WO2018110372A1 - 電動機要素、電動機、装置 - Google Patents

電動機要素、電動機、装置 Download PDF

Info

Publication number
WO2018110372A1
WO2018110372A1 PCT/JP2017/043719 JP2017043719W WO2018110372A1 WO 2018110372 A1 WO2018110372 A1 WO 2018110372A1 JP 2017043719 W JP2017043719 W JP 2017043719W WO 2018110372 A1 WO2018110372 A1 WO 2018110372A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
magnet
bonded magnet
electric motor
Prior art date
Application number
PCT/JP2017/043719
Other languages
English (en)
French (fr)
Inventor
幸弘 岡田
慎一 堤
登史 小川
植田 浩司
祐一 吉川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018110372A1 publication Critical patent/WO2018110372A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/02Windings characterised by the conductor material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the present invention relates to an electric motor element and an electric motor and an apparatus including the electric motor element.
  • the permanent magnet a ferrite magnet, a rare earth sintered magnet, a bonded magnet, and the like are appropriately employed.
  • Patent Document 1 describes an electric motor in which a sintered magnet such as a ferrite magnet or a rare earth sintered magnet is embedded in a rotor.
  • Patent Document 2 and the like describe an electric motor in which a bond magnet is embedded in a rotor.
  • the magnet arrangement hole has a slightly larger shape than the sintered magnet. For this reason, a space
  • Patent Document 3 in a permanent magnet embedded type rotor in which a permanent magnet is embedded in a rotor, small pieces of permanent magnets are arranged on both end faces of the cylinder of the rotor.
  • a technical idea is described in which a back yoke is arranged on the bearing side to improve the characteristics of the motor element.
  • this is a configuration in which small pieces of permanent magnets having different shapes are assembled inside the rotor. Therefore, the difficulty of the manufacturing technique is high and the number of manufacturing steps increases. Therefore, the problem from a management viewpoint, such as a productivity fall, is invited.
  • FIG. 16 is a perspective view showing a configuration of a permanent magnet embedded rotor 190 according to the prior art.
  • FIG. 17 is a cross-sectional view showing a cross section along a plane parallel to the rotation axis of a permanent magnet embedded rotor 190 according to the prior art.
  • the rotor 190 made of the core sheet 180 stacked in the direction of the rotation axis is provided with a plurality of bond magnet arrangement hole portions 220 for arranging the bond magnet portions 210.
  • the bonded magnet arrangement hole 220 is filled with a bonded magnet melt that mixes and melts the resin material and the magnet powder, and is solidified to arrange the bonded magnet unit 210.
  • the permanent magnet embedded type rotor 190 when a coil wound around the stator is energized, a magnetic flux is generated by an electric current. The magnetic attraction and repulsive force generated by the interaction between the magnetic flux generated by the current and the magnetic flux generated from the magnet becomes the torque for rotating the rotor. The rotor is driven by this torque.
  • leakage magnetic flux generated from the bonded magnet unit 210 at both end faces in the axial direction of the permanent magnet embedded type rotor 190 and not using the core of the rotor 190 as a magnetic flux path is generated at both ends in the axial direction of the rotor 190. From the surface, the atmosphere is used as a magnetic flux path. This leakage magnetic flux forms a short-circuit magnetic path 200 that returns to the adjacent bonded magnet unit 210. Thereby, the surface magnetic flux of the rotor 190 decreases, and the effective magnetic flux amount contributing to the torque decreases.
  • JP-A-8-331783 Japanese Patent Laid-Open No. 11-262205 JP 2006-280199 A
  • An object of the present invention is to improve the characteristics of a motor element and provide a new motor element in a configuration in which a bond magnet is embedded in a rotor.
  • the electric motor element of the present invention is an electric motor element including at least a stator and a rotor, and the rotor is a first rotor portion disposed in a central portion excluding both ends of a cylindrical body of the rotor, A cylindrical body including a second rotor portion disposed at each of both ends of the cylindrical body of the first rotor portion; and a back yoke disposed at each of both ends of the cylindrical body.
  • the first rotor section generates a plurality of d-axis magnetic flux paths for generating magnet torque out of the rotational torque components generated by the rotating magnetic field from the stator, and reluctance torque among the rotational torque components.
  • a plurality of q-axis magnetic flux passages, and at least a part of each of the plurality of d-axis magnetic flux passages includes a first bond magnet portion.
  • the second rotor portion includes a plurality of second bond magnet portions that are integral with the first bond magnet portion.
  • Each of the second bonded magnet portions extends from the bonded magnet connecting portion to the outer peripheral portion of the rotor, the bonded magnet connecting portion where the second bonded magnet portion and the first bonded magnet portion are in contact, and And a bonded magnet extending portion in contact with the first rotor core portion of the first rotor portion excluding the first bonded magnet portion.
  • the magnetic poles of the magnetic pole faces facing the outer peripheral face of the rotor in the first bonded magnet section have different magnetic poles in the adjacent magnetic pole faces.
  • the magnetic pole of the surface in contact with the first rotor core portion in the bonded magnet extending portion constituting the surface continuous with the magnetic pole surface of the first bond magnet portion is the same as that of the first bond magnet portion constituting the continuous surface. It has the same magnetic pole as the magnetic pole face.
  • the present invention it is possible to increase the amount of effective magnetic flux contributing to the torque generation of the motor element by increasing the interlinkage magnetic flux of the stator by suppressing the leakage magnetic flux from both axial ends of the rotor core. it can. Therefore, it can contribute to the improvement of the characteristics of the electric equipment. Therefore, it has a great industrial value.
  • FIG. 3 is a perspective view separately showing a rotor and a back yoke in the first embodiment.
  • FIG. 3 is a perspective view showing a rotor including a back yoke in the first embodiment.
  • FIG. 3 is a perspective view showing a first rotor core part of the rotor in the first embodiment.
  • the perspective view which shows the magnet shape which integrated the 1st bond magnet part of the rotor in Embodiment 1, and the 2nd bond magnet part, and a recessed part side is N pole.
  • the perspective view which shows the magnet shape which integrated the 1st bond magnet part of the rotor in Embodiment 1, and the 2nd bond magnet part, and a recessed part side is a south pole.
  • FIG. 1 The figure which shows the relationship between the ratio of the outer diameter (diameter) of a back yoke of the rotor in Embodiment 1, and the outer diameter (diameter) of a 2nd bond magnet part, and an induced voltage.
  • Sectional drawing which shows the stator intermediate
  • FIG. 6 is an enlarged cross-sectional view of a main part of a stator structure in a second embodiment.
  • FIG. FIG. 5 shows a configuration of an air conditioner indoor unit as an example of an apparatus according to Embodiment 3.
  • FIG. The perspective view which shows the structure of the rotor of a permanent magnet embedded type by a prior art.
  • Sectional drawing which shows the cross section along a surface parallel to the rotating shaft of the permanent magnet embedded type rotor by a prior art.
  • FIG. 1 is a cross-sectional view showing a motor element 14 according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing a cross section of a plane including the rotation axis in the electric motor element 14 of the first embodiment.
  • the combination of the number of poles and the number of slots of the motor element 14 shown in FIG. 1 is a so-called concentrated winding configuration of 6 poles and 9 slots.
  • the motor element 14 includes a stator 1 having a concentrated winding body in nine tooth portions, and a rotor 2 having six magnetic pole portions having magnetic saliency.
  • the electric motor element of the present invention is not limited to this.
  • winding to the one tooth part 5 is illustrated, this invention is not restricted to this.
  • various winding modes such as distributed winding in which the winding is wound over the plurality of tooth portions 5 or wave winding can be employed.
  • a configuration of concentrated winding of 10 poles and 9 slots For example, a configuration of concentrated winding of 10 poles and 9 slots, a configuration of concentrated winding of 10 poles and 12 slots, a configuration of concentrated winding of 12 poles and 9 slots, a configuration of concentrated winding of 14 poles and 12 slots, and a distributed winding of 4 poles and 24 slots Configuration, 4-pole 36-slot distributed winding configuration, 6-pole 36-slot distributed winding configuration, 8-pole 48-slot distributed winding configuration, 4-pole 12-slot wave winding configuration, 4-pole 12-slot wave winding configuration
  • the present invention is applicable to any known combination of the number of poles and the number of slots, such as a configuration and a 6-pole 18-slot wave winding configuration.
  • the electric motor element 14 of the present embodiment has a substantially cylindrical stator 1 and a rotor 2 that is rotatably held inside the stator 1.
  • a shaft hole 3 is provided at the center of the rotor 2.
  • the rotor 2 and the shaft are fixed in a state where a shaft (not shown) is inserted through the shaft hole 3.
  • a pair of bearings that rotatably support the shaft are provided at both ends of the shaft.
  • the shaft and the bearing are self-explanatory and are not shown.
  • the stator 1 includes a substantially cylindrical yoke portion 4 and a magnetic core 7 of the stator 1 having a tooth portion 5 extending inside the yoke portion 4, and an insulated wire wound around each of the tooth portions 5. And a wound body 6 provided. Between the tooth part 5 and the wound body 6, an insulator 8 that electrically insulates the two is provided.
  • the cylindrical rotor 2 includes a first rotor core 9 a and a second rotor core 9 b, and back yokes 30 disposed at both ends of the rotor 2.
  • a plurality of (six in this example) arrangement holes 11 formed in the circumferential direction of the rotor 2 have a first bond magnet part 140 and a second bond magnet part 150.
  • the material of the core wire of the insulated wire constituting the wound body 6 includes inevitable impurities and further includes any one of copper, copper alloy, aluminum, or aluminum alloy.
  • the first bond magnet part 140 and the second bond magnet part 150 include at least magnet powder and a resin material.
  • the type of magnetic material of the magnet powder is not particularly limited.
  • the content of the magnet powder is preferably 93 to 97% by weight (density 5.4 Mg / m 3 to 6.5 Mg / m 3 ) with respect to the entire bonded magnet. If it is less than 93% by weight, high magnetic properties tend not to be obtained. On the other hand, when the content is more than 97% by weight, the processability is remarkably lowered and the molding tends to be difficult.
  • the above Nd—Fe—B magnet powder, Sm—Co magnet powder, Sm—Fe—N magnet powder, and ferrite magnet powder include scandium (Sc) belonging to Group 3 of the long-period periodic table. ), Yttrium (Y) and lanthanoid elements.
  • lanthanoid elements include lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), and dysprosium (Dy).
  • the resin material included in the first bond magnet part 140 and the second bond magnet part 150 is not particularly limited, and examples thereof include a thermoplastic resin, a thermosetting resin, and a mixture thereof.
  • the thermoplastic resin include engineering plastics such as polyamide resin, polybutylene terephthalate, and polyphenylene sulfide, super engineering plastics such as liquid crystal polymers, and crystalline plastics such as polyethylene and polypropylene.
  • the thermosetting resin include an epoxy resin, a phenol resin, and a melamine resin.
  • the cross-sectional shape of the surface perpendicular to the axial direction of the first bonded magnet portion 140 shows a case of a substantially arc shape, but is not limited to this shape.
  • a mode suitable for the specification such as a substantially rectangular shape, a substantially trapezoidal shape, or a substantially V-shaped shape, is appropriately selected.
  • the substantial arc shape or the substantial V-shaped shape is a shape having a bent portion, and the arrangement of the bent portion is a configuration in which the convex portion side is located on the side of the rotation axis center of the rotor. .
  • the rotor 2 has magnetic saliency.
  • the rotor 2 having magnetic saliency has a plurality of d-axis magnetic flux paths and a plurality of q-axis magnetic flux paths.
  • the portion shown as the imaginary line 12 in the rotor 2 shown in FIG. 1 is an example schematically showing the d-axis magnetic flux path, and the rotating magnetic field from the stator 1 makes this d-axis magnetic flux path a magnetic path.
  • the magnet torque of the rotational torque components is generated.
  • the part shown as the imaginary line 13 in the rotor 2 is an example which shows a d-axis magnetic flux path typically, and the rotation magnetic field from the stator 1 rotates by making this q-axis magnetic flux path into a magnetic path. A reluctance torque among torque components is generated.
  • the manufacturing method of the core of the motor element (both the magnetic core of the stator and the rotor core) using the electromagnetic steel sheet is obtained by using a roll-shaped electromagnetic steel sheet supplied from a metal material manufacturer, etc.
  • the core is formed by feeding to a press machine, punching out into a core sheet having a predetermined axial cross-sectional shape by a mold installed in the press machine, and stacking and integrating the core sheets.
  • FIG. 3A is a perspective view separately showing the rotor 2 and the back yoke 30 in the first embodiment.
  • FIG. 3B is a perspective view showing rotor 2 including back yoke 30 in the first exemplary embodiment.
  • the rotor 2 includes a first rotor part 100a, a second rotor part 100b disposed at each of both ends of the first rotor part 100a, and a cylindrical body. And back yokes 30 disposed at both ends of 100c.
  • FIG. 4 is a perspective view showing the first rotor core portion 110a and the second rotor core portion 110b of the rotor 2 in the first embodiment.
  • FIG. 5A is a perspective view showing a magnet shape in which the first bond magnet part 140 and the second bond magnet part 150 of the rotor 2 according to Embodiment 1 are integrated, and the concave side is an N pole.
  • FIG. 5B is a perspective view showing a magnet shape in which the first bond magnet part 140 and the second bond magnet part 150 of the rotor 2 in Embodiment 1 are integrated, and the concave part is an S pole.
  • FIG. 6A is a cross-sectional view showing a cross section along a plane parallel to the rotation axis of rotor 2 in the first embodiment.
  • the rotor 2 has a first rotor portion 100a, a second rotor portion 100b disposed at each of both ends of the first rotor portion 100a, and one end face of the second rotor portion 100b.
  • the back yoke 30 is arranged.
  • 6B is a cross-sectional view showing a cross section of first rotor core portion 110a and first bond magnet portion 140 according to Embodiment 1 along a plane perpendicular to the rotation axis of rotor 2.
  • FIG. 1 is a cross-sectional view showing a cross section along a plane parallel to the rotation axis of rotor 2 in the first embodiment.
  • the rotor 2 has a first rotor portion 100a, a second rotor portion 100b disposed at each of both ends of the first rotor portion 100a, and one end face
  • the rotor 2 in the first embodiment shown in FIGS. 4, 6A, and 6B includes a first rotor core portion 110a including a first core sheet 120a stacked in the direction of the rotation axis, and the first rotor.
  • Each of both ends of the core part 110a includes a second rotor core part 110b made of a second core sheet 120b stacked in the direction of the rotation axis.
  • the second core sheet 120b and the second rotor core portion 110b include a circular shaft hole 3 for arranging a shaft in the center portion, and a plurality of bay portion structures (recesses, first portions) on the outer periphery of the shaft hole 3. It is a star-shaped shape having two bonded magnet placement bays 130b).
  • the first core sheet 120a and the first rotor core portion 110a have a substantially annular shape, and a hole portion for arranging the shaft in the center and an arc-shaped hole portion in the annular portion.
  • a plurality of first bonded magnet arrangement holes 130a are provided.
  • FIG. 6B is a cross-sectional view showing a cross section of the first rotor core portion 110a and the first bonded magnet portion 140 along a plane perpendicular to the rotation axis of the rotor.
  • the cross-sectional shape of the first bonded magnet portion 140 is an arc shape.
  • This arc shape has a first radius of curvature 141 of the first bonded magnet portion and a second radius of curvature 142 of the first bonded magnet portion. Then, comparing the first radius of curvature 141 of the first bonded magnet part and the second radius of curvature 142 of the first bonded magnet part, the first radius of curvature 141 of the first bonded magnet part Is big.
  • the center of the virtual circle 144 with the first radius of curvature and the center of the virtual circle 145 with the second radius of curvature are located near the outer periphery of the rotor 2.
  • the position of the center 143 of the imaginary circle of this radius of curvature is not particularly specified because there are cases where it is located within the outer diameter circle of the rotor 2 or cases where it is located outside the outer diameter circle of the rotor 2.
  • the position of the center of the virtual circle 144 based on the first radius of curvature and the position of the center of the virtual circle 145 based on the second radius of curvature may be substantially coincident with each other or separated from each other. do not do.
  • the columnar diameter of the first rotor portion 100a and the columnar diameter of the second rotor portion 100b are substantially the same.
  • a cylindrical surface having substantially no step is formed between the first rotor part 100a and the second rotor part 100b.
  • the first core sheet 120a is an electromagnetic steel plate called 35H300.
  • the thickness of the electromagnetic steel sheet is 0.35 mm.
  • the electrical steel sheet contains Fe and Si as main components and is not particularly limited as subcomponents.
  • the components of the electrical steel sheet include inevitable impurities that are not specified.
  • the second core sheet 120b is also an electromagnetic steel plate called 35H300, as with the first core sheet 120a.
  • the thickness of the electromagnetic steel sheet is 0.35 mm.
  • the electromagnetic steel sheet contains Fe and Si as main components, and is not particularly limited as subcomponents.
  • the components of the electrical steel sheet include inevitable impurities that are not specified.
  • the material of the back yoke 30 may be a magnetic material and is not particularly limited.
  • a magnetic material such as a silicon steel plate, a compacted iron core, or a cold rolled steel plate is applicable.
  • the first rotor core part 110a is provided with a plurality of first bonded magnet arrangement holes 130a.
  • the first bonded magnet part 140 is arranged to constitute the first rotor part 100a.
  • the second rotor core portions 110b at both ends of the first rotor core portion 110a are made of a magnetic material.
  • the second rotor core portion 110b is provided with a second bonded magnet arrangement bay portion 130b having a shape different from that of the first bonded magnet arrangement hole portion 130a of the first rotor core portion 110a.
  • the second bonded magnet part 150 is arranged to constitute the second rotor part 100b.
  • the second bonded magnet unit 150 has a shape extending more radially outward than the first bonded magnet unit 140.
  • the first bonded magnet part 140 is magnetized in an in-plane direction substantially perpendicular to the axial direction.
  • the second bonded magnet unit 150 is magnetized so as to have an axial component.
  • FIG. 5A is a perspective view showing a magnet shape in which the first bonded magnet part 140 and the second bonded magnet part 150 are integrated, and the concave side is an N pole.
  • FIG. 5B is a perspective view showing a magnet shape in which the first bonded magnet part 140 and the second bonded magnet part 150 are integrated, and the concave side is the S pole.
  • the number of the second core sheets 120b stacked in the second rotor core part 110b is smaller than the number of the first core sheets 120a stacked in the first rotor core part 110a.
  • the first bonded magnet part 140 is arranged so as to fill the first bonded magnet arrangement hole part 130a and occupies the positions of both end faces of the first rotor core part 110a.
  • the second bonded magnet part 150 is arranged so as to fill the second bonded magnet arrangement bay part 130b, and each of the second rotor core part 110b on the side not in contact with the first rotor core part 110a. Occupies the position of the end face.
  • the first bonded magnet unit 140 and the second bonded magnet unit 150 constitute an integrated bonded magnet.
  • the core formed by integrating the first rotor core portion 110a and the second rotor core portion 110b is a frame shape similar to a mold used for resin molding having a cylindrical recess along the external shape of the core. Is housed in. Filling and solidifying a bonded magnet melt in which a resin material and magnet powder are mixed and melted in a bonded magnet arrangement hole composed of the first bonded magnet arrangement hole 130a and the second bonded magnet arrangement bay 130b in communication To do. Thus, the 1st bonded magnet part 140 and the 2nd bonded magnet part 150 are united and arranged. The first bonded magnet part 140 and the second bonded magnet part 150 are integrated by a bonded magnet connection part 151. The second bonded magnet part 150 includes a bonded magnet extension part 152.
  • the leakage magnetic flux from the first bonded magnet portion 140 is arranged on both end surfaces in the axial direction of the rotor so as to have an axial component in the vicinity of both end surfaces in the axial direction of the rotor 2.
  • the second bonded magnet portion 150 that is magnetized converges to the central portion in the axial direction of the rotor 2. For this reason, the magnetic flux leakage is reduced and the magnetic flux contributing to the torque is increased.
  • 2nd rotor core part 110b is arrange
  • the second core sheet 120b and the second rotor core portion 110b include a circular shaft hole 3 for arranging a shaft in the center portion, and a plurality of bay portion structures (recesses, first portions) on the outer periphery of the shaft hole 3. It is a star-shaped shape having two bonded magnet placement bays 130b).
  • the magnetic resistance at both axial ends of the rotor 2 is increased.
  • the effect of converging a part of the magnetic flux from the second bonded magnet portion 150 disposed at both axial end portions of the rotor to the central portion in the axial direction of the rotor 2 without damaging the leakage magnetic flux is enhanced. Yes.
  • FIGS. 3A and 3B a back yoke is provided at each of both axial ends of a cylindrical body 100c composed of a first rotor core portion 110a and a pair of second rotor core portions 110b.
  • the magnetic flux from the second bonded magnet unit 150 changes so as to pass through the back yoke 30 having a small magnetic resistance.
  • the total amount of magnetic flux from the second bonded magnet unit 150 is increased, the effect of increasing the surface magnetic flux of the rotor by the second bonded magnet unit 150 is enhanced, and the effective magnetic flux amount contributing to torque is increased.
  • FIG. 7 shows the calculation result of the numerical analysis of the magnetic field by the finite element method.
  • the largest induced voltage is obtained.
  • the outer diameter (diameter) of the second bonded magnet portion 150 is substantially equal to the outer diameter (diameter) of the rotor core 110, the outer diameter (diameter) of the rotor core 110 and the outer diameter of the back yoke 30 ( The singular point where the outer diameter (diameter) of the second bond magnet portion 150 is substantially equal. In this case, a leakage magnetic flux flowing from the rotor core 110 to the back yoke 30 is generated, and the effective magnetic flux is reduced. In the configuration that generates this singular point, the leakage flux can be suppressed by making the outer diameter (diameter) of the back yoke 30 slightly smaller than the outer diameter (diameter) of the rotor core 110.
  • the outer diameter (diameter) of the second bonded magnet unit 150 is the diameter of an arc formed by an envelope that virtually connects the portions of the second bonded magnet portions 150 facing the inner diameter portion of the stator.
  • the number of poles of the rotor 2 is 6 (the number of magnet arrangement holes is 6).
  • the present invention is not limited to this number, and can be applied as long as it is 2n times (n is a natural number).
  • positioning hole part 130a has shown the case of circular arc shape substantially, it is not limited to this shape.
  • Arbitrary magnet arrangement hole shapes such as substantially rectangular shape and substantially V shape, are applicable.
  • the electric motor element 14 of the present embodiment is an electric motor element 14 including at least the stator 1 and the rotor 2, and the rotor 2 is the center excluding both ends of the cylindrical body of the rotor 2.
  • a cylindrical body 100c including a first rotor portion 100a disposed in the portion and second rotor portions 100b disposed at both ends of the cylindrical body of the first rotor portion 100a; And back yokes 30 disposed at both ends of 100c.
  • the first rotor portion 100a includes a plurality of d-axis magnetic flux paths for generating magnet torque out of rotational torque components generated by the rotating magnetic field from the stator 1, and reluctance torque out of rotational torque components.
  • a plurality of q-axis magnetic flux paths, and a first bond magnet portion 140 is included in at least a part of each of the plurality of d-axis magnetic flux paths.
  • the second rotor part 100 b includes a plurality of second bond magnet parts 150 that are integral with the first bond magnet part 140.
  • Each of the second bonded magnet portions 150 extends from the bonded magnet connecting portion 151 where the second bonded magnet portion 150 and the first bonded magnet portion 140 are in contact with each other to the outer peripheral portion of the rotor 2.
  • a bonded magnet extending portion 152 that is in contact with the first rotor core portion 110a of the first rotor portion 100a excluding the first bonded magnet portion 140.
  • the magnetic poles of the magnetic pole surfaces facing the outer peripheral surface of the rotor 2 in the first bonded magnet unit 140 have different magnetic poles in the adjacent magnetic pole surfaces.
  • the magnetic pole of the surface that is in contact with the first rotor core portion 110a is a first bond that forms a continuous surface. It has the same magnetic pole as the magnetic pole surface of the magnet part 140.
  • the interlinkage magnetic flux of the stator can be increased, and the effective magnetic flux amount contributing to the torque generation of the motor element can be increased. Therefore, it can contribute to the improvement of the characteristics of the electric equipment. Therefore, it has a great industrial value.
  • the first rotor part 100a includes a first rotor core part 110a in which a plurality of annular first core sheets are stacked, and a first bond magnet part 140 on the first rotor core part 110a. And a plurality of first bonded magnet arrangement holes 130a for arranging the magnets.
  • the second rotor part 100b includes a second rotor core part 110b in which a plurality of star-shaped second core sheets are stacked, and a second bond magnet part 150 on the second rotor core part 110b.
  • a plurality of second bonded magnet placement bays 130b to be placed may be included.
  • each second rotor portion 100b of the second bonded magnet portion 150 may be the same shape as the outer periphery of the first rotor portion 100a.
  • outer diameter of the back yoke 30 may be smaller than the outer diameter of the rotor 2.
  • each of the plurality of first bonded magnet arrangement holes 130 a has a substantially arc shape, a substantially rectangular shape, a substantially rectangular shape on a plane perpendicular to the rotation axis of the rotor 2. It may be trapezoidal or substantially V-shaped.
  • outer periphery of the first rotor part 100a and the outer periphery of the second rotor part 100b may be the same shape.
  • stator 1 and the rotor 2 may include electromagnetic steel plates.
  • stator winding of the stator 1 may include concentrated windings.
  • stator winding of the stator 1 may include a distributed winding.
  • stator winding of the stator 1 may include a wave winding.
  • stator winding of the stator 1 includes an insulated wire
  • the insulated wire includes inevitable impurities, and may further include any one of copper, copper alloy, aluminum, or aluminum alloy.
  • the content of the magnet powder contained in the first bond magnet part 140 and the second bond magnet part 150 is preferably 93% by weight to 97% by weight.
  • the electric motor may also include an electric motor element 14.
  • the device may also include a motor element 14.
  • FIG. 8 is a cross-sectional view showing stator intermediate assembly 319, connector 316, and stator frame 314 included in the stator structure of the electric motor according to Embodiment 2 of the present invention.
  • 9A is an enlarged cross-sectional view of a main part of the stator intermediate assembly 319 in FIG. 8, and
  • FIG. 9B is a cross-sectional view of the main part corresponding to FIG. 9A as viewed from the upper side.
  • the stator frame 314 is formed of a cylindrical metal, and the electric motor includes the stator 310 in the stator frame 314 as shown in FIG.
  • the rotor described below and a printed wiring board 315 are accommodated.
  • One surface of the cylindrical stator frame 314 is opened, and the stator intermediate assembly 319 and the like are placed from the open end 314a.
  • a connector window 314b for arranging the connector 316 is provided in the vicinity of the opening end 314a of the stator frame 314.
  • the stator intermediate assembly 319 in the present motor includes a stator 310 and a printed wiring board 315, and the stator 310 further includes a stator magnetic core 311.
  • the insulator 312 and the wound body 313 are included.
  • the stator magnetic core 311 is made of metal, and is configured by an annular yoke portion 311y and a plurality of tooth portions 311t as salient poles.
  • FIG. 9B shows one tooth portion 311t of the plurality of tooth portions 311t and only a part of the yoke portion 311y that is a base portion of the tooth portion 311t.
  • a configuration example of the stator structure in the inner rotor type motor in which the tooth portion 311t projects inward from the inner peripheral side of the yoke portion 311y is given.
  • each of the plurality of tooth portions 311t is covered with an insulator 312 formed of an insulating material, and each of the tooth portions 311t is provided with a winding 313w that is an insulated wire via the insulator 312.
  • the stator 310 is formed by providing the wound body 313 that is wound.
  • a printed wiring board 315 is disposed on the opening end 314a side with respect to the position where the stator 310 is disposed.
  • the wound body 313 of the stator 310 as shown in FIG. 9A, the winding end of the winding 313w is only from the side where the printed wiring board 315 is disposed with respect to the position of the stator magnetic core 311. The part 313a is pulled out.
  • the wound body 313 which is the main body portion of the winding 313w, the wire surface of the winding 313w is insulated, whereas each of the winding end portions 313a exposes a metal portion in the wire. It is in a state that includes a live part.
  • such a winding end 313 a is drawn from each winding body 313.
  • the winding cores 313 are connected by the winding end portions 313a, the winding end portions 313a are connected to the terminals of the connector 316, and the stator core 311 is connected to the printed wiring board 315. In the space between the printed wiring board 315 and the printed wiring board 315, wiring by these winding end portions 313a is formed.
  • a wiring pattern is formed on the surface of the printed wiring board 315 by a printing method, and a predetermined winding end 313a is connected to a predetermined land included in the wiring pattern. For example, as shown in FIG. 9A, a certain winding end 313 a is drawn to a predetermined land on the printed wiring board 315. Then, soldering is performed on the land, and the solder connection portion 317 is formed, whereby the winding end portion 313a is connected to the printed wiring board 315.
  • the printed wiring board 315 has an annular shape (doughnut shape), a fan shape (arc shape), a C-shape, and the like, and has a hollow portion in the center. The hollow portion has a rotor or an electric motor. The output shaft is inserted loosely.
  • stator intermediate assembly 319 is placed inside the stator frame 314 as shown in FIG.
  • the stator intermediate assembly 319 when the stator intermediate assembly 319 is placed in this manner, a space is generated in the stator frame 314 between the stator frame 314 and the stator intermediate assembly 319 or the like. For this reason, in this Embodiment, it is set as the structure which fills the specific location of these spaces with resin, and has aimed at the improvement of the heat dissipation in an electric motor. And in this Embodiment, in order to fill with resin, the resin injection port 314d is further provided in the part or several location of the wall part of the stator frame 314. FIG. In the present embodiment, a resin injection port 314d is provided in a wall portion that is lower than the stator intermediate assembly 319 and is close to the bottom portion of the stator frame 314.
  • a self-close valve 329 is provided at the resin injection port 314d.
  • the self-closing valve 329 has an opening / closing mechanism using rubber elasticity or the like, and is configured to automatically close the valve by the opening / closing mechanism when the needle of the dispenser is pulled out.
  • stator intermediate assembly 319 as described above is placed inside the stator frame 314 in the following procedure. That is, the stator frame 314 is installed so that the opening end 314a of the stator frame 314 is upward and the shaft hole 314c of the stator frame 314 is downward. The stator intermediate assembly 319 is inserted into the stator frame 314 in this state from the open end 314a side of the stator frame 314.
  • stator intermediate assembly 319 is positioned so that the printed wiring board 315 is disposed on the opening end 314a side of the stator frame 314.
  • a cylindrical center jig 318 is in close contact with the inner wall of the hollow portion of the stator magnetic core 311 as shown in FIG.
  • the stator intermediate assembly 319 is inserted into the stator frame 314 in such a state.
  • the connector 316 is disposed in the connector window 314b of the stator frame 314, and the connector 316 disposed in the connector window 314b and the stator intermediate assembly 319 are electrically connected.
  • stator intermediate assembly 319 when the stator intermediate assembly 319 is arranged in the stator frame 314, a space is generated between the stator frame 314 and the stator intermediate assembly 319 or the like.
  • a space as shown in FIG. 10, the lower space 320 d between the inside of the bottom of the stator frame 314 and the lower part of the stator intermediate assembly 319, the inner peripheral surface of the stator frame 314
  • the peripheral space 320s which is a gap between the inner wall and the outer peripheral surface of the stator core 311, the gap (not shown) formed between the adjacent wound bodies 313, and the printed wiring board 315
  • the lower space portion 320d and the peripheral space portion 320s are roughly filled with resin.
  • these spaces are filled with resin in the following procedure. That is, as shown in FIG. 10, a self-closing valve 329 is provided at the resin injection port 314 d, a dispenser nozzle or needle 331 is inserted into the self-closing valve 329, and the liquid resin 321 enters the stator frame 314. inject.
  • the resin 321 is supplied to the lower space portion 320d of the stator frame 314, and the resin 321 further includes a circumferential space portion 320s that is a gap between the stator magnetic core 311 and the stator frame 314. And flow into the gap between the wound bodies 313. At this time, the resin 21 flows while discharging air inside the gap from the upper side of the stator intermediate assembly 319. For this reason, bubbles are not included in the resin 321, and an air pocket (void) in the cured resin 321 is also reduced.
  • the resin 321 is filled in the specific space as described above, a highly reliable stator structure having stable heat dissipation characteristics after the resin 321 is cured, It can be provided at low cost.
  • the cylindrical center jig 318 inserted into the hollow portion of the stator magnetic core 311 is removed after the resin 321 is cured.
  • a needle 331 of a resin injection dispenser is inserted into the self-close valve 329 of the stator frame 314, and a heat radiating resin 321 such as a liquid epoxy resin is injected via the needle 331.
  • the resin 321 is supplied into the lower space 320d where the stator 310 is located, and the gap between the outer peripheral surface of the stator magnetic core 311 and the stator frame 314 and the adjacent windings are mainly from the lower space 320d.
  • the gaps between the bodies 13 are used as flow paths, and these gaps are also filled.
  • the self-close valve 329 that is open when the needle 331 is inserted has an opening / closing mechanism, it is automatically closed after resin injection. Therefore, the resin 321 injected into the stator frame 314 does not flow back or leak from the stator frame 314 to the outside. For this reason, the scattered resin does not adhere to the production line equipment and the product itself, and troubles such as cleaning and malfunction operation of the production equipment are suppressed, so that the production capacity of the production line becomes high. Naturally, there is no increase in production tact and no increase in the number of man-hours in the manufacturing process, and it is possible to provide a highly reliable product at a low cost, and the industrial value is great.
  • the self-close valve 329 although it is the self-close valve 329, as long as it has a function which prevents a resin leak before and after resin injection
  • a configuration in which the resin inlet is opened and closed by plugging and opening with a stopper made of an elastic body may be used.
  • FIG. 11 is a cross-sectional view of the stator structure 339 of the present invention completed by the procedure as described above. As shown in FIG. 11, the resin 321 fills the lower space 320d and the peripheral space 320s, and the upper space 320u is not filled with the resin 321.
  • the main resin component of the resin 21 in FIG. 13 is a thermosetting resin material such as epoxy, polyester, or polyurethane
  • the resin 321 is any one of a thermosetting epoxy resin, a polyester resin, and a polyurethane resin. Is included.
  • the resin 321 is blended with a filler having high thermal conductivity such as aluminum oxide (commonly referred to as alumina) or silicon nitride.
  • alumina aluminum oxide
  • silicon nitride silicon nitride
  • the air inside the stator hinders the heat dissipation characteristics of the stator 310 by the resin entering the gaps between the adjacent wound bodies 313 or the minute gaps between the stator core 311 and the stator frame 314. This layer is replaced with a resin layer having a low thermal resistance to improve heat dissipation.
  • the viscosity of the resin 321 is high, the penetration of the resin 321 into the above-described gap is accompanied by difficulty. For this reason, it is preferable that the resin 321 has low viscosity and high fluidity. In addition, even if it is a highly viscous resin material, the penetration of the resin 321 into the voids can be facilitated by increasing the fluidity of the resin 321 by preheating the stator 310 and the resin 321.
  • the resin 321 is filled in the space between the inside of the stator frame 314 and the stator intermediate assembly 319 to form the stator structure 339.
  • the space portion filled with the resin 321 is a gap between the lower space portion 320d, the peripheral space portion 320s, and the wound body 313, and the upper space portion 320u includes the resin 321. It is set as the structure which is not filled. That is, in the present embodiment, a resin-filled portion filled with the resin 321 and a resin non-filled portion not filled with the resin 321 are provided in the space in the stator frame 314 before filling with the resin.
  • the structure is as follows.
  • the wound bodies 313 are connected to each other by the winding end portion 313a, or the winding end portion 313a is connected to the terminal of the connector 316 or connected to the printed wiring board 315.
  • Wiring has been applied. That is, the upper space portion 320u includes an active portion of the winding end portion 313a drawn from the winding body, an active portion of a wiring pattern of the printed wiring board 315 such as the solder connection portion 317, and an electrical connection of the connector 316. It is a space including a live part that is a location (connection terminal) 316t.
  • the upper space 320u which is a space including these live parts, is not filled with the resin 321 and the upper space 320u is not filled with the resin.
  • FIG. 12 is an enlarged cross-sectional view of the main part of the stator structure 339 of the present invention, and shows the boundary between the resin-filled portion 333 and the resin-unfilled portion 332.
  • the stator structure 339 of the present invention When manufacturing the stator structure 339 of the present invention, it is easy to manage the liquid level of the resin 321 that flows after injection due to the structure of the present invention as described above. For this reason, the electrical connection part (live part) of the coil
  • the connection part (live part), the electrical connection part (live part) that is the connection terminal 316t for connecting the wound body 313 or the wiring pattern and the connector 316, etc. remain unfilled with the resin 321. Since the resin non-filling portion 332 is used, the resin 321 does not adhere.
  • the live parts which are electrical connection parts
  • the live parts are not in direct contact with the resin 321 but through air (atmosphere). Even if some gas is generated from the resin 321, it does not stay around the live part and diffuses and disappears, and no malfunction occurs.
  • the configuration of the electrical connection portion is adapted to a severe use environment, and it is possible to provide an electric motor and a stator structure with higher reliability.
  • FIG. 13 is a cross-sectional view of electric motor 340 according to Embodiment 2 of the present invention.
  • the electric motor 340 includes the stator structure 339 described above, a rotor 341 disposed on the inner peripheral side of the stator structure 339 via a gap, a bearing 350 that rotatably holds the rotor 341, and a stator. And a lid portion 351 mounted so as to close the open end 314a of the frame body 314.
  • the rotor 341 includes a columnar magnet holder 344 that holds a permanent magnet 343 in the circumferential direction, and a shaft 345 that fastens the magnet holder 344 so as to penetrate the center of the magnet holder 344. Yes.
  • the rotor 341 in the second embodiment has the same configuration as the rotor described in the first embodiment.
  • the rotor 341 may have the same configuration as the rotor described in the first embodiment.
  • the rotor 341 includes a first rotor core part, a second rotor core part 343b, a first bond magnet part 344a, a second bond magnet part 344b, and a back yoke 343c. is there.
  • the shaft 345 is rotatably held by two bearings 350 that support the shaft 345.
  • the electric motor 340 of the present embodiment has the above-described highly reliable stator structure 339, a highly reliable electric motor can be provided.
  • an electric motor 401 is mounted in a housing 411 of the air conditioner indoor unit 410.
  • a cross flow fan 412 is attached to the shaft of the electric motor 401.
  • the electric motor 401 is driven by an electric motor driving device 413.
  • the electric motor 401 rotates by energization from the electric motor driving device 413, and the cross flow fan 412 rotates accordingly.
  • the rotation of the cross flow fan 412 blows air conditioned by an indoor unit heat exchanger (not shown) into the room.
  • the electric motor 401 of the second embodiment can be applied to the electric motor 401.
  • an electric motor 543 is mounted in the housing 541 of the air purifier 540.
  • An air circulation fan 542 is attached to the shaft of the electric motor 543.
  • the electric motor 543 is driven by an electric motor driving device 544.
  • the electric motor 543 is rotated by energization from the electric motor driving device 544, and the fan 542 is rotated accordingly. Air is circulated by the rotation of the fan 542.
  • the electric motor 401 of the second embodiment can be applied to the electric motor 543.
  • electric motors mounted on air conditioner indoor units, air purifiers, and the like have been taken as examples of the apparatus according to the present invention.
  • electric motors mounted on other information devices Needless to say, the present invention can also be applied to electric motors used in industrial equipment.
  • the leakage magnetic flux from both axial end portions of the rotor core can be suppressed.
  • the linkage magnetic flux of a stator can be increased and the effective magnetic flux amount which contributes to the torque generation of an electric motor element can be increased. Therefore, it can contribute to the improvement of the characteristics of electric equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

少なくとも固定子と回転子とを含む電動機要素であって、回転子は、回転子の円筒体の両端部を除く中央部分に配置される第1の回転子部と、第1の回転子部の円筒体の両端部の各々に配置される第2の回転子部と、回転子の円筒体の両端部の各々に配置されるバックヨークとを含む。第1の回転子部は、固定子からの回転磁界によって発生する回転トルクの成分のうちのマグネットトルクを発生させるための複数のd軸磁束通路と、回転トルクの成分のうちのリラクタンストルクを発生させるための複数のq軸磁束通路とを含み、複数のd軸磁束通路の各々の少なくとも一部分に第1のボンド磁石部を含む。第2の回転子部は、第1のボンド磁石部と一体である第2のボンド磁石部を複数含む。

Description

電動機要素、電動機、装置
 本発明は、電動機要素、電動機要素を含む電動機及び装置に関する。
 近年、電動機要素の性能向上に寄与する構成として、永久磁石を回転子内部に埋設する永久磁石埋め込み(IPM:Interior Permanent Magnet)型の回転子の応用が盛んである。
 永久磁石には、フェライト磁石、希土類焼結磁石、及びボンド磁石などが適宜採用されている。
 例えば、特許文献1などには、フェライト磁石、希土類焼結磁石などの焼結磁石を回転子内部に埋設する電動機が記載されている。また、特許文献2などには、ボンド磁石を回転子内部に埋設する電動機が記載されている。
 焼結磁石を採用する場合には、焼結磁石の外形寸法の公差に応じた寸法形状の磁石埋設孔を、回転子コアに配置する。そのため、磁石配置孔は、焼結磁石よりも少し大きい形状である。このため、回転子コアと焼結磁石との間に空隙が生じ、空隙の磁気抵抗によって回転子の表面磁束密度が低下する。また、焼結磁石は、硬く脆いため、リラクタンストルクを活用するための焼結磁石の外観形状の複雑化には、適していない。
 焼結磁石をボンド磁石と置換する構成では、ボンド磁石と回転子コアとの間に空隙は生じない。このため、空隙の磁気抵抗による影響は回避可能である。しかし、ボンド磁石の磁気的特性は、希土類焼結磁石の磁気的特性よりも劣る。そのため、空隙の磁気抵抗による影響を回避することによって、希土類焼結磁石をボンド磁石へと置換可能とするまでには至っていない。
 特許文献3などには、永久磁石を回転子内部に埋設する永久磁石埋め込み型の回転子において、回転子の円筒の両端面に、永久磁石の小片を配置し、更には、永久磁石の小片の軸受側に、バックヨークを配置し、電動機要素の特性向上を図る技術思想が記載されている。しかし、回転子内部において、形状の異なる数種類の永久磁石の小片を組み立てる構成である。したがって、製造技術の難度は高く、且つ製造工数も増加する。よって、生産性の低下などの、経営的観点での課題を招く。
 近年、電動機要素の性能向上に寄与する新規なボンド磁石の開発が盛んである。特に、この新規なボンド磁石の高性能化は、ボンド磁石(永久磁石)を回転子内部に埋設する永久磁石埋め込み型の回転子への応用が望まれる。一方、ボンド磁石は、その外観形状の複雑化が可能であるという特性を有する。
 図16は、従来技術による永久磁石埋め込み型の回転子190の構成を示す斜視図である。図17は、従来技術による永久磁石埋め込み型の回転子190の回転軸に平行な面に沿った断面を示す断面図である。
 回転軸方向に積層されたコアシート180よりなる回転子190には、ボンド磁石部210を配置するボンド磁石配置孔部220が複数設けられている。ボンド磁石配置孔部220には、樹脂材料と磁石粉末とを混合して溶融するボンド磁石溶融体を充填・固化して、ボンド磁石部210が配置される。
 永久磁石埋め込み型の回転子190において、固定子に巻回されているコイルに通電すると、電流による磁束が生じる。電流による磁束と、磁石から生じる磁束との相互作用によって生じた磁気的吸引反発力が、回転子を回転させるトルクとなる。このトルクによって、回転子を駆動する。
 このとき、永久磁石埋め込み型の回転子190の軸方向の両端面で、ボンド磁石部210から発生し、回転子190のコアを磁束の通路としない漏洩磁束が、回転子190の軸方向の両端面から大気中を磁束の通路とする。この漏洩磁束が、隣接するボンド磁石部210に戻る短絡磁路200を形成する。これにより、回転子190の表面磁束が減少し、トルクに寄与する有効磁束量が減少する。
特開平8-331783号公報 特開平11-262205号公報 特開2006-280199号公報
 本発明は、回転子内部にボンド磁石を埋設する構成において、電動機要素の特性向上を図り、新規な電動機要素を提供することを目的とする。
 上述の目的を達成するために、本件出願の発明者らは、試行錯誤を重ね、且つ鋭意検討を行った。その詳細を以下に述べる。
 本発明の電動機要素は、少なくとも固定子と回転子とを含む電動機要素であって、回転子は、回転子の円筒体の両端部を除く中央部分に配置される第1の回転子部と、第1の回転子部の円筒体の両端部の各々に配置される第2の回転子部とから成る円筒体と、この円筒体の両端部の各々に配置されるバックヨークとを含む。第1の回転子部は、固定子からの回転磁界によって発生する回転トルクの成分のうちのマグネットトルクを発生させるための複数のd軸磁束通路と、回転トルクの成分のうちのリラクタンストルクを発生させるための複数のq軸磁束通路とを含み、複数のd軸磁束通路の各々の少なくとも一部分に第1のボンド磁石部を含む。第2の回転子部は、第1のボンド磁石部と一体である第2のボンド磁石部を複数含む。第2のボンド磁石部の各々は、第2のボンド磁石部と第1のボンド磁石部とが接するボンド磁石接続部と、ボンド磁石接続部から回転子の外周部に至るまで延設し、且つ、第1の回転子部のうち第1のボンド磁石部を除いた部分の第1の回転子コア部と接するボンド磁石延設部とを含む。第1のボンド磁石部における回転子の外周面と対向する磁極面の磁極は、隣り合う磁極面において、異なる磁極を有する。第1のボンド磁石部の磁極面と連続する面を構成するボンド磁石延設部における、第1の回転子コア部に接する面の磁極は、連続する面を構成する第1のボンド磁石部の磁極面と同じ磁極を有する。
 本発明によれば、回転子コアの軸方向両端部からの漏れ磁束を抑制することで、固定子の鎖交磁束を増加させ、電動機要素のトルク発生に寄与する有効磁束量を増加することができる。したがって、電気機器の特性向上に寄与することができる。よって、産業的価値の大なるものである。
実施の形態1の電動機要素を示す断面図。 実施の形態1の電動機要素において、回転軸を含む平面の断面を示す断面図。 実施の形態1における回転子とバックヨークを別に示す斜視図。 実施の形態1におけるバックヨークを含む回転子を示す斜視図。 実施の形態1における回転子の第1の回転子コア部を示す斜視図。 実施の形態1における回転子の第1のボンド磁石部及び第2のボンド磁石部を一体化した磁石形状を示し、凹部側がN極である斜視図。 実施の形態1における回転子の第1のボンド磁石部及び第2のボンド磁石部を一体化した磁石形状を示し、凹部側がS極である斜視図。 実施の形態1における回転子の回転軸に平行な面に沿った断面を示す断面図。 実施の形態1における第1の回転子コア部及び第1のボンド磁石部を回転子の回転軸に垂直な面に沿った断面を示す断面図。 実施の形態1における回転子の、バックヨークの外径(直径)と第2のボンド磁石部の外径(直径)の比と誘起電圧の関係を示す図。 実施の形態2における電動機の固定子構成体に含まれる固定子中間組立体と固定子枠体とを示す断面図。 図8における固定子中間組立体の要部の拡大断面図。 図9Aに対応する要部を上部側から見た断面図。 実施の形態2における電動機の固定子構成体を形成する手順について説明するための図。 実施の形態2における固定子構成体の断面図。 実施の形態2における固定子構成体の要部の拡大断面図。 実施の形態2における電動機の断面図。 実施の形態3における装置の例としてのエアコン室内機の構成を示す図。 実施の形態3における装置の他の例としての空気清浄機の構成を示す図。 従来技術による永久磁石埋め込み型の回転子の構成を示す斜視図。 従来技術による永久磁石埋め込み型の回転子の回転軸に平行な面に沿った断面を示す断面図。
 以下、本発明について、図面を参照しながら説明する。なお、以下の実施の形態によって本発明が限定されるものではない。
 (実施の形態1)
 図1は、実施の形態1の電動機要素14を示す断面図である。図2は、実施の形態1の電動機要素14において、回転軸を含む平面の断面を示す断面図である。図1に示す電動機要素14の極数とスロット数の組み合わせは、所謂、6極9スロットの集中巻の構成である。電動機要素14は、9つのトゥース部に集中巻の巻装体を具備する固定子1と、磁気的突極性を有する6つの磁極部を具備する回転子2とを有する。
 なお、本発明の電動機要素は、これに限定されない。なお、図1においては、1つのトゥース部5に巻線を巻いた集中巻による巻装体6を例示しているが、本発明はこれに限らない。例えば、複数のトゥース部5に渡って巻線を巻装する分布巻、または、波巻など種々の巻線の態様を採用可能である。
 例えば、10極9スロットの集中巻の構成、10極12スロットの集中巻の構成、12極9スロットの集中巻の構成、14極12スロットの集中巻の構成、4極24スロットの分布巻の構成、4極36スロットの分布巻の構成、6極36スロットの分布巻の構成、8極48スロットの分布巻の構成、4極12スロットの波巻の構成、4極12スロットの波巻の構成、6極18スロットの波巻の構成などの周知の極数とスロット数の組み合わせのいずれにも適用可能である。
 図1に示すように、本実施の形態の電動機要素14は、実質的に円筒状の固定子1と、固定子1の内側に回転自在に保持される回転子2とを有している。回転子2の中心にはシャフト孔3が設けられる。シャフト孔3に、シャフト(図示せず)が挿通された状態で、回転子2とシャフトとが固定されている。シャフトの両端部には、シャフトを回転自在に支承する一対の軸受を具備する。図1においては、シャフト及び軸受については、自明な内容であり、図示していない。
 固定子1は、実質的に円筒状のヨーク部4と、ヨーク部4の内側に延出するトゥース部5とを有する固定子1の磁心7と、トゥース部5の各々に絶縁電線を巻装して設ける巻装体6とを有している。トゥース部5と巻装体6との間には、両者を電気的に絶縁するインシュレータ8が設けられている。円筒状の回転子2は、第1の回転子コア9aと第2の回転子コア9bと、回転子2の両端部の各々に配置されるバックヨーク30とを含む。回転子2の周方向に複数(本例においては6つ)形成された配置孔11には第1のボンド磁石部140及び第2のボンド磁石部150を有する。巻装体6を構成する絶縁電線の芯線の材質には、不可避不純物を含み、さらに、銅、銅合金、アルミニウム又はアルミニウム合金のいずれかを含むものを用いる。
 第1のボンド磁石部140及び第2のボンド磁石部150は、少なくとも磁石粉末と樹脂材料を含む。この磁石粉末の磁性材料の種類は、特に限定されないが、例えば、Nd-Fe-B系磁石粉末、Sm-Co系磁石粉末、Sm-Fe-N系磁石粉末、フェライト系磁石粉末、又はこれらの混合物などから適宜選択する。
 磁石粉末の含有量は、ボンド磁石全体に対して93~97重量%(密度5.4Mg/m~6.5Mg/m)であることが好ましい。93重量%よりも少ないと、高い磁気特性が得られない傾向を示す。また、97重量%よりも多いと、加工性が著しく低下し、成形が困難になる傾向を示す。
 また、上記のNd-Fe-B系磁石粉末、Sm-Co系磁石粉末、Sm-Fe-N系磁石粉末、フェライト系磁石粉末には、長周期型周期表の第3族に属するスカンジウム(Sc)、イットリウム(Y)及びランタノイド元素を含む。ランタノイド元素は、例えば、ランタン(La)、セリウム(Ce)、プラセオジウム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユーロピウム(Eu)、ガドリニウム(Gd)、テルビニウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)等であり、これら元素のうち1種または2種以上の元素を含む。
 第1のボンド磁石部140及び第2のボンド磁石部150に含む樹脂材料は、特に限定しないが、例えば、熱可塑性樹脂、熱硬化性樹脂又はこれらの混合物等が挙げられる。熱可塑性樹脂としては、ポリアミド系樹脂、ポリブチレンテレフタレート、ポリフェニレンサルファイド等のエンジニアリングプラスチック、液晶ポリマー等のスーバーエンジニアリングプラスチック、ポリエチレン又はポリプロピレン等の結晶性プラスチック等が挙げられる。熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂又はメラミン樹脂等が挙げられる。
 また、第1のボンド磁石部140の軸方向に対して垂直な面の断面形状は、実質的に円弧形状の場合を示すが、この形状に限定されるものではない。実質的な長方形の形状、実質的な台形の形状又は実質的なV字形の形状であるなど、仕様に適した態様を適宜選択する。また、実質的な円弧形状又は実質的なV字型の形状は屈曲部を有する形状であり、この屈曲部の配置は、回転子の回転軸中心の側に凸部側を位置する構成である。
 また、本実施の形態の電動機要素14においては、回転子2は磁気的突極性を有する。磁気的突極性を有する回転子2は、複数のd軸磁束通路と、複数のq軸磁束通路とを有する。図1に示す回転子2における仮想線12として示す箇所は、d軸磁束通路を模式的に示す一例であり、固定子1からの回転磁界が、このd軸磁束通路を磁路とすることによって、回転トルクの成分のうちのマグネットトルクを発生させる。また、回転子2における仮想線13として示す箇所は、d軸磁束通路を模式的に示す一例であり、固定子1からの回転磁界が、このq軸磁束通路を磁路とすることによって、回転トルクの成分のうちのリラクタンストルクを発生させる。
 一般的に、電磁鋼板を使用した電動機要素のコア(固定子の磁心、回転子コアともに)の製造方法は、金属材料等の製造メーカから供給されたロール状の電磁鋼板を、巻き出し機によってプレス機へ送り、プレス機に設置された金型によって所定の軸方向断面形状のコアシートに打ち抜き、このコアシートを積層して一体化することでコアが形成される。
 図3Aは、実施の形態1における回転子2とバックヨーク30を別に示す斜視図である。図3Bは、実施の形態1におけるバックヨーク30を含む回転子2を示す斜視図である。図3A及び図3Bに示すように、回転子2は、第1の回転子部100aと、第1の回転子部100aの両端の各々に配置される第2の回転子部100bと、円筒体100cの両端部の各々に配置されるバックヨーク30とを含む。
 図4は、実施の形態1における回転子2の第1の回転子コア部110aと、第2の回転子コア部110bとを示す斜視図である。図5Aは、実施の形態1における回転子2の第1のボンド磁石部140及び第2のボンド磁石部150を一体化した磁石形状を示し、凹部側がN極である斜視図である。図5Bは、実施の形態1における回転子2の第1のボンド磁石部140及び第2のボンド磁石部150を一体化した磁石形状を示し、凹部側がS極である斜視図である。
 図6Aは、実施の形態1における回転子2の回転軸に平行な面に沿った断面を示す断面図である。回転子2は、第1の回転子部100aと、第1の回転子部100aの両端の各々に配置される第2の回転子部100bと、第2の回転子部100bの一方の端面に配置されるバックヨーク30とから構成される。図6Bは、実施の形態1における第1の回転子コア部110a及び第1のボンド磁石部140を回転子2の回転軸に垂直な面に沿った断面を示す断面図である。
 図4、図6A及び図6Bに示す実施の形態1における回転子2は、回転軸方向に積層する第1のコアシート120aからなる第1の回転子コア部110aと、この第1の回転子コア部110aの両端部の各々に、回転軸方向に積層する第2のコアシート120bからなる第2の回転子コア部110bとを含む。
 第2のコアシート120b及び第2の回転子コア部110bは、中央部にシャフトを配置するための円形状のシャフト孔3と、このシャフト孔3の外周に複数の湾部構造(凹部、第2のボンド磁石配置湾部130b)を有する星型状の形状である。
 第1のコアシート120a及び第1の回転子コア部110aは、実質的に円環状の形状であり、中央にシャフトを配置するための孔部と、円環部分に、円弧形状の孔部である第1のボンド磁石配置孔部130aを複数有する。図6Bは、第1の回転子コア部110a及び第1のボンド磁石部140を回転子の回転軸に垂直な面に沿った断面を示す断面図である。
 なお、図6Bに示すように、第1のボンド磁石部140の断面形状は、円弧形状である。この円弧形状は、第1のボンド磁石部の第1の曲率半径141と、第1のボンド磁石部の第2の曲率半径142とを有する。そして、第1のボンド磁石部の第1の曲率半径141と、第1のボンド磁石部の第2の曲率半径142とを比べると、第1のボンド磁石部の第1の曲率半径141の方が大きい。そして、第1の曲率半径による仮想円144の中心及び第2の曲率半径による仮想円145の中心は、回転子2の外周付近に位置する。この曲率半径の仮想円の中心143の位置は、回転子2の外径円の内に位置するケースや又は回転子2の外径円の外に位置するケースもあり、特に特定しない。また、第1の曲率半径による仮想円144の中心の位置及び第2の曲率半径による仮想円145の中心の位置は、互いに、実質的に一致するケースや、互いに離間するケースもあり、特に特定しない。
 また、図3及び図6Aに示すように、回転子2は、第1の回転子部100aの円柱形状の直径と、第2の回転子部100bの円柱形状の直径とは、実質的に同一であり、第1の回転子部100aと第2の回転子部100bとの間に、実質的に段差の無い円筒面を構成する。
 第1のコアシート120aは、35H300と呼称される電磁鋼板である。電磁鋼板の厚みは、0.35mmである。電磁鋼板は、主成分として、Fe及びSiを含み、副成分としては特に限定しない。電磁鋼板の成分は、特定されない不可避不純物を含む。
 第2のコアシート120bについても、第1のコアシート120aと同じく、35H300と呼称される電磁鋼板である。電磁鋼板の厚みは、0.35mmである。電磁鋼板は、主成分として、Fe及びSiを含み、副成分としては特に限定されない。電磁鋼板の成分は、特定されない不可避不純物を含む。
 バックヨーク30の材質は、磁性体であればよく、特に限定されない。例えば、ケイ素鋼板、圧粉鉄心、冷間圧延鋼板などの磁性体が適用可能である。
 第1の回転子コア部110aには、第1のボンド磁石配置孔部130aが複数設けられる。第1のボンド磁石配置孔部130aには、第1のボンド磁石部140が配置され、第1の回転子部100aを構成する。第1の回転子コア部110aの両端部の第2の回転子コア部110bは、磁性体で構成されている。第2の回転子コア部110bには、第1の回転子コア部110aの第1のボンド磁石配置孔部130aとは異なる形状の、第2のボンド磁石配置湾部130bが設けられている。第2のボンド磁石配置湾部130bには、第2のボンド磁石部150が配置され、第2の回転子部100bを構成する。
 第2のボンド磁石部150は、第1のボンド磁石部140よりも径方向外周部に伸張した形状である。第1のボンド磁石部140は、実質的に軸方向に垂直な面内方向に着磁されている。第2のボンド磁石部150は、軸方向成分を有するように着磁されている。
 つまり、第1のボンド磁石部140の各々における回転子2の外周面と対向する磁極面の磁極は、隣り合う磁極面において、異なる磁極を有する。第1のボンド磁石部140の各々の磁極面と連続する面を構成する第2のボンド磁石部150のボンド磁石延設部152における、第1の回転子コア部110aに接する面の磁極は、連続する面の一部を構成する第1のボンド磁石部140の磁極面と同じ磁極を有する。図5Aは、第1のボンド磁石部140及び第2のボンド磁石部150を一体化した磁石形状を示し、凹部側がN極である斜視図である。図5Bは、第1のボンド磁石部140及び第2のボンド磁石部150を一体化した磁石形状を示し、凹部側がS極である斜視図である。
 第2の回転子コア部110bにおける第2のコアシート120bを積層する枚数は、第1の回転子コア部110aにおける第1のコアシート120aを積層する枚数よりも少ない。
 第1のボンド磁石部140は、第1のボンド磁石配置孔部130aを満たすように配置され、且つ、第1の回転子コア部110aの両端面の位置までを占める。第2のボンド磁石部150は、第2のボンド磁石配置湾部130bを満たすように配置され、且つ、第2の回転子コア部110bの第1の回転子コア部110aに接しない側の各端面の位置までを占める。第1のボンド磁石部140と第2のボンド磁石部150とは一体化したボンド磁石を構成する。
 第1の回転子コア部110aと第2の回転子コア部110bを一体化して構成するコアは、コアの外観形状に沿った円筒状の凹部を有する樹脂成型に用いる金型と類似の枠型に収容される。連通した第1のボンド磁石配置孔部130aと第2のボンド磁石配置湾部130bとからなるボンド磁石配置孔へ、樹脂材料と磁石粉末とを混合して溶融するボンド磁石溶融体を充填・固化する。このようにして、第1のボンド磁石部140と第2のボンド磁石部150とが一体化して配置される。第1のボンド磁石部140と第2のボンド磁石部150とは、ボンド磁石接続部151によって一体化されている。第2のボンド磁石部150は、ボンド磁石延設部152を含む。
 上述の構成によって、回転子2の軸方向両端面付近において、第1のボンド磁石部140からの漏れ磁束は、回転子の軸方向両端面に配置され、且つ、軸方向成分を有するように着磁されている第2のボンド磁石部150によって、回転子2の軸方向中央部に収束される。このため、漏れ磁束は低減し、トルクに寄与する磁束を増す。
 第2の回転子コア部110bは、軸方向両端部に配置され、且つ、磁性体(電磁鋼板の積層体)で構成される。第2のコアシート120b及び第2の回転子コア部110bは、中央部にシャフトを配置するための円形状のシャフト孔3と、このシャフト孔3の外周に複数の湾部構造(凹部、第2のボンド磁石配置湾部130b)を有する星型状の形状である。これにより、回転子2の軸方向両端部における磁気抵抗を増加させる。また、回転子の軸方向両端部に配置される第2のボンド磁石部150からの磁束の一部を、漏洩磁束として損することなく、回転子2の軸方向中央部に収束する効果を高めている。
 隣接する第2のボンド磁石部150間では、バックヨーク30が無い場合は、図3Aに例示する磁気抵抗の高い磁路165を構成するため、第2のボンド磁石部150によるロータの表面磁束を増加する効果を高める効果が乏しい。一方、図3A及び図3Bに示すように、第1の回転子コア部110aと一対の第2の回転子コア部110bとから構成される円筒体100cの軸方向両端部の各々に、バックヨーク30を配置すると、第2のボンド磁石部150からの磁束は、磁気抵抗の小さいバックヨーク30を通るように変わる。これにより、第2のボンド磁石部150からの総磁束量は増加し、第2のボンド磁石部150によるロータの表面磁束を増加する効果を高め、トルクに寄与する有効磁束量を増加する。
 図7は、有限要素法による磁界の数値解析の計算結果であり、実施の形態1における回転子2の、バックヨーク30の外径(直径)と第2のボンド磁石部150の外径(直径)の比と誘起電圧の関係を示す図である。図7に示すとおり、バックヨーク30の外径(直径)と第2のボンド磁石部150の外径(直径)が実質的に等しいとき、最も大きな誘起電圧が得られる。
 なお、第2のボンド磁石部150の外径(直径)が、ロータコア110の外径(直径)と実質的に等しい場合には、ロータコア110の外径(直径)、バックヨーク30の外径(直径)、第2のボンド磁石部150の外径(直径)が実質的に等しくなる特異点を構成する。この場合、ロータコア110からバックヨーク30へと流れる漏れ磁束が発生し、有効磁束が減少してしまう。なお、この特異点を生じる構成は、バックヨーク30の外径(直径)をロータコア110の外径(直径)よりも、僅かに小さくすることで、漏れ磁束を抑制することが可能である。ここで、第2のボンド磁石部150の外径(直径)について、説明する。第2のボンド磁石部150の外径(直径)は、各々の第2のボンド磁石部150の固定子の内径部と対向する部分を仮想的につなぐ包絡線による円弧の直径である。
 本実施の形態においては、回転子2の極数は6(磁石配置孔の数が6)を示している。しかし、本発明はこの数に限定されるものではなく、2n倍(nは自然数)であれば適用可能である。
 また、第1のボンド磁石配置孔部130aの軸方向中央部の形状は、実質的に円弧形状の場合を示しているが、この形状に限定されるものではない。実質的に長方形状、実質的にV字形状など、任意の磁石配置孔形状が適用可能である。
 以上のように、本実施の形態の電動機要素14は、少なくとも固定子1と回転子2とを含む電動機要素14であって、回転子2は、回転子2の円筒体の両端部を除く中央部分に配置される第1の回転子部100aと、第1の回転子部100aの円筒体の両端部の各々に配置される第2の回転子部100bとから成る円筒体100cと、円筒体100cの両端部の各々に配置されるバックヨーク30とを含む。第1の回転子部100aは、固定子1からの回転磁界によって発生する回転トルクの成分のうちのマグネットトルクを発生させるための複数のd軸磁束通路と、回転トルクの成分のうちのリラクタンストルクを発生させるための複数のq軸磁束通路とを含み、複数のd軸磁束通路の各々の少なくとも一部分に第1のボンド磁石部140を含む。第2の回転子部100bは、第1のボンド磁石部140と一体である第2のボンド磁石部150を複数含む。第2のボンド磁石部150の各々は、第2のボンド磁石部150と第1のボンド磁石部140とが接するボンド磁石接続部151と、ボンド磁石接続部151から回転子2の外周部に至るまで延設し、且つ、第1の回転子部100aのうち第1のボンド磁石部140を除いた部分の第1の回転子コア部110aと接するボンド磁石延設部152とを含む。第1のボンド磁石部140における回転子2の外周面と対向する磁極面の磁極は、隣り合う磁極面において、異なる磁極を有する。第1のボンド磁石部140の磁極面と連続する面を構成するボンド磁石延設部152における、第1の回転子コア部110aに接する面の磁極は、連続する面を構成する第1のボンド磁石部140の磁極面と同じ磁極を有する。
 これにより、回転子コアの軸方向両端部からの漏れ磁束を抑制することで、固定子の鎖交磁束を増加させ、電動機要素のトルク発生に寄与する有効磁束量を増加することができる。したがって、電気機器の特性向上に寄与することができる。よって、産業的価値の大なるものである。
 また、第1の回転子部100aは、複数の円環状の第1のコアシートを積層した第1の回転子コア部110aと、第1の回転子コア部110aに第1のボンド磁石部140を配置する複数の第1のボンド磁石配置孔部130aとを含んでもよい。第2の回転子部100bは、複数の星型状の第2のコアシートを積層した第2の回転子コア部110bと、第2の回転子コア部110bに第2のボンド磁石部150を配置する複数の第2のボンド磁石配置湾部130bとを含んでもよい。第2のボンド磁石部150の各々の第2の回転子部100bの外周に位置する形状は、第1の回転子部100aの外周の形状と同一の形状であってもよい。これにより、回転子コアの軸方向両端部からの漏れ磁束を抑制することで、固定子の鎖交磁束を増加させ、電動機要素のトルク発生に寄与する有効磁束量を増加することができる。したがって、電気機器の特性向上に寄与することができる。よって、産業的価値の大なるものである。
 また、バックヨーク30の外径は、回転子2の外径よりも小さくてもよい。
 また、複数の第1のボンド磁石配置孔部130aの各々の形状は、回転子2の回転軸に対して垂直な面において、実質的な円弧の形状、実質的な長方形の形状、実質的な台形の形状又は実質的なV字形の形状であってもよい。
 また、第1の回転子部100aの外周の形状と、第2の回転子部100bの外周の形状とは同一の形状であってもよい。
 また、固定子1及び回転子2は電磁鋼板を含んでもよい。
 また、固定子1の固定子巻線は、集中巻の巻線を含んでもよい。
 また、固定子1の固定子巻線は、分布巻の巻線を含んでもよい。
 また、固定子1の固定子巻線は、波巻の巻線を含んでもよい。
 また、固定子1の固定子巻線は、絶縁電線を含み、絶縁電線は、不可避不純物を含み、さらに、銅、銅合金、アルミニウム又はアルミニウム合金のいずれかを含んでもよい。
 また、第1のボンド磁石部140及び第2のボンド磁石部150に含まれる磁石粉末の含有量は、93重量%から97重量%であることが好ましい。
 また、電動機は、電動機要素14を含んでもよい。
 また、装置は、電動機要素14を含んでもよい。
 (実施の形態2)
 図8は、本発明の実施の形態2における電動機の固定子構成体に含まれる固定子中間組立体319とコネクタ316と固定子枠体314とを示す断面図である。また、図9Aは、図8における固定子中間組立体319の要部の拡大断面図であり、図9Bは、図9Aに対応する要部を上部側から見た断面図である。
 本実施の形態の電動機において、固定子枠体314は、円筒状の金属で形成されており、本電動機は、図8に示すように、このような固定子枠体314内に、固定子310、以下で説明する回転子、及び印刷配線板315を収納した構成である。円筒状の固定子枠体314の一方面は開口されており、この開口端314aから、固定子中間組立体319などが納置される。また、固定子枠体314の開口端314aの近傍には、コネクタ316を配置するコネクタ窓部314bを設けている。
 また、図8、図9A及び図9Bに示すように、本電動機における固定子中間組立体319は、固定子310と印刷配線板315とから構成され、さらに、固定子310は、固定子磁心311、インシュレータ312及び巻装体313を含む構成である。
 固定子磁心311は、金属で形成され、形状としては、環状のヨーク部311yと突極としての複数のトゥース部311tとで構成されている。図9Bでは、複数のトゥース部311tのうちの1つのトゥース部311tと、そのトゥース部311tの基部となるヨーク部311yの一部分のみとを示している。また、本実施の形態では、トゥース部311tがヨーク部311yの内周側から内方向に突出するインナロータ型の電動機における固定子構成体の構成例を挙げている。このような固定子磁心311に対し、絶縁材料で成形されたインシュレータ312によって複数のトゥース部311tの各々を覆い、各トゥース部311tにおいて、このインシュレータ312を介して、絶縁電線である巻線313wを巻装した巻装体313を設けることにより、固定子310が形成されている。
 さらに、固定子枠体314内において、固定子310を配置する位置に対して開口端314a側に、印刷配線板315が配置されている。また、固定子310の巻装体313においては、図9Aに示すように、固定子磁心311の位置に対して、この印刷配線板315が配置される側からのみ、巻線313wの巻線端部313aが引き出されている。さらに、巻線313wの本体部分となる巻装体313では、巻線313wの線表面が絶縁処理されているのに対して、巻線端部313aのそれぞれは、線内の金属部分が露出した活電部を含む状態となっている。本実施の形態では、このような巻線端部313aがそれぞれの巻装体313から引き出されている。そして、これら巻線端部313aによって巻装体313同士を結線したり、巻線端部313aをコネクタ316の端子に接続したり、印刷配線板315に接続したりするために、固定子磁心311と印刷配線板315との間のスペースにおいて、これら巻線端部313aによる配線が成されている。
 そして、印刷配線板315の表面には、印刷手法により配線パターンが形成されており、配線パターンに含まれる所定のランドに、所定の巻線端部313aが接続される。例えば、図9Aに示すように、ある巻線端部313aは、印刷配線板315の所定のランドまで引き出されている。そして、そのランドにおいてハンダ付けが施され、ハンダ接続部317が形成されることにより、印刷配線板315に巻線端部313aが接続される。なお、印刷配線板315は、環状(ドーナツ型形状)、扇型形状(円弧状)、Cの字状の形状などであり、中央に中空部を有し、この中空部には回転子や電動機の出力軸が遊挿される。
 以上、図8に示すように、固定子枠体314の内側に、固定子中間組立体319が納置される。
 また、このように固定子中間組立体319を納置すると、固定子枠体314の中において、固定子枠体314と固定子中間組立体319との間などに空間が生じる。このため、本実施の形態では、これら空間のうちの特定箇所を樹脂で充填するような構成とし、電動機における放熱性の向上を図っている。そして、樹脂を充填するために、本実施の形態では、さらに、固定子枠体314の壁部の一部又は複数の箇所に、樹脂注入口314dを設けている。本実施の形態では、固定子中間組立体319よりも下側となって、固定子枠体314の底部に近い壁部に樹脂注入口314dを設けている。そして、さらに、この樹脂注入口314dには、セルフクローズ弁329を設けている。このセルフクローズ弁329は、ゴム弾性等を利用した開閉機構を有しており、ディスペンサーのニードルなどを抜いた際には、この開閉機構によって弁が自動的に閉じられるように構成されている。
 次に、本実施の形態における固定子構成体を形成する手順について説明する。
 まず、上述のような固定子中間組立体319は、次のような手順で固定子枠体314の内側に納置される。すなわち、固定子枠体314の開口端314aが上方に、固定子枠体314のシャフト孔314cが下方となるように、固定子枠体314を設置する。この状態の固定子枠体314の中に、固定子枠体314の開口端314aの側から固定子中間組立体319を挿入する。
 このとき、印刷配線板315が固定子枠体314の開口端314aの側に配置されるように、固定子中間組立体319を位置させる。これとともに、固定子磁心311の中空部の内壁には、図10に示すように、円柱状の中心治具318を密着している。本実施の形態では、このような状態で、固定子枠体314の中に固定子中間組立体319を挿入している。
 そして、固定子枠体314のコネクタ窓部314bに、コネクタ316を配置し、このコネクタ窓部314bに配置されたコネクタ316と、固定子中間組立体319とを電気的に接続する。
 このようにして、固定子枠体314の中に固定子中間組立体319を配置したとき、固定子枠体314と固定子中間組立体319との間などに空間が生じる。このような空間としては、図10に示すように、固定子枠体314の底部の内側と固定子中間組立体319の下部との間の下部空間部320d、固定子枠体314の内周面である内壁と固定子磁心311の外周面との間の空隙である周部空間部320s、隣り合う巻装体313同士の間に形成された隙間(図示せず)、及び印刷配線板315の下面と固定子310上部との間の上部空間部320uなどがある。
 本実施の形態では、これら空間のうち、概略、下部空間部320dと周部空間部320sとを樹脂で充填している。
 また、本実施の形態では、次のような手順で、これらの空間部に樹脂を充填している。すなわち、図10に示すように、樹脂注入口314dには、セルフクローズ弁329を設け、ディスペンサーのノズルやニードル331をセルフクローズ弁329に挿入し、液状の樹脂321を固定子枠体314内へ注入する。
 注入を開始すると、まず、固定子枠体314の下部空間部320dへ樹脂321が供給され、さらに、樹脂321は、固定子磁心311と固定子枠体314との空隙である周部空間部320s、及び巻装体313同士の隙間へ流入する。この際、固定子中間組立体319の上部側から空隙内部の空気を排出しつつ、樹脂21が流動する。このため、樹脂321への気泡の含入は生じず、硬化した樹脂321への空気溜まり(ボイド)も少なくなる。本実施の形態では、このように、特定の空間部に樹脂321を充填しているため、樹脂321の硬化後は安定した放熱特性を有し、かつ、信頼性の高い固定子構成体を、安価に提供することが可能である。なお、固定子磁心311の中空部に挿入した円柱状の中心治具318は、樹脂321の硬化後に取り除く。
 樹脂321の注入方法について、さらに説明する。固定子枠体314のセルフクローズ弁329に、樹脂注入用ディスペンサーのニードル331を挿入し、液状のエポキシ樹脂等の放熱性を有する樹脂321をニードル331経由で注入する。樹脂321は、固定子310が位置する箇所の下部空間部320d内に供給され、この下部空間部320dから主に固定子磁心311の外周面と固定子枠体314との空隙、及び隣り合う巻装体13同士の空隙を流路とし、かつこれら空隙にも充填される。
 ニードル331挿入時に空いたセルフクローズ弁329は、開閉機構を有するため、樹脂注入後に、自動的に閉じられる。よって、固定子枠体314の内部へ注入した樹脂321が、固定子枠体314内部から外部へと逆流や漏れを起こすことがない。このため、生産ラインの設備や製品自体への飛散樹脂の付着などは生じず、清掃等の手間や製造設備の不具合動作も抑制されることから、生産ラインの生産能力は高いものとなる。当然、生産タクトの増加や、製造工程の工数の増加もなく、安価に信頼性の高い製品を提供することが可能であり、産業的価値は大いなるものである。
 なお、セルフクローズ弁329であるが、樹脂注入の前後において、樹脂漏れを防ぐ機能を有するものであれば、他の構成物でもよい。例えば、簡便なものとしては、弾性体による栓体による打栓・開栓によって樹脂の注入口の開閉を行う構成でもよい。
 図11は、以上のような手順により完成した本発明の固定子構成体339の断面図である。図11に示すように、樹脂321は、下部空間部320dや周部空間部320sに充填し、上部空間部320uには樹脂321を充填していない。
 また、図13における樹脂21の主要な樹脂成分は、エポキシやポリエステル、ポリウレタン等の熱硬化性の樹脂材料であり、樹脂321として、熱硬化性樹脂のエポキシ樹脂、ポリエステル樹脂及びポリウレタン樹脂のいずれかを含ませている。固定子310の放熱特性を向上させるため、樹脂321には、酸化アルミニウム(通称はアルミナ)や窒化珪素等の高熱伝導率を示す充填材を配合している。また、隣り合う巻装体313同士の空隙や、固定子磁心311と固定子枠体314との微細な空隙等へ樹脂が入り込むことにより、固定子310の放熱特性を阻害する固定子内部の空気の層を、熱抵抗の低い樹脂層にて置換する構成とすることによって、放熱性を高めている。
 また、樹脂321の粘性が高い場合は、上述の空隙への樹脂321の浸透は困難性を伴う。このため、樹脂321は低粘度で流動性の高いことが好ましい。なお、高粘度の樹脂材料であっても、固定子310及び樹脂321への予熱を施すことにより、樹脂321の流動性を高めることで、空隙への樹脂321の浸透は容易である。
 以上説明したように、本実施の形態では、固定子枠体314の内側と固定子中間組立体319との間の空間部に樹脂321を充填して、固定子構成体339を形成している。
 ここで、樹脂321を充填する空間部として、本実施の形態では、下部空間部320d、周部空間部320s、及び巻装体313同士の間の隙間とし、上部空間部320uには、樹脂321を充填していないような構成としている。すなわち、本実施の形態では、樹脂充填前の固定子枠体314内の空間部に対して、樹脂321を充填した樹脂充填部と、樹脂321を非充填とした樹脂非充填部とを具備するような構成としている。
 また、上述したように、上部空間部320uでは、巻線端部313aによって巻装体313同士を結線したり、巻線端部313aをコネクタ316の端子に接続したり印刷配線板315に接続したりするための配線が施されている。すなわち、上部空間部320uは、巻装体から引き出した巻線端部313aの活電部、ハンダ接続部317のような印刷配線板315の配線パターンの活電部、及びコネクタ316の電気的接続箇所(接続端子)316tである活電部を含む空間である。そして、本実施の形態では、これら活電部を含む空間である上部空間部320uには樹脂321を非充填とし、上部空間部320uを樹脂非充填部としている。
 図12は本発明の固定子構成体339の要部の拡大断面図であり、このような樹脂充填部333と樹脂非充填部332との境界を示している。
 本発明の固定子構成体339を製造する際には、以上説明したような本発明の構成に起因して、注入後に流動する樹脂321の液面を管理することが容易である。このため、巻装体313同士を結線するための巻線端部313aの電気的接続部(活電部)や、巻装体313と印刷配線板315の配線パターンとを接続するための電気的接続部(活電部)や、巻装体313や配線パターンとコネクタ316とを接続するための接続端子316tである電気的接続部(活電部)などは、樹脂321が充填されないままである樹脂非充填部332としているので、樹脂321の付着は生じない。
 このように、本実施の形態では、これら、電気的接続部である活電部は、樹脂321と直接に接する構成ではなく、空気(大気)を介する構成である。仮に、樹脂321から何らかのガスが発生しても、活電部の周囲に滞留することはなく拡散消失し、不具合は生じない。これにより、電気的接続部の構成は、過酷な使用環境下にも適応したものとなり、信頼性をより高めた電動機及び固定子構成体を提供可能となる。
 図13は、本発明の実施の形態2における電動機340の断面図である。電動機340は、上述の固定子構成体339と、固定子構成体339の内周側に空隙を介して配置された回転子341と、回転子341を回転自在に保持する軸受350と、固定子枠体314の開口端314aを塞ぐように装着された蓋部351とを備えている。
 また、回転子341は、周方向に永久磁石343を保持した円柱状の磁石保持部344と、磁石保持部344の中央を貫通するようにして磁石保持部344を締結したシャフト345とを備えている。
 また、実施の形態2における回転子341は、実施の形態1にて説明した回転子と同様の構成である。なお、回転子341は、実施の形態1にて説明した回転子と同様の構成でも良い。回転子341は、第1の回転子コア部と、第2の回転子コア部343bと、第1のボンド磁石部344aと、第2のボンド磁石部344bと、バックヨーク343cとを含む構成である。
 また、シャフト345は、シャフト345を支持する2つの軸受350により、回転自在に保持されている。
 このように、本実施の形態の電動機340は、上述の信頼性の高い固定子構成体339を備えた構成であるため、信頼性の高い電動機を提供することができる。
 (実施の形態3)
 本発明にかかる電動機を搭載した装置の例として、まず、エアコン室内機の構成を実施の形態3として、詳細に説明する。
 図14において、エアコン室内機410の筐体411内には、電動機401が搭載されている。その電動機401のシャフトには、クロスフローファン412が取り付けられている。電動機401は、電動機駆動装置413によって駆動される。電動機駆動装置413からの通電により、電動機401が回転し、それに伴いクロスフローファン412が回転する。
 そのクロスフローファン412の回転により、室内機用熱交換器(図示せず)によって空気調和された空気を室内に送風する。ここで、電動機401は、例えば、上記実施の形態2の電動機401が適用できる。
 また、本発明にかかる電動機を搭載した装置の他の例として、図15を用いて、空気清浄機の構成について詳細に説明する。
 図15において、空気清浄機540の筐体541内には、電動機543が搭載されている。その電動機543のシャフトには、空気循環用のファン542が取り付けられている。電動機543は、電動機駆動装置544によって駆動される。
 電動機駆動装置544からの通電により、電動機543が回転し、それに伴いファン542が回転する。そのファン542の回転により空気を循環する。ここで、電動機543は、例えば、上記実施の形態2の電動機401が適用できる。
 上述の説明では、本発明にかかる装置の実施例として、エアコン室内機、空気清浄機などに搭載される電動機を取り上げたが、その他の電動機にも、また、各種情報機器に搭載される電動機や、産業機器に使用される電動機にも適用できることは言うまでもない。
 本発明によれば、回転子コアの軸方向両端部からの漏れ磁束を抑制することができる。これにより、固定子の鎖交磁束を増加させ、電動機要素のトルク発生に寄与する有効磁束量を増加することができる。したがって、電気機器の特性向上に寄与可能である。
 1 固定子
 2 回転子
 3 シャフト孔
 4 ヨーク部
 5 トゥース部
 6 巻装体
 7 固定子の磁心
 8 インシュレータ
 9a 第1の回転子コア
 9b 第2の回転子コア
 11 配置孔
 12 仮想線
 13 仮想線
 14 電動機要素
 30 バックヨーク
 100a 第1の回転子部
 100b 第2の回転子部
 100c 円筒体
 110a 第1の回転子コア部
 110b 第2の回転子コア部
 120a 第1のコアシート
 120b 第2のコアシート
 130a 第1のボンド磁石配置孔部
 130b 第2のボンド磁石配置湾部
 140 第1のボンド磁石部
 141 第1のボンド磁石部の第1の曲率半径
 142 第1のボンド磁石部の第2の曲率半径
 143 曲率半径の仮想円の中心
 144 第1の曲率半径による仮想円
 145 第2の曲率半径による仮想円
 150 第2のボンド磁石部
 151 ボンド磁石接続部
 152 ボンド磁石延設部
 165 磁気抵抗の高い磁路
 180 コアシート
 310 固定子
 311 固定子磁心
 311t トゥース部
 311y ヨーク部
 312 インシュレータ
 313 巻装体
 313a 巻線端部
 313w 巻線
 314 固定子枠体
 314a 開口端
 314b コネクタ窓部
 314c シャフト孔
 314d 樹脂注入口
 315 印刷配線板
 316 コネクタ
 316t 電気的接続箇所(接続端子)
 317 ハンダ接続部
 318 中心治具
 319 固定子中間組立体
 320d 下部空間部
 320s 周部空間部
 320u 上部空間部
 321 樹脂
 329 セルフクローズ弁
 331 ノズルやニードル
 332 樹脂非充填部
 333 樹脂充填部
 339 固定子構成体
 340 電動機
 341 回転子
 343 永久磁石
 343a 第1の回転子コア部
 343b 第2の回転子コア部
 343c バックヨーク
 344 磁石保持部
 344a 第1のボンド磁石部
 344b 第2のボンド磁石部
 345 シャフト
 350 軸受
 351 蓋部
 401 電動機
 410 エアコン室内機
 411 筐体
 412 クロスフローファン
 413 電動機駆動装置
 540 空気清浄機
 541 筐体
 542 ファン
 543 電動機
 544 電動機駆動装置

Claims (13)

  1. 少なくとも固定子と回転子とを含む電動機要素であって、
    前記回転子は、前記回転子の円筒体の両端部を除く中央部分に配置される第1の回転子部と、前記第1の回転子部の両端部の各々に配置される第2の回転子部とから成る円筒体と、前記円筒体の両端部の各々に配置されるバックヨークとを含み、
    前記第1の回転子部は、前記固定子からの回転磁界によって発生する回転トルクの成分のうちのマグネットトルクを発生させるための複数のd軸磁束通路と、前記回転トルクの成分のうちのリラクタンストルクを発生させるための複数のq軸磁束通路とを含み、前記複数のd軸磁束通路の各々の少なくとも一部分に第1のボンド磁石部を含み、
    前記第2の回転子部は、前記第1のボンド磁石部と一体である第2のボンド磁石部を複数含み、
    前記第2のボンド磁石部の各々は、前記第2のボンド磁石部と前記第1のボンド磁石部とが接するボンド磁石接続部と、前記ボンド磁石接続部から前記回転子の外周部に至るまで延設し、且つ、前記第1の回転子部のうち前記第1のボンド磁石部を除いた部分の第1の回転子コア部と接するボンド磁石延設部とを含み、
    前記第1のボンド磁石部における前記回転子の外周面と対向する磁極面の磁極は、隣り合う前記磁極面において、異なる磁極を有し、
    前記第1のボンド磁石部の磁極面と連続する面を構成する前記ボンド磁石延設部における、前記第1の回転子コア部に接する面の磁極は、前記連続する面を構成する前記第1のボンド磁石部の磁極面と同じ磁極を有する電動機要素。
  2. 前記第1の回転子部は、複数の円環状の第1のコアシートを積層した第1の回転子コア部と、前記第1の回転子コア部に前記第1のボンド磁石部を配置する複数の第1のボンド磁石配置孔部とを含み、
    前記第2の回転子部は、複数の星型状の第2のコアシートを積層した第2の回転子コア部と、前記第2の回転子コア部に前記第2のボンド磁石部を配置する複数の第2のボンド磁石配置湾部とを含み、
    前記第2のボンド磁石部の各々の前記第2の回転子部の外周に位置する形状は、前記第1の回転子部の外周の形状と同一の形状である請求項1記載の電動機要素。
  3. 前記バックヨークの外径は、前記回転子の外径よりも小さい請求項1記載の電動機要素。
  4. 前記複数の第1のボンド磁石配置孔部の各々の形状は、前記回転子の回転軸に対して垂直な面において、実質的な円弧形状、実質的な長方形の形状、実質的な台形の形状又は実質的なV字形の形状である請求項1記載の電動機要素。
  5. 前記第1の回転子部の外周の形状と、前記第2の回転子部の外周の形状とは同一の形状である構成を含む請求項1記載の電動機要素。
  6. 前記固定子及び前記回転子は電磁鋼板を含む請求項1記載の電動機要素。
  7. 前記固定子の固定子巻線は、集中巻の巻線を含む請求項1記載の電動機要素。
  8. 前記固定子の固定子巻線は、分布巻の巻線を含む請求項1記載の電動機要素。
  9. 前記固定子の固定子巻線は、波巻の巻線を含む請求項1記載の電動機要素。
  10. 前記固定子の固定子巻線は、絶縁電線を含み、前記絶縁電線は、不可避不純物を含み、さらに、銅、銅合金、アルミニウム又はアルミニウム合金のいずれかを含む請求項1記載の電動機要素。
  11. 前記第1のボンド磁石部及び前記第2のボンド磁石部に含まれる磁石粉末の含有量は、93重量%から97重量%である請求項1記載の電動機要素。
  12. 請求項1記載の電動機要素を含む電動機。
  13. 請求項1記載の電動機要素を含む装置。
PCT/JP2017/043719 2016-12-15 2017-12-06 電動機要素、電動機、装置 WO2018110372A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-242807 2016-12-15
JP2016242807 2016-12-15

Publications (1)

Publication Number Publication Date
WO2018110372A1 true WO2018110372A1 (ja) 2018-06-21

Family

ID=62559730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043719 WO2018110372A1 (ja) 2016-12-15 2017-12-06 電動機要素、電動機、装置

Country Status (1)

Country Link
WO (1) WO2018110372A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329628A (ja) * 2001-04-27 2002-11-15 Matsushita Electric Ind Co Ltd 環状磁石構造体の製造方法およびモータ
WO2016042720A1 (ja) * 2014-09-16 2016-03-24 パナソニックIpマネジメント株式会社 電動機
JP2016072995A (ja) * 2014-09-26 2016-05-09 パナソニックIpマネジメント株式会社 埋め込み磁石型ロータおよびそれを備えた電動機
JP2016152743A (ja) * 2015-02-19 2016-08-22 パナソニックIpマネジメント株式会社 電動機の固定子、電動機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329628A (ja) * 2001-04-27 2002-11-15 Matsushita Electric Ind Co Ltd 環状磁石構造体の製造方法およびモータ
WO2016042720A1 (ja) * 2014-09-16 2016-03-24 パナソニックIpマネジメント株式会社 電動機
JP2016072995A (ja) * 2014-09-26 2016-05-09 パナソニックIpマネジメント株式会社 埋め込み磁石型ロータおよびそれを備えた電動機
JP2016152743A (ja) * 2015-02-19 2016-08-22 パナソニックIpマネジメント株式会社 電動機の固定子、電動機

Similar Documents

Publication Publication Date Title
US9876397B2 (en) Electrical machine
JP6245790B2 (ja) 積層磁石、積層磁石の製造方法、磁石装置および電気機械
CN108475971B (zh) 磁化方法、转子、电动机以及涡旋压缩机
CN108475972B (zh) 转子、磁化方法、电动机以及涡旋压缩机
US20060170301A1 (en) Rotor and process for manufacturing the same
EP2671306B1 (en) Disk motor, electric working machine including disk motor and method for manufacturing disk motor
US20090015094A1 (en) Electrical rotary machine and method of manufacturing the same
WO2017121520A1 (de) Elektrische maschine
US6157112A (en) Brushless DC motor structure
JP2011078270A (ja) 永久磁石式回転機用回転子
CN103907267A (zh) 永久磁铁嵌入型电动机的转子、使用该转子的电动机、使用该电动机的压缩机和使用该压缩机的空调机
JP6788779B2 (ja) 電動機要素、電動機、装置
JP2002064949A (ja) 電動機
WO2018101183A1 (ja) 電動機要素、電動機、装置
WO2022019074A1 (ja) 電動機
KR20070024654A (ko) 회전 전기 장치의 외전형 회전자
US20030168924A1 (en) Permanent magnet synchronous motor
JP5056920B2 (ja) コアレス電気機械装置
JP7178542B2 (ja) 回転子の組立方法およびモータ
JP2019140848A (ja) 回転子及びそれを備えた電動機
JP2006121870A (ja) モータ装置
WO2018110372A1 (ja) 電動機要素、電動機、装置
WO2018105452A1 (ja) 電動機要素、電動機、装置
JP2005027442A (ja) 電動機およびその電動機の製造方法
JP4935834B2 (ja) 電動機およびその電動機の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP