WO2018113164A1 - 一种三维检测文件的生成方法及检测方法 - Google Patents

一种三维检测文件的生成方法及检测方法 Download PDF

Info

Publication number
WO2018113164A1
WO2018113164A1 PCT/CN2017/083468 CN2017083468W WO2018113164A1 WO 2018113164 A1 WO2018113164 A1 WO 2018113164A1 CN 2017083468 W CN2017083468 W CN 2017083468W WO 2018113164 A1 WO2018113164 A1 WO 2018113164A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
dimensional
information
model
test
Prior art date
Application number
PCT/CN2017/083468
Other languages
English (en)
French (fr)
Inventor
张红旗
张祥祥
陈兴玉
程五四
周红桥
陈帝江
胡祥涛
田富君
魏一雄
苏建军
孙宁
Original Assignee
中国电子科技集团公司第三十八研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第三十八研究所 filed Critical 中国电子科技集团公司第三十八研究所
Priority to JP2019523013A priority Critical patent/JP6792706B2/ja
Publication of WO2018113164A1 publication Critical patent/WO2018113164A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention belongs to the technical field of three-dimensional digital technology, and in particular relates to a method for generating a three-dimensional detection file.
  • Model-Based Definition is a method body that uses an integrated 3D solid model to fully express product definition information. It specifies the product dimensions, tolerance labeling rules, and process information representation methods in the 3D solid model.
  • MBD Model-Based Definition
  • the essence of MBD technology is to define the product design, manufacturing process, tooling design, assembly process, inspection and other information by using the product 3D model as the information carrier. It is the sole basis and data source for the whole life cycle of design, manufacturing and inspection.
  • the successful experience of developed countries proves that MBD mode is a successful way of digital design and manufacturing.
  • Boeing Company of the United States adopts MBD technology to realize the high integration of Boeing 787 aircraft structural design, process design, tooling design, parts processing, assembly and inspection.
  • the synergy has truly realized the three-dimensional digitization and paperlessness of the aircraft design and manufacturing process, which greatly shortened the aircraft development cycle.
  • the domestic manufacturing industry is also vigorously promoting MBD technology, and has achieved more research results in the promotion and application based on MBD technology.
  • domestic research on the MBD model is still in the exploratory stage, and relevant design tools and management specifications need to be further improved, especially for the detection link, which still remains in the traditional two-dimensional mode.
  • the inspectors carry out testing activities in accordance with the technical information such as testing elements, testing requirements, and testing methods.
  • the formation process of the test documents is: the upstream designer carries out the three-dimensional design work according to the product function and performance requirements, and converts into a two-dimensional engineering drawing through projection to express the design requirements of product size, tolerance, material, etc.; the technicians according to the two-dimensional engineering drawing, Understand the product design requirements, prepare a two-dimensional process card to guide the product manufacturing process; for the inspection process, the process personnel refer to the complexity of the product component inspection based on the process specification card, according to It is necessary to generate a test operation instruction book.
  • the inspector For the intermediate inspection process of product manufacturing, it is often necessary to generate a corresponding process drawing for reference; the above two-dimensional engineering drawing, process card, process drawing and inspection operation instruction book are issued together.
  • the inspector first recognizes the map, and then identifies the detection information such as the detection elements and detection requirements from many paper documents.
  • the detection information carrier is large, the expression is not intuitive, error-prone, and the detection information acquisition efficiency is low.
  • the inspector needs to extract the detection information in multiple documents, especially for complex machine-added parts, and the number and types of detection sizes are large. The inspection work is very troublesome.
  • 3D model is used as information carrier to define product design, manufacturing process, tooling design, assembly process, testing and other information as design.
  • the only basis for the life cycle of products such as manufacturing, testing, and the trend of data sources are increasingly recognized.
  • the main carrier based on the traditional mode detection information is the two-dimensional drawing and the derived process card, process drawing and inspection work instruction documents, etc., which are not uniform with the upstream three-dimensional design data source, which is easy to cause the detection process ambiguity and detection. Planning and product design changes are not synchronized, the amount of information is missing, and information transmission is not smooth.
  • the 3D model is mainly used to express the information of products at different stages by means of geometry, 3D annotation and attributes, for example, in product design.
  • the three-dimensional configuration of the product is constructed in the CAD system, and the technical requirements such as product size, tolerance, reference, surface roughness, etc. are expressed by three-dimensional annotation, and the product figure number, name, material and other information are described in accordance with the attribute method;
  • the craftsman generates the 3D process model corresponding to each process, and guides the manufacturing process in a more intuitive and interactive way.
  • the detection process is generally divided into online detection and offline detection.
  • On-line inspection refers to the process of incorporating inspection into the process flow or combining with other types of work to form a process. After the worker completes the content specified in the process specification, the worker can pass the self-test to confirm that the processed quality characteristics meet the requirements and then can be transferred to the next process. , in the process route does not reflect the detection node, generally by the workers themselves It is responsible for the quality characteristics of the products formed by its own processing operations.
  • Off-line inspection refers to the delivery of the finished parts to a specially set inspection station, where the full-time inspector detects and judges the product according to the inspection nodes and requirements specified in the process documentation.
  • the process model construction has its own particularity compared with other processes.
  • the inspection process generally does not involve changes in the geometric characteristics of the product, and the geometric characteristics of the process model are consistent with the geometric features corresponding to the detection of the previous process model.
  • the detection object involves the detection requirements corresponding to the process before the detection process in the process route or between the two detection processes, the detection information is various, the detection methods and tools used are different, and the correlation between the partial detection information Strong, it brings great trouble to the construction of the test process model; finally, there are many types of test information, and there is a high demand for rapid detection and search of test objects and detection requirements.
  • the present invention proposes a method for generating a three-dimensional detection file, which expresses detection information with a three-dimensional inspection process model as a core, unifies product design, process, and detection data source, and opens a design-process-manufacture-detection data information link.
