WO2018113270A1 - 自动导引运输车的电池模组管理方法、装置 - Google Patents

自动导引运输车的电池模组管理方法、装置 Download PDF

Info

Publication number
WO2018113270A1
WO2018113270A1 PCT/CN2017/092321 CN2017092321W WO2018113270A1 WO 2018113270 A1 WO2018113270 A1 WO 2018113270A1 CN 2017092321 W CN2017092321 W CN 2017092321W WO 2018113270 A1 WO2018113270 A1 WO 2018113270A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery module
temperature
module
voltage
Prior art date
Application number
PCT/CN2017/092321
Other languages
English (en)
French (fr)
Inventor
李俊峰
龚雪清
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2018113270A1 publication Critical patent/WO2018113270A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention belongs to the technical field of batteries, and more particularly to a battery module management method and device for automatically guiding a transport vehicle.
  • AGV Automated Guided Vehicle
  • BMS Battery Management System
  • the existing battery management system has the following problems:
  • the existing battery management system can only passively read various data of the detection battery, and cannot intelligently manage the battery.
  • the present invention provides a battery module management method for an automated guided transport vehicle, including:
  • the insulation resistance monitoring result is obtained by detecting the resistance value of the insulation resistance to determine whether the insulation is insulated or not;
  • the method further includes:
  • the charge of each single cell in the battery module is detected, and the balance between the cells is maintained by controlling the on and off of each cell and the capacitor circuit.
  • the method further includes:
  • the voltage, temperature, charging and discharging current, and insulation monitoring result are uploaded to the upper computer.
  • the upper computer performs an alarm operation.
  • the method further includes:
  • the input power of the battery module is cut off.
  • the method further includes:
  • the battery When the charge of any single battery in the battery module is lower than the preset low battery threshold, the battery is charged, and when the charge of any single battery is higher than the preset high battery threshold, the stop is stopped. The single battery is charged.
  • the present invention provides a battery module management apparatus for an automated guided transport vehicle, including:
  • a voltage detecting module configured to: detect a voltage of each single battery in the battery module, and calculate a total voltage according to a voltage of each single battery;
  • a temperature collecting module configured to: obtain a temperature of the battery module from a temperature sensor disposed in the battery module;
  • a current detecting module configured to: obtain a charging and discharging current from a current sensor disposed in the battery module;
  • Insulation module is used to: determine the insulation by detecting the resistance value of the insulation resistance, and obtain the absolute Edge monitoring result;
  • the safety protection module is configured to: when the voltage, temperature, charge and discharge current, and insulation monitoring result do not meet the preset operating conditions, cut off the charging and discharging circuit of the battery module.
  • the method further includes:
  • the equalization control module is configured to: detect the charge quantity of each single battery in the battery module, and maintain the balance between the single cells by controlling the on and off of each single battery and the capacitor circuit.
  • the method further includes:
  • the communication processing module is configured to: upload the voltage, temperature, charging and discharging current, and insulation monitoring result to the upper computer, and when the voltage, temperature, charging/discharging current, and insulation monitoring result do not meet the preset operating condition, the upper computer Perform an alarm operation.
  • the security protection module is further configured to:
  • the input power of the battery module is cut off.
  • the security protection module is further configured to:
  • the battery When the charge of any single battery in the battery module is lower than the preset low battery threshold, the battery is charged, and when the charge of any single battery is higher than the preset high battery threshold, the stop is stopped. The single battery is charged.
  • the battery module management method and device of the automatic guided transport vehicle of the present invention have the following effects:
  • FIG. 1 is a flow chart showing the operation of a battery module management method for an automated guided transport vehicle according to the present invention.
  • FIG. 2 is a block diagram of a device of a battery module management device for an automated guided transport vehicle according to the present invention.
  • a working flow chart of a battery module management method for an automated guided transport vehicle includes:
  • Step S101 detecting a voltage of each single battery in the battery module
  • Step S102 obtaining a temperature of the battery module from a temperature sensor disposed in the battery module;
  • Step S103 obtaining a charging and discharging current from a current sensor disposed in the battery module
  • Step S104 determining whether the insulation is insulated by detecting the resistance value of the insulation resistance, and obtaining an insulation monitoring result
  • Step S105 when the voltage, temperature, charge and discharge current, and insulation monitoring result do not satisfy the preset operating condition, the charging and discharging circuit of the battery module is cut off.
  • step S101 a differential input, optocoupler isolation is used to detect the cell voltage, and the total voltage can be calculated by each cell voltage.
  • step S102 the temperature is acquired from the temperature sensor.
  • step S103 the current sensor is used to detect the charge and discharge current by the shunt method.
  • step S104 it is determined whether or not the insulation is insulated.
  • step S101 to S104 is merely for convenience of explanation and does not constitute a limitation on the claims. It should be understood by those skilled in the art that the order of step S101, step S102, step 103, and step S104 can be exchanged without affecting the actual effect.
  • the embodiment of the invention can intelligently manage the battery in the battery module by acquiring voltage, temperature, charging and discharging current and insulation monitoring result, and can monitor and monitor the usage of the battery in real time, and manage The use of the AGV car battery is controlled in time to avoid battery failure caused by various reasons such as battery overcharge, over discharge and abnormal internal battery data.
  • the method further includes:
  • the charge of each single cell in the battery module is detected, and the balance between the cells is maintained by controlling the on and off of each cell and the capacitor circuit.
