WO2018109928A1 - Gas-liquid separating device of boiling and cooling system - Google Patents

Gas-liquid separating device of boiling and cooling system Download PDF

Info

Publication number
WO2018109928A1
WO2018109928A1 PCT/JP2016/087566 JP2016087566W WO2018109928A1 WO 2018109928 A1 WO2018109928 A1 WO 2018109928A1 JP 2016087566 W JP2016087566 W JP 2016087566W WO 2018109928 A1 WO2018109928 A1 WO 2018109928A1
Authority
WO
WIPO (PCT)
Prior art keywords
swirl chamber
cooling system
gas
boiling cooling
flow path
Prior art date
Application number
PCT/JP2016/087566
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 牛房
勇吾 浅井
健 篠▲崎▼
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/087566 priority Critical patent/WO2018109928A1/en
Priority to JP2018556146A priority patent/JP6732042B2/en
Publication of WO2018109928A1 publication Critical patent/WO2018109928A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a gas-liquid separation device in a boiling cooling system having a liquid refrigerant flow path for cooling a heating element such as an electronic device that performs power conversion and a motor.
  • a boil cooling system that cools the heat of a heating element such as an electronic device that performs power conversion and the motor by using the boiling of a liquid refrigerant.
  • the boiling cooling system is a system that transmits heat from the heating element and the motor to the liquid refrigerant in the cooler to boil the liquid refrigerant to cool it using latent heat, and has high cooling efficiency. Steam bubbles are generated inside.
  • the liquid refrigerant containing the vapor bubbles flows from the cooler into the radiator and is condensed, and the vapor bubbles are liquefied and returned to the cooler, but when dissolved gas exists in the liquid refrigerant, the vapor bubbles may not be liquefied. is there.
  • the vapor bubble repeatedly expands and contracts due to a pressure change in the flow path, and sticks to the surface of a pump impeller or the like to be deformed and destroyed. This phenomenon is called cavitation, and when the steam bubble breaks, it may give a large impact to the surroundings and damage the impeller and the like. For this reason, some boiling cooling systems include a gas-liquid separation device to remove the vapor bubbles (see, for example, Patent Document 1).
  • the present invention has been made to solve the above-described problems, and provides a gas-liquid separator for a boiling cooling system that can suppress the occurrence of cavitation with a simple configuration.
  • gas-liquid separation means that the generated vapor bubbles are lost in addition to separating the dissolved gas and the liquid refrigerant that are not liquefied.
  • a gas-liquid separation device of a boiling cooling system is a gas-liquid separation device attached to a boiling cooling system having a flow path filled with liquid refrigerant, and is a cylindrical swivel provided above the flow path.
  • the swirl chamber has a communication port that communicates with the flow path, an inflow portion that allows liquid refrigerant to flow into the swirl chamber from the outside of the boiling cooling system, and liquid refrigerant from the swirl chamber to the outside of the boiling cooling system.
  • An outflow portion that causes the outflow to flow out, the communication port takes in the vapor bubbles generated in the flow path into the swirl chamber, and the inflow portion causes liquid refrigerant to flow into the swirl chamber to generate a swirl flow in the swirl chamber.
  • the swirl chamber separates the vapor bubbles from the liquid refrigerant by swirling flow.
  • the present invention relates to a gas-liquid separator that separates and discharges vapor bubbles generated in a liquid refrigerant of a boiling cooling system from the liquid refrigerant by generating a swirling flow in the liquid refrigerant.
  • FIG. 1 is a perspective view of a boiling cooling system to which a gas-liquid separator according to Embodiment 1 of the present invention is attached. It is a side view of the boiling cooling system to which the gas-liquid separator by Embodiment 1 was attached.
  • FIG. 3 is a schematic view of a cross section taken along line III-III in FIG. 2. It is a figure which shows the refrigerant circuit in the example which attached the boiling cooling system with which the gas-liquid separator by Embodiment 1 was attached to the drive part of the vehicle.
  • FIG. 4 is a schematic diagram showing a state where vapor bubbles are generated in a flow path in the boiling cooling system of FIG. 3.
  • FIG. 3 is a schematic view of a cross section taken along line VI-VI in FIG. 2.
  • FIG. 6 is a diagram showing a modification of the refrigerant circuit of FIG. 4 in the first embodiment. It is the schematic which shows the 3rd modification of the gas-liquid separator by Embodiment 1. FIG. It is the schematic which shows the 4th modification of the gas-liquid separator by Embodiment 1. FIG. It is the schematic which shows the 5th modification of the gas-liquid separator by Embodiment 1.
  • FIG. It is the schematic which shows the 6th modification of the gas-liquid separator by Embodiment 1.
  • FIG. It is the schematic which shows the 7th modification of the gas-liquid separator by Embodiment 1.
  • FIG. 6 is a schematic diagram showing a gas-liquid separator according to Embodiment 2.
  • FIG. It is the schematic which shows the modification of the gas-liquid separator by Embodiment 2.
  • FIG. 1 is a perspective view of a boiling cooling system to which a gas-liquid separation device according to Embodiment 1 of the present invention is attached.
  • FIG. 2 is a side view of the boiling cooling system to which the gas-liquid separator according to Embodiment 1 is attached, and
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • the boiling cooling system 1 includes a heating element 100, a motor 200, and an annular first flow path 20 provided adjacent to the heating element 100 and the motor 200. . Further, the boiling cooling system 1 has a gas-liquid separation device 10 above the first flow path 20.
  • the heating element 100 is an electronic device such as an inverter that controls the rotational speed of the motor 200, for example.
  • the heating element 100 includes a plurality of elements and a control circuit for controlling on / off of the plurality of elements, and is covered with a cover (not shown) for the purpose of dust prevention, waterproofing, and leakage protection.
  • the heating element 100 is fixed to the outer wall 22 of the first flow path 20 by bonding such as fastening or brazing or welding via grease or a sheet.
  • the motor 200 is a motor for traveling or power generation mounted on, for example, an electric vehicle, a hybrid vehicle, a fuel cell vehicle, or the like. As shown in FIG. 3, the motor 200 is formed by a frame that also serves as the rotor 210 and the stator 220 and the inner wall 21 of the first flow path 20. Then, the three-phase alternating current formed by the heating element 100 is supplied to the stator 220, and the rotor 210 rotates. An annular first flow path 20 filled with the liquid refrigerant 50 is provided around the motor 200 so as to cover the stator 220. The heating element 100 is attached to the outer wall 22 of the first flow path 20.
  • the gas-liquid separator 10 has a cylindrical swirl chamber 11, and the swirl chamber 11 is filled with the liquid refrigerant 50, similar to the first flow path 20.
  • a truncated cone-shaped communication port 12 having a hole penetrating from the upper bottom to the lower bottom is provided.
  • the swirl chamber 11 is connected to the first flow path 20 through the communication port 12. Communicated with.
  • an inflow portion 13 and an outflow portion 14 are provided on the side surface of the swirl chamber 11.
  • the inflow portion 13 and the outflow portion 14 are disposed at positions that are point-symmetric with respect to the center of the swirl chamber 11 in a top view, and are disposed in parallel to each other along the inner wall of the swirl chamber 11. .
  • the inflow portion 13 is provided above the outflow portion 14.
  • the upper portion of the swirl chamber 11 is covered with a conical upper surface plate 19, and a check valve 16 is attached to the uppermost portion that is the center of the upper surface plate 19.
  • the pipe of the second flow path 30 is connected to the inflow portion 13, and the liquid refrigerant 50 flows from the second flow path 30 into the swirl chamber 11 through the inflow portion 13.
  • the pipe of the third flow path 31 is connected to the outflow part 14, and the liquid refrigerant 50 flows out from the swirl chamber 11 to the third flow path 31 through the outflow part 14.
  • the swirling chamber 11 generates a swirling flow by the liquid refrigerant 50 flowing from the inflow portion 13.
  • FIG. 4 is a refrigerant circuit diagram showing a circulation path of the liquid refrigerant 50 when the boiling cooling system 1 having the gas-liquid separation device 10 is attached to the motor 200 of the vehicle.
  • FIG. 5 is a view showing the same cross section as that of the boiling cooling system 1 shown in FIG. 3.
  • FIG. 6 is a schematic cross-sectional view taken along line VI-VI in FIG.
  • the liquid refrigerant 50 used in the boiling cooling system 1 is sent to the engine 80 of the vehicle by a pump 90.
  • the liquid refrigerant 50 sent to the engine 80 absorbs heat from the engine 80 and becomes high temperature, flows into the radiator 81, and is radiated.
  • the liquid refrigerant 50 that has flowed out of the radiator 81 is stored in the reservoir tank 70. Then, it flows into the swirl chamber 11 of the gas-liquid separator 10 from the reservoir tank 70 via the second flow path 30.
