WO2018107523A1 - C轴结晶igzo薄膜及其制备方法 - Google Patents

C轴结晶igzo薄膜及其制备方法 Download PDF

Info

Publication number
WO2018107523A1
WO2018107523A1 PCT/CN2016/112524 CN2016112524W WO2018107523A1 WO 2018107523 A1 WO2018107523 A1 WO 2018107523A1 CN 2016112524 W CN2016112524 W CN 2016112524W WO 2018107523 A1 WO2018107523 A1 WO 2018107523A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic layer
layer deposition
crystalline igzo
axis crystalline
deposition device
Prior art date
Application number
PCT/CN2016/112524
Other languages
English (en)
French (fr)
Inventor
王选芸
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/505,107 priority Critical patent/US20190153595A1/en
Publication of WO2018107523A1 publication Critical patent/WO2018107523A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45531Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • H01L21/02661In-situ cleaning

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a C-axis crystalline IGZO film and a preparation method thereof.
  • TFT Thin Film Transistor
  • LCD liquid crystal display
  • AMOLED Active Matrix Organic Light-Emitting Diode
  • IGZO Indium Gallium Zinc Oxide
  • indium gallium zinc oxide which is a thin film transistor technology, a layer of metal oxide applied on the active layer of a TFT-LCD.
  • the IGZO technology is controlled by Sharp and is a product jointly developed with the Japan Semiconductor Energy Research Institute. In addition to Sharp, Samsung SDI and LG Display also have the ability to produce IGZO panels.
  • IGZO Compared with amorphous silicon (a-Si) materials, IGZO is 20 to 50 times faster than a-Si TFTs. IGZO uses indium, gallium, zinc, and oxygen to replace the traditional a-Si layer. The screen response time can be greatly reduced, the transistor size can be reduced, the aperture ratio of the panel pixel can be increased, and the high definition can be easily realized, thereby integrating a simple external circuit into the panel, making the mobile device thinner and lighter, and power consumption. Also dropped to the previous two-thirds.
  • CAAC C-axis Aligned Crystalline
  • An object of the present invention is to provide a method for preparing a C-axis crystalline IGZO film, which has good crystal quality, less oxygen defects, and can improve the stability of the TFT; and the C-axis crystalline IGZO film obtained at the same time.
  • the area of the crystal region in the middle is large, and the scale application of the C-axis crystal IGZO can be promoted.
  • Another object of the present invention is to provide a C-axis crystalline IGZO film.
  • the C-axis crystalline IGZO has good crystal quality, less oxygen defects, can improve the stability of the TFT, and has a large area of the crystal region, which is favorable for the C-axis crystal IGZO. Scaled application.
  • the present invention provides a method for preparing a C-axis crystalline IGZO film, comprising the following steps:
  • Step 1 Providing a substrate and an atomic layer deposition device, feeding the substrate into the atomic layer deposition device, introducing an indium oxide precursor material into the atomic layer deposition device, and simultaneously introducing oxygen and an inert gas. Mixing a gas to form an indium oxide film on the substrate;
  • Step 2 introducing a cleaning gas into the atomic layer deposition device to expel the excess indium oxide precursor material in the atomic layer deposition device, thereby cleaning the atomic layer deposition device;
  • Step 3 introducing a gallium oxide precursor substance into the atomic layer deposition device, and simultaneously introducing a mixed gas of oxygen and an inert gas to form a gallium oxide film on the indium oxide film;
  • Step 4 introducing a cleaning gas into the atomic layer deposition device to expel the excess gallium oxide precursor material in the atomic layer deposition device, thereby cleaning the atomic layer deposition device;
  • Step 5 introducing a zinc oxide precursor substance into the atomic layer deposition apparatus, and simultaneously introducing a mixed gas of oxygen and an inert gas to form a zinc oxide film on the gallium oxide film;
  • Step 6 Passing a cleaning gas into the atomic layer deposition device to expel the excess zinc oxide precursor material in the atomic layer deposition device, thereby cleaning the atomic layer deposition device;
  • a C-axis crystalline IGZO film is formed on the substrate, and the C-axis crystalline IGZO film includes an indium oxide film, a gallium oxide film, and a zinc oxide film which are sequentially arranged in the C-axis direction. ;
  • Step 7 Form a C-axis crystalline IGZO film on the substrate.
  • the C-axis crystal IGZO thin includes a plurality of layers of C-axis crystal IGZO films stacked in a stack, and the number of layers of the C-axis crystal IGZO film is the same as the number of times of repeating the steps 1 to 6.
  • the indium oxide precursor material comprises indium chloride and water.
  • the gallium oxide precursor material comprises trimethyl gallium and water.
  • the zinc oxide precursor material comprises diethyl zinc and hydrogen peroxide.
  • the temperature in the atomic layer deposition device is controlled to be 310 ° C - 335 ° C, the pressure is 5 mTorr - 8 mTorr, and the working power of the atomic layer deposition device is 180 W - 200 W;
  • the concentration of oxygen is 15 v% to 17 v%.
  • the temperature in the atomic layer deposition apparatus is controlled to be 320 ° C, the pressure is 7 mTorr, and the operating power of the atomic layer deposition apparatus is 190 W; the mixing of the oxygen and the inert gas In the gas, the concentration of oxygen is 16 v%.
  • the inert gas is argon.
  • the cleaning gas is nitrogen or an inert gas.
  • the present invention also provides a C-axis crystalline IGZO film comprising a plurality of stacked C-axis crystalline IGZO films including an indium oxide film, a gallium oxide film, and a zinc oxide which are sequentially arranged in the C-axis direction. membrane.