  • the charge threshold can be the average value of the charge of all the batteries in the battery module.
  • the states of the single cells in the battery module are coordinated.
  • the method further includes:
  • the voltage, temperature, charging and discharging current, and insulation monitoring result are uploaded to the upper computer.
  • the upper computer performs an alarm operation.
  • the host computer can read real-time data through 485 communication, thus realizing functions such as battery data monitoring, data dumping and battery performance analysis.
  • the data can be flexibly combined with monitors, chargers, alarms, inverters, power switches, relay switches. Wait for connections and run in conjunction with these devices.
  • the method further includes:
  • the input power of the battery module is cut off.
  • the temperature threshold and the delay detection time can be set. If the temperature is higher than the temperature threshold, the power supply protection battery is cut off, and a self-recovery fuse can also be provided to protect the circuit.
  • the method further includes:
  • the battery When the charge of any single battery in the battery module is lower than the preset low battery threshold, the battery is charged, and when the charge of any single battery is higher than the preset high battery threshold, the stop is stopped. The unit The pool is charged.
  • the charging current is required according to the current voltage, and the charging is stopped when the charge amount of 70% is reached or exceeded.
  • a device module diagram of a battery module management device for an automated guided transport vehicle includes:
  • the voltage detecting module 201 is configured to: detect a voltage of each single battery in the battery module, and calculate a total voltage according to a voltage of each single battery;
  • the temperature collecting module 202 is configured to: obtain a temperature of the battery module from a temperature sensor disposed in the battery module;
  • the current detecting module 203 is configured to: obtain a charging and discharging current from a current sensor disposed in the battery module;
  • the insulation module 204 is configured to: determine whether the insulation is insulated by detecting the resistance value of the insulation resistance, and obtain an insulation monitoring result;
  • the safety protection module 205 is configured to: when the voltage, the temperature, the charging and discharging current, and the insulation monitoring result do not meet the preset operating conditions, shut off the charging and discharging circuit of the battery module.
  • the method further includes:
  • the equalization control module 206 is configured to: detect the charge amount of each single battery in the battery module, and maintain the balance between the single cells by controlling the on and off of each of the single cells and the capacitor circuit.
  • the method further includes:
  • the communication processing module 207 is configured to: upload the voltage, the temperature, the charging and discharging current, and the insulation monitoring result to the upper computer, and when the voltage, the temperature, the charging and discharging current, and the insulation monitoring result do not meet the preset operating condition, the upper position The machine performs an alarm operation.
  • the security protection module is further configured to:
  • the input power of the battery module is cut off.
  • the security protection module is further configured to:
  • the battery When the charge of any single battery in the battery module is lower than the preset low battery threshold, the battery is charged, and when the charge of any single battery is higher than the preset high battery threshold, the stop is stopped. The single battery is charged.
  • the battery module management device of the automatic guided transport vehicle of the preferred embodiment of the present invention has the battery module single overvoltage, undervoltage, overcharge, overdischarge, battery overcurrent, over temperature, low power protection It also has a communication function that transfers battery data in real time.
  • Main features of the device including:
  • Capacity prediction SOC The battery capacity is monitored online in real time during charging and discharging, and the remaining capacity of the battery system is given at any time.
  • Self-checking alarm Automatically check whether the battery function is normal, and judge the validity of the battery in time. If it is found that there is battery failure in the system or it will be invalid or the inconsistency with other batteries increases, the notification management system will issue a warning signal. .
  • Communication function Communication with the vehicle management system is carried out by means of CAN bus and 485 communication.
  • Parameter setting Various parameters of system operation can be set.
  • Host computer management unit It can transmit real-time data to the upper computer through the 485 communication interface, which can realize functions such as monitoring of battery data, data dumping and battery performance analysis, and data can be flexibly monitored. Connected to the device, charger, alarm, inverter, power switch, relay switch, etc., and can operate in conjunction with these devices.
  • the battery module management device and the host computer can be combined to form a battery power intelligent management system.
  • the principle is as follows: First, the battery module management device acquires and calculates the voltage, current, temperature, capacitance and other information of the single battery cells in the battery module in real time, and controls the charging balance according to the acquired data information and the calculation result, thereby To coordinate the functions of the single cells in the battery module; and transfer the calculated information to the host computer through the communication unit, so that the host computer can display the battery data in real time and process it accordingly (alarm indication, ready to charge, end charging, etc.) ), which can improve battery utilization, prevent battery overshoot, over discharge, and extend battery life.
  • the invention can reasonably charge the AGV car battery and control the charging current under the condition of real-time monitoring of the battery usage condition, so that the electric power of the car is maintained within a stable and continuously operable range.
  • the host computer obtains the current status information of the battery in real time through communication and makes corresponding analysis and processing. In the case of analyzing the abnormal data, the system will automatically alarm and display the alarm information for manual processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开一种自动导引运输车的电池模组管理方法、装置,方法包括:检测电池模组内每个单体电池的电压;从设置在电池模组内的温度传感器获取电池模组的温度;从设置在电池模组内的电流传感器获取充放电电流;通过检测检测绝缘电阻的阻值来判断是否绝缘,得到绝缘监测结果;当所述电压、温度、充放电电流、绝缘监测结果不满足预设运行条件时,切断电池模组的充放电回路。与现有技术相比,本发明可智能地对电池模组中的电池进行管理,能够实时地监控检测电池的使用情况,管理AGV小车电池的使用并及时进行控制,从而避免了电池过充,过放和电池内部数据不正常等各种原因造成的电池故障。