  • the workshop site uses the terminal equipment such as computer, tablet, and display console to realize the rapid and intuitive expression of the detection information through the three-dimensional visualization means and the detection information association technology, and assists the inspector to carry out the inspection work.
  • the technical problem to be solved by the present invention is to provide a method for generating a three-dimensional detection file that realizes a quick and intuitive expression of detection information and assists an inspector to carry out detection work.
  • a method for generating a three-dimensional detection file comprising the following steps:
  • 3D design model configuration The designer carries out 3D design according to the design requirements, forms a 3D design model, and expresses product dimensions, tolerances, datums, surface roughness, and drawings in 3D annotation and attributes. Information such as number, name, and materials are issued and submitted to the process for process design.
  • Three-dimensional process design Based on the three-dimensional design model, the craftsman carries out three-dimensional process design, compiles the process route and generates each three-dimensional process model. According to the specific product characteristics and work flow, the necessary inspection links are set up between the processes, and the test is incorporated into the process route.
  • the technician On the basis of detecting the geometric characteristics of the previous process model, the technician inherits the dimensional tolerance, geometrical tolerance, reference and surface roughness and technical requirements of all the processes before the inspection process, and adds inspection items and inspection requirements according to the inspection requirements. Detect tool information and create a corresponding view against the test item.
  • the technician stores the inspection process model and its ancillary information to relevant locations in the PDM system.
  • the inspector uses the terminal display device at the workshop site to load the inspection process model and its subsidiary information into the specified inspection file template according to the requirements, and generate a three-dimensional inspection file to guide the subsequent inspection work.
  • the detection item, the detection requirement, and the detection tool information in step 1) are added to the detection process model in a three-dimensional annotation, an attribute, or a combination of the two.
  • the detection process model storage in step 2) is to reduce the data capacity and speed up the system response, and the detection process model formed in step 1) is lightly processed and stored in a CAD file format to a PDM folder. in.
  • the auxiliary information in steps 2) and 3) is step 1) information recorded in an attribute manner to the detection process model, stored in a corresponding data table in the PDM system, and established and detected by the database technology. Relationship.
  • the detection information storage is divided into two categories, one is a dimensional tolerance, a geometric tolerance, and a reference to the geometrical features of the detection process model.
  • the format is stored in the folder of the PDM; the other type is the detection item, the detection request, the detection tool information recorded in the detection process model by the parameter form, and the process number and the process name recorded in the same parameter form as the detection process.
  • the data table is stored in the corresponding data table in the PDM, and the relationship between the parameter information and the detection process model is mapped by the database primary key, and the detection process of the process is retrieved in the PDM folder by the part number and the process number of the detection process.
  • the model that is, the CAD document format; the process name, the detection item, the detection request, the detection tool information are retrieved in the data table, and the view corresponding to the detection process model can be associated according to the detection item, and the two types are associated by the part drawing number and the detection process number. Information to achieve the associated storage of detection information.
  • step 3 in the detecting station, the inspector relies on the display terminal, and according to the associated storage relationship defined in step 2), the detection process model and its attachment are loaded according to the part model drawing number and the process number of the detecting process.
  • the information together with the test file template, generates a three-dimensional inspection file that meets the requirements of the enterprise, and assists in the detection activity.
  • the invention also discloses a method for detecting using the above three-dimensional detection file, comprising the following steps:
  • Step 1 Generate a three-dimensional inspection file
  • Step 2 The three-dimensional detection file is loaded into the terminal of the workshop site and displayed on the display device of the terminal;
  • Step 3 The inspector detects the product based on the three-dimensional inspection file.
  • the dynamic and intuitive expression of the detection information is realized.
  • the designer does not need to convert the 3D design drawing into a 2D engineering drawing through projection, and the process personnel do not need to compile the 2D process card according to the 2D engineering drawing.
  • the inspector does not need to identify the detection elements such as detection elements and detection requirements from many paper documents.
  • the inspector can obtain the detection information based on the three-dimensional model, carry out the detection work in a WYSIWYG manner, and enhance the intuitiveness of the detection information acquisition. Dynamic, significantly improved detection efficiency.
  • FIG. 1 is a schematic diagram of a method for generating a three-dimensional detection file according to the present invention
  • Figure 2 is a schematic front view of the three-dimensional design model of the embodiment
  • Figure 3 is a schematic view of the left side view of the three-dimensional design model of the embodiment
  • FIG. 4 is a schematic diagram showing a relationship between a test process model view and a test item in the embodiment
  • FIG. 5 is a view corresponding to the inspection item 1 corresponding to the process 9 in the embodiment, and the waveguide depth and the width;
  • FIG. 6 is a view corresponding to the inspection item 2 corresponding to the process 9 in the embodiment, the positioning hole and the outer dimensions;
  • Fig. 7 is a view corresponding to the inspection item 3 corresponding to the size of the radiation slit in the step 9 in the embodiment.
  • a method for generating a three-dimensional detection file includes the following steps:
  • 3D design model configuration The designer carries out 3D design according to the design requirements, forms a 3D design model, and expresses product dimensions, tolerances, datums, surface roughness, and drawings in 3D annotation and attributes. Information such as number, name, and materials are issued and submitted to the process for process design.
  • Three-dimensional process design Based on the three-dimensional design model, the craftsman carries out three-dimensional process design, compiles the process route and generates each three-dimensional process model. According to the specific product characteristics and work flow, the necessary inspection links are set up between the processes, and the test is incorporated into the process route.