  • the invention also provides a preparation method of a C-axis crystalline IGZO film, comprising the following steps:
  • Step 1 Providing a substrate and an atomic layer deposition device, feeding the substrate into the atomic layer deposition device, introducing an indium oxide precursor material into the atomic layer deposition device, and simultaneously introducing oxygen and an inert gas. Mixing a gas to form an indium oxide film on the substrate;
  • Step 2 introducing a cleaning gas into the atomic layer deposition device to expel the excess indium oxide precursor material in the atomic layer deposition device, thereby cleaning the atomic layer deposition device;
  • Step 3 introducing a gallium oxide precursor substance into the atomic layer deposition device, and simultaneously introducing a mixed gas of oxygen and an inert gas to form a gallium oxide film on the indium oxide film;
  • Step 4 introducing a cleaning gas into the atomic layer deposition device to expel the excess gallium oxide precursor material in the atomic layer deposition device, thereby cleaning the atomic layer deposition device;
  • Step 5 introducing a zinc oxide precursor substance into the atomic layer deposition apparatus, and simultaneously introducing a mixed gas of oxygen and an inert gas to form a zinc oxide film on the gallium oxide film;
  • Step 6 Passing a cleaning gas into the atomic layer deposition device to expel the excess zinc oxide precursor material in the atomic layer deposition device, thereby cleaning the atomic layer deposition device;
  • a C-axis crystalline IGZO film is formed on the substrate, and the C-axis crystalline IGZO film includes an indium oxide film and a gallium oxide film which are sequentially arranged in the C-axis direction. And a zinc oxide film;
  • Step 7 forming a C-axis crystalline IGZO film on the substrate
  • the indium oxide precursor material comprises indium chloride and water
  • the gallium oxide precursor material comprises trimethyl gallium and water.
  • the present invention provides a method for preparing a C-axis crystalline IGZO thin film, which can prepare a C-axis crystalline IGZO thin film by atomic layer deposition, and can accurately control the structure of the C-axis crystalline IGZO at the atomic level.
  • the obtained C-axis crystalline IGZO has good crystal quality, less oxygen defects, and can improve the stability of the TFT; and the area of the crystal region in the C-axis crystalline IGZO film produced by the present invention is large, up to a hundred micron level to The millimeter level can promote the large-scale application of C-axis crystalline IGZO.
  • the present invention utilizes optimized process conditions to prepare a C-axis crystalline IGZO film, which can improve production yield and reduce production cost.
  • the C-axis crystalline IGZO film provided by the invention has good crystal quality and less oxygen defects, can improve the stability of the TFT, and has a large area of the crystal region, which is favorable for the scale of the C-axis crystal IGZO. application.
  • FIG. 1 is a flow chart showing a method of preparing a C-axis crystalline IGZO film of the present invention
  • FIG. 2 is a schematic view showing the first step of the method for preparing a C-axis crystalline IGZO film of the present invention
  • FIG. 3 is a schematic view showing a step 3 of a method for preparing a C-axis crystalline IGZO film of the present invention
  • FIG. 4 is a schematic view showing the step 5 of the method for preparing a C-axis crystalline IGZO film of the present invention
  • FIG. 5 is a schematic view showing the step 7 of the method for preparing a C-axis crystalline IGZO film of the present invention and the structure of the C-axis crystalline IGZO film of the present invention.
  • Atomic Layer Deposition is a kind of deposited film formed by chemically adsorbing and reacting a gas phase precursor pulse into a reactor on a deposition substrate. method. The precursors reach the surface of the deposited substrate and they chemisorb on their surface and surface react. The atomic layer deposition reactor needs to be cleaned with an inert gas between the precursor pulses. It can be seen that whether the precursor material of the deposition reaction can be chemically adsorbed on the surface of the deposited material is the key to realize atomic layer deposition.
  • gas phase substance adsorbs on the surface of the base material, any gas phase substance can be physically adsorbed on the surface of the material, but the chemical adsorption on the surface of the material must have a certain activation energy, so whether atomic layer deposition can be achieved, Suitable reaction precursor materials are important.
  • the invention adopts the method of atomic layer deposition to prepare C-axis crystalline IGZO, and deposits and crystallizes the atomic layer arranged in the C-axis order by reacting an appropriate precursor on the surface of the substrate, after n cycles, A large-area C-axis crystalline IGZO thin film is formed on the substrate.
  • the present invention carries out the DOE test design, and designs the four-factor and three-level tests, and designs according to the three implementation values of low level, medium level and high level within a certain range. Determine the correlation between the test parameters and the test results.
  • the values of the 4 factors and 3 levels of the designed DOE orthogonal test are shown in Table 1.
  • the specific implementation of the DOE orthogonal test is shown in Table 2.
  • A, B, C, and D refer to the four factors of deposition temperature (A), oxygen concentration (B), deposition power (C), and working pressure (D) in Table 1, respectively, except for the test number.
  • the Arabic numerals 1, 2, and 3 refer to the experimental values of the low level (1), the medium level (2), and the high level (3) in Table 1 above, respectively.
  • the optimal deposition process parameters of the C-axis crystalline IGZO film are as follows: deposition temperature 310 ° C-335 ° C, oxygen concentration 15v% -17v%, working pressure 5mTorr-8mTorr, deposition power 180W-200W, Under the process conditions, the area of the crystal region of the C-axis crystalline IGZO film obtained by the atomic layer deposition method is large, and the crystal quality of the crystal region is good, so that the production yield can be improved and the production cost can be reduced.
  • the present invention provides a method for preparing a C-axis crystalline IGZO film, comprising the following steps:
  • Step 1 as shown in FIG. 2, a substrate 10 and an atomic layer deposition apparatus 50 are provided, and the substrate 10 is sent into the atomic layer deposition apparatus 50, and an indium oxide precursor is introduced into the atomic layer deposition apparatus 50.
  • a body substance while introducing a mixed gas of oxygen and an inert gas, forming an indium oxide (In 2 O 3 ) film 20 on the substrate 10;
  • Step 2 introducing a cleaning gas into the atomic layer deposition device 50 to drive out excess indium oxide precursor material in the atomic layer deposition device 50, thereby cleaning the atomic layer deposition device 50;
  • Step 3 as shown in FIG. 3, a gallium oxide precursor substance is introduced into the atomic layer deposition device 50, and a mixed gas of oxygen and an inert gas is introduced to form gallium oxide (Ga) on the indium oxide film 21. 2 O 3 ) film 22;
  • Step 4 introducing a cleaning gas into the atomic layer deposition device 50 to drive out excess gallium oxide precursor material in the atomic layer deposition device 50, thereby cleaning the atomic layer deposition device 50;
  • Step 5 as shown in FIG. 4, a zinc oxide precursor substance is introduced into the atomic layer deposition device 50, and a mixed gas of oxygen and an inert gas is introduced to form zinc oxide (ZnO) on the gallium oxide film 22.