Description

自动导引运输车的电池模组管理方法、装置 技术领域
本发明属于电池技术领域,更具体地说,本发明涉及一种自动导引运输车的电池模组管理方法、装置。
背景技术
作为现代化物资仓储、搬运的重要工具,自动导引运输车(Automated Guided Vehicle,AGV)在现代自动化物流管理***中发挥着越来越重要的作用。目前,由于工厂等场地对AGV使用的频率越来越高,AGV小车对电池的使用要求也越来越高,如何保证AGV小车的连续工作、稳定工作、安全工作,是设计者一直在考虑的问题。在电池技术发展陷入瓶颈的今天,如何安全的、高效的、长时间的在AGV上使用蓄电池就成为现代设计者的首要问题。
当前绝大多数AGV小车使用的电池,只是在电池内部增加了电池管理***(Battery Management System,BMS)。
现有电池管理***存在如下问题:
现有的电池管理***只能被动的读取检测电池的各种数据,无法智能地对电池进行管理。
发明内容
本发明的目的在于:提供一种能智能地对电池进行管理的自动导引运输车的电池模组管理方法、装置。
为了实现上述发明目的,本发明提供一种自动导引运输车的电池模组管理方法,包括:
检测电池模组内每个单体电池的电压;
从设置在电池模组内的温度传感器获取电池模组的温度;
从设置在电池模组内的电流传感器获取充放电电流;
通过检测检测绝缘电阻的阻值来判断是否绝缘,得到绝缘监测结果;
当所述电压、温度、充放电电流、绝缘监测结果不满足预设运行条件时,切断电池模组的充放电回路。
作为本发明自动导引运输车的电池模组管理方法的一种改进,还包括:
检测电池模组内每个单体电池的荷电量,通过控制每个单体电池与电容电路的通断来保持单体电池之间的平衡。
作为本发明自动导引运输车的电池模组管理方法的一种改进,还包括:
将所述电压、温度、充放电电流、绝缘监测结果上传至上位机,当所述电压、温度、充放电电流、绝缘监测结果不满足预设运行条件时,上位机执行告警操作。
作为本发明自动导引运输车的电池模组管理方法的一种改进,还包括:
当电池模组的温度超过预设阈值,则切断电池模组的输入电源。
作为本发明自动导引运输车的电池模组管理方法的一种改进,还包括:
当电池模组中,任一单体电池的荷电量低于预设低电量阈值时,向该单体电池充电,当任一单体电池的荷电量高于预设高电量阈值时,停止向该单体电池充电。
为了实现上述发明目的,本发明提供一种自动导引运输车的电池模组管理装置,包括:
电压检测模块,用于:检测电池模组内每个单体电池的电压,根据每个单体电池的电压计算总电压;
温度采集模块,用于:从设置在电池模组内的温度传感器获取电池模组的温度;
电流检测模块,用于:从设置在电池模组内的电流传感器获取充放电电流;
绝缘模块,用于:通过检测检测绝缘电阻的阻值来判断是否绝缘,得到绝 缘监测结果;
安全保护模块,用于:当所述电压、温度、充放电电流、绝缘监测结果不满足预设运行条件时,切断电池模组的充放电回路。
作为本发明自动导引运输车的电池模组管理装置的一种改进,还包括:
均衡控制模块,用于:检测电池模组内每个单体电池的荷电量,通过控制每个单体电池与电容电路的通断来保持单体电池之间的平衡。
作为本发明自动导引运输车的电池模组管理装置的一种改进,还包括:
通信处理模块,用于:将所述电压、温度、充放电电流、绝缘监测结果上传至上位机,当所述电压、温度、充放电电流、绝缘监测结果不满足预设运行条件时,上位机执行告警操作。
作为本发明自动导引运输车的电池模组管理装置的一种改进,所述安全保护模块,还用于:
当电池模组的温度超过预设阈值,则切断电池模组的输入电源。
作为本发明自动导引运输车的电池模组管理装置的一种改进,所述安全保护模块,还用于:
当电池模组中,任一单体电池的荷电量低于预设低电量阈值时,向该单体电池充电,当任一单体电池的荷电量高于预设高电量阈值时,停止向该单体电池充电。
