WO2018113127A1 - 一种信道控制方法,及设备 - Google Patents

一种信道控制方法,及设备 Download PDF

Info

Publication number
WO2018113127A1
WO2018113127A1 PCT/CN2017/078582 CN2017078582W WO2018113127A1 WO 2018113127 A1 WO2018113127 A1 WO 2018113127A1 CN 2017078582 W CN2017078582 W CN 2017078582W WO 2018113127 A1 WO2018113127 A1 WO 2018113127A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
subchannel
message
subchannels
handover
Prior art date
Application number
PCT/CN2017/078582
Other languages
English (en)
French (fr)
Inventor
韩云博
丁志明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780056000.5A priority Critical patent/CN109716819B/zh
Publication of WO2018113127A1 publication Critical patent/WO2018113127A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a channel control method and device.
  • WiFi Wireless Fidelity
  • Legacy 802.11 protocols such as 802.11b/a/g/n/ac
  • WiFi IoT wireless fidelity Internet of Things
  • an Access Point detects a channel when it starts up, and selects a 20MHz channel with less interference as the primary 20MHz channel.
  • the message interaction between the station (Station) and the AP will be Performed on this channel.
  • the AP will not normally change it. Since WiFi uses a free spectrum, the available band resources are limited. In China, for example, there are only 3 non-overlapping 20MHz spectrums in the 2.4GHz band, and there are 4 non-adjacent 20MHz bands on the 5GHz. Therefore, no matter which spectrum the AP selects as the 20MHz primary channel, it is easy to communicate with the surrounding basic services.
  • the Basic Service Set selects channels that are fully or partially overlapping.
  • WiFi IoT One of the core features of WiFi IoT is the use of Narrow Band (NB) to transmit narrowband messages. Another core feature of WiFi IoT is that there may be more narrowband IoT STAs associated with APs in certain scenarios. However, the traditional 802.11 protocol cannot be adapted to the characteristics of the WiFi IoT.
  • NB Narrow Band
  • the technical problem to be solved by the embodiments of the present invention is to provide a channel control method and a device, thereby adapting to the characteristics of the WiFi IoT.
  • an embodiment of the present invention provides a method for channel control, which is applied to a first device, where the first device supports broadband and narrowband as a bandwidth for message transmission, and the first device uses a broadband that includes N.
  • Non-overlapping subchannels, the N subchannels are narrowband channels; the method includes:
  • N refers to the number of subchannels, N should be an integer greater than or equal to 1; broadband and narrowband are relative concepts.
  • the wideband has a wider frequency range, and the narrowband is relatively Has a narrower frequency range; for example, the wideband can be 20MHz or wider, and the narrowband can be 2MHz or 5MHz;
  • a device is a device for performing channel management, and may be an access device, for example, an access point, a base station, or the like; the second device may be a terminal device, a monitoring device, etc.; the second device and the second subchannel are in this embodiment.
  • the second device may include one or more physical devices, and the second subchannel may also be one or more subchannels; it is understood that if the second device only Including one physical device, if the second subchannel includes one subchannel, then one subchannel is designated to the physical device, and if there are multiple subchannels, the physical device selects the right to select from the multiple subchannels; If the subchannel contains more than one subchannel, if the second subchannel contains 1 subchannel, then all physical devices included in the second device will be allocated the same subchannel, if the second subchannel contains more than one subchannel Channel, then all physical devices included in the second device can be assigned to different subchannels.
  • the foregoing second channel indication is information for informing the second device of the second channel, and may be an identifier of the second channel, or any other information indicating the second channel.
  • the scheduling of the wideband channel in the traditional 802.11 protocol can be overcome, which causes the problem of violent collision, the problem that the channel quality change cannot be switched, and the channel resource. Insufficient and the like, the solution of the embodiment of the present invention can be adapted to the characteristics of the WiFi IoT.
  • the method further includes:
  • the handover channel message is sent if the first device performs load balancing.
  • Load balancing means that, in the case where the devices associated with the subchannels are unbalanced in the above-mentioned N subchannels, the devices in the subchannels associated with more devices need to be switched to the subchannels associated with fewer devices, thereby A process of realizing that the number of associated subchannels differs from the number of devices.
  • the solution of the embodiment of the present invention can be applied to the initial allocation subchannel and can also be used for later load balancing.
  • the broadband has a bandwidth of 20 MHz or more; the narrowband has a bandwidth of less than 20 MHz.
  • the N subchannels that is, the N narrowbands may be different from each other, or may be the same.
  • all of them are narrowbands of 2 MHz, and may be 2 MHz, 5 MHz, or other coexistence.
  • the bandwidth can be the widest, which depends on the spectrum resources and the protocol, which is not limited by the embodiment of the present invention.
  • the method before the sending, by the second device, the first sub-channel, the switching channel message that carries the second sub-channel indication, the method further includes:
  • the first device allocates a second subchannel to the second device according to a channel allocation policy
  • the channel allocation strategy includes any of the following:
  • the first device randomly selects a subchannel for the second device from the N non-overlapping subchannels as the second subchannel;
  • the first device selects one of the subchannels from the least used subchannel as the second subchannel
  • the first device selects one of the subchannels as the second subchannel from the subchannels with the best signal to noise ratio.
  • the manner of random allocation is based on the perspective of probability, and finally load balancing is implemented, which is suitable for initial subchannel allocation.
  • the subchannel uses less It means that the subchannel is relatively idle, and the possibility of collision is small. It can be moved from other subchannels to the physical device, or the newly added physical device can be allocated to the relatively idle subchannel; thus, the load can be adjusted in time to implement the load. Balance and reduce collisions.
  • the method further includes:
  • the second subchannel is a subchannel of the M subchannels of the N non-overlapping subchannels, and the M subchannels are a set of subchannels used by the packet where the second device is located.
  • the optional range of the second subchannel is first limited, and is not arbitrarily selected among the N subchannels, and conditions may be provided for the packet of the device.
  • M subchannels are within N subchannels, so M is less than or equal to N, and M is used to represent the number of subchannels, so it should be an integer greater than or equal to 1.
  • the method further includes:
  • the intersection of the M subchannels and the set of target subchannels is empty, and the set of target subchannels is a set of subchannels used by packets having overlapping regions with the packet in which the second device is located.
  • the packet in which the second device is located will not have the same subchannel between the packets with the overlapping region, and then is in different packets.
  • the collision of the device will be limited to a fully acceptable range.
  • the subchannel set has a certain coverage area in the geographical area, and there may be an overlapping area between the coverage area and the coverage area; therefore, the overlapping area indicates the overlapping area of the coverage area.
  • the grouping of the second device includes:
  • Classification based on the service or geographic location of the second device.
  • the device may be classified according to the service or the geographical location, and the geographical location classification is taken as an example: the geographical location may be a sector transmitted by the antenna of the access device, and then different sectors are used differently.
  • the set of subchannels then reduces the likelihood of collisions between different sectors and facilitates planning the distribution of subchannels in the geographic area.
  • the second device includes one or more physical devices, and the second subchannel includes one or more subchannels.
  • the method further includes:
  • the switching channel message is a single-user switching channel message, and is used to switch a sub-channel used by the second device that includes one physical device;
  • the handover channel message is a multi-user handover channel message, and is used to switch a subchannel used by the second device that includes one or more physical devices.
  • the content of the user switching channel message can be modified accordingly.
  • the method further includes:
  • the switching channel message further carries the second device identifier and the first corresponding to the second device identifier
  • the second subchannel, the second device includes more than one physical device.
  • the subchannel corresponding to the identifier is specified, and the subchannel to which the specific device is switched can be more conveniently controlled.
  • the method further includes:
  • the switching channel message further carries a time indication that the second device sends the acknowledgement message of the handover channel message, and is used to indicate a time when the second device sends the acknowledgement message of the handover channel message;
  • the handover channel message indicates that the second device sends an acknowledgement message of the handover channel message at a default time of the first device.
  • the sending time of the acknowledgment message is indicated by the switching channel message, so that the second device can obtain an accurate time for sending the acknowledgment message, and the acknowledgment message can be correctly received by the first device.
  • the embodiment of the present invention further provides a channel control device, which is applied to a first device, where the first device supports broadband and narrowband as a bandwidth for message transmission, and the first device uses a broadband that includes N.
  • Non-overlapping subchannels, the N subchannels are narrowband channels;
  • the channel control device includes:
  • a sending unit configured to send, to the second device that is on the first subchannel, a handover channel message that carries the second subchannel indication, where the handover channel message is sent on the first subchannel, and the second subchannel is a new subchannel allocated by the first device to the second device, configured to switch the second device to the second subchannel; the first subchannel and the second subchannel belong to Describe N non-overlapping subchannels, and are different from each other;
  • a receiving unit configured to receive, on the second subchannel, an acknowledgement message of the handover channel message sent by the second device, where the confirmation message is used by the first device to confirm that the second device has been switched to The second subchannel.
  • the sending unit is specifically configured to send the switching channel message in a process in which the first device and the second device establish association with the first subchannel; or perform load balancing on the first device.
  • the handover channel message is sent.
  • the broadband has a bandwidth of 20 MHz or more; the narrowband has a bandwidth of less than 20 MHz.
  • the channel control device further includes:
  • a channel allocation unit configured to allocate a second subchannel to the second device according to a channel allocation policy
  • the channel allocation strategy includes any of the following:
  • one of the subchannels is selected as the second subchannel from the subchannels having the best signal to noise ratio.
  • the second subchannel is a subchannel among the M subchannels of the N non-overlapping subchannels, where the M subchannels are used by the group where the second device is located.
  • an intersection of the M subchannels and a set of target subchannels is empty, and the set of the target subchannels is used by a packet having an overlapping area with a packet where the second device is located.
  • a collection of subchannels is empty, and the set of the target subchannels is used by a packet having an overlapping area with a packet where the second device is located.
  • the grouping of the second device includes: performing classification according to a service or a geographical location of the second device.
  • the second device includes one or more physical devices, and the second subchannel includes one or more subchannels.
  • the switching channel message is a single-user switching channel message, and is used to switch a sub-channel used by the second device that includes one physical device;
  • the handover channel message is a multi-user handover channel message, and is used to switch a subchannel used by the second device that includes one or more physical devices.
  • the switching channel message further includes the second device identifier and the second subchannel corresponding to the second device identifier, where the second device includes one or more Physical device.
  • the handover channel message further carries a time indication that the second device sends the acknowledgement message of the handover channel message, and is used to instruct the second device to send the handover channel message. Time to confirm the message;
  • the handover channel message indicates that the second device sends an acknowledgement message of the handover channel message at a default time of the first device.
  • the embodiment of the present invention further provides a communication method for channel allocation and handover, which is used in a first device, where the method includes:
  • the first device supports at least a bandwidth of 20 MHz and less than 20 MHz as a bandwidth for message transmission; the first device uses N non-overlapping subchannels under a 20 MHz bandwidth, and the N subchannels are all channels below 20 MHz, where N is Positive integer
  • the first device Transmitting, by the first device, a handover channel message to the one or more second devices on the first subchannel according to a packet in which the one or more second devices are located, where the handover channel message is in the first Transmitting on the subchannel, carrying one or more new subchannels allocated by the first device to the one or more second devices according to a channel allocation policy, for switching the one or more second devices to The one or more new subchannels;
  • the first subchannel is one of the N non-overlapping subchannels, and the first subchannel and the one or more new subchannels are different Channel;
  • the channel allocation strategy includes at least one of the following:
  • the first device randomly selects one or more subchannels for the one or more second devices from the N non-overlapping subchannels as the one or more new subchannels;
  • the first device selects one or more subchannels from among the packets in which the one or more second devices are located as the one or more new subchannels, and each packet uses At least one subchannel;
  • the first device selects one or more subchannels as the one or more new subchannels from among the subchannels with the best signal to noise ratio among the packets in which the one or more second devices are located.
  • the WiFi IoT scenario there may be multiple narrowband IoT channels available for selection and use in the AP's primary 20 MHz channel. How the AP allocates the narrowband IoT channels used for the associated narrowband IoT STAs may affect the performance of the WiFi system. Through a reasonable channel allocation strategy, the performance of the entire WiFi system can be improved. In addition, the AP sends a handover channel message to multiple narrowband IoT STAs, which can switch these narrowband IoT STAs to the same or different new channels. The channel utilization efficiency is improved, and the air interface resources are saved.
  • the method further includes:
  • the first device in the channel allocation policy selects, among the N non-overlapping subchannels, M sub-channels that do not overlap; the first device selects among the M non-overlapping subchannels a one or more new subchannels used as the one or more second devices; wherein M is a positive integer no greater than N.
  • the AP can allocate one of the N narrowband IoT channels to the narrowband IoT STA as a new channel
  • the AP can select, among the N narrowband IoT channels, the M narrowband IoT channels as STAs in the certain packet.
  • a new channel that the STA can allocate, and M is a positive integer not greater than N.
  • the method further includes:
  • the M non-overlapping subchannels used by the one or more second devices in different packets are not identical.
  • the hybrid policy in the channel allocation policy in the embodiment of the present invention is that the STAs in different packets can be allocated differently.
  • the narrowband IoT channels may be different, which increases the flexibility of the channel allocation policy.
  • the method further includes:
  • the handover channel message is a single user handover channel message, configured to switch a subchannel used by the one second device;
  • the handover channel message is a multi-user handover channel message, configured to switch a subchannel used by the multiple second devices.
  • the single-user handover channel message is used to switch the narrowband IoT channel used by a single narrowband IoT STA; the multi-user handover channel message is used to switch the narrowband IoT channel used by multiple narrowband IoT STAs, where the narrowband IoT originally used by multiple narrowband IoT STAs
  • the channels need to be the same, and the switched new narrowband IoT channels can be the same or different.
  • the STAs will all be switched to the same channel, and the multi-user channel switching message here is more flexible.
  • the method further includes:
  • the handover channel message further carries an identifier of the one or more second devices, to indicate that the one or more second devices need to switch to the one or more new subchannels.
  • the method further includes:
  • the switching channel message carries a time indication that the one or more second devices send the acknowledgement message of the handover channel message, and is used to instruct the one or more second devices to send the handover channel message at a preset time. Confirmation message.
  • the AP In order to avoid collision between the acknowledgment messages of the multi-user handover channel message replied by the multiple narrowband IoT STAs, the AP cannot determine which narrowband IoT STAs sent the acknowledgment message of the multi-user handover channel message, and the AP may The preset time of the acknowledgment message that the multiple narrowband IoT STAs send the multi-user handover channel message is added to the user handover channel message, so that the AP can confirm which narrowband IoT STAs successfully switch to the new channel.
  • the method further includes:
  • the handover channel message instructs the one or more second devices to send an acknowledgement message of the handover channel message at a time agreed with the first device by default.
  • the narrowband IoT STA can reply to the acknowledgment message of the handover channel message at the time agreed with the AP by default.
  • the advantage is that the time for the narrowband IoT STA to send the acknowledgment message of the handover channel message in the handover channel message is not needed, and the overhead is saved.
  • the embodiment of the present invention further provides another communication method for channel allocation and handover, which is used in a first device, where the method includes:
  • the first device supports at least a bandwidth of 20 MHz and less than 20 MHz as a bandwidth for message transmission; the first device uses N non-overlapping subchannels under a 20 MHz bandwidth, and the N subchannels are all channels below 20 MHz, where N is Positive integer
  • the first device establishes an association with the second device by using the first subchannel, and in the process of establishing the association, the first device is configured to be in the first subchannel according to the packet where the second device is located.
  • the second device sends a handover channel message, where the handover channel message is sent on the first subchannel, and the first device is configured to allocate a new subchannel to the second device according to the channel allocation policy, where the second device is configured to use the second device. Switching to the new subchannel; the new subchannel is one of the N non-overlapping subchannels, and the first subchannel and the new subchannel are different channels;
  • the channel allocation strategy includes at least one of the following:
  • the first device randomly selects one subchannel for the second device from the N non-overlapping subchannels as the new subchannel;
  • the first device selects one subchannel as the new subchannel from among the least used subchannels in the packet in which the second device is located, and each packet uses at least one subchannel;
  • the first device selects one subchannel as a new subchannel from among the subchannels with the best signal to noise ratio among the packets in which the second device is located.
  • the AP may be multiple narrowband IoT channels available for selection and use in the AP's primary 20 MHz channel. How the AP allocates the narrowband IoT channels used for the associated narrowband IoT STAs may affect the performance of the WiFi system. Through a reasonable channel allocation strategy, the performance of the entire WiFi system can be improved. In addition, the AP sends a switching channel message to multiple narrowband IoT STAs, which can switch the narrowband IoT STAs to the same or different new channels, improving channel usage efficiency and saving air interface resources.
  • the method further includes:
  • the first device in the channel allocation policy selects, among the N non-overlapping subchannels, M sub-channels that do not overlap; the first device selects among the M non-overlapping subchannels a new subchannel used as the second device; where M is a positive integer no greater than N.
  • the AP can allocate one of the N narrowband IoT channels to the narrowband IoT STA as a new channel
  • the AP can select, among the N narrowband IoT channels, the M narrowband IoT channels as STAs in the certain packet.
  • a new channel that the STA can allocate, and M is a positive integer not greater than N.
  • the method further includes:
  • the M non-overlapping subchannels used by the second device in different packets are not identical.
  • the hybrid policy in the channel allocation policy in the embodiment of the present invention is that the STAs in different packets can be allocated differently.
  • the narrowband IoT channels may be different, which increases the flexibility of the channel allocation policy.
  • the method further includes:
  • the switching channel message carries a time indication that the second device sends the acknowledgment message of the switching channel message, and is used to indicate that the second device sends the acknowledgment message of the switching channel message at a preset time.
  • the AP In order to avoid collision between the acknowledgment messages of the multi-user handover channel message replied by the multiple narrowband IoT STAs, the AP cannot determine which narrowband IoT STAs sent the acknowledgment message of the multi-user handover channel message, and the AP may The preset time of the acknowledgment message that the multiple narrowband IoT STAs send the multi-user handover channel message is added to the user handover channel message, so that the AP can confirm which narrowband IoT STAs successfully switch to the new channel.
  • the method further includes:
  • the handover channel message indicates that the second device sends an acknowledgement message of the handover channel message at a time agreed with the first device by default.
  • the narrowband IoT STA can reply to the acknowledgment message of the handover channel message at the time agreed with the AP by default.
  • the advantage is that the time for the narrowband IoT STA to send the acknowledgment message of the handover channel message in the handover channel message is not needed, and the overhead is saved.
  • the embodiment of the present invention further provides a first device, where the first device includes:
  • the transceiver supports at least a bandwidth of 20 MHz and less than 20 MHz as a bandwidth for message transmission; the transceiver uses N non-overlapping subchannels under a 20 MHz bandwidth, and the N subchannels are all channels below 20 MHz, where N is positive An integer for transmitting, by the first device, a handover channel message to the one or more second devices that are on the first subchannel, where the handover channel message is sent on the first subchannel, carrying the first device And one or more new subchannels allocated to the one or more second devices in accordance with a channel allocation policy, for switching the one or more second devices to the one or more new subchannels;
  • a transceiver configured to receive, by the first device, an acknowledgement message of the handover channel message sent by the one or more second devices on the one or more new subchannels, for the one or The plurality of second devices confirm to the first device that the one or more new subchannels have been switched;
  • a processor configured to generate the handover channel message, and parse the acknowledgement message of the handover channel message
  • the processor is further configured to select the one or more new subchannels for the one or more second devices according to a channel allocation policy;
