WO2018110619A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2018110619A1
WO2018110619A1 PCT/JP2017/044818 JP2017044818W WO2018110619A1 WO 2018110619 A1 WO2018110619 A1 WO 2018110619A1 JP 2017044818 W JP2017044818 W JP 2017044818W WO 2018110619 A1 WO2018110619 A1 WO 2018110619A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
search space
signal
user terminal
unit
Prior art date
Application number
PCT/JP2017/044818
Other languages
English (en)
French (fr)
Inventor
一樹 武田
聡 永田
チン ムー
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2018556729A priority Critical patent/JP7248431B2/ja
Priority to CN201780085931.8A priority patent/CN110268752B/zh
Priority to EP17880923.2A priority patent/EP3557911B1/en
Priority to US16/469,245 priority patent/US11601870B2/en
Priority to ES17880923T priority patent/ES2927753T3/es
Publication of WO2018110619A1 publication Critical patent/WO2018110619A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next generation mobile communication system.
  • LTE Long Term Evolution
  • LTE-A also referred to as LTE Advanced, LTE Rel. 10, 11 or 12
  • LTE Long Term Evolution
  • Successor systems for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), New RAT (Radio Access Technology), FX ( Future generation radio access), LTE Rel.
  • CA Carrier Aggregation
  • CC Component Carrier
  • eNB Radio Base Station
  • BS Base Station
  • UE User Equipment
  • DC dual connectivity
  • CG Cell Group
  • CC cell
  • Inter-eNB CA inter-base station CA
  • FDD frequency division duplex
  • DL downlink
  • UL Uplink
  • TDD Time Division Duplex
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • Future wireless communication systems for example, 5G, NR are expected to realize various wireless communication services to meet different requirements (for example, ultra-high speed, large capacity, ultra-low delay, etc.) Yes.
  • 5G / NR eMBB (enhanced Mobile Broad Band), IoT (Internet of Things), mMTC (massive Machine Type Communication), M2M (Machine To Machine), URLLC (Ultra Reliable and Low Latency Communications), etc. Provision of communication services is being considered.
  • 5G / NR is required to support the use of flexible neurology and frequency and realize a dynamic frame configuration.
  • Numerology refers to, for example, communication parameters applied to transmission / reception of a certain signal (for example, subcarrier interval, bandwidth, etc.).
  • This invention is made in view of this point, and provides the user terminal and radio
  • a user terminal includes a receiving unit that receives a downlink control channel, and a control unit that controls detection of a search space that is a candidate for assignment of the downlink control channel, and the control unit includes: It is characterized by controlling the detection of a common search space and a user-specific search space in which different subcarrier intervals and / or different transmission periods are respectively set.
  • FIG. 1 It is a figure which shows an example of the downlink control channel in the existing LTE system. It is a figure which shows an example of the transmission method of C-SS and UE-SS.
  • 3A and 3B are diagrams illustrating another example of a C-SS and UE-SS transmission method. It is a figure which shows the other example of the transmission method of C-SS and UE-SS. It is a figure which shows the other example of the transmission method of C-SS and UE-SS. It is a figure which shows the other example of the transmission method of C-SS and UE-SS. It is a figure which shows the other example of the transmission method of C-SS and UE-SS. It is a figure which shows the other example of the transmission method of C-SS and UE-SS. It is a figure which shows the other example of the transmission method of C-SS and UE-SS. It is a figure which shows the other example of the transmission method of C-SS and UE-SS.
  • a base station uses a downlink control channel (for example, PDCCH (Physical Downlink Control Channel), enhanced PDCCH (EPDCCH: Enhanced PDCCH), etc.) to UE for downlink control information (DCI: Downlink Control Information).
  • DCI Downlink Control Information
  • Transmitting downlink control information may be read as transmitting a downlink control channel.
  • DCI may be scheduling information including at least one of time / frequency resources for scheduling data, transport block information, data modulation scheme information, HARQ retransmission information, information on demodulation RS, and the like.
  • the DCI that schedules DL data reception and / or DL reference signal measurement may be referred to as DL assignment or DL grant
  • DCI that schedules UL data transmission and / or UL sounding (measurement) signal transmission. May be referred to as UL grant.
  • the DL assignment and / or UL grant includes channel resources and sequences for transmitting UL control signals (UCI: Uplink Control Information) such as HARQ-ACK feedback for DL data and channel measurement information (CSI). Information on the transmission format may be included.
  • DCI for scheduling UL control signals (UCI: Uplink Control Information) may be defined separately from DL assignment and UL grant.
  • monitoring refers to, for example, trying to decode each downlink control channel for a target DCI format in the set.
  • decoding is also called blind decoding (BD) and blind detection.
  • Downlink control channel candidates are also called BD candidates, (E) PDCCH candidates, and the like.
  • a set of downlink control channel candidates to be monitored (a plurality of downlink control channel candidates) is also called a search space.
  • the base station allocates DCI to predetermined downlink control channel candidates included in the search space.
  • the UE performs blind decoding on one or more candidate resources in the search space and detects DCI for the UE.
  • the search space may be set by upper layer signaling common to users, or may be set by upper layer signaling for each user. Also, two or more search spaces may be set with the same carrier for the user terminal.
  • AL corresponds to the number of control channel elements (CCE: Control Channel Element) / enhanced control channel elements (ECCE: Enhanced CCE) constituting DCI.
  • CCE Control Channel Element
  • ECCE enhanced CCE
  • the search space is configured to have a plurality of downlink control channel candidates for a certain AL.
  • Each downlink control channel candidate is composed of one or more resource units (CCE and / or ECCE).
  • DCI is attached with a cyclic redundancy check (CRC) bit.
  • CRC cyclic redundancy check
  • the CRC is masked (scrambled) with a UE-specific identifier (for example, a Cell-Radio Network Temporary Identifier (C-RNTI)) or an identifier common to the system.
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the UE can detect the DCI in which the CRC is scrambled by the identifier common to the system and the DCI in which the CRC is scrambled by the C-RNTI corresponding to the terminal itself.
  • C-SS common search space
  • UE-SS UE-specific search space
  • AL the number of CCEs
  • AL 1, 2, 4, and 8.
  • 5G / NR is required to support the use of flexible neurology and frequency and realize a dynamic frame configuration.
  • the neurology is communication parameters related to the frequency domain and / or time domain (for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix (CP) length, transmission).
  • eMBB for high-speed communications, it is desirable to apply a topology that can support overhead reduction and higher-order MIMO in order to achieve high frequency utilization efficiency.
  • a topology that can support overhead reduction and higher-order MIMO in order to achieve high frequency utilization efficiency.
  • eMBB and the like are supported over a wide frequency band (for example, 1 GHz or less to 100 GHz).
  • a predetermined frequency band for example, 6 GHz
  • a frequency band larger than the predetermined frequency band for example, 6 GHz
  • eMBB when eMBB is used in a predetermined frequency band (for example, 6 GHz) or less (Use-case 1), it is assumed that digital beam forming (Full digital BF) is applied. In this case, it is not necessary to consider restrictions (for example, scheduling restrictions in the frequency domain) when applying analog beam forming. Further, since a stand-alone operation is required, communication using a common search space (non-UE specific search space) is required. Further, communication performance equal to or higher than that of existing LTE is required.
  • a common search space non-UE specific search space
  • eMBB when eMBB is used in a frequency band larger than a predetermined frequency band (for example, 6 GHz) (Use-case 2), it is assumed that analog beam forming (Some / Full analog BF) is applied to at least a part. . In this case, it is necessary to consider restrictions due to analog beam forming (for example, scheduling restrictions in the frequency domain).
  • a common search space non-UE specific search space
  • the communication performance is required to maintain a communication quality sufficiently in a dense urban microlayer.
  • the present inventors for example, use a downlink control channel transmission method (for example, downlink control) according to the frequency band used for communication and required requirements (for example, presence or absence of a stand-alone operation) in 5G / NR.
  • a downlink control channel transmission method for example, downlink control
  • required requirements for example, presence or absence of a stand-alone operation
  • the downlink control channel (or downlink control information) is transmitted using the entire system bandwidth, and a common search space and a user-specific search space are set in each subframe ( (See FIG. 1). Further, the same subcarrier spacing (SCS) and transmission cycle are applied to the common search space and the user-specific search space.
  • SCS subcarrier spacing
  • the present inventors control communication by setting different subcarrier intervals and / or different transmission periods for the common search space (C-SS) and the user-specific search space (UE-SS).
  • C-SS common search space
  • UE-SS user-specific search space
  • first aspect In the first mode, when different subcarrier intervals and transmission periods are set for the common search space (C-SS) and user-specific search space (UE-SS) of the downlink control channel (also referred to as NR-PDCCH) An example is shown. In the following description, a case where different subcarrier intervals and different periods are set for C-SS and UE-SS will be described, but one of the subcarrier intervals and period is assumed to be the same between C-SS and UE-SS. Also good.
  • C-SS common search space
  • UE-SS user-specific search space
  • NR-PDCCH downlink control channel
  • FIG. 2 shows an example in which downlink control information is transmitted by applying a subcarrier interval (SCS) lower than or narrower than that of UE-SS and a long transmission period to C-SS of NR-PDCCH.
  • SCS subcarrier interval
  • FIG. 2 shows a case where the C-SS subcarrier interval is set to f 0 and the UE-SS subcarrier interval is increased (or widened) to twice (2f 0 ).
  • the symbol length used for C-SS transmission can be made longer than the symbol length used for UE-SS transmission.
  • the value of the subcarrier interval between C-SS and UE-SS is not limited to this.
  • FIG. 2 shows a case where C-SS and UE-SS are each time-multiplexed (TDM) in a predetermined time interval (also called a time interval or a transmission unit).
  • the predetermined time interval may be a radio frame, a subframe, a slot, or a minislot unit.
  • a case where a predetermined time interval is slotted is shown as an example.
  • the period of C-SS and / or UE-SS can be set based on the number of predetermined time intervals or a predefined time (for example, 1 ms, 5 ms, or 10 ms).
  • FIG. 2 shows a case where a predetermined time interval is defined by slots and the C-SS cycle is 5 slots. Further, the UE-SS cycle is 1 slot and the UE-SS is not arranged in the time interval in which C-SS is set.
  • the symbol length can be set to be long, so that the CP length can be sufficiently secured for transmission. This makes it possible to ensure C-SS coverage.
  • processing using the UE-SS can be performed faster. Can be done.
  • Information regarding the UE-SS transmission cycle or transmission position (transmission time interval) may be notified (set) from the base station to the user terminal, or may be defined in advance in the specification.
  • higher layer signaling and / or physical layer signaling also referred to as L1 control signaling or downlink control information
  • L1 control signaling or downlink control information can be used.
  • the C-SS cycle may not be set, or a long cycle (for example, a cycle longer than a predetermined value) may be set.
  • a long cycle for example, a cycle longer than a predetermined value
  • the user terminal can control communication assuming that a non-standalone operation is performed.
  • the user terminal performs blind decoding of the C-SS DL control channel in the time / frequency resource in which the C-SS is set, and the UE-SS DL control channel in the time / frequency resource in which the UE-SS is set. Blind decoding is performed.
  • the number of symbols and / or frequency resources for DL control resources used for transmission of C-SS and UE-SS may be set independently (for example, with different number of symbols and / or frequency resources) (see FIG. 3).
  • FIG. 3A shows a case in which UE-SS is transmitted using one symbol with a subcarrier interval of 2f 0 and C-SS is transmitted with two symbols with a subcarrier interval of f 0 .
  • FIG. 3B shows a case where UE-SS is transmitted using 2 symbols with a subcarrier interval of 2f 0 and C-SS is transmitted with 1 symbol of a subcarrier interval of f 0. Show.
  • the number of symbols that can be set in C-SS and UE-SS is not limited to this.
  • PCFICH-like signal that specifies the number of UE-SS symbols (and / or frequency resources), such as PCFICH (eg, sequence) defined in the existing LTE system, is used. May be used.
  • both upper layer signaling and / or information on the number of symbols (and / or frequency resources) used for C-SS transmission and information on the number of symbols (and / or frequency resources) used for UE-SS transmission it notifies to a user terminal from a base station using physical layer signaling.
