plate, and the reflector at this time is a corner reflector.
  • the optical axis of the 1/2 wave plate is at an angle of 45 degrees to the direction of polarization of the incident linearly polarized light.
  • the corner reflector reverses the incident light signal, but the angle is constant, and can be fabricated using two full-reflection lenses that are right angles.
  • the polarization direction is rotated by 90 degrees, and then exited by the two reflections of the corner reflector, and the outgoing light is opposite to the incident light.
  • the 1/2 wave plate acts only once, so that the outgoing light signal is rotated by 90 degrees with respect to the polarization direction of the incident light signal.
  • a 3/4 wave plate is used instead of the 1/4 wave plate.
  • the reflector can be a total reflection lens or a highly reflective metal film or a multilayer dielectric film.
  • the incident linearly polarized light is reflected by the reflector after passing through the 3/4 wave plate, and after passing through the 3/4 wave plate again, the polarization direction of the outgoing light signal is deflected by 90 degrees.
  • FIG. 4 and FIG. 5 respectively show transmission paths of the first optical path and the second optical path in another embodiment, which are the same as the previous one.
  • the difference in the embodiment is that the placement of the first polarization beam splitter and the placement in the specific embodiment 1 occur a 90 degree deflection, and accordingly, the first optical path changes.
  • the input linearly polarized light is sequentially output from the port T1 via the second polarization beam splitter 400, the 45-degree Faraday rotation piece 300, and the first polarization beam splitter 100 through the port T3.
  • the input optical signal is separated from the first polarization splitter 100 by the port T1 into a first polarization component (p light) and a second polarization component (s light) whose polarization directions are perpendicular to each other.
  • the second polarization component is reflected and directly outputted from the port T2; the first polarization component enters the 45 degree Faraday rotator 300, is reflected back by the second polarization beam splitter 400, and re-enters the first polarization through the 45 degree Faraday rotator 300 again.
  • the polarization direction of the first polarization component is deflected by 90 degrees (s light), reflected into the quarter-wave plate 200, reflected by the reflector 201, and passed through the quarter-wave plate 200 again.
  • the polarization direction of a polarization component is again deflected by 90 degrees (p light), and is transmitted by the port T2 after being transmitted through the first polarization beam splitter 100.
  • the reflective polarization controller is made up of the quarter wave plate 200 and the reflector 201. It should be understood by those skilled in the art that the reflective polarization controller can also be replaced by a 45 degree Faraday rotation plate.
  • the quarter-wave plate 200 is used to make a reflective polarization controller.
  • the mirror in the assembly can be replaced by a polarizing beam splitter. After the linearly polarized light passes through the 45-degree Faraday rotator twice, the outgoing light signal is rotated by 90 degrees with respect to the polarization direction of the incident light signal.
  • the miniaturized optical circulator of the present invention is provided with a plurality of light-passing devices, and the optical path of the first polarization component or the second polarization component can be changed by setting the light-passing device so that their optical path is maintained. Consistently, eliminating the effects of signal delay caused by the original optical path.
  • the light-passing device is generally composed of a non-conductive medium flat sheet, and a typical light-passing device has a glass body of various refractive indices, a silicon wafer or the like.
  • the light-passing devices may be disposed between the first polarizing beam splitter and the reflective polarization controller or within the reflective polarization controller; or may be disposed between the first polarizing beam splitter and the 45-degree Faraday rotating sheet Or between the 45 degree Faraday rotator and the second polarization beam splitter.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

一种小型化光环形器,包括两个偏振分光器和45度法拉第旋转片(300),第一光路的光信号从公共端(T1)输入后,经过第一偏振分光器(100),被分离为第一偏振分量和第二偏振分量,第一偏振分量首先经过45度法拉第旋转片(300),到达第二偏振分光器(400)后被反射回来,并至少依次经过所述45度法拉第旋转片(300)和第一偏振分光器(100),到达接收端(T2);第二偏振分量被分离后,至少经过第一偏振分光器(100)的一次反射到达接收端(T2);第二光路的光信号从发射端(T3)输入后,依次经过第二偏振分光器(400)、45度法拉第旋转片(300)和第一偏振分光器(100),由公共端(T1)输出。光环形器体积小,便于集成,且成本低。