  • the channel allocation policy includes at least one of the following:
  • a processor randomly selecting one or more subchannels for the one or more second devices from the N non-overlapping subchannels as the one or more new subchannels;
  • the processor selects one or more subchannels from the least number of subchannels in the group in which the one or more second devices are located as the one or more new subchannels, and each packet uses at least one Subchannel
  • the processor selects one or more of the sub-channels with the best signal-to-noise ratio among the packets in which the one or more second devices are located as the one or more new subchannels;
  • a memory for storing program codes and instructions; and for storing the channel allocation policy
  • An antenna for transmitting and receiving messages from a wireless medium An antenna for transmitting and receiving messages from a wireless medium.
  • the AP sends a switching channel message to multiple narrowband IoT STAs, which can switch the narrowband IoT STAs to the same or different new channels, improving channel usage efficiency and saving air interface resources.
  • the first device in the channel allocation policy selects, among the N non-overlapping subchannels, M sub-channels that do not overlap; the first device from the One of the M non-overlapping subchannels is selected as the one or more new subchannels used by the one or more second devices; wherein M is a positive integer not greater than N.
  • the AP can allocate one of the N narrowband IoT channels to the narrowband IoT STA as a new channel
  • the AP can select, among the N narrowband IoT channels, the M narrowband IoT channels as STAs in the certain packet.
  • a new channel that the STA can allocate, and M is a positive integer not greater than N.
  • the M non-overlapping subchannels used by the one or more second devices in different groups are not completely identical.
  • the hybrid policy in the channel allocation policy in the embodiment of the present invention is that the STAs in different packets can be allocated differently.
  • the narrowband IoT channels may be different, which increases the flexibility of the channel allocation policy.
  • the handover channel message is a single user handover channel message, and is used to switch the one a subchannel used by the second device;
  • the handover channel message is a multi-user handover channel message, configured to switch a subchannel used by the multiple second devices.
  • the single-user handover channel message is used to switch the narrowband IoT channel used by a single narrowband IoT STA; the multi-user handover channel message is used to switch the narrowband IoT channel used by multiple narrowband IoT STAs, where the narrowband IoT originally used by multiple narrowband IoT STAs
  • the channels need to be the same, and the switched new narrowband IoT channels can be the same or different.
  • the STAs will all be switched to the same channel, and the multi-user channel switching message here is more flexible.
  • the switching channel message further carries an identifier of the one or more second devices, to indicate that the one or more second devices need to switch channels to the one or more New subchannels.
  • the switching channel message further carries a time indication that the one or more second devices send the acknowledgement message of the handover channel message, to indicate the one or more second The device sends an acknowledgement message of the handover channel message at a preset time.
  • the AP In order to avoid collision between the acknowledgment messages of the multi-user handover channel message replied by the multiple narrowband IoT STAs, the AP cannot determine which narrowband IoT STAs sent the acknowledgment message of the multi-user handover channel message, and the AP may The preset time of the acknowledgment message that the multiple narrowband IoT STAs send the multi-user handover channel message is added to the user handover channel message, so that the AP can confirm which narrowband IoT STAs successfully switch to the new channel.
  • the handover channel message indicates that the one or more second devices are in the confirmation message that the first device replies to the handover channel message at a default agreed time.
  • the narrowband IoT STA can reply to the acknowledgment message of the handover channel message at the time agreed with the AP by default.
  • the advantage is that the time for the narrowband IoT STA to send the acknowledgment message of the handover channel message in the handover channel message is not needed, and the overhead is saved.
  • the embodiment of the present invention further provides a wireless communication device, which is used as a first device, and includes: an input/output device, a processor, and a memory; wherein the memory can be used to provide a buffer required by the processor for data processing, Or other data storage requirements; the input and output device provides the ability to communicate between the access device and the second device; the processor is used to implement the control of the method flow of any one of the embodiments of the present invention.
  • the embodiment of the present invention further provides a wireless communication device, used as a first device, comprising: an input and output device, a processor, and a memory; wherein the memory stores program instructions, and the processor is configured to execute the program.
  • a wireless communication device used as a first device, comprising: an input and output device, a processor, and a memory; wherein the memory stores program instructions, and the processor is configured to execute the program.
  • FIG. 1 is a schematic diagram of a subchannel of a Legacy device at 20 MHz according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a subchannel of a Legacy device at 20 MHz according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of allocation of a narrowband IoT channel according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a result of randomly allocating a narrowband channel according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a result of allocating a narrowband channel according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of allocation of a narrowband channel according to a packet in which an STA is located according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of limiting a narrowband IoT channel allocation selectable by a STA according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a narrowband IoT channel allocation selectable by a STA in combination with a packet according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of narrowband IoT channel allocation signaling of a single STA according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of narrowband IoT channel allocation signaling of a single STA according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of narrowband IoT channel allocation signaling of a single STA according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a wireless communication device according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a channel control device according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a channel control device according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a first device according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of a wireless communication device according to an embodiment of the present invention.
  • NB Narrow Band
  • narrowband IoT A device is a device that uses narrowband transmission and is dominated by IoT scenarios.
  • a legacy device refers to a traditional 802.11 device that uses a bandwidth of 20 MHz or more.
  • the same spectrum can be 2.4 GHz, 5 GHz, and so on.
  • the access point (AP) side device is likely to support both 20MHz and narrowband IoT transmissions, taking into account requirements and cost.
  • the subsequent part will refer to such a device by using a Legacy+narrowband IoT AP.
  • the 20 MHz primary channel occupancy spectrum of the Legacy+ narrowband IoT AP is a dotted rectangle, which can be subdivided into N narrowband IoT channels.
  • the above 20 MHz primary channel refers to the 20 MHz channel used by the Legacy device to listen to the WiFi signal by default.
  • the bandwidths of the foregoing N narrowband IoT channels may be the same or may not be the same.
  • Stations (STAs) can support only narrowband IoT transmissions or both 20MHz and narrowband IoT transmissions.
  • the bandwidths of the N narrowband IoT channels may be identical, such as 2 MHz channels; the bandwidths of the N narrowband IoT channels may not be the same, such as 4 2 MHz channels, 2 5 MHz channels, and the like.
  • the STA can refer to all STAs supporting the 802.11 protocol, including legacy STAs supporting the legacy 802.11 protocol, that is, legacy STAs; and STAs supporting narrowband IoT transmission, that is, narrowband IoT STAs. If only narrowband IoT transmission is supported, it can be called a narrowband IoT STA; if it supports both 20MHz and narrowband IoT transmission, it can be called legacy+ narrowband IoT STA. It should be noted that the cost of STA supporting both 20MHz and narrowband IoT transmission is much greater than that of narrowband IoT transmission only. Therefore, WiFi IoT STAs with strong demand for low cost are likely to support only narrowband IoT transmission.
  • WiFi IoT Another core feature of WiFi IoT is that there may be more narrowband IoT STAs associated with APs in certain scenarios.
  • a building or an entire cell may be associated with thousands of narrowband IoT STAs under the same AP.
  • the above-mentioned association refers to the basic service set (BSS) in which the STA joins the AP.
  • the STA can send and receive messages with the AP only after joining the BSS.
  • BSS basic service set
  • STAs in opposite directions may not receive each other's signals, and at the same time, the number of nodes is large, and competition conflicts may be prominent.
  • the above-mentioned contention conflict refers to a situation in which a plurality of STAs may simultaneously transmit WiFi messages, causing mutual interference with each other. Therefore, such a protocol has a mechanism similar to the Group Sectorization Operation.
  • the core idea is to divide the entire BSS into several areas (called sectors, or groups).
  • the AP uses directional antennas to time-aligned alignment. Each sector. When an AP aligns a certain sector through a directional antenna, STAs in the sector can transmit, and STAs in other sectors go to sleep. That is to say, the above mechanism limits the number of STAs that can communicate with the AP in a certain period by spatial and temporal multiplexing.
  • an AP selects only one 20MHz primary channel on a spectrum (such as 2.4 GHz or 5 GHz), and all associated STAs are on the channel. The transmission of the message.
  • a spectrum such as 2.4 GHz or 5 GHz
  • the WiFi IoT scenario there are multiple narrowband IoT channels available in the 20MHz primary channel of the legacy+ narrowband IoT-enabled AP. If only one of the narrowband IoT channels is selected as the primary channel for narrowband IoT devices (such as narrowband IoT STAs), On the one hand, other narrowband IoT channels at 20 MHz will be wasted.
  • the narrowband IoT STAs all use the same channel (such as the same narrowband IoT channel, that is, the same subchannel), collision between STAs may be More intense.
  • the above collision refers to the situation where two devices send messages at the same time, and the result is that both of them fail to transmit. Assuming that each device sends the same message probability, the more the number of associated STAs in the same channel, the more the probability of collision between STAs. Big. As shown in Figure 2, it is assumed that N narrowband IoT signals can be divided under the 20MHz primary channel.
  • a possible design is provided for an AP supporting a legacy+ narrowband IoT to allocate any narrowband IoT channel in a 20 MHz primary channel to a narrowband IoT channel as its primary narrowband IoT channel, and a narrowband IoT of different narrowband IoT STAs.
  • the channels can be different.
  • the traditional 802.11 protocol cannot be adapted to the WiFi IoT application scenario, at least in the following aspects:
  • the AP selects a channel with less current interference as the primary channel of 20 MHz among the currently available channels, and does not consider the channel usage in a long period of time.
  • the number of narrowband IoT STAs associated with an AP in a WiFi IoT scenario may be large.
  • the AP can simultaneously listen to multiple narrowband IoT channels (under the same 20MHz primary channel), the passive channel selection method in the existing protocol is in WiFi. Not suitable for IoT scenarios.
  • the traditional 802.11 protocol does not consider the impact of the selection of narrow-band IoT channels of STAs after STA grouping on system performance.
  • the STAs associated with the AP in the traditional 802.11 protocol are all on the same 20 MHz primary channel, and the Legacy+ narrowband IoT AP in the WiFi IoT scenario can simultaneously listen to its 20 MHz primary channel and multiple narrowband IoTs overlapping the frequency band. channel. If the AP uses only one of the plurality of narrowband IoT channels described above as the primary narrowband IoT channel for narrowband IoT transmission, that is, all narrowband IoT devices associated with the AP use the same primary narrowband IoT channel for message transmission, then Other narrowband IoT channels under the 20 MHz channel are unused, resulting in wasted resources.
  • the embodiment of the present invention improves the collision of each narrowband IoT channel by using a narrowband IoT channel allocation strategy in a scenario of a WiFi IoT scenario, particularly an AP associated with a large number of STAs, by assigning an AP the ability to allocate different narrowband IoT channels to different narrowband IoT devices. Collision, and reduce the interference between this BSS and the Overlapping Service Set (OBSS).
  • OBSS refers to an adjacent BSS that uses the same channel as the BSS and has an overlapping coverage area.
  • the Legacy+ narrowband IoT AP in this specification can support the transmission of messages using bandwidths of 20MHz and below. Further, it can also support the transmission of messages using bandwidths above 20MHz (such as 40MHz, 80MHz, 160MHz, etc.).
  • Embodiment 1 of the present invention relates to communication between an AP and its associated STAs.
  • the AP refers to the Legacy+ narrowband IoT AP
  • the STA refers to the narrowband IoT STA
  • the subsequent embodiments will not be described again.
  • the AP corresponds to the first device in the foregoing embodiment
  • the STA corresponds to the second device in the foregoing embodiment.
  • the AP maintains a narrowband IoT channel selection list for the STAs of the BSS (Narrow Band IoT Channel Selection) Table).
  • the AP establishes an association phase with the STA, and allocates a suitable narrowband IoT channel to the STA according to the narrowband channel IoT selection list and the channel allocation policy.
  • the appropriate narrowband IoT channel is adjusted for the STA according to the narrowband channel IoT selection list and the channel allocation policy.
  • the AP maintains a narrowband IoT channel selection list for the STA of the BSS.
  • the AP needs to record the narrowband IoT channel used by the STAs within the BSS.
  • One possible recording method is that the AP maintains a narrowband IoT channel selection list for recording the narrowband IoT channel used by the STA associated with the AP.
  • the recording mode of a possible narrowband IoT channel selection list is as shown in Table 1, and the vertical direction is the identifier of different STAs, which may be a complete or short identifier, such as a medium access control (MAC) address, a connection identifier. (Association Identifier, AID), etc.; horizontally the narrowband IoT channel occupied by the STA (eg, the narrowband IoT channel number is 1 to N, and N is the total number of narrowband IoT channels available for the AP).
  • the MAC address is a unique identifier of the wireless communication device, and the length is 48 bits.
  • the association identifier (AID) is a short identifier assigned by the AP to the STA after the AP establishes an association with the STA.
  • Table 1 A list of possible narrowband IoT channel selections
  • the AP obtains a distribution of the number of STAs associated with each narrowband IoT channel through the narrowband IoT channel selection list, and is used by the AP to determine the probability of a collision of STAs on different narrowband IoT channels. If the number of STAs between different narrowband IoT channels is large, the probability of collision between STAs on a narrowband IoT channel with more STAs may be greater.
  • narrowband IoT channel information such as a narrowband IoT channel selection list
  • STA1 (for STA) sends an Association Request Frame (AP) to the AP on the default narrowband IoT channel (such as the narrowband IoT channel m) to send an Association Response Frame (Association Response Frame) on the same narrowband IoT channel. Reply to STA1 to confirm the establishment of the association.
  • AP Association Request Frame
  • m narrowband IoT channel
  • Association Response Frame Association Response Frame
  • the AP selects a suitable narrowband IoT channel (such as a narrowband IoT channel 1) for the newly established STA1 according to the narrowband IoT channel selection list and the channel allocation policy, and transmits a handover channel message on the narrowband IoT channel m.
  • the foregoing handover channel message indicates at least a new narrowband IoT channel to be used by the STA, such as a narrowband IoT channel 1.
  • it may also indicate when to perform channel switching, such as the STA switching to the new narrowband after receiving the handover channel message for 100 ms. IoT channel.
  • STA1 receives the above-mentioned handover channel message and completes the channel handover, and sends an acknowledgement message to the AP on the new narrowband IoT channel 1 indicating that the channel handover has been completed.
  • the AP does not need to send a handover channel message. Switching the channel of ST1A; naturally, the STA does not need to send an acknowledgment message to acknowledge receipt of the handover channel message.
  • a signaling interaction process in which a possible AP allocates a narrowband IoT channel to a STA is as follows:
  • the narrowband IoT channel m described above may be a narrowband IoT channel that is used by default when the AP associates with the STA.
  • the AP uses multiple narrowband IoT channels under the 20MHz primary channel, and the AP selects one of the narrowband IoT channels m as the narrowband IoT channel used by the AP when it associates with the STA; or, how many 20MHz primary channels are used by the AP
  • the narrowband IoT channel, the AP may be associated with the STA on all or part of the above (more than one) of the plurality of narrowband IoT channels, and the narrowband IoT channel m is one of the plurality of narrowband IoT channels of all or part of the foregoing.
  • the AP receives an association request message sent by the STA on the narrowband IoT channel m, and returns an association response message to the STA for confirming receipt of the association request message.
  • the AP selects a suitable narrowband IoT channel for the STA according to the narrowband IoT channel information used by the STA (such as a narrowband channel IoT selection list) and a channel allocation policy, as a narrowband IoT channel for subsequent message transmission. If the narrowband IoT channel is different from the narrowband IoT channel m currently used by the STA, the AP sends a handover channel message to the STA to switch the narrowband IoT channel used by the STA.
  • the handover channel message indicates at least a new narrowband IoT channel that the STA will use; alternatively, it may also indicate when to perform channel handover.
  • the purpose of using the foregoing channel allocation policy is to allocate a newly associated STA to a narrowband IoT channel, so that performance of at least some aspects of the WiFi system may be improved.
  • the performance of the above WiFi system includes, but is not limited to, collision probability between STAs, Signal to Noise Ratio (SNR), Signal to Interference plus Noise Ratio (SINR), and the like on a narrowband IoT channel.
  • SNR Signal to Noise Ratio
  • SINR Signal to Interference plus Noise Ratio
  • the above SNR refers to the ratio of the useful signal power to the noise power.
  • the above SINR refers to the ratio of the useful signal power to the interference signal plus the noise power. The larger the ratio, the better, indicating that the quality of the useful signal received by the receiving end is better. Both the above SNR and SINR are affected by the wireless medium.
  • Possible channel allocation strategies include one or more of the following channel allocation strategies:
  • the AP randomly selects one channel among the N optional narrowband IoT channels and allocates it to the STA.
  • the benefit of this channel allocation strategy is simple, and the final STAs are evenly distributed across different narrowband IoT channels based on probability.
  • the number of STAs associated with each narrowband IoT channel may be greatly different, which may cause a collision probability between STAs on some narrowband IoT channels, which adversely affects the performance of the WiFi system.
  • the number of STAs associated with the narrowband IoT channels CH2 and CHN-1 is large, which may result in collision probability between STAs using the above two narrowband IoT channels. high.
  • a narrowband IoT channel with the smallest number of associated STAs is selected and allocated to the STA.
  • the AP obtains information about the number of associated STAs on each channel according to the narrowband channel IoT selection list, and selects a narrowband IoT channel with the smallest number of associated STAs to allocate to the STA. If there are multiple channels with the smallest number of associated STAs, one of them is randomly selected to be assigned to the above-mentioned newly associated STA.
  • the advantage of this channel allocation strategy is that the number of associated STAs on each narrowband IoT channel is very balanced, and there is no significant difference in collision probability for each channel.
  • the disadvantage is that the AP needs to obtain the statistical information of the STA associated with the narrowband IoT channel, and slightly increases the calculation amount of the AP. As shown in FIG. 5, the number of associated STAs on each narrowband IoT channel is relatively equal, so the collision probability between STAs of different narrowband IoT channels may not be much different.
  • the STA is allocated a narrowband IoT channel with the best SNR or SINR at this time according to the SNR or SINR of the narrowband IoT channel at the time of association.
  • the AP When the AP associates with the STA, the AP allocates a narrowband IoT channel with the best SNR or SINR at this time.
  • the advantage is that the quality of STAs transmitting messages on the narrowband IoT channel in a short time after association may be better than using other narrowband IoT channels, but from a longer time scale, the wireless propagation medium of each narrowband IoT channel may change, It has a positive or negative impact on the transmission of wireless signals. It is difficult to predict whether the above-mentioned narrowband IoT channel remains the best narrowband IoT channel with SNR or SINR after a long time scale. That is to say, the narrowband IoT channel allocated by the AP to the STA at the time of association may not be the channel with the best SNR or SINR after a period of time.
  • the above-mentioned grouping means that the AP divides the STAs of the BSS into groups according to certain characteristics of the STA, and is divided into several groups according to factors such as the service and geographical location of the STA.
  • an example of a possible allocation policy is: an AP allocates a narrowband IoT channel to the STA according to a packet in which the STA is located, for example, all STAs in a certain packet use the same narrowband IoT channel, and between different packets.
  • the STAs may use different narrowband IoT channels (eg, all STAs in sector 1 use the narrowband IoT channel CH1, and all STAs in sector 2 use the narrowband IoT channel CH2).
  • the AP selects A narrowband IoT channels from the N available narrowband IoT channels, and all narrowband IoT channels allocated for the new associated STAs are selected from the A channels. That is, the narrowband IoT channels available to all STAs associated with the AP are concentrated on the above A narrowband IoT channels.
  • the above A narrowband IoT channels may be selected by the AP from the least interfered narrowband IoT channels after startup.
  • the OBSS AP selects B narrow-band IoT channels among the N available narrow-band IoT channels as an alternative narrow-band IoT allocated to the OBSS STA. channel.
  • the narrowband IoT channels of the above A and B groups do not overlap or only partially overlap, the interference between STAs between the two BSSs will be effectively reduced (ie, the STAs of the two BSSs are not on the same narrowband IoT channel, and are not mutually Will produce meaningful interference), which in turn can improve the efficiency of the WiFi system.
  • the above OBSS refers to an adjacent BSS partially overlapping with the BSS coverage area.
  • the two BSSs where AP1 and AP2 are located are OBSSs, and the STAs associated with AP1 select one of the A narrowband IoT channels as the primary narrowband IoT channel, such as CH1, CH3, or CH5. It is assumed here that STA1 is associated with AP1.
  • the STA associated with AP2 selects one of the B narrowband IoT channels as the primary narrowband IoT channel, such as CH2, CH4, or CH6.
  • STA2 is associated with AP2.
  • STA1 and STA2 are both in the overlapping area of AP1 and AP2 coverage, since STA1 and STA2 use different narrowband IoT channels, STA1 and STA2 do not cause meaningful interference with each other.
  • Adopt a hybrid strategy, that is, use two or more of the above channel policies at the same time.
  • STAs are grouped while limiting the optional narrowband IoT channel of the STA.
