WO2018110037A1 - Copper alloy wire rod material and production method therefor - Google Patents

Copper alloy wire rod material and production method therefor Download PDF

Info

Publication number
WO2018110037A1
WO2018110037A1 PCT/JP2017/035821 JP2017035821W WO2018110037A1 WO 2018110037 A1 WO2018110037 A1 WO 2018110037A1 JP 2017035821 W JP2017035821 W JP 2017035821W WO 2018110037 A1 WO2018110037 A1 WO 2018110037A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
wire rod
copper alloy
alloy wire
orientation
Prior art date
Application number
PCT/JP2017/035821
Other languages
French (fr)
Japanese (ja)
Inventor
岳己 磯松
翔一 檀上
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201780064110.6A priority Critical patent/CN109844147B/en
Priority to KR1020197010763A priority patent/KR102349545B1/en
Publication of WO2018110037A1 publication Critical patent/WO2018110037A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a copper alloy wire rod and a method for producing the same, and more particularly to an improvement of a copper alloy wire rod suitable for use as a metal part of an electric / electronic component, a precision instrument, an automobile, or the like.
  • beryllium copper has a problem that beryllium compounds are toxic
  • titanium copper has low corrosion resistance and has a problem that it easily corrodes in a salt spray test.
  • smart watches and glasses-type terminals that have recently appeared. It is not suitable as a part of a product such as a wearable device that is expected to be used outdoors in contact with the human body.
  • an average crystal grain size in a cross section perpendicular to the rolling direction of a plate material having a predetermined alloy composition is less than 6 ⁇ m, and the average length x of the crystal grain in the plate width direction and the plate
  • the ratio x / y to the average length y in the thickness direction satisfies 1 ⁇ x / y ⁇ 2.5, and the X-ray diffraction intensity ratio on the plate surface parallel to the rolling direction of the plate material is (220) plane
  • the X-ray diffraction intensity is normalized as 1, the (100) plane intensity ratio is 0.30 or less, the (111) plane intensity ratio is 0.45 or less, and the (311) plane intensity ratio is 0.60.
  • Cu-Ni- excellent in strength and bending workability characterized in that the strength ratio of the (111) plane is larger than the strength ratio of the (100) plane and smaller
  • Patent Document 2 discloses an X-ray having a predetermined alloy composition, SRD ⁇ 2 in the X-ray diffraction intensity of a cross section perpendicular to the rolling direction of the material, and a cross section parallel to the rolling direction of the material.
  • a Cu—Ni—Sn alloy having excellent press workability is described, characterized in that the diffraction intensity is S TD ⁇ 4 and S RD ⁇ S TD ⁇ 25.
  • Patent Document 3 has a predetermined alloy composition, and the ratio (y / x) of the average diameter x ( ⁇ m) in the plate thickness direction of crystal grains to the average diameter y parallel to the rolling direction is 1.2 to 12 and 0 ⁇ x ⁇ 15, the number of second phase particles having a major axis of 0.1 ⁇ m or more observed by cross-sectional microscopy is 1.0 ⁇ 10 5 / mm 2 or less, good A Cu—Ni—Sn alloy having both excellent bending workability and high strength is described.
  • copper alloy wires used for current-carrying parts, structures, and movable parts of precision devices such as watches, smartphones, smart watches, and notebook computers (for example, the shafts of minute gears and the display movable parts of notebook computers).
  • a bar material fatigue failure may occur due to local stress concentration caused by repeated vibration.
  • a large impact may occur instantaneously, parts may be damaged or destroyed, and the use of the device may be difficult.
  • copper alloy wire rods used in these devices have been required to have high strength and excellent fatigue resistance.
  • the present invention has been made in view of the above circumstances, and aims to optimize the texture of the copper alloy wire rod material, effectively exhibit the characteristics by texture control, and have excellent strength and fatigue resistance.
  • An object of the present invention is to provide a bar and a method for manufacturing the same.
  • the texture in the alloy wire rod is optimized by cold working after casting and warm working after hot working, and the alloy wire rod during solution heat treatment. Based on these findings, the present inventors have found that the strength and fatigue resistance can be particularly improved in the Cu—Ni—Sn alloy material. It came to complete.
  • the gist configuration of the present invention is as follows. [1] 3.0 to 25.0 mass% Ni and 0.1 to 9.5 mass% Sn, and further 0 to 0.50 mass Fe, 0 to 0.90 mass% Si, From 0 to 0.30 wt% Mg, 0 to 0.50 wt% Mn, 0 to 0.10 wt% Zn, 0 to 0.15 wt% Zr and 0 to 0.10 wt% Pb
  • the texture is obtained from a (100) orientation of the inverse pole figure in the longitudinal direction obtained by performing a texture analysis by electron beam backscatter diffraction (EBSD) in a cross section perpendicular to the longitudinal direction of the wire rod.
  • EBSD electron beam backscatter diffraction
  • the average value of orientation density within ⁇ 15 ° is in the range of 5.0 or more, and the average value of orientation density within ⁇ 15 ° from the (111) plane orientation in the reverse pole figure is in the range of 5.0 or more.
  • a copper alloy wire rod characterized by [2] Tensile strength is 1000 MPa or more, and In the fatigue test according to JIS Z 2273-1978, when the load stress is 500 MPa, the number of repetitions until the wire rod material breaks is 1.00 ⁇ 10 7 or more, as described in [1] above Copper alloy wire rod.
  • the total content of at least one component selected from the group consisting of Fe, Si, Mg, Mn, Zn, Zr and Pb is 1.40% by mass or less, [1] or [2]
  • the first cold working has a working rate of 5 to 20%
  • the heating temperature is 100 to 500 ° C. and the processing rate is 10% or more
  • the solution heat treatment has a heating rate of 10 ° C./second or more, a solution temperature of 600 to 900 ° C., a holding time at the solution temperature of 1 to 180 seconds, and a cooling rate of 10 ° C./second or more.
  • a copper alloy wire rod with improved strength and fatigue resistance.
  • This copper alloy wire rod is suitable for use as a current-carrying part and a movable part of precision equipment such as a wristwatch, a smartphone, a smart watch, and a laptop computer.
  • a copper alloy wire rod of the present invention fatigue failure due to repeated vibration or the like can be suppressed, and the reliability of the various products can be improved.
  • the copper alloy wire rod can be preferably manufactured.
  • FIG. 1 is a diagram showing an example of a texture (reverse pole figure) of a copper alloy wire rod according to the present invention, measured by the EBSD method. Specifically, the cross section is perpendicular to the longitudinal direction of the wire rod. It is a reverse pole figure of the normal line direction, ie, the longitudinal direction of a wire.
  • FIG. 2 is an explanatory diagram of a test method for a fatigue test of a wire rod.
  • the copper alloy wire rod according to the present invention (hereinafter sometimes simply referred to as “wire rod material”) contains 3.0 to 25.0 mass% Ni and 0.1 to 9.5 mass% Sn.
  • the texture has an inverse pole figure in the longitudinal direction obtained by performing a texture analysis by electron beam backscatter diffraction (EBSD) in a cross section perpendicular to the longitudinal direction of the wire rod material.
  • EBSD electron beam backscatter diffraction
  • the average value of the orientation density within ⁇ 15 ° from the (100) plane orientation is in the range of 5.0 or more, and the previous The average value of the orientation density within ⁇ 15 ° from the (111) plane orientation of the inverted pole figure is in the range of 5.0 or more.
  • any components whose lower limit value of the content range is described as “0 mass%” are arbitrarily added as necessary.
  • the “copper alloy wire rod” in the present invention is a general term for “copper alloy wire rod” and “copper alloy rod rod”, and the diameter (diameter, thickness) perpendicular to the longitudinal direction is 0.3. It refers to a linear or rod-shaped copper alloy material of about ⁇ 100 mm.
  • the diameter perpendicular to the longitudinal direction of the copper alloy wire rod is generally referred to as “wire diameter” regardless of the copper alloy wire and the copper alloy rod.
  • the copper alloy wire preferably has a wire diameter of 0.3 to 5 mm, more preferably 0.5 to 3 mm.
  • the copper alloy bar preferably has a wire diameter of 5 to 100 mm, more preferably 6 to 50 mm.
  • the copper alloy wire rod of the present invention contains 3.0 to 25.0% by mass of Ni and 0.1 to 9.5% by mass of Sn.
  • Ni is an important element having an action for increasing strength because it has high age-hardening ability together with Sn. In order to exhibit such an effect, the Ni content must be 3.0% by mass or more. On the other hand, when the Ni content is more than 25.0% by mass, an intermetallic compound is likely to be generated, and when the generated intermetallic compound remains, this becomes a starting point and cracks are likely to occur during cold working, and Inter-workability is significantly deteriorated. For this reason, the Ni content is in the range of 3.0 to 25.0 mass%, preferably in the range of 9.0 to 23.0 mass%.
  • Sn is an important element having an action for increasing the strength because of high age-hardening ability together with Ni.
  • the Sn content must be 0.10% by mass or more.
  • the Sn content is more than 9.5% by mass, an intermetallic compound is likely to be formed as in the case of Ni, and when the generated intermetallic compound remains, it becomes a starting point and cracks during cold working. Is likely to occur, and cold workability is significantly deteriorated. Therefore, the Sn content is in the range of 0.10 to 9.5% by mass, preferably in the range of 0.15 to 9.5% by mass.
  • the copper alloy wire rod of the present invention further includes 0 to 0.50 mass Fe, 0 to 0.90 mass% Si, 0 to The group consisting of 0.30% by weight Mg, 0-0.50% by weight Mn, 0-0.10% by weight Zn, 0-0.15% by weight Zr and 0-0.10% by weight Pb. Containing at least one component selected from: That is, the copper alloy wire rod of the present invention only needs to contain at least one component selected from the group consisting of Fe, Si, Mg, Mn, Zn, Zr and Pb, and includes the at least one component. As long as other components are included, the content may be 0% by mass. Moreover, preferable content in the case of containing each additive component is as follows, respectively.
  • [0.02-0.50 mass% Fe] Fe is an element having an effect of improving product characteristics such as conductivity, strength, stress relaxation characteristics, and plating properties.
  • the Fe content is preferably 0.02% by mass or more.
  • the Fe content is preferably in the range of 0.02 to 0.50 mass%.
  • [0.01 to 0.90 mass% Si] Si is an element having an effect of improving the heat-resistant peelability and migration resistance during soldering.
  • the Si content is preferably 0.01% by mass or more.
  • the Si content is preferably in the range of 0.01 to 0.90 mass%.
  • Mg is an element having an effect of improving stress relaxation characteristics.
  • the Mg content is preferably 0.01% by mass or more.
  • the Mg content is preferably in the range of 0.01 to 0.30% by mass.
  • Mn dissolves in the matrix phase to improve workability such as wire drawing, suppresses rapid development of grain boundary reactive precipitation, and controls discontinuous precipitation cell structure caused by grain boundary reactive precipitation. It is an element that has the effect of enabling it.
  • the Mn content is preferably 0.01% by mass or more.
  • the Mn content is preferably in the range of 0.01 to 0.50% by mass.
  • Zn is an element that has the effect of improving the bending workability and improving the adhesion and migration characteristics of Sn plating and solder plating.
  • the Zn content is preferably 0.01% by mass or more.
  • the Zn content is preferably in the range of 0.01 to 0.10% by mass.
  • Zr is an element having an effect of mainly refining crystal grains and improving the strength and bending workability of the copper alloy wire rod.
  • the Zr content is preferably set to 0.01 mass or more.
  • the Zr content is preferably in the range of 0.01 to 0.15% by mass.
  • Pb is an element having an effect of improving product characteristics such as strength and stress relaxation characteristics without impairing electrical conductivity.
  • the Pb content is preferably 0.01% by mass or more.
  • the Pb content is preferably in the range of 0.01 to 0.10% by mass.
  • Total content of at least one component selected from the group consisting of Fe, Si, Mg, Mn, Zn, Zr and Pb is 1.40% by mass or less.
  • the total content of at least one component selected from the group consisting of Fe, Si, Mg, Mn, Zn, Zr and Pb is preferably 1.40% by mass or less.
  • the sum total of content of the said arbitrary addition component shall be 1.40 mass% or less.
  • the balance other than the components described above is Cu and inevitable impurities.
  • the inevitable impurities referred to here mean impurities in a content level that can be unavoidably included in the manufacturing process. Depending on the content of the inevitable impurities, it may be a factor for reducing the electrical conductivity. Therefore, it is preferable to suppress the content of the inevitable impurities to some extent in consideration of the decrease in the electrical conductivity. Examples of components listed as inevitable impurities include carbon (C), oxygen (O), sulfur (S), and the like.
  • the copper alloy wire rod of the present invention has a texture, and this texture was obtained by performing a texture analysis by electron beam backscatter diffraction (EBSD) in a cross section perpendicular to the longitudinal direction of the wire rod.
  • EBSD electron beam backscatter diffraction
  • the average value of orientation density within ⁇ 15 ° from the (100) plane orientation in the reverse pole figure in the longitudinal direction is 5.0 or more, preferably 5.1 to 15.0, and (111) in the reverse pole figure
  • the average value of the orientation density within ⁇ 15 ° from the plane orientation is 5.0 or more, preferably 5.5 to 20.0.
  • the longitudinal direction of the wire rod material corresponds to the processing direction (for example, the wire drawing direction or the extrusion direction) when manufacturing the wire rod material. That is, for example, a reverse pole figure in the longitudinal direction of a wire rod produced by wire drawing is obtained by matching the normal direction (ND) of the measurement surface with the wire drawing direction (Drawing Direction: DD). Inverse pole figure (IPF).
  • ND normal direction
  • DD wire drawing direction
  • IPF Inverse pole figure
  • the “reverse pole figure” focuses on a specific direction in the sample coordinate system, shows which crystal plane normal direction is oriented in that specific direction, and grasps the orientation of the entire sample Suitable for Furthermore, the “orientation density” is generally expressed as a crystal orientation distribution function (ODF), where a random crystal orientation distribution state is set to 1, and a crystal grain having a specific crystal orientation corresponds to the crystal orientation distribution function (ODF). This indicates how many times the accumulation has occurred, and is used when quantitatively analyzing the abundance ratio of the crystal orientation of the texture and the dispersion state.
  • ODF crystal orientation distribution function
  • the orientation density is a crystal orientation distribution analysis method based on the series expansion method based on three or more kinds of positive point map measurement data such as (100), (110), and (112) positive point map from EBSD and X-ray diffraction measurement results. Is calculated by
  • the present inventors have intensively studied the texture in order to increase both strength and fatigue resistance.
  • the pole composition in the longitudinal direction (working direction) of the wire rod material obtained by conducting a texture analysis by EBSD in a cross section perpendicular to the longitudinal direction of the wire rod material after limiting the alloy composition to the above range.
  • KAM value Karnel Average Misoration
  • the average value of the orientation density within ⁇ 15 ° from the (100) plane orientation is 5.0 or more, from the (111) plane orientation It has been found that the fatigue resistance is particularly improved by controlling the orientation density within ⁇ 15 ° to 5.0 or more.
  • the (111) plane orientation in the reverse pole figure in the longitudinal direction (working direction) of the wire rod has a feature that the Schmid factor is low and increases the strength of the wire rod, and the orientation density of the (111) plane orientation is 5 It was found that a high strength can be obtained by setting the ratio to 0.0 or more.
  • the average value of orientation density within ⁇ 15 ° from the (100) plane orientation of the reverse pole figure in the longitudinal direction of the wire rod material, and ⁇ 15 ° from the (111) plane orientation was limited to the above range.
  • the strength can also be increased by developing sufficient age hardening after the aging precipitation heat treatment.
  • the concentration of Sn which is a solute atom dissolved in a specific direction, has a periodicity.
  • Sn measured when measured along a specific direction (processing direction) It is preferable that the average wavelength of the periodic concentration fluctuation is about several nm to several tens of nm.
  • FIG. 1 shows an example of a reverse pole figure in the drawing direction (Drawing Direction) in a cross section perpendicular to the longitudinal direction of the wire rod according to the present invention, which was obtained by analysis from the EBSD measurement result.
  • the azimuth density of each azimuth is indicated by color, and red tends to have the highest azimuth density.
  • the EBSD method was used for the analysis of the texture.
  • the EBSD method is an abbreviation for Electron Backscatter Diffraction, and is a crystal orientation analysis technique using reflected electron Kikuchi line diffraction that occurs when a sample is irradiated with an electron beam in a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the measurement was performed by scanning the sample area of 800 ⁇ m ⁇ 800 ⁇ m in 0.1 ⁇ m steps with the cross section perpendicular to the longitudinal direction of the wire rod as the measurement surface.
  • the measurement area and scan step may be determined according to the size of crystal grains of the sample.
  • Information obtained in the analysis of crystal grains by EBSD includes information up to a depth of several tens of nm at which the electron beam penetrates the sample.
  • the average value of the orientation density is a value obtained by measuring the orientation density of each surface orientation on at least 5 observation planes per one rod and wire, and averaging the total of the respective measurement values by the total number of observation planes. Point to.
  • the copper alloy wire rod of the present invention contains 3.0 to 25.0 mass% Ni and 0.1 to 9.5 mass% Sn, and further contains Fe, Si, Mg, Mn, Zn, A predetermined amount of at least one component selected from the group consisting of Zr and Pb is contained, and a copper alloy material having an alloy composition consisting of Cu and inevitable impurities is prepared, and this copper alloy material is cast [step 1], 1st cold working [Step 2], homogenization heat treatment [Step 3], hot working [Step 4], chamfering [Step 5], warm working [Step 6], second cold working [Step 7] Intermediate annealing [Step 8], third cold working [Step 9], solution heat treatment [Step 10], fourth cold working [Step 11], aging precipitation heat treatment [Step 12], surface polishing [Step 13] Are manufactured in this order.
  • the copper alloy wire rod of the present invention contains 3.0 to 25.0 mass% Ni and 0.1 to 9.5 mass% Sn, and further contains Fe, Si, Mg, M
  • Cu, Ni and Sn raw materials are melted and cast in a casting crucible, preferably made of carbon, for example, in the casting machine (inner wall) [Step 1].
  • the atmosphere inside the casting machine when melting is preferably a vacuum or an inert gas atmosphere such as nitrogen or argon in order to prevent the formation of oxides.
  • a casting method For example, a horizontal type continuous casting machine, an up-cast method, etc. can be used.
  • Step 2 After casting, cool rapidly and perform the first cold working [Step 2].
  • strain is applied to the ingot to disperse the solidified segregation generated during the ingot.
  • the first cold working is performed at a working rate of 5 to 20%. If the processing rate of the first cold working is less than 5%, formation of orientation density within 15 ° from the (111) plane tends to be insufficient, and if it exceeds 20%, (100 ) The orientation density within 15 ° from the surface tends to be insufficient.
  • the processing rate R (%) is defined by the following formula (1) (the same applies hereinafter).
  • R (r 0 2 ⁇ r 2 ) / r 0 2 ⁇ 100 (1)
  • r 0 is a diameter (wire diameter) before processing
  • r is a diameter (wire diameter) after processing.
  • the cold working is not particularly limited in any of wire drawing, extrusion, and rolling using a three-way roll, but wire drawing is preferable. The same applies to the cases of cold processing, hot processing, and warm processing described below.
  • homogenization heat treatment [Step 3], hot working [Step 4], and chamfering [Step 5] are sequentially performed.
  • homogenization heat treatment it is desirable to eliminate as much as possible the coarse crystallized product generated during solidification by making it as small as possible by dissolving it in the matrix.
  • Such homogenization heat treatment is preferably maintained at a heating temperature of 800 to 1000 ° C. for 1 to 20 hours.
  • the hot working [Step 4] the cast structure is destroyed to obtain a uniform structure and a size that is easy to cold work (for example, a diameter of 150 mm or less).
  • Such hot working is preferably performed at a working rate of 50% or more.
  • the chamfering [step 5] the oxide film on the surface is removed. Such chamfering can be performed by a known method.
  • Warm machining is performed after chamfering [Step 5].
  • Warm working is an important process for controlling the recrystallized crystal grains to be oriented in the (100) plane and the (111) plane with respect to the plane perpendicular to the processing direction.
  • Such warm processing is performed at a processing rate of 10% or more immediately after heating to an ultimate temperature of 100 to 500 ° C. If the ultimate temperature of the warm processing is less than 100 ° C., the deformation resistance is high, the processing becomes difficult, and the orientation density of the (100) plane tends to be insufficient. When the ultimate temperature of warm working exceeds 500 ° C., deformation resistance due to precipitation increases, and the orientation density of the (111) plane tends to be insufficient. Moreover, when the processing rate of warm processing is less than 10%, the orientation density of the (111) plane tends to be insufficient.
  • the second cold working [Step 7], the intermediate annealing [Step 8] and the third cold working [Step 9] are sequentially performed.
  • the second cold working [Step 7] preferably has a working rate of 10 to 50%.
  • the holding time is preferably 1 to 360 seconds at an ultimate temperature of 300 to 700 ° C.
  • the third cold working [Step 9] preferably has a working rate of 5 to 30%.
  • solution heat treatment [Step 10] is performed.
  • the structure is recrystallized, and the average value of orientation density within ⁇ 15 ° from the (100) plane orientation of the reverse pole figure in the processing direction is 5.0 or more and ⁇ 15 from the (111) plane orientation
  • the average value of orientation density within 0 ° is controlled to 5.0 or more.
  • the temperature is raised at a rate of 10 ° C./second or more, the ultimate temperature is 600 to 900 ° C., the holding time is 1 to 180 seconds, and further, the solution is quenched at a cooling rate of 10 ° C./second or more.
  • the temperature increase rate of the solution heat treatment is less than 10 ° C./second, sufficient strength tends not to be obtained. Further, if the ultimate temperature of the solution heat treatment is less than 600 ° C., sufficient strength cannot be obtained, and if it exceeds 900 ° C., the orientation density of the (111) plane tends to decrease and sufficient fatigue characteristics tend not to be obtained. . Furthermore, when the cooling rate of the solution heat treatment is less than 10 ° C./second, sufficient strength tends not to be obtained.
  • the fourth cold working [Step 11], the aging precipitation heat treatment [Step 12] and the surface polishing [Step 13] are sequentially performed.
  • the fourth cold working is preferably performed at a processing rate of 5 to 50%.
  • the wire rod material is strengthened by developing sufficient age hardening.
  • the aging precipitation heat treatment is preferably performed at a temperature of 300 to 500 ° C. and a holding time of 0.1 to 15 hours.
  • the surface polishing [Step 13] the surface state is optimized. Such surface polishing can be performed by a known method.
  • the copper alloy wire rod of the present invention has high strength and preferably has a tensile strength of 1000 MPa or more, more preferably 1100 MPa or more. Specific measurement conditions will be described in the examples described later.
  • the copper alloy wire rod of the present invention is excellent in fatigue resistance.
  • the wire rod material is broken until the load stress is 500 MPa. Is preferably 1.00 ⁇ 10 7 times or more, more preferably 1.10 ⁇ 10 7 times or more. Specific measurement conditions will be described in the examples described later.
  • the copper alloy wire rod of the present invention having the above-described characteristics can be suitably used as a timepiece shaft part, for example.
  • the copper alloy wire rod of the present invention is a stranded wire obtained as a copper alloy wire, a plated wire obtained by applying tin plating to the copper alloy wire, or by twisting a plurality of copper alloy wires or plated wires. Furthermore, it can also be used as an enameled wire in which enamel is applied to them or a coated electric wire coated with a resin.
  • Examples 1 to 9 and Comparative Examples 1 to 8) First, a copper alloy having the alloy composition shown in Table 1 was melted by a DC (Direct Chill) method, and this was cast to obtain an ingot. The obtained cast ingot was subjected to first cold drawing under the conditions shown in Table 2 to obtain a rough drawn wire having a diameter of 10 mm. Thereafter, the obtained rough drawn wire was heated to 900 ° C. and kept at this temperature for 5 hours to perform a homogenization treatment. Further, wire drawing with a processing rate of 85% was performed as hot wire drawing, and the wire was cooled quickly. Next, the surface was ground by 0.2 mm to remove the oxide film, and then warm drawing was performed under the conditions shown in Table 2.
  • DC Direct Chill
  • the second cold wire drawing is performed at a processing rate of 45%, heated to 650 ° C., held at this temperature for 200 seconds and subjected to intermediate annealing, and the third cold wire drawing at a processing rate of 25%.
  • Drawing was performed, and solution heat treatment was further performed under the conditions shown in Table 2.
  • the wire was subjected to wire drawing at a processing rate of 30% as the fourth cold wire drawing, heated to 400 ° C., held at this temperature for 3 hours, subjected to aging precipitation heat treatment, and finally surface ground, to a copper alloy wire rod A material (diameter 0.38 mm) was produced. Each heat treatment was performed in an inert gas atmosphere.
  • the electron beam was generated from thermionic electrons from the W filament of the scanning electron microscope.
  • the measuring device of the EBSD method used OIM5.0 (product name) manufactured by TSL Solutions Inc., and OIM Analysis was used for analysis.
  • the wire was filled with resin and then subjected to CP (cross section polisher) processing, and a cross section perpendicular to the longitudinal direction of the wire was cut out to obtain an observation surface.
  • the probe diameter during measurement was about 0.015 ⁇ m
  • the scan step was 0.1 ⁇ m
  • the measurement area was 800 ⁇ m ⁇ 800 ⁇ m (64 ⁇ 10 4 ⁇ m 2 ).
  • Fatigue resistance was performed according to JIS Z 2273-1978. Specifically, using the testing machine shown in FIG. 2, the test piece 1 is bent with one end sandwiched between the fixing portions 2 and the other end sandwiched between the knife edges 2 that vibrate in the vertical direction.
  • the wire diameter of the test piece 1 is 0.5 mm
  • the fixing torque of the test piece 1 is the lower part 2 N ⁇ m and the upper part 3 N ⁇ m of the fixing part 3.
  • the load stress value of the test piece 1 was calculated
  • (3 ⁇ E ⁇ t ⁇ ⁇ ) / (2 ⁇ l 2 ) (a) ⁇ : Maximum bending stress (N / mm 2 ) ⁇ : Deflection (amplitude given to test piece) (mm) l: Test piece set length (mm) t: Test piece wire diameter (mm) E: Deflection coefficient (N / mm 2 )
  • Tensile strength Three are measured according to JIS Z 2241: 2011, and the average value (MPa) is shown in Table 3. In this example, 1000 MPa or more was set as an acceptable level.
  • Conductivity Conductivity is measured by measuring the conductivity of two test pieces in a thermostatic chamber controlled at 20 ° C. ( ⁇ 1 ° C.) using a four-terminal method based on JIS H0505-1975. Values (% IACS) are shown in Table 3. At this time, the distance between terminals was set to 100 mm. In this example, 8.0% IACS or higher was evaluated as a pass level.
  • the copper alloy wire rods according to Examples 1 to 9 had a predetermined alloy composition, and the texture was measured by the EBSD method in a cross section perpendicular to the longitudinal direction of the wire rod.
  • the average value of orientation density within ⁇ 15 ° from the (100) plane orientation of the reverse pole figure in the longitudinal direction is in the range of 5.0 or more, and the orientation density within ⁇ 15 ° from the (111) plane orientation of the reverse pole figure Since the average value of is in the range of 5.0 or more, it was confirmed that all the properties of tensile strength, electrical conductivity, and fatigue resistance were excellent in a well-balanced manner.
  • the copper alloy wire rods according to Comparative Examples 1 to 8 have an alloy composition, an average value of orientation density within ⁇ 15 ° from the (100) plane orientation of the reverse pole figure in the longitudinal direction of the wire rod material, and ( 111) Since at least one of the average values of orientation density within ⁇ 15 ° from the plane orientation is outside the proper range, the tensile strength, electrical conductivity, and fatigue resistance compared to the copper alloy wire rods according to Examples 1 to 9 It was confirmed that any one or more of the characteristics were inferior and the balance of these characteristics was not sufficient.

Abstract

The purpose of the present invention is to optimize the aggregate structure of a copper alloy wire rod material, effectively manifest characteristics that result from controlling the aggregate structure, and provide a copper alloy wire rod material with excellent strength and fatigue resistance and a production method therefor. The copper alloy wire rod material has an alloy composition containing 3.0-25.0 mass% of Ni and 0.1-9.5 mass% of Sn, also containing specified amounts of at least one component selected from the group consisting of Fe, Si, Mg, Mn, Zn, Zr and Pb, the balance Cu and unavoidable impurities, and having an aggregate structure. The copper alloy wire rod material is characterized in that for the aggregate structure, the average value of the orientation density within ±15° of the (100) plane orientation of the inverse pole figure of the longitudinal direction of the wire rod material, obtained by performing aggregate structure analysis using the electron backscatter diffraction (EBSD) method in a cross-section perpendicular to said longitudinal direction, is in the range of 5.0 and above, and the average value of the orientation density within ±15° of the (111) plane orientation of the inverse pole figure is in the range of 5.0 and above.

Description

銅合金線棒材およびその製造方法Copper alloy wire rod and method for producing the same
 本発明は、銅合金線棒材およびその製造方法に関し、特に電気電子部品や、精密機器、自動車等の金属部品として使用するのに好適な銅合金線棒材の改良に関する。 The present invention relates to a copper alloy wire rod and a method for producing the same, and more particularly to an improvement of a copper alloy wire rod suitable for use as a metal part of an electric / electronic component, a precision instrument, an automobile, or the like.
 近年、電子部品の著しい軽薄・短小化に伴い、特に信頼性が要求される部品には、強度の高いベリリウム銅、チタン銅等の高強度型銅合金の需要が増えている。しかし、ベリリウム銅は、ベリリウム化合物が毒性を有するといった問題点があり、チタン銅は、耐食性が低く、塩水噴霧試験で容易に腐食するといった問題があり、例えば近年登場したスマートウォッチや眼鏡型端末といったウェアラブル機器等の、人体と接触し野外での使用が想定される製品の部品としては不適当である。 In recent years, as electronic parts have become extremely light and thin, the demand for high-strength copper alloys such as high-strength beryllium copper and titanium copper has been increasing especially for parts that require high reliability. However, beryllium copper has a problem that beryllium compounds are toxic, and titanium copper has low corrosion resistance and has a problem that it easily corrodes in a salt spray test. For example, smart watches and glasses-type terminals that have recently appeared. It is not suitable as a part of a product such as a wearable device that is expected to be used outdoors in contact with the human body.
 このような背景から、最近では毒性が無く、強度や耐食性に優れたCu-Ni-Sn系合金が着目されている。例えば、特許文献1には、所定の合金組成を有し、板材の圧延方向に対して垂直な断面における平均結晶粒径が6μm未満であり、結晶粒の板幅方向の平均長さxと板厚方向の平均長さyとの比x/yが1≦x/y≦2.5を満たし、板材の圧延方向に対して平行な板面におけるX線回折強度比は、(220)面のX線回折強度を1として規格化したときに、(100)面の強度比が0.30以下、(111)面の強度比が0.45以下、(311)面の強度比が0.60以下であり、(111)面の強度比は、(100)面の強度比より大きく、(311)面の強度比より小さいことを特徴とする、強度と曲げ加工性に優れたCu-Ni-Sn系合金が記載されている。 Against this background, recently, Cu—Ni—Sn alloys having no toxicity and excellent strength and corrosion resistance have attracted attention. For example, in Patent Document 1, an average crystal grain size in a cross section perpendicular to the rolling direction of a plate material having a predetermined alloy composition is less than 6 μm, and the average length x of the crystal grain in the plate width direction and the plate The ratio x / y to the average length y in the thickness direction satisfies 1 ≦ x / y ≦ 2.5, and the X-ray diffraction intensity ratio on the plate surface parallel to the rolling direction of the plate material is (220) plane When the X-ray diffraction intensity is normalized as 1, the (100) plane intensity ratio is 0.30 or less, the (111) plane intensity ratio is 0.45 or less, and the (311) plane intensity ratio is 0.60. Cu-Ni- excellent in strength and bending workability, characterized in that the strength ratio of the (111) plane is larger than the strength ratio of the (100) plane and smaller than the strength ratio of the (311) plane. Sn-based alloys are described.
 また、特許文献2には、所定の合金組成を有し、材料の圧延加工方向に垂直な断面のX線回折強度においてSRD≧2で、かつ材料の圧延加工方向に平行な断面のX線回折強度でSTD≧4であり、SRD×STD≧25であることを特徴とする、プレス加工性に優れたCu-Ni-Sn系合金が記載されている。 Patent Document 2 discloses an X-ray having a predetermined alloy composition, SRD ≧ 2 in the X-ray diffraction intensity of a cross section perpendicular to the rolling direction of the material, and a cross section parallel to the rolling direction of the material. A Cu—Ni—Sn alloy having excellent press workability is described, characterized in that the diffraction intensity is S TD ≧ 4 and S RD × S TD ≧ 25.
 さらに、特許文献3には、所定の合金組成を有し、結晶粒の板厚方向の平均直径x(μm)と圧延方向に平行な平均直径yの比(y/x)が1.2~12、かつ0<x≦15を満たし、断面検鏡によって観察される長径0.1μm以上の第二相粒子の個数が1.0×10/mm以下であることを特徴とする、良好な曲げ加工性と高い強度を両立させたCu-Ni-Sn系合金が記載されている。 Further, Patent Document 3 has a predetermined alloy composition, and the ratio (y / x) of the average diameter x (μm) in the plate thickness direction of crystal grains to the average diameter y parallel to the rolling direction is 1.2 to 12 and 0 <x ≦ 15, the number of second phase particles having a major axis of 0.1 μm or more observed by cross-sectional microscopy is 1.0 × 10 5 / mm 2 or less, good A Cu—Ni—Sn alloy having both excellent bending workability and high strength is described.
 ところで、腕時計やスマートフォン、スマートウォッチ、ノートパソコン等の精密機器の通電部や構造部、可動部(たとえば、微小な歯車の軸や、ノートパソコンのディスプレイ可動部の軸)に使用される銅合金線棒材では、繰り返しの振動よる局所的な応力集中により、疲労破壊を生じることがある。また、これらの機器に外部から衝撃が加わった際には、瞬間的に大きな衝撃となることがあり、部品の損傷や破壊が生じることがあり、機器の使用が困難になる場合がある。そのため、近年、これらの機器に使用される銅合金線棒材には、高い強度と優れた耐疲労特性が求められてきている。 By the way, copper alloy wires used for current-carrying parts, structures, and movable parts of precision devices such as watches, smartphones, smart watches, and notebook computers (for example, the shafts of minute gears and the display movable parts of notebook computers). In a bar material, fatigue failure may occur due to local stress concentration caused by repeated vibration. Further, when an impact is applied to these devices from the outside, a large impact may occur instantaneously, parts may be damaged or destroyed, and the use of the device may be difficult. For this reason, in recent years, copper alloy wire rods used in these devices have been required to have high strength and excellent fatigue resistance.
 これに対し特許文献1~3に記載のCu-Ni-Sn系合金の発明では、高強度化や曲げ加工性向上の検討が行われているが、これらはいずれも板材に関するものであり、銅合金線棒材としての強度および耐疲労特性の向上については、何ら検討されていない。そのため、特許文献1~3に記載の合金材では、銅合金線棒材として、十分な強度と耐疲労特性の向上が実現できていなかった。 On the other hand, in the inventions of Cu—Ni—Sn alloys described in Patent Documents 1 to 3, investigations have been made to increase the strength and improve the bending workability. No investigation has been made on the improvement of strength and fatigue resistance as an alloy wire rod. Therefore, the alloy materials described in Patent Documents 1 to 3 have not been able to realize sufficient improvement in strength and fatigue resistance as copper alloy wire rods.
特許第5839126号公報Japanese Patent No. 5839126 特許第4009981号公報Japanese Patent No. 4009981 特開2009-242895号公報JP 2009-242895 A
 本発明は、上記実情に鑑みてなされたもので、銅合金線棒材の集合組織の適正化を図り、集合組織制御による特性を有効に発揮させ、強度と耐疲労特性に優れた銅合金線棒材及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and aims to optimize the texture of the copper alloy wire rod material, effectively exhibit the characteristics by texture control, and have excellent strength and fatigue resistance. An object of the present invention is to provide a bar and a method for manufacturing the same.
 本発明者らが鋭意検討を行ったところ、鋳造後の冷間加工、熱間加工後の温間加工により、合金線棒材内の集合組織が適正化され、溶体化熱処理時に合金線棒材内の集合組織を所定の結晶構造に制御できる、という知見を得て、これらの知見に基づき、Cu-Ni-Sn系合金材において、特に強度および耐疲労特性を向上できることを見出し、本発明を完成させるに至った。 As a result of intensive studies by the present inventors, the texture in the alloy wire rod is optimized by cold working after casting and warm working after hot working, and the alloy wire rod during solution heat treatment. Based on these findings, the present inventors have found that the strength and fatigue resistance can be particularly improved in the Cu—Ni—Sn alloy material. It came to complete.
 すなわち、本発明の要旨構成は以下のとおりである。
〔1〕 3.0~25.0質量%のNiおよび0.1~9.5質量%のSnを含有し、さらに0~0.50質量のFe、0~0.90質量%のSi、0~0.30質量%のMg、0~0.50質量%のMn、0~0.10質量%のZn、0~0.15質量%のZrおよび0~0.10質量%のPbからなる群から選択される少なくとも1成分を含有し、残部がCuおよび不可避不純物からなる合金組成を有し、かつ集合組織を有する銅合金線棒材であって、
 前記集合組織は、前記線棒材の長手方向に垂直な断面において電子線後方散乱回折法(EBSD)による集合組織解析を行って得た、前記長手方向の逆極点図の(100)面方位から±15°以内の方位密度の平均値が5.0以上の範囲、かつ前記逆極点図の(111)面方位から±15°以内の方位密度の平均値が5.0以上の範囲であることを特徴とする、銅合金線棒材。
〔2〕 引張強度が1000MPa以上であり、かつ、
 JIS Z 2273-1978に準拠した疲労試験において、負荷応力を500MPaとしたときの、線棒材が破断に至るまでの繰り返し回数が1.00×10回以上である、上記〔1〕に記載の銅合金線棒材。
〔3〕 前記Fe、Si、Mg、Mn、Zn、ZrおよびPbからなる群から選択される少なくとも1成分の含有量の合計は1.40質量%以下である、上記〔1〕または〔2〕に記載の銅合金線棒材。
〔4〕 上記〔1〕~〔3〕のいずれか1項に記載の銅合金線棒材を製造する方法であって、
 3.0~25.0質量%のNiおよび0.1~9.5質量%のSnを含有し、さらに0~0.50質量のFe、0~0.90質量%のSi、0~0.30質量%のMg、0~0.50質量%のMn、0~0.10質量%のZn、0~0.15質量%のZrおよび0~0.10質量%のPbからなる群から選択される少なくとも1成分を含有し、残部がCuおよび不可避不純物からなる合金組成を有する銅合金素材に、鋳造[工程1]、第1冷間加工[工程2]、均質化熱処理[工程3]、熱間加工[工程4]、面削[工程5]、温間加工[工程6]、第2冷間加工[工程7]、中間焼鈍[工程8]、第3冷間加工[工程9]、溶体化熱処理[工程10]、第4冷間加工[工程11]、時効析出熱処理[工程12]、表面研磨[工程13]をこの順に施し、
 前記第1冷間加工は、加工率が5~20%であり、
 前記温間加工は、加熱温度が100~500℃および加工率が10%以上であり、
 前記溶体化熱処理は、昇温速度が10℃/秒以上、溶体化温度が600~900℃、該溶体化温度での保持時間が1~180秒間および冷却速度が10℃/秒以上あることを特徴とする銅合金線棒材の製造方法。
That is, the gist configuration of the present invention is as follows.
[1] 3.0 to 25.0 mass% Ni and 0.1 to 9.5 mass% Sn, and further 0 to 0.50 mass Fe, 0 to 0.90 mass% Si, From 0 to 0.30 wt% Mg, 0 to 0.50 wt% Mn, 0 to 0.10 wt% Zn, 0 to 0.15 wt% Zr and 0 to 0.10 wt% Pb A copper alloy wire rod containing at least one component selected from the group consisting of the balance, an alloy composition consisting of Cu and inevitable impurities, and having a texture;
The texture is obtained from a (100) orientation of the inverse pole figure in the longitudinal direction obtained by performing a texture analysis by electron beam backscatter diffraction (EBSD) in a cross section perpendicular to the longitudinal direction of the wire rod. The average value of orientation density within ± 15 ° is in the range of 5.0 or more, and the average value of orientation density within ± 15 ° from the (111) plane orientation in the reverse pole figure is in the range of 5.0 or more. A copper alloy wire rod characterized by
[2] Tensile strength is 1000 MPa or more, and
In the fatigue test according to JIS Z 2273-1978, when the load stress is 500 MPa, the number of repetitions until the wire rod material breaks is 1.00 × 10 7 or more, as described in [1] above Copper alloy wire rod.
[3] The total content of at least one component selected from the group consisting of Fe, Si, Mg, Mn, Zn, Zr and Pb is 1.40% by mass or less, [1] or [2] The copper alloy wire rod described in 1.
[4] A method for producing a copper alloy wire rod according to any one of [1] to [3] above,
Containing 3.0 to 25.0 mass% Ni and 0.1 to 9.5 mass% Sn, further 0 to 0.50 mass Fe, 0 to 0.90 mass Si, 0 to 0 From the group consisting of 30 wt% Mg, 0 to 0.50 wt% Mn, 0 to 0.10 wt% Zn, 0 to 0.15 wt% Zr and 0 to 0.10 wt% Pb Casting [Step 1], first cold working [Step 2], homogenizing heat treatment [Step 3] into a copper alloy material containing an alloy composition containing at least one selected component and the balance consisting of Cu and inevitable impurities , Hot working [step 4], chamfering [step 5], warm working [step 6], second cold working [step 7], intermediate annealing [step 8], third cold working [step 9]. , Solution heat treatment [Step 10], fourth cold working [Step 11], aging precipitation heat treatment [Step 12], surface polishing [Step 13]. It applied to the order,
The first cold working has a working rate of 5 to 20%,
In the warm processing, the heating temperature is 100 to 500 ° C. and the processing rate is 10% or more,
The solution heat treatment has a heating rate of 10 ° C./second or more, a solution temperature of 600 to 900 ° C., a holding time at the solution temperature of 1 to 180 seconds, and a cooling rate of 10 ° C./second or more. A method for producing a copper alloy wire rod.
 本発明によれば、特に強度および耐疲労特性を向上させた銅合金線棒材を提供することが可能になった。この銅合金線棒材は、腕時計やスマートフォン、スマートウォッチ、ノートパソコン等の精密機器の通電部、可動部に使用するのに適している。このような本発明の銅合金線棒材によれば、繰り返しの振動等による疲労破壊を抑制でき、上記各種製品の信頼性を向上させることができる。また、本発明に従う銅合金線棒材の製造方法によれば、上記銅合金線棒材を好適に製造することができる。 According to the present invention, it has become possible to provide a copper alloy wire rod with improved strength and fatigue resistance. This copper alloy wire rod is suitable for use as a current-carrying part and a movable part of precision equipment such as a wristwatch, a smartphone, a smart watch, and a laptop computer. According to such a copper alloy wire rod of the present invention, fatigue failure due to repeated vibration or the like can be suppressed, and the reliability of the various products can be improved. Moreover, according to the manufacturing method of the copper alloy wire rod according to the present invention, the copper alloy wire rod can be preferably manufactured.
図1は、EBSD法によって計測した、本発明の銅合金線棒材の集合組織(逆極点図)の一例を示す図であり、具体的には、線棒材の長手方向に垂直な断面の法線方向、すなわち線材の長手方向の逆極点図である。FIG. 1 is a diagram showing an example of a texture (reverse pole figure) of a copper alloy wire rod according to the present invention, measured by the EBSD method. Specifically, the cross section is perpendicular to the longitudinal direction of the wire rod. It is a reverse pole figure of the normal line direction, ie, the longitudinal direction of a wire. 図2は、線棒材の疲労試験の試験方法の説明図である。FIG. 2 is an explanatory diagram of a test method for a fatigue test of a wire rod.
 以下、本発明の銅合金線棒材の好ましい実施形態について、詳細に説明する。
 本発明に従う銅合金線棒材(以下、単に「線棒材」ということがある。)は、3.0~25.0質量%のNiおよび0.1~9.5質量%のSnを含有し、さらに0~0.50質量のFe、0~0.90質量%のSi、0~0.30質量%のMg、0~0.50質量%のMn、0~0.10質量%のZn、0~0.15質量%のZrおよび0~0.10質量%のPbからなる群から選択される少なくとも1成分を含有し、残部がCuおよび不可避不純物からなる合金組成を有し、かつ集合組織を有し、該集合組織は、前記線棒材の長手方向に垂直な断面において電子線後方散乱回折法(EBSD)による集合組織解析を行って得た、前記長手方向の逆極点図の(100)面方位から±15°以内の方位密度の平均値が5.0以上の範囲、かつ前記逆極点図の(111)面方位から±15°以内の方位密度の平均値が5.0以上の範囲であることを特徴とする。
Hereinafter, preferred embodiments of the copper alloy wire rod of the present invention will be described in detail.
The copper alloy wire rod according to the present invention (hereinafter sometimes simply referred to as “wire rod material”) contains 3.0 to 25.0 mass% Ni and 0.1 to 9.5 mass% Sn. And 0 to 0.50 mass% Fe, 0 to 0.90 mass% Si, 0 to 0.30 mass% Mg, 0 to 0.50 mass% Mn, 0 to 0.10 mass% Containing at least one component selected from the group consisting of Zn, 0 to 0.15% by mass of Zr and 0 to 0.10% by mass of Pb, the balance having an alloy composition of Cu and inevitable impurities, and The texture has an inverse pole figure in the longitudinal direction obtained by performing a texture analysis by electron beam backscatter diffraction (EBSD) in a cross section perpendicular to the longitudinal direction of the wire rod material. The average value of the orientation density within ± 15 ° from the (100) plane orientation is in the range of 5.0 or more, and the previous The average value of the orientation density within ± 15 ° from the (111) plane orientation of the inverted pole figure is in the range of 5.0 or more.
 ここで、上記合金組成に含有範囲が挙げられている成分のうち、含有範囲の下限値が「0質量%」と記載されている成分はいずれも、必要に応じて任意に添加される任意添加成分を意味する。すなわち所定の添加成分が「0質量%」の場合、その添加成分は含まれないことを意味する。 Here, among the components whose content ranges are listed in the alloy composition, any components whose lower limit value of the content range is described as “0 mass%” are arbitrarily added as necessary. Means ingredients. That is, when the predetermined additive component is “0 mass%”, it means that the additive component is not included.
 また、本発明でいう「銅合金線棒材」とは、「銅合金線材」および「銅合金棒材」の総称であり、その長手方向に垂直な径(直径、太さ)が0.3~100mm程度の線状または棒状の銅合金材を指す。なお、以下説明を容易にするために、銅合金線棒材の長手方向に垂直な径は、銅合金線材および銅合金棒材の別にかかわらず、総称して「線径」と称する。また、本発明において銅合金線材は、線径が0.3~5mmであることが好ましく、0.5~3mmであることがより好ましい。また、銅合金棒材は、線径が5~100mmであることが好ましく、6~50mmであることがより好ましい。 The “copper alloy wire rod” in the present invention is a general term for “copper alloy wire rod” and “copper alloy rod rod”, and the diameter (diameter, thickness) perpendicular to the longitudinal direction is 0.3. It refers to a linear or rod-shaped copper alloy material of about ˜100 mm. For ease of explanation, the diameter perpendicular to the longitudinal direction of the copper alloy wire rod is generally referred to as “wire diameter” regardless of the copper alloy wire and the copper alloy rod. In the present invention, the copper alloy wire preferably has a wire diameter of 0.3 to 5 mm, more preferably 0.5 to 3 mm. The copper alloy bar preferably has a wire diameter of 5 to 100 mm, more preferably 6 to 50 mm.
<合金組成>
 本発明の銅合金線棒材の合金組成とその作用について示す。
<Alloy composition>
The alloy composition of the copper alloy wire rod of the present invention and its action will be described.
(必須添加成分)
 本発明の銅合金線棒材は、3.0~25.0質量%のNiおよび0.1~9.5質量%のSnを含有している。
(Essential additive ingredients)
The copper alloy wire rod of the present invention contains 3.0 to 25.0% by mass of Ni and 0.1 to 9.5% by mass of Sn.
[3.0~25.0質量%のNi]
 Niは、Snと共に時効硬化能が高いため、強度を高めるための作用を有する重要な元素である。かかる作用を発揮するには、Ni含有量は3.0質量%以上含有することが必要である。一方、Ni含有量が25.0質量%よりも多いと、金属間化合物が生成しやすくなり、生成した金属間化合物が残存すると、これが起点となって冷間加工時に割れが生じやすくなり、冷間加工性が著しく悪化する。このため、Ni含有量は、3.0~25.0質量%の範囲とし、好ましくは9.0~23.0質量%の範囲とする。
[3.0-25.0 mass% Ni]
Ni is an important element having an action for increasing strength because it has high age-hardening ability together with Sn. In order to exhibit such an effect, the Ni content must be 3.0% by mass or more. On the other hand, when the Ni content is more than 25.0% by mass, an intermetallic compound is likely to be generated, and when the generated intermetallic compound remains, this becomes a starting point and cracks are likely to occur during cold working, and Inter-workability is significantly deteriorated. For this reason, the Ni content is in the range of 3.0 to 25.0 mass%, preferably in the range of 9.0 to 23.0 mass%.
[0.10~9.5質量%のSn]
 Snは、Niと共に時効硬化能が高いため、強度を高めるための作用を有する重要な元素である。かかる作用を発揮するには、Sn含有量は0.10質量%以上含有することが必要である。一方、Sn含有量が9.5質量%よりも多いと、Niの場合と同様に金属間化合物が生成しやすくなり、生成した金属間化合物が残存すると、これが起点となって冷間加工時に割れが生じやすくなり、冷間加工性が著しく悪化する。このため、Sn含有量は、0.10~9.5質量%の範囲とし、好ましくは0.15~9.5質量%の範囲とする。
[0.10 to 9.5 mass% Sn]
Sn is an important element having an action for increasing the strength because of high age-hardening ability together with Ni. In order to exhibit such an effect, the Sn content must be 0.10% by mass or more. On the other hand, when the Sn content is more than 9.5% by mass, an intermetallic compound is likely to be formed as in the case of Ni, and when the generated intermetallic compound remains, it becomes a starting point and cracks during cold working. Is likely to occur, and cold workability is significantly deteriorated. Therefore, the Sn content is in the range of 0.10 to 9.5% by mass, preferably in the range of 0.15 to 9.5% by mass.
(任意添加成分)
 本発明の銅合金線棒材は、NiおよびSnの必須の添加成分に加えて、さらに、任意添加元素として、0~0.50質量のFe、0~0.90質量%のSi、0~0.30質量%のMg、0~0.50質量%のMn、0~0.10質量%のZn、0~0.15質量%のZrおよび0~0.10質量%のPbからなる群から選択される少なくとも1成分を含有する。すなわち、本発明の銅合金線棒材は、Fe、Si、Mg、Mn、Zn、ZrおよびPbからなる群から選択される少なくとも1成分を含有していればよく、上記少なくとも1成分が含まれる限り、その他の成分については含有量が0質量%であってもよい。また、各添加成分を含有させる場合の好ましい含有量は、それぞれ以下の通りである。
(Optional additive)
In addition to the essential additive components of Ni and Sn, the copper alloy wire rod of the present invention further includes 0 to 0.50 mass Fe, 0 to 0.90 mass% Si, 0 to The group consisting of 0.30% by weight Mg, 0-0.50% by weight Mn, 0-0.10% by weight Zn, 0-0.15% by weight Zr and 0-0.10% by weight Pb. Containing at least one component selected from: That is, the copper alloy wire rod of the present invention only needs to contain at least one component selected from the group consisting of Fe, Si, Mg, Mn, Zn, Zr and Pb, and includes the at least one component. As long as other components are included, the content may be 0% by mass. Moreover, preferable content in the case of containing each additive component is as follows, respectively.
[0.02~0.50質量%のFe]
 Feは、導電率、強度、応力緩和特性、めっき性等の製品特性を改善する作用を有する元素である。かかる作用を発揮させる場合には、Fe含有量を0.02質量%以上とすることが好ましい。しかしながら、Feを0.50質量%より多く含有させても、効果が飽和するだけではなく、かえって導電率を低下させる傾向がある。このため、Fe含有量は0.02~0.50質量%の範囲とすることが好ましい。
[0.02-0.50 mass% Fe]
Fe is an element having an effect of improving product characteristics such as conductivity, strength, stress relaxation characteristics, and plating properties. In order to exert such an effect, the Fe content is preferably 0.02% by mass or more. However, even if Fe is contained in an amount of more than 0.50% by mass, not only the effect is saturated but also the conductivity tends to be lowered. For this reason, the Fe content is preferably in the range of 0.02 to 0.50 mass%.
[0.01~0.90質量%のSi]
 Siは、半田付け時の耐熱剥離性や耐マイグレーション性を向上させる作用を有する元素である。かかる作用を発揮させる場合には、Si含有量を0.01質量%以上とすることが好ましい。しかしながら、Si含有量が0.90質量%を超えると、導電性を低下させる傾向がある。このため、Si含有量は0.01~0.90質量%の範囲とすることが好ましい。
[0.01 to 0.90 mass% Si]
Si is an element having an effect of improving the heat-resistant peelability and migration resistance during soldering. In order to exert such an effect, the Si content is preferably 0.01% by mass or more. However, if the Si content exceeds 0.90% by mass, the conductivity tends to decrease. For this reason, the Si content is preferably in the range of 0.01 to 0.90 mass%.
[0.01~0.30質量%のMg]
 Mgは、応力緩和特性を向上させる作用を有する元素である。かかる作用を発揮させる場合には、Mg含有量を0.01質量%以上とすることが好ましい。しかしながら、Mg含有量が0.30質量%を超えると、導電性を低下させる傾向がある。このため、Mg含有量は0.01~0.30質量%の範囲とすることが好ましい。
[0.01 to 0.30 mass% Mg]
Mg is an element having an effect of improving stress relaxation characteristics. In order to exert such an effect, the Mg content is preferably 0.01% by mass or more. However, when the Mg content exceeds 0.30% by mass, the conductivity tends to decrease. Therefore, the Mg content is preferably in the range of 0.01 to 0.30% by mass.
[0.01~0.50質量%のMn]
 Mnは、母相に固溶して伸線などの加工性を向上させると共に、粒界反応型析出の急激な発達を抑制し、粒界反応型析出によって生じる不連続性析出セル組織の制御を可能にする効果を有する元素である。かかる作用を発揮させる場合には、Mn含有量を0.01質量%以上とすることが好ましい。しかしながら、Mnを0.50質量%より多く含有させても、効果が飽和するだけではなく、導電率の低下や曲げ加工性への悪影響を及ぼす傾向がある。このため、Mn含有量は0.01~0.50質量%の範囲とすることが好ましい。
[0.01 to 0.50 mass% Mn]
Mn dissolves in the matrix phase to improve workability such as wire drawing, suppresses rapid development of grain boundary reactive precipitation, and controls discontinuous precipitation cell structure caused by grain boundary reactive precipitation. It is an element that has the effect of enabling it. In order to exert such an effect, the Mn content is preferably 0.01% by mass or more. However, even if Mn is contained in an amount of more than 0.50% by mass, not only the effect is saturated, but also there is a tendency to adversely affect the decrease in conductivity and bending workability. Therefore, the Mn content is preferably in the range of 0.01 to 0.50% by mass.
[0.01~0.10質量%のZn]
 Znは、曲げ加工性を改善すると共に、Snめっきや半田めっきの密着性やマイグレーション特性を改善する作用を有する元素である。かかる作用を発揮させる場合には、Zn含有量を0.01質量%以上とすることが好ましい。しかしながら、Zn含有量が0.10質量%を超えると、導電性を低下させる傾向がある。このため、Zn含有量は0.01~0.10質量%の範囲とすることが好ましい。
[0.01 to 0.10 mass% Zn]
Zn is an element that has the effect of improving the bending workability and improving the adhesion and migration characteristics of Sn plating and solder plating. In order to exert such an effect, the Zn content is preferably 0.01% by mass or more. However, when Zn content exceeds 0.10 mass%, there exists a tendency for electroconductivity to fall. Therefore, the Zn content is preferably in the range of 0.01 to 0.10% by mass.
[0.01~0.15質量%のZr]
 Zrは、主に結晶粒を微細化させて、銅合金線棒材の強度や曲げ加工性を向上させる作用を有する元素である。かかる作用を発揮させる場合には、Zr含有量を0.01質量以上とすることが好ましい。しかしながら、Zr含有量が0.15質量%を超えると、化合物を形成し、導電率及び銅合金線棒の伸線などの加工性が著しく低下する傾向がある。このため、Zr含有量は0.01~0.15質量%の範囲とすることが好ましい。
[0.01-0.15 mass% Zr]
Zr is an element having an effect of mainly refining crystal grains and improving the strength and bending workability of the copper alloy wire rod. In order to exert such an effect, the Zr content is preferably set to 0.01 mass or more. However, when the Zr content exceeds 0.15% by mass, a compound is formed, and there is a tendency that workability such as electrical conductivity and wire drawing of a copper alloy wire rod is remarkably lowered. Therefore, the Zr content is preferably in the range of 0.01 to 0.15% by mass.
[0.01~0.10質量%のPb]
 Pbは、導電率を損なわずに強度、応力緩和特性等の製品特性を改善する作用を有する元素である。かかる作用を発揮させる場合には、Pb含有量を0.01質量%以上とすることが好ましい。しかしながら、Pbを0.10質量%より多く含有させても、特性を改善する効果が飽和するだけではなく、化合物を形成して、熱間加工性が低下する傾向がある。このため、Pb含有量は0.01~0.10質量%の範囲とすることが好ましい。
[0.01 to 0.10% by mass of Pb]
Pb is an element having an effect of improving product characteristics such as strength and stress relaxation characteristics without impairing electrical conductivity. In order to exert such an effect, the Pb content is preferably 0.01% by mass or more. However, even if Pb is contained in an amount of more than 0.10% by mass, not only the effect of improving the properties is saturated but also a compound is formed and the hot workability tends to be lowered. Therefore, the Pb content is preferably in the range of 0.01 to 0.10% by mass.
[Fe、Si、Mg、Mn、Zn、ZrおよびPbからなる群から選択される少なくとも1成分の含有量の合計は1.40質量%以下]
 Fe、Si、Mg、Mn、Zn、ZrおよびPbからなる群から選択される少なくとも1成分の含有量の合計は、1.40質量%以下であることが好ましい。
 上記任意添加成分の少なくとも1成分の含有量の合計が1.40質量%以下であれば、加工性や導電率の低下が生じにくい。このため、上記任意添加成分の含有量の合計は、1.40質量%以下とすることが好ましい。
[Total content of at least one component selected from the group consisting of Fe, Si, Mg, Mn, Zn, Zr and Pb is 1.40% by mass or less]
The total content of at least one component selected from the group consisting of Fe, Si, Mg, Mn, Zn, Zr and Pb is preferably 1.40% by mass or less.
When the total content of at least one of the optional addition components is 1.40% by mass or less, workability and conductivity are hardly lowered. For this reason, it is preferable that the sum total of content of the said arbitrary addition component shall be 1.40 mass% or less.
(残部:Cuおよび不可避不純物)
 上述した成分以外の残部は、Cuおよび不可避不純物である。ここでいう不可避不純物は、製造工程上、不可避的に含まれうる含有レベルの不純物を意味する。不可避不純物は、含有量によっては導電率を低下させる要因にもなりうるため、導電率の低下を加味して不可避不純物の含有量をある程度抑制することが好ましい。不可避不純物として挙げられる成分としては、例えば、炭素(C)、酸素(O)、硫黄(S)等が挙げられる。
(Remainder: Cu and inevitable impurities)
The balance other than the components described above is Cu and inevitable impurities. The inevitable impurities referred to here mean impurities in a content level that can be unavoidably included in the manufacturing process. Depending on the content of the inevitable impurities, it may be a factor for reducing the electrical conductivity. Therefore, it is preferable to suppress the content of the inevitable impurities to some extent in consideration of the decrease in the electrical conductivity. Examples of components listed as inevitable impurities include carbon (C), oxygen (O), sulfur (S), and the like.
<集合組織>
 本発明の銅合金線棒材は、集合組織を有し、この集合組織は、線棒材の長手方向に垂直な断面において電子線後方散乱回折法(EBSD)による集合組織解析を行って得た、上記長手方向の逆極点図の(100)面方位から±15°以内の方位密度の平均値が5.0以上、好ましくは5.1~15.0であり、逆極点図の(111)面方位から±15°以内の方位密度の平均値が5.0以上、好ましくは5.5~20.0である。
<Group organization>
The copper alloy wire rod of the present invention has a texture, and this texture was obtained by performing a texture analysis by electron beam backscatter diffraction (EBSD) in a cross section perpendicular to the longitudinal direction of the wire rod. The average value of orientation density within ± 15 ° from the (100) plane orientation in the reverse pole figure in the longitudinal direction is 5.0 or more, preferably 5.1 to 15.0, and (111) in the reverse pole figure The average value of the orientation density within ± 15 ° from the plane orientation is 5.0 or more, preferably 5.5 to 20.0.
 ここで、線棒材の長手方向は、線棒材を製造する際の加工方向(例えば、伸線方向や押出方向)に対応する。すなわち、例えば伸線加工により作製した線棒材の長手方向の逆極点図とは、測定面の法線方向(ND)を線棒材の伸線方向(Drawing Direction:DD)に一致させて得られた逆極点図(Inverse Pole Figure:IPF)のことである。また、「逆極点図」とは試料の座標系の特定の方向に着目し、どの結晶面の法線方位がその特定方向に向いているのかを示しており、試料全体の配向性を把握するのに適している。さらに「方位密度」とは、一般的に結晶粒方位分布関数(ODF: crystal orientation distribution function)とも表され、ランダムな結晶方位分布の状態を1とし、それに対して特定の結晶方位の結晶粒が何倍の集積となっているかを示すものであり、集合組織の結晶方位の存在比率および分散状態を定量的に解析する際に用いる。方位密度は、EBSDおよびX線回折測定結果より、(100)、(110)、(112)正極点図等3種類以上の正極点図測定データに基づいて、級数展開法による結晶方位分布解析法により算出される。 Here, the longitudinal direction of the wire rod material corresponds to the processing direction (for example, the wire drawing direction or the extrusion direction) when manufacturing the wire rod material. That is, for example, a reverse pole figure in the longitudinal direction of a wire rod produced by wire drawing is obtained by matching the normal direction (ND) of the measurement surface with the wire drawing direction (Drawing Direction: DD). Inverse pole figure (IPF). In addition, the “reverse pole figure” focuses on a specific direction in the sample coordinate system, shows which crystal plane normal direction is oriented in that specific direction, and grasps the orientation of the entire sample Suitable for Furthermore, the “orientation density” is generally expressed as a crystal orientation distribution function (ODF), where a random crystal orientation distribution state is set to 1, and a crystal grain having a specific crystal orientation corresponds to the crystal orientation distribution function (ODF). This indicates how many times the accumulation has occurred, and is used when quantitatively analyzing the abundance ratio of the crystal orientation of the texture and the dispersion state. The orientation density is a crystal orientation distribution analysis method based on the series expansion method based on three or more kinds of positive point map measurement data such as (100), (110), and (112) positive point map from EBSD and X-ray diffraction measurement results. Is calculated by
 本発明者らは、強度および耐疲労特性の双方を高めるために、集合組織について鋭意研究した。その結果、合金組成を上記範囲に限定した上で、線棒材の長手方向に垂直な断面においてEBSDによる集合組織解析を行って得た、線棒材の長手方向(加工方向)の逆極点図の(100)面方位と(111)面方位は、他の結晶方位に比べて結晶粒内のひずみ差(KAM値:Karnel Average Misorientation)が高く、結晶粒径がやや大きい傾向があることがわかり、弾性域での転位の蓄積が抑制されることがわかった。さらに、線棒材の長手方向(加工方向)の逆極点図を見たときに、(100)面方位から±15°以内の方位密度の平均値が5.0以上、(111)面方位から±15°以内の方位密度が5.0以上に制御することで、特に耐疲労特性が改善することを見出した。 The present inventors have intensively studied the texture in order to increase both strength and fatigue resistance. As a result, the pole composition in the longitudinal direction (working direction) of the wire rod material obtained by conducting a texture analysis by EBSD in a cross section perpendicular to the longitudinal direction of the wire rod material after limiting the alloy composition to the above range. It can be seen that the (100) and (111) orientations of the crystal have a higher strain difference (KAM value: Karnel Average Misoration) in the crystal grains than the other crystal orientations, and the crystal grain size tends to be slightly larger. It was found that the accumulation of dislocations in the elastic region is suppressed. Furthermore, when looking at the reverse pole figure in the longitudinal direction (working direction) of the wire rod, the average value of the orientation density within ± 15 ° from the (100) plane orientation is 5.0 or more, from the (111) plane orientation It has been found that the fatigue resistance is particularly improved by controlling the orientation density within ± 15 ° to 5.0 or more.
 また、線棒材の長手方向(加工方向)の逆極点図の(111)面方位は、シュミット因子が低く、線棒材の強度を高める特徴があり、(111)面方位の方位密度を5.0以上とすることで、高強度が得られることがわかった。 Further, the (111) plane orientation in the reverse pole figure in the longitudinal direction (working direction) of the wire rod has a feature that the Schmid factor is low and increases the strength of the wire rod, and the orientation density of the (111) plane orientation is 5 It was found that a high strength can be obtained by setting the ratio to 0.0 or more.
 上記のような知見に基づき、本発明では、線棒材の長手方向の逆極点図の(100)面方位から±15°以内の方位密度の平均値と、(111)面方位から±15°以内の方位密度の平均値とを、それぞれ上記範囲に限定した。 Based on the above findings, in the present invention, the average value of orientation density within ± 15 ° from the (100) plane orientation of the reverse pole figure in the longitudinal direction of the wire rod material, and ± 15 ° from the (111) plane orientation The average value of the azimuth density within each was limited to the above range.
 なお、強度については、時効析出熱処理後に十分な時効硬化を発現させることでも高くなる。このような時効析出熱処理後の金属組織は、特定方向に固溶した溶質原子であるSnの濃度が周期性を持っており、例えば、特定方向(加工方向)に沿って測定したときのSnの周期的な濃度ゆらぎの平均波長が数nm~数十nm程度であることが好ましい。 Note that the strength can also be increased by developing sufficient age hardening after the aging precipitation heat treatment. In such a metal structure after aging precipitation heat treatment, the concentration of Sn, which is a solute atom dissolved in a specific direction, has a periodicity. For example, Sn measured when measured along a specific direction (processing direction) It is preferable that the average wavelength of the periodic concentration fluctuation is about several nm to several tens of nm.
 図1は、本発明に係る線棒材の長手方向に垂直な断面における、伸線方向(Drawing Direction)の逆極点図の一例を示すものであり、EBSD測定結果より解析して得た。この逆極点図では、各方位の方位密度を色で示しており、赤色が最も方位密度が高い傾向となる。 FIG. 1 shows an example of a reverse pole figure in the drawing direction (Drawing Direction) in a cross section perpendicular to the longitudinal direction of the wire rod according to the present invention, which was obtained by analysis from the EBSD measurement result. In this reverse pole figure, the azimuth density of each azimuth is indicated by color, and red tends to have the highest azimuth density.
 また、本発明では、上記集合組織の解析にはEBSD法を用いた。EBSD法とは、Electron BackScatter Diffractionの略で、走査電子顕微鏡(SEM)内で試料に電子線を照射したときに生じる反射電子菊池線回折を利用した結晶方位解析技術のことである。本発明におけるEBSD測定では、線棒材の長手方向に垂直な断面を測定面として、800μm×800μmの試料面積に対し、0.1μmステップでスキャンし、測定した。上記測定面積およびスキャンステップは、試料の結晶粒の大きさに応じて決定すればよい。測定後の結晶粒の解析には、解析用ソフトウェア(株式会社TSLソリューションズ製、OIM Analysis)を用いた。EBSDによる結晶粒の解析において得られる情報は、電子線が試料に侵入する数十nmの深さまでの情報を含んでいる。 In the present invention, the EBSD method was used for the analysis of the texture. The EBSD method is an abbreviation for Electron Backscatter Diffraction, and is a crystal orientation analysis technique using reflected electron Kikuchi line diffraction that occurs when a sample is irradiated with an electron beam in a scanning electron microscope (SEM). In the EBSD measurement in the present invention, the measurement was performed by scanning the sample area of 800 μm × 800 μm in 0.1 μm steps with the cross section perpendicular to the longitudinal direction of the wire rod as the measurement surface. The measurement area and scan step may be determined according to the size of crystal grains of the sample. For the analysis of the crystal grains after the measurement, analysis software (manufactured by TSL Solutions, OIM Analysis) was used. Information obtained in the analysis of crystal grains by EBSD includes information up to a depth of several tens of nm at which the electron beam penetrates the sample.
 また、(100)面方位から15°以内とは、(100)面からのずれ角度が15°以内(0°を含む)の結晶粒のことを指す。なお、(111)面方位の場合も同様である。
 また、方位密度の平均値とは、1つの棒線材につき、少なくとも5個の観察面で各面方位の方位密度の測定を行い、それぞれの測定値の合計を観察面の総数で平均した値を指す。
Further, “within 15 ° from the (100) plane orientation” refers to crystal grains whose deviation angle from the (100) plane is within 15 ° (including 0 °). The same applies to the (111) plane orientation.
In addition, the average value of the orientation density is a value obtained by measuring the orientation density of each surface orientation on at least 5 observation planes per one rod and wire, and averaging the total of the respective measurement values by the total number of observation planes. Point to.
[銅合金線棒材の製造方法]
 次に、本発明の銅合金線棒材の好ましい製造方法について説明する。
 本発明の銅合金線棒材は、3.0~25.0質量%Niおよび0.1~9.5質量%Snを含有させ、さらに任意添加成分としてFe、Si、Mg、Mn、Zn、ZrおよびPbからなる群から選択される少なくとも1成分を所定量含有させ、残部がCuと不可避不純物から成る合金組成を有する銅合金素材を用意し、この銅合金素材に、鋳造[工程1]、第1冷間加工[工程2]、均質化熱処理[工程3]、熱間加工[工程4]、面削[工程5]、温間加工[工程6]、第2冷間加工[工程7]、中間焼鈍[工程8]、第3冷間加工[工程9]、溶体化熱処理[工程10]、第4冷間加工[工程11]、時効析出熱処理[工程12]、表面研磨[工程13]をこの順に施すことによって製造される。特に本発明の銅合金線棒材を製造するには、第1冷間加工[工程2]、温間加工[工程6]および溶体化熱処理[工程10]の各条件を制御、管理することが好ましい。
[Copper alloy wire rod manufacturing method]
Next, the preferable manufacturing method of the copper alloy wire rod material of this invention is demonstrated.
The copper alloy wire rod of the present invention contains 3.0 to 25.0 mass% Ni and 0.1 to 9.5 mass% Sn, and further contains Fe, Si, Mg, Mn, Zn, A predetermined amount of at least one component selected from the group consisting of Zr and Pb is contained, and a copper alloy material having an alloy composition consisting of Cu and inevitable impurities is prepared, and this copper alloy material is cast [step 1], 1st cold working [Step 2], homogenization heat treatment [Step 3], hot working [Step 4], chamfering [Step 5], warm working [Step 6], second cold working [Step 7] Intermediate annealing [Step 8], third cold working [Step 9], solution heat treatment [Step 10], fourth cold working [Step 11], aging precipitation heat treatment [Step 12], surface polishing [Step 13] Are manufactured in this order. In particular, in order to manufacture the copper alloy wire rod of the present invention, it is necessary to control and manage each condition of the first cold working [Step 2], the warm working [Step 6] and the solution heat treatment [Step 10]. preferable.
 Cu、NiおよびSnの原料を、鋳造機内部(内壁)が好ましくは炭素製の、例えば黒鉛坩堝にて、溶解し鋳造する[工程1]。溶解するときの鋳造機内部の雰囲気は、酸化物の生成を防止するために真空もしくは窒素やアルゴンなどの不活性ガス雰囲気とすることが好ましい。鋳造方法には特に制限はなく、例えば横型連続鋳造機やアップキャスト法などを用いることができる。 Cu, Ni and Sn raw materials are melted and cast in a casting crucible, preferably made of carbon, for example, in the casting machine (inner wall) [Step 1]. The atmosphere inside the casting machine when melting is preferably a vacuum or an inert gas atmosphere such as nitrogen or argon in order to prevent the formation of oxides. There is no restriction | limiting in particular in a casting method, For example, a horizontal type continuous casting machine, an up-cast method, etc. can be used.
 鋳造後は急冷し、第1冷間加工[工程2]を行う。第1冷間加工では、鋳塊に対してひずみを付与し、鋳塊時に生じた凝固偏析を分散させる。第1冷間加工は、加工率5~20%とする。なお、第1冷間加工の加工率が5%未満であると、(111)面から15°以内の方位密度の形成が不十分となる傾向があり、また、20%を超えると、(100)面から15°以内の方位密度の形成が不十分となる傾向にある。 After casting, cool rapidly and perform the first cold working [Step 2]. In the first cold working, strain is applied to the ingot to disperse the solidified segregation generated during the ingot. The first cold working is performed at a working rate of 5 to 20%. If the processing rate of the first cold working is less than 5%, formation of orientation density within 15 ° from the (111) plane tends to be insufficient, and if it exceeds 20%, (100 ) The orientation density within 15 ° from the surface tends to be insufficient.
 ここで、加工率R(%)は下記(1)式で定義される(以下において同じ)。
   R=(r -r)/r ×100 ・・・(1)
 上記(1)式中、rは加工前の直径(線径)であり、rは加工後の直径(線径)である。
 また、冷間加工については、伸線加工、押出加工、三方ロール等を用いた圧延加工のいずれでも特に制限は無いが、好ましくは伸線加工である。なお、以下で説明する各冷間加工、熱間加工および温間加工の場合についても同じである。
Here, the processing rate R (%) is defined by the following formula (1) (the same applies hereinafter).
R = (r 0 2 −r 2 ) / r 0 2 × 100 (1)
In the above formula (1), r 0 is a diameter (wire diameter) before processing, and r is a diameter (wire diameter) after processing.
The cold working is not particularly limited in any of wire drawing, extrusion, and rolling using a three-way roll, but wire drawing is preferable. The same applies to the cases of cold processing, hot processing, and warm processing described below.
 第1冷間加工[工程2]に続いて、均質化熱処理[工程3]、熱間加工[工程4]、面削[工程5]を順次行う。均質化熱処理[工程3]では、凝固時に生じた粗大な晶出物を、できるだけ母相に固溶させて小さくして、可能な限り無くすことが望ましい。このような均質化熱処理は、加熱温度800~1000℃にて1~20時間保持することが好ましい。また、熱間加工[工程4]では、鋳造組織を破壊し、均一な組織にすると共に、冷間加工しやすいサイズ(例えば直径150mm以下)にする。このような熱間加工は、加工率を50%以上とすることが好ましい。面削[工程5]では、表面の酸化膜を除去する。このような面削は公知の方法により行うことができる。 Following the first cold working [Step 2], homogenization heat treatment [Step 3], hot working [Step 4], and chamfering [Step 5] are sequentially performed. In the homogenization heat treatment [Step 3], it is desirable to eliminate as much as possible the coarse crystallized product generated during solidification by making it as small as possible by dissolving it in the matrix. Such homogenization heat treatment is preferably maintained at a heating temperature of 800 to 1000 ° C. for 1 to 20 hours. Further, in the hot working [Step 4], the cast structure is destroyed to obtain a uniform structure and a size that is easy to cold work (for example, a diameter of 150 mm or less). Such hot working is preferably performed at a working rate of 50% or more. In the chamfering [step 5], the oxide film on the surface is removed. Such chamfering can be performed by a known method.
 面削[工程5]後に、温間加工[工程6]を行う。温間加工は、加工方向に垂直な面に対して、再結晶後の結晶粒が(100)面と(111)面で配向するよう制御するために、重要な工程である。このような温間加工は、到達温度100~500℃まで加熱した直後に、加工率10%以上で加工する。温間加工の到達温度が100℃未満だと、変形抵抗が高く、加工が困難になると共に、(100)面の方位密度が不十分となる傾向がある。温間加工の到達温度が500℃超だと、析出による変形抵抗が上昇すると共に、(111)面の方位密度が不十分となる傾向がある。また、温間加工の加工率が10%未満であると、(111)面の方位密度が不十分となる傾向にある。 Warm machining [Step 6] is performed after chamfering [Step 5]. Warm working is an important process for controlling the recrystallized crystal grains to be oriented in the (100) plane and the (111) plane with respect to the plane perpendicular to the processing direction. Such warm processing is performed at a processing rate of 10% or more immediately after heating to an ultimate temperature of 100 to 500 ° C. If the ultimate temperature of the warm processing is less than 100 ° C., the deformation resistance is high, the processing becomes difficult, and the orientation density of the (100) plane tends to be insufficient. When the ultimate temperature of warm working exceeds 500 ° C., deformation resistance due to precipitation increases, and the orientation density of the (111) plane tends to be insufficient. Moreover, when the processing rate of warm processing is less than 10%, the orientation density of the (111) plane tends to be insufficient.
 次に、第2冷間加工[工程7]、中間焼鈍[工程8]および第3冷間加工[工程9]を順次行う。ここで、第2冷間加工[工程7]は、加工率を10~50%とすることが好ましい。また、中間焼鈍[工程8]は、到達温度300~700℃にて保持時間を1~360秒とすることが好ましい。また、第3冷間加工[工程9]は、加工率を5~30%とすることが好ましい。 Next, the second cold working [Step 7], the intermediate annealing [Step 8] and the third cold working [Step 9] are sequentially performed. Here, the second cold working [Step 7] preferably has a working rate of 10 to 50%. In the intermediate annealing [step 8], the holding time is preferably 1 to 360 seconds at an ultimate temperature of 300 to 700 ° C. The third cold working [Step 9] preferably has a working rate of 5 to 30%.
 その後、溶体化熱処理[工程10]を行う。溶体化熱処理では、組織を再結晶化させ、加工方向の逆極点図の(100)面方位から±15°以内の方位密度の平均値を5.0以上、かつ(111)面方位から±15°以内の方位密度の平均値を5.0以上に制御する。このような溶体化熱処理は、昇温速度10℃/秒以上、到達温度600~900℃、保持時間1~180秒とし、さらに冷却速度10℃/秒以上で急冷する。溶体化熱処理の昇温速度が10℃/秒未満であると、十分な強度が得られない傾向にある。また、溶体化熱処理の到達温度が600℃未満だと十分な強度が得られず、900℃超だと、(111)面の方位密度が減少し、十分な疲労特性が得られない傾向がある。さらに、溶体化熱処理の冷却速度が10℃/秒未満であると、十分な強度が得られない傾向にある。 Thereafter, solution heat treatment [Step 10] is performed. In the solution heat treatment, the structure is recrystallized, and the average value of orientation density within ± 15 ° from the (100) plane orientation of the reverse pole figure in the processing direction is 5.0 or more and ± 15 from the (111) plane orientation The average value of orientation density within 0 ° is controlled to 5.0 or more. In such a solution heat treatment, the temperature is raised at a rate of 10 ° C./second or more, the ultimate temperature is 600 to 900 ° C., the holding time is 1 to 180 seconds, and further, the solution is quenched at a cooling rate of 10 ° C./second or more. When the temperature increase rate of the solution heat treatment is less than 10 ° C./second, sufficient strength tends not to be obtained. Further, if the ultimate temperature of the solution heat treatment is less than 600 ° C., sufficient strength cannot be obtained, and if it exceeds 900 ° C., the orientation density of the (111) plane tends to decrease and sufficient fatigue characteristics tend not to be obtained. . Furthermore, when the cooling rate of the solution heat treatment is less than 10 ° C./second, sufficient strength tends not to be obtained.
 さらに、第4冷間加工[工程11]、時効析出熱処理[工程12]および表面研磨[工程13]を順次行う。ここで、第4冷間加工は、加工率と5~50%とすることが好ましい。また、時効析出熱処理[工程12]では、十分な時効硬化を発現させることにより、線棒材を高強度化する。時効析出熱処理は、温度が300~500℃、保持時間が0.1~15時間とすることが好ましい。また、表面研磨[工程13]では、表面状態の適正化する。このような表面研磨は公知の方法により行うことができる。 Further, the fourth cold working [Step 11], the aging precipitation heat treatment [Step 12] and the surface polishing [Step 13] are sequentially performed. Here, the fourth cold working is preferably performed at a processing rate of 5 to 50%. In addition, in the aging precipitation heat treatment [Step 12], the wire rod material is strengthened by developing sufficient age hardening. The aging precipitation heat treatment is preferably performed at a temperature of 300 to 500 ° C. and a holding time of 0.1 to 15 hours. In the surface polishing [Step 13], the surface state is optimized. Such surface polishing can be performed by a known method.
<銅合金線棒材の特性>
 本発明の銅合金線棒材は、強度が高く、引張強度が1000MPa以上であることが好ましく、より好ましくは1100MPa以上である。なお、具体的な測定条件は、後述する実施例において説明する。
<Characteristics of copper alloy wire rod>
The copper alloy wire rod of the present invention has high strength and preferably has a tensile strength of 1000 MPa or more, more preferably 1100 MPa or more. Specific measurement conditions will be described in the examples described later.
 また、本発明の銅合金線棒材は、耐疲労特性に優れ、例えば、JIS Z 2273-1978に準拠した疲労試験においては、負荷応力を500MPaとしたときの、線棒材が破断に至るまでの繰り返し回数が1.00×10回以上であることが好ましく、より好ましくは1.10×10回以上である。なお、具体的な測定条件は、後述する実施例において説明する。 Further, the copper alloy wire rod of the present invention is excellent in fatigue resistance. For example, in a fatigue test according to JIS Z 2273-1978, the wire rod material is broken until the load stress is 500 MPa. Is preferably 1.00 × 10 7 times or more, more preferably 1.10 × 10 7 times or more. Specific measurement conditions will be described in the examples described later.
 上記のような特性を有する本発明の銅合金線棒材は、例えば時計の軸部品として好適に用いることができる。 The copper alloy wire rod of the present invention having the above-described characteristics can be suitably used as a timepiece shaft part, for example.
 また、本発明の銅合金線棒材は、銅合金線として、または該銅合金線にすずめっきを施しためっき線として、または複数本の銅合金線やめっき線を撚り合わせて得られる撚線として使用することができると共に、さらに、それらにエナメルを塗布したエナメル線や、さらに樹脂被覆した被覆電線として使用することもできる。 The copper alloy wire rod of the present invention is a stranded wire obtained as a copper alloy wire, a plated wire obtained by applying tin plating to the copper alloy wire, or by twisting a plurality of copper alloy wires or plated wires. Furthermore, it can also be used as an enameled wire in which enamel is applied to them or a coated electric wire coated with a resin.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, All the aspects included in the concept of this invention and a claim are included, and various within the scope of this invention. Can be modified.
 以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
(実施例1~9および比較例1~8)
 まず、DC(Direct Chill)法により、表1に示す合金組成を有する銅合金を溶解して、これを鋳造して、鋳塊を得た。得られた鋳造塊に対して、それぞれ表2に示す条件で第1冷間伸線を施し、直径10mmの荒引線を得た。その後、得られた荒引線を900℃に加熱し、この温度で5時間保持して均質化処理を行った。さらに熱間伸線として加工率85%の伸線加工を施し、速やかに冷却した。次いで表面を0.2mm研削して酸化被膜を除去した後、それぞれ表2に示す条件で温間伸線を施した。その後、第2冷間伸線として加工率45%の伸線加工を施し、650℃に加熱し、この温度で200秒間保持して中間焼鈍し、第3冷間伸線として加工率25%の伸線加工を施し、さらに表2に示す条件で溶体化熱処理を施した。その後、第4冷間伸線として加工率30%の伸線加工を施し、400℃に加熱し、この温度で3時間保持して時効析出熱処理し、最後に表面研削して、銅合金線棒材(直径0.38mm)を製造した。なお、各熱処理はいずれも、不活性ガス雰囲気中で行った。
(Examples 1 to 9 and Comparative Examples 1 to 8)
First, a copper alloy having the alloy composition shown in Table 1 was melted by a DC (Direct Chill) method, and this was cast to obtain an ingot. The obtained cast ingot was subjected to first cold drawing under the conditions shown in Table 2 to obtain a rough drawn wire having a diameter of 10 mm. Thereafter, the obtained rough drawn wire was heated to 900 ° C. and kept at this temperature for 5 hours to perform a homogenization treatment. Further, wire drawing with a processing rate of 85% was performed as hot wire drawing, and the wire was cooled quickly. Next, the surface was ground by 0.2 mm to remove the oxide film, and then warm drawing was performed under the conditions shown in Table 2. Thereafter, the second cold wire drawing is performed at a processing rate of 45%, heated to 650 ° C., held at this temperature for 200 seconds and subjected to intermediate annealing, and the third cold wire drawing at a processing rate of 25%. Drawing was performed, and solution heat treatment was further performed under the conditions shown in Table 2. After that, the wire was subjected to wire drawing at a processing rate of 30% as the fourth cold wire drawing, heated to 400 ° C., held at this temperature for 3 hours, subjected to aging precipitation heat treatment, and finally surface ground, to a copper alloy wire rod A material (diameter 0.38 mm) was produced. Each heat treatment was performed in an inert gas atmosphere.
[評価]
 このようにして製造した銅合金線棒に対して、各実施例および各比較例とも、以下に示す試験及び評価を実施した。
[Evaluation]
With respect to the copper alloy wire rod thus manufactured, the following tests and evaluations were carried out in both the examples and the comparative examples.
1.集合組織解析
 集合組織解析は、電子線は走査電子顕微鏡のWフィラメントからの熱電子を発生源とした。EBSD法の測定装置は、株式会社TSLソリューションズ製 OIM5.0(製品名)を用い、解析には、OIM Analysisを用いた。測定用試料としては、線材を樹脂埋後にCP(クロスセクションポリッシャ)加工して、線材の長手方向に垂直な断面を切り出し、観察面を得た。測定時プローブ径は約0.015μm、スキャンステップは0.1μm、測定面積は800μm×800μm(64×10μm)とした。また、この測定は、長尺(約5000m)の線材の先端部と後端部について、それぞれ5個の観察面を作製して行った。
 それぞれの観察面について得られた画像に基づき、線材の長手方向(伸線方向)の逆極点図の(100)面方位から±15°以内の方位密度および(111)面方位から±15°以内の方位密度を、それぞれ算出し、それぞれの方位密度について全観察面(先端5面、後端5面)の平均値(N=10)を求めた。結果を表3に示す。
1. Texture analysis In the texture analysis, the electron beam was generated from thermionic electrons from the W filament of the scanning electron microscope. The measuring device of the EBSD method used OIM5.0 (product name) manufactured by TSL Solutions Inc., and OIM Analysis was used for analysis. As a measurement sample, the wire was filled with resin and then subjected to CP (cross section polisher) processing, and a cross section perpendicular to the longitudinal direction of the wire was cut out to obtain an observation surface. The probe diameter during measurement was about 0.015 μm, the scan step was 0.1 μm, and the measurement area was 800 μm × 800 μm (64 × 10 4 μm 2 ). In addition, this measurement was performed by preparing five observation surfaces for the front end portion and the rear end portion of a long (about 5000 m) wire.
Based on the images obtained for each observation plane, the orientation density within ± 15 ° from the (100) plane orientation of the reverse pole figure in the longitudinal direction (drawing direction) of the wire and within ± 15 ° from the (111) plane orientation The respective orientation densities were calculated, and the average value (N = 10) of all the observation surfaces (front end 5 surfaces, rear end 5 surfaces) was determined for each orientation density. The results are shown in Table 3.
2.耐疲労特性
 JIS Z 2273-1978に準じて行った。具体的には、図2に示した試験機を用い、試験片1はその一端が固定部2に挟まれて固定され、他端が上下方向に振動するナイフエッジ2に挟まれて曲げられる。試験片1の線径は0.5mm、試験片1の固定トルクは、固定部3の下部2N・m、上部3N・mである。試験片1の負荷応力値は、下記の式(a)にて求めた。
 500MPaの負荷応力にて試験を行い、材料が破断するまでの繰り返し回数を求めた。
 このような試験を、各実施例および比較例に係る線材について3本ずつ行い、線材が破断までの繰り返し回数の平均値を求めた。結果を表3に示す。本実施例では、破断までの繰り返し回数が、1.00×10回以上を合格レベルとした。
 なお、上記試験機には、疲労試験機(AST52B、株式会社アカシ(現株式会社ミツトヨ)製)を用いた。
2. Fatigue resistance was performed according to JIS Z 2273-1978. Specifically, using the testing machine shown in FIG. 2, the test piece 1 is bent with one end sandwiched between the fixing portions 2 and the other end sandwiched between the knife edges 2 that vibrate in the vertical direction. The wire diameter of the test piece 1 is 0.5 mm, and the fixing torque of the test piece 1 is the lower part 2 N · m and the upper part 3 N · m of the fixing part 3. The load stress value of the test piece 1 was calculated | required by the following formula (a).
The test was performed with a load stress of 500 MPa, and the number of repetitions until the material broke was determined.
Three such tests were performed on the wires according to the examples and comparative examples, and the average value of the number of repetitions until the wires broke was obtained. The results are shown in Table 3. In this example, the number of repetitions until breakage was 1.00 × 10 7 or more as an acceptable level.
Note that a fatigue tester (AST52B, manufactured by Akashi Co., Ltd. (currently Mitutoyo Co., Ltd.)) was used as the tester.
σ=(3×E×t×δ)/(2×l) ・・・ (a)
σ:最大曲げ応力(N/mm
δ:たわみ量(試験片に与える片振幅)(mm)
l:試験片セット長さ(mm)
t:試験片線径(mm)
E:たわみ係数(N/mm
σ = (3 × E × t × δ) / (2 × l 2 ) (a)
σ: Maximum bending stress (N / mm 2 )
δ: Deflection (amplitude given to test piece) (mm)
l: Test piece set length (mm)
t: Test piece wire diameter (mm)
E: Deflection coefficient (N / mm 2 )
3.引張強度
 JIS Z 2241:2011に準じて3本測定し、その平均値(MPa)を表3に示す。なお、本実施例では1000MPa以上を合格レベルとした。
3. Tensile strength Three are measured according to JIS Z 2241: 2011, and the average value (MPa) is shown in Table 3. In this example, 1000 MPa or more was set as an acceptable level.
4.導電率
 導電率は、JIS H0505-1975に基づく四端子法を用いて、20℃(±1℃)に管理された恒温槽中で、各試験片の2本について導電率を測定し、その平均値(%IACS)を表3に示す。このとき端子間距離は100mmとした。なお、本実施例では8.0%IACS以上を合格レベルと評価した。
4). Conductivity Conductivity is measured by measuring the conductivity of two test pieces in a thermostatic chamber controlled at 20 ° C. (± 1 ° C.) using a four-terminal method based on JIS H0505-1975. Values (% IACS) are shown in Table 3. At this time, the distance between terminals was set to 100 mm. In this example, 8.0% IACS or higher was evaluated as a pass level.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果から、実施例1~9に係る銅合金線棒材は、所定の合金組成を有し、集合組織は、線棒材の長手方向に垂直な断面において、EBSD法で測定した長手方向の逆極点図の(100)面方位から±15°以内の方位密度の平均値が5.0以上の範囲、かつ前記逆極点図の(111)面方位から±15°以内の方位密度の平均値が5.0以上の範囲であるため、引張強度、導電率および耐疲労特性の全ての特性がバランスよく優れていることが確認された。 From the results shown in Table 3, the copper alloy wire rods according to Examples 1 to 9 had a predetermined alloy composition, and the texture was measured by the EBSD method in a cross section perpendicular to the longitudinal direction of the wire rod. The average value of orientation density within ± 15 ° from the (100) plane orientation of the reverse pole figure in the longitudinal direction is in the range of 5.0 or more, and the orientation density within ± 15 ° from the (111) plane orientation of the reverse pole figure Since the average value of is in the range of 5.0 or more, it was confirmed that all the properties of tensile strength, electrical conductivity, and fatigue resistance were excellent in a well-balanced manner.
 これに対し、比較例1~8に係る銅合金線棒材は、合金組成、線棒材の長手方向の逆極点図の(100)面方位から±15°以内の方位密度の平均値および(111)面方位から±15°以内の方位密度の平均値の少なくとも一つが適正範囲外であるため、実施例1~9に係る銅合金線棒材に比べて、引張強度、導電率および耐疲労特性のいずれか1つ以上の特性が劣っており、これらの特性のバランスが十分でないことが確認された。 On the other hand, the copper alloy wire rods according to Comparative Examples 1 to 8 have an alloy composition, an average value of orientation density within ± 15 ° from the (100) plane orientation of the reverse pole figure in the longitudinal direction of the wire rod material, and ( 111) Since at least one of the average values of orientation density within ± 15 ° from the plane orientation is outside the proper range, the tensile strength, electrical conductivity, and fatigue resistance compared to the copper alloy wire rods according to Examples 1 to 9 It was confirmed that any one or more of the characteristics were inferior and the balance of these characteristics was not sufficient.
 なお、実施例1~9に係る銅合金線棒材は、塩水噴霧試験による耐食性についても問題がないことを確認した。 In addition, it was confirmed that the copper alloy wire rods according to Examples 1 to 9 had no problem with respect to the corrosion resistance by the salt spray test.

Claims (4)

  1.  3.0~25.0質量%のNiおよび0.1~9.5質量%のSnを含有し、さらに0~0.50質量のFe、0~0.90質量%のSi、0~0.30質量%のMg、0~0.50質量%のMn、0~0.10質量%のZn、0~0.15質量%のZrおよび0~0.10質量%のPbからなる群から選択される少なくとも1成分を含有し、残部がCuおよび不可避不純物からなる合金組成を有し、かつ集合組織を有する銅合金線棒材であって、
     前記集合組織は、前記線棒材の長手方向に垂直な断面において電子線後方散乱回折法(EBSD)による集合組織解析を行って得た、前記長手方向の逆極点図の(100)面方位から±15°以内の方位密度の平均値が5.0以上の範囲、かつ前記逆極点図の(111)面方位から±15°以内の方位密度の平均値が5.0以上の範囲であることを特徴とする、銅合金線棒材。
    Containing 3.0 to 25.0 mass% Ni and 0.1 to 9.5 mass% Sn, further 0 to 0.50 mass Fe, 0 to 0.90 mass Si, 0 to 0 From the group consisting of 30 wt% Mg, 0 to 0.50 wt% Mn, 0 to 0.10 wt% Zn, 0 to 0.15 wt% Zr and 0 to 0.10 wt% Pb A copper alloy wire rod containing at least one selected component, the balance having an alloy composition consisting of Cu and inevitable impurities, and having a texture;
    The texture is obtained from a (100) orientation of the inverse pole figure in the longitudinal direction obtained by performing a texture analysis by electron beam backscatter diffraction (EBSD) in a cross section perpendicular to the longitudinal direction of the wire rod. The average value of orientation density within ± 15 ° is in the range of 5.0 or more, and the average value of orientation density within ± 15 ° from the (111) plane orientation in the reverse pole figure is in the range of 5.0 or more. A copper alloy wire rod characterized by
  2.  引張強度が1000MPa以上であり、かつ、
     JIS Z 2273-1978に準拠した疲労試験において、負荷応力を500MPaとしたときの、線棒材が破断に至るまでの繰り返し回数が1.00×10回以上である、請求項1に記載の銅合金線棒材。
    The tensile strength is 1000 MPa or more, and
    2. The fatigue test according to JIS Z 2273-1978, wherein the number of repetitions until the wire rod breaks is 1.00 × 10 7 or more when the load stress is 500 MPa. Copper alloy wire rod.
  3.  前記Fe、Si、Mg、Mn、Zn、ZrおよびPbからなる群から選択される少なくとも1成分の含有量の合計は1.40質量%以下である、請求項1または2に記載の銅合金線棒材。 The copper alloy wire according to claim 1 or 2, wherein the total content of at least one component selected from the group consisting of Fe, Si, Mg, Mn, Zn, Zr and Pb is 1.40% by mass or less. Bar material.
  4.  請求項1~3のいずれか1項に記載の銅合金線棒材を製造する方法であって、
     3.0~25.0質量%のNiおよび0.1~9.5質量%のSnを含有し、さらに0~0.50質量のFe、0~0.90質量%のSi、0~0.30質量%のMg、0~0.50質量%のMn、0~0.10質量%のZn、0~0.15質量%のZrおよび0~0.10質量%のPbからなる群から選択される少なくとも1成分を含有し、残部がCuおよび不可避不純物からなる合金組成を有する銅合金素材に、鋳造[工程1]、第1冷間加工[工程2]、均質化熱処理[工程3]、熱間加工[工程4]、面削[工程5]、温間加工[工程6]、第2冷間加工[工程7]、中間焼鈍[工程8]、第3冷間加工[工程9]、溶体化熱処理[工程10]、第4冷間加工[工程11]、時効析出熱処理[工程12]、表面研磨[工程13]をこの順に施し、
     前記第1冷間加工は、加工率が5~20%であり、
     前記温間加工は、加熱温度が100~500℃および加工率が10%以上であり、
     前記溶体化熱処理は、昇温速度が10℃/秒以上、溶体化温度が600~900℃、該溶体化温度での保持時間が1~180秒間および冷却速度が10℃/秒以上あることを特徴とする銅合金線棒材の製造方法。
    A method for producing a copper alloy wire rod according to any one of claims 1 to 3,
    Containing 3.0 to 25.0 mass% Ni and 0.1 to 9.5 mass% Sn, further 0 to 0.50 mass Fe, 0 to 0.90 mass Si, 0 to 0 From the group consisting of 30 wt% Mg, 0 to 0.50 wt% Mn, 0 to 0.10 wt% Zn, 0 to 0.15 wt% Zr and 0 to 0.10 wt% Pb Casting [Step 1], first cold working [Step 2], homogenizing heat treatment [Step 3] into a copper alloy material containing an alloy composition containing at least one selected component and the balance consisting of Cu and inevitable impurities , Hot working [step 4], chamfering [step 5], warm working [step 6], second cold working [step 7], intermediate annealing [step 8], third cold working [step 9]. , Solution heat treatment [Step 10], fourth cold working [Step 11], aging precipitation heat treatment [Step 12], surface polishing [Step 13]. It applied to the order,
    The first cold working has a working rate of 5 to 20%,
    In the warm processing, the heating temperature is 100 to 500 ° C. and the processing rate is 10% or more,
    The solution heat treatment has a heating rate of 10 ° C./second or more, a solution temperature of 600 to 900 ° C., a holding time at the solution temperature of 1 to 180 seconds, and a cooling rate of 10 ° C./second or more. A method for producing a copper alloy wire rod.
PCT/JP2017/035821 2016-12-14 2017-10-02 Copper alloy wire rod material and production method therefor WO2018110037A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780064110.6A CN109844147B (en) 2016-12-14 2017-10-02 Copper alloy wire rod and method for producing same
KR1020197010763A KR102349545B1 (en) 2016-12-14 2017-10-02 Copper alloy wire rod and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-242084 2016-12-14
JP2016242084A JP6310538B1 (en) 2016-12-14 2016-12-14 Copper alloy wire rod and method for producing the same

Publications (1)

Publication Number Publication Date
WO2018110037A1 true WO2018110037A1 (en) 2018-06-21

Family

ID=61902035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035821 WO2018110037A1 (en) 2016-12-14 2017-10-02 Copper alloy wire rod material and production method therefor

Country Status (5)

Country Link
JP (1) JP6310538B1 (en)
KR (1) KR102349545B1 (en)
CN (1) CN109844147B (en)
TW (1) TWI737845B (en)
WO (1) WO2018110037A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4067520A1 (en) * 2021-03-31 2022-10-05 NGK Insulators, Ltd. Copper alloy and method for producing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020282B (en) * 2019-12-09 2021-03-16 苏州天兼新材料科技有限公司 Copper-based alloy material for power equipment
CN113046588B (en) * 2021-03-15 2022-01-11 南昌航空大学 Method for preparing high-performance beryllium copper alloy through mechanical vibration treatment and high-performance beryllium copper alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223069A (en) * 2007-03-12 2008-09-25 Miyoshi Gokin Kogyo Kk High-strength, high-conductivity copper alloy and its manufacturing method
WO2011068126A1 (en) * 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet and process for producing same
WO2013031279A1 (en) * 2011-08-29 2013-03-07 Jx日鉱日石金属株式会社 Cu-ni-si alloy and method for manufacturing same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111855A (en) 1983-11-23 1985-06-18 川重冷熱工業株式会社 Double effect absorption refrigerator
US5089057A (en) * 1989-09-15 1992-02-18 At&T Bell Laboratories Method for treating copper-based alloys and articles produced therefrom
JP4566048B2 (en) * 2005-03-31 2010-10-20 株式会社神戸製鋼所 High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP2007169764A (en) * 2005-12-26 2007-07-05 Furukawa Electric Co Ltd:The Copper alloy
JP2009242895A (en) 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd High-strength copper alloy of excellent bending processability
CN101981212A (en) * 2008-03-31 2011-02-23 Jx日矿日石金属株式会社 Cu-Ni-Si alloy to be used in electrically conductive spring material
WO2011046055A1 (en) * 2009-10-14 2011-04-21 独立行政法人科学技術振興機構 Ferrous shape memory alloy and production method therefor
WO2014016934A1 (en) 2012-07-26 2014-01-30 三菱電機株式会社 Copper alloy and production method thereof
WO2014020706A1 (en) * 2012-07-31 2014-02-06 三菱マテリアル株式会社 Copper alloy wire and copper alloy wire manufacturing method
CN105525135B (en) * 2015-12-16 2018-01-19 江西理工大学 The Cu Ni Si system's alloys and its preparation technology of a kind of high-strength less anisotropy index

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223069A (en) * 2007-03-12 2008-09-25 Miyoshi Gokin Kogyo Kk High-strength, high-conductivity copper alloy and its manufacturing method
WO2011068126A1 (en) * 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet and process for producing same
WO2013031279A1 (en) * 2011-08-29 2013-03-07 Jx日鉱日石金属株式会社 Cu-ni-si alloy and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4067520A1 (en) * 2021-03-31 2022-10-05 NGK Insulators, Ltd. Copper alloy and method for producing same

Also Published As

Publication number Publication date
KR20190095251A (en) 2019-08-14
CN109844147A (en) 2019-06-04
JP6310538B1 (en) 2018-04-11
JP2018095928A (en) 2018-06-21
CN109844147B (en) 2021-02-09
TW201821624A (en) 2018-06-16
TWI737845B (en) 2021-09-01
KR102349545B1 (en) 2022-01-10

Similar Documents

Publication Publication Date Title
KR101570555B1 (en) Copper alloy material for electrical and electronic components, and manufacturing method therefor
US20120267013A1 (en) Copper alloy sheet material and method of producing the same
JP6155405B2 (en) Copper alloy material and method for producing the same
JP2009242895A (en) High-strength copper alloy of excellent bending processability
WO2006106939A1 (en) Cu-Ni-Si-Co-Cr BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCTION THEREOF
JP2012180593A (en) Copper alloy sheet and method for manufacturing the same
JP2011214088A (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME
JP2009242814A (en) Copper alloy material and producing method thereof
JP5520533B2 (en) Copper alloy material and method for producing the same
JP6080823B2 (en) Titanium copper for electronic parts
JPWO2016171054A1 (en) Copper alloy sheet and manufacturing method thereof
WO2018110037A1 (en) Copper alloy wire rod material and production method therefor
JP2018159104A (en) Copper alloy sheet having excellent strength and conductivity
JP2009203510A (en) Copper alloy having both of high strength and high electroconductivity
JP2020066756A (en) Titanium copper, manufacturing method of titanium copper, and electronic component
TWI639163B (en) Cu-Co-Ni-Si alloy for electronic parts, and electronic parts
JP2016176106A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
JP6339361B2 (en) Copper alloy sheet and manufacturing method thereof
JP2012162782A (en) High strength copper alloy material, and method of manufacturing the same
JP2016211077A (en) Titanium copper
WO2018198995A1 (en) Copper alloy sheet and method for manufacturing same
JP5995421B2 (en) Copper alloy strip and method for producing the same
JP6712880B2 (en) Copper alloy sheet and method for producing the same
JP6210573B1 (en) Copper alloy wire rod and method for producing the same
WO2020014582A1 (en) Copper-nickel-silicon alloys with high strength and high electrical conductivity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197010763

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880433

Country of ref document: EP

Kind code of ref document: A1