  • one of the information on the number of symbols (and / or frequency resources) used for C-SS transmission and the information on the number of symbols (and / or frequency resources) used for UE-SS transmission by higher layer signaling May be notified to the user terminal by physical layer signaling.
  • a C-SS that requires a high decoding success probability is a decoding success probability of a signal (PCFICH-like signal) that specifies the number of symbols (and / or frequency resources) of the UE-SS, such as PCFICH (for example, a sequence). Independent reliability can be realized. Also, the number of UE-SS symbols (and / or frequency resources) can be controlled dynamically and flexibly, thereby suppressing an increase in overhead.
  • PCFICH-like signal specifies the number of symbols (and / or frequency resources) of the UE-SS, such as PCFICH (for example, a sequence).
  • the number of symbols (and / or frequency resources) used for C-SS transmission is notified by physical layer signaling, and the number of symbols (and / or frequency resources) used for UE-SS transmission is notified by higher layer signaling. In this case, the overhead of C-SS that is not frequently used for data scheduling can be reduced.
  • PCFICH-like signal that specifies the number of symbols (and / or frequency resources) can specify zero (no SS) as the number of C-SS symbols (and / or frequency resources). Good.
  • the user terminal when detecting that the physical layer signaling (PCFICH-like signal) specifies zero, the user terminal can omit (skip) blind decoding in the target SS.
  • a search space (downlink control resource) configured with a predetermined number of blind decoding candidates (downlink control channel candidates) for each of C-SS and UE-SS. Set) is detected.
  • the number of symbols corresponding to one blind decoding candidate in C-SS and the number of symbols corresponding to one blind decoding candidate in UE-SS may be set independently (for example, with different numbers of symbols).
  • Information on the number of symbols to which one blind decoding candidate corresponds in C-SS and the number of symbols to which one blind decoding candidate corresponds in UE-SS can be obtained from the base station using higher layer signaling and / or physical layer signaling.
  • the terminal can be notified.
  • physical layer signaling a signal (PCFICH-like signal) obtained by reusing PCFICH (for example, a sequence) defined in an existing LTE system may be used.
  • information on the number of symbols corresponding to one blind decoding candidate in the C-SS and information on the number of symbols corresponding to one blind decoding candidate in the UE-SS are used using higher layer signaling and / or physical layer signaling.
  • the base station notifies the user terminal.
  • one of the information on the number of symbols corresponding to one blind decoding candidate in the C-SS and the information on the number of symbols corresponding to one blind decoding candidate in the UE-SS is notified to the user terminal by higher layer signaling, and the other You may notify to a user terminal by physical layer signaling.
  • the number of blind decoding candidate start positions for starting blind decoding in a predetermined time interval is independent (for example, with a different number of symbols) in C-SS and UE-SS.
  • FIG. 4 shows a case where UE-SS is transmitted using 2 symbols with a subcarrier interval of 2f 0 and C-SS is transmitted using 7 symbols with a subcarrier interval of f 0 .
  • the C-SS cycle is 5 slots
  • the UE-SS cycle is 1 slot
  • the UE-SS is not set in the time interval in which the C-SS is set.
  • the blind decoding may be started for each symbol.
  • the user terminal starts blind decoding from two different start positions for two symbols in which UE-SS is set in one slot (or minislot).
  • the user terminal starts blind decoding from seven different start positions for seven symbols for which C-SS is set.
  • the DL control signal applies a transmission beam suitable for the user terminal. Can be sent.
  • the common control signal is transmitted so that it can be received by all users using various beams that do not depend on the user-specific beam, and the user-specific control signal is transmitted only to a specific user by the user-specific beam to suppress other cell interference can do.
  • FIG. 4 shows the case where the start position is set for each symbol
  • the start position may be set for each predetermined number of symbols.
  • the symbol unit for setting the start position may be set independently (for example, different values).
  • FIG. 2-4 shows the case where the C-SS and the UE-SS are arranged over the system band
  • the C-SS and / or the UE-SS may not be arranged over the system band.
  • C-SS and / or UE-SS may be arranged in a partial frequency region (also referred to as frequency band) of the system band (see FIG. 5).
  • send a UE-SS subcarrier spacing by using the 2 symbols of 2f 0, subcarrier spacing indicates a case where using a 7 symbol f 0 sends a C-SS. Further, a case is shown in which the C-SS cycle is 5 slots, the UE-SS cycle is 1 slot, and the UE-SS is not set in the time interval in which the C-SS is set. Furthermore, the case where the frequency region where UE-SS is arranged is made wider than the frequency region where C-SS is arranged is shown.
  • FIG. 5 shows a case where at least a part of the frequency region in which the C-SS is arranged and the frequency region in which the UE-SS is arranged overlap (overlap).
  • the frequency region where the C-SS is arranged (or the frequency region where the UE-SS is arranged) becomes a subband of the frequency region where the UE-SS is arranged (or the frequency region where the C-SS is arranged). May be set.
  • the frequency region where the C-SS is arranged and the frequency region where the UE-SS is arranged may be set in different frequency regions.
  • the relationship between the frequency domain where the C-SS is arranged and the frequency domain where the UE-SS is arranged is not necessarily a super-set or a sub-set, and the C-SS and the UE-SS are flexible. You may arrange in. C-SS and UE-SS may be set to occupy the same frequency resource.
  • FIG. 6 illustrates an example in which downlink control information is transmitted by applying a subcarrier interval (SCS) lower than the UE-SS and a long period to the NR-PDCCH C-SS.
  • SCS subcarrier interval
  • FIG. 6 shows a case where the C-SS subcarrier interval is f 0 and the UE-SS subcarrier interval is doubled (2f 0 ).
  • a predetermined time interval is defined as a slot
  • the C-SS cycle is 5 slots
  • the UE-SS cycle is 1 slot
  • both the C-SS and the UE-SS are every 5 slot cycles. Is shown.
  • the user terminal monitors both the C-SS and the UE-SS in the slot in which the C-SS and the UE-SS are arranged, and performs a downlink control channel reception process.
  • both C-SS and UE-SS are arranged (for example, frequency multiplexing) in a certain time interval
  • the UE-SS in the time interval and the frequency region of UE-SS in another time interval where C-SS is not arranged May be set at different positions (frequency regions).
  • the C-SS can be flexibly arranged such that the frequency domain in which the C-SS is arranged and the UE-SS frequency domain in a time interval in which the C-SS is not arranged overlap (overlap). Can do.
  • the UE-SS arranged in frequency multiplexing with the C-SS The frequency domain may be set larger than the frequency domain where other UE-SSs are arranged (see FIG. 6).
  • the UE-SS subcarrier interval may be set to be the same as the C-SS subcarrier interval in a time interval in which the user terminal monitors both C-SS and UE-SS (see FIG. 7).
  • the subcarrier interval of UE-SS arranged in the same time interval as C-SS is set to the same value as C-SS (here, f 0 ), and UE-SS in the time interval where C-SS is not arranged.
  • a case is shown in which the subcarrier interval is set to a different value (here, 2f 0 ).
  • the number of symbols and / or frequency resources applied to UE-SS applying different subcarrier intervals may be set differently.
  • the user terminal performs signal processing such as FFT (Fast Fourier Transform), channel estimation, data demodulation, etc.
  • FFT Fast Fourier Transform
  • -SS and UE-SS can be performed simultaneously, so that an increase in processing circuit scale and an increase in power consumption can be suppressed.
  • different frequency positions may be set so that the frequency domain of C-SS and the frequency domain of UE-SS in the time interval where C-SS is not arranged do not overlap (see FIG. 8).
  • FIG. 8 shows a case where the UE-SS frequency region frequency-multiplexed with the C-SS is arranged at the same position as the UE-SS frequency region in the time interval in which the C-SS is not arranged.
  • the control channel resource can be set more flexibly.
  • FIG. 8 shows a case where the subcarrier intervals of UE-SS that are frequency-multiplexed in the same time interval as C-SS are set to the same value (here, f 0 ), but may be set to different values.
  • the UE-SS subcarrier interval arranged in each time interval is the same value (here, 2f 0 ), and the C-SS subcarrier interval is different from the UE-SS (here, f 0). ).
  • the C-SS narrows the subcarrier interval to increase the resistance against the frequency selective fading channel, thereby improving the reliability.
  • the UE-SS widens the subcarrier interval to shorten the symbol length, thereby reducing the delay. Can be made possible.
  • the start position of UE-SS performing blind decoding may be set to be the same as the start position of C-SS blind decoding.
  • the C-SS is configured with seven symbols having a predetermined subcarrier interval (here, f 0 )
  • the UE-SS arranged in the same time interval as the C-SS is set to the predetermined subcarrier interval (here Then, it is composed of seven symbols of f 0 ) (see FIG. 10).
  • the user terminal performs C-SS processing while increasing the UE-SS capacity. Since the UE-SS process is performed at the timing, the UE-SS process can be performed without increasing the processing load on the user terminal.
  • ⁇ Modification> In the first aspect and the second aspect described above, the case where a subcarrier interval (SCS) lower than the UE-SS and a long period are applied to the C-SS of the NR-PDCCH has been shown. It is not limited to this. A higher (or wider) subcarrier spacing and / or shorter period than UE-SS may be applied to C-SS of NR-PDCCH.
  • SCS subcarrier interval
  • FIG. 11A shows a case where the C-SS subcarrier interval is 2f 0 and the UE-SS subcarrier interval is f 0 .
  • the number of symbols and / or frequency resources used for transmission of C-SS and UE-SS may be set independently (for example, with different number of symbols and / or frequency resources) (see FIG. 11B).
  • Figure 11B is subcarrier spacing by using the 1 symbol of the f 0 sends a UE-SS, subcarrier spacing indicates a case of transmitting the C-SS by using the 7 symbol 2f 0.
  • 11A and 11B show a case where a predetermined time interval is defined by a slot and the C-SS cycle is 5 slots.
  • the UE-SS cycle is 1 slot and the UE-SS is not set in the time interval in which the C-SS is set, the present invention is not limited to this.
  • C-SS and UE-SS may be arranged in the same time interval (frequency multiplexing and / or time multiplexing), or the C-SS transmission period may be set shorter than the UE-SS transmission period.
  • wireless communication system Wireless communication system
  • communication is performed using any one or a combination of the wireless communication methods according to the above embodiments of the present invention.
  • FIG. 12 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), etc., or a system that realizes these.
  • the radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously by CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC) (for example, 5 or less CCs, 6 or more CCs).
  • CC cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a gNB, a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • a radio base station 10 when the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink.
  • SC-FDMA single carrier-frequency division multiple access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • the wireless communication system 1 may have a configuration in which different neumerologies are applied within a cell and / or between cells.
  • the neurology refers to, for example, communication parameters (for example, subcarrier interval, bandwidth, etc.) applied to transmission / reception of a certain signal.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Also, MIB (Master Information Block) is transmitted by PBCH.
  • PDSCH downlink shared channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the PHICH transmits HARQ (Hybrid Automatic Repeat reQuest) acknowledgment information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) to the PUSCH.
  • HARQ Hybrid Automatic Repeat reQuest
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • an uplink shared channel (PUSCH) shared by each user terminal 20
  • an uplink control channel (PUCCH: Physical Uplink Control Channel)
  • a random access channel (PRACH: Physical Random Access Channel)
  • User data, higher layer control information, etc. are transmitted by PUSCH.
  • downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information, and the like are transmitted by PUCCH.
  • CQI Channel Quality Indicator
  • delivery confirmation information and the like are transmitted by PUCCH.
  • a random access preamble for establishing connection with a cell is transmitted by the PRACH.
  • a cell-specific reference signal CRS
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • PRS Positioning Reference Signal
  • a measurement reference signal SRS: Sounding Reference Signal
  • a demodulation reference signal DMRS
  • the DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
  • FIG. 13 is a diagram illustrating an example of an overall configuration of a radio base station according to an embodiment of the present invention.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ transmission processing