  • a possible allocation strategy is that the AP allocates an optional narrowband IoT channel to the STA according to the packet in which the STA is located, that is, the AP selects A (A is greater than or equal to 1) narrowband IoT channels from the N available narrowband IoT channels as being in a certain A STA in a packet may be allocated a narrowband IoT channel from which narrowband IoT channels used by all STAs are selected. As shown in FIG.
  • the AP divides its coverage into several sectors (such as L sectors) according to the geographic location, and is in a certain sector.
  • the STA inside is a packet.
  • a STA packet within sector 1 may use a narrowband IoT channel CH1 or CH3
  • a STA packet within sector 3 may use a narrowband IoT channel CH2 or CHN-1, and so on.
  • the advantage is that the STAs of a certain sector collectively use one or more narrow-band IoT channels, and if the STAs of other BSSs that overlap all or part of the sector coverage area use different narrow-band IoT channels, the two adjacent neighbors can be effectively reduced. Interference between STAs in the BSS.
  • the STA receives the handover channel message sent by the AP, switches to the new narrowband IoT channel at the appointed time, and sends an acknowledgement message of the handover channel message to the AP on the new narrowband IoT channel, indicating that the channel has been successfully switched.
  • the agreed time is that the STA switches the channel at the default time (such as immediately, or after 50ms, or after 100ms) after receiving the handover channel message sent by the AP, or switches the channel according to the time indicated in the handover channel.
  • the AP can change the narrowband IoT channel used by the single or multiple STAs.
  • the AP may send a single-user handover channel message on the narrowband IoT channel used by the STA to adjust the narrowband IoT channel used by the STA to a new narrowband IoT channel; On the narrowband IoT channel, there are multiple STAs that need to adjust the channel.
  • the AP may send at least one multi-user handover channel message to adjust the narrowband IoT channel used by the multiple STAs, and the new narrowband IoT channel used by the multiple STAs. It may be the same new narrowband IoT channel or a different new narrowband IoT channel; alternatively, the AP may send a broadcast handover channel message for switching narrowband IoT channels used by all STAs on a narrowband IoT channel.
  • Another possible AP is a signaling interaction process in which the STA switches the narrowband IoT channel, and the AP sends a handover channel message to the STA that needs to change the channel. The following two cases are discussed:
  • the AP changes the narrowband IoT channel used by a single STA.
  • the AP sends a single-user handover channel message on the narrowband IoT channel used by the STA to indicate a new narrowband IoT channel to be used by the STA.
  • the AP may also instruct the STA to switch the time of the narrowband IoT channel.
  • the AP changes the flow of the primary narrowband IoT channel of the STA (such as STA1) through a single-user handover channel message.
  • the AP transmits a single-user handover channel message to STA1 on the narrowband IoT channel m used by STA1, instructing STA1 to switch to the narrowband IoT channel 1.
  • STA1 switches to the above-mentioned narrowband IoT channel 1 at a preset time, and sends an acknowledgement message (such as ACK, Acknowledge) of the single-user handover channel to the AP on the narrowband IoT channel 1 to confirm that STA1 has successfully switched to the new narrowband IoT. channel.
  • the preset time may be a time agreed by the AP and the STA1 in advance (such as the time specified in the 802.11 protocol, or the time preset after the AP/STA1 is produced), or the time indicated in the single-user switching channel message.
  • STA2 there are other STAs (such as STA2) that need to switch the narrowband IoT channel, and the AP continues to send a single user handover channel message to STA2 for switching STA2 from the narrowband IoT channel m to the narrowband IoT channel k.
  • the STA1 sends a single-user handover channel message (such as ACK), the channel used by the AP (such as the narrowband IoT channel 1) and the single-user switched channel message sent by the AP to the STA2, the narrowband IoT channel (such as a narrowband) IoT letter The channel m) is different, and the AP may send a single-user handover channel message to the STA2 without waiting for receiving the acknowledgement message of the single-user handover channel sent by the STA1.
  • a single-user handover channel message such as ACK
  • the narrowband IoT channel 1 such as the narrowband IoT channel 1
  • the narrowband IoT channel such as a narrowband IoT letter The channel m
  • the AP simultaneously changes the channels of multiple STAs on the same narrowband IoT channel.
  • the AP sends a multi-user handover channel message on the narrow-band IoT channel used by the multiple STAs, and carries the identifiers of the multiple STAs and the new narrow-band IoT channel to be used by the multiple STAs.
  • the AP may also indicate the foregoing. The time at which multiple STAs switch narrowband IoT channels.
  • the multiple STAs simultaneously send group acknowledgement messages (eg, BA, Block ACK, group acknowledgement frame) on the respective new narrowband IoT channels after the channel handover is completed, for confirming The above plurality of STAs have successfully switched to the above new narrowband IoT channel.
  • group acknowledgement messages eg, BA, Block ACK, group acknowledgement frame
  • the AP sends a multi-user handover channel message to multiple STAs (such as STA1, STA2, STA3, STA4, etc.) for simultaneously switching multiple STAs on a narrowband IoT channel (such as a narrowband IoT channel m).
  • a narrowband IoT channel such as a narrowband IoT channel m.
  • the multi-user handover channel message carries an identifier of a plurality of STAs that need to switch a narrowband IoT channel, and a new narrowband IoT channel to be used by the plurality of STAs. For example, STA1, STA3, etc. will switch from the narrowband IoT channel m to the narrowband IoT channel 1, and STA2, STA4, etc.
  • the above-mentioned BA is used for multiple STAs to simultaneously acknowledge receipt of a certain message, and it is more efficient to send an acknowledgment frame (ACK) one by one than a plurality of STAs.
  • ACK acknowledgment frame
  • the disadvantage is that in the same new narrowband IoT channel transmitting multiple STAs of the BA (such as STA1 and STA3 on the narrowband IoT channel 1), if some STAs (such as STA3) do not reply to the AP at the agreed time for some reason, BA (for example, STA3 does not hear the multi-user handover channel message sent by the AP), but since STA1 has replied to the BA, the AP cannot distinguish who sent the BA (the BA sent by a single STA and the BA sent by multiple STAs simultaneously) It is the same on the AP side. It may cause the AP to fail to recognize that STA3 has not successfully switched channels through the received BA.
  • the foregoing multi-user handover channel message may further carry an indication of when the multiple STAs send an acknowledgement message (such as a BA) of the multi-user handover channel message.
  • an acknowledgement message such as a BA
  • the multiple STAs send an acknowledgement message of the multi-user handover channel message to the AP at different time points of the respective new narrow-band IoT channels after the channel handover is completed, to confirm that the handover has been successfully performed.
  • the acknowledgement message of the multi-user handover channel message may be an ACK frame.
  • the AP sends a multi-user handover channel message to multiple STAs (such as STA1, STA2, STA3, STA4, etc.) for simultaneously switching multiple STAs on a narrowband IoT channel (such as a narrowband IoT channel m).
  • a narrowband IoT channel such as a narrowband IoT channel m.
  • the multi-user handover channel message carries an identifier of a plurality of STAs that need to switch a narrowband IoT channel, a new narrowband IoT channel to be used by the multiple STAs, and an acknowledgement message (such as an ACK) when the plurality of STAs send a multi-user handover channel message. ) instructions. For example, STA1, STA3, etc. will switch from the narrowband IoT channel m to the narrowband IoT channel 1, and STA2, STA4, etc. will switch from the narrowband IoT channel m to the narrowband IoT channel k.
  • ACKs are respectively sent to the APs on the respective new narrowband IoT channels according to the agreed time to confirm that the switching of the narrowband IoT channels has been successfully completed.
  • ACK is used instead of BA, that is, multiple STAs on the same narrowband IoT channel are acknowledgment messages (ie, ACKs) for separately transmitting the above-mentioned multi-user handover channel message. If STA1 switches the channel and sends an ACK to the AP at the agreed time 1, the STA3 sends an ACK to the AP at the agreed time 3 after switching the channel.
  • the advantage is that the AP can determine which STAs have successfully switched to the new narrowband IoT channel based on the received ACK.
  • the embodiment of the present invention provides a wireless communication device, which may implement any method embodiment of the present invention.
  • the specific structure may be the structure of the wireless communication device shown in FIG. 12, where the module S1200 corresponds to the foregoing wireless communication. device.
  • the wireless communication device S1200 it includes sub-modules S1201, S1202, S1203, and S1204.
  • the wireless communication device can include a processor S1201, a memory S1202, a transceiver S1203, and an antenna S1204.
  • the sub-module S1201 corresponds to a processor (which may be one or more), and may implement generation or parsing of a handover channel message, an acknowledgement message (such as ACK, BA, etc.).
  • the sub-module S1202 corresponds to a memory (which may be one or more) for storing program code and transmitting the stored program code to the processor S1201.
  • the sub-module S1203 corresponds to a transceiver of the wireless communication device for transmitting and receiving messages. For example, switching channel messages, confirmation messages, and the like.
  • Submodule S1204 corresponds to the antenna of the wireless communication device.
  • the structures of the Legacy device, the narrowband IoT device, and the Legacy+ narrowband IoT device in the embodiments of the present invention may refer to the structure of the foregoing wireless communication device, where the device includes an AP and an STA.
  • the difference between the above three is mainly in the capabilities of the submodule S1203 transceiver and the submodule S1201 processor.
  • the processor and transceiver of the Legacy device can only generate, parse and send and receive WiFi messages at 20MHz and its multiple times of bandwidth (such as 40MHz, 80MHz, 160MHz, etc.); the processor and transceiver of the narrowband IoT device can be less than 20MHz.
  • Legacy+narrowband IoT devices' processors and transceivers can generate, parse, and send and receive WiFi messages at least 20MHz and less than 20MHz, and more than 20MHz Generate, parse, and send and receive narrowband IoT messages over bandwidth (such as 40MHz, 80MHz, 160MHz, etc.).
  • the first device such as the Legacy+narrowband IoT AP in the first embodiment of the present invention:
  • the processor S1201 of the first device is configured to generate the foregoing handover channel message, including the foregoing single-user handover channel message and the multi-user handover channel message, for switching a narrowband IoT channel of a single or multiple STAs, where the handover channel message is a narrowband Message.
  • the processor S1201 of the foregoing first device may be further configured to allocate the narrowband IoT channel to the STA according to a channel allocation policy.
  • the transceiver S1203 of the first device is configured to send the foregoing switching channel message generated by the processor S1201.
  • the memory S1202 of the first device is further configured to store the narrowband IoT channel selection list.
  • the wireless device is specifically a second device (such as the STA in the first embodiment of the present invention):
  • the transceiver S1203 of the second device is configured to receive the foregoing switching channel message sent by the first device;
  • the processor S1201 of the second device is configured to parse the foregoing handover channel message sent by the first device, and generate an acknowledgement message, such as an ACK or a BA, of the handover channel message.
  • the transceiver S1203 of the second device is further configured to send an acknowledgement message, such as an ACK or a BA, of the handover channel message.
  • the narrowband IoT primary channel used by the STA is determined accordingly. While there may be multiple narrowband IoT channels available in the WiFi IoT scenario, the AP needs a new narrowband IoT channel allocation strategy to accommodate this scenario.
  • the AP when the STA is associated with the AP, the AP allocates a suitable narrowband IoT channel to the newly established associated STA by transmitting a handover channel message according to the narrowband IoT channel allocation list, thereby improving the performance of the WiFi system.
  • the AP When the AP switches the primary 20 MHz channel in the traditional 802.11 protocol, all STAs associated with the AP need to switch to the new 20 MHz channel.
  • the AP sends multiple user switching channel messages to the STA to switch multiple STAs on the same narrowband IoT channel to different narrowband IoT channels, which improves channel switching efficiency and optimizes WiFi system performance.
  • the AP helps the AP to know whether all STAs successfully switch to the new narrowband IoT channel by indicating that the different STAs send the acknowledgement message of the handover channel message at different appointment times in the handover channel message.
  • the embodiment of the present invention further provides a channel control device, which is applied to a first device, where the first device supports broadband and narrowband as a bandwidth for message transmission, and the first device uses a broadband that includes N non-overlapping subchannels.
  • the N subchannels are all narrowband channels; as shown in FIG. 13, the channel control device includes:
  • the sending unit 1301 is configured to send, to the second device that is on the first subchannel, a handover channel message that carries the second subchannel indication, where the handover channel message is sent on the first subchannel, and the second subchannel is the first a new subchannel allocated by the device to the second device, configured to switch the second device to the second subchannel; the first subchannel and the second subchannel belong to the N non-overlapping subchannels, And different from each other;
  • the receiving unit 1302 is configured to receive, on the second subchannel, an acknowledgement message of the handover channel message sent by the second device, where the confirmation message is used by the first device to confirm that the second device has switched to the second subchannel.
  • the foregoing channel control device further includes:
  • the sending unit 1301 is specifically configured to send the switching channel message in the process of establishing association between the first device and the second device by using the first subchannel, or sending the foregoing when the first device performs load balancing. Switch channel messages.
  • the broadband has a bandwidth of 20 MHz or more; the narrowband has a bandwidth of less than 20 MHz.
  • the foregoing channel control device further includes:
  • a channel allocating unit 1401, configured to allocate a second subchannel to the second device according to a channel allocation policy
  • the above channel allocation strategy includes any of the following:
  • a subchannel is selected from the subchannels having the best signal to noise ratio as the second subchannel.
  • the second subchannel is a subchannel among the M subchannels of the N non-overlapping subchannels, and the M subchannels are a set of subchannels used by the second device where the second device is located. .
  • the intersection of the M subchannels and the set of target subchannels is empty, and the set of the target subchannels is a subchannel used by the packet having an overlapping area with the packet where the second device is located. Collection.
  • the grouping of the second device includes: performing classification according to the service or geographic location of the second device.
  • the second device includes one or more physical devices, and the second subchannel includes one or more subchannels.
  • the foregoing switching channel message is a single-user switching channel message, and is used to switch packets.
  • a subchannel used by the above second device including one physical device;
  • the handover channel message is a multi-user handover channel message, and is used to switch a subchannel used by the second device that includes one or more physical devices.
  • the foregoing switching channel message further includes the second device identifier and the second subchannel corresponding to the second device identifier.
  • the switching channel message further includes a time indication that the second device sends the acknowledgement message of the handover channel message, and is used to indicate a time when the second device sends the acknowledgement message of the handover channel message.
  • the handover channel message indicates that the second device sends the acknowledgement message of the handover channel message at the default time of the first device.
  • the embodiment of the present invention further provides a first device.
  • the foregoing first device includes:
  • the transceiver 1501 supports at least a bandwidth of 20 MHz and less than 20 MHz as a bandwidth for message transmission; the transceiver uses 20 non-overlapping subchannels in a 20 MHz bandwidth, and the N subchannels are all channels below 20 MHz, where N is a positive integer Transmitting, by the first device, a handover channel message to the one or more second devices that are located on the first subchannel, where the handover channel message is sent on the first subchannel, and the first device is configured according to a channel allocation policy. One or more new subchannels allocated by the one or more second devices, for switching the one or more second devices to the one or more new subchannels;
  • the transceiver 1501 is further configured to receive, by the first device, an acknowledgement message of the handover channel message sent by the one or more second devices on the one or more new subchannels, for the one or more second The device confirms that the first device has switched to the one or more new subchannels;
  • the processor 1503 is configured to generate the foregoing handover channel message, and parse the acknowledgement message of the handover channel message.
  • the processor 1503 is further configured to select the one or more new subchannels for the one or more second devices according to a channel allocation policy;
  • the channel allocation policy includes at least one of the following:
  • the processor 1503 randomly selects one or more subchannels for the one or more second devices from the N non-overlapping subchannels as the one or more new subchannels;
  • processor 1503 selecting one or more subchannels from among the ones of the one or more second devices to use the one or more subchannels as the one or more new subchannels, each using at least one sub-channel channel;
  • processor 1503 selecting one or more of the sub-channels with the best signal-to-noise ratio among the packets in which the one or more second devices are located as the one or more new subchannels;
  • the memory 1502 is configured to store program codes and instructions, and is further configured to store the foregoing channel allocation policy;
  • An antenna 1504 is configured to send and receive messages from the wireless medium.
  • the AP may be multiple narrowband IoT channels available for selection and use in the AP's primary 20 MHz channel. How the AP allocates the narrowband IoT channels used for the associated narrowband IoT STAs may affect the performance of the WiFi system. Through a reasonable channel allocation strategy, the performance of the entire WiFi system can be improved. In addition, the AP sends a switching channel message to multiple narrowband IoT STAs, which can switch the narrowband IoT STAs to the same or different new channels, improving channel usage efficiency and saving air interface resources.
  • the first device selects, among the N non-overlapping subchannels, M sub-channels that do not overlap; the first device does not overlap from the M Subchannel selection One of the one or more new subchannels used as the one or more second devices; wherein M is a positive integer not greater than N.
  • the AP can allocate one of the N narrowband IoT channels to the narrowband IoT STA as a new channel
  • the AP can select, among the N narrowband IoT channels, the M narrowband IoT channels among the STAs in a certain packet as the packet.
  • a new channel that the STA can allocate, and M is a positive integer not greater than N.
  • the foregoing M non-overlapping subchannels used by the one or more second devices in different groups are not completely the same.
  • the hybrid policy in the channel allocation policy in the embodiment of the present invention is that the STAs in different packets can be allocated differently.
  • the narrowband IoT channels may be different, which increases the flexibility of the channel allocation policy.
  • the handover channel message is a single-user handover channel message, and is used to switch the used by the second device.
  • the handover channel message is a multi-user handover channel message, and is used to switch the subchannels used by the multiple second devices.
  • the single-user handover channel message is used to switch the narrowband IoT channel used by a single narrowband IoT STA; the multi-user handover channel message is used to switch the narrowband IoT channel used by multiple narrowband IoT STAs, where the narrowband IoT originally used by multiple narrowband IoT STAs
  • the channels need to be the same, and the switched new narrowband IoT channels can be the same or different.
  • the above STAs will all be switched to the same channel, and the multi-user channel switching message here is more flexible.
  • the foregoing switching channel message further carries an identifier of the one or more second devices, to indicate that the one or more second devices need to switch channels to the one or more new ones. channel.
  • the foregoing switching channel message further carries a time indication that the one or more second devices send the acknowledgement message of the switching channel message, and is used to indicate that the one or more second devices are preset.
  • the acknowledgment message of the above switching channel message is sent at the time.
  • the AP In order to avoid collision between the acknowledgment messages of the multi-user handover channel message replied by the multiple narrowband IoT STAs, the AP cannot determine which narrowband IoT STAs send the acknowledgment message of the multi-user handover channel message, and the AP can perform the multi-user handover described above.
  • the channel message adds a preset time for the foregoing acknowledgment message of the multiple-band IoT STA to send the multi-user handover channel message, so that the AP can confirm which narrow-band IoT STAs successfully switch to the new channel.
  • the foregoing switching channel message indicates that the one or more second devices are in the confirmation message that the first device replies to the handover channel message at a default agreed time.
  • the narrowband IoT STA can reply to the acknowledgment message of the handover channel message at the time agreed with the AP by default.
  • the advantage is that the time for the narrowband IoT STA to send the acknowledgment message of the handover channel message in the handover channel message is not needed, and the overhead is saved.
  • the embodiment of the present invention further provides a wireless communication device, as shown in FIG. 16, used as a first device, comprising: an input and output device 1601, a processor 1602, and a memory 1603; wherein the memory 1603 can be used for Providing a buffer, or other data storage requirement, required by the processor for data processing; the input and output device 1601 provides the capability for communication between the access device and the second device; the processor 1602 is configured to implement the embodiments of the present invention. Control of any method flow.
  • the embodiment of the present invention further provides a wireless communication device, as shown in FIG. 16, used as a first device, comprising: an input/output device 1601, a processor 1602, and a memory 1603; wherein the memory 1603 stores program instructions, and the processing is performed.
  • the processor 1602 is configured to implement the method flow of any one of the embodiments of the present invention in the process of executing the program instruction.
  • the input and output device 1601 is then used to implement communication with the second device.
  • the above-described input/output device 1601, processor 1602, and memory 1603 can be connected to each other through a bus.
  • the memory 1603 includes, but is not limited to, a random access memory (RAM), a read-only memory (ROM), an Erasable Programmable Read Only Memory (EPROM), or A Compact Disc Read-Only Memory (CD-ROM) for storing related instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM Erasable Programmable Read Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • the input and output device 1601 is for receiving and transmitting data.
  • the processor 1602 may be one or more central processing units (CPUs). In the case where the processor 1602 is a CPU, the CPU may be a single core CPU or a multi-core CPU.
  • CPUs central processing units
  • each device embodiment may refer to related methods in the related method embodiments. Partial understanding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信道控制的方法,及设备,其中方法应用于第一设备,所述第一设备使用的宽带下包含有N个不重叠的子信道,所述N个子信道均为窄带的信道;包括:所述第一设备向处于第一子信道上的第二设备发送携带第二子信道指示的切换信道消息,所述切换信道消息在所述第一子信道发送,所述第二子信道为所述第一设备为所述第二设备分配的新的子信道,用于将所述第二设备切换到所述第二子信道;所述第一子信道和所述第二子信道均属于所述N个不重叠的子信道,且互不相同;所述第一设备在所述第二子信道上接收所述第二设备发送的所述切换信道消息的确认消息,所述确认消息用于所述第一设备确认所述第二设备已切换到所述第二子信道。适应于WiFi IoT的特性。