  • the liquid refrigerant 50 that has flowed into the swirl chamber 11 flows out into the third flow path 31 and returns to the pump 90.
  • the liquid refrigerant 50 in the first flow path 20 absorbs the heat of the heating element 100 and the motor 200. Since the heating element 100 has a higher temperature than the motor 200, the liquid refrigerant 50 around the heating element 100 has a higher temperature than the liquid refrigerant 50 in the other first flow paths 20. Then, a temperature gradient is formed in the first flow path 20, and convection as shown by an arrow A in FIG.
  • the inner wall 21 of the first flow path 20 corresponding to the part where the heating element 100 is attached is processed to induce boiling of the liquid refrigerant 50.
  • the process for inducing boiling is to form a small groove or notch called a cavity or a boiling nucleus, a protrusion, or to form irregularities on the surface by sandblasting, metal spraying, oxidation-reduction treatment, or the like.
  • the liquid refrigerant 50 around the heating element 100 boils and a vapor bubble 60 is generated.
  • the vapor bubble 60 having a density sufficiently smaller than that of the liquid refrigerant 50 rises in the first flow path 20 as indicated by an arrow B.
  • the high-temperature liquid refrigerant 50 and the vapor bubble 60 rise through the first flow path 20 and come into contact with the liquid refrigerant 50 flowing through the swirl chamber 11 of the gas-liquid separation device 10 through the communication port 12 to exchange heat. Then, the high-temperature liquid refrigerant 50 is cooled, and a part of the vapor bubbles 60 is condensed and liquefied. Then, the liquid refrigerant 50 whose temperature has decreased and a part of the liquefied vapor bubble 60 return to the first flow path 20 again. Thereafter, the same physical phenomenon is repeated, whereby the heating element 100 and the motor 200 are cooled.
  • the vapor bubbles 60 mixed in the swirl flow C in the swirl chamber 11 are centrifuged and collected at the center of the swirl flow C as indicated by the dashed arrows.
  • the vapor bubbles 60 collected at the center of the swirling flow C ascend along the conical upper surface plate 19 of the swirling chamber 11 as shown in FIG.
  • the check valve 16 is opened, and the vapor bubble 60 is discharged to the outside of the swirl chamber 11.
  • the gas-liquid separation device 10 of the boiling cooling system 1 is attached to the upper part of the boiling cooling system 1 and is generated in the liquid refrigerant 50 of the boiling cooling system 1.
  • the vapor bubble 60 is taken into the swirl chamber 11 of the gas-liquid separator 10, and the vapor bubble 60 is separated from the liquid refrigerant 50 by the swirl flow C and released to the outside.
  • the amount of the vapor bubbles 60 generated by boiling the dissolved gas and the liquid refrigerant 50 in the liquid refrigerant 50 can be reduced, and the occurrence of cavitation caused by the vapor bubbles 60 can be suppressed with a simple configuration. it can.
  • the heating element 100 is attached to the outer wall 22 of the first flow path 20, but the casing of the heating element 100 itself forms a part of the outer wall 22 of the first flow path 20. You may do it.
  • the truncated conical communication port 12 having a hole penetrating from the upper base to the lower base is provided on the bottom surface of the swirl chamber 11.
  • the shape of the communication port 12 may be a cylinder, or may be a truncated pyramid or a prism having a hole penetrating from the upper surface to the lower surface.
  • the communication port may be a simple through hole without a wall surface.
  • the first flow path 20 and the swirl chamber 11 are communicated with each other by the communication port 12 provided at the bottom of the swirl chamber 11, but the present invention is not limited to this.
  • the first communication port 12a for moving the vapor bubble 60 from the first flow path 20 to the swirl chamber 11 and the first flow path 20 from the swirl chamber 11 are shown.
  • a second communication port 12b for moving the liquid refrigerant 50 may be provided.
  • the inflow part 13 and the outflow part 14 are arrange
  • the outflow portion 14 may be arranged perpendicular to the inflow portion 13. Thereby, the number of the steam bubbles 60 flowing out from the outflow part 14 before being separated in the swirl chamber 11 among the steam bubbles 60 moved from the first flow path 20 to the swirl chamber 11 through the communication port 12 is reduced. Can be reduced.
  • the check valve 16 is attached to the upper surface plate 19 of the swirl chamber 11, but the present invention is not limited to this.
  • the check valve 16 instead of the check valve 16, as shown in the circuit diagram of FIG. 10, one end side of the pipe 32 may be attached to the upper surface plate 19 and the other end side of the pipe 32 may be attached to the reservoir tank 70. Then, the vapor bubbles 60 collected on the upper part of the swirl chamber 11 are discharged to the reservoir tank 70 via the pipe 32. Thereby, the pressure in the reservoir tank 70 can be raised and the liquid refrigerant 50 in the reservoir tank 70 can be pushed out. Therefore, suction of the liquid refrigerant 50 by the pump 90 can be assisted.
  • the inflow part 13 and the outflow part 14 were arrange
  • the inflow portion 13 and the outflow portion 14 may be attached to be inclined upward along the upper surface plate 19 of the swirl chamber 11.
  • a strong swirling flow can be generated in the upper portion of the swirl chamber 11, and the vapor bubbles 60 can be efficiently collected at the center of the swirl chamber 11.
  • the arrangement of the outflow portion 14 can suppress the vapor bubble 60 in the swirl chamber 11 from flowing out into the second flow path 30.
  • the outflow part 14 may be made to incline downward conversely with the inflow part 13, or only one of the inflow part 13 or the outflow part 14 may be inclined.
  • the swirl chamber 11 is formed in a cylindrical shape, but the present invention is not limited to this.
  • the cross section in the horizontal plane may be formed in an elliptical shape.
  • the major axis and the minor axis of the elliptical shape may be reversed.
  • the inflow part 13 and the outflow part 14 were each arrange
  • the inflow portion 13 and the outflow portion 14 may be arranged so as to project outside the swirl chamber 11a, respectively, or as a sixth modification shown in FIG.
  • the inflow portion 13 and the outflow portion 14 may be arranged closer to the inside than the outer periphery of the swirl chamber 11.
  • the upper surface board 19 was formed in cone shape, it does not restrict to this.
  • the shape may be such that the cone is inverted.
  • the check valve 16 is attached not to the center of the upper surface plate 19a but to the periphery of the end portion which is the uppermost portion of the upper surface plate 19a.
  • the liquid refrigerant 50 that has flowed into the swirl chamber 11 forms a swirl flow C in the annular channel D formed by the inner wall of the swirl chamber 11 and the upper surface plate 19a.
  • the swirl flow C can be easily generated in the swirl chamber 11.
  • the upper surface plate 19 may be hemispherical convex upward or convex downward. That is, an inclined surface that raises the vapor bubble 60 along the swirl chamber 11 side of the upper surface plate 19 may be formed, and the inclined surface may be formed in a part of the upper surface plate 19.
  • FIG. FIG. 16 is a schematic cross-sectional view of the gas-liquid separator 10a according to the second embodiment of the present invention as viewed from above.
  • the gas-liquid separator 10a of the second embodiment is different from the swirl chamber 11 of the gas-liquid separator 10 of the first embodiment in that the swirl chamber 11a has a plurality of blades 17.
  • Other configurations are the same as those in the first embodiment.
  • a plurality of blades 17 extending upward from the bottom surface of the swirl chamber 11a are attached to the swirl chamber 11a of the gas-liquid separator 10a according to the second embodiment.
  • the plurality of blades 17 may be attached so as to extend downward from the upper surface plate 19 of the swirl chamber 11a, or may be continuous from the upper surface plate 19 to the bottom surface of the swirl chamber 11a.
  • the plurality of blades 17 are formed in a shape that does not hinder the flow of the swirl flow C generated in the swirl chamber 11a, and are arranged along the flow of the swirl flow C.
  • the plurality of blades 17 are attached to the swirl chamber 11a, and the swirling flow C is formed along the plurality of blades 17. Then, the liquid refrigerant 50 flows out from between the plurality of blades 17 toward the outside of the swirl chamber 11a. Thereby, the vapor bubbles 60 mixed in the liquid refrigerant 50 can be easily collected on the center side of the swirl chamber 11a, and the separation of the liquid refrigerant 50 and the vapor bubbles 60 can be promoted.
  • the plurality of blades 17 are attached in the swirl chamber 11a.
  • the present invention is not limited to this.
  • a punching metal 18 having a plurality of holes provided in a cylindrical metal plate as shown in the modification of FIG. 17 may be attached.
  • the punching metal 18 of FIG. 17 may not be a metal plate.
  • a plurality of holes may be provided in a cylindrical plate formed of a resin or ceramic plate.
  • the punching metal 18 of FIG. 17 may not be formed in a cylindrical shape, and one or a plurality of bent metal pieces may be arranged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