  • the technician On the basis of detecting the geometric characteristics of the previous process model, the technician inherits the dimensional tolerance, geometrical tolerance, reference and surface roughness and technical requirements of all the processes before the inspection process, and adds inspection items and inspection requirements according to the inspection requirements. Detect tool information and create a corresponding view against the test item.
  • the technician stores the inspection process model and its ancillary information to relevant locations in the PDM system.
  • the inspector uses the terminal display device at the workshop site to load the inspection process model and its subsidiary information into the specified inspection file template according to the requirements, and generate a three-dimensional inspection file to guide the subsequent inspection work.
  • the detection item, the detection requirement, and the detection tool information in step 1) are added to the detection process model in a three-dimensional annotation, an attribute, or a combination of the two.
  • the detection process model storage in step 2) is to reduce the data capacity and speed up the system response, and the detection process model formed in step 1) is lightly processed and stored in a CAD file format to a PDM folder. in.
  • the auxiliary information in steps 2) and 3) is step 1) information recorded in an attribute manner to the detection process model, stored in a corresponding data table in the PDM system, and established and detected by the database technology. Relationship.
  • the detection file template in step 3) is a webpage template developed based on the IE browser.
  • FIG. 2 A schematic diagram of the three-dimensional design model of a shell part is shown in Figure 2 and Figure 3. Multiple views can be given as needed.
  • the processing route is (1) stock preparation - (2) clamp - (3) milling - (4) heat treatment - (5) Detection - (6) CNC milling - (7) clamp - (8) wire cutting - (9) detection.
  • the method for generating the three-dimensional detection file of the part includes:
  • the technician On the basis of detecting the geometric characteristics of the previous process model, the technician inherits the dimensional tolerance, geometrical tolerance, reference and surface roughness and technical requirements of all the processes before the inspection process, and adds inspection items and inspection requirements according to the inspection requirements. Detect tool information and create a corresponding view against the test item.
  • test item 1 is the part size of the part, and the corresponding tool is a vernier caliper.
  • the test item (2) is the hardness of the part, and the corresponding tool is a Vickers hardness tester. That is, three parameters of the detection item, the detection request, and the detection tool are added to the parameters of the process (5) detection process model, and each parameter has two pieces of data.
  • Step 9 detects the geometry of the model 8 line cutting process first. On the basis of this, it inherits the dimensional tolerance, shape tolerance, reference and other information between the process 5 and the heat treatment of the process 8.
  • the waveguide depth and width and positioning are determined as needed. Hole and dimensions, radiant slit size and waveguide lumen symmetry 4 inspection items of flatness, adding inspection requirements and inspection tool information, and the detection tools are vernier calipers and coordinate measuring machines. That is, three parameters of the detection item, the detection request, and the detection tool are added to the parameters of the process model in the process 9, and each parameter has four pieces of data.
  • the 3D model can have multiple views, and is not limited to the six views and the isometric drawings that are common in 2D).
  • the view is created by detecting the view direction definition and the 3D annotation information display control based on the geometric characteristics of the inspection process model.
  • the view corresponds to the detection item, as shown in FIG. 4, and the information display orientation is determined by defining the view direction.
  • the three-dimensional annotation information display control is used for filtering and filtering the inherited dimensional tolerance, the geometrical tolerance, the reference and other three-dimensional annotation information, only Displays 3D annotation information related to a test item.
  • 5, 6, and 7 are views corresponding to the waveguide depth and width, the positioning hole and the outer dimension, and the radiation slit size detecting item.
  • the process designer stores the inspection process model and its ancillary information to relevant locations in the PDM system.
  • detection information storage There are two types of detection information storage.
  • One is the three-dimensional annotation information such as dimensional tolerance, geometric tolerance, and reference attached to the geometric features of the inspection process model. It is stored in the CAD file format in the PDM folder.
  • the other is the adoption.
  • the parameter form records the detection items, detection requirements, and inspection tool information in the inspection process model, and the information such as the process number and the process name recorded in the same manner as the detection process are respectively stored in the corresponding data table in the PDM, and are mapped through the database primary key. The relationship between the above parameter information and the detection process model.
  • the detection process model of the process that is, the CAD document format is retrieved in the PDM folder by the part number and the process number of the detection process; the process name, the detection item, the detection request, and the detection tool information are retrieved in the data table. And according to the detection item, the view corresponding to the detection process model can be associated. Correlation storage of detection information is realized by associating two types of information by part number and detection operation number.
  • the formed detection process model is lightened and generated.
  • Corresponding lightweight models including dimensional tolerances, geometric tolerances, and other three-dimensional annotation information, are stored in a CAD file format in a PDM folder.
  • the process number, the process name, the detection item, the detection request, and the detection tool in the process 5 and the process 9 are stored in an attribute manner in the corresponding data table in the PDM system, and the process key model is established and detected by the database primary key mapping technology attribute information. connection relation.
  • the inspector uses the terminal display device at the workshop site to load the inspection process model and its subsidiary information into the specified inspection file template according to the requirements, and generate a three-dimensional inspection file to guide the subsequent inspection work.
  • the inspector In the inspection station, the inspector relies on the display terminal, according to the associated storage relationship defined in step 2), loads the detection process model and its subsidiary information according to the part model number and the process number of the inspection process, and cooperates with the detection file template to generate the enterprise document.
  • the inspector can load different detection process models; for the detection process in which multiple detection items exist, the view corresponding to the process model can be detected according to the detection item.
  • the inspector can conveniently implement the information association query, and can directly obtain the detection information through the interactive operation such as zooming and rotating unique to the three-dimensional model, and assist the detection work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Graphics (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)

Abstract

本发明公开了一种三维检测文件的生成方法,包括:前期准备:三维设计模型构型:设计三维设计模型;三维工艺设计:依据三维设计模型,开展三维工艺设计,编制工艺路线及生成各道三维工序模型;检测阶段:1)检测工序模型构建;2)检测信息存储;3)信息加载及关联性查看,检测员在车间现场借助终端显示设备,根据要求将检测工序模型及其附属信息进行加载到指定检测文件模板,生成三维检测文件,指导后续检测工作。本发明还公开了一种使用三维检测文件进行检测的方法。本发明具有以下优点:1)有利于产品全生命周期信息的统一管理。2)检测员以所见即所得的方式开展检测工作,增强了检测信息获取直观性和动态性,显著提高了检测效率。

Description

一种三维检测文件的生成方法及检测方法 技术领域
本发明属于三维数字化工艺技术领域,具体涉及一种三维检测文件的生成方法。
背景技术
基于模型的定义(MBD)是一个用集成的三维实体模型来完整表达产品定义信息的方法体,它详细规定了三维实体模型中产品尺寸、公差标注规则和工艺信息表达方法。MBD技术的本质是以产品三维模型为信息载体定义产品设计、制造工艺、工装设计、装配工艺、检验等信息,作为设计、制造、检验等产品全生命周期各阶段的唯一依据和数据源。国外发达国家的成功经验证明MBD模式是数字化设计制造的成功途径,如美国波音公司采用MBD技术实现了波音787飞机结构设计、工艺设计、工装设计、零件加工、装配、检验等环节的高度融合和协同,真正实现了飞机设计制造过程的三维数字化、无纸化,大大缩短了飞机研制周期。国内制造业也在大力推广MBD技术,在基于MBD技术的推广和应用方面取得了较多的研究成果。但总体看来,国内对MBD模式的研究还处于探索阶段,相关设计工具和管理规范还需要进一步完善,尤其对于检测环节,目前仍然停留在传统二维模式。
作为产品质量的把关环节,检测员根据检测元素、检测要求、检测方式等技术信息,配合产品零部件实物开展检测活动。目前检测文件的形成过程为:上游设计人员根据产品功能和性能要求开展三维设计工作,通过投影转换成二维工程图,表达产品尺寸、公差、材料等设计要求;工艺人员根据二维工程图,理解产品设计要求,编制二维工艺过程卡用于指导产品制造过程;对于检测环节,工艺人员在工艺规程卡的基础上,参照产品零部件检测的复杂程度,根据 需要生成检测作业指导书,对于产品制造的中间检测工序,往往还需要生成对应的工艺附图用于参照;上述二维工程图、工艺过程卡、工艺附图和检测作业指导书一并下发到生产车间,检测员首先识图,然后从诸多纸质文件中识别出检测要素、检测要求等检测信息。这种模式下检测信息载体多、表达不直观,易出错,检测信息获取效率低,检测员需要在多份文件中提取检测信息,尤其是对于复杂机加零件,检测尺寸数量和种类多,给检测工作带来很大困扰。
另外,随着三维数字化设计在产品设计、工艺环节的普及应用,尤其是MBD技术的推广应用,以三维模型为信息载体定义产品设计、制造工艺、工装设计、装配工艺、检测等信息,作为设计、制造、检测等产品全生命周期各阶段的唯一依据和数据源的趋势越来越得到广泛认可。而传统模式检测信息依据的主要载体为二维图纸以及派生出的工艺过程卡、工艺附图和检测作业指导书等文件,与上游三维设计数据源不统一,容易引起检测工艺二义性、检测规划与产品设计更改不同步、信息量缺失、信息传递不通畅等问题。
目前基于MBD技术的三维设计、三维工艺研究已较为广泛,即依据MBD技术的核心思想,以三维模型为主,采用几何、三维标注和属性的方式表达产品在不同阶段的信息,例如在产品设计阶段,在CAD***构建产品三维构型,采用三维标注的方式表达产品尺寸、公差、基准、表面粗糙度等技术要求,配合属性方式描述产品图号、名称、材料等信息;在工艺设计阶段,依据三维标注的设计模型,工艺人员生成各道工序对应的三维工序模型,以更加直观、可交互操作的方式指导生产制造过程。检测环节一般分为在线检测和离线检测两类。在线检测是指将检测纳入工序流程中或与其它工种合并形成一道工序,工人在完成工艺规程指定的内容后,通过自检确认所加工的质量特性符合要求后即可转入下道工序的行为,在工艺路线中不体现检测节点,一般由工人自己实 施并对自己加工操作形成的产品质量特性负责。离线检测是指将加工完成的零部件送到专门设置的检测工位,由专职检测员按工艺文件中规定的检测节点及要求对产品进行检测和判断的行为。
检测作为工艺过程卡中的工序,其工序模型构建与其他工序相比有自身特殊性。首先,检测工序一般不涉及到产品几何特征变化,其工序模型几何特征与检测上一道工序模型对应的几何特征一致。其次,检测对象涉及到工艺路线中检测工序以前所有工序或两道检测工序之间工序对应的检测要求,检测信息种类多,采用的检测方法和工具各异,且部分检测信息之间的关联性强,给检测工序模型的构建带来较大困扰;最后,检测信息种类多,对检测对象和检测要求快速定位和搜索的需求较高。
鉴于此,本发明提出一种三维检测文件的生成方法,以三维检测工序模型为核心表达检测信息,统一产品设计、工艺、检测数据源,打通设计-工艺-制造-检测数据信息链路,在车间现场借助计算机、平板、显控台等终端设备,通过三维可视化手段和检测信息关联技术实现检测信息的快速直观表达,辅助检测员开展检测工作。
发明内容
本发明所要解决的技术问题在于提供了一种实现检测信息的快速直观表达,辅助检测员开展检测工作的三维检测文件的生成方法。
本发明是通过以下技术方案解决上述技术问题的:一种三维检测文件的生成方法,包括以下步骤:
前期准备阶段:
三维设计模型构型:设计人员根据设计要求开展三维设计,形成三维设计模型,以三维标注和属性的方式表达产品尺寸、公差、基准、表面粗糙度、图 号、名称、材料等信息,经审批后并下发给工艺用于开展工艺设计。
三维工艺设计:工艺人员依据三维设计模型,开展三维工艺设计,编制工艺路线及生成各道三维工序模型,根据具体产品特性和工作流程,在工序间设置必要的检测环节,将检测纳入工艺路线。
检测阶段:
1)检测工序模型构建
工艺人员在检测上一道工序模型几何特征的基础上,继承该检测工序以前所有工序的尺寸公差、形位公差、基准和表面粗糙度和技术要求信息,并根据检测需要添加检测项目、检测要求、检测工具信息,并对照检测项目创建对应视图。
2)检测信息存储
工艺人员将检测工序模型及其附属信息存储到PDM***相关位置。
3)信息加载及关联性查看
检测员在车间现场借助终端显示设备,根据要求将检测工序模型及其附属信息进行加载到指定检测文件模板,生成三维检测文件,指导后续检测工作。
作为具体的实施方案,步骤1)中所述检测项目、检测要求和检测工具信息是以三维标注、属性或两者结合的方式添加到检测工序模型。
作为具体的实施方案,步骤2)中所述检测工序模型存储是为了减低数据容量和加快***响应,对步骤1)形成的检测工序模型进行轻量化处理,以CAD文档格式存储到PDM的文件夹中。
作为具体的实施方案,步骤2)、3)中所述附属信息是步骤1)以属性方式记录到检测工序模型的信息,存储到PDM***中对应的数据表,通过数据库技术建立与检测工序模型的关联关系。
作为具体的实施方案,步骤2)检测信息存储中,检测信息存储分为两类,一类是依附于检测工序模型几何特征存在的尺寸公差、形位公差、基准这些三维标注信息,以CAD文档格式存储到PDM的文件夹中;另一类是采用参数形式记录到检测工序模型中的检测项目、检测要求、检测工具信息,与该检测工序同样以参数形式记录的工序号、工序名称等信息分别存储到PDM中对应的数据表,通过数据库主键映射上述参数信息与检测工序模型的关联关系,具体为通过该零件图号和检测工序所在工序号在PDM的文件夹检索到该工序的检测工序模型,即CAD文档格式;在数据表中检索到工序名称、检测项目、检测要求、检测工具信息,并且根据检测项目可以关联检测工序模型对应的视图,通过零件图号和检测工序号关联两类信息,实现检测信息的关联存储。
作为具体的实施方案,步骤3)中,在检测工位,检测员依托显示终端,按照步骤2)定义的关联存储关系,根据零件模型图号和检测工序所在工序号加载检测工序模型及其附属信息,配合检测文件模板生成符合企业要求的三维检测文件,辅助检测活动。
本发明还公开了使用上述三维检测文件进行检测的方法,包括下述步骤:
步骤1:生成三维检测文件;
步骤2:三维检测文件加载到车间现场的终端,并且在终端的显示设备上显示出来;
步骤3:检测员根据三维检测文件检测产品。
本发明相比现有技术具有以下优点:
1)实现了以三维模型为核心的产品设计、工艺、检测数据源的统一,检测能够有效继承设计和工艺环节规定的信息,并添加检测环节信息实现产品设计-工艺-检测数据链锯的贯通与统一,有利于产品全生命周期信息的统一管理。
2)通过三维可视化方法和信息关联技术实现了检测信息的动态直观表达,设计人员无需将三维设计图通过投影转换成二维工程图,工艺人员也无需根据二维工程图编制二维工艺过程卡,检测人员无需从诸多纸质文件中识别出检测要素、检测要求等检测信息,检测员可基于三维模型获取检测信息,以所见即所得的方式开展检测工作,增强了检测信息获取直观性和动态性,显著提高了检测效率。
附图说明
图1是本发明提出的三维检测文件生成方法示意图;
图2是实施例三维设计模型主视图示意图;
图3是实施例三维设计模型左视图示意图
图4是实施例中检测工序模型视图与检测项目关联关系示意图;
图5是实施例中工序9对应的检查项目1——波导深度及宽度对应的视图;
图6是实施例中工序9对应的检查项目2——定位孔及外形尺寸对应的视图;
图7是实施例中工序9对应的检查项目3——辐射缝尺寸对应的视图。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
请参阅图1所示,本发明一种三维检测文件的生成方法,包括以下步骤:
前期准备阶段:
三维设计模型构型:设计人员根据设计要求开展三维设计,形成三维设计模型,以三维标注和属性的方式表达产品尺寸、公差、基准、表面粗糙度、图 号、名称、材料等信息,经审批后并下发给工艺用于开展工艺设计。
三维工艺设计:工艺人员依据三维设计模型,开展三维工艺设计,编制工艺路线及生成各道三维工序模型,根据具体产品特性和工作流程,在工序间设置必要的检测环节,将检测纳入工艺路线。
检测阶段:
1)检测工序模型构建
工艺人员在检测上一道工序模型几何特征的基础上,继承该检测工序以前所有工序的尺寸公差、形位公差、基准和表面粗糙度和技术要求信息,并根据检测需要添加检测项目、检测要求、检测工具信息,并对照检测项目创建对应视图。
2)检测信息存储
工艺人员将检测工序模型及其附属信息存储到PDM***相关位置。
3)信息加载及关联性查看
检测员在车间现场借助终端显示设备,根据要求将检测工序模型及其附属信息进行加载到指定检测文件模板,生成三维检测文件,指导后续检测工作。
作为具体的实施方案,步骤1)中所述检测项目、检测要求和检测工具信息是以三维标注、属性或两者结合的方式添加到检测工序模型。
作为具体的实施方案,步骤2)中所述检测工序模型存储是为了减低数据容量和加快***响应,对步骤1)形成的检测工序模型进行轻量化处理,以CAD文档格式存储到PDM的文件夹中。
作为具体的实施方案,步骤2)、3)中所述附属信息是步骤1)以属性方式记录到检测工序模型的信息,存储到PDM***中对应的数据表,通过数据库技术建立与检测工序模型的关联关系。
作为具体的实施方案,步骤3)中所述检测文件模板是基于IE浏览器开发的网页式模板。
某壳体零件三维设计模型示意图如图2、3所示,可根据需要给出多个视图显示,其加工工艺路线为(1)备料-(2)钳-(3)铣-(4)热处理-(5)检测-(6)数控铣-(7)钳-(8)线切割-(9)检测。该零件三维检测文件的生成方法步骤包括:
1)检测工序模型构建
工艺人员在检测上一道工序模型几何特征的基础上,继承该检测工序以前所有工序的尺寸公差、形位公差、基准和表面粗糙度和技术要求信息,并根据检测需要添加检测项目、检测要求、检测工具信息,并对照检测项目创建对应视图。
针对中间工序(5)检测,首先继承工序(4)热处理工序模型几何特征,在此基础上继承从工序(1)备料到工序(4)热处理之间的尺寸公差等三维标注信息,然后以参数的形式将检测项目、检测要求和检测工具信息记录到检测工序模型中。三维模型一般有很多参数信息,如图号、名称、材料、重量等,检测项目、检测要求和检测工具等信息通过参数形式记录到检测工序模型,便于信息的结构化管理和存储。检测项目1是零件外形尺寸,对应的工具为游标卡尺。检测项目(2)是零件硬度,对应的工具为韦氏硬度计。即在工序(5)检测工序模型的参数中新增检测项目、检测要求和检测工具三个参数,每个参数均有2条数据。
工序9检测首先继承工序8线切割工序模型几何特征,在此基础上继承从工序5检测到工序8热处理之间的尺寸公差、形位公差、基准等信息,根据需要确定波导深度及宽度、定位孔及外形尺寸、辐射缝尺寸和波导内腔对称度及 平面度4项检测项目,添加检测要求和检测工具信息,检测工具分别为游标卡尺和三坐标测量机。即在工序9检测工序模型的参数中新增检测项目、检测要求和检测工具三个参数,每个参数均有4条数据。然后对照4项检测项目创建对应的4个视图(注:三维模型可以有多个视图,且不仅限于二维中常见的六个视图和轴测图)。视图是在检测工序模型几何特征的基础上,通过对视图方向定义和三维标注信息显示控制而创建的。视图与检测项目对应,如图4所示,并通过定义视图方向确定信息显示方位,三维标注信息显示控制用于对继承的尺寸公差、形位公差、基准等三维标注信息进行筛选、过滤,仅显示与某检测项目相关的三维标注信息。如图5、6、7分别为波导深度及宽度、定位孔及外形尺寸、辐射缝尺寸检测项目对应的视图。
2)检测信息存储
工艺设计人员将检测工序模型及其附属信息存储到PDM***相关位置。检测信息存储分为两类,一类是依附于检测工序模型几何特征存在的尺寸公差、形位公差、基准等三维标注信息,以CAD文档格式存储到PDM的文件夹中;另一类是采用参数形式记录到检测工序模型中的检测项目、检测要求、检测工具信息,与该检测工序同样以参数形式记录的工序号、工序名称等信息分别存储到PDM中对应的数据表,通过数据库主键映射上述参数信息与检测工序模型的关联关系。具体为通过该零件图号和检测工序所在工序号在PDM的文件夹检索到该工序的检测工序模型,即CAD文档格式;在数据表中检索到工序名称、检测项目、检测要求、检测工具信息,并且根据检测项目可以关联检测工序模型对应的视图。通过零件图号和检测工序号关联两类信息,实现检测信息的关联存储。
针对工序5和工序9检测,将形成的检测工序模型进行轻量化处理,生成 对应的轻量化模型,包含尺寸公差、形位公差、基准等三维标注信息,以CAD文档格式存储到PDM的文件夹中。同时,工序5和工序9中的工序号、工序名称、检测项目、检测要求和检测工具等以属性方式存储到PDM***中对应的数据表,通过数据库主键映射技术属性信息建立与检测工序模型的关联关系。
3)信息加载及关联性查看
检测员在车间现场借助终端显示设备,根据要求将检测工序模型及其附属信息进行加载到指定检测文件模板,生成三维检测文件,指导后续检测工作。
在检测工位,检测员依托显示终端,按照步骤2)定义的关联存储关系,根据零件模型图号和检测工序所在工序号加载检测工序模型及其附属信息,配合检测文件模板生成符合企业要求的三维检测文件,辅助检测活动。针对不同的检测工序,检测员可以加载不同的检测工序模型;对于存在多个检测项目的检测工序,可以根据检测项目关联检测工序模型对应的视图。检测员可方便的实现信息关联查询,并可通过三维模型特有的缩放、旋转等交互操作直观获取检测信息,辅助检测工作开展。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种三维检测文件的生成方法,其特征在于,包括以下步骤:
    前期准备阶段:
    三维设计模型构型:设计三维设计模型,三维设计模型经审批后下发给工艺用于开展工艺设计;
    三维工艺设计:依据三维设计模型,开展三维工艺设计,编制工艺路线及生成各道三维工序模型;
    检测阶段:
    1)检测工序模型构建
    工艺人员在检测上一道工序模型几何特征的基础上,根据检测需要添加检测信息,并对照检测项目创建对应视图;
    2)检测信息存储
    工艺人员将检测工序模型及其附属信息存储到PDM***相关位置;
    3)信息加载及关联性查看
    检测员在车间现场借助终端显示设备,根据要求将检测工序模型及其附属信息进行加载到指定检测文件模板,生成三维检测文件,指导后续检测工作。
  2. 如权利要求1所述的三维检测文件的生成方法,其特征在于,所述三维设计模型构型的过程为:设计人员根据设计要求开展三维设计,形成三维设计模型,以三维标注和属性的方式表达产品尺寸、公差、基准、表面粗糙度、图号、名称、材料信息,经审批后并下发给工艺用于开展工艺设计。
  3. 如权利要求2所述的三维检测文件的生成方法,其特征在于,所述三维工艺设计的过程为:工艺人员依据三维设计模型,开展三维工艺设计,编制工艺路线及生成各道三维工序模型,根据具体产品特性和工作流程,在工序间设置必要的检测环节,将检测纳入工艺路线。
  4. 如权利要求2所述的三维检测文件的生成方法,其特征在于,步骤1)中,根据检测需要添加检测信息包括:继承该检测工序以前所有工序的尺寸公差、形位公差、基准和表面粗糙度和技术要求信息,并根据检测需要添加检测项目、检测要求、检测工具信息。
  5. 如权利要求4所述的三维检测文件的生成方法,其特征在于,步骤1)中所述检测项目、检测要求和检测工具信息是以三维标注、属性或两者结合的方式添加到检测工序模型。
  6. 如权利要求2所述的三维检测文件的生成方法,其特征在于,步骤2)中检测工序模型存储是对步骤1)形成的检测工序模型进行轻量化处理,以CAD文档格式存储到PDM的文件夹中。
  7. 如权利要求2所述的三维检测文件的生成方法,其特征在于,步骤2)、3)中所述附属信息是步骤1)以属性方式记录到检测工序模型的信息,存储到PDM***中对应的数据表,通过数据库技术建立与检测工序模型的关联关系。
  8. 如权利要求2所述的三维检测文件的生成方法,其特征在于,步骤2)检测信息存储中,检测信息存储分为两类,一类是依附于检测工序模型几何特征存在的尺寸公差、形位公差、基准这些三维标注信息,以CAD文档格式存储到PDM的文件夹中;另一类是采用参数形式记录到检测工序模型中的检测项目、检测要求、检测工具信息,与该检测工序同样以参数形式记录的工序号、工序名称等信息分别存储到PDM中对应的数据表,通过数据库主键映射上述参数信息与检测工序模型的关联关系,具体为通过该零件图号和检测工序所在工序号在PDM的文件夹检索到该工序的检测工序模型,即CAD文档格式;在数据表中检索到工序名称、检测项目、检测要求、检测工具信息,并且根据检测项目可以关联检测工序模型对应的视图,通过零件图号和检测工序号关联两类信息, 实现检测信息的关联存储。
  9. 如权利要求8所述的三维检测文件的生成方法,其特征在于,步骤3)中,在检测工位,检测员依托显示终端,按照步骤2)定义的关联存储关系,根据零件模型图号和检测工序所在工序号加载检测工序模型及其附属信息,配合检测文件模板生成符合企业要求的三维检测文件,辅助检测活动。
  10. 一种使用上述权利要求1-9任一项所述方法生成的三维检测文件进行检测的方法,包括下述步骤:
    步骤1:生成三维检测文件;
    步骤2:三维检测文件加载到车间现场的终端,并且在终端的显示设备上显示出来;
    步骤3:检测员根据三维检测文件检测产品。
PCT/CN2017/083468 2016-12-22 2017-05-08 一种三维检测文件的生成方法及检测方法 WO2018113164A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019523013A JP6792706B2 (ja) 2016-12-22 2017-05-08 三次元検査ファイルの生成方法及び検査方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611201578.9A CN106981089A (zh) 2016-12-22 2016-12-22 一种三维检测文件的生成方法及检测方法
CN201611201578.9 2016-12-22