  • Step 6 Passing a cleaning gas into the atomic layer deposition device 50 to drive out excess zinc oxide precursor material in the atomic layer deposition device 50, thereby performing the atomic layer deposition device 50. Carry out cleaning;
  • a C-axis crystalline IGZO film 20 is formed on the substrate 10, and the C-axis crystalline IGZO film 20 includes an indium oxide film 21 and a gallium oxide film which are sequentially arranged in the C-axis direction. 22 and zinc oxide film 23;
  • Step 7 As shown in FIG. 5, a C-axis crystalline IGZO thin film 30 is formed on the substrate 10.
  • the C-axis crystalline IGZO thin film 30 includes a plurality of layers of C-axis crystalline IGZO film 20 stacked in layers, and the layer of the C-axis crystalline IGZO film 20 The number is the same as the number of times of repeating the steps 1 to 6.
  • the C-axis crystalline IGZO thin film 30 includes a plurality of stacked C-axis crystalline IGZO films 20 each stacked.
  • the indium oxide film 21, the gallium oxide film 22, and the zinc oxide film 23 are sequentially arranged in the C-axis direction.
  • the indium oxide precursor material comprises indium chloride (Cl 3 In) and water (H 2 O).
  • the gallium oxide precursor material comprises trimethylgallium ((CH 3 ) 3 Ga) and water (H 2 O).
  • the zinc oxide precursor material comprises diethyl zinc (Zn(C 2 H 5 ) 2 ) and hydrogen peroxide (H 2 O 2 ).
  • the temperature in the atomic layer deposition device 50 is controlled to be 310 ° C - 335 ° C, the pressure is 5 mTorr - 8 mTorr, and the operating power of the atomic layer deposition device 50 is 180W-200W; in the mixed gas of oxygen and inert gas, the concentration of oxygen is 15v%-17v%.
  • the temperature in the atomic layer deposition device 50 is controlled to be 320 ° C, the pressure is 7 mTorr, and the operating power of the atomic layer deposition device 50 is 190 W; In a mixed gas of oxygen and an inert gas, the concentration of oxygen is 16 v%.
  • the inert gas is argon.
  • the prepared indium oxide film 21 is filled with oxygen atoms in the oxygen by introducing a mixed gas of oxygen and an inert gas into the atomic layer deposition device 50.
  • Oxygen defects in the gallium oxide film 22 and the zinc oxide film 23 reduce oxygen defects in the finally obtained C-axis crystalline IGZO thin film 30, and improve the crystal quality of the C-axis crystalline IGZO thin film 30.
  • the cleaning gas is nitrogen or an inert gas, and the inert gas is preferably argon.
  • the area of the crystal region in the C-axis crystalline IGZO thin film 30 prepared by the present invention can be up to the range of 100 micrometers to millimeters, and the C-axis obtained by the present invention is compared with the prior art manufacturing process of the C-axis crystalline IGZO thin film.
  • the area of the crystal region in the crystalline IGZO thin film 30 is much larger, and the scale application of the C-axis crystal IGZO can be promoted.
  • the area of the crystal region in the C-axis crystalline IGZO thin film 30 obtained in the above step 7 is 100 ⁇ m 2 to 50 mm 2 .
  • step 7 the number of times of step 1 to step 6 is repeated in step 7 to be 100-200 times, and the thickness of the C-axis crystalline IGZO thin film 30 obtained in the step 7 can be from 100 nm to 200 nm.
  • the preparation method of the above-mentioned C-axis crystalline IGZO thin film is to prepare a C-axis crystalline IGZO thin film by atomic layer deposition, and can accurately control the structure of the C-axis crystalline IGZO at the atomic level, and the obtained C-axis crystalline IGZO has good crystal quality.
  • the oxygen deficiency is small, and the stability of the TFT can be improved; and since the area of the crystal region in the C-axis crystalline IGZO film produced by the present invention is large, up to a hundred micrometer to a millimeter, the C-axis crystal IGZO can be promoted.
  • the invention utilizes optimized process conditions to prepare a C-axis crystalline IGZO film, which can improve production yield and reduce production cost.
  • the present invention further provides a C-axis crystalline IGZO film comprising a plurality of stacked C-axis crystalline IGZO films 20, wherein the C-axis crystalline IGZO film 20 comprises An indium oxide film 21, a gallium oxide film 22, and a zinc oxide film 23 are sequentially arranged in the C-axis direction.
  • the number of layers is at least one layer.
  • the area of the crystal region in the C-axis crystalline IGZO thin film is 100 ⁇ m 2 to 50 mm 2 .
  • the C-axis crystalline IGZO thin film has a thickness of 100 nm to 200 nm.
  • the C-axis crystalline IGZO thin film and the C-axis crystalline IGZO have good crystal quality and less oxygen defects, and can improve the stability of the TFT and have a large crystallized region, which is advantageous for the large-scale application of the C-axis crystalline IGZO.
  • the present invention provides a C-axis crystalline IGZO film and a preparation method thereof.
  • the preparation method of the C-axis crystalline IGZO thin film of the present invention, the C-axis crystalline IGZO thin film is prepared by atomic layer deposition method, and the structure of the C-axis crystalline IGZO can be precisely controlled at the atomic level, and the crystal of the C-axis crystalline IGZO obtained can be obtained.
  • Good quality, less oxygen defects, can improve the stability of the TFT; and because the area of the crystal region in the C-axis crystalline IGZO film produced by the present invention is large, up to the order of 100 micrometers to millimeters, it can promote C-axis crystallization.
  • the large-scale application of IGZO at the same time, the invention utilizes optimized process conditions to prepare a C-axis crystalline IGZO film, which can improve production yield and reduce production cost.