  • scheduling transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing
  • IFFT Inverse Fast Fourier Transform
  • precoding processing precoding processing, and other transmission processing
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device, which is described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on user data included in the input upstream signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processor 105 performs communication channel call processing (setting, release, etc.), status management of the radio base station 10, radio resource management, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
  • CPRI Common Public Radio Interface
  • X2 interface May be.
  • the transmission / reception unit 103 transmits a downlink control channel (for example, NR-PDCCH) using C-SS and / or UE-SS.
  • a downlink control channel for example, NR-PDCCH
  • the transmission / reception unit 103 has at least one of the subcarrier interval, transmission period (or transmission position), number of symbols (and / or frequency resource) applied to the C-SS and / or UE-SS, and the blind composite start position. May be transmitted to the user terminal 20 using higher layer signaling and / or physical layer signaling (L1 signaling).
  • FIG. 14 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment of the present invention.
  • the functional block of the characteristic part in this embodiment is mainly shown, and the wireless base station 10 shall also have another functional block required for radio
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. These configurations may be included in the radio base station 10, and a part or all of the configurations may not be included in the baseband signal processing unit 104.
  • the control unit (scheduler) 301 controls the entire radio base station 10.
  • the control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
  • the control unit 301 controls, for example, signal generation by the transmission signal generation unit 302, signal allocation by the mapping unit 303, and the like.
  • the control unit 301 also controls signal reception processing by the reception signal processing unit 304, signal measurement by the measurement unit 305, and the like.
  • the control unit 301 controls scheduling (for example, resource allocation) of system information, downlink data signals (for example, signals transmitted on the PDSCH), and downlink control signals (for example, signals transmitted on the downlink control channel). Further, the control unit 301 controls generation of a downlink control signal (for example, delivery confirmation information), a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for the uplink data signal. Further, the control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), downlink reference signals (for example, CRS, CSI-RS, DMRS) and the like.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the control unit 301 also includes an uplink data signal (for example, a signal transmitted on PUSCH), an uplink control signal (for example, a signal transmitted on PUCCH and / or PUSCH), a random access preamble transmitted on PRACH, and an uplink reference. Controls scheduling such as signals.
  • the control unit 301 controls transmission of the downlink control channel using C-SS and / or UE-SS. For example, transmission is performed by applying different subcarrier intervals and / or different transmission periods to C-SS and UE-SS (see FIGS. 2 and 3). Also, the number of symbols (and / or frequency resources) of C-SS and UE-SS may be set independently (see FIG. 4). Further, the control unit 301 may perform control such that C-SS and / or UE-SS is transmitted using a partial frequency region (subband) of the system band (see FIG. 5). In addition, C-SS and UE-SS may be frequency-multiplexed and / or time-multiplexed and transmitted in a certain time interval (for example, slot, mini-slot, etc.) (see FIG. 6 to FIG. 10).
  • a certain time interval for example, slot, mini-slot, etc.
  • the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates, for example, a DL assignment that notifies downlink signal allocation information and a UL grant that notifies uplink signal allocation information based on an instruction from the control unit 301.
  • the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
  • CSI Channel State Information
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301.
  • the reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 305 for example, received power of a received signal (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio)), uplink You may measure about propagation path information (for example, CSI) etc.
  • RSRP Reference Signal Received Power
  • reception quality for example, RSRQ (Reference Signal Received Quality)
  • SINR Signal to Interference plus Noise Ratio
  • uplink You may measure about propagation path information (for example, CSI) etc.
  • the measurement result may be output to the control unit 301.
  • FIG. 15 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment of the present invention.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information of downlink data may be transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission / reception units for retransmission control (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 receives a downlink control channel (for example, NR-PDCCH) included in the C-SS and / or UE-SS.
  • a downlink control channel for example, NR-PDCCH
  • the transmission / reception unit 203 has at least one of a subcarrier interval, a transmission period (or transmission position), a number of symbols (and / or frequency resources) applied to C-SS and / or UE-SS, and a blind composite start position. Is received using higher layer signaling and / or physical layer signaling (L1 signaling).
  • FIG. 16 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment of the present invention.
  • the functional blocks of the characteristic part in the present embodiment are mainly shown, and the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation by the transmission signal generation unit 402, signal allocation by the mapping unit 403, and the like.
  • the control unit 401 also controls signal reception processing by the reception signal processing unit 404, signal measurement by the measurement unit 405, and the like.
  • the control unit 401 receives a downlink control signal (for example, a signal transmitted on the downlink control channel) and a downlink data signal (for example, a signal transmitted on the PDSCH) transmitted from the radio base station 10 from the reception signal processing unit 404. get.
  • the control unit 401 controls generation of an uplink control signal (eg, delivery confirmation information) and / or an uplink data signal based on a result of determining whether or not retransmission control is required for the downlink control signal and / or downlink data signal. To do.
  • the control unit 401 controls the detection of search spaces that are candidates for downlink control channel allocation. For example, the control unit 401 controls detection of C-SS and UE-SS in which different subcarrier intervals and / or different transmission periods are set (see FIG. 2).
  • the C-SS downlink control channel can be transmitted with a lower subcarrier interval and / or longer period than the UE-SS downlink control information (see FIG. 2).
  • the C-SS downlink control channel may be transmitted with a longer subcarrier interval and / or longer period than the UE-SS downlink control information (see FIG. 11).
  • the C-SS and the UE-SS can be time-multiplexed and arranged in a predetermined time interval.
  • the number of symbols (and / or frequency resources) to which C-SS is allocated and the number of symbols (and / or frequency resources) to which UE-SS is allocated may be set independently (see FIG. 3).
  • the C-SS and the UE-SS may be arranged in different frequency domains and / or time domains in a predetermined time interval (see FIG. 5). Further, C-SS and / or UE-SS may be arranged in a partial frequency region (subband) of the system band.
  • C-SS and UE-SS may be frequency-multiplexed and / or time-multiplexed and transmitted in a certain time interval (for example, slot, mini-slot, etc.) (see FIG. 6 to FIG. 10).
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • CSI channel state information
  • the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401.
  • the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement unit 405 performs measurement using the downlink reference signal transmitted from the radio base station 10.
  • the measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 405 may measure, for example, reception power (for example, RSRP), reception quality (for example, RSRQ, reception SINR), downlink channel information (for example, CSI), and the like of the received signal.
  • the measurement result may be output to the control unit 401.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • a radio base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the radio communication method of the present invention.
  • FIG. 17 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • each function in the radio base station 10 and the user terminal 20 reads predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation and communication by the communication device 1004. It is realized by controlling the reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data
  • the like data
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store programs (program codes), software modules, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured with one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
  • the slot may be configured with one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain). Further, the slot may be a time unit based on the numerology.
  • the slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. The minislot may also be called a subslot.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be called a TTI
  • TTI slot or one minislot
  • a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), a code block, and / or a code word, or may be a processing unit such as scheduling or link adaptation.
  • a time interval for example, the number of symbols
  • a transport block, a code block, and / or a code word is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
  • a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by a predetermined index.
  • mathematical formulas and the like using these parameters may differ from those explicitly disclosed herein.
  • PUCCH Physical Uplink Control Channel
  • PDCCH Physical Downlink Control Channel
  • information elements can be identified by any suitable name, so the various channels and information elements assigned to them.
  • the name is not limiting in any way.
  • information, signals, etc. can be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, and the like may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, a memory), or may be managed by a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
  • information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicitly performed, but implicitly (for example, by not performing notification of the predetermined information or another (By notification of information).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
  • the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • software can use websites, servers using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) , Or other remote sources, these wired and / or wireless technologies are included within the definition of transmission media.
  • system and “network” used in this specification are used interchangeably.
  • base station BS
  • radio base station eNB
  • gNB gNodeB
  • cell gNodeB
  • cell group a base station
  • carrier a base station
  • component carrier a base station
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication service in this coverage. Point to.
  • RRH indoor small base station
  • MS mobile station
  • UE user equipment
  • terminal may be used interchangeably.
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • NodeB NodeB
  • eNodeB eNodeB
  • access point transmission point
  • reception point femtocell
  • small cell small cell
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client or some other suitable terminology.
  • the radio base station in this specification may be read by the user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as “side”.
  • the uplink channel may be read as a side channel.
  • a user terminal in this specification may be read by a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • the specific operation assumed to be performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may be performed by one or more network nodes other than the base station and the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in this specification may be used alone, in combination, or may be switched according to execution.
  • the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in this specification may be changed as long as there is no contradiction.
  • the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile). communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-WideBand), Bluetooth (registered trademark), The present invention may be applied to a system using other appropriate wireless communication methods and / or a next generation system extended based on these.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determination” means calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data). It may be considered to “judge” (search in structure), ascertaining, etc.
  • “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”. Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
  • connection refers to any direct or indirect connection between two or more elements or By coupling, it can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as “access”.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples It can be considered to be “connected” or “coupled” to each other, such as by using electromagnetic energy having wavelengths in the region, microwave region, and / or light (both visible and invisible) region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