Description

一种信道控制方法,及设备 技术领域
本发明涉及通信技术领域,尤其涉及一种信道控制方法,及设备。
背景技术
随着无线局域网(Wireless Local Area Network,WLAN)标准的演进,目前电子电气工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11工作组正在筹划以物联网(Internet of Thing,IoT)场景为主并与传统802.11(Legacy 802.11协议,如802.11b/a/g/n/ac)协议高度兼容的无线保真(Wireless Fidelity,WiFi)标准研究和制定工作。所述WiFi标准可能在802.11ax中完成或单独立项,但尚未确认。本发明实施例中使用较通俗的无线保真物联网(WiFi IoT)来指代这种以IoT场景为主的WiFi协议。
在传统的802.11协议中,接入点(Access Point,AP)启动时会检测信道,并选择一个干扰较少的20MHz信道作为首要20MHz信道,站点(Station,STA)与AP之间的消息交互将在该信道上进行。上述20MHz首要信道一旦选择,一般情况下AP不会将其改变。由于WiFi使用的是免费频谱,因此可用的频段资源比较有限。以中国为例,2.4GHz频段上不重叠的20MHz频谱仅有3个,5GHz上不相邻的20MHz频段有4个,因此无论AP选择哪段频谱作为20MHz首要信道,均很容易与周边基本服务集(Basic Service Set,BSS)选择完全或部分重叠的信道。
WiFi IoT的核心特征之一是使用窄带(Narrow Band,NB)来传输窄带消息。WiFi IoT的另一核心特征是在某些场景下与AP关联的窄带IoT STA数量可能较多。然而采用传统的802.11协议,无法适应WiFi IoT的特性。
发明内容
本发明实施例所要解决的技术问题在于,提供一种信道控制方法,及设备,从而适应于WiFi IoT的特性。
第一方面,本发明实施例提供了一种信道控制的方法,应用于第一设备,所述第一设备支持宽带和窄带作为消息传输的带宽,所述第一设备使用的宽带下包含有N个不重叠的子信道,所述N个子信道均为窄带的信道;所述方法包括:
所述第一设备向处于第一子信道上的第二设备发送携带第二子信道指示的切换信道消息,所述切换信道消息在所述第一子信道发送,所述第二子信道为所述第一设备为所述第二设备分配的新的子信道,用于将所述第二设备切换到所述第二子信道;所述第一子信道和所述第二子信道均属于所述N个不重叠的子信道,且互不相同;
所述第一设备在所述第二子信道上接收所述第二设备发送的所述切换信道消息的确认消息,所述确认消息用于所述第一设备确认所述第二设备已切换到所述第二子信道。
在本实施例中,由于N是指子信道的个数,因此N应当为大于或等于1的整数;宽带和窄带是相对的概念,在本实施例宽带具有更宽的频率范围,窄带则相对具有更窄的频率范围;例如,宽带可以是20MHz或者更宽,窄带则可以是2MHz或者5MHz等;另外,第 一设备是进行信道管理的设备,通常可以是接入设备,例如:接入点、基站等;第二设备则可以是终端设备、监测设备等;第二设备和第二子信道在本实施例中并不限制其数量,因此第二设备可以包含1个或者1个以上的实体设备,第二子信道也可以是1个或者1个以上的子信道;可以理解的是,如果第二设备仅包含1个实体设备,第二子信道如果包含1个子信道,那么将是指定一个子信道给该实体设备,如果是多个子信道则提供了该实体设备从这多个子信道选择的权限;第二子信道如果包含1个以上的子信道,第二子信道如果包含1个子信道,那么第二设备所包含的所有实体设备将会被分配同一个子信道,如果第二子信道包含1个以上的子信道,那么第二设备包含的所有实体设备可以分配到不同的子信道。
上述第二信道指示是用于告知第二设备该第二信道的信息,通常可以是第二信道的标识,或者其他任意能表示第二信道的信息。
在本发明实施例中,由于实现了对窄带信道的分配和切换,因此可以克服传统802.11协议中仅针对宽带信道进行调度,导致容易出现剧烈碰撞的问题、信道质量变化不能切换的问题以及信道资源不足等等问题,因此本发明实施例方案可以适应于WiFi IoT的特性。
在一种可选的实现方式中,所述方法还包括:
所述切换信道消息在所述第一设备与所述第二设备使用所述第一子信道建立关联的过程中发送;
或者,所述切换信道消息在所述第一设备执行负载均衡的情况下发送。
负载均衡是指:在上述N个子信道中,出现了子信道关联的设备发生不均衡的情况下,需要将关联较多设备的子信道内的设备切换到关联较少设备的子信道内,从而实现各子信道关联数量差别较少设备的过程。
本发明实施例的方案,可以应用于初始分配子信道也可以用于后期的负载均衡。
在一种可选的实现方式中,所述宽带具有20MHz或20MHz以上带宽;所述窄带具有20MHz以下带宽。
在本实施例中,上述N个子信道,即N个窄带可以互不相同,也可以是相同的,例如:全部是2MHz的窄带,也可以是:2MHz、5MHz或者其他共存的情况。宽带最宽可以多少,这取决于频谱资源以及协议规定,本发明实施例对此不作限定。
在一种可选的实现方式中,在所述向处于第一子信道上的所述第二设备发送携带第二子信道指示的切换信道消息之前,所述方法还包括:
所述第一设备依据信道分配策略为所述第二设备分配第二子信道;
所述信道分配策略包括一下任意一种:
所述第一设备随机从所述N个不重叠的子信道中为所述第二设备选择子信道作为所述第二子信道;
或者,所述第一设备从使用最少的子信道中选择其中1个子信道作为所述第二子信道;
或者,所述第一设备从信噪比最好的子信道中选择其中1个子信道作为所述第二子信道。
在本实施例中,随机分配的方式基于概率学的角度来看,最终会实现负载均衡,适用于初始的子信道分配。通过统计所有使用同一个子信道的实体设备,那么子信道使用少那 么表示该子信道较为空闲,发生碰撞的可能性较小,可以从其他子信道迁入实体设备,也可以将新加入的实体设备分配到该较为空闲的子信道;从而可以及时调整,实现负载均衡并且减少碰撞。依信噪比的大小来分配子信道,则可以兼顾到设备的移动或者其他原因导致设备之间通信质量的变化,通过调整可以获得较好的通信质量。
在一种可选的实现方式中,所述方法还包括:
所述第二子信道为所述N个不重叠的子信道中M个子信道中的子信道,所述M个子信道为所述第二设备所在分组使用的子信道的集合。
在本实施例中,首先限制了第二子信道的可选范围,并不是N个子信道中任意选择,可以为设备的分组提供了条件。
可以理解是M个子信道是是N个子信道内的,因此M小于或等于N,另外M用于表示子信道的个数,因此其应当是大于或者等于1的整数。
在一种可选的实现方式中,所述方法还包括:
所述M个子信道与目标子信道的集合的交集为空,所述目标子信道的集合为与所述第二设备所在的分组具有重叠区域的分组所使用的子信道的集合。
在本实施例中,由于M个子信道与目标子信道的集合的交集为空,那么第二设备所在的分组与其有重叠区域的分组之间将会不存在相同的子信道,那么处于不同分组内的设备的碰撞将会被限制在完全可以接受的范围内。
在本实施例中,子信道集合在地理上会有一定的覆盖区域,那么覆盖区域与覆盖区域之间可能会存在重叠区域;因此,上述重叠区域指示覆盖区域的重叠区域。
在一种可选的实现方式中,所述第二设备的分组包括:
依据所述第二设备的业务或者地理位置为依据进行的分类。
在本实施例中,可以根据业务或者地理位置来对设备进行分类,以地理位置分类为例:该地理位置可以是接入设备的天线发射的扇区,那么不同的扇区之间使用不同的子信道集合那么将会使不同的扇区之间发生碰撞的可能性减少,并且利于将子信道在地理区域中的分布进行规划。
在一种可选的实现方式中,所述第二设备包含1个或者1个以上的实体设备,所述第二子信道包含1个或者1个以上的子信道。
在前述实施例中,已经介绍了实体设备数量以及子信道数量之间的关系,在此不再赘述。
在一种可选的实现方式中,所述方法还包括:
所述切换信道消息为单用户切换信道消息,则用于切换包含1个实体设备的所述第二设备所使用的子信道;
或者,所述切换信道消息为多用户切换信道消息,则用于切换包含1个或1个以上的实体设备的所述第二设备所使用的子信道。
在本实施例中,基于前文介绍的实体设备数量以及子信道数量之间的关系,可以相应地修改用户切换信道消息的内容。
在一种可选的实现方式中,所述方法还包括:
所述切换信道消息中还携带所述第二设备标识以及与所述第二设备标识对应的所述第 二子信道,所述第二设备包含1个以上的实体设备。
在本实施例中,特别是基于第二设备包含多个实体设备的情况下,指定标识对应的子信道,可以更方便控制特定的设备切换到的子信道。
在一种可选的实现方式中,所述方法还包括:
所述切换信道消息还携带所述第二设备发送所述切换信道消息的确认消息的时间指示,用于指示所述第二设备发送所述切换信道消息的确认消息的时间;
或者,所述切换信道消息指示所述第二设备在所述第一设备的默认时间发送所述切换信道消息的确认消息。
在本实施例中,通过切换信道消息指示了确认消息的发送时间,使得第二设备能够获得准确的发送确认消息的时间,保证确认消息能够被第一设备正确接收到。
第二方面,本发明实施例还提供了一种信道控制设备,应用于第一设备,所述第一设备支持宽带和窄带作为消息传输的带宽,所述第一设备使用的宽带下包含有N个不重叠的子信道,所述N个子信道均为窄带的信道;所述信道控制设备包括:
发送单元,用于向处于第一子信道上的第二设备发送携带第二子信道指示的切换信道消息,所述切换信道消息在所述第一子信道发送,所述第二子信道为所述第一设备为所述第二设备分配的新的子信道,用于将所述第二设备切换到所述第二子信道;所述第一子信道和所述第二子信道均属于所述N个不重叠的子信道,且互不相同;
接收单元,用于在所述第二子信道上接收所述第二设备发送的所述切换信道消息的确认消息,所述确认消息用于所述第一设备确认所述第二设备已切换到所述第二子信道。
在一种可选的实现方式中,
所述发送单元,具体用于在所述第一设备与所述第二设备使用所述第一子信道建立关联的过程中发送所述切换信道消息;或者,在所述第一设备执行负载均衡的情况下发送所述切换信道消息。
在一种可选的实现方式中,所述宽带具有20MHz或20MHz以上带宽;所述窄带具有20MHz以下带宽。
在一种可选的实现方式中,所述信道控制设备还包括:
信道分配单元,用于在依据信道分配策略为所述第二设备分配第二子信道;
所述信道分配策略包括一下任意一种:
随机从所述N个不重叠的子信道中为所述第二设备选择子信道作为所述第二子信道;
或者,从使用最少的子信道中选择其中1个子信道作为所述第二子信道;
或者,从信噪比最好的子信道中选择其中1个子信道作为所述第二子信道。
在一种可选的实现方式中,所述第二子信道为所述N个不重叠的子信道中M个子信道中的子信道,所述M个子信道为所述第二设备所在分组使用的子信道的集合。
在一种可选的实现方式中,所述M个子信道与目标子信道的集合的交集为空,所述目标子信道的集合为与所述第二设备所在的分组具有重叠区域的分组所使用的子信道的集合。
在一种可选的实现方式中,所述第二设备的分组包括:依据所述第二设备的业务或者地理位置为依据进行的分类。
在一种可选的实现方式中,所述第二设备包含1个或者1个以上的实体设备,所述第二子信道包含1个或者1个以上的子信道。
在一种可选的实现方式中,所述切换信道消息为单用户切换信道消息,则用于切换包含1个实体设备的所述第二设备所使用的子信道;
或者,所述切换信道消息为多用户切换信道消息,则用于切换包含1个或1个以上的实体设备的所述第二设备所使用的子信道。
在一种可选的实现方式中,所述切换信道消息中还携带所述第二设备标识以及与所述第二设备标识对应的所述第二子信道,所述第二设备包含1个以上的实体设备。
在一种可选的实现方式中,所述切换信道消息还携带所述第二设备发送所述切换信道消息的确认消息的时间指示,用于指示所述第二设备发送所述切换信道消息的确认消息的时间;
或者,所述切换信道消息指示所述第二设备在所述第一设备的默认时间发送所述切换信道消息的确认消息。
第三方面,本发明实施例还提供了一种信道分配和切换的通信方法,用于第一设备,所述方法包括:
第一设备至少支持使用20MHz和20MHz以下带宽作为消息传输的带宽;所述第一设备使用的20MHz带宽下有N个不重叠的子信道,所述N个子信道均为20MHz以下信道,其中N为正整数;
所述第一设备根据一个或多个第二设备所处的分组,向处于第一子信道上的所述一个或多个第二设备发送切换信道消息,所述切换信道消息在所述第一子信道上发送,携带所述第一设备依照信道分配策略为所述一个或多个第二设备分配的一个或多个新的子信道,用于将所述一个或多个第二设备切换到所述一个或多个新的子信道;所述第一子信道为所述N个不重叠的子信道中的一个,所述第一子信道和所述一个或多个新的子信道为不同的信道;
所述第一设备在所述一个或多个新的子信道上分别接收所述一个或多个第二设备发送的所述切换信道消息的确认消息,用于所述一个或多个第二设备向所述第一设备确认已切换到所述一个或多个新的子信道;
所述信道分配策略至少包括以下中的一种:
所述第一设备随机从所述N个不重叠的子信道中为所述一个或多个第二设备选择一个或多个子信道作为所述一个或多个新的子信道;
或,所述第一设备从所述一个或多个第二设备所处的分组中使用最少的子信道中选择一个或多个子信道作为所述一个或多个新的子信道,每个分组使用至少一个子信道;
或,所述第一设备从所述一个或多个第二设备所处的分组中信噪比最好的子信道中选择一个或多个子信道作为所述一个或多个新的子信道。
在WiFi IoT场景中,AP的首要20MHz信道下可能有多个窄带IoT信道可供选择并使用,AP如何为关联的窄带IoT STA分配所使用的窄带IoT信道会对WiFi***的性能产生影响。通过合理的信道分配策略,能够提升整个WiFi***的性能。额外的,AP给多个窄带IoT STA发送一个切换信道消息,能够将这些窄带IoT STA切换到相同或不同新的信道 上,提升了信道使用效率,节约了空中接口资源。
在一种可选的实现方式中,所述方法还包括:
所述信道分配策略中所述第一设备在所述N个不重叠的子信道中选择其中M个不重叠的子信道;所述第一设备从所述M个不重叠的子信道中选择其中一个作为所述一个或多个第二设备使用的所述一个或多个新的子信道;其中M为不大于N的正整数。
假设AP能够为窄带IoT STA分配N个窄带IoT信道中的一个作为新的信道,AP可以对某一分组中的STA在所述N个窄带IoT信道中选择其中M个窄带IoT信道,作为该分组中STA可分配的新的信道,M为不大于N的正整数。好处是两个相邻BSS中,地理位置上邻近或覆盖范围重叠的窄带IoT STA如果使用不同的窄带IoT信道,则可以有效降低两个相邻BSS之间的干扰。
在一种可选的实现方式中,所述方法还包括:
所处不同分组中的所述一个或多个第二设备使用的所述M个不重叠的子信道不完全相同。
此处为本发明实施例中信道分配策略中的混合策略,即不同分组中的STA可被分配窄带IoT信道可以不相同,增加了信道分配策略的灵活性。
在一种可选的实现方式中,所述方法还包括:
若所述第一设备向所述一个第二设备发送所述切换信道消息,则所述切换信道消息为单用户切换信道消息,用于切换所述一个第二设备所使用的子信道;
若所述第一设备向所述多个第二设备发送所述切换信道消息,则所述切换信道消息为多用户切换信道消息,用于切换所述多个第二设备所使用的子信道。
单用户切换信道消息用于切换单个窄带IoT STA所使用的窄带IoT信道;多用户切换信道消息用于切换多个窄带IoT STA所使用的窄带IoT信道,这里多个窄带IoT STA原本使用的窄带IoT信道需相同,切换后的新的窄带IoT信道可以相同,也可以不同。对比传统802.11协议中所述STA都将被切换到同一信道,这里的多用户信道切换消息更加灵活。
在一种可选的实现方式中,所述方法还包括:
所述切换信道消息还携带所述一个或多个第二设备的标识,用于指示所述一个或多个第二设备需要切换到所述一个或多个新的子信道。
当多个窄带IoT STA需要切换到多个新的窄带IoT信道时,需要在多用户切换信道消息中指示所述窄带IoT STA的标识信息(如MAC地址、或AID等),用于指示哪些窄带IoT STA将切换到哪些新的窄带IoT信道上。
在一种可选的实现方式中,所述方法还包括:
所述切换信道消息携带所述一个或多个第二设备发送所述切换信道消息的确认消息的时间指示,用于指示所述一个或多个第二设备在预设时间发送所述切换信道消息的确认消息。