The present invention relates to a gas-liquid separating device installed in a boiling and cooling system having a flow path filled with a liquid coolant, the gas-liquid separating device comprising a cylindrical swirl chamber provided above the flow path. The swirl chamber has: a communication port communicating with the flow path; a feeding unit for feeding a liquid coolant to the swirl chamber from the outside of the boiling and cooling system; and a discharging unit for discharging the liquid coolant to the outside of the boiling and cooling system from the swirl chamber. The communication port blows vapor bubbles generated inside the flow path to the swirl chamber. The feeding unit feeds the liquid coolant to the swirl chamber, and generates a swirling flow in the swirl chamber. The swirl chamber separates the vapor bubbles from the liquid coolant by means of the swirling flow.

Description

沸騰冷却システムの気液分離装置Gas-liquid separator for boiling cooling system
 この発明は、電力変換を行う電子機器などの発熱体及びモータを冷却する、液冷媒の流路を備えた沸騰冷却システムにおける、気液分離装置に関する。 The present invention relates to a gas-liquid separation device in a boiling cooling system having a liquid refrigerant flow path for cooling a heating element such as an electronic device that performs power conversion and a motor.
 従来より、電力変換を行う電子機器などの発熱体及びモータの熱を、液冷媒の沸騰を利用して冷却する沸騰冷却システムが知られている。沸騰冷却システムは、発熱体及びモータの熱を、冷却器内の液冷媒に伝達し、液冷媒を沸騰させることにより、潜熱を利用して冷却するものであり、冷却効率が高いが、液冷媒中に蒸気泡が発生する。 Conventionally, a boil cooling system that cools the heat of a heating element such as an electronic device that performs power conversion and the motor by using the boiling of a liquid refrigerant is known. The boiling cooling system is a system that transmits heat from the heating element and the motor to the liquid refrigerant in the cooler to boil the liquid refrigerant to cool it using latent heat, and has high cooling efficiency. Steam bubbles are generated inside.
 蒸気泡を含む液冷媒は、冷却器から放熱器に流入して凝縮され、蒸気泡は液化されて冷却器に戻されるが、液冷媒に溶存気体が存在する場合、蒸気泡が液化しないことがある。蒸気泡は、流路内の圧力変化によって膨張と収縮を繰り返し、ポンプの羽根車などの表面に張り付いて変形し、破壊する。この現象はキャビテーションと呼ばれ、蒸気泡が破壊する際に、周囲に大きな衝撃を与え、羽根車などを損傷させることがある。このため、沸騰冷却システムには、気液分離装置を備えて、この蒸気泡を除去するものがある(例えば特許文献1参照)。 The liquid refrigerant containing the vapor bubbles flows from the cooler into the radiator and is condensed, and the vapor bubbles are liquefied and returned to the cooler, but when dissolved gas exists in the liquid refrigerant, the vapor bubbles may not be liquefied. is there. The vapor bubble repeatedly expands and contracts due to a pressure change in the flow path, and sticks to the surface of a pump impeller or the like to be deformed and destroyed. This phenomenon is called cavitation, and when the steam bubble breaks, it may give a large impact to the surroundings and damage the impeller and the like. For this reason, some boiling cooling systems include a gas-liquid separation device to remove the vapor bubbles (see, for example, Patent Document 1).
実開昭63-17821号公報Japanese Utility Model Publication No. 63-17821
 しかしながら、特許文献1の沸騰冷却装置では、気液分離器に気液分離膜を設けているため、構成部品が増加し、メンテナンス性が低下するという課題があった。 However, in the boiling cooling device of Patent Document 1, since the gas-liquid separator is provided with the gas-liquid separator, there is a problem that the number of components increases and the maintainability decreases.
 本発明は、上記のような課題を解決するためになされたものであり、簡易な構成で、キャビテーションの発生を抑制することのできる、沸騰冷却システムの気液分離装置を得るものである。 The present invention has been made to solve the above-described problems, and provides a gas-liquid separator for a boiling cooling system that can suppress the occurrence of cavitation with a simple configuration.
 なお、本発明において、「気液分離」とは、液化しない溶存気体と液冷媒を分離することに加え、発生した蒸気泡を消失させることを表すものとする。 In the present invention, “gas-liquid separation” means that the generated vapor bubbles are lost in addition to separating the dissolved gas and the liquid refrigerant that are not liquefied.
 本発明に係る沸騰冷却システムの気液分離装置は、液冷媒で満たされた流路を有する沸騰冷却システムに取付けられる、気液分離装置であって、流路の上方に設けられる筒状の旋回室を有し、旋回室は、流路と連通する連通口と、沸騰冷却システムの外部から旋回室に、液冷媒を流入させる流入部と、旋回室から沸騰冷却システムの外部に、液冷媒を流出させる流出部とを有し、連通口は、流路内で発生した蒸気泡を、旋回室に取り込み、流入部は、旋回室に液冷媒を流入させて、旋回室内に旋回流を発生させ、旋回室は、旋回流により、蒸気泡を液冷媒から分離する。 A gas-liquid separation device of a boiling cooling system according to the present invention is a gas-liquid separation device attached to a boiling cooling system having a flow path filled with liquid refrigerant, and is a cylindrical swivel provided above the flow path. The swirl chamber has a communication port that communicates with the flow path, an inflow portion that allows liquid refrigerant to flow into the swirl chamber from the outside of the boiling cooling system, and liquid refrigerant from the swirl chamber to the outside of the boiling cooling system. An outflow portion that causes the outflow to flow out, the communication port takes in the vapor bubbles generated in the flow path into the swirl chamber, and the inflow portion causes liquid refrigerant to flow into the swirl chamber to generate a swirl flow in the swirl chamber. The swirl chamber separates the vapor bubbles from the liquid refrigerant by swirling flow.
 本発明は、沸騰冷却システムの液冷媒中に発生する蒸気泡を、液冷媒に旋回流を生じさせることにより、液冷媒から分離して排出する、気液分離装置に関するものである。これにより、簡易な構成で、液冷媒を循環するポンプの翼などにキャビテーションによる損傷が発生することを抑制することができる。 The present invention relates to a gas-liquid separator that separates and discharges vapor bubbles generated in a liquid refrigerant of a boiling cooling system from the liquid refrigerant by generating a swirling flow in the liquid refrigerant. Thereby, it is possible to suppress the occurrence of damage due to cavitation on the blades of the pump that circulates the liquid refrigerant with a simple configuration.
本発明の実施の形態1による気液分離装置が取付けられた、沸騰冷却システムの斜視図である。1 is a perspective view of a boiling cooling system to which a gas-liquid separator according to Embodiment 1 of the present invention is attached. 実施の形態1による気液分離装置が取付けられた、沸騰冷却システムの側面図である。It is a side view of the boiling cooling system to which the gas-liquid separator by Embodiment 1 was attached. 図2のIII-III線に沿う断面の概略図である。FIG. 3 is a schematic view of a cross section taken along line III-III in FIG. 2. 実施の形態1による気液分離装置が取付けられた沸騰冷却システムを、車両の駆動部に取付けた例における、冷媒回路を示す図である。It is a figure which shows the refrigerant circuit in the example which attached the boiling cooling system with which the gas-liquid separator by Embodiment 1 was attached to the drive part of the vehicle. 図3の沸騰冷却システムにおいて、流路内に蒸気泡が発生した状態を示す模式図である。FIG. 4 is a schematic diagram showing a state where vapor bubbles are generated in a flow path in the boiling cooling system of FIG. 3. 図2のVI-VI線に沿う断面の概略図である。FIG. 3 is a schematic view of a cross section taken along line VI-VI in FIG. 2. 実施の形態1による気液分離装置の第1変形例を取付けた、沸騰冷却システムの斜視図である。It is a perspective view of the boiling cooling system to which the 1st modification of the gas-liquid separator by Embodiment 1 was attached. 図7の気液分離装置の第1変形例を取付けた、沸騰冷却システムの断面を示す概略図である。It is the schematic which shows the cross section of the boiling cooling system which attached the 1st modification of the gas-liquid separator of FIG. 実施の形態1による気液分離装置の第2変形例を示す概略図である。It is the schematic which shows the 2nd modification of the gas-liquid separator by Embodiment 1. FIG. 実施の形態1における、図4の冷媒回路の変形例を示す図である。FIG. 6 is a diagram showing a modification of the refrigerant circuit of FIG. 4 in the first embodiment. 実施の形態1による気液分離装置の第3変形例を示す概略図である。It is the schematic which shows the 3rd modification of the gas-liquid separator by Embodiment 1. FIG. 実施の形態1による気液分離装置の第4変形例を示す概略図である。It is the schematic which shows the 4th modification of the gas-liquid separator by Embodiment 1. FIG. 実施の形態1による気液分離装置の第5変形例を示す概略図である。It is the schematic which shows the 5th modification of the gas-liquid separator by Embodiment 1. FIG. 実施の形態1による気液分離装置の第6変形例を示す概略図である。It is the schematic which shows the 6th modification of the gas-liquid separator by Embodiment 1. FIG. 実施の形態1による気液分離装置の第7変形例を示す概略図である。It is the schematic which shows the 7th modification of the gas-liquid separator by Embodiment 1. FIG. 実施の形態2による気液分離装置を示す概略図である。6 is a schematic diagram showing a gas-liquid separator according to Embodiment 2. FIG. 実施の形態2による気液分離装置の変形例を示す概略図である。It is the schematic which shows the modification of the gas-liquid separator by Embodiment 2. FIG.