既存のLTEシステムと異なるニューメロロジーがサポートされる無線通信システムにおいて、通信を適切に行うこと。下り制御チャネルを受信する受信部と、前記下り制御チャネルの割当て候補となるサーチスペースの検出を制御する制御部と、を有し、前記制御部は、異なるサブキャリア間隔及び/又は異なる送信周期がそれぞれ設定される共通サーチスペースとユーザ固有サーチスペースの検出を制御する。

Description

ユーザ端末及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8又は9ともいう)からの更なる広帯域化及び高速化を目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11又は12ともいう)が仕様化され、LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、New RAT(Radio Access Technology)、FX(Future generation radio access)、LTE Rel.13、14又は15以降などともいう)も検討されている。
 LTE Rel.10/11では、広帯域化を図るために、複数のコンポーネントキャリア(CC:Component Carrier)を統合するキャリアアグリゲーション(CA:Carrier Aggregation)が導入されている。各CCは、LTE Rel.8のシステム帯域を一単位として構成される。また、CAでは、同一の無線基地局(eNB(eNodeB)、基地局(BS:Base Station)などと呼ばれる)の複数のCCがユーザ端末(UE:User Equipment)に設定される。
 一方、LTE Rel.12では、異なる無線基地局の複数のセルグループ(CG:Cell Group)がUEに設定されるデュアルコネクティビティ(DC:Dual Connectivity)も導入されている。各セルグループは、少なくとも一つのセル(CC)で構成される。DCでは、異なる無線基地局の複数のCCが統合されるため、DCは、基地局間CA(Inter-eNB CA)などとも呼ばれる。
 また、既存のLTEシステム(LTE Rel.8-12)では、下り(DL:Downlink)伝送と上り(UL:Uplink)伝送とを異なる周波数帯で行う周波数分割複信(FDD:Frequency Division Duplex)と、下り伝送と上り伝送とを同じ周波数帯で時間的に切り替えて行う時分割複信(TDD:Time Division Duplex)とが導入されている。
 将来の無線通信システム(例えば、5G、NR)は、様々な無線通信サービスを、それぞれ異なる要求条件(例えば、超高速、大容量、超低遅延など)を満たすように実現することが期待されている。例えば、5G/NRでは、eMBB(enhanced Mobile Broad Band)、IoT(Internet of Things)、mMTC(massive Machine Type Communication)、M2M(Machine To Machine)、URLLC(Ultra Reliable and Low Latency Communications)などと呼ばれる無線通信サービスの提供が検討されている。
 また、5G/NRでは、柔軟なニューメロロジー及び周波数の利用をサポートし、動的なフレーム構成を実現することが求められている。ニューメロロジーとは、例えば、ある信号の送受信に適用される通信パラメータ(例えば、サブキャリア間隔、帯域幅など)のことをいう。
 しかしながら、既存のLTEシステムと異なるニューメロロジー(サブキャリア間隔や帯域幅等)がサポートされる場合に通信の送受信をどのように制御するかは決まっていない。既存のLTEシステムの制御手法をそのまま用いることが考えられるが、かかる場合、信号の送受信(例えば、下り制御チャネルの送信及び/又は受信等)が適切に行えず、スループットの低下などの問題が生じるおそれがある。
 本発明はかかる点に鑑みてなされたものであり、既存のLTEシステムと異なるニューメロロジーがサポートされる無線通信システムにおいて、通信を適切に行うことができるユーザ端末及び無線通信方法を提供することを目的の1つとする。
 本発明の一態様に係るユーザ端末は、下り制御チャネルを受信する受信部と、前記下り制御チャネルの割当て候補となるサーチスペースの検出を制御する制御部と、を有し、前記制御部は、異なるサブキャリア間隔及び/又は異なる送信周期がそれぞれ設定される共通サーチスペースとユーザ固有サーチスペースの検出を制御することを特徴とする。
 本発明によれば、既存のLTEシステムと異なるニューメロロジーがサポートされる無線通信システムにおいて、通信を適切に行うことができる。
既存のLTEシステムにおける下り制御チャネルの一例を示す図である。 C-SSとUE-SSの送信方法の一例を示す図である。 図3A及び図3Bは、C-SSとUE-SSの送信方法の他の例を示す図である。 C-SSとUE-SSの送信方法の他の例を示す図である。 C-SSとUE-SSの送信方法の他の例を示す図である。 C-SSとUE-SSの送信方法の他の例を示す図である。 C-SSとUE-SSの送信方法の他の例を示す図である。 C-SSとUE-SSの送信方法の他の例を示す図である。 C-SSとUE-SSの送信方法の他の例を示す図である。 C-SSとUE-SSの送信方法の他の例を示す図である。 C-SSとUE-SSの送信方法の他の例を示す図である。 本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。 本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。 本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。 本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。 本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。 本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 既存のLTEシステムにおいて、基地局は、UEに対して下り制御チャネル(例えば、PDCCH(Physical Downlink Control Channel)、拡張PDCCH(EPDCCH:Enhanced PDCCH)など)を用いて下り制御情報(DCI:Downlink Control Information)を送信する。下り制御情報を送信するとは、下り制御チャネルを送信すると読みかえられてもよい。
 DCIは、例えばデータをスケジューリングする時間・周波数リソースやトランスポートブロック情報、データ変調方式情報、HARQ再送情報、復調用RSに関する情報、などの少なくとも1つを含むスケジューリング情報であってもよい。DLデータ受信及び/又はDL参照信号の測定をスケジューリングするDCIは、DLアサインメントまたはDLグラントと呼ばれてもよいし、ULデータ送信及び/又はULサウンディング(測定用)信号の送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。DLアサインメント及び/またはULグラントには、DLデータに対するHARQ-ACKフィードバックやチャネル測定情報(CSI:Channel State Information)などのUL制御信号(UCI:Uplink Control Information)を送信するチャネルのリソースや系列、送信フォーマットに関する情報が含まれていてもよい。また、UL制御信号(UCI:Uplink Control Information)をスケジューリングするDCIがDLアサインメント及びULグラントとは別に規定されてもよい。
 UEは、所定数の下り制御チャネル候補を含むセットをモニタするように設定される。ここで、モニタとは、例えば、当該セットで、対象となるDCIフォーマットについて各下り制御チャネルの復号を試行することをいう。このような復号は、ブラインド復号(BD:Blind Decoding)、ブラインド検出とも呼ばれる。下り制御チャネル候補は、BD候補、(E)PDCCH候補などとも呼ばれる。
 モニタすべき下り制御チャネル候補のセット(複数の下り制御チャネル候補)は、サーチスペースとも呼ばれる。基地局は、サーチスペースに含まれる所定の下り制御チャネル候補にDCIを配置する。UEは、サーチスペース内の1つ以上の候補リソースに対してブラインド復号を行い、当該UEに対するDCIを検出する。サーチスペースは、ユーザ間共通の上位レイヤシグナリングで設定されてもよいし、ユーザ個別の上位レイヤシグナリングで設定されてもよい。また、サーチスペースは、当該ユーザ端末に対して同じキャリアで2つ以上設定されてもよい。
 既存のLTE(LTE Rel.8-12)では、リンクアダプテーションを目的として、サーチスペースには複数種類のアグリゲーションレベル(AL:Aggregation Level)が規定される。ALは、DCIを構成する制御チャネル要素(CCE:Control Channel Element)/拡張制御チャネル要素(ECCE:Enhanced CCE)の数に対応する。また、サーチスペースは、あるALについて、複数の下り制御チャネル候補を有するように構成される。各下り制御チャネル候補は、一以上のリソース単位(CCE及び/又はECCE)で構成される。
 DCIには、巡回冗長検査(CRC:Cyclic Redundancy Check)ビットが付けられる(attached)。当該CRCは、UE個別の識別子(例えば、セル-無線ネットワーク一時識別子(C-RNTI:Cell-Radio Network Temporary Identifier))又はシステム共通の識別子によりマスキング(スクランブル)されている。UEは、自端末に対応するC-RNTIでCRCがスクランブルされたDCI及びシステム共通の識別子によりCRCがスクランブルされたDCIを検出することができる。
 また、サーチスペースとしては、UEに共通に設定される共通(common)サーチスペース(C-SS)と、UE毎に設定されるUE固有(UE-specific)サーチスペース(UE-SS)がある。既存のLTEのPDCCHのUE固有サーチスペースにおいて、AL(=CCE数)は、1、2、4及び8である。BD候補数は、AL=1、2、4及び8について、それぞれ6、6、2及び2と規定される。