  • C-axis crystalline IGZO film of the present invention crystal quality of C-axis crystalline IGZO Well, there are fewer oxygen defects, which can improve the stability of the TFT, and the area of the crystallization region is large, which is advantageous for the large-scale application of the C-axis crystalline IGZO.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

一种C轴结晶IGZO薄膜及其制备方法。C轴结晶IGZO薄膜的制备方法,通过采用原子层沉积的方法来制备C轴结晶IGZO薄膜,能够在原子水平上精确控制C轴结晶IGZO的结构,制得的C轴结晶IGZO的结晶质量好,氧缺陷较少,能够提高TFT的稳定性;并且由于制得的C轴结晶IGZO薄膜中的结晶区域的面积较大,达百微米级至毫米级,因此可促进C轴结晶IGZO的规模化应用;同时利用最优化的工艺条件来制备C轴结晶IGZO薄膜,可提高生产良率,降低生产成本。C轴结晶IGZO的结晶质量好,氧缺陷较少,能够提高TFT的稳定性,同时结晶区域的面积较大,有利于C轴结晶IGZO的规模化应用。

Description

C轴结晶IGZO薄膜及其制备方法 技术领域
本发明涉及显示技术领域,尤其涉及一种C轴结晶IGZO薄膜及其制备方法。
背景技术
薄膜晶体管(Thin Film Transistor,TFT)是目前液晶显示装置(Liquid Crystal Display,LCD)和有源矩阵驱动式有机电致发光显示装置(Active Matrix Organic Light-Emitting Diode,AMOLED)中的主要驱动元件,直接关系到高性能平板显示装置的发展方向。
随着智能手机与平板显示等终端应用的兴起,250PPI(Pixels Per Inch,每英寸所拥有的像素数目)以上的高精细度面板要求逐渐成为搭配趋势,也促使更多面板厂投入高精细度的低温多晶硅(Low Temperature Poly Silicon,LTPS)薄膜晶体管扩产,但由于低温多晶硅薄膜晶体管(LTPS TFT)生产线的制程复杂度高,且良率也是一大问题,因此面板厂积极投入金属氧化物半导体的研发工作,目前以非结晶氧化铟镓锌(amorphous Indium Gallium Zinc Oxide,a-IGZO)技术较为成熟。
IGZO(Indium Gallium Zinc Oxide)为氧化铟镓锌的缩写,它是一种薄膜电晶体技术,在TFT-LCD主动层之上打上的一层金属氧化物。IGZO技术由夏普(Sharp)掌握,是与日本半导体能源研究所共同开发的产品。除了夏普外,三星SDI以及乐金显示也同样具备生产IGZO面板的能力。
IGZO与非晶质硅(a-Si)材料相比,电子迁移率较a-Si TFT快20到50倍,IGZO使用铟、镓、锌、氧气,取代了传统的a-Si现用图层,可以大大降低屏幕的响应时间,缩小电晶体尺寸,提高面板画素的开口率,较易实现高精细化,由此将简单的外部电路整合至面板之中,使移动装置更轻薄,耗电量也降至之前的三分之二。
IGZO规模化使用中存在的最大问题是IGZO中氧空位(或者氧缺陷)的迅速变化会导致TFT的稳定性较差。这是IGZO材料本身缺陷导致的问题,想要解决此问题,必须从材料本身结构出发来控制氧空位的变化,以提高TFT的稳定性。C轴结晶IGZO(C-axis Aligned Crystalline,简称CAAC)具有层状的结晶结构,无晶界,材料本身的氧缺陷非常少,因此在TFT稳定性方面具有a-IGZO不可比拟的优势。SEL公司(Semiconductor Energy  Laboratory Co.,Ltd)的研究团队采用磁控溅射的方式制备C轴结晶IGZO薄膜,但是制得的C轴结晶IGZO薄膜中只有直径为1nm-3nm的区域为结晶状态,绝大部分的区域都是非晶状态,也就是说,所述C轴结晶IGZO薄膜中,只有极小的区域为C轴结晶IGZO,其余区域均为a-IGZO,由于结晶区域的面积较小,因此不利于C轴结晶IGZO的规模化应用。
发明内容
本发明的目的在于提供一种C轴结晶IGZO薄膜的制备方法,制得的C轴结晶IGZO的结晶质量好,氧缺陷较少,能够提高TFT的稳定性;同时制得的C轴结晶IGZO薄膜中的结晶区域的面积较大,可促进C轴结晶IGZO的规模化应用。
本发明的目的还在于提供一种C轴结晶IGZO薄膜,C轴结晶IGZO的结晶质量好,氧缺陷较少,能够提高TFT的稳定性,同时结晶区域的面积较大,有利于C轴结晶IGZO的规模化应用。
为实现上述目的,本发明提供一种C轴结晶IGZO薄膜的制备方法,包括如下步骤:
步骤1、提供一基底与原子层沉积装置,将所述基底送入所述原子层沉积装置中,向所述原子层沉积装置中通入氧化铟前驱体物质,同时通入氧气与惰性气体的混合气体,在所述基底上形成氧化铟膜;
步骤2、向所述原子层沉积装置中通入清洗气体,驱逐出所述原子层沉积装置中多余的氧化铟前驱体物质,从而对所述原子层沉积装置进行清洗;
步骤3、向所述原子层沉积装置中通入氧化镓前驱体物质,同时通入氧气与惰性气体的混合气体,在所述氧化铟膜上形成氧化镓膜;
步骤4、向所述原子层沉积装置中通入清洗气体,驱逐出所述原子层沉积装置中多余的氧化镓前驱体物质,从而对所述原子层沉积装置进行清洗;
步骤5、向所述原子层沉积装置中通入氧化锌前驱体物质,同时通入氧气与惰性气体的混合气体,在所述氧化镓膜上形成氧化锌膜;
步骤6、向所述原子层沉积装置中通入清洗气体,驱逐出所述原子层沉积装置中多余的氧化锌前驱体物质,从而对所述原子层沉积装置进行清洗;
经过所述步骤1至步骤6,在所述基底上形成一层C轴结晶IGZO膜,所述C轴结晶IGZO膜包括在C轴方向上依次排列的氧化铟膜、氧化镓膜及氧化锌膜;
步骤7、在所述基底上形成C轴结晶IGZO薄膜。
所述步骤7中重复所述步骤1至步骤6数次,所述C轴结晶IGZO薄 膜包括层叠设置的数层C轴结晶IGZO膜,所述C轴结晶IGZO膜的层数与重复所述步骤1至步骤6的次数相同。
所述步骤1中,所述氧化铟前驱体物质包括氯化铟与水。
所述步骤3中,所述氧化镓前驱体物质包括三甲基镓与水。
所述步骤5中,所述氧化锌前驱体物质包括二乙基锌与双氧水。
所述步骤1、步骤3及步骤5中,控制所述原子层沉积装置中的温度为310℃-335℃,压力为5mTorr-8mTorr,所述原子层沉积装置的工作功率为180W-200W;所述氧气与惰性气体的混合气体中,氧气的浓度为15v%-17v%。