Description

一种小型化光环形器 技术领域
本发明专利属于光纤通讯技术领域,具体涉及一种小型化光环形器。
背景技术
光环形器通常被用于光学通信***以及光学测量***,光环形器是一种多端口输入输出的非互易性光学器件,它的作用是使光信号只能沿规定的端口顺序传输,即当光信号从某指定的端口输入时,它只能从另一特定的端口输出,若未按此规定的端口顺序输出,则器件对光信号的损耗非常大,起到隔离光信号的作用。
由于光环形器的这种传输特性,使其成为双向通信中的重要器件,它可用于将同一根光纤中正向传输和反向传输的光信号分开,实现单纤双向通信的目的。
现有的光通信***中,大量的以太网光模块运用相同的波长来收发光信号,由于小型化光环形器的缺失,为了配合这样的模块工作,人们必须用两根光纤来分别实现同一模块中光信号的接收和发射功能,这样造成了大量光纤资源的浪费。
中国专利CN102364364A提供了一个较为典型的光环形器。如图6所示,该光环形器包括发射端1、接收端3和公共端2三个端口,以及由第一偏振分光器41、第二偏振分光器42、第三偏振分光器43、反射镜5、半波片6、磁环7、磁旋光片8等组成的光路。偏振光束从光环形器的发射端经过第一偏振分光器、磁旋光片、22.5°半波片9、第二偏振分光器后由公共端接收;公共端入射的平行方向偏振光经第二偏振分光器、磁旋光片、22.5°半波片、第一偏振分光器、45°半波片、第三偏振分光器后由接收端接收,垂直方向偏振光经第二偏振分光器、反射镜、第三偏振分光器后由接收端接收。由于光环形器的这种传输特性,我们可以将之集成在光器件中将同一根光纤中正向传输和反向传输的光信号分开,实现单纤双向通信的目的。上述现有技术是具有典型代表性的光环形器方案,但这样的商用光环型器体积巨大,将其集成到同一小型光组件较为困难,阻碍了器件的市场应用。另外,现有的商用光环形器采用的光学组件较多,价格较高,也使其应用受到限制。
发明内容
本发明的目的是提供一种小型化的光环形器,本发明的光环形器使用了较少的光学组件,体积小,可以集成到同一小型光组件,且成本也大为降低,从而解决现有光环形器采用的光学组件较多,体积大,不便于集成,且价格较高的问题。
为实现上述目的,本发明的一个实施例提供了一种小型化光环形器,包括端口T1、端口T2、端口T3(公共端、接收端、发射端)和光学组件,其中,光学组件包括第一偏振分光器、45度法拉第旋转片和第二偏振分光器;当光信号从端口T1(公共端)输入,经过光学组件由端口T2(接收端)输出时,构成第一光路,第一光路的光信号经过第一偏振分光器,被分离为偏振方向互相垂直的第一偏振分量和第二偏振分量,第一偏振分量首先经过45度法拉第旋转片,到达第二偏振分光器,被第二偏振分光器反射回来,并至少依次经过45度法拉第旋转片和第一偏振分光器,到达端口T2(接收端);第二偏振分量被分离后,至少经过第一偏振分光器的一次反射到达端口T2(接收端);当光信号从端口T3(发射端)输入,经过光学组件由端口T1(公共端)输出时,构成第二光路,第二光路的光信号依次经过第二偏振分光器、45度法拉第旋转片和第一偏振分光器,由端口T1(公共端)输出。
作为本发明一个较佳的实施例,光学组件还包括反射型偏振控制器,在第一光路中,光信号经过第一偏振分光器,被分离为偏振方向互相垂直的第一偏振分量和第二偏振分量,第一偏振分量进入45度法拉第旋转片,被第二偏振分光器反射回来,再次经过45度法拉第旋转片和第一偏振分光器,也由端口T2输出;第二偏振分量则进入反射型偏振控制器后被反射回来,再经过第一偏振分光器后从端口T2输出。。
在第一光路中,采用反射型偏振控制器的另一种替代方式是,光信号经过第一偏振分光器,被分离为偏振方向互相垂直的第一偏振分量和第二偏振分量,第一偏振分量进入45度法拉第旋转片,被第二偏振分光器反射回来,再次经过45度法拉第旋转片重新进入第一偏振分光器,被反射进入反射型偏振控制器后再被反射回来,再经过第一偏振分光器后也由端口T2输出;第二偏振分量则直接从端口T2输出。
作为本发明实施例的进一步改进,第一偏振分光器和第二偏振分光器是偏振分光片或偏振分光立方体。