 以下、本発明の沸騰冷却システムの気液分離装置の好適な実施の形態につき、図面を用いて説明する。 Hereinafter, preferred embodiments of the gas-liquid separator of the boiling cooling system of the present invention will be described with reference to the drawings.
 実施の形態1.
 図1は、本発明の実施の形態1による気液分離装置が取付けられた、沸騰冷却システムの斜視図である。図2は、実施の形態1による気液分離装置が取付けられた、沸騰冷却システムの側面図であり、図3は、図2のIII-III線に沿う断面図である。
Embodiment 1 FIG.
FIG. 1 is a perspective view of a boiling cooling system to which a gas-liquid separation device according to Embodiment 1 of the present invention is attached. FIG. 2 is a side view of the boiling cooling system to which the gas-liquid separator according to Embodiment 1 is attached, and FIG. 3 is a cross-sectional view taken along line III-III in FIG.
 図1~図3に示すように、沸騰冷却システム1は、発熱体100と、モータ200と、これら発熱体100及びモータ200に隣接して設けられた、環状の第1流路20とを有する。また、沸騰冷却システム1は、第1流路20の上部に、気液分離装置10を有している。 As shown in FIGS. 1 to 3, the boiling cooling system 1 includes a heating element 100, a motor 200, and an annular first flow path 20 provided adjacent to the heating element 100 and the motor 200. . Further, the boiling cooling system 1 has a gas-liquid separation device 10 above the first flow path 20.
 発熱体100は、例えば、モータ200の回転数を制御するインバータなどの電子機器である。発熱体100は、複数の素子と、複数の素子をオン/オフ制御するための制御回路を備え、防塵、防水、漏電保護を目的として、図示しないカバーにより覆われている。発熱体100は、放熱性を良くするために、グリースやシートを介して、第1流路20の外壁22に、締結もしくはロウ付けや溶接といった接合によって固定されている。 The heating element 100 is an electronic device such as an inverter that controls the rotational speed of the motor 200, for example. The heating element 100 includes a plurality of elements and a control circuit for controlling on / off of the plurality of elements, and is covered with a cover (not shown) for the purpose of dust prevention, waterproofing, and leakage protection. In order to improve heat dissipation, the heating element 100 is fixed to the outer wall 22 of the first flow path 20 by bonding such as fastening or brazing or welding via grease or a sheet.
 モータ200は、例えば電気自動車、ハイブリッド自動車、燃料電池車等に搭載される走行用もしくは発電用のモータである。モータ200は、図3に示すように、ロータ210及びステータ220と、第1流路20の内壁21を兼ねるフレームにより形成されている。そして、発熱体100により形成された三相交流が、ステータ220に供給されて、ロータ210が回転する。モータ200の周囲には、液冷媒50で満たされた環状の第1流路20が、ステータ220を覆うように設けられている。発熱体100は、この第1流路20の外壁22に取付けられている。 The motor 200 is a motor for traveling or power generation mounted on, for example, an electric vehicle, a hybrid vehicle, a fuel cell vehicle, or the like. As shown in FIG. 3, the motor 200 is formed by a frame that also serves as the rotor 210 and the stator 220 and the inner wall 21 of the first flow path 20. Then, the three-phase alternating current formed by the heating element 100 is supplied to the stator 220, and the rotor 210 rotates. An annular first flow path 20 filled with the liquid refrigerant 50 is provided around the motor 200 so as to cover the stator 220. The heating element 100 is attached to the outer wall 22 of the first flow path 20.
 気液分離装置10は、円筒状の旋回室11を有しており、旋回室11は、第1流路20と同様に、液冷媒50で満たされている。旋回室11の底面には、上底から下底に貫通する孔を有する円錐台状の連通口12が設けられており、旋回室11は、この連通口12を介して、第1流路20と連通している。 The gas-liquid separator 10 has a cylindrical swirl chamber 11, and the swirl chamber 11 is filled with the liquid refrigerant 50, similar to the first flow path 20. On the bottom surface of the swirl chamber 11, a truncated cone-shaped communication port 12 having a hole penetrating from the upper bottom to the lower bottom is provided. The swirl chamber 11 is connected to the first flow path 20 through the communication port 12. Communicated with.
 図1及び図2に示すように、旋回室11の側面には、流入部13と流出部14が設けられている。流入部13と流出部14は、上面視で、旋回室11の中心に対し、点対称となる位置に配置されており、それぞれ、旋回室11の内壁に沿うように、平行に配置されている。また、流入部13は、流出部14よりも上方に設けられている。旋回室11の上部は、円錐状の上面板19で覆われており、上面板19の中央となる最上部には、逆止弁16が取付けられている。 As shown in FIGS. 1 and 2, an inflow portion 13 and an outflow portion 14 are provided on the side surface of the swirl chamber 11. The inflow portion 13 and the outflow portion 14 are disposed at positions that are point-symmetric with respect to the center of the swirl chamber 11 in a top view, and are disposed in parallel to each other along the inner wall of the swirl chamber 11. . The inflow portion 13 is provided above the outflow portion 14. The upper portion of the swirl chamber 11 is covered with a conical upper surface plate 19, and a check valve 16 is attached to the uppermost portion that is the center of the upper surface plate 19.
 流入部13には、第2流路30の配管が接続されており、流入部13を介して、第2流路30から旋回室11に、液冷媒50が流入する。一方、流出部14には、第3流路31の配管が接続されており、流出部14を介して、旋回室11から第3流路31に、液冷媒50が流出する。旋回室11は、流入部13から流入する液冷媒50により、旋回流を発生させている。 The pipe of the second flow path 30 is connected to the inflow portion 13, and the liquid refrigerant 50 flows from the second flow path 30 into the swirl chamber 11 through the inflow portion 13. On the other hand, the pipe of the third flow path 31 is connected to the outflow part 14, and the liquid refrigerant 50 flows out from the swirl chamber 11 to the third flow path 31 through the outflow part 14. The swirling chamber 11 generates a swirling flow by the liquid refrigerant 50 flowing from the inflow portion 13.
 次に、図4~図6を用いて、沸騰冷却システム1と、沸騰冷却システム1に取付けられた気液分離装置10の作用について説明する。 Next, the operation of the boiling cooling system 1 and the gas-liquid separator 10 attached to the boiling cooling system 1 will be described with reference to FIGS.
 図4は、気液分離装置10を有する沸騰冷却システム1を、車両のモータ200に取付けた場合の、液冷媒50の循環経路を示す冷媒回路図である。図5は、図3に示した沸騰冷却システム1の断面と同じ断面を示す図である。また、図6は、図2のVI-VI線に沿う断面の模式図である。 FIG. 4 is a refrigerant circuit diagram showing a circulation path of the liquid refrigerant 50 when the boiling cooling system 1 having the gas-liquid separation device 10 is attached to the motor 200 of the vehicle. FIG. 5 is a view showing the same cross section as that of the boiling cooling system 1 shown in FIG. 3. FIG. 6 is a schematic cross-sectional view taken along line VI-VI in FIG.
 図4に示すように、沸騰冷却システム1に用いられる液冷媒50は、ポンプ90によって、車両のエンジン80に送られる。エンジン80に送られた液冷媒50は、エンジン80の熱を吸収して高温となり、ラジエータ81に流入して放熱される。ラジエータ81から流出した液冷媒50は、リザーバタンク70に貯められる。そして、リザーバタンク70から、第2流路30を経由して、気液分離装置10の旋回室11に流入する。旋回室11に流入した液冷媒50は、第3流路31に流出し、ポンプ90に戻る。 As shown in FIG. 4, the liquid refrigerant 50 used in the boiling cooling system 1 is sent to the engine 80 of the vehicle by a pump 90. The liquid refrigerant 50 sent to the engine 80 absorbs heat from the engine 80 and becomes high temperature, flows into the radiator 81, and is radiated. The liquid refrigerant 50 that has flowed out of the radiator 81 is stored in the reservoir tank 70. Then, it flows into the swirl chamber 11 of the gas-liquid separator 10 from the reservoir tank 70 via the second flow path 30. The liquid refrigerant 50 that has flowed into the swirl chamber 11 flows out into the third flow path 31 and returns to the pump 90.
 沸騰冷却システム1の発熱体100及びモータ200が稼働すると、第1流路20内の液冷媒50は、発熱体100及びモータ200の熱を吸収する。発熱体100は、モータ200よりも高温になるため、発熱体100の周辺の液冷媒50は、他の第1流路20内の液冷媒50よりも高温になる。すると、第1流路20内に温度勾配が形成され、図5に矢印Aで示すような対流が発生する。 When the heating element 100 and the motor 200 of the boiling cooling system 1 are operated, the liquid refrigerant 50 in the first flow path 20 absorbs the heat of the heating element 100 and the motor 200. Since the heating element 100 has a higher temperature than the motor 200, the liquid refrigerant 50 around the heating element 100 has a higher temperature than the liquid refrigerant 50 in the other first flow paths 20. Then, a temperature gradient is formed in the first flow path 20, and convection as shown by an arrow A in FIG.