所述步骤1、步骤3及步骤5中,控制所述原子层沉积装置中的温度为320℃,压力为7mTorr,所述原子层沉积装置的工作功率为190W;所述氧气与惰性气体的混合气体中,氧气的浓度为16v%。
所述步骤1、步骤3及步骤5中,所述氧气与惰性气体的混合气体中,所述惰性气体为氩气。
所述步骤2、步骤4及步骤6中,所述清洗气体为氮气或者惰性气体。
本发明还提供一种C轴结晶IGZO薄膜,包括层叠设置的数层C轴结晶IGZO膜,所述C轴结晶IGZO膜包括在C轴方向上依次排列的氧化铟膜、氧化镓膜及氧化锌膜。
本发明还提供一种C轴结晶IGZO薄膜的制备方法,包括如下步骤:
步骤1、提供一基底与原子层沉积装置,将所述基底送入所述原子层沉积装置中,向所述原子层沉积装置中通入氧化铟前驱体物质,同时通入氧气与惰性气体的混合气体,在所述基底上形成氧化铟膜;
步骤2、向所述原子层沉积装置中通入清洗气体,驱逐出所述原子层沉积装置中多余的氧化铟前驱体物质,从而对所述原子层沉积装置进行清洗;
步骤3、向所述原子层沉积装置中通入氧化镓前驱体物质,同时通入氧气与惰性气体的混合气体,在所述氧化铟膜上形成氧化镓膜;
步骤4、向所述原子层沉积装置中通入清洗气体,驱逐出所述原子层沉积装置中多余的氧化镓前驱体物质,从而对所述原子层沉积装置进行清洗;
步骤5、向所述原子层沉积装置中通入氧化锌前驱体物质,同时通入氧气与惰性气体的混合气体,在所述氧化镓膜上形成氧化锌膜;
步骤6、向所述原子层沉积装置中通入清洗气体,驱逐出所述原子层沉积装置中多余的氧化锌前驱体物质,从而对所述原子层沉积装置进行清洗;
经过所述步骤1至步骤6,在所述基底上形成一层C轴结晶IGZO膜,所述C轴结晶IGZO膜包括在C轴方向上依次排列的氧化铟膜、氧化镓膜 及氧化锌膜;
步骤7、在所述基底上形成C轴结晶IGZO薄膜;
其中,所述步骤1中,所述氧化铟前驱体物质包括氯化铟与水;
其中,所述步骤3中,所述氧化镓前驱体物质包括三甲基镓与水。
本发明的有益效果:本发明提供的一种C轴结晶IGZO薄膜的制备方法,通过采用原子层沉积的方法来制备C轴结晶IGZO薄膜,能够在原子水平上精确控制C轴结晶IGZO的结构,制得的C轴结晶IGZO的结晶质量好,氧缺陷较少,能够提高TFT的稳定性;并且由于本发明制得的C轴结晶IGZO薄膜中的结晶区域的面积较大,达百微米级至毫米级,因此可促进C轴结晶IGZO的规模化应用;同时本发明利用最优化的工艺条件来制备C轴结晶IGZO薄膜,可提高生产良率,降低生产成本。本发明提供的一种C轴结晶IGZO薄膜,C轴结晶IGZO的结晶质量好,氧缺陷较少,能够提高TFT的稳定性,同时结晶区域的面积较大,有利于C轴结晶IGZO的规模化应用。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为本发明的C轴结晶IGZO薄膜的制备方法的流程图;
图2为本发明的C轴结晶IGZO薄膜的制备方法的步骤1的示意图;
图3为本发明的C轴结晶IGZO薄膜的制备方法的步骤3的示意图;
图4为本发明的C轴结晶IGZO薄膜的制备方法的步骤5的示意图;
图5为本发明的C轴结晶IGZO薄膜的制备方法的步骤7的示意图暨本发明的C轴结晶IGZO薄膜的结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
原子层沉积(Atomic Layer Deposition,ALD)是通过将气相前驱体脉冲交替地通入反应器中在沉积基体上化学吸附并反应而形成沉积膜的一种 方法。当前驱体达到沉积基体表面,它们会在其表面化学吸附并发生表面反应。在前驱体脉冲之间需要用惰性气体对原子层沉积反应器进行清洗。由此可知沉积反应前驱体物质能否在被沉积材料表面化学吸附是实现原子层沉积的关键。气相物质在基体材料的表面吸附特征可以看出,任何气相物质在材料表面都可以进行物理吸附,但是要实现在材料表面的化学吸附必须具有一定的活化能,因此能否实现原子层沉积,选择合适的反应前驱体物质是很重要的。
本发明采用原子层沉积的方法来制备C轴结晶IGZO,通过将适当的前驱体在基底表面进行反应,按照其C轴排布的原子层顺序沉积并使其结晶,经过n次循环后,在所述基底上形成大面积的C轴结晶IGZO薄膜。
采用原子层沉积的方法进行C轴结晶IGZO薄膜沉积的过程中,沉积温度(deposition temperature)、氧气浓度(O2 concentration)、沉积功率(deposition power)及工作压力(working pressure)是四个非相关的重要因素。为了确定C轴结晶IGZO薄膜的最佳沉积条件,本发明进行了DOE试验设计,设计四因素三水平的试验,在一定的范围内按照低水平、中水平、高水平三个实施数值进行设计,确定试验参数与试验结果的相关性,设计的DOE正交试验的4因素与3水平的实施数值如表1所示,DOE正交试验的具体实施方案如表2所示。
表1.DOE试验设计的4因素与3水平的实施数值
因素 单位 低水平(1) 中水平(2) 高水平(3)
沉积温度(A) 210 270 330
氧气浓度(B) 5 10 20
沉积功率(C) W 50 100 200
工作压力(D) mTorr 2 5 8
表2.DOE试验设计的具体实施方案
Figure PCTCN2016112524-appb-000001
Figure PCTCN2016112524-appb-000002
上述表2中,A、B、C、D分别指代上述表1中的沉积温度(A)、氧气浓度(B)、沉积功率(C)、及工作压力(D)四因素,除试验号外的***数字1、2、3分别指代上述表1中的低水平(1)、中水平(2)、及高水平(3)的实验数值。
通过上述DOE试验最终得出C轴结晶IGZO薄膜的最优化沉积工艺参数为:沉积温度310℃-335℃,氧气浓度15v%-17v%,工作压力5mTorr-8mTorr,沉积功率180W-200W,在该工艺条件下,采用原子层沉积的方法制得的C轴结晶IGZO薄膜的结晶区域的面积较大,结晶区域的结晶质量较好,从而能够提高生产良率,降低生产成本。
请参阅图1,基于上述DOE试验结果,本发明提供一种C轴结晶IGZO薄膜的制备方法,包括如下步骤:
步骤1、如图2所示,提供一基底10与原子层沉积装置50,将所述基底10送入所述原子层沉积装置50中,向所述原子层沉积装置50中通入氧化铟前驱体物质,同时通入氧气与惰性气体的混合气体,在所述基底10上形成氧化铟(In2O3)膜20;
步骤2、向所述原子层沉积装置50中通入清洗气体,驱逐出所述原子层沉积装置50中多余的氧化铟前驱体物质,从而对所述原子层沉积装置50进行清洗;