与现有技术相比,本发明自动导引运输车的电池模组管理方法、装置具有以下效果:
可智能地对电池模组中的电池进行管理,能够实时地监控检测电池的使用情况,管理AGV小车电池的使用并及时进行控制,从而避免了电池过充,过放和电池内部数据不正常等各种原因造成的电池故障。
附图说明
下面结合附图和具体实施方式,对本发明自动导引运输车的电池模组管理 方法、装置及其有益效果进行详细说明。
图1为本发明一种自动导引运输车的电池模组管理方法的工作流程图。
图2为本发明一种自动导引运输车的电池模组管理装置的装置模块图。
具体实施方式
为了使本发明的发明目的、技术方案及其有益技术效果更加清晰,以下结合附图和具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并非为了限定本发明。
请参阅图1,本发明一种自动导引运输车的电池模组管理方法的工作流程图,包括:
步骤S101,检测电池模组内每个单体电池的电压;
步骤S102,从设置在电池模组内的温度传感器获取电池模组的温度;
步骤S103,从设置在电池模组内的电流传感器获取充放电电流;
步骤S104,通过检测检测绝缘电阻的阻值来判断是否绝缘,得到绝缘监测结果;
步骤S105,当所述电压、温度、充放电电流、绝缘监测结果不满足预设运行条件时,切断电池模组的充放电回路。
具体来说,步骤S101,采用差分输入,光耦隔离的方式来检测单体电压,并可通过各个单体电压来计算总电压。步骤S102,从温度传感器获取温度,步骤S103,可以通过分流方式采用电流传感器来检测充放电电流,步骤S104,则判断是否绝缘。
其中,步骤S101~步骤S104的顺序仅为了便于说明,并不构成对权利要求的限制。本领域普通技术人员应该可以理解,步骤S101、步骤S102、步骤103、步骤S104的顺序可以交换而不影响实际效果。
本发明实施例通过获取电压、温度、充放电电流及绝缘监测结果,可智能地对电池模组中的电池进行管理,能够实时地监控检测电池的使用情况,管理 AGV小车电池的使用并及时进行控制,从而避免了电池过充,过放和电池内部数据不正常等各种原因造成的电池故障。
在本发明自动导引运输车的电池模组管理方法的一个实施例中,还包括:
检测电池模组内每个单体电池的荷电量,通过控制每个单体电池与电容电路的通断来保持单体电池之间的平衡。
具体来说,当单体电池的荷电量大于荷电量阈值时,断开单体电池与电容电路,当单体电池的荷电量小于荷电量阈值时,接通单体电池与电容电路,从而使得所有的电池均保持在荷电量均值中。该荷电量阈值,可以为电池模组内所有电池的荷电量均值。
本实施例通过对单体电池的荷电量进行检测,从而起到协调电池模组内部单体电池各状态一致。
在本发明自动导引运输车的电池模组管理方法的一个实施例中,还包括:
将所述电压、温度、充放电电流、绝缘监测结果上传至上位机,当所述电压、温度、充放电电流、绝缘监测结果不满足预设运行条件时,上位机执行告警操作。
上位机可以通过485通讯读取实时数据,从而实现电池数据的监控、数据转储和电池性能分析等功能,数据可灵活地与监视器、充电机、警报器、变频器、功率开关、继电器开关等连接,并可与这些设备联动运行。
在本发明自动导引运输车的电池模组管理方法的一个实施例中,还包括:
当电池模组的温度超过预设阈值,则切断电池模组的输入电源。
可设置温度阈值和延时检测时间,若温度高于温度阈值,则切断电源保护电池,另外还可以设置自恢复保险丝来保护电路。
在本发明自动导引运输车的电池模组管理方法的一个实施例中,还包括:
当电池模组中,任一单体电池的荷电量低于预设低电量阈值时,向该单体电池充电,当任一单体电池的荷电量高于预设高电量阈值时,停止向该单体电 池充电。
具体来说,当电池的荷电量不足45%时,根据当前电压,对充电电流提出要求,当达到或是超过70%的荷电量时停止充电。
请参阅图2,本发明一种自动导引运输车的电池模组管理装置的装置模块图,包括:
电压检测模块201,用于:检测电池模组内每个单体电池的电压,根据每个单体电池的电压计算总电压;
温度采集模块202,用于:从设置在电池模组内的温度传感器获取电池模组的温度;
电流检测模块203,用于:从设置在电池模组内的电流传感器获取充放电电流;
绝缘模块204,用于:通过检测检测绝缘电阻的阻值来判断是否绝缘,得到绝缘监测结果;
安全保护模块205,用于:当所述电压、温度、充放电电流、绝缘监测结果不满足预设运行条件时,切断电池模组的充放电回路。
在本发明自动导引运输车的电池模组管理装置的一个实施例中,还包括:
均衡控制模块206,用于:检测电池模组内每个单体电池的荷电量,通过控制每个单体电池与电容电路的通断来保持单体电池之间的平衡。
在本发明自动导引运输车的电池模组管理装置的一个实施例中,还包括:
通信处理模块207,用于:将所述电压、温度、充放电电流、绝缘监测结果上传至上位机,当所述电压、温度、充放电电流、绝缘监测结果不满足预设运行条件时,上位机执行告警操作。
在本发明自动导引运输车的电池模组管理装置的一个实施例中,所述安全保护模块,还用于:
当电池模组的温度超过预设阈值,则切断电池模组的输入电源。
在本发明自动导引运输车的电池模组管理装置的一个实施例中,所述安全保护模块,还用于:
当电池模组中,任一单体电池的荷电量低于预设低电量阈值时,向该单体电池充电,当任一单体电池的荷电量高于预设高电量阈值时,停止向该单体电池充电。
本发明最佳实施例的自动导引运输车的电池模组管理装置,其具有电池模组单体过压、欠压、过充、过放、组电池过流、过温、电量过低保护,还具有实时传递电池数据的通讯功能。
装置主要功能,包括:
1)容量预测SOC:在充放电过程中在线实时监测电池容量,随时给出电池***的剩余容量。
2)过流、过压、温度保护:当电池***出现过流、过压、匀压和温度超标时,能自动切断电池充放电回路,并通知管理***发出示警信号。
3)自动充电控制:当电池的荷电量不足45%时,根据当前电压,对充电电流提出要求,当达到或是超过70%的荷电量时停止充电。
4)充电均衡:在充电过程中,通过调整单节电池充电电流方式,保证***内所有电池的电池端电压在每一时刻有良好的一致性。
5)自检报警:自动检测电池功能是否正常,及时对电池有效性进行判断,若发现***中有电池失效或是将要失效或是与其它电池不一致性增大时,则通知管理***发出示警信号。
6)通讯功能:采用CAN总线以及485通讯的方式与整车管理***进行通讯。
7)参数设置:可以设置***运行的各种参数。
8)上位机管理单元:可以通过485通讯接口向上位机传输实时数据,可实现对电池数据的监控、数据转储和电池性能分析等功能,数据可灵活地与监视 器、充电机、警报器、变频器、功率开关、继电器开关等连接,并可与这些设备联动运行。
另外,在电池外部还可以将电池模组管理装置与上位机等组成一套电池电量智能管理***。其原理为:首先,电池模组管理装置实时获取电池模组内部单体电池的电压、电流、温度、电容量等信息并进行计算,根据获取到的数据信息和计算结果控制充电均衡,从而起到协调电池模组内部单体电池各状态一致的功能;并且,将计算出的信息通过通信单元传送上位机,便于上位机进行电池数据实时显示及相应处理(报警指示、准备充电、结束充电等),从而可以提高电池的利用率,防止电池过冲、过放,延长电池使用寿命。
本发明能在实时监控电池的使用情况的条件下,合理地对AGV小车电池进行充电以及控制充电电流的大小,从而让小车的电量保持在一个稳定的可以持续运行是范围内。另外,上位机通过通讯实时获取电池当前的状态信息并做出相应分析及处理,在分析出数据异常的情况下,***还会自动报警并显示报警信息便于人工进行处理。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (10)

  1. 一种自动导引运输车的电池模组管理方法,其特征在于,包括:
    检测电池模组内每个单体电池的电压;
    从设置在电池模组内的温度传感器获取电池模组的温度;
    从设置在电池模组内的电流传感器获取充放电电流;
    通过检测检测绝缘电阻的阻值来判断是否绝缘,得到绝缘监测结果;
    当所述电压、温度、充放电电流、绝缘监测结果不满足预设运行条件时,切断电池模组的充放电回路。
  2. 根据权利要求1所述的自动导引运输车的电池模组管理方法,其特征在于,还包括:
    检测电池模组内每个单体电池的荷电量,通过控制每个单体电池与电容电路的通断来保持单体电池之间的平衡。
  3. 根据权利要求1所述的自动导引运输车的电池模组管理方法,其特征在于,还包括:
    将所述电压、温度、充放电电流、绝缘监测结果上传至上位机,当所述电压、温度、充放电电流、绝缘监测结果不满足预设运行条件时,上位机执行告警操作。
  4. 根据权利要求1所述的自动导引运输车的电池模组管理方法,其特征在于,还包括:
    当电池模组的温度超过预设阈值,则切断电池模组的输入电源。
  5. 根据权利要求1所述的自动导引运输车的电池模组管理方法,其特征在于,还包括:
    当电池模组中,任一单体电池的荷电量低于预设低电量阈值时,向该单体电池充电,当任一单体电池的荷电量高于预设高电量阈值时,停止向该单体电池充电。
  6. 一种自动导引运输车的电池模组管理装置,其特征在于,包括:
    电压检测模块,用于:检测电池模组内每个单体电池的电压,根据每个单体电池的电压计算总电压;
    温度采集模块,用于:从设置在电池模组内的温度传感器获取电池模组的温度;
    电流检测模块,用于:从设置在电池模组内的电流传感器获取充放电电流;
    绝缘模块,用于:通过检测检测绝缘电阻的阻值来判断是否绝缘,得到绝缘监测结果;
    安全保护模块,用于:当所述电压、温度、充放电电流、绝缘监测结果不满足预设运行条件时,切断电池模组的充放电回路。
  7. 根据权利要求6所述的自动导引运输车的电池模组管理装置,其特征在于,还包括:
    均衡控制模块,用于:检测电池模组内每个单体电池的荷电量,通过控制每个单体电池与电容电路的通断来保持单体电池之间的平衡。
  8. 根据权利要求6所述的自动导引运输车的电池模组管理装置,其特征在于,还包括:
    通信处理模块,用于:将所述电压、温度、充放电电流、绝缘监测结果上传至上位机,当所述电压、温度、充放电电流、绝缘监测结果不满足预设运行条件时,上位机执行告警操作。
  9. 根据权利要求6所述的自动导引运输车的电池模组管理装置,其特征在于,所述安全保护模块,还用于:
    当电池模组的温度超过预设阈值,则切断电池模组的输入电源。
  10. 根据权利要求6所述的自动导引运输车的电池模组管理装置,其特征在于,所述安全保护模块,还用于:
    当电池模组中,任一单体电池的荷电量低于预设低电量阈值时,向该单体电池充电,当任一单体电池的荷电量高于预设高电量阈值时,停止向该单体电 池充电。
PCT/CN2017/092321 2016-12-21 2017-07-09 自动导引运输车的电池模组管理方法、装置 WO2018113270A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611191491.8A CN108232347A (zh) 2016-12-21 2016-12-21 自动导引运输车的电池模组管理方法、装置
CN201611191491.8 2016-12-21