作为本发明实施例的进一步改进,反射型偏振控制器由一个1/4波片和一个反射器组成,第一光路中,进入反射型偏振控制器输入端的光信号经过1/4波片后,被反射器反射回1/4波片,再次经过1/4波片并输出。在这里,1/4波片可以由1/2波片、3/4波片等任何N/4波片替代,其中N为1、2、3、4……这样的自然数,也可以由45度法拉第旋转片替代。
作为本发明实施例的进一步改进,反射型偏振控制器由一个45度法拉第旋转片和一个偏振分光片组成,第一光路中,进入反射型偏振控制器输入端的光信号经过45度法拉第旋转片后,被偏振分光片反射回45度法拉第旋转片,再次经过45度法拉第旋转片并输出。
作为本发明实施例的进一步改进,反射器可以采用一个反射镜,特别是全反射镜片。
作为本发明实施例的进一步改进,所述的小型化光环形器包括若干块通光器件,所述的若干块通光器件设置在第一偏振分光器和反射型偏振控制器之间,或者安装于反射型偏振控制器之内;也可以设置在第一偏振分光器和45度法拉第旋转片之间,或者在45度法拉第旋转片和第二偏振分光器之间。
本发明的小型化光环形器相比于现有技术来说具有以下优点:本发明极大的缩小了现有光环形器的体积,使其在小型光组件中的集成成为可能;同时,该发明中运用的元件和工艺极为成熟,成本较低。
附图说明
图1是本发明的单纤双向传输光环形器示意图;
图2是本发明的具体实施例一中光信号由T3端口传输到T1端口示意图;
图3是本发明的具体实施例一中光信号由T1端口传输到T2端口示意图;
图4是本发明的具体实施例二中光信号由T3端口传输到T1端口示意图;
图5是本发明的具体实施例二中光信号由T1端口传输到T2端口示意图;
图6是现有技术中光环形器的示意图。
具体实施方式
为使对本发明的目的、构造特征及其功能有进一步的了解,配合附图详细说明如下。 应当理解,此部分所描述的具体实施例仅可用以解释本发明,并不用于限定本发明。
本发明的小型化光环形器,包括公共端、接收端、发射端,和由第一偏振分光器、反射型偏振控制器、45度法拉第旋转片和第二偏振分光器组成的光学组件。
第一偏振分光器的作用是将光信号分离为偏振方向互相垂直的第一偏振分量(不失一般性,可假设为p光)和第二偏振分量(不失一般性,可假设为s光)。第一偏振分光器一般可以由偏振分光立方体或者偏振分光片制成。偏振分光立方体又称偏振分光棱镜,由一对直角三角棱镜贴合而成,在贴合面镀有偏振分光介质薄膜,能够把入射的非偏振光分成两束垂直的线偏振光(p光和s光)。在一个实施例中,p光完全通过,而s光以45度角被反射,出射方向与p光成90度角,而且p光和s的偏振方向互相垂直。
反射型偏振控制器的作用是改变入射线偏光的偏振方向并反射,使反射光的偏振方向和原入射偏振方向成90度正交,一般由1/4波片加上反射镜制成。
在此,本领域技术人员应能理解,1/4波片可以由1/2波片、3/4波片等任何N/4波片替代,其中N为1、2、3、4……这样的自然数,也可以由45度法拉第旋转片替代。
当45度法拉第旋转片被用于反射型偏振控制器时,组件中的反射镜可以被偏振分光片替代。
第二偏振分光器的作用是透射某一偏振分量,并反射其正交分量。第二偏振分光器一般由偏振分光片,优选地采用镀膜型偏振分光片制成。其偏振反射方向和第一偏振分量成45度夹角(顺时针或者逆时针皆可,不失一般性,在本发明中设为顺时针方向夹角)。
参考图1,本发明的小型化光环形器,端口T1为公共端,端口T2为接收端,端口T3为发射端,当光信号从端口T1输入,经过光学组件从端口T2输出时,构成为第一光路,即进入端口T1的光信号通过第一光路后,在端口T2输出。当光信号从端口T3输入,经过光学组件从端口T1输出时,构成为第二光路,即进入端口T3的光信号通过第二光路后,在端口T1输出。本领域技术人员应能理解,在光环形器的工作状态中,第一光路和第二光路是可以同时并存的。
附图2示出了本发明的第二光路的一个较佳实施例,在第二光路中,输入光信号为线偏振光,输入线性偏振光的偏振方向和第二偏振分光器400透射方向一致,该光信号 由端口T3依次经由第二偏振分光器400、45度法拉第旋转片300后,偏振方向发生45度偏转,变成和第一偏振分量偏振一致(p光),从而能通过第一偏振分光器100,从端口T1输出。