步骤3、如图3所示,向所述原子层沉积装置50中通入氧化镓前驱体物质,同时通入氧气与惰性气体的混合气体,在所述氧化铟膜21上形成氧化镓(Ga2O3)膜22;
步骤4、向所述原子层沉积装置50中通入清洗气体,驱逐出所述原子层沉积装置50中多余的氧化镓前驱体物质,从而对所述原子层沉积装置50进行清洗;
步骤5、如图4所示,向所述原子层沉积装置50中通入氧化锌前驱体物质,同时通入氧气与惰性气体的混合气体,在所述氧化镓膜22上形成氧化锌(ZnO)膜23;
步骤6、向所述原子层沉积装置50中通入清洗气体,驱逐出所述原子层沉积装置50中多余的氧化锌前驱体物质,从而对所述原子层沉积装置50 进行清洗;
经过所述步骤1至步骤6,在所述基底10上形成一层C轴结晶IGZO膜20,所述C轴结晶IGZO膜20包括在C轴方向上依次排列的氧化铟膜21、氧化镓膜22及氧化锌膜23;
步骤7、如图5所示,在所述基底10上形成C轴结晶IGZO薄膜30。
具体的,所述步骤7中重复所述步骤1至步骤6数次,所述C轴结晶IGZO薄膜30包括层叠设置的数层C轴结晶IGZO膜20,所述C轴结晶IGZO膜20的层数与重复所述步骤1至步骤6的次数相同。
图5为所述步骤7制得的C轴结晶IGZO薄膜30的结构示意图,从图5中可以看出,所述C轴结晶IGZO薄膜30包括层叠设置的数层C轴结晶IGZO膜20,每层C轴结晶IGZO膜20中,所述氧化铟膜21、氧化镓膜22及氧化锌膜23在C轴方向上依次排列。
具体的,所述步骤1中,所述氧化铟前驱体物质包括氯化铟(Cl3In)与水(H2O)。
具体的,所述步骤3中,所述氧化镓前驱体物质包括三甲基镓((CH3)3Ga)与水(H2O)。
具体的,所述步骤5中,所述氧化锌前驱体物质包括二乙基锌(Zn(C2H5)2)与双氧水(H2O2)。
优选的,所述步骤1、步骤3及步骤5中,控制所述原子层沉积装置50中的温度为310℃-335℃,压力为5mTorr-8mTorr,所述原子层沉积装置50的工作功率为180W-200W;所述氧气与惰性气体的混合气体中,氧气的浓度为15v%-17v%。
最优选的,所述步骤1、步骤3及步骤5中,控制所述原子层沉积装置50中的温度为320℃,压力为7mTorr,所述原子层沉积装置50的工作功率为190W;所述氧气与惰性气体的混合气体中,氧气的浓度为16v%。
具体的,所述步骤1、步骤3及步骤5中,所述氧气与惰性气体的混合气体中,所述惰性气体为氩气。
具体的,所述步骤1、步骤3及步骤5中,通过向所述原子层沉积装置50中通入氧气与惰性气体的混合气体,利用氧气中的氧原子来填补制得的氧化铟膜21、氧化镓膜22及氧化锌膜23中的氧缺陷,从而减少最终制得的C轴结晶IGZO薄膜30中的氧缺陷,提高C轴结晶IGZO薄膜30的结晶质量。
具体的,所述步骤2、步骤4及步骤6中,所述清洗气体为氮气或者惰性气体,所述惰性气体优选为氩气。
具体的,本发明制备的C轴结晶IGZO薄膜30中的结晶区域的面积可达百微米级至毫米级,与现有的C轴结晶IGZO薄膜的制作工艺相比,本发明制得的C轴结晶IGZO薄膜30中的结晶区域的面积要大得多,可促进C轴结晶IGZO的规模化应用。
通常情况下,所述步骤7制得的C轴结晶IGZO薄膜30中的结晶区域的面积为100μm2~50mm2
通常情况下,所述步骤7中重复所述步骤1至步骤6的次数为100-200次,所述步骤7制得的C轴结晶IGZO薄膜30的厚度可达100nm~200nm。
上述C轴结晶IGZO薄膜的制备方法,通过采用原子层沉积的方法来制备C轴结晶IGZO薄膜,能够在原子水平上精确控制C轴结晶IGZO的结构,制得的C轴结晶IGZO的结晶质量好,氧缺陷较少,能够提高TFT的稳定性;并且由于本发明制得的C轴结晶IGZO薄膜中的结晶区域的面积较大,达百微米级至毫米级,因此可促进C轴结晶IGZO的规模化应用;同时本发明利用最优化的工艺条件来制备C轴结晶IGZO薄膜,可提高生产良率,降低生产成本。
请参阅图5,基于上述C轴结晶IGZO薄膜的制备方法,本发明还提供一种C轴结晶IGZO薄膜,包括层叠设置的数层C轴结晶IGZO膜20,所述C轴结晶IGZO膜20包括在C轴方向上依次排列的氧化铟膜21、氧化镓膜22及氧化锌膜23。
具体的,所述数层至少为一层。
具体的,所述C轴结晶IGZO薄膜中的结晶区域的面积为100μm2~50mm2
具体的,所述C轴结晶IGZO薄膜的厚度为100nm~200nm。
上述C轴结晶IGZO薄膜,C轴结晶IGZO的结晶质量好,氧缺陷较少,能够提高TFT的稳定性,同时结晶区域的面积较大,有利于C轴结晶IGZO的规模化应用。
综上所述,本发明提供一种C轴结晶IGZO薄膜及其制备方法。本发明的C轴结晶IGZO薄膜的制备方法,通过采用原子层沉积的方法来制备C轴结晶IGZO薄膜,能够在原子水平上精确控制C轴结晶IGZO的结构,制得的C轴结晶IGZO的结晶质量好,氧缺陷较少,能够提高TFT的稳定性;并且由于本发明制得的C轴结晶IGZO薄膜中的结晶区域的面积较大,达百微米级至毫米级,因此可促进C轴结晶IGZO的规模化应用;同时本发明利用最优化的工艺条件来制备C轴结晶IGZO薄膜,可提高生产良率,降低生产成本。本发明的C轴结晶IGZO薄膜,C轴结晶IGZO的结晶质量 好,氧缺陷较少,能够提高TFT的稳定性,同时结晶区域的面积较大,有利于C轴结晶IGZO的规模化应用。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (17)

  1. 一种C轴结晶IGZO薄膜的制备方法,包括如下步骤:
    步骤1、提供一基底与原子层沉积装置,将所述基底送入所述原子层沉积装置中,向所述原子层沉积装置中通入氧化铟前驱体物质,同时通入氧气与惰性气体的混合气体,在所述基底上形成氧化铟膜;
    步骤2、向所述原子层沉积装置中通入清洗气体,驱逐出所述原子层沉积装置中多余的氧化铟前驱体物质,从而对所述原子层沉积装置进行清洗;
    步骤3、向所述原子层沉积装置中通入氧化镓前驱体物质,同时通入氧气与惰性气体的混合气体,在所述氧化铟膜上形成氧化镓膜;
    步骤4、向所述原子层沉积装置中通入清洗气体,驱逐出所述原子层沉积装置中多余的氧化镓前驱体物质,从而对所述原子层沉积装置进行清洗;
    步骤5、向所述原子层沉积装置中通入氧化锌前驱体物质,同时通入氧气与惰性气体的混合气体,在所述氧化镓膜上形成氧化锌膜;
    步骤6、向所述原子层沉积装置中通入清洗气体,驱逐出所述原子层沉积装置中多余的氧化锌前驱体物质,从而对所述原子层沉积装置进行清洗;
    经过所述步骤1至步骤6,在所述基底上形成一层C轴结晶IGZO膜,所述C轴结晶IGZO膜包括在C轴方向上依次排列的氧化铟膜、氧化镓膜及氧化锌膜;