Publications (1)

Publication Number Publication Date
WO2018113164A1 true WO2018113164A1 (zh) 2018-06-28

Family

ID=59340472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083468 WO2018113164A1 (zh) 2016-12-22 2017-05-08 一种三维检测文件的生成方法及检测方法

Country Status (3)

Country Link
JP (1) JP6792706B2 (zh)
CN (1) CN106981089A (zh)
WO (1) WO2018113164A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109241611A (zh) * 2018-08-31 2019-01-18 北京航空航天大学 一种基于mbd的数字化装配工艺可视化***及方法
CN109829198A (zh) * 2018-12-29 2019-05-31 浙江精工钢结构集团有限公司 一种基于bim的钢结构质检信息化管理***
CN110705199A (zh) * 2019-09-23 2020-01-17 中国电子科技集团公司第三十八研究所 一种基于可穿戴设备的智能电装***及方法
CN110781555A (zh) * 2019-09-29 2020-02-11 中航通飞研究院有限公司 一种结构件信息对称方法
CN110866890A (zh) * 2019-08-02 2020-03-06 宁波奥克斯电气股份有限公司 一种pcb与结构件的干涉检测方法
CN111177847A (zh) * 2019-12-24 2020-05-19 中国航空工业集团公司西安飞机设计研究所 一种民用飞机配置式构型管理方法及装置
CN111259630A (zh) * 2020-01-13 2020-06-09 浙江吉利汽车研究院有限公司 一种工艺文件生成装置及方法
CN111311080A (zh) * 2020-01-21 2020-06-19 广东三维家信息科技有限公司 订单检测修订方法、装置、电子设备和计算机可读介质
CN111400822A (zh) * 2020-03-12 2020-07-10 沪东中华造船(集团)有限公司 一种用于spd***的三维作业指导书自动生成***和方法
CN111859491A (zh) * 2020-07-16 2020-10-30 宁波浙大联科科技有限公司 Pdm集成cad***的零件模型工程图生成方法及***
CN112883492A (zh) * 2021-03-11 2021-06-01 北京卫星环境工程研究所 一种航天器热真空试验负载水冷管路三维设计***及方法
CN113821881A (zh) * 2021-10-26 2021-12-21 中航通飞华南飞机工业有限公司 一种大型水陆两栖飞机铁鸟试验台结构安装协调数据构建方法
CN114240847A (zh) * 2021-11-23 2022-03-25 西北工业大学 基于动态工艺模型的制造符合性保证远程检查方法
CN114357628A (zh) * 2022-01-11 2022-04-15 中航沈飞民用飞机有限责任公司 一种对mbd飞机紧固件在装配工艺设计中的三维可视化消耗式分配方法
CN117422281A (zh) * 2023-12-18 2024-01-19 深圳赛桥生物创新技术有限公司 工艺文件测试方法、装置、计算机设备及存储介质

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109598705B (zh) * 2018-11-19 2023-06-23 江苏科技大学 一种基于检测特征的检验规程自动生成方法
US11586464B2 (en) * 2019-05-02 2023-02-21 Autodesk, Inc. Techniques for workflow analysis and design task optimization
CN110737955A (zh) * 2019-10-11 2020-01-31 内蒙古第一机械集团股份有限公司 一种三维检测工艺设计***
CN111027134A (zh) * 2019-11-14 2020-04-17 中国航空工业集团公司西安航空计算技术研究所 一种实现基于mbd的航空复杂结构件的检验方法
CN111462286B (zh) * 2020-03-23 2023-02-14 华强方特(深圳)动漫有限公司 一种实现三维动画穿插检测的方法
CN111583396B (zh) * 2020-05-08 2023-09-12 金航数码科技有限责任公司 一种基于成组技术的工艺模型分类编码生成方法
CN111861149B (zh) * 2020-06-29 2023-04-07 北京航空航天大学 一种基于三维模型的检测过程驱动方法和***
CN111861147B (zh) * 2020-06-29 2022-03-18 北京航空航天大学 一种复杂零件制造全过程的数字化检测方法及***
CN111859629B (zh) * 2020-06-29 2024-01-30 昌河飞机工业(集团)有限责任公司 一种直升机动部件的检测规划方法及***
CN111986331B (zh) * 2020-08-18 2024-03-15 上海外高桥造船有限公司 一种用于邮轮设计的Smart3D的属性查看***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877015A (zh) * 2009-04-28 2010-11-03 西安航空动力控制有限责任公司 零件加工的三维标注方法
CN103473274A (zh) * 2013-08-22 2013-12-25 中国电子科技集团公司第三十八研究所 一种机加工三维工艺规程卡的构建方法
CN104239603A (zh) * 2014-07-24 2014-12-24 江苏科技大学 一种基于正序逆序结合的三维工序模型生成方法
CN105242538A (zh) * 2015-10-12 2016-01-13 南京航空航天大学 基于图层的零件多加工工序mbd模型及实现方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1169384A (ja) * 1997-08-08 1999-03-09 Olympus Optical Co Ltd 映像信号種類判別処理装置
JP3796452B2 (ja) * 2001-02-20 2006-07-12 キヤノン株式会社 情報処理装置、情報処理方法、及びプログラム
JP2004240659A (ja) * 2003-02-05 2004-08-26 Hitachi Ltd 作業指示システム
CN103591912B (zh) * 2013-11-11 2016-03-16 沈阳黎明航空发动机(集团)有限责任公司 一种环形零件异型特征位置度的测量方法
CN105718653B (zh) * 2016-01-20 2019-02-12 西北工业大学 一种用于mbd工艺模型的标注信息完备性自动检查方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877015A (zh) * 2009-04-28 2010-11-03 西安航空动力控制有限责任公司 零件加工的三维标注方法
CN103473274A (zh) * 2013-08-22 2013-12-25 中国电子科技集团公司第三十八研究所 一种机加工三维工艺规程卡的构建方法
CN104239603A (zh) * 2014-07-24 2014-12-24 江苏科技大学 一种基于正序逆序结合的三维工序模型生成方法
CN105242538A (zh) * 2015-10-12 2016-01-13 南京航空航天大学 基于图层的零件多加工工序mbd模型及实现方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109241611A (zh) * 2018-08-31 2019-01-18 北京航空航天大学 一种基于mbd的数字化装配工艺可视化***及方法
CN109829198A (zh) * 2018-12-29 2019-05-31 浙江精工钢结构集团有限公司 一种基于bim的钢结构质检信息化管理***
CN109829198B (zh) * 2018-12-29 2023-02-03 比姆泰客信息科技(上海)有限公司 一种基于bim的钢结构质检信息化管理***
CN110866890A (zh) * 2019-08-02 2020-03-06 宁波奥克斯电气股份有限公司 一种pcb与结构件的干涉检测方法
CN110705199B (zh) * 2019-09-23 2022-09-16 中国电子科技集团公司第三十八研究所 一种基于可穿戴设备的智能电装***及方法
CN110705199A (zh) * 2019-09-23 2020-01-17 中国电子科技集团公司第三十八研究所 一种基于可穿戴设备的智能电装***及方法
CN110781555A (zh) * 2019-09-29 2020-02-11 中航通飞研究院有限公司 一种结构件信息对称方法
CN111177847A (zh) * 2019-12-24 2020-05-19 中国航空工业集团公司西安飞机设计研究所 一种民用飞机配置式构型管理方法及装置
CN111177847B (zh) * 2019-12-24 2023-12-22 中国航空工业集团公司西安飞机设计研究所 一种民用飞机配置式构型管理方法及装置
CN111259630B (zh) * 2020-01-13 2023-11-03 浙江吉利汽车研究院有限公司 一种工艺文件生成装置及方法
CN111259630A (zh) * 2020-01-13 2020-06-09 浙江吉利汽车研究院有限公司 一种工艺文件生成装置及方法
CN111311080A (zh) * 2020-01-21 2020-06-19 广东三维家信息科技有限公司 订单检测修订方法、装置、电子设备和计算机可读介质
CN111311080B (zh) * 2020-01-21 2023-04-28 广东三维家信息科技有限公司 订单检测修订方法、装置、电子设备和计算机可读介质
CN111400822A (zh) * 2020-03-12 2020-07-10 沪东中华造船(集团)有限公司 一种用于spd***的三维作业指导书自动生成***和方法
CN111400822B (zh) * 2020-03-12 2023-03-24 沪东中华造船(集团)有限公司 一种用于spd***的三维作业指导书自动生成***和方法
CN111859491B (zh) * 2020-07-16 2023-12-12 宁波智讯联科科技有限公司 Pdm集成cad***的零件模型工程图生成方法及***
CN111859491A (zh) * 2020-07-16 2020-10-30 宁波浙大联科科技有限公司 Pdm集成cad***的零件模型工程图生成方法及***
CN112883492A (zh) * 2021-03-11 2021-06-01 北京卫星环境工程研究所 一种航天器热真空试验负载水冷管路三维设计***及方法
CN112883492B (zh) * 2021-03-11 2024-03-19 北京卫星环境工程研究所 一种航天器热真空试验负载水冷管路三维设计***及方法
CN113821881A (zh) * 2021-10-26 2021-12-21 中航通飞华南飞机工业有限公司 一种大型水陆两栖飞机铁鸟试验台结构安装协调数据构建方法
CN114240847A (zh) * 2021-11-23 2022-03-25 西北工业大学 基于动态工艺模型的制造符合性保证远程检查方法
CN114240847B (zh) * 2021-11-23 2024-02-09 西北工业大学 基于动态工艺模型的制造符合性保证远程检查方法
CN114357628A (zh) * 2022-01-11 2022-04-15 中航沈飞民用飞机有限责任公司 一种对mbd飞机紧固件在装配工艺设计中的三维可视化消耗式分配方法
CN117422281A (zh) * 2023-12-18 2024-01-19 深圳赛桥生物创新技术有限公司 工艺文件测试方法、装置、计算机设备及存储介质
CN117422281B (zh) * 2023-12-18 2024-03-22 深圳赛桥生物创新技术有限公司 工艺文件测试方法、装置、计算机设备及存储介质

Also Published As

Publication number Publication date
JP2020500364A (ja) 2020-01-09
CN106981089A (zh) 2017-07-25
JP6792706B2 (ja) 2020-11-25

Similar Documents

Publication Publication Date Title
WO2018113164A1 (zh) 一种三维检测文件的生成方法及检测方法
Hedberg et al. Testing the digital thread in support of model-based manufacturing and inspection
CA2773919C (en) Systems and methods for creating intuitive context for analysis data
Hallmann et al. Mapping of GD&T information and PMI between 3D product models in the STEP and STL format
JP5052981B2 (ja) 入力製品を定義するコンピュータで実施される方法
CN103268390B (zh) 带有图形功能的计算机辅助工艺设计方法
CN105242538A (zh) 基于图层的零件多加工工序mbd模型及实现方法
CN113378011B (zh) 一种复杂产品总装数字孪生体的构建方法及***
CN109598705B (zh) 一种基于检测特征的检验规程自动生成方法
Wardhani et al. Model-based manufacturing based on STEP AP242
CN103631996A (zh) 一种基于模型成熟度的产品结构设计与工艺设计并行设计方法
JP2023542609A (ja) コンポーネント間の検査要件の設計符号化
Hardwick Third-generation STEP systems that aggregate data for machining and other applications
KR102034382B1 (ko) 기자재 카탈로그 데이터 변환 시스템
Hoque et al. Designing using manufacturing feature library
US7890303B2 (en) Parameter managing method, design parameter managing system, program and computer readable recording medium
Song et al. Establishment of Inspection Information Model Based on Secondary Development with CATIA
Wang et al. Exploration of the modeling process of assembly based on MBD and Pro/ENGINEER
Sun et al. Specification and application of manufacturability analysis system based on process knowledge
Venkiteswaran Interoperability of Geometric Dimension & Tolerance Data between CAD Systems through ISO STEP AP 242
Lin et al. A 3D process design method based on MBD machining element
Zhou et al. MBD driven digital product collaborative definition technology
Duan et al. Research on inspection feature recognition based on Pro/E
Zhang et al. An approach to generate three dimensional machining process model according to information from design model based on definition
CN117130331A (zh) 模型定义mbd工序模型的创建方法、装置和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523013

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882937

Country of ref document: EP

Kind code of ref document: A1