如附图3所示,第一光路中,由端口T1输入的光信号经过第一偏振分光器100后,被分离为偏振方向互相垂直的第一偏振分量(p光)和第二偏振分量(s光),第二偏振分量被反射进入1/4波片200,通过1/4波片200后被反射器201反射回来,再次经过1/4波片200后,出射光信号的偏振方向发生90度偏转(变成p光),透射过第一偏振分光器100后从端口T2输出;第一偏振分量则进入45度法拉第旋转片300,被第二偏振分光器400反射回来,再次经过45度法拉第旋转片300后,出射光信号的偏振方向也发生90度偏转(变成s光),被第一偏振分光器100反射,也由端口T2输出。在这里,本领域技术人员应能理解,反射器201可以是采用全反射镜片,也可以采用高反射的金属膜或多层介质膜。
在上述结构中,反射型偏振控制器由1/4波片200和反射器201制成,也可以用一个45度法拉第旋转片替代1/4波片200来制成反射型偏振控制器,当45度法拉第旋转片被用于反射型偏振控制器时,组件中的反射镜可以被偏振分光片替代。线偏振光两次通过45度法拉第旋转片后,使出射光信号相对入射光信号的偏振方向旋转90度。
同时,本领域技术人员应能理解,1/4波片可以由1/2波片、3/4波片等任何N/4波片替代,其中N为1、2、3、4……这样的自然数。
例如,在一个较佳的实施例中,采用1/2波片代替1/4波片,这时的反射器为角反射器。1/2波片的光轴和入射的线偏振光偏振方向成45度角。角反射器使入射光信号反向,但角度不变,可以采用两个成为直角的全反射镜片制作。当线偏振光通过1/2波片后偏振方向旋转90度,再经过角反射器的两次反射后出射,出射光与入射光方向相反。但1/2波片只作用一次,从而使出射光信号相对入射光信号的偏振方向旋转90度。
在另一个较佳的实施例中,采用3/4波片代替1/4波片,这时的反射器可以采用全反射镜片,也可以采用高反射的金属膜或多层介质膜。入射的线偏振光通过3/4波片后被反射器反射回来,再次经过3/4波片后,出射光信号的偏振方向发生90度偏转。
图4及图5分别示出又一实施例中第一光路与第二光路的传输路径,其与前一实 施例的区别在于,第一偏振分光器的放置和具体实施实例一中的放置发生90度偏转,相应地,第一光路路径改变。
如附图4所示,第二光路中,输入的线性偏振光由端口T3依次经由第二偏振分光器400、45度法拉第旋转片300和第一偏振分光器100,从端口T1输出。
如附图5所示,第一光路中,输入光信号由端口T1经过第一偏振分光器100后分离为偏振方向互相垂直的第一偏振分量(p光)和第二偏振分量(s光),第二偏振分量被反射,直接从端口T2输出;第一偏振分量则进入45度法拉第旋转片300,被第二偏振分光器400反射回来,再次经过45度法拉第旋转片300重新进入第一偏振分光器100,此时第一偏振分量偏振方向发生90度偏转(s光),被反射入1/4波片200后,被反射器201反射回来,再次经过1/4波片200后,第一偏振分量偏振方向再度发生90度偏转(p光),透射过第一偏振分光器100后也由端口T2输出。
在上述图5的结构中,反射型偏振控制器由1/4波片200和反射器201制成,本领域技术人员应能理解,反射型偏振控制器也可以用一个45度法拉第旋转片替代1/4波片200来制成反射型偏振控制器,当45度法拉第旋转片被用于反射型偏振控制器时,组件中的反射镜可以被偏振分光片替代。线偏振光两次通过45度法拉第旋转片后,使出射光信号相对入射光信号的偏振方向旋转90度。
在现有的光通信***中,由于某些应用需要较高的传输速率,因此对于传输光信号的第一偏振分量和第二偏振分量的信号延迟非常敏感。为了解决信号延迟的这个问题,本发明的小型化光环形器设置有若干块通光器件,通过设置通光器件可以改变第一偏振分量或者第二偏振分量的光程,使得它们的光程保持一致,消除原光路带来的信号延迟影响。
所述的通光器件一般由非导电介质平片构成,典型的通光器件有各种折射率的玻璃体,硅片等等。这些通光器件,可以设置在第一偏振分光器和反射型偏振控制器之间,或者安装于反射型偏振控制器之内;也可以设置在第一偏振分光器和45度法拉第旋转片之间,或者在45度法拉第旋转片和第二偏振分光器之间。
以上所述,仅为本发明最佳实施例而已,并非用于限制本发明的范围,凡依本发明申请专利范围所作的等效变化或修饰,皆为本发明所涵盖。