    步骤7、在所述基底上形成C轴结晶IGZO薄膜。
  2. 如权利要求1所述的C轴结晶IGZO薄膜的制备方法,其中,所述步骤7中重复所述步骤1至步骤6数次,所述C轴结晶IGZO薄膜包括层叠设置的数层C轴结晶IGZO膜,所述C轴结晶IGZO膜的层数与重复所述步骤1至步骤6的次数相同。
  3. 如权利要求1所述的C轴结晶IGZO薄膜的制备方法,其中,所述步骤1中,所述氧化铟前驱体物质包括氯化铟与水。
  4. 如权利要求1所述的C轴结晶IGZO薄膜的制备方法,其中,所述步骤3中,所述氧化镓前驱体物质包括三甲基镓与水。
  5. 如权利要求1所述的C轴结晶IGZO薄膜的制备方法,其中,所述步骤5中,所述氧化锌前驱体物质包括二乙基锌与双氧水。
  6. 如权利要求1所述的C轴结晶IGZO薄膜的制备方法,其中,所述步骤1、步骤3及步骤5中,控制所述原子层沉积装置中的温度为310℃-335℃,压力为5mTorr-8mTorr,所述原子层沉积装置的工作功率为 180W-200W;所述氧气与惰性气体的混合气体中,氧气的浓度为15v%-17v%。
  7. 如权利要求6所述的C轴结晶IGZO薄膜的制备方法,其中,所述步骤1、步骤3及步骤5中,控制所述原子层沉积装置中的温度为320℃,压力为7mTorr,所述原子层沉积装置的工作功率为190W;所述氧气与惰性气体的混合气体中,氧气的浓度为16v%。
  8. 如权利要求1所述的C轴结晶IGZO薄膜的制备方法,其中,所述步骤1、步骤3及步骤5中,所述氧气与惰性气体的混合气体中,所述惰性气体为氩气。
  9. 如权利要求1所述的C轴结晶IGZO薄膜的制备方法,其中,所述步骤2、步骤4及步骤6中,所述清洗气体为氮气或者惰性气体。
  10. 一种C轴结晶IGZO薄膜,包括层叠设置的数层C轴结晶IGZO膜,所述C轴结晶IGZO膜包括在C轴方向上依次排列的氧化铟膜、氧化镓膜及氧化锌膜。
  11. 一种C轴结晶IGZO薄膜的制备方法,包括如下步骤:
    步骤1、提供一基底与原子层沉积装置,将所述基底送入所述原子层沉积装置中,向所述原子层沉积装置中通入氧化铟前驱体物质,同时通入氧气与惰性气体的混合气体,在所述基底上形成氧化铟膜;
    步骤2、向所述原子层沉积装置中通入清洗气体,驱逐出所述原子层沉积装置中多余的氧化铟前驱体物质,从而对所述原子层沉积装置进行清洗;
    步骤3、向所述原子层沉积装置中通入氧化镓前驱体物质,同时通入氧气与惰性气体的混合气体,在所述氧化铟膜上形成氧化镓膜;
    步骤4、向所述原子层沉积装置中通入清洗气体,驱逐出所述原子层沉积装置中多余的氧化镓前驱体物质,从而对所述原子层沉积装置进行清洗;
    步骤5、向所述原子层沉积装置中通入氧化锌前驱体物质,同时通入氧气与惰性气体的混合气体,在所述氧化镓膜上形成氧化锌膜;
    步骤6、向所述原子层沉积装置中通入清洗气体,驱逐出所述原子层沉积装置中多余的氧化锌前驱体物质,从而对所述原子层沉积装置进行清洗;
    经过所述步骤1至步骤6,在所述基底上形成一层C轴结晶IGZO膜,所述C轴结晶IGZO膜包括在C轴方向上依次排列的氧化铟膜、氧化镓膜及氧化锌膜;
    步骤7、在所述基底上形成C轴结晶IGZO薄膜;
    其中,所述步骤1中,所述氧化铟前驱体物质包括氯化铟与水;
    其中,所述步骤3中,所述氧化镓前驱体物质包括三甲基镓与水。
  12. 如权利要求11所述的C轴结晶IGZO薄膜的制备方法,其中,所述步骤7中重复所述步骤1至步骤6数次,所述C轴结晶IGZO薄膜包括层叠设置的数层C轴结晶IGZO膜,所述C轴结晶IGZO膜的层数与重复所述步骤1至步骤6的次数相同。
  13. 如权利要求11所述的C轴结晶IGZO薄膜的制备方法,其中,所述步骤5中,所述氧化锌前驱体物质包括二乙基锌与双氧水。
  14. 如权利要求11所述的C轴结晶IGZO薄膜的制备方法,其中,所述步骤1、步骤3及步骤5中,控制所述原子层沉积装置中的温度为310℃-335℃,压力为5mTorr-8mTorr,所述原子层沉积装置的工作功率为180W-200W;所述氧气与惰性气体的混合气体中,氧气的浓度为15v%-17v%。
  15. 如权利要求14所述的C轴结晶IGZO薄膜的制备方法,其中,所述步骤1、步骤3及步骤5中,控制所述原子层沉积装置中的温度为320℃,压力为7mTorr,所述原子层沉积装置的工作功率为190W;所述氧气与惰性气体的混合气体中,氧气的浓度为16v%。
  16. 如权利要求11所述的C轴结晶IGZO薄膜的制备方法,其中,所述步骤1、步骤3及步骤5中,所述氧气与惰性气体的混合气体中,所述惰性气体为氩气。
  17. 如权利要求11所述的C轴结晶IGZO薄膜的制备方法,其中,所述步骤2、步骤4及步骤6中,所述清洗气体为氮气或者惰性气体。
PCT/CN2016/112524 2016-12-13 2016-12-28 C轴结晶igzo薄膜及其制备方法 WO2018107523A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/505,107 US20190153595A1 (en) 2016-12-13 2016-12-28 C-axis aligned crystalline igzo thin film and manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611147744.1A CN106756877B (zh) 2016-12-13 2016-12-13 C轴结晶igzo薄膜及其制备方法
CN201611147744.1 2016-12-13

Publications (1)

Publication Number Publication Date
WO2018107523A1 true WO2018107523A1 (zh) 2018-06-21

Family

ID=58880901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112524 WO2018107523A1 (zh) 2016-12-13 2016-12-28 C轴结晶igzo薄膜及其制备方法

Country Status (3)

Country Link
US (1) US20190153595A1 (zh)
CN (1) CN106756877B (zh)
WO (1) WO2018107523A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11264506B2 (en) * 2018-10-31 2022-03-01 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