 また、発熱体100が取付けられている部位に対応する、第1流路20の内壁21には、液冷媒50の沸騰を誘起する加工が施してある。沸騰を誘起する加工とは、キャビティまたは沸騰核と呼ばれる小さな溝もしくは切り欠き、突起物を形成したり、サンドブラスト、金属溶射、酸化還元処理などにより表面に凹凸を形成することである。このような加工により、発熱体100の周辺の液冷媒50は沸騰し、蒸気泡60が発生する。液冷媒50より十分に密度が小さい蒸気泡60は、図5に示すように、第1流路20内を、矢印Bのように上昇する。 Further, the inner wall 21 of the first flow path 20 corresponding to the part where the heating element 100 is attached is processed to induce boiling of the liquid refrigerant 50. The process for inducing boiling is to form a small groove or notch called a cavity or a boiling nucleus, a protrusion, or to form irregularities on the surface by sandblasting, metal spraying, oxidation-reduction treatment, or the like. By such processing, the liquid refrigerant 50 around the heating element 100 boils and a vapor bubble 60 is generated. As shown in FIG. 5, the vapor bubble 60 having a density sufficiently smaller than that of the liquid refrigerant 50 rises in the first flow path 20 as indicated by an arrow B.
 高温の液冷媒50と蒸気泡60は、第1流路20を上昇し、連通口12を介して、気液分離装置10の旋回室11を流れる液冷媒50と接触し、熱交換される。すると、高温の液冷媒50は冷却され、蒸気泡60の一部は凝縮液化する。そして、温度の低下した液冷媒50及び液化した蒸気泡60の一部は、再び第1流路20に戻る。以後、同様な物理現象が繰り返されることにより、発熱体100及びモータ200が冷却される。 The high-temperature liquid refrigerant 50 and the vapor bubble 60 rise through the first flow path 20 and come into contact with the liquid refrigerant 50 flowing through the swirl chamber 11 of the gas-liquid separation device 10 through the communication port 12 to exchange heat. Then, the high-temperature liquid refrigerant 50 is cooled, and a part of the vapor bubbles 60 is condensed and liquefied. Then, the liquid refrigerant 50 whose temperature has decreased and a part of the liquefied vapor bubble 60 return to the first flow path 20 again. Thereafter, the same physical phenomenon is repeated, whereby the heating element 100 and the motor 200 are cooled.
 一方、第1流路20内を上昇した蒸気泡60のうち、凝縮液化しなかったものは、図5に示すように、連通口12を通過して、気液分離装置10の旋回室11の中へと移動する。そして、蒸気泡60は、旋回室11内で旋回する液冷媒50に混入する。 On the other hand, among the vapor bubbles 60 that have risen in the first flow path 20, those that have not been condensed and liquefied pass through the communication port 12 and enter the swirl chamber 11 of the gas-liquid separator 10 as shown in FIG. 5. Move in. The vapor bubbles 60 are mixed in the liquid refrigerant 50 that swirls in the swirl chamber 11.
 図6に示すように、旋回室11内の旋回流Cに混入した蒸気泡60は、遠心分離され、破線の矢印で示すように、旋回流Cの中心に集められる。旋回流Cの中心に集められた蒸気泡60は、図5に示すように、旋回室11の円錐状の上面板19に沿って上昇する。そして、旋回室11内が、一定の圧力を超えた場合に、逆止弁16を開放して、蒸気泡60を旋回室11の外部に放出する。 As shown in FIG. 6, the vapor bubbles 60 mixed in the swirl flow C in the swirl chamber 11 are centrifuged and collected at the center of the swirl flow C as indicated by the dashed arrows. The vapor bubbles 60 collected at the center of the swirling flow C ascend along the conical upper surface plate 19 of the swirling chamber 11 as shown in FIG. When the inside of the swirl chamber 11 exceeds a certain pressure, the check valve 16 is opened, and the vapor bubble 60 is discharged to the outside of the swirl chamber 11.
 このように、実施の形態1による沸騰冷却システム1の気液分離装置10によれば、沸騰冷却システム1の上部に気液分離装置10を取付け、沸騰冷却システム1の液冷媒50中に発生した蒸気泡60を、気液分離装置10の旋回室11に取り込み、旋回流Cによって蒸気泡60を液冷媒50から分離して、外部に放出する。これにより、液冷媒50中の溶存気体及び液冷媒50が沸騰して発生する蒸気泡60の量を減らすことができ、簡易な構成で、蒸気泡60に起因するキャビテーションの発生を抑制することができる。 As described above, according to the gas-liquid separation device 10 of the boiling cooling system 1 according to the first embodiment, the gas-liquid separation device 10 is attached to the upper part of the boiling cooling system 1 and is generated in the liquid refrigerant 50 of the boiling cooling system 1. The vapor bubble 60 is taken into the swirl chamber 11 of the gas-liquid separator 10, and the vapor bubble 60 is separated from the liquid refrigerant 50 by the swirl flow C and released to the outside. Thereby, the amount of the vapor bubbles 60 generated by boiling the dissolved gas and the liquid refrigerant 50 in the liquid refrigerant 50 can be reduced, and the occurrence of cavitation caused by the vapor bubbles 60 can be suppressed with a simple configuration. it can.
 なお、実施の形態1では、発熱体100を、第1流路20の外壁22に取付けていたが、発熱体100の筐体自体が、第1流路20の外壁22の一部を形成するようにしてもよい。また、実施の形態1では、旋回室11の底面に、上底から下底に貫通する孔を有する円錐台状の連通口12を設けたが、これに限るものではない。例えば、連通口12の形状は、円筒であってもよいし、上面から下面に貫通する孔を有する角錐台または角柱であってもよい。さらに、連通口は、壁面のない単なる貫通孔であってもよい。 In the first embodiment, the heating element 100 is attached to the outer wall 22 of the first flow path 20, but the casing of the heating element 100 itself forms a part of the outer wall 22 of the first flow path 20. You may do it. In the first embodiment, the truncated conical communication port 12 having a hole penetrating from the upper base to the lower base is provided on the bottom surface of the swirl chamber 11. However, the present invention is not limited to this. For example, the shape of the communication port 12 may be a cylinder, or may be a truncated pyramid or a prism having a hole penetrating from the upper surface to the lower surface. Further, the communication port may be a simple through hole without a wall surface.
 そして、実施の形態1では、旋回室11の底部に設けた連通口12により、第1流路20と旋回室11とを連通させていたが、これに限るものではない。例えば、第1変形例として図7及び図8に示すように、第1流路20から旋回室11に蒸気泡60を移動させる第1の連通口12aと、旋回室11から第1流路20へ液冷媒50を移動させる第2の連通口12bとを設けてもよい。 In the first embodiment, the first flow path 20 and the swirl chamber 11 are communicated with each other by the communication port 12 provided at the bottom of the swirl chamber 11, but the present invention is not limited to this. For example, as shown in FIGS. 7 and 8 as a first modification, the first communication port 12a for moving the vapor bubble 60 from the first flow path 20 to the swirl chamber 11 and the first flow path 20 from the swirl chamber 11 are shown. A second communication port 12b for moving the liquid refrigerant 50 may be provided.
 さらに、実施の形態1では、流入部13と流出部14は、上面視で、旋回室11の中心に対し、点対称となる位置に配置され、それぞれ、旋回室11の内壁に沿うように、平行に配置されているが、これに限るものではない。例えば、第2変形例として図9に示すように、流入部13に対し、流出部14を垂直に配置してもよい。これにより、第1流路20から連通口12を介して旋回室11に移動した蒸気泡60のうち、旋回室11内で分離される前に、流出部14から流出する蒸気泡60の数を減らすことができる。 Furthermore, in Embodiment 1, the inflow part 13 and the outflow part 14 are arrange | positioned in the position which becomes point-symmetrical with respect to the center of the swirl | vortex chamber 11 by upper surface view, respectively, along the inner wall of the swirl | vortex chamber 11, Although arrange | positioned in parallel, it is not restricted to this. For example, as shown in FIG. 9 as a second modification, the outflow portion 14 may be arranged perpendicular to the inflow portion 13. Thereby, the number of the steam bubbles 60 flowing out from the outflow part 14 before being separated in the swirl chamber 11 among the steam bubbles 60 moved from the first flow path 20 to the swirl chamber 11 through the communication port 12 is reduced. Can be reduced.
 また、実施の形態1では、旋回室11の上面板19に、逆止弁16を取付けていたが、これに限るものではない。例えば、逆止弁16の代わりに、図10の回路図に示す様に、上面板19に、配管32の一端側を取付け、配管32の他端側をリザーバタンク70に取付けてもよい。そして、旋回室11の上部に集めた蒸気泡60を、配管32を介して、リザーバタンク70に放出する。これにより、リザーバタンク70内の圧力を上昇させて、リザーバタンク70内の液冷媒50を押し出すことができる。よって、ポンプ90による液冷媒50の吸引を補助することができる。 In the first embodiment, the check valve 16 is attached to the upper surface plate 19 of the swirl chamber 11, but the present invention is not limited to this. For example, instead of the check valve 16, as shown in the circuit diagram of FIG. 10, one end side of the pipe 32 may be attached to the upper surface plate 19 and the other end side of the pipe 32 may be attached to the reservoir tank 70. Then, the vapor bubbles 60 collected on the upper part of the swirl chamber 11 are discharged to the reservoir tank 70 via the pipe 32. Thereby, the pressure in the reservoir tank 70 can be raised and the liquid refrigerant 50 in the reservoir tank 70 can be pushed out. Therefore, suction of the liquid refrigerant 50 by the pump 90 can be assisted.