 ところで、5G/NRでは、柔軟なニューメロロジー及び周波数の利用をサポートし、動的なフレーム構成を実現することが求められている。ここで、ニューメロロジーとは、周波数領域及び/又は時間領域に関する通信パラメータ(例えば、サブキャリア間隔(SCS:Subcarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長、送信時間間隔(TTI:Transmission Time Interval)長、TTIあたりのシンボル数、無線フレーム構成、フィルタリング処理、ウィンドウイング処理などの少なくとも1つ)である。
 高速通信向けのeMBBでは、高い周波数利用効率達成のために、オーバーヘッド削減や高次MIMOをサポートできるニューメロロジーを適用することが望ましい。例えば、5G/NRでは、広い周波数帯域に渡って(例えば、1GHz以下から100GHz)eMBB等をサポートすることが想定される。この場合、所定の周波数帯(例えば、6GHz)以下と当該所定の周波数帯より大きい周波数帯域で異なる動作を行うことが考えられる。
 一例として、所定の周波数帯域(例えば、6GHz)以下においてeMBBを利用する場合(Use-case 1)、デジタルビームフォーミング(Full digital BF)を適用することが想定される。この場合、アナログビームフォーミングを適用する際の制限(例えば、周波数領域におけるスケジューリング制限)を考慮する必要がなくなる。また、スタンドアローン動作(Stand-alone operation)が必要となるため、共通サーチスペース(非UE固有サーチスペース)を用いた通信が必要となる。また、既存のLTEと同等かそれ以上の通信のパフォーマンスが要求される。
 また、所定の周波数帯域(例えば、6GHz)より大きい周波数帯域においてeMBBを利用する場合(Use-case 2)、少なくとも一部にアナログビームフォーミング(Some/Full analog BF)を適用することが想定される。この場合、アナログビームフォーミングによる制限(例えば、周波数領域におけるスケジューリング制限)を考慮する必要が生じる。また、基本的には非スタンドアローン動作(Non-stand-alone operation)を行うため、共通サーチスペース(非UE固有サーチスペース)を用いた通信が必ずしも必要となくなる。また、通信のパフォーマンスとしては、密集した都市(dense urban)のマイクロレイヤで通信品質を十分に維持できるレベルが要求される。
 このように本発明者等は、5G/NRでは通信に利用する周波数帯域や求められる要求条件等(例えば、スタンドアローン動作の有無等)に応じて、下り制御チャネルの送信方法(例えば、下り制御チャネルのサーチスペースのデザイン)を柔軟に制御することが望ましい点に着目した。
 しかし、既存のLTEシステムでは、下り制御チャネル(又は、下り制御情報)は、システム帯域幅全体を利用して送信が行われ、各サブフレームにおいて共通サーチスペースとユーザ固有サーチスペースが設定される(図1参照)。また、共通サーチスペースとユーザ固有サーチスペースに対して同じサブキャリア間隔(SCS:Subcarrier Spacing)と送信周期が適用される。
 そこで、本発明者等は、共通サーチスペース(C-SS)とユーザ固有サーチスペース(UE-SS)に対して、異なるサブキャリア間隔及び/又は異なる送信周期等を設定して通信を制御することを着想した。これにより、下り制御チャネルのデザイン(C-SSとUE-SSの配置等)を柔軟に設定し、既存のLTEシステムと異なるニューメロロジーがサポートされる無線通信システムにおいても通信を適切に行うことができる。
 以下、本発明に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
(第1の態様)
 第1の態様では、下り制御チャネル(NR-PDCCHとも呼ぶ)の共通サーチスペース(C-SS)とユーザ固有サーチスペース(UE-SS)に対して、異なるサブキャリア間隔と送信周期を設定する場合の一例を示す。以下の説明では、C-SSとUE-SSに対して異なるサブキャリア間隔及び異なる周期を設定する場合を説明するが、サブキャリア間隔と周期の一方はC-SSとUE-SS間で同じとしてもよい。
 図2は、NR-PDCCHのC-SSに対してUE-SSより低い(又は、狭い)サブキャリア間隔(SCS)と長い送信周期を適用して下り制御情報を送信する場合の一例を示している。図2では、C-SSのサブキャリア間隔をfとし、UE-SSのサブキャリア間隔を2倍(2f)と高く(又は、広く)する場合を示している。この場合、C-SSの送信に利用するシンボル長をUE-SSの送信に利用するシンボル長より長くすることができる。なお、C-SSとUE-SSのサブキャリア間隔の値はこれに限られない。
 また、図2では、C-SSとUE-SSをそれぞれ所定の時間区間(時間間隔、送信単位とも呼ぶ)で時間多重(TDM)する場合を示している。所定の時間区間は、無線フレーム、サブフレーム、スロット、又はミニスロット単位とすることができる。以下の説明では、一例として所定の時間区間をスロットする場合を示す。
 C-SS及び/又はUE-SSの周期は、所定の時間区間の数又は予め定義された時間(例えば、1ms、5ms、又は10ms等)に基づいて設定することができる。図2では、所定の時間区間をスロットで定義し、C-SSの周期を5スロットとする場合を示している。また、UE-SSの周期を1スロットとし、且つC-SSが設定される時間区間ではUE-SSを配置しない場合を示している。
 下り制御チャネルのC-SSにUE-SSより低いサブキャリア間隔を利用して送信する場合にはシンボル長を長く設定することができるため、CP長を十分確保して送信することができる。これにより、C-SSのカバレッジを確保することが可能となる。
 また、下り制御チャネルのUE-SSにC-SSより高い(又は、広い)サブキャリア間隔と短い送信周期(又は、多くの送信回数)を適用することにより、UE-SSを用いた処理を早く行うことが可能となる。UE-SSの送信周期又は送信位置(送信する時間区間)に関する情報は基地局からユーザ端末に通知(設定)してもよいし、仕様で予め定義してもよい。基地局からユーザ端末に通知する場合、上位レイヤシグナリング及び/又は物理レイヤシグナリング(L1制御シグナリング、下り制御情報とも呼ぶ)を利用することができる。
 非スタンドアローン動作(NSA operation)を行う場合には、C-SSの周期を設定しない、又は長い周期(例えば、所定値より長い周期)を設定してもよい。例えば、ユーザ端末は、C-SSの周期に関する情報が通知されない場合(又は、所定値より長い周期である場合)、非スタンドアローン動作を行うと想定して通信を制御することができる。
 ユーザ端末は、C-SSが設定された時間・周波数リソースにおいて、C-SSのDL制御チャネルのブラインド復号を行い、UE-SSが設定された時間・周波数リソースにおいて、UE-SSのDL制御チャネルのブラインド復号を行う。
 また、C-SSとUE-SSの送信に利用するDL制御リソース用のシンボル数及び/又は周波数リソースをそれぞれ独立に(例えば、異なるシンボル数及び/又は周波数リソースで)設定してもよい(図3参照)。図3Aは、サブキャリア間隔が2fとなる1シンボルを利用してUE-SSを送信し、サブキャリア間隔がfとなる2シンボルを利用してC-SSを送信する場合を示している。一方で、図3Bは、サブキャリア間隔が2fとなる2シンボルを利用してUE-SSを送信し、サブキャリア間隔がfとなる1シンボルを利用してC-SSを送信する場合を示している。もちろん、C-SSとUE-SSに設定可能なシンボル数はこれに限られない。
 C-SSの送信に利用するシンボル数とUE-SSの送信に利用するシンボル数(及び/又は周波数リソース)に関する情報は、上位レイヤシグナリング及び/又は物理レイヤシグナリングを利用して基地局からユーザ端末に通知することができる。物理レイヤシグナリングとしては、既存のLTEシステムで定義されているPCFICH(例えば、系列等)のように、UE-SSのシンボル数(及び/又は周波数リソース)を指定する信号(PCFICH-like signal)を利用してもよい。
 例えば、C-SSの送信に利用するシンボル数(及び/又は周波数リソース)に関する情報とUE-SSの送信に利用するシンボル数(及び/又は周波数リソース)に関する情報の双方を、上位レイヤシグナリング及び/又は物理レイヤシグナリングを利用して基地局からユーザ端末に通知する。あるいは、C-SSの送信に利用するシンボル数(及び/又は周波数リソース)に関する情報とUE-SSの送信に利用するシンボル数(及び/又は周波数リソース)に関する情報の一方を上位レイヤシグナリングでユーザ端末に通知し、他方を物理レイヤシグナリングでユーザ端末に通知してもよい。
 C-SSの送信に利用するシンボル数(及び/又は周波数リソース)を上位レイヤシグナリングで通知し、UE-SSの送信に利用するシンボル数(及び/又は周波数リソース)を物理レイヤシグナリングで通知する場合、高い復号成功確率を要するC-SSはPCFICH(例えば、系列等)のように、UE-SSのシンボル数(及び/または周波数リソース)を指定する信号(PCFICH-like signal)の復号成功確率に依存しない信頼性を実現できる。また、UE-SSのシンボル数(及び/又は周波数リソース)は動的かつ柔軟に制御することで、オーバーヘッドの増加を抑えることができる。
 また、C-SSの送信に利用するシンボル数(及び/又は周波数リソース)を物理レイヤシグナリングで通知し、UE-SSの送信に利用するシンボル数(及び/又は周波数リソース)を上位レイヤシグナリングで通知する場合、データスケジューリングに頻繁には利用されないC-SSのオーバーヘッドを削減することができる。
 なお、シンボル数(及び/又は周波数リソース)を指定する物理レイヤシグナリング(PCFICH-like signal)は、C-SSのシンボル数(及び/又は周波数リソース)として、ゼロ(SSなし)を指定できてもよい。この場合、ユーザ端末は、当該物理レイヤシグナリング(PCFICH-like signal)がゼロを指定していることを検出した場合、対象となるSSにおけるブラインド復号を省略(スキップ)することができる。
 また、ユーザ端末が復号処理(例えば、ブラインド復号)を行う場合、C-SSとUE-SSに対してそれぞれ所定数のブラインド復号候補(下り制御チャネル候補)で構成されるサーチスペース(下り制御リソースセット)の検出を行う。この場合、C-SSにおいて1つのブラインド復号候補が対応するシンボル数とUE-SSにおいて1つのブラインド復号候補が対応するシンボル数をそれぞれ独立に(例えば、異なるシンボル数で)設定してもよい。
 C-SSにおいて1つのブラインド復号候補が対応するシンボル数とUE-SSにおいて1つのブラインド復号候補が対応するシンボル数に関する情報は、上位レイヤシグナリング及び/又は物理レイヤシグナリングを利用して基地局からユーザ端末に通知することができる。物理レイヤシグナリングとしては、既存のLTEシステムで定義されているPCFICH(例えば、系列等)をリユースした信号(PCFICH-like signal)を利用してもよい。
 例えば、C-SSにおいて1つのブラインド復号候補が対応するシンボル数に関する情報とUE-SSにおいて1つのブラインド復号候補が対応するシンボル数に関する情報の双方を、上位レイヤシグナリング及び/又は物理レイヤシグナリングを利用して基地局からユーザ端末に通知する。あるいは、C-SSにおいて1つのブラインド復号候補が対応するシンボル数に関する情報とUE-SSにおいて1つのブラインド復号候補が対応するシンボル数に関する情報の一方を上位レイヤシグナリングでユーザ端末に通知し、他方を物理レイヤシグナリングでユーザ端末に通知してもよい。
 また、所定の時間区間(例えば、スロット又はミニスロット等)におけるブラインド復号を開始するブラインド復号候補の開始位置の数は、C-SSとUE-SSにおいてそれぞれ独立に(例えば、異なるシンボル数で)設定してもよい(図4参照)。図4では、サブキャリア間隔が2fの2シンボルを利用してUE-SSを送信し、サブキャリア間隔がfの7シンボルを利用してC-SSを送信する場合を示している。また、C-SSの周期を5スロット、UE-SSの周期を1スロットとし、且つC-SSが設定される時間区間にUE-SSを設定しない場合を示している。
 例えば、C-SS及び/又はUE-SSにおいて、シンボル毎にブラインド復号を開始する構成とすることができる。図4に示す場合、ユーザ端末は、1スロット(又は、ミニスロット)において、UE-SSが設定される2シンボルに対して2つの異なる開始位置からブラインド復号を開始する。一方で、ユーザ端末は、1スロット(又は、ミニスロット)において、C-SSが設定される7シンボルに対して7つの異なる開始位置からブラインド復号を開始する。
 このように、C-SSとUE-SSにおいて、ブラインド復号候補の開始位置数を独立に設定することにより、例えばC-SSのDL制御信号については、シンボルごとに異なる送信ビームを適用してシンボル数分(ここでは7シンボル)の異なるビームでC-SSのDL制御信号を送信し、UE-SSのDL制御信号については、当該DL制御信号が当該ユーザ端末に好適な送信ビームを適用して送信することができる。この場合、共通制御信号はユーザ個別ビームに依存しない様々なビームですべてのユーザが受信できるように送信し、ユーザ個別制御信号はユーザ個別ビームにより特定のユーザのみに送信し、他セル干渉を抑圧することができる。
 なお、図4では、シンボル毎に開始位置を設定する場合を示したがこれに限られない。所定数のシンボル毎に開始位置を設定してもよい。また、C-SSとUE-SSにおいて、開始位置を設定するシンボル単位を独立(例えば、異なる値)に設定してもよい。
 上記図2-4では、C-SSとUE-SSをシステム帯域にわたって配置する場合を示したが、C-SS及び/又はUE-SSをシステム帯域にわたって配置しなくてもよい。例えば、システム帯域の一部の周波数領域(周波数帯域とも呼ぶ)にC-SS及び/又はUE-SSを配置してもよい(図5参照)。
 図5では、サブキャリア間隔が2fの2シンボルを利用してUE-SSを送信し、サブキャリア間隔がfの7シンボルを利用してC-SSを送信する場合を示している。また、C-SSの周期を5スロット、UE-SSの周期を1スロットとし、且つC-SSが設定される時間区間にUE-SSを設定しない場合を示している。さらに、UE-SSを配置する周波数領域をC-SSを配置する周波数領域より広くする場合を示している。
 なお、図5では、C-SSを配置する周波数領域とUE-SSを配置する周波数領域の少なくとも一部が重複(オーバーラップ)する場合を示している。このように、C-SSを配置する周波数領域とUE-SSを配置する周波数領域をオーバーラップさせることにより、制御チャネルが無線リソースに占める割合(オーバーヘッド)を抑圧することができる。また、C-SSを配置する周波数領域(又は、UE-SSを配置する周波数領域)を、UE-SSを配置する周波数領域(又は、C-SSを配置する周波数領域)のサブバンドとなるように設定してもよい。
 あるいは、C-SSを配置する周波数領域とUE-SSを配置する周波数領域をそれぞれ異なる周波数領域で設定してもよい。また、C-SSを配置する周波数領域とUE-SSを配置する周波数領域の関係は、必ずしもスーパーセット(super-set)又はサブセット(sub-set)とせずにC-SSとUE-SSを柔軟に配置してもよい。C-SSとUE-SSは同一の周波数リソースを占めるよう設定してもよい。
(第2の態様)
 上記第1の態様では、C-SSとUE-SSをそれぞれ所定の時間区間で時間多重(TDM)する場合を示しているが本実施の形態はこれに限られない。第2の態様では、C-SSとUE-SSを同じ時間区間に共存して配置(例えば、周波数多重(FDM))する場合について説明する。なお、以下の説明では、C-SSとUE-SSをシステム帯域の一部に配置する場合を示すが、これに限られない。
 図6は、NR-PDCCHのC-SSに対してUE-SSより低いサブキャリア間隔(SCS)と長い周期を適用して下り制御情報を送信する場合の一例を示している。図6では、C-SSのサブキャリア間隔をfとし、UE-SSのサブキャリア間隔を2倍(2f)とする場合を示している。また、図6では、所定の時間区間をスロットで定義し、C-SSの周期を5スロット、UE-SSの周期を1スロットとし、且つ5スロット周期毎にC-SSとUE-SSの両方が配置される場合を示している。
 この場合、ユーザ端末は、C-SS及びUE-SSが配置されるスロットにおいて、C-SSとUE-SSの両方をモニタして下り制御チャネルの受信処理を行う。ある時間区間においてC-SSとUE-SSの両方を配置(例えば、周波数多重)する場合、当該時間区間のUE-SSと、C-SSが配置されない他の時間区間のUE-SSの周波数領域を異なる位置(周波数領域)に設定してもよい。これにより、C-SSが配置される周波数領域と、C-SSが配置されない時間区間のUE-SSの周波数領域を重複(オーバーラップ)する構成とする等、C-SSを柔軟に配置することができる。
 各時間区間のUE-SSに含まれる制御チャネル要素(NR-CCEとも呼ぶ)のトータル数を同程度(例えば、同一)とする場合、C-SSと周波数多重して配置されるUE-SSの周波数領域は、他のUE-SSが配置される周波数領域より大きく設定すればよい(図6参照)。
 また、ユーザ端末がC-SS及びUE-SSの両方をモニタする時間区間において、UE-SSのサブキャリア間隔をC-SSのサブキャリア間隔と同じに設定してもよい(図7参照)。図7では、C-SSと同じ時間区間に配置するUE-SSのサブキャリア間隔をC-SSと同じ値(ここでは、f)とし、C-SSが配置されない時間区間のUE-SSのサブキャリア間隔を異なる値(ここでは、2f)に設定する場合を示している。また、異なるサブキャリア間隔を適用するUE-SSに適用するシンボル数及び/又は周波数リソースも異なって設定してもよい。このように、同じ時間区間に配置されるC-SSとUE-SSに同じサブキャリア間隔を適用することにより、ユーザ端末はFFT(Fast Fourier Transform)やチャネル推定、データ復調等の信号処理をC-SSとUE-SSとで同時に行うことができるようになるため、処理回路規模増大や電力消費増大を抑圧することができる。
 また、C-SSの周波数領域と、C-SSが配置されない時間区間のUE-SSの周波数領域がオーバーラップしないように異なる周波数位置に設定してもよい(図8参照)。図8では、C-SSと周波数多重するUE-SSの周波数領域を、C-SSが配置されない時間区間のUE-SSの周波数領域と同じ位置に配置する場合を示している。このように、C-SSの配置領域とUE-SSの配置領域をオーバーラップしない構成とすることにより、制御チャネルのリソースをより柔軟に設定することができる。
 また、図8ではC-SSと同じ時間区間に周波数多重するUE-SSのサブキャリア間隔をそれぞれ同じ値(ここでは、f)とする場合を示したが、異なる値に設定してもよい(図9参照)。図9では、各時間区間に配置されるUE-SSのサブキャリア間隔を同じ値(ここでは、2f)とし、C-SSのサブキャリア間隔をUE-SSと異なる値(ここでは、f)とする場合を示している。この場合、例えばC-SSはサブキャリア間隔を狭くして周波数選択性フェージングチャネルに対する耐性を高めて信頼性を上げ、UE-SSはサブキャリア間隔を広げてシンボル長を短くし、より低遅延での処理を可能とすることができる。
 また、C-SSとUE-SSの両方が配置される時間区間において、ブラインド復号を行うUE-SSの開始位置を、C-SSのブラインド復号の開始位置と同じとなるように設定してもよい。例えば、C-SSを所定のサブキャリア間隔(ここでは、f)の7個のシンボルで構成する場合、当該C-SSと同じ時間区間に配置するUE-SSを所定のサブキャリア間隔(ここでは、f)の7個のシンボルで構成する(図10参照)。このように、C-SSのブラインド復号の開始位置とUE-SSのブラインド復号の開始位置を同じとすることにより、UE-SSの容量を増やしつつも、ユーザ端末がC-SSの処理を行うタイミングでUE-SSの処理を行うため、ユーザ端末の処理負担を増やさずUE-SS処理を行うことができる。
<変形例>
 上記第1の態様及び第2の態様では、NR-PDCCHのC-SSに対してUE-SSより低いサブキャリア間隔(SCS)と長い周期を適用する場合を示したが、本実施の形態はこれに限られない。NR-PDCCHのC-SSに対してUE-SSより高い(又は、広い)サブキャリア間隔及び/又は短い周期を適用してもよい。
 図11Aでは、C-SSのサブキャリア間隔を2fとし、UE-SSのサブキャリア間隔をfとする場合を示している。これにより、共通制御情報(common control signalling)のオーバーヘッドの増加を抑制することができる。また、下り制御チャネルのUE-SSにC-SSより低い(又は、狭い)サブキャリア間隔と短い送信周期(又は、多くの送信回数)を適用することにより、時間及び/又は周波数無線リソースに対する下り制御チャネルのキャパシティの増加に対応することができる。
 また、C-SSとUE-SSの送信に利用するシンボル数及び/又は周波数リソースをそれぞれ独立に(例えば、異なるシンボル数及び/又は周波数リソースで)設定してもよい(図11B参照)。図11Bは、サブキャリア間隔がfの1シンボルを利用してUE-SSを送信し、サブキャリア間隔が2fの7シンボルを利用してC-SSを送信する場合を示している。
 なお、図11A、11Bでは、所定の時間区間をスロットで定義し、C-SSの周期を5スロットとする場合を示している。また、UE-SSの周期を1スロットとし、且つC-SSが設定される時間区間にUE-SSを設定しない場合を示しているがこれに限られない。C-SSとUE-SSを同じ時間区間に配置(周波数多重及び/又は時間多重)してもよいし、C-SSの送信周期をUE-SSの送信周期より短く設定してもよい。