CN110438472B (zh) * 2019-06-27 2021-08-31 惠科股份有限公司 铟镓锌氧化物薄膜的制作方法、薄膜晶体管和显示面板
US11217698B2 (en) * 2020-05-26 2022-01-04 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Method of manufacturing a thin film transistor
CN111613664A (zh) * 2020-05-26 2020-09-01 深圳市华星光电半导体显示技术有限公司 薄膜晶体管及其制备方法、显示面板
CN112126896A (zh) * 2020-09-27 2020-12-25 吉林大学 一种低温制备c轴结晶igzo薄膜的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101691651A (zh) * 2009-10-10 2010-04-07 西安交通大学 一种InGaZnO透明导电薄膜的L-MBE制备方法
CN101876059A (zh) * 2009-11-27 2010-11-03 北京工业大学 一种透明氧化物半导体InGaZn4O7薄膜的制备方法
CN102320838A (zh) * 2011-05-10 2012-01-18 孔伟华 柔性透明导电膜用金属氧化物半导体材料及其制备方法
CN103708812A (zh) * 2013-12-12 2014-04-09 宁夏东方钽业股份有限公司 一种溅射用igzo氧化物靶材的制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187919B2 (en) * 2008-10-08 2012-05-29 Lg Display Co. Ltd. Oxide thin film transistor and method of fabricating the same
CN103299430A (zh) * 2010-12-30 2013-09-11 周星工程股份有限公司 薄膜晶体管及其制造方法
US9012904B2 (en) * 2011-03-25 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2013073619A1 (ja) * 2011-11-18 2013-05-23 シャープ株式会社 半導体装置、表示装置、ならびに半導体装置の製造方法
KR20130087354A (ko) * 2012-01-27 2013-08-06 주식회사 유피케미칼 인듐을 포함한 산화막 및 이의 제조 방법
TWI604609B (zh) * 2012-02-02 2017-11-01 半導體能源研究所股份有限公司 半導體裝置
CN102618843A (zh) * 2012-03-23 2012-08-01 复旦大学 非晶铟镓锌氧化物薄膜的原子层淀积制备方法
US8901556B2 (en) * 2012-04-06 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Insulating film, method for manufacturing semiconductor device, and semiconductor device
US9171960B2 (en) * 2013-01-25 2015-10-27 Qualcomm Mems Technologies, Inc. Metal oxide layer composition control by atomic layer deposition for thin film transistor
US9012261B2 (en) * 2013-03-13 2015-04-21 Intermolecular, Inc. High productivity combinatorial screening for stable metal oxide TFTs
US10304859B2 (en) * 2013-04-12 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide film on an oxide semiconductor film
EP2884542A3 (en) * 2013-12-10 2015-09-02 IMEC vzw Integrated circuit device with power gating switch in back end of line
US20150187956A1 (en) * 2013-12-26 2015-07-02 Intermolecular Inc. IGZO Devices with Increased Drive Current and Methods for Forming the Same
US9502242B2 (en) * 2014-02-05 2016-11-22 Applied Materials, Inc. Indium gallium zinc oxide layers for thin film transistors
CN103996717B (zh) * 2014-05-07 2015-08-26 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、显示基板和显示装置
US10061151B2 (en) * 2014-06-30 2018-08-28 Lg Display Co., Ltd. Light shielding material and display device including the same
CN105655409A (zh) * 2016-03-25 2016-06-08 北京大学 一种具有金属覆盖层的薄膜晶体管及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101691651A (zh) * 2009-10-10 2010-04-07 西安交通大学 一种InGaZnO透明导电薄膜的L-MBE制备方法
CN101876059A (zh) * 2009-11-27 2010-11-03 北京工业大学 一种透明氧化物半导体InGaZn4O7薄膜的制备方法
CN102320838A (zh) * 2011-05-