为了避免多个窄带IoT STA所回复的多用户切换信道消息的确认消息之间发生碰撞,导致AP无法确定哪些窄带IoT STA发送了所述多用户切换信道消息的确认消息,AP可以在所述多用户切换信道消息中加入所述多个窄带IoT STA发送所述多用户切换信道消息的确认消息的预设时间,使得AP可以确认哪些窄带IoT STA成功切换到新的信道。
在一种可选的实现方式中,所述方法还包括:
所述切换信道消息指示所述一个或多个第二设备在与所述第一设备默认约定的时间发送所述切换信道消息的确认消息。
窄带IoT STA可以在与AP默认约定的时间回复切换信道消息的确认消息,好处是不需要在切换信道消息中指示窄带IoT STA发送切换信道消息的确认消息的时间,节约开销。
第四方面,本发明实施例还提供了另一种信道分配和切换的通信方法,用于第一设备,所述方法包括:
第一设备至少支持使用20MHz和20MHz以下带宽作为消息传输的带宽;所述第一设备使用的20MHz带宽下有N个不重叠的子信道,所述N个子信道均为20MHz以下信道,其中N为正整数;
所述第一设备与第二设备使用第一子信道建立关联,在建立关联过程中,所述第一设备根据所述第二设备所处的分组,向处于第一子信道上的所述第二设备发送切换信道消息,所述切换信道消息在第一子信道上发送,携带所述第一设备依照信道分配策略为所述第二设备分配新的子信道,用于将所述第二设备切换到所述新的子信道;所述新的子信道为所述N个不重叠的子信道中的一个,所述第一子信道和所述新的子信道为不同的信道;
所述第一设备在所述新的子信道上接收所述第二设备发送的所述切换信道消息的确认消息,用于所述第二设备向所述第一设备确认已切换到所述一新的子信道;
所述信道分配策略至少包括以下中的一种:
所述第一设备随机从所述N个不重叠的子信道中为所述第二设备选择一个子信道作为所述新的子信道;
或,所述第一设备从所述第二设备所处的分组中使用最少的子信道中选择一个子信道作为所述新的子信道,每个分组使用至少一个子信道;
或,所述第一设备从所述第二设备所处的分组中信噪比最好的子信道中选择一个子信道作为新的子信道。
在WiFi IoT场景中,AP的首要20MHz信道下可能有多个窄带IoT信道可供选择并使用,AP如何为关联的窄带IoT STA分配所使用的窄带IoT信道会对WiFi***的性能产生影响。通过合理的信道分配策略,能够提升整个WiFi***的性能。额外的,AP给多个窄带IoT STA发送一个切换信道消息,能够将这些窄带IoT STA切换到相同或不同新的信道上,提升了信道使用效率,节约了空中接口资源。
在一种可选的实现方式中,所述方法还包括:
所述信道分配策略中所述第一设备在所述N个不重叠的子信道中选择其中M个不重叠的子信道;所述第一设备从所述M个不重叠的子信道中选择其中一个作为所述第二设备使用的新的子信道;其中M为不大于N的正整数。
假设AP能够为窄带IoT STA分配N个窄带IoT信道中的一个作为新的信道,AP可以对某一分组中的STA在所述N个窄带IoT信道中选择其中M个窄带IoT信道,作为该分组中STA可分配的新的信道,M为不大于N的正整数。好处是两个相邻BSS中,地理位置上邻近或覆盖范围重叠的窄带IoT STA如果使用不同的窄带IoT信道,则可以有效降低两个相邻BSS之间的干扰。
在一种可选的实现方式中,所述方法还包括:
所处不同分组中的所述第二设备使用的所述M个不重叠的子信道不完全相同。
此处为本发明实施例中信道分配策略中的混合策略,即不同分组中的STA可被分配窄带IoT信道可以不相同,增加了信道分配策略的灵活性。
在一种可选的实现方式中,所述方法还包括:
所述切换信道消息携带所述第二设备发送所述切换信道消息的确认消息的时间指示,用于指示所述第二设备在预设时间发送所述切换信道消息的确认消息。
为了避免多个窄带IoT STA所回复的多用户切换信道消息的确认消息之间发生碰撞,导致AP无法确定哪些窄带IoT STA发送了所述多用户切换信道消息的确认消息,AP可以在所述多用户切换信道消息中加入所述多个窄带IoT STA发送所述多用户切换信道消息的确认消息的预设时间,使得AP可以确认哪些窄带IoT STA成功切换到新的信道。
在一种可选的实现方式中,所述方法还包括:
所述切换信道消息指示所述第二设备在与所述第一设备默认约定的时间发送所述切换信道消息的确认消息。
窄带IoT STA可以在与AP默认约定的时间回复切换信道消息的确认消息,好处是不需要在切换信道消息中指示窄带IoT STA发送切换信道消息的确认消息的时间,节约开销。
第五方面,本发明实施例还提供了一种第一设备,所述第一设备包括:
收发器,至少支持使用20MHz和20MHz以下带宽作为消息传输的带宽;所述收发器使用的20MHz带宽下有N个不重叠的子信道,所述N个子信道均为20MHz以下信道,其中N为正整数;用于第一设备向处于第一子信道上的所述一个或多个第二设备发送切换信道消息,所述切换信道消息在所述第一子信道上发送,携带所述第一设备依照信道分配策略为所述一个或多个第二设备分配的一个或多个新的子信道,用于将所述一个或多个第二设备切换到所述一个或多个新的子信道;
收发器,还用于所述第一设备在所述一个或多个新的子信道上接收所述一个或多个第二设备发送的所述切换信道消息的确认消息,用于所述一个或多个第二设备向所述第一设备确认已切换到所述一个或多个新的子信道;
处理器,用于生成所述切换信道消息,以及解析所述切换信道消息的确认消息;
处理器,还用于根据信道分配策略为所述一个或多个第二设备选择所述一个或多个新的子信道;所述信道分配策略至少包括以下中的一种:
处理器,随机从所述N个不重叠的子信道中为所述一个或多个第二设备选择一个或多个子信道作为所述一个或多个新的子信道;
或,处理器,从所述一个或多个第二设备所处的分组中使用最少的子信道中选择一个或多个子信道作为所述一个或多个新的子信道,每个分组使用至少一个子信道;
或,处理器,从所述一个或多个第二设备所处的分组中信噪比最好的子信道中选择一个或多个作为所述一个或多个新的子信道;
存储器,用于存储程序代码和指令;还用于存储所述信道分配策略;
天线,用于从无线媒介中收发消息。
在WiFi IoT场景中,AP的首要20MHz信道下可能有多个窄带IoT信道可供选择并使 用,AP如何为关联的窄带IoT STA分配所使用的窄带IoT信道会对WiFi***的性能产生影响。通过合理的信道分配策略,能够提升整个WiFi***的性能。额外的,AP给多个窄带IoT STA发送一个切换信道消息,能够将这些窄带IoT STA切换到相同或不同新的信道上,提升了信道使用效率,节约了空中接口资源。
在一种可选的实现方式中,所述信道分配策略中所述第一设备在所述N个不重叠的子信道中选择其中M个不重叠的子信道;所述第一设备从所述M个不重叠的子信道中选择其中一个作为所述一个或多个第二设备使用的所述一个或多个新的子信道;其中M为不大于N的正整数。
假设AP能够为窄带IoT STA分配N个窄带IoT信道中的一个作为新的信道,AP可以对某一分组中的STA在所述N个窄带IoT信道中选择其中M个窄带IoT信道,作为该分组中STA可分配的新的信道,M为不大于N的正整数。好处是两个相邻BSS中,地理位置上邻近或覆盖范围重叠的窄带IoT STA如果使用不同的窄带IoT信道,则可以有效降低两个相邻BSS之间的干扰。
在一种可选的实现方式中,所处不同分组中的所述一个或多个第二设备使用的所述M个不重叠子信道不完全相同。
此处为本发明实施例中信道分配策略中的混合策略,即不同分组中的STA可被分配窄带IoT信道可以不相同,增加了信道分配策略的灵活性。
在一种可选的实现方式中,若所述第一设备向所述一个第二设备发送所述切换信道消息,则所述切换信道消息为单用户切换信道消息,用于切换所述一个第二设备所使用的子信道;
若所述第一设备向所述多个第二设备发送所述切换信道消息,则所述切换信道消息为多用户切换信道消息,用于切换所述多个第二设备所使用的子信道。
单用户切换信道消息用于切换单个窄带IoT STA所使用的窄带IoT信道;多用户切换信道消息用于切换多个窄带IoT STA所使用的窄带IoT信道,这里多个窄带IoT STA原本使用的窄带IoT信道需相同,切换后的新的窄带IoT信道可以相同,也可以不同。对比传统802.11协议中所述STA都将被切换到同一信道,这里的多用户信道切换消息更加灵活。
在一种可选的实现方式中,所述切换信道消息还携带所述一个或多个第二设备的标识,用于指示所述一个或多个第二设备需要切换信道到所述一个或多个新的子信道。
当多个窄带IoT STA需要切换到多个新的窄带IoT信道时,需要在多用户切换信道消息中指示所述窄带IoT STA的标识信息(如MAC地址、或AID等),用于指示哪些窄带IoT STA将切换到哪些新的窄带IoT信道上。
在一种可选的实现方式中,所述切换信道消息还携带所述一个或多个第二设备发送所述切换信道消息的确认消息的时间指示,用于指示所述一个或多个第二设备在预设时间发送所述切换信道消息的确认消息。
为了避免多个窄带IoT STA所回复的多用户切换信道消息的确认消息之间发生碰撞,导致AP无法确定哪些窄带IoT STA发送了所述多用户切换信道消息的确认消息,AP可以在所述多用户切换信道消息中加入所述多个窄带IoT STA发送所述多用户切换信道消息的确认消息的预设时间,使得AP可以确认哪些窄带IoT STA成功切换到新的信道。
在一种可选的实现方式中,所述切换信道消息指示所述一个或多个第二设备在于所述第一设备在默认约定的时间回复所述切换信道消息的确认消息。
窄带IoT STA可以在与AP默认约定的时间回复切换信道消息的确认消息,好处是不需要在切换信道消息中指示窄带IoT STA发送切换信道消息的确认消息的时间,节约开销。
第六方面,本发明实施例还提供了一种无线通信设备,作为第一设备使用,包含:输入输出设备、处理器以及存储器;其中存储器可以用于提供处理器进行数据处理所需要的缓存,或者其他数据存储需求;输入输出设备则提供该接入设备与第二设备之间进行通信的能力;该处理器用于实现本发明实施例提供的任意一项的方法流程的控制。
第七方面,本发明实施例还提供了一种无线通信设备,作为第一设备使用,包含:输入输出设备、处理器以及存储器;其中,存储器存储有程序指令,该处理器用于在执行该程序指令的过程中实现本发明实施例提供的任意一项的方法流程。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对本发明实施例中所需要使用的附图进行说明。
图1是本发明实施例Legacy设备20MHz下的子信道示意图;
图2是本发明实施例Legacy设备20MHz下的子信道示意图;
图3是本发明实施例窄带IoT信道的分配示意图;
图4是本发明实施例随机分配窄带信道后的结果示意图;
图5是本发明实施例分配窄带信道后的结果示意图;
图6是本发明实施例按STA所处分组分配窄带信道的分配示意图;
图7是本发明实施例限制STA可选择的窄带IoT信道分配示意图;
图8是本发明实施例结合分组的限制STA可选择的窄带IoT信道分配示意图;
图9是本发明实施例单个STA的窄带IoT信道分配信令示意图;
图10是本发明实施例单个STA的窄带IoT信道分配信令示意图;
图11是本发明实施例单个STA的窄带IoT信道分配信令示意图;
图12是本发明实施例无线通信设备结构示意图;
图13是本发明实施例信道控制设备结构示意图;
图14是本发明实施例信道控制设备结构示意图;
图15是本发明实施例第一设备结构示意图;
图16是本发明实施例无线通信设备结构示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
WiFi IoT的核心特征之一是使用窄带(Narrow Band,NB)来传输窄带消息,如采用1MHz、2MHz或5MHz作为基础带宽,并且窄带IoT设备与传统(legacy)设备均可能使用同一段频谱。
上述输窄是相比于传统WLAN支持802.11使用20MHz作为基础带宽而言;窄带IoT 设备是指使用窄带传输并以IoT场景为主的设备;legacy设备是指使用20MHz及以上带宽的传统802.11设备;上述同一段频谱可以如:2.4GHz,5GHz等。
在WiFi IoT场景中,考虑到需求、成本等因素,接入点(Access Point,AP)侧设备很可能同时支持20MHz和窄带IoT传输。本发明实施例中,后续部分将采用Legacy+窄带IoT AP指代此类设备。如图1所示,Legacy+窄带IoT AP的20MHz首要信道占用频谱为虚线矩形,其可细分为N个窄带IoT信道。此处窄带IoT信道也可称为子信道,如实线矩形区域;假设窄带IoT信道带宽为2MHz,一种可能的细分方式为将20MHz首要信道划分为9个2MHz窄带信道,即N=9,20MHz中剩余的频谱则作为保护带宽。
上述20MHz首要信道是指Legacy设备侦听WiFi信号所默认使用的20MHz信道。需要说明的是,前述N个窄带IoT信道的带宽可以完全相同,也可以不全相同。站点(Station,STA)则可以仅支持窄带IoT传输或同时支持20MHz和窄带IoT传输。前述N个窄带IoT信道的带宽可以完全相同的情况,如都是2MHz信道;前述N个窄带IoT信道的带宽可以不全相同的情况,如4条2MHz信道,2条5MHz信道等。上述STA在本发明实施例中可以泛指所有支持802.11协议的STA,包括支持传统802.11协议的STA,即legacy STA;以及,支持窄带IoT传输的STA,即窄带IoT STA。如果仅支持窄带IoT传输,可以称为窄带IoT STA;如果同时支持20MHz和窄带IoT传输,可以称为legacy+窄带IoT STA。需要注意的是STA同时支持20MHz和窄带IoT传输的成本远大于仅支持窄带IoT传输,因此对于低成本需求比较强烈的WiFi IoT STA很可能仅支持窄带IoT传输。
WiFi IoT的另一核心特征是在某些场景下与AP关联的窄带IoT STA数量可能较多。如抄电表及抄水表场景中,一栋楼或整个小区在同一AP下可能关联数千台窄带IoT STA。上述关联是指STA加入AP所处的基本服务集(Basic Service Set,BSS),只有加入到BSS后STA才能与AP进行收发消息。在此类场景中,由于小区覆盖范围较广,处于相反方向的STA可能接收不到彼此的信号,同时节点数量众多,竞争冲突等问题可能十分突出。上述竞争冲突是指多个STA可能同时发送WiFi消息,而导致彼此之间相互干扰的情况。因此这类协议中有类似集团部门化运营(Group Sectorization Operation)的机制,其核心思想是将整个BSS划分为若干区域(称之为扇区,或分组),AP使用定向天线分时轮流对准各个扇区。当AP通过定向天线对准某一扇区时,处于该扇区内的STA可以传输,处于其他扇区的STA进入休眠。也就是说,上述机制通过空间及时间的复用限制某一时间内能够与AP通信的STA数量。
当前802.11协议(如802.11b/a/g/n/ac)中,一个AP在一段频谱(如2.4GHz或5GHz)上仅选择一个20MHz首要信道,所有与之关联的STA均在该信道上进行消息的传输。然而在WiFi IoT场景中,支持legacy+窄带IoT的AP的20MHz首要信道下有多个可用的窄带IoT信道,如果仅选取其中一个窄带IoT信道作为窄带IoT设备(如窄带IoT STA)传输的首要信道,则一方面该20MHz下的其他窄带IoT信道会被浪费,另一方面由于上述窄带IoT STA都是用同一信道(如同一窄带IoT信道,即同一子信道),因此STA之间碰撞(collision)可能较为剧烈。上述碰撞是指两个设备同时发送消息,结果造成两者均发送失败的情形,假设每个设备发送消息概率相同,那么当同一信道中关联的STA数量越多,STA之间发生碰撞的概率越大。如图2所示,假设20MHz首要信道下可划分N个窄带IoT信 道,如果只有一个窄带IoT信道作为窄带IoT设备的首要窄带IoT信道,那么剩下N-1个窄带IoT信道的资源将会被浪费,同时所有窄带IoT设备将集中在首要窄带IoT信道。因此在本发明实施例中提供了一种可能设计方案为支持legacy+窄带IoT的AP分配其20MHz首要信道下任意窄带IoT信道给窄带IoT STA作为其首要窄带IoT信道,不同窄带IoT STA的首要窄带IoT信道可以不同。
从以上介绍可知,传统802.11协议无法适应于WiFi IoT应用场景,至少表现在如下几个方面:
1、传统802.11协议中,AP在当前各个可选信道中选择一个当前干扰较小的信道作为20MHz首要信道,没有考虑较长时间段内信道的使用情况。
2、WiFi IoT场景中与AP关联的窄带IoT STA数量可能较为巨大,同时由于AP可同时侦听多个窄带IoT信道(同一20MHz首要信道下),现有协议中较为被动的信道选择方式在WiFi IoT场景中不太适用。