Claims (10)

  1. 一种小型化光环形器,包括公共端、接收端、发射端和光学组件,其特征在于:
    所述光学组件包括第一偏振分光器、45度法拉第旋转片和第二偏振分光器;
    当光信号从公共端输入,经过光学组件由接收端输出时,构成第一光路,所述第一光路的光信号经过第一偏振分光器,被分离为偏振方向互相垂直的第一偏振分量和第二偏振分量,所述第一偏振分量首先经过45度法拉第旋转片,到达第二偏振分光器,被所述第二偏振分光器反射回来,并至少依次经过所述45度法拉第旋转片和第一偏振分光器,到达接收端;所述第二偏振分量被分离后,至少经过所述第一偏振分光器的一次反射到达接收端;
    当光信号从发射端输入,经过光学组件由公共端输出时,构成第二光路,所述第二光路的光信号依次经过第二偏振分光器、45度法拉第旋转片和第一偏振分光器,由公共端输出。
  2. 如权利要求1所述的小型化光环形器,其特征在于:所述的光学组件还包括反射型偏振控制器,在所述第一光路中,光信号经过第一偏振分光器,被分离为偏振方向互相垂直的第一偏振分量和第二偏振分量,第一偏振分量进入45度法拉第旋转片,被第二偏振分光器反射回来,再次经过45度法拉第旋转片和第一偏振分光器,也由接收端输出;第二偏振分量则进入反射型偏振控制器后被反射回来,再经过第一偏振分光器后从接收端输出。
  3. 如权利要求1所述的小型化光环形器,其特征在于:所述的光学组件还包括反射型偏振控制器,在所述第一光路中,光信号经过第一偏振分光器,被分离为偏振方向互相垂直的第一偏振分量和第二偏振分量,第一偏振分量进入45度法拉第旋转片,被第二偏振分光器反射回来,再次经过45度法拉第旋转片重新进入第一偏振分光器,被反射进入反射型偏振控制器后再被反射回来,再经过第一偏振分光器后也由接收端输出;第二偏振分量则直接从接收端输出。
  4. 如权利要求1-3所述的小型化光环形器,其特征在于:所述第一偏振分光器和第 二偏振分光器是偏振分光片或偏振分光立方体。
  5. 如权利要求4所述的小型化光环形器,其特征在于:所述反射型偏振控制器由一个N/4波片和一个反射器组成,其中N为1、2、3、4……这样的自然数;在所述第一光路中,进入反射型偏振控制器输入端的光信号经过N/4波片后,被反射器反射回N/4波片,再次经过N/4波片并输出。
  6. 如权利要求4所述的小型化光环形器,其特征在于:所述反射型偏振控制器由一个45度法拉第旋转片和一个反射器组成,所述第一光路中,进入反射型偏振控制器输入端的光信号经过45度法拉第旋转片后,被反射器反射回45度法拉第旋转片,再次经过45度法拉第旋转片并输出。
  7. 如权利要求4所述的小型化光环形器,其特征在于:所述反射型偏振控制器由一个45度法拉第旋转片和一个偏振分光片组成,所述第一光路中,进入反射型偏振控制器输入端的光信号经过45度法拉第旋转片后,被偏振分光片反射回45度法拉第旋转片,再次经过45度法拉第旋转片并输出。
  8. 如权利要求5-6所述的小型化光环形器,其特征在于:所述反射器是一个反射镜。
  9. 如权利要求5-7所述的小型化光环形器,其特征在于:所述的小型化光环形器包括若干块通光器件,所述的若干块通光器件设置在第一偏振分光器和反射型偏振控制器之间,或者安装于反射型偏振控制器之内,或者设置在第一偏振分光器和45度法拉第旋转片之间,或者在45度法拉第旋转片和第二偏振分光器之间。
  10. 如权利要求1-3及5-7所述的小型化光环形器,其特征在于:在第二光路中,输入的光信号为线性偏振光。
PCT/CN2017/111616 2016-12-19 2017-11-17 一种小型化光环形器 WO2018113463A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/471,553 US11346988B2 (en) 2016-12-19 2017-11-17 Miniaturized optical circulator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201621396439.1U CN206649185U (zh) 2016-12-19 2016-12-19 一种小型化光环形器
CN201621396439.1 2016-12-19
CN201611176985.9 2016-12-19
CN201611176985.9A CN108205173A (zh) 2016-12-19 2016-12-19 一种小型化光环形器