 そして、実施の形態1では、流入部13と流出部14を水平に配置していたが、これに限るものではない。例えば、第3変形例として図11に示すように、流入部13と流出部14を、旋回室11の上面板19に沿うように、上向きに傾斜させて取付けてもよい。このような流入部13の配置により、旋回室11の上部に強い旋回流を発生させて、蒸気泡60を、効率よく旋回室11の中心に集めることができる。また、このような流出部14の配置により、旋回室11内の蒸気泡60が第2流路30に流出することを抑制することができる。なお、流出部14は、流入部13と逆に、下向きに傾斜させてもよいし、流入部13と流出部14のいずれか一方のみを傾斜させてもよい。 And in Embodiment 1, although the inflow part 13 and the outflow part 14 were arrange | positioned horizontally, it does not restrict to this. For example, as shown in FIG. 11 as a third modification, the inflow portion 13 and the outflow portion 14 may be attached to be inclined upward along the upper surface plate 19 of the swirl chamber 11. With such an arrangement of the inflow portion 13, a strong swirling flow can be generated in the upper portion of the swirl chamber 11, and the vapor bubbles 60 can be efficiently collected at the center of the swirl chamber 11. In addition, the arrangement of the outflow portion 14 can suppress the vapor bubble 60 in the swirl chamber 11 from flowing out into the second flow path 30. In addition, the outflow part 14 may be made to incline downward conversely with the inflow part 13, or only one of the inflow part 13 or the outflow part 14 may be inclined.
 また、実施の形態1では、旋回室11を円筒状に形成したが、これに限るものではない。例えば、第4変形例として図12に示すように、水平面内における断面が、楕円形状となるように形成してもよい。楕円形状の長軸と短軸は、逆にしてもよい。 In the first embodiment, the swirl chamber 11 is formed in a cylindrical shape, but the present invention is not limited to this. For example, as shown in FIG. 12 as a fourth modification, the cross section in the horizontal plane may be formed in an elliptical shape. The major axis and the minor axis of the elliptical shape may be reversed.
 さらに、実施の形態1では、流入部13と流出部14を、それぞれ、旋回室11の内壁に沿って配置したが、流入部13と流出部14の配置は、これに限るものではない。例えば、第5変形例として図13に示すように、流入部13と流出部14を、それぞれ旋回室11aの外側に張り出すように配置してもよいし、第6変形例として図14に示すように、流入部13と流出部14を、それぞれ旋回室11の外周より内側に寄せて配置してもよい。 Furthermore, in Embodiment 1, although the inflow part 13 and the outflow part 14 were each arrange | positioned along the inner wall of the turning chamber 11, arrangement | positioning of the inflow part 13 and the outflow part 14 is not restricted to this. For example, as shown in FIG. 13 as a fifth modification, the inflow portion 13 and the outflow portion 14 may be arranged so as to project outside the swirl chamber 11a, respectively, or as a sixth modification shown in FIG. As described above, the inflow portion 13 and the outflow portion 14 may be arranged closer to the inside than the outer periphery of the swirl chamber 11.
 そして、実施の形態1では、上面板19を円錐状に形成したが、これに限るものではない。例えば、第7変形例として図15に示すように、円錐を逆さにしたような形状としてもよい。この場合、逆止弁16は、上面板19aの中央ではなく、上面板19aの最上部となる、端部周辺に取付ける。旋回室11に流入した液冷媒50は、旋回室11の内壁と、上面板19aにより形成された環状の流路D内で旋回流Cを形成する。このように上面板19aを形成することにより、旋回室11内で、旋回流Cを発生しやすくすることができる。さらに、上面板19は、上に凸、または下に凸となる半球状であってもよい。すなわち、上面板19の旋回室11側に、蒸気泡60を沿わせて上昇させる傾斜面が形成されていればよく、傾斜面は、上面板19の一部に形成されていてもよい。 And in Embodiment 1, although the upper surface board 19 was formed in cone shape, it does not restrict to this. For example, as shown in FIG. 15 as a seventh modified example, the shape may be such that the cone is inverted. In this case, the check valve 16 is attached not to the center of the upper surface plate 19a but to the periphery of the end portion which is the uppermost portion of the upper surface plate 19a. The liquid refrigerant 50 that has flowed into the swirl chamber 11 forms a swirl flow C in the annular channel D formed by the inner wall of the swirl chamber 11 and the upper surface plate 19a. By forming the upper surface plate 19a in this way, the swirl flow C can be easily generated in the swirl chamber 11. Furthermore, the upper surface plate 19 may be hemispherical convex upward or convex downward. That is, an inclined surface that raises the vapor bubble 60 along the swirl chamber 11 side of the upper surface plate 19 may be formed, and the inclined surface may be formed in a part of the upper surface plate 19.
 実施の形態2.
 図16は、本発明の実施の形態2による気液分離装置10aを上面からみた概略断面図である。実施の形態2の気液分離装置10aは、旋回室11aに複数の翼17を有している点が、実施の形態1の気液分離装置10の旋回室11とは異なる。他の構成は、実施の形態1と同様である。
Embodiment 2. FIG.
FIG. 16 is a schematic cross-sectional view of the gas-liquid separator 10a according to the second embodiment of the present invention as viewed from above. The gas-liquid separator 10a of the second embodiment is different from the swirl chamber 11 of the gas-liquid separator 10 of the first embodiment in that the swirl chamber 11a has a plurality of blades 17. Other configurations are the same as those in the first embodiment.
 実施の形態2による気液分離装置10aの旋回室11aには、旋回室11aの底面から上方に延出する複数の翼17が取付けられている。これら複数の翼17は、旋回室11aの上面板19から下方に延出するように取付けられてもよいし、旋回室11aの上面板19から底面まで連続したものであってもよい。複数の翼17は、旋回室11a内で発生させる旋回流Cの流れを阻害しないような形状に形成され、旋回流Cの流れに沿うように配置される。 A plurality of blades 17 extending upward from the bottom surface of the swirl chamber 11a are attached to the swirl chamber 11a of the gas-liquid separator 10a according to the second embodiment. The plurality of blades 17 may be attached so as to extend downward from the upper surface plate 19 of the swirl chamber 11a, or may be continuous from the upper surface plate 19 to the bottom surface of the swirl chamber 11a. The plurality of blades 17 are formed in a shape that does not hinder the flow of the swirl flow C generated in the swirl chamber 11a, and are arranged along the flow of the swirl flow C.
 実施の形態2による気液分離装置10aによれば、複数の翼17を旋回室11aに取付け、複数の翼17に沿って旋回流Cを形成する。そして、液冷媒50を、複数の翼17の間から、旋回室11aの外側に向かって流出させる。これにより、液冷媒50に混入している蒸気泡60を、旋回室11aの中央側に集まりやすくして、液冷媒50と蒸気泡60の分離を促進することができる。なお、実施の形態2では、旋回室11a内に、複数の翼17を取付けたが、これに限るものではない。例えば、複数の翼17に代えて、図17の変形例に示すような、円筒状の金属板に複数の孔を設けた、パンチングメタル18を取付けてもよい。また、図17のパンチングメタル18は、金属板でなくてもよい。例えば樹脂やセラミックの板で形成された円筒状の板に、複数の孔を設けてもよい。さらに、図17のパンチングメタル18は、円筒状に形成しなくてもよく、曲線状に曲げたものを1枚、もしくは複数枚並べてもよい。 According to the gas-liquid separator 10a according to the second embodiment, the plurality of blades 17 are attached to the swirl chamber 11a, and the swirling flow C is formed along the plurality of blades 17. Then, the liquid refrigerant 50 flows out from between the plurality of blades 17 toward the outside of the swirl chamber 11a. Thereby, the vapor bubbles 60 mixed in the liquid refrigerant 50 can be easily collected on the center side of the swirl chamber 11a, and the separation of the liquid refrigerant 50 and the vapor bubbles 60 can be promoted. In the second embodiment, the plurality of blades 17 are attached in the swirl chamber 11a. However, the present invention is not limited to this. For example, instead of the plurality of blades 17, a punching metal 18 having a plurality of holes provided in a cylindrical metal plate as shown in the modification of FIG. 17 may be attached. Moreover, the punching metal 18 of FIG. 17 may not be a metal plate. For example, a plurality of holes may be provided in a cylindrical plate formed of a resin or ceramic plate. Furthermore, the punching metal 18 of FIG. 17 may not be formed in a cylindrical shape, and one or a plurality of bent metal pieces may be arranged.
 1 沸騰冷却システム、10 気液分離装置、11 旋回室、12 連通口、12a 第1の連通口、12b 第2の連通口、13 流入部、14 流出部、16 逆止弁(弁)、17 翼(旋回流誘導部材)、18 パンチングメタル(旋回流誘導部材)、19 上面板(天板)、20 第1流路(流路)、21 内壁、22 外壁、30 第2流路(沸騰冷却システムの外部)、31 第3流路(沸騰冷却システムの外部)、50 液冷媒、60 蒸気泡、70 リザーバタンク、80 エンジン、81 ラジエータ、90 ポンプ、100 発熱体、200 モータ、210 ロータ、220 ステータ。 1 boiling cooling system, 10 gas-liquid separator, 11 swirl chamber, 12 communication port, 12a first communication port, 12b second communication port, 13 inflow part, 14 outflow part, 16 check valve (valve), 17 Wings (swirl flow guide member), 18 punching metal (swirl flow guide member), 19 top plate (top plate), 20 first flow path (flow path), 21 inner wall, 22 outer wall, 30 second flow path (boiling cooling) System outside), 31 3rd flow path (outside of boiling cooling system), 50 liquid refrigerant, 60 vapor bubbles, 70 reservoir tank, 80 engine, 81 radiator, 90 pump, 100 heating element, 200 motor, 210 rotor, 220 Stator.