3、传统802.11协议没有考虑将STA分组后各STA窄带IoT信道的选择对***性能的影响。
4、传统802.11协议中AP一旦选择一个20MHz首要信道,其关联的STA均在上述20MHz首要信道上进行消息的传输。但WiFi IoT场景中有多条可用窄带IoT信道,因此AP需要有相应的机制使得不同STA调度到不同的窄带IoT信道。
基于前述介绍可知,传统802.11协议中与AP关联的STA均在同一个20MHz首要信道上,而WiFi IoT场景中Legacy+窄带IoT AP能够同时侦听其20MHz首要信道和与该频段重叠的多个窄带IoT信道。如果上述AP仅使用上述多个窄带IoT信道中的一个作为窄带IoT传输的首要窄带IoT信道,即与该AP关联的所有窄带IoT设备均使用上述同一个首要窄带IoT信道进行消息的传输,则该20MHz信道下的其他窄带IoT信道未被使用,造成了资源的浪费。本发明实施例将通过赋予AP为不同窄带IoT设备分配不同窄带IoT信道的能力,在WiFi IoT场景,特别是AP关联大量STA的场景中,通过窄带IoT信道分配策略以改善各个窄带IoT信道的碰撞情况(collision),以及降低本BSS与重叠基本服务集(Overlapping Service Set,OBSS)之间的干扰。上述OBSS是指与本BSS使用相同信道,有重叠覆盖区域的相邻BSS。
本发明实施例的方案应用场景概述如下:
在WiFi IoT多窄带IoT STA场景中AP如何将不同的STA分配到不同窄带IoT信道上。
本说明书中的Legacy+窄带IoT AP可以支持使用20MHz和20MHz以下带宽进行消息的传输;进一步还可以支持使用20MHz以上(如40MHz、80MHz、160MHz等)带宽进行消息的传输。
本发明实施例一涉及AP及其关联STA之间的通信。
本说明书中,如未特别说明,后续内容中AP指代Legacy+窄带IoT AP,STA指代窄带IoT STA,因此后续实施例将不再对此一一赘述。在后续实施例中,AP对应到前述实施例中的第一设备,STA对应到前述实施例中的第二设备。
本发明实施例的方案概述包括如下几个方面:
1、AP为本BSS的STA维护窄带IoT信道选择列表(Narrow Band IoT Channel Selection  Table)。
2、AP与STA建立关联的阶段,依照窄带信道IoT选择列表和信道分配策略为STA分配合适的窄带IoT信道。
3、AP与STA关联之后,依照窄带信道IoT选择列表和信道分配策略为STA调整合适的窄带IoT信道。
以下实施例将分别就以上三个部分进行详细说明,如下:
一、AP为本BSS的STA维护窄带IoT信道选择列表。
在该部分中,AP需要记录BSS内的STA所使用的窄带IoT信道。
一种可能的记录方式是AP维护窄带IoT信道选择列表,该窄带IoT信道选择列表用于记录与该AP关联的STA所使用的窄带IoT信道。
1、一种可能窄带IoT信道选择列表的记录方式如表1所示,纵向为不同STA的标识,可以为完整或简短标识,如媒体接入控制(Medium Access Control,MAC)地址、连接识别码(Association Identifier,AID)等;横向为该STA所占用的窄带IoT信道(如将窄带IoT信道编号为1到N,N为该AP可用窄带IoT信道的总数)。其中MAC地址为无线通信设备独一无二的标识,长度为48比特(bit);AID(Association Identifier)为AP与STA建立关联后,由AP向上述STA分配的简短标识。
表1 一种可能的窄带IoT信道选择列表
STA ID 占用窄带IoT信道的编号(1,2,3...,N)
STA 1 1
STA 2 3
STA 3 4
... ...
STA i 3
2、可选地,AP通过上述窄带IoT信道选择列表获得每个窄带IoT信道上所关联的STA数量的分布,用于AP判断不同窄带IoT信道上STA发生碰撞(collision)的概率大小。如果不同窄带IoT信道之间STA数量差异较大,那么STA分布较多的窄带IoT信道上STA之间发生碰撞的概率可能较大。
二、AP与STA建立关联的阶段,依照已与AP建立关联的STA使用的窄带IoT信道信息(如窄带IoT信道选择列表)和信道分配策略为STA分配合适的窄带IoT信道。上述信道分配策略将在本实施例后续部分介绍。
1、一种AP与STA建立关联时为上述STA分配首要窄带IoT信道的过程,图3所示,包括:
首先,STA1(为STA)在默认的窄带IoT信道(如窄带IoT信道m)上向AP发送关联请求消息(Association Request Frame;AP)在同一窄带IoT信道上发送关联响应消息(Association Response Frame)以回复STA1,用于确认建立关联。
然后,AP依照窄带IoT信道选择列表和信道分配策略为新建立关联的STA1选择一个合适的窄带IoT信道(如窄带IoT信道l),并在窄带IoT信道m上发送切换信道消息。上述切换信道消息至少指示STA将使用的新窄带IoT信道,如窄带IoT信道l;可选地,还可以指示何时进行信道切换,如STA在收到上述切换信道消息100ms后再切换到新窄带IoT 信道。
最后,STA1收到上述切换信道消息并完成信道切换,在新的窄带IoT信道l上向AP发送确认消息表示已完成信道切换。
需要注意的是,如果AP计划分配给STA1的窄带IoT信道(如窄带IoT信道l)与STA1发送上述关联请求的窄带IoT信道(如窄带IoT信道m)相同,则AP不需要发送切换信道消息以切换ST1A的信道;自然的,STA也不需要发送确认消息已确认收到切换信道消息。
2、一种可能的AP为STA分配窄带IoT信道的信令交互过程如下:
2A、STA在窄带IoT信道m(CH m,Narrow band channel m)上向AP发送的关联请求消息,请求与AP进行关联。
上述窄带IoT信道m可以为AP与STA建立关联时所默认使用的窄带IoT信道。比如,AP使用的20MHz首要信道下有多条窄带IoT信道,AP选择其中一条窄带IoT信道m作为AP与STA进行关联时所默认使用的窄带IoT信道;或,AP使用的20MHz首要信道下有多条窄带IoT信道,AP在上述全部或部分(超过一条)的多条窄带IoT信道上均可与STA进行关联,上述窄带IoT信道m为上述全部或部分的多条窄带IoT信道中的一条。
2B、AP接收STA在窄带IoT信道m上所发送的关联请求消息,并向上述STA回复关联响应消息,用于确认收到上述关联请求消息。
2C、AP依照STA使用的窄带IoT信道信息(如窄带信道IoT选择列表)和信道分配策略为该STA选择合适的窄带IoT信道,作为后续消息传输的窄带IoT信道。如果该窄带IoT信道与上述STA当前所使用的窄带IoT信道m不同,则AP向该STA发送切换信道消息用以切换STA所使用的窄带IoT信道。上述切换信道消息至少指示上述STA将使用的新的窄带IoT信道;可选地,还可以指示何时进行信道切换。
在本发明实施例中,使用上述信道分配策略目的是为了将新关联的STA分配到某个窄带IoT信道上,使得WiFi***至少某一方面的性能可能得到提升。上述WiFi***的性能包括但不限于STA之间的碰撞概率,窄带IoT信道上的信噪比(Signal to Noise Ratio,SNR)、信干噪比(Signal to Interference plus Noise Ratio,SINR)等。
上述SNR是指有用信号功率与噪声功率的比率,上述SINR是指有用信号功率与干扰信号加噪声功率的比率,两者比率均是越大越好,说明接收端收到的有用信号质量较佳。上述SNR和SINR均受无线传播媒介的影响。
可能的信道分配策略包括以下信道分配策略中的一个或多个:
①随机分配。
如AP在N个可选的窄带IoT信道中随机选一个信道分配给STA。这种信道分配策略好处是简单,基于概率角度来说最终STA会均匀分布在不同的窄带IoT信道。但是,可能造成各个窄带IoT信道上所关联的STA数量差异较大,使得某些窄带IoT信道上STA之间碰撞概率较大,对WiFi***性能造成不利影响。如图4所示,为采用上述随机分配的信道分配策略后,窄带IoT信道CH2和CH N-1上关联的STA数量较多,会导致使用上述两个窄带IoT信道的STA之间碰撞概率较高。
②、根据每个窄带IoT信道所关联的STA数量,选择一个关联STA数量最少的窄带IoT信道分配给上述STA。
如AP根据窄带信道IoT选择列表获得每个信道上关联STA数量的信息,选择一个关联STA数量最少的窄带IoT信道分配给上述STA。如果有多个关联STA数量为最少的信道,则随机选择其中的一个分配给上述新关联的STA。这种信道分配策略好处是各个窄带IoT信道上关联STA数量非常均衡,各信道碰撞概率没有显著差异。缺点是AP需要获得窄带IoT信道关联STA的统计信息,略微增加AP的计算量。如图5所示,各个窄带IoT信道上关联STA数量比较均衡,因此不同窄带IoT信道的STA之间的碰撞概率可能差异不大。
③、根据关联时窄带IoT信道的SNR或SINR,给上述STA分配一个此时SNR或SINR最好的窄带IoT信道。
如AP与STA进行关联时,AP给上述STA分配一个此时SNR或SINR最好的窄带IoT信道。好处是关联后短时间内STA在该窄带IoT信道上传输消息的质量较使用其他窄带IoT信道可能要好,但从一个较长的时间尺度考虑,由于各个窄带IoT信道的无线传播媒介可能发生变化,对无线信号的传输产生正面或负面的影响,很难预计一个较长的时间尺度后上述窄带IoT信道是否依然为SNR或SINR最好的窄带IoT信道。也就是说,关联时AP给STA分配的窄带IoT信道在一段时间后可能不再是SNR或SINR最好的信道。
④、根据STA的分组来分配窄带IoT信道。
上述分组是指AP根据STA的某些特性将本BSS的STA分入组群,如依据STA的业务、地理位置等因素分为了若干分组。
如图6所示,一种可能的分配策略实例为:AP根据STA所处的分组为上述STA分配窄带IoT信道,比如某一分组中的所有STA均使用相同的窄带IoT信道,不同分组之间的STA可以使用不同的窄带IoT信道(如,扇区1中所有的STA使用窄带IoT信道CH1,扇区2中所有的STA使用窄带IoT信道CH2)。
⑤、限制STA可选择的窄带IoT信道。
例如:AP从N个可用窄带IoT信道中选取A个窄带IoT信道,所有为新关联STA分配的窄带IoT信道均从这A个信道中选取。也就是说,将与AP关联的所有STA可使用的窄带IoT信道集中在上述A个窄带IoT信道上。上述A个窄带IoT信道可以由AP在启动后从A个干扰最小的窄带IoT信道中选取。好处是如果重叠基本服务集(Overlapping Basic Service Set,OBSS)AP也采取类似的策略,即OBSS AP在N个可用窄带IoT信道中选取B个窄带IoT信道,作为分配给OBSS STA的备选窄带IoT信道。如果上述A、B两组窄带IoT信道完全不重叠或仅部分重叠,那么两个BSS之间STA的干扰将会有效降低(即两个BSS的STA不在同一个窄带IoT信道上,相互之间不会产生有意义的干扰),进而可以提升WiFi***效率。上述OBSS是指与本BSS覆盖区域有部分重叠的相邻BSS。
如图7所示,AP1和AP2所在的两个BSS互为OBSS,AP1关联的STA会从A个窄带IoT信道中选取一个作为首要窄带IoT信道,如CH1、或CH3、或CH5等。这里假设STA1与AP1关联。而AP2关联的STA会从B个窄带IoT信道中选取一个作为首要窄带IoT信道,如CH2、或CH4、或CH6等。这里STA2和AP2关联。在该场景中,即便STA1和STA2均处于AP1和AP2覆盖范围的重叠区域,但由于上述STA1和STA2使用不同的窄带IoT信道,因此STA1和STA2相互之间不会产生有意义的干扰。
⑥、采用混合策略,即同时使用上述信道策略中的两个或多个。
例如:将STA进行分组的同时限制STA可选的窄带IoT信道。一种可能的分配策略为AP根据STA所处的分组为STA分配可选的窄带IoT信道,即AP从N个可用窄带IoT信道中选取A(A大于或等于1)个窄带IoT信道作为处于某一分组中的STA可被分配的窄带IoT信道,该分组中所有的STA所使用的窄带IoT信道均从这A个窄带IoT信道中选取。如图8所示,在需要关联大量STA的IoT场景(如抄水表、电表)中,AP根据地理位置将其覆盖范围分为若干个扇区(如L个扇区),处于某一扇区内的STA即为一个分组。如,扇区1内的STA分组可以使用窄带IoT信道CH1或CH3,扇区3内的STA分组可以使用窄带IoT信道CH2或CH N-1,等等。好处是某一扇区的STA均集中使用一个或多个窄带IoT信道,如果与该扇区覆盖区域全部或部分重叠的其他BSS的STA使用不同窄带IoT信道,则可以有效降低上述两个相邻BSS中STA之间的干扰。
2D、STA收到AP发送的切换信道消息,在约定的时间切换到新的窄带IoT信道,并在新窄带IoT信道上向AP发送切换信道消息的确认消息,用于说明其已成功切换信道。
上述约定的时间是指STA收到AP发送的切换信道消息后在默认的时间(如立即、或50ms后、或100ms后)切换信道,或根据切换信道中指示的时间进行切换信道。
三、AP与STA关联之后,AP可以更改单个或多个STA所使用的窄带IoT信道。
对于只有一个STA需要调整窄带IoT信道的场景,AP可以在上述STA使用的窄带IoT信道上发送单用户切换信道消息以调整上述STA所使用的窄带IoT信道,至一个新的窄带IoT信道;对于同一窄带IoT信道上有多个STA需要调整信道的场景,AP可以发送至少一个多用户切换信道消息以调整上述多个STA所使用的窄带IoT信道,上述多个STA所使用的新的窄带IoT信道,可以为同一个新的窄带IoT信道,也可以为不同的新的窄带IoT信道;可选地,AP可以发送广播切换信道消息,用于切换某个窄带IoT信道上所有STA使用的窄带IoT信道。
另一种可能的AP为STA切换窄带IoT信道的信令交互过程,AP向需要更改信道的STA发送切换信道消息,以下将分两种情况进行讨论:
A、AP更改单个的STA使用的窄带IoT信道。
①、AP在上述STA所使用的窄带IoT信道上发送单用户切换信道消息,指示上述STA将使用的新窄带IoT信道;可选地,还可以指示上述STA进行切换窄带IoT信道的时间。
②、如图9所示,给出了一种AP与STA关联后,AP通过单用户切换信道消息更改上述STA(如STA1)首要窄带IoT信道的流程。AP在STA1使用的窄带IoT信道m上向STA1发送单用户切换信道消息,指示STA1需要切换到窄带IoT信道l。STA1在预设时间切换到上述窄带IoT信道l,并在上述窄带IoT信道l上向AP发送单用户切换信道的确认消息(如ACK,Acknowledge),用于确认STA1已成功切换至新的窄带IoT信道。上述预设时间可以是AP与STA1事先约定好的时间(如802.11协议中规定的时间、或AP/STA1生产出来后预置的时间),或上述单用户切换信道消息中指示的时间。
可选地,还有其他STA(如STA2)需要切换窄带IoT信道,AP继续向STA2发送单用户切换信道消息,以用于将STA2从窄带IoT信道m切换到窄带IoT信道k。需要注意的是,如果STA1发送单用户切换信道消息的确认消息(如ACK)所用的信道(如窄带IoT信道l)与AP向STA2发送的单用户切换信道消息所使用的窄带IoT信道(如窄带IoT信 道m)不同,则AP可以不需要等待收到STA1发送的上述单用户切换信道的确认消息,便可以向STA2发送单用户切换信道消息。
B、AP同时更改同一窄带IoT信道上多个STA的信道。
①、AP在上述多个STA所使用的窄带IoT信道发送多用户切换信道消息,携带上述多个STA的标识,以及上述多个STA将使用的新窄带IoT信道;可选地,还可以指示上述多个STA切换窄带IoT信道的时间。
②、上述AP发送多用户切换信道消息之后,上述多个STA在信道切换完成后在各自新的窄带IoT信道上同时发送组确认消息(如:BA,Block ACK,组确认帧),用于确认上述多个STA已成功切换到上述新的窄带IoT信道。