(無線通信システム)
 以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図12は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置は、図に示すものに限られない。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、gNB、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)が適用される。
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
 無線通信システム1では、セル内及び/又はセル間で異なるニューメロロジーが適用される構成としてもよい。なお、ニューメロロジーとは、例えば、ある信号の送受信に適用される通信パラメータ(例えば、サブキャリア間隔、帯域幅など)のことをいう。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報などが伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
(無線基地局)
 図13は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 送受信部103は、下り制御チャネル(例えば、NR-PDCCH)をC-SS及び/又はUE-SSを利用して送信する。また、送受信部103は、C-SS及び/又はUE-SSに適用するサブキャリア間隔、送信周期(又は、送信位置)、シンボル数(及び/又は周波数リソース)、ブラインド複合の開始位置の少なくとも一つに関する情報を、上位レイヤシグナリング及び/又は物理レイヤシグナリング(L1シグナリング)を用いてユーザ端末20に送信してもよい。
 図14は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302による信号の生成、マッピング部303による信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304による信号の受信処理、測定部305による信号の測定などを制御する。
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、下り制御チャネルで伝送される信号)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号(例えば、送達確認情報など)、下りデータ信号などの生成を制御する。また、制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
 また、制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号)、PRACHで送信されるランダムアクセスプリアンブル、上り参照信号などのスケジューリングを制御する。
 制御部301は、C-SS及び/又はUE-SSを用いて下り制御チャネルの送信を制御する。例えば、C-SSとUE-SSに異なるサブキャリア間隔及び/又は異なる送信周期を適用して送信する(図2、図3参照)。また、C-SSとUE-SSのシンボル数(及び/又は周波数リソース)を独立に設定してもよい(図4参照)。また、制御部301は、C-SS及び/又はUE-SSをシステム帯域の一部の周波数領域(サブバンド)を利用して送信するように制御してもよい(図5参照)。また、C-SSとUE-SSをある時間区間(例えば、スロット、ミニスロット等)で周波数多重及び/又は時間多重して送信してもよい(図6-図10等参照)。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下り信号の割り当て情報を通知するDLアサインメント及び上り信号の割り当て情報を通知するULグラントを生成する。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部305は、例えば、受信した信号の受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio))、上り伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
(ユーザ端末)
 図15は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 送受信部203は、C-SS及び/又はUE-SSに含まれる下り制御チャネル(例えば、NR-PDCCH)を受信する。また、送受信部203は、C-SS及び/又はUE-SSに適用するサブキャリア間隔、送信周期(又は、送信位置)、シンボル数(及び/又は周波数リソース)、ブラインド複合の開始位置の少なくとも一つに関する情報を、上位レイヤシグナリング及び/又は物理レイヤシグナリング(L1シグナリング)を用いて受信する。
 図16は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402による信号の生成、マッピング部403による信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404による信号の受信処理、測定部405による信号の測定などを制御する。
 制御部401は、無線基地局10から送信された下り制御信号(例えば、下り制御チャネルで送信された信号)及び下りデータ信号(例えば、PDSCHで送信された信号)を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号(例えば、送達確認情報など)及び/又は上りデータ信号の生成を制御する。
 制御部401は、下り制御チャネルの割当て候補となるサーチスペースの検出を制御する。例えば、制御部401は、異なるサブキャリア間隔及び/又は異なる送信周期がそれぞれ設定されるC-SSとUE-SSの検出を制御する(図2参照)。
 C-SSの下り制御チャネルは、UE-SSの下り制御情報より低いサブキャリア間隔及び/又は長い周期で送信することができる(図2参照)。あるいは、C-SSの下り制御チャネルは、UE-SSの下り制御情報より長いサブキャリア間隔及び/又は長い周期で送信してもよい(図11参照)。また、C-SSとUE-SSは、所定の時間区間で時間多重して配置することができる。
 また、C-SSが割当てられるシンボル数(及び/又は周波数リソース)とUE-SSが割当てられるシンボル数(及び/又は周波数リソース)はそれぞれ独立に設定されてもよい(図3参照)。C-SSとUE-SSは、所定の時間区間において異なる周波数領域及び/又は時間領域に配置されてもよい(図5参照)。また、C-SS及び/又はUE-SSをシステム帯域の一部の周波数領域(サブバンド)に配置されてもよい。また、C-SSとUE-SSをある時間区間(例えば、スロット、ミニスロット等)で周波数多重及び/又は時間多重して送信してもよい(図6-図10等参照)。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。例えば、測定部405は、無線基地局10から送信された下り参照信号を用いて測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部405は、例えば、受信した信号の受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、受信SINR)、下り伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図17は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、1以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、1以上のチップで実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
(変形例)
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)で構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットで構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)で構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルで構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)で構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。さらに、これらのパラメータを使用する数式などは、本明細書で明示的に開示したものと異なってもよい。
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的なものではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))で通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書で使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 本明細書では、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
 本明細書では、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書において、基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)から成るネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書で使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 本明細書で使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを使用することにより、互いに「接続」又は「結合」されると考えることができる。
 本明細書又は特許請求の範囲で「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2016年12月14日出願の特願2016-242219に基づく。この内容は、全てここに含めておく。

Claims (6)

  1.  下り制御チャネルを受信する受信部と、
     前記下り制御チャネルの割当て候補となるサーチスペースの検出を制御する制御部と、を有し、
     前記制御部は、異なるサブキャリア間隔及び/又は異なる送信周期がそれぞれ設定される共通サーチスペースとユーザ固有サーチスペースの検出を制御することを特徴とするユーザ端末。
  2.  前記共通サーチスペースの下り制御チャネルは、前記ユーザ固有サーチスペースの下り制御情報より低いサブキャリア間隔及び/又は長い周期で送信されることを特徴とする請求項1に記載のユーザ端末。
  3.  前記共通サーチスペースと前記ユーザ固有サーチスペースは、所定の時間区間で時間多重することを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  前記共通サーチスペースが割当てられるシンボル数及び/又は周波数リソースと前記ユーザ固有サーチスペースが割当てられるシンボル数及び/又は周波数リソースはそれぞれ独立に制御されることを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  前記共通サーチスペースと前記ユーザ固有サーチスペースは、所定の時間区間において異なる周波数領域及び/又は時間領域に配置されることを特徴とする請求項1又は請求項2に記載のユーザ端末。
  6.  無線基地局と通信するユーザ端末の無線通信方法であって、
     下り制御チャネルを受信する工程と、
     前記下り制御チャネルの割当て候補となるサーチスペースを検出する工程と、を有し、
     異なるサブキャリア間隔及び/又は異なる送信周期がそれぞれ設定される共通サーチスペースとユーザ固有サーチスペースの検出を制御することを特徴とする無線通信方法。
PCT/JP2017/044818 2016-12-14 2017-12-14 ユーザ端末及び無線通信方法 WO2018110619A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018556729A JP7248431B2 (ja) 2016-12-14 2017-12-14 端末、無線通信方法、基地局及びシステム
CN201780085931.8A CN110268752B (zh) 2016-12-14 2017-12-14 用户终端以及无线通信方法
EP17880923.2A EP3557911B1 (en) 2016-12-14 2017-12-14 Flexible configuration of common search space and terminal-specific search space
US16/469,245 US11601870B2 (en) 2016-12-14 2017-12-14 Terminal, radio communication method and base station to monitor search spaces
ES17880923T ES2927753T3 (es) 2016-12-14 2017-12-14 Configuración flexible de espacio de búsqueda común y espacio de búsqueda específico de terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-242219 2016-12-14
JP2016242219 2016-12-14

Publications (1)

Publication Number Publication Date
WO2018110619A1 true WO2018110619A1 (ja) 2018-06-21

Family

ID=62558919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044818 WO2018110619A1 (ja) 2016-12-14 2017-12-14 ユーザ端末及び無線通信方法

Country Status (6)

Country Link
US (1) US11601870B2 (ja)
EP (1) EP3557911B1 (ja)
JP (1) JP7248431B2 (ja)
CN (1) CN110268752B (ja)
ES (1) ES2927753T3 (ja)
WO (1) WO2018110619A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972291A (zh) * 2018-09-29 2020-04-07 电信科学技术研究院有限公司 载波的搜索空间的确定方法、终端及网络设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143748A1 (ko) * 2017-02-05 2018-08-09 엘지전자(주) 무선 통신 시스템에서 공용 검색 공간을 설정하기 위한 방법 및 이를 위한 장치
EP3616375A1 (en) * 2017-04-28 2020-03-04 Nokia Technologies Oy Frequency-domain transmitters and receivers which adapt to different subcarrier spacing configurations
WO2019099880A1 (en) * 2017-11-17 2019-05-23 Nokia Technologies Oy Control monitoring upon receipt of discontinuous reception trigger

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101455143B1 (ko) * 2010-03-31 2014-10-27 후아웨이 테크놀러지 컴퍼니 리미티드 통신 방법 및 장치
EP2892174B1 (en) * 2011-05-03 2018-07-11 Telefonaktiebolaget LM Ericsson (publ) Transmission and reception of control data in a communications system
CN102202324B (zh) 2011-05-19 2013-07-10 电信科学技术研究院 资源位置指示及信道盲检的方法、***和装置
JP5898874B2 (ja) * 2011-07-15 2016-04-06 株式会社Nttドコモ ユーザ端末、無線基地局装置、無線通信システム及び無線通信方法
KR101492380B1 (ko) * 2011-10-12 2015-02-10 엘지전자 주식회사 서브프레임에서 제어 채널의 탐색 영역을 할당하는 방법 및 장치
EP2807784A1 (en) * 2012-01-27 2014-12-03 Interdigital Patent Holdings, Inc. Systems and/or methods for providing epdcch in a multiple carrier based and/or quasi-collated network
JP6219018B2 (ja) * 2012-01-30 2017-10-25 株式会社Nttドコモ 無線基地局装置、ユーザ端末、無線通信システム及び無線通信方法
JP5726819B2 (ja) * 2012-05-11 2015-06-03 株式会社Nttドコモ 復号方法、無線基地局、ユーザ端末及び無線通信システム
US9756658B2 (en) * 2012-06-26 2017-09-05 Futurewei Technologies, Inc. System and method for contention-free random access
CN103580838B (zh) * 2012-08-03 2016-09-14 电信科学技术研究院 增强的物理下行控制信道的发送及检测方法和设备
WO2014051333A1 (en) * 2012-09-25 2014-04-03 Lg Electronics Inc. Method and apparatus for supporting a control plane and a user plane in a wireless communication system
EP3076730B1 (en) * 2013-12-20 2020-02-05 Huawei Technologies Co., Ltd. Information transmission method, user equipment and base station
KR102391121B1 (ko) * 2014-01-29 2022-04-27 인터디지탈 패튼 홀딩스, 인크 커버리지 향상 무선 송신을 위한 액세스 및 링크 적응 방법
CN106717092B (zh) * 2014-09-25 2020-07-07 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
WO2016047618A1 (ja) * 2014-09-25 2016-03-31 株式会社Nttドコモ ユーザ装置、及び制御チャネル受信方法
US10356582B2 (en) * 2015-05-14 2019-07-16 Kt Corporation Method for changing system information, and apparatus therefor
CN113922939A (zh) * 2015-05-21 2022-01-11 英特尔公司 用于第五代网络的物理下行链路控制信道
EP3335360A1 (en) * 2015-08-13 2018-06-20 Docomo Innovations, Inc. Base station, user. equipment, and method of csi-rs transmission
CN106559905B (zh) * 2015-09-24 2020-04-21 株式会社Kt 用于mtc ue接收随机接入响应的方法和装置
WO2017052199A1 (en) * 2015-09-25 2017-03-30 Lg Electronics Inc. Method and user equipment for receiving downlink control information, and method and base station for transmitting downlink control information
TW201728207A (zh) * 2015-11-10 2017-08-01 Idac控股公司 波束成形系統下行控制頻道設計及傳訊
MX2018015010A (es) * 2016-11-02 2019-03-06 Ericsson Telefon Ab L M Monitoreo de busqueda de espacio en redes de comunicacion inalambrica.
US10575324B2 (en) * 2016-11-04 2020-02-25 Qualcomm Incorporated Efficient blind decoding of a search space

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Discussion on CSS and USS in NR system", 3GPP TSG RAN WG1 MEETING #87 RL-1611837, 18 November 2016 (2016-11-18), XP051175805, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_87/Docs/R1-1611837.zip> [retrieved on 20180222] *
"WF on Aperiodic CSI-RS Resource Selection", 3GPP TSG RAN WG1 #87 R1-1613723, 18 November 2016 (2016-11-18), XP051191542, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_87/Docs/R1-1613723.zip> [retrieved on 20180222] *
DL CONTROL CHANNEL DESIGN FOR NR, 3GPP TSG RAN WG1 MEETING #87 R1-1612120, 18 November 2016 (2016-11-18), XP051176075, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WGl_RL1/TSGR1_87/Docs/R1-1612120.zip> [retrieved on 20180222] *
See also references of EP3557911A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972291A (zh) * 2018-09-29 2020-04-07 电信科学技术研究院有限公司 载波的搜索空间的确定方法、终端及网络设备
CN110972291B (zh) * 2018-09-29 2022-07-05 大唐移动通信设备有限公司 载波的搜索空间的确定方法、终端及网络设备

Also Published As

Publication number Publication date
ES2927753T3 (es) 2022-11-10
CN110268752A (zh) 2019-09-20
JP7248431B2 (ja) 2023-03-29
US11601870B2 (en) 2023-03-07
EP3557911A1 (en) 2019-10-23
EP3557911B1 (en) 2022-08-31
US20200107245A1 (en) 2020-04-02
EP3557911A4 (en) 2020-09-02
CN110268752B (zh) 2022-12-06
JPWO2018110619A1 (ja) 2019-10-24

Similar Documents

Publication Publication Date Title
JP7140680B2 (ja) 端末、無線通信方法、基地局及びシステム
CN111133780B (zh) 用户终端、基站装置以及无线通信方法
CN110999452B (zh) 终端、基站、***以及无线通信方法
JP7022695B2 (ja) 端末、無線通信方法、基地局及びシステム
JPWO2018203396A1 (ja) ユーザ端末及び無線通信方法
WO2019224875A1 (ja) ユーザ端末
JPWO2019021443A1 (ja) ユーザ端末及び無線通信方法
CN110249692B (zh) 用户终端以及无线通信方法
WO2018203408A1 (ja) ユーザ端末及び無線通信方法
WO2018193594A1 (ja) ユーザ端末及び無線通信方法
WO2020016934A1 (ja) ユーザ端末
WO2018143399A1 (ja) ユーザ端末及び無線通信方法
CN110463304B (zh) 用户终端及无线通信方法
WO2018229951A1 (ja) ユーザ端末及び無線通信方法
WO2018143388A1 (ja) ユーザ端末及び無線通信方法
WO2019215794A1 (ja) ユーザ端末及び無線通信方法
WO2017217456A1 (ja) ユーザ端末及び無線通信方法
WO2018229928A1 (ja) ユーザ端末及び無線通信方法
WO2019097644A1 (ja) ユーザ端末及び無線通信方法
WO2018173237A1 (ja) ユーザ端末及び無線通信方法
WO2019142272A1 (ja) ユーザ端末及び無線通信方法
WO2019138510A1 (ja) ユーザ端末及び無線通信方法
WO2019215876A1 (ja) ユーザ端末
WO2018207369A1 (ja) ユーザ端末及び無線通信方法
JP7248431B2 (ja) 端末、無線通信方法、基地局及びシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556729

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017880923

Country of ref document: EP

Effective date: 20190715