Publications (1)

Publication Number Publication Date
WO2018113463A1 true WO2018113463A1 (zh) 2018-06-28

Family

ID=62624466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111616 WO2018113463A1 (zh) 2016-12-19 2017-11-17 一种小型化光环形器

Country Status (2)

Country Link
US (1) US11346988B2 (zh)
WO (1) WO2018113463A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11639988B2 (en) 2019-10-29 2023-05-02 GM Global Technology Operations LLC Photonic circulator for a LiDAR device
CN111025668B (zh) * 2019-12-30 2023-04-25 珠海光库科技股份有限公司 一种集成偏振相干分束的光学器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060140548A1 (en) * 2004-12-29 2006-06-29 Samsung Electronics Co.; Ltd Optical transceiver and passive optical network using the same
CN204331200U (zh) * 2014-10-27 2015-05-13 徐州旭海光电科技有限公司 微型同波长单芯双向光收发模块
CN206649185U (zh) * 2016-12-19 2017-11-17 陈佩娟 一种小型化光环形器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060140548A1 (en) * 2004-12-29 2006-06-29 Samsung Electronics Co.; Ltd Optical transceiver and passive optical network using the same
CN204331200U (zh) * 2014-10-27 2015-05-13 徐州旭海光电科技有限公司 微型同波长单芯双向光收发模块
CN206649185U (zh) * 2016-12-19 2017-11-17 陈佩娟 一种小型化光环形器

Also Published As

Publication number Publication date
US11346988B2 (en) 2022-05-31
US20190391406A1 (en) 2019-12-26

Similar Documents

Publication Publication Date Title
US4671613A (en) Optical beam splitter prism
CN206649185U (zh) 一种小型化光环形器
US8965155B1 (en) Heterogeneous waveguide integrated optical isolator and circulator
TWI656358B (zh) 微型化頭戴顯示器之光學系統
WO2018113463A1 (zh) 一种小型化光环形器
CN108205173A (zh) 一种小型化光环形器
US20220121045A1 (en) Small integrated free space circulator
CN110412780A (zh) 一种集成化自由空间光环形器
TWM564166U (zh) 微型化頭戴顯示器之光學系統
US6246518B1 (en) Reflection type optical isolator
CN205787225U (zh) 一种光环行器
CN111812776A (zh) 一种三端口光环形器
JP3368209B2 (ja) 反射型光サーキュレータ
US6407861B1 (en) Adjustable optical circulator
US20020191284A1 (en) Optical circulator
CN209946576U (zh) 一种光环形器
CN208984906U (zh) 一种集成化自由空间光环形器
CN102736275B (zh) 一种反射式的磁光开关
US20130094087A1 (en) Tunable filter using a wave plate
US12019274B2 (en) Polarization rotator
US6762879B1 (en) Method and system for providing an optical circulator
US20220214500A1 (en) Polarization rotator
CN218866147U (zh) 一种保偏分束合束器
CN116299818A (zh) 反射式保偏光学器件
CN108614326B (zh) 一种基于衰减组件的mems光纤衰减器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884279

Country of ref document: EP

Kind code of ref document: A1