如图10所示,AP向多个STA(如STA1、STA2、STA3、STA4等)发送多用户切换信道消息,用于同时切换某一窄带IoT信道上(如窄带IoT信道m)的多个STA的窄带IoT信道。上述多用户切换信道消息携带需要切换窄带IoT信道的多个STA的标识,以及上述多个STA将使用的新窄带IoT信道。如STA1、STA3等将从窄带IoT信道m切换到窄带IoT信道l,STA2、STA4等将从窄带IoT信道m切换到窄带IoT信道k。上述多个STA切换至新的窄带IoT信道后将同时在各自新的窄带IoT信道上向AP发送BA确认已成功完成信道切换。上述BA用于多个STA同时确认收到某消息,较多个STA逐个发送确认帧(ACK)效率更高。缺点是在相同一新的窄带IoT信道发送BA的多个STA(如窄带IoT信道l上的STA1和STA3)中,如果有部分STA(如STA3)由于某些原因没有在约定的时间向AP回复BA(如STA3没有听到AP发送的多用户切换信道消息),但由于STA1已回复了BA,而AP又无法区分该BA是谁发的(单个STA发的BA和多个STA同时发的BA在AP侧看都是一样的),可能会导致AP无法通过接收到的BA识别出STA3尚未成功切换信道。
可选地,上述多用户切换信道消息还可以携带上述多个STA何时发送多用户切换信道消息的确认消息(如BA)的指示。
③、上述AP发送多用户切换信道消息之后,上述多个STA在信道切换完成后在各自新的窄带IoT信道的不同时间点向AP发送多用户切换信道消息的确认消息,用于确认已成功切换至新的窄带IoT信道。上述多用户切换信道消息的确认消息可以为ACK帧。
如图11示,AP向多个STA(如STA1、STA2、STA3、STA4等)发送多用户切换信道消息,用于同时切换某一窄带IoT信道上(如窄带IoT信道m)的多个STA的窄带IoT信道。上述多用户切换信道消息携带需要切换窄带IoT信道的多个STA的标识,上述多个STA将使用的新窄带IoT信道,以及上述多个STA何时发送多用户切换信道消息的确认消息(如ACK)的指示。如STA1、STA3等将从窄带IoT信道m切换到窄带IoT信道l,STA2、STA4等将从窄带IoT信道m切换到窄带IoT信道k。
上述多个STA切换至新的窄带IoT信道后,在各自新的窄带IoT信道上按照约定时间分别向AP发送ACK确认已成功完成了窄带IoT信道的切换。需要注意的是,这里使用的是ACK而不是BA,即同一窄带IoT信道上的多个STA是分时分别发送上述多用户切换信道消息的确认消息(即ACK)。如STA1切换信道后在约定时间1向AP发送ACK,STA3切换信道后在约定时间3向AP发送ACK。好处是AP可以根据收到的ACK确定哪些STA已成功过切换到新的窄带IoT信道上。
本发明实施例提供了一种无线通信设备,其可以实现本发明实施例提供的任一方法实施例,其具体结构可以为图12所示的无线通信设备的结构,其中模块S1200对应上述无线通信设备。对于无线通信设备S1200,其包括子模块S1201、S1202、S1203和S1204。该无线通信设备可以包括:处理器S1201、存储器S1202、收发器S1203和天线S1204。
子模块S1201对应处理器(可以为一个或多个),可以实现切换信道消息、确认消息(如ACK,BA等)的生成或解析。
子模块S1202对应存储器(可以为一个或多个),用于存储程序代码,并将存储的程序代码传输给处理器S1201。
子模块S1203对应无线通信设备的收发器,用于收发消息。如,切换信道消息、确认消息等。
子模块S1204对应无线通信设备的天线。
需要注意的是,本发明实施例中的Legacy设备、窄带IoT设备、以及Legacy+窄带IoT设备的结构均可参考上述无线通信设备的结构,这里的设备包括AP和STA。上述三者的差异主要在于子模块S1203收发器和子模块S1201处理器的能力上。其中Legacy设备的处理器和收发器仅能在20MHz及其整数倍的带宽上(如40MHz,80MHz,160MHz等)生成、解析及收发WiFi消息;窄带IoT设备的处理器和收发器可以在小于20MHz的带宽(即窄带)上生成、解析及收发窄带IoT消息;Legacy+窄带IoT设备的处理器和收发器至少可以在20MHz和小于20MHz的带宽上生成、解析及收发WiFi消息,进一步还可以在20MHz以上的带宽(如40MHz,80MHz,160MHz等)上生成、解析及收发窄带IoT消息。
当上述无线通信设备具体为第一设备(如本发明实施例一中的Legacy+窄带IoT AP)时:
第一设备的处理器S1201,用于生成上述切换信道消息,包括上述单用户切换信道消息和上述多用户切换信道消息,用于切换单个或多个STA的窄带IoT信道,上述切换信道消息为窄带消息。上述第一设备的处理器S1201还可以用于根据信道分配策略为上述STA分配窄带IoT信道。
第一设备的收发器S1203,用于发送处理器S1201生成的上述切换信道消息。
第一设备的存储器S1202,还用于储存上述窄带IoT信道选择列表。
当上述无线设备具体为第二设备(如本发明实施例一中的STA)时:
第二设备的收发器S1203,用于接收上述第一设备发送的上述切换信道消息;
第二设备的处理器S1201,用于解析上述第一设备发送的上述切换信道消息;以及,生成上述切换信道消息的确认消息,如ACK或BA。
第二设备的收发器S1203,还用于发送上述切换信道消息的确认消息,如ACK或BA。
本发明实施例技术方案带来的有益效果包括:
由于传统802.11协议中一旦AP选定20MHz首要信道,STA使用的窄带IoT首要信道随之确定。而WiFi IoT场景中可能有多个窄带IoT信道可供选择,因此AP需要新的窄带IoT信道分配策略以适应该场景。本发明实施例中STA与AP关联时,AP根据窄带IoT信道分配列表,通过发送切换信道消息,为上述新建立关联的STA分配合理的窄带IoT信道,提升了WiFi***的性能。
传统802.11协议中AP切换首要20MHz信道时,所有与AP关联的STA均需要切换到新的20MHz信道上。而WiFi IoT场景中,由于首要20MHz信道下有多个可供切换的窄带IoT信道,与AP关联的多个STA不需要全部集中在某一个窄带IoT信道上,因此需要新的机制适应这一特性。本发明实施例中AP通过向STA发送多用户切换信道消息,将同一窄带IoT信道上多个STA切换到不同的窄带IoT信道上,提升了信道切换效率并优化了WiFi***性能。AP通过在切换信道消息中指示不同STA在不同的约定时间发送上述切换信道消息的确认消息,有效帮助AP了解是否所有的STA均成功切换到新的窄带IoT信道。
本发明实施例还提供了一种信道控制设备,应用于第一设备,上述第一设备支持宽带和窄带作为消息传输的带宽,上述第一设备使用的宽带下包含有N个不重叠的子信道,上述N个子信道均为窄带的信道;如图13所示,上述信道控制设备包括:
发送单元1301,用于向处于第一子信道上的第二设备发送携带第二子信道指示的切换信道消息,上述切换信道消息在上述第一子信道发送,上述第二子信道为上述第一设备为上述第二设备分配的新的子信道,用于将上述第二设备切换到上述第二子信道;上述第一子信道和上述第二子信道均属于上述N个不重叠的子信道,且互不相同;
接收单元1302,用于在上述第二子信道上接收上述第二设备发送的上述切换信道消息的确认消息,上述确认消息用于上述第一设备确认上述第二设备已切换到上述第二子信道。
在一种可选的实现方式中,上述信道控制设备还包括:
上述发送单元1301,具体用于在上述第一设备与上述第二设备使用上述第一子信道建立关联的过程中发送上述切换信道消息;或者,在上述第一设备执行负载均衡的情况下发送上述切换信道消息。
在一种可选的实现方式中,上述宽带具有20MHz或20MHz以上带宽;上述窄带具有20MHz以下带宽。
在一种可选的实现方式中,如图14所示,上述信道控制设备还包括:
信道分配单元1401,用于在依据信道分配策略为上述第二设备分配第二子信道;
上述信道分配策略包括一下任意一种:
随机从上述N个不重叠的子信道中为上述第二设备选择子信道作为上述第二子信道;
或者,从使用最少的子信道中选择子信道作为上述第二子信道;
或者,从信噪比最好的子信道中选择子信道作为上述第二子信道。
在一种可选的实现方式中,上述第二子信道为上述N个不重叠的子信道中M个子信道中的子信道,上述M个子信道为上述第二设备所在分组使用的子信道的集合。
在一种可选的实现方式中,上述M个子信道与目标子信道的集合的交集为空,上述目标子信道的集合为与上述第二设备所在的分组具有重叠区域的分组所使用的子信道的集合。
在一种可选的实现方式中,上述第二设备的分组包括:依据上述第二设备的业务或者地理位置为依据进行的分类。
在一种可选的实现方式中,上述第二设备包含1个或者1个以上的实体设备,上述第二子信道包含1个或者1个以上的子信道。
在一种可选的实现方式中,上述切换信道消息为单用户切换信道消息,则用于切换包 含1个实体设备的上述第二设备所使用的子信道;
或者,上述切换信道消息为多用户切换信道消息,则用于切换包含1个或1个以上的实体设备的上述第二设备所使用的子信道。
在一种可选的实现方式中,上述切换信道消息中还携带上述第二设备标识以及与上述第二设备标识对应的上述第二子信道。
在一种可选的实现方式中,上述切换信道消息还携带上述第二设备发送上述切换信道消息的确认消息的时间指示,用于指示上述第二设备发送上述切换信道消息的确认消息的时间;
或者,上述切换信道消息指示上述第二设备在上述第一设备的默认时间发送上述切换信道消息的确认消息。
本发明实施例还提供了一种第一设备,如图15所示,上述第一设备包括:
收发器1501,至少支持使用20MHz和20MHz以下带宽作为消息传输的带宽;上述收发器使用的20MHz带宽下有N个不重叠的子信道,上述N个子信道均为20MHz以下信道,其中N为正整数;用于第一设备向处于第一子信道上的上述一个或多个第二设备发送切换信道消息,上述切换信道消息在上述第一子信道上发送,携带上述第一设备依照信道分配策略为上述一个或多个第二设备分配的一个或多个新的子信道,用于将上述一个或多个第二设备切换到上述一个或多个新的子信道;
收发器1501,还用于上述第一设备在上述一个或多个新的子信道上接收上述一个或多个第二设备发送的上述切换信道消息的确认消息,用于上述一个或多个第二设备向上述第一设备确认已切换到上述一个或多个新的子信道;
处理器1503,用于生成上述切换信道消息,以及解析上述切换信道消息的确认消息;
处理器1503,还用于根据信道分配策略为上述一个或多个第二设备选择上述一个或多个新的子信道;上述信道分配策略至少包括以下中的一种:
处理器1503,随机从上述N个不重叠的子信道中为上述一个或多个第二设备选择一个或多个子信道作为上述一个或多个新的子信道;
或,处理器1503,从上述一个或多个第二设备所处的分组中使用最少的子信道中选择一个或多个子信道作为上述一个或多个新的子信道,每个分组使用至少一个子信道;
或,处理器1503,从上述一个或多个第二设备所处的分组中信噪比最好的子信道中选择一个或多个作为上述一个或多个新的子信道;
存储器1502,用于存储程序代码和指令;还用于存储上述信道分配策略;
天线1504,用于从无线媒介中收发消息。
在WiFi IoT场景中,AP的首要20MHz信道下可能有多个窄带IoT信道可供选择并使用,AP如何为关联的窄带IoT STA分配所使用的窄带IoT信道会对WiFi***的性能产生影响。通过合理的信道分配策略,能够提升整个WiFi***的性能。额外的,AP给多个窄带IoT STA发送一个切换信道消息,能够将这些窄带IoT STA切换到相同或不同新的信道上,提升了信道使用效率,节约了空中接口资源。
在一种可选的实现方式中,上述信道分配策略中上述第一设备在上述N个不重叠的子信道中选择其中M个不重叠的子信道;上述第一设备从上述M个不重叠的子信道中选择 其中一个作为上述一个或多个第二设备使用的上述一个或多个新的子信道;其中M为不大于N的正整数。
假设AP能够为窄带IoT STA分配N个窄带IoT信道中的一个作为新的信道,AP可以对某一分组中的STA在上述N个窄带IoT信道中选择其中M个窄带IoT信道,作为该分组中STA可分配的新的信道,M为不大于N的正整数。好处是两个相邻BSS中,地理位置上邻近或覆盖范围重叠的窄带IoT STA如果使用不同的窄带IoT信道,则可以有效降低两个相邻BSS之间的干扰。
在一种可选的实现方式中,所处不同分组中的上述一个或多个第二设备使用的上述M个不重叠子信道不完全相同。
此处为本发明实施例中信道分配策略中的混合策略,即不同分组中的STA可被分配窄带IoT信道可以不相同,增加了信道分配策略的灵活性。
在一种可选的实现方式中,若上述第一设备向上述一个第二设备发送上述切换信道消息,则上述切换信道消息为单用户切换信道消息,用于切换上述一个第二设备所使用的子信道;
若上述第一设备向上述多个第二设备发送上述切换信道消息,则上述切换信道消息为多用户切换信道消息,用于切换上述多个第二设备所使用的子信道。
单用户切换信道消息用于切换单个窄带IoT STA所使用的窄带IoT信道;多用户切换信道消息用于切换多个窄带IoT STA所使用的窄带IoT信道,这里多个窄带IoT STA原本使用的窄带IoT信道需相同,切换后的新的窄带IoT信道可以相同,也可以不同。对比传统802.11协议中上述STA都将被切换到同一信道,这里的多用户信道切换消息更加灵活。
在一种可选的实现方式中,上述切换信道消息还携带上述一个或多个第二设备的标识,用于指示上述一个或多个第二设备需要切换信道到上述一个或多个新的子信道。
当多个窄带IoT STA需要切换到多个新的窄带IoT信道时,需要在多用户切换信道消息中指示上述窄带IoT STA的标识信息(如MAC地址、或AID等),用于指示哪些窄带IoT STA将切换到哪些新的窄带IoT信道上。
在一种可选的实现方式中,上述切换信道消息还携带上述一个或多个第二设备发送上述切换信道消息的确认消息的时间指示,用于指示上述一个或多个第二设备在预设时间发送上述切换信道消息的确认消息。
为了避免多个窄带IoT STA所回复的多用户切换信道消息的确认消息之间发生碰撞,导致AP无法确定哪些窄带IoT STA发送了上述多用户切换信道消息的确认消息,AP可以在上述多用户切换信道消息中加入上述多个窄带IoT STA发送上述多用户切换信道消息的确认消息的预设时间,使得AP可以确认哪些窄带IoT STA成功切换到新的信道。
在一种可选的实现方式中,上述切换信道消息指示上述一个或多个第二设备在于上述第一设备在默认约定的时间回复上述切换信道消息的确认消息。
窄带IoT STA可以在与AP默认约定的时间回复切换信道消息的确认消息,好处是不需要在切换信道消息中指示窄带IoT STA发送切换信道消息的确认消息的时间,节约开销。
第六方面,本发明实施例还提供了一种无线通信设备,如图16所示,作为第一设备使用,包含:输入输出设备1601、处理器1602以及存储器1603;其中存储器1603可以用于 提供处理器进行数据处理所需要的缓存,或者其他数据存储需求;输入输出设备1601则提供该接入设备与第二设备之间进行通信的能力;该处理器1602用于实现本发明实施例提供的任意一项的方法流程的控制。
本发明实施例还提供了一种无线通信设备,如图16所示,作为第一设备使用,包含:输入输出设备1601、处理器1602以及存储器1603;其中,存储器1603存储有程序指令,该处理器1602用于在执行该程序指令的过程中实现本发明实施例提供的任意一项的方法流程。输入输出设备1601则用于实现与第二设备之间的通信。
上述输入输出设备1601、处理器1602以及存储器1603可以通过总线相互连接。
存储器1603包括但不限于是随机存储记忆体(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM),该存储器1603用于相关指令及数据。输入输出设备1601用于接收和发送数据。
处理器1602可以是一个或多个中央处理器(Central Processing Unit,CPU),在处理器1602是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
本发明各方法实施例之间相关部分可以相互参考;各装置实施例所提供的装置用于执行对应的方法实施例所提供的方法,故各装置实施例可以参考相关的方法实施例中的相关部分进行理解。
本发明各实施例中提供的消息/帧、模块或单元的名称仅为示例,可以使用其他名称,只要消息/帧、模块或单元的作用相同即可。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关硬件来完成,上述的程序可以存储于一个设备的可读存储介质中,该程序在执行时,包括上述全部或部分步骤,上述的存储介质,如:FLASH、EEPROM等。
以上上述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,不同的实施例可以进行组合,以上上述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何组合、修改、等同替换、改进等,均应包含在本发明实施例所公开的范围之内。