Publications (1)

Publication Number Publication Date
WO2018113270A1 true WO2018113270A1 (zh) 2018-06-28

Family

ID=62624636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092321 WO2018113270A1 (zh) 2016-12-21 2017-07-09 自动导引运输车的电池模组管理方法、装置

Country Status (2)

Country Link
CN (1) CN108232347A (zh)
WO (1) WO2018113270A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111342548A (zh) * 2020-04-10 2020-06-26 深圳市腾云通联科技有限公司 一种用于提升蓄电池组可用性的辅助电源装置
CN111430821A (zh) * 2020-05-13 2020-07-17 泉州劲鑫电子有限公司 一种智能电池配对修复***及方法
CN112498131A (zh) * 2019-09-16 2021-03-16 北京京东乾石科技有限公司 自动导引运输车的智能充电方法、装置、电子设备及介质
CN112787383A (zh) * 2021-01-28 2021-05-11 红云红河烟草(集团)有限责任公司 一种agv小车充电的监控方法
CN113479100A (zh) * 2021-07-13 2021-10-08 国创移动能源创新中心(江苏)有限公司 直流充电桩直流母线监测***及直流充电桩
CN116937623A (zh) * 2023-09-14 2023-10-24 北京盛藏技术有限公司 一种利用新能源预测的混合储能辅调频控制方法及***
CN117477728A (zh) * 2023-12-27 2024-01-30 北京腾华宇航智能制造有限公司 一种ems储能管理***

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111540969B (zh) * 2020-05-14 2023-05-12 义乌易换骑电池有限公司 一种磷酸铁锂电池的安全管理方法
CN114475306B (zh) * 2021-12-29 2024-06-18 北京昊瑞昌科技有限公司 一种agv小车的充电方法
CN115548480B (zh) * 2022-11-01 2023-04-18 湖南东舟能源有限公司 电池***及电池***的控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101256218A (zh) * 2008-04-08 2008-09-03 吉林大学 汽车动力电池荷电状态的测量***
CN101362427A (zh) * 2008-09-09 2009-02-11 宁波拜特测控技术有限公司 一种电动汽车电池管理***
CN101707265A (zh) * 2009-11-11 2010-05-12 惠州市亿能电子有限公司 适合混合动力汽车的新型电池管理***
CN104505550A (zh) * 2014-12-25 2015-04-08 宁德时代新能源科技有限公司 磷酸铁锂电池组的被动均衡方法及***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201257887Y (zh) * 2008-09-10 2009-06-17 宁波拜特测控技术有限公司 一种电动汽车电池管理***
CN105337327B (zh) * 2014-08-07 2018-09-04 南京理工自动化研究院有限公司 基于n/m冗余均衡策略的动力锂电池管理***
US9263877B1 (en) * 2014-12-30 2016-02-16 Api Technologies Corp. Temperature-compensated current monitoring
CN105539187B (zh) * 2016-01-22 2018-01-23 深圳市智锂能源科技有限公司 一种动力锂电池全生命周期智能监管***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101256218A (zh) * 2008-04-08 2008-09-03 吉林大学 汽车动力电池荷电状态的测量***
CN101362427A (zh) * 2008-09-09 2009-02-11 宁波拜特测控技术有限公司 一种电动汽车电池管理***
CN101707265A (zh) * 2009-11-11 2010-05-12 惠州市亿能电子有限公司 适合混合动力汽车的新型电池管理***
CN104505550A (zh) * 2014-12-25 2015-04-08 宁德时代新能源科技有限公司 磷酸铁锂电池组的被动均衡方法及***

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112498131A (zh) * 2019-09-16 2021-03-16 北京京东乾石科技有限公司 自动导引运输车的智能充电方法、装置、电子设备及介质
CN112498131B (zh) * 2019-09-16 2023-06-30 北京京东乾石科技有限公司 自动导引运输车的智能充电方法、装置、电子设备及介质
CN111342548A (zh) * 2020-04-10 2020-06-26 深圳市腾云通联科技有限公司 一种用于提升蓄电池组可用性的辅助电源装置
CN111342548B (zh) * 2020-04-10 2024-05-24 深圳市腾云通联科技有限公司 一种用于提升蓄电池组可用性的辅助电源装置
CN111430821A (zh) * 2020-05-13 2020-07-17 泉州劲鑫电子有限公司 一种智能电池配对修复***及方法
CN112787383A (zh) * 2021-01-28 2021-05-11 红云红河烟草(集团)有限责任公司 一种agv小车充电的监控方法
CN113479100A (zh) * 2021-07-13 2021-10-08 国创移动能源创新中心(江苏)有限公司 直流充电桩直流母线监测***及直流充电桩
CN116937623A (zh) * 2023-09-14 2023-10-24 北京盛藏技术有限公司 一种利用新能源预测的混合储能辅调频控制方法及***
CN116937623B (zh) * 2023-09-14 2023-12-12 北京盛藏技术有限公司 一种利用新能源预测的混合储能辅调频控制方法及***
CN117477728A (zh) * 2023-12-27 2024-01-30 北京腾华宇航智能制造有限公司 一种ems储能管理***
CN117477728B (zh) * 2023-12-27 2024-03-19 北京腾华宇航智能制造有限公司 一种ems储能管理***

Also Published As

Publication number Publication date
CN108232347A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
WO2018113270A1 (zh) 自动导引运输车的电池模组管理方法、装置
CN101232110B (zh) 电池充电方法和装置
JP6228666B2 (ja) 電池システム
EP2592684B1 (en) Apparatus for managing secondary battery
CN115514064B (zh) 一种用于锂电池电源***的电池管理***
KR20130061964A (ko) 차량용 배터리 관리시스템 및 관리방법
CN109245283B (zh) 备用电池监控***及不间断供电智能切换及监控***
CN105553030A (zh) 一种锂电池不间断电源管理***
CN204376464U (zh) 一种电动车电池智能管理***
US9837838B2 (en) Collecting module, new lead-acid battery, charge and discharge control device and intelligent battery
CN210984891U (zh) 一种用于锂电池保护板的智能温度控制***
CN103311965A (zh) 并联电池组充放电智能管理装置和方法
CN202455122U (zh) 并联电池组充放电智能管理装置
CN104242416A (zh) 一种电动自行车蓄电池充电管理***
CN109167108A (zh) 电池管理***内的分级功率限制保护方法
WO2013169493A1 (en) Methods and systems for battery management and charger control
KR101795446B1 (ko) 무정전 전원 장치의 배터리 보호 시스템 및 그 방법
CN103311966B (zh) 应用于并联电池组的电池自适应控制装置和方法
CN103296733A (zh) 直流供电***中电池组供电回路状态的监测方法
CN117141233A (zh) 一种电池控制***
CN107390131B (zh) 变电站蓄电池综合监测***
KR101439233B1 (ko) 보조 전원을 구비한 배터리 관리 시스템
CN104716719A (zh) 一种带熔断器的电池管理装置
CN113682480A (zh) 一种无人直升机用应急电源***
KR101358765B1 (ko) 2차 전지 관리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17883384

Country of ref document: EP

Kind code of ref document: A1