Claims (9)

  1.  液冷媒で満たされた流路を有する沸騰冷却システムに取付けられる、気液分離装置であって、
     筒状の旋回室を有し、
     前記旋回室は、
     前記流路の上方に設けられ、
     前記旋回室は、
     前記流路と連通する連通口と、
     前記沸騰冷却システムの外部から前記旋回室に、液冷媒を流入させる流入部と、
     前記旋回室から前記沸騰冷却システムの外部に、前記液冷媒を流出させる流出部とを有し、
     前記連通口は、
     前記流路内で発生した蒸気泡を、前記旋回室に取り込み、
     前記流入部は、
     前記旋回室に前記液冷媒を流入させて、前記旋回室内に旋回流を発生させ、
     前記旋回室は、
     前記旋回流により、前記蒸気泡を前記液冷媒から分離する、
    沸騰冷却システムの気液分離装置。
    A gas-liquid separator attached to a boiling cooling system having a flow path filled with liquid refrigerant,
    Has a cylindrical swirl chamber,
    The swirl chamber is
    Provided above the flow path,
    The swirl chamber is
    A communication port communicating with the flow path;
    An inflow portion for allowing liquid refrigerant to flow into the swirl chamber from the outside of the boiling cooling system;
    An outflow portion for allowing the liquid refrigerant to flow out of the boiling cooling system from the swirl chamber;
    The communication port is
    Vapor bubbles generated in the flow path are taken into the swirl chamber,
    The inflow part is
    Causing the liquid refrigerant to flow into the swirl chamber to generate a swirl flow in the swirl chamber;
    The swirl chamber is
    Separating the vapor bubbles from the liquid refrigerant by the swirling flow;
    Gas-liquid separator for boiling cooling system.
  2.  前記旋回室は、天板を有し、
     前記天板は、前記旋回室の内側に、傾斜面を有する、
    請求項1に記載の沸騰冷却システムの気液分離装置。
    The swirl chamber has a top plate,
    The top plate has an inclined surface inside the swirl chamber,
    The gas-liquid separator of the boiling cooling system according to claim 1.
  3.  前記天板の最上部には、前記旋回室の外部と連通する弁が取付けられる、
    請求項2に記載の沸騰冷却システムの気液分離装置。
    A valve communicating with the outside of the swirl chamber is attached to the top of the top plate.
    The gas-liquid separator of the boiling cooling system according to claim 2.
  4.  前記天板の最上部には、リザーバタンクに接続される配管が取付けられる、
    請求項2または3に記載の沸騰冷却システムの気液分離装置。
    A pipe connected to the reservoir tank is attached to the top of the top plate.
    The gas-liquid separator of the boiling cooling system according to claim 2 or 3.
  5.  前記流入部は、前記旋回室の中心軸に対し、オフセットした位置に配置される、
    請求項1から4のいずれか1項に記載の沸騰冷却システムの気液分離装置。
    The inflow portion is disposed at a position offset with respect to the central axis of the swirl chamber.
    The gas-liquid separation apparatus of the boiling cooling system of any one of Claim 1 to 4.
  6.  前記流入部は、前記流出部よりも上方に設けられる、
    請求項1から5のいずれか1項に記載の沸騰冷却システムの気液分離装置。
    The inflow portion is provided above the outflow portion,
    The gas-liquid separation device of the boiling cooling system according to any one of claims 1 to 5.
  7.  前記流入部と前記流出部の少なくとも一方は、上下方向に傾斜して設けられる、
    請求項1から6のいずれか1項に記載の沸騰冷却システムの気液分離装置。
    At least one of the inflow portion and the outflow portion is provided to be inclined in the vertical direction.
    The gas-liquid separation apparatus of the boiling cooling system of any one of Claim 1 to 6.
  8.  前記旋回室には、旋回流を誘導する、旋回流誘導部材が設けられている、
    請求項1から7のいずれか1項に記載の沸騰冷却システムの気液分離装置。
    The swirl chamber is provided with a swirl flow guiding member for guiding swirl flow,
    The gas-liquid separation apparatus of the boiling cooling system of any one of Claim 1 to 7.
  9.  前記連通口は、
     前記流路から前記旋回室へ、前記蒸気泡を含む前記液冷媒を取り入れる第1の連通口と、
     前記旋回室から前記流路へ、前記液冷媒を流入させる第2の連通口とを有する、
    請求項1から8のいずれか1項に記載の沸騰冷却システムの気液分離装置。
    The communication port is
    A first communication port for taking in the liquid refrigerant containing the vapor bubbles from the flow path to the swirl chamber;
    A second communication port through which the liquid refrigerant flows from the swirl chamber to the flow path,
    The gas-liquid separation apparatus of the boiling cooling system of any one of Claim 1 to 8.
PCT/JP2016/087566 2016-12-16 2016-12-16 Gas-liquid separating device of boiling and cooling system WO2018109928A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/087566 WO2018109928A1 (en) 2016-12-16 2016-12-16 Gas-liquid separating device of boiling and cooling system
JP2018556146A JP6732042B2 (en) 2016-12-16 2016-12-16 Gas-liquid separator for boiling cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/087566 WO2018109928A1 (en) 2016-12-16 2016-12-16 Gas-liquid separating device of boiling and cooling system

Publications (1)

Publication Number Publication Date
WO2018109928A1 true WO2018109928A1 (en) 2018-06-21

Family

ID=62558164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087566 WO2018109928A1 (en) 2016-12-16 2016-12-16 Gas-liquid separating device of boiling and cooling system

Country Status (2)

Country Link
JP (1) JP6732042B2 (en)
WO (1) WO2018109928A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536592A (en) * 2019-09-23 2019-12-03 中航光电科技股份有限公司 A kind of Phase cooling system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55176570U (en) * 1979-06-05 1980-12-18
JPS5853153U (en) * 1981-10-06 1983-04-11 株式会社東芝 Boiling cooling device
JP2013120055A (en) * 2011-12-07 2013-06-17 Hyundai Motor Co Ltd Radiator for vehicle
JP2014183107A (en) * 2013-03-18 2014-09-29 Fujitsu Ltd Cooling device
JP2015140735A (en) * 2014-01-29 2015-08-03 いすゞ自動車株式会社 Cooling auxiliary device
JP2015229144A (en) * 2014-06-05 2015-12-21 マツダ株式会社 Gas-liquid separator
WO2016159056A1 (en) * 2015-03-30 2016-10-06 日本電気株式会社 Heat medium distribution device and heat medium distribution method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55176570U (en) * 1979-06-05 1980-12-18
JPS5853153U (en) * 1981-10-06 1983-04-11 株式会社東芝 Boiling cooling device
JP2013120055A (en) * 2011-12-07 2013-06-17 Hyundai Motor Co Ltd Radiator for vehicle
JP2014183107A (en) * 2013-03-18 2014-09-29 Fujitsu Ltd Cooling device
JP2015140735A (en) * 2014-01-29 2015-08-03 いすゞ自動車株式会社 Cooling auxiliary device
JP2015229144A (en) * 2014-06-05 2015-12-21 マツダ株式会社 Gas-liquid separator
WO2016159056A1 (en) * 2015-03-30 2016-10-06 日本電気株式会社 Heat medium distribution device and heat medium distribution method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536592A (en) * 2019-09-23 2019-12-03 中航光电科技股份有限公司 A kind of Phase cooling system

Also Published As

Publication number Publication date
JP6732042B2 (en) 2020-07-29
JPWO2018109928A1 (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP5543413B2 (en) Jet impingement heat exchange device and power electronics module
CN101577144B (en) Systems and methods for synthetic jet enhanced natural cooling
EP2667408B1 (en) Natural circulation type cooling apparatus
US8026642B2 (en) Driving apparatus and vehicle including driving apparatus
JP2007095902A (en) Cooling device and electronic equipment having the same
US20070023169A1 (en) Synthetic jet ejector for augmentation of pumped liquid loop cooling and enhancement of pool and flow boiling
JP6440822B2 (en) Cooler, power conversion device and cooling system
US8018103B2 (en) Driving mechanism
JP2015050929A (en) Inverter cooling apparatus
CN101111120B (en) Cooling device and system for a plasma arc torch and associated method
JP2019179832A (en) Cooling device
WO2018109928A1 (en) Gas-liquid separating device of boiling and cooling system
US10729040B2 (en) Cooler, power conversion apparatus, and cooling system
JP7126279B2 (en) Electronic device with bubble release device
JP2007120361A (en) Liquid circulation device
JP6213383B2 (en) Gas-liquid separator
JP2013130332A (en) Bubble-driven cooling device
JP5714429B2 (en) Boiling cooler
JP2009209740A (en) Gas liquid separator and waste heat recovering device equipped with same
JP2015140949A (en) Cooling device and data center including the same
JP2015129594A (en) Airlift pump cooling device
US20240017189A1 (en) Gas-liquid separation mechanism of reserve tank
JP2014052117A (en) Cooling device, electric vehicle equipped with the same, and electronic apparatus equipped with the same
JP2009293885A (en) Ebullient cooling device
CN220140057U (en) Radiating assembly and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924052

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556146

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924052

Country of ref document: EP

Kind code of ref document: A1