Claims (22)

  1. 一种信道控制的方法,其特征在于,应用于第一设备,所述第一设备支持宽带和窄带作为消息传输的带宽,所述第一设备使用的宽带下包含有N个不重叠的子信道,所述N个子信道均为窄带的信道;所述方法包括:
    所述第一设备向处于第一子信道上的第二设备发送携带第二子信道指示的切换信道消息,所述切换信道消息在所述第一子信道发送,所述第二子信道为所述第一设备为所述第二设备分配的新的子信道,用于将所述第二设备切换到所述第二子信道;所述第一子信道和所述第二子信道均属于所述N个不重叠的子信道,且互不相同;
    所述第一设备在所述第二子信道上接收所述第二设备发送的所述切换信道消息的确认消息,所述确认消息用于所述第一设备确认所述第二设备已切换到所述第二子信道。
  2. 根据权利要求1所述方法,其特征在于,所述方法还包括:
    所述切换信道消息在所述第一设备与所述第二设备使用所述第一子信道建立关联的过程中发送;
    或者,所述切换信道消息在所述第一设备执行负载均衡的情况下发送。
  3. 根据权利要求1所述方法,其特征在于,所述宽带具有20MHz或20MHz以上带宽;所述窄带具有20MHz以下带宽。
  4. 根据权利要求1所述方法,其特征在于,在所述向处于第一子信道上的所述第二设备发送携带第二子信道指示的切换信道消息之前,所述方法还包括:
    所述第一设备依据信道分配策略为所述第二设备分配第二子信道;
    所述信道分配策略包括一下任意一种:
    所述第一设备随机从所述N个不重叠的子信道中为所述第二设备选择子信道作为所述第二子信道;
    或者,所述第一设备从使用最少的子信道中选择其中1个子信道作为所述第二子信道;
    或者,所述第一设备从信噪比最好的子信道中选择其中1个子信道作为所述第二子信道。
  5. 根据权利要求4所述方法,其特征在于,所述方法还包括:
    所述第二子信道为所述N个不重叠的子信道中M个子信道中的子信道,所述M个子信道为所述第二设备所在分组使用的子信道的集合。
  6. 根据权利要求5所述方法,其特征在于,所述方法还包括:
    所述M个子信道与目标子信道的集合的交集为空,所述目标子信道的集合为与所述第二设备所在的分组具有重叠区域的分组所使用的子信道的集合。
  7. 根据权利要求6所述方法,其特征在于,所述第二设备的分组包括:
    依据所述第二设备的业务或者地理位置为依据进行的分类。
  8. 根据权利要求1至7任意一项所述方法,其特征在于,
    所述第二设备包含1个或者1个以上的实体设备,所述第二子信道包含1个或者1个以上的子信道。
  9. 根据权利要求8所述方法,其特征在于,所述方法还包括:
    所述切换信道消息为单用户切换信道消息,则用于切换包含1个实体设备的所述第二 设备所使用的子信道;
    或者,所述切换信道消息为多用户切换信道消息,用于切换包含1个或1个以上的实体设备的所述第二设备所使用的子信道。
  10. 根据权利要求1至7任意一项所述方法,其特征在于,所述方法还包括:
    所述切换信道消息中还携带所述第二设备标识以及与所述第二设备标识对应的所述第二子信道,所述第二设备包含1个以上的实体设备。
  11. 根据权利要求1至7任意一项所述方法,其特征在于,所述方法还包括:
    所述切换信道消息还携带所述第二设备发送所述切换信道消息的确认消息的时间指示,用于指示所述第二设备发送所述切换信道消息的确认消息的时间;
    或者,所述切换信道消息指示所述第二设备在所述第一设备的默认时间发送所述切换信道消息的确认消息。
  12. 一种信道控制设备,应用于第一设备,其特征在于,所述第一设备支持宽带和窄带作为消息传输的带宽,所述第一设备使用的宽带下包含有N个不重叠的子信道,所述N个子信道均为窄带的信道;所述信道控制设备包括:
    发送单元,用于向处于第一子信道上的第二设备发送携带第二子信道指示的切换信道消息,所述切换信道消息在所述第一子信道发送,所述第二子信道为所述第一设备为所述第二设备分配的新的子信道,用于将所述第二设备切换到所述第二子信道;所述第一子信道和所述第二子信道均属于所述N个不重叠的子信道,且互不相同;
    接收单元,用于在所述第二子信道上接收所述第二设备发送的所述切换信道消息的确认消息,所述确认消息用于所述第一设备确认所述第二设备已切换到所述第二子信道。
  13. 根据权利要求12所述信道控制设备,其特征在于,
    所述发送单元,具体用于在所述第一设备与所述第二设备使用所述第一子信道建立关联的过程中发送所述切换信道消息;或者,在所述第一设备执行负载均衡的情况下发送所述切换信道消息。
  14. 根据权利要求12所述信道控制设备,其特征在于,所述宽带具有20MHz或20MHz以上带宽;所述窄带具有20MHz以下带宽。
  15. 根据权利要求12所述信道控制设备,其特征在于,所述信道控制设备还包括:
    信道分配单元,用于在依据信道分配策略为所述第二设备分配第二子信道;
    所述信道分配策略包括一下任意一种:
    随机从所述N个不重叠的子信道中为所述第二设备选择子信道作为所述第二子信道;
    或者,从使用最少的子信道中选择其中1个子信道作为所述第二子信道;
    或者,从信噪比最好的子信道中选择其中1个子信道作为所述第二子信道。
  16. 根据权利要求15所述信道控制设备,其特征在于,
    所述第二子信道为所述N个不重叠的子信道中M个子信道中的子信道,所述M个子信道为所述第二设备所在分组使用的子信道的集合。
  17. 根据权利要求16所述信道控制设备,其特征在于,
    所述M个子信道与目标子信道的集合的交集为空,所述目标子信道的集合为与所述第二设备所在的分组具有重叠区域的分组所使用的子信道的集合。
  18. 根据权利要求17所述信道控制设备,其特征在于,
    所述第二设备的分组包括:依据所述第二设备的业务或者地理位置为依据进行的分类。
  19. 根据权利要求12至18任意一项所述信道控制设备,其特征在于,
    所述第二设备包含1个或者1个以上的实体设备,所述第二子信道包含1个或者1个以上的子信道。
  20. 根据权利要求19所述信道控制设备,其特征在于,
    所述切换信道消息为单用户切换信道消息,则用于切换包含1个实体设备的所述第二设备所使用的子信道;
    或者,所述切换信道消息为多用户切换信道消息,则用于切换包含1个或1个以上的实体设备的所述第二设备所使用的子信道。
  21. 根据权利要求12至18任意一项所述信道控制设备,其特征在于,
    所述切换信道消息中还携带所述第二设备标识以及与所述第二设备标识对应的所述第二子信道,所述第二设备包含1个以上的实体设备。
  22. 根据权利要求12至18任意一项所述信道控制设备,其特征在于,
    所述切换信道消息还携带所述第二设备发送所述切换信道消息的确认消息的时间指示,用于指示所述第二设备发送所述切换信道消息的确认消息的时间;
    或者,所述切换信道消息指示所述第二设备在所述第一设备的默认时间发送所述切换信道消息的确认消息。
PCT/CN2017/078582 2016-12-19 2017-03-29 一种信道控制方法,及设备 WO2018113127A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780056000.5A CN109716819B (zh) 2016-12-19 2017-03-29 一种信道控制方法,及设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611178657.2 2016-12-19
CN201611178657 2016-12-19

Publications (1)

Publication Number Publication Date
WO2018113127A1 true WO2018113127A1 (zh) 2018-06-28

Family

ID=62624336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078582 WO2018113127A1 (zh) 2016-12-19 2017-03-29 一种信道控制方法,及设备

Country Status (2)

Country Link
CN (1) CN109716819B (zh)
WO (1) WO2018113127A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472496A (zh) * 2020-03-31 2021-10-01 华为技术有限公司 一种多信道处理方法及相关设备
WO2024051318A1 (zh) * 2022-09-05 2024-03-14 华为技术有限公司 通信方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200367124A1 (en) * 2019-05-16 2020-11-19 Mediatek Singapore Pte. Ltd. Synchronization Of Client And Access Point During Channel Switch In Wireless Communications
CN115250492A (zh) * 2021-04-28 2022-10-28 华为技术有限公司 通信资源调度方法和电子设备
CN115622974A (zh) * 2021-07-16 2023-01-17 华为技术有限公司 通信方法、设备、计算机可读存储介质和芯片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010120119A2 (en) * 2009-04-14 2010-10-21 Lg Electronics Inc. Method and apparatus for channel access in wlan system
CN102625464A (zh) * 2011-03-31 2012-08-01 北京新岸线无线技术有限公司 用于接入无线网络的方法及装置
CN102917428A (zh) * 2011-08-05 2013-02-06 北京新岸线无线技术有限公司 信道切换方法及装置
CN105578473A (zh) * 2014-10-13 2016-05-11 中兴通讯股份有限公司 频带的分配方法及装置
CN105684339A (zh) * 2013-10-28 2016-06-15 高通股份有限公司 增强型子信道选择性传输规程

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101518059B1 (ko) * 2008-07-02 2015-05-07 엘지전자 주식회사 초고처리율 무선랜 시스템에서의 채널 관리 방법과 채널 스위치 방법
US9295033B2 (en) * 2012-01-31 2016-03-22 Qualcomm Incorporated Systems and methods for narrowband channel selection
US9900865B2 (en) * 2012-09-26 2018-02-20 Lg Electronics Inc. Method and apparatus for sub-channel selective access in wireless LAN system
US20160248569A1 (en) * 2015-02-20 2016-08-25 Intel Corporation Block Acknowledgements for Multiple Devices in High Efficiency Wireless Networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010120119A2 (en) * 2009-04-14 2010-10-21 Lg Electronics Inc. Method and apparatus for channel access in wlan system
CN102625464A (zh) * 2011-03-31 2012-08-01 北京新岸线无线技术有限公司 用于接入无线网络的方法及装置
CN102917428A (zh) * 2011-08-05 2013-02-06 北京新岸线无线技术有限公司 信道切换方法及装置
CN105684339A (zh) * 2013-10-28 2016-06-15 高通股份有限公司 增强型子信道选择性传输规程
CN105578473A (zh) * 2014-10-13 2016-05-11 中兴通讯股份有限公司 频带的分配方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472496A (zh) * 2020-03-31 2021-10-01 华为技术有限公司 一种多信道处理方法及相关设备
WO2024051318A1 (zh) * 2022-09-05 2024-03-14 华为技术有限公司 通信方法及装置

Also Published As

Publication number Publication date
CN109716819B (zh) 2021-06-29
CN109716819A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
EP3968724A1 (en) Frame transmission method and device using multiple random backoff operation in broadband wireless communication network
TWI761626B (zh) 用於具有浮動主鏈路的鏈路聚合的方法與裝置
US10911349B2 (en) Link aggregation with floating primary link
EP3453217B1 (en) Trigger frame in wireless local area network
US11006461B2 (en) Orthogonal frequency division multiple access communication apparatus and communication method
WO2018113127A1 (zh) 一种信道控制方法,及设备
JP6437923B2 (ja) Wlanオーバラッピング基本サービスセットのネットワーク内での通信のための方法および装置
US9538555B2 (en) Method and apparatus for accessing channel in wireless LAN
US9917669B2 (en) Access point and communication system for resource allocation
US9060359B2 (en) Method and apparatus for transceiving data in a wireless LAN system
US9258818B2 (en) Carrier allocation in wireless network
KR20100067894A (ko) 초고처리율 무선랜 시스템을 위한 공간분할 다중접속 절차 및 이를 위한 채널 추정 절차
WO2022132030A1 (en) Communication apparatus and communication method for coordinated service periods
US20190132724A1 (en) Systems for signaling communication characteristics
KR20100072687A (ko) 무선랜 시스템에서의 기본서비스세트 부하 관리 절차
GB2499499A (en) Resource allocation in a wireless local area network (wlan)
WO2017140177A1 (zh) 一种通信方法、接入点以及站点
CN108028735B (zh) 无线网络中的复用消息传送
WO2015109805A1 (zh) 无线资源确定、获取方法及装置
WO2015081718A1 (zh) 无线网络的通信处理方法及装置
Zhang et al. An OFDMA-based joint reservation and cooperation MAC protocol for the next generation WLAN
CN112714499B (zh) 通信方法及装置
US11963157B2 (en) Method and apparatus for using unlicensed band in communication system
EP4258799A1 (en) Method and device for low latency communication in communication system supporting multiple links
US20220095321A1 (en) Wireless communications system, scheduling method, wireless communications method, and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885140

Country of ref document: EP

Kind code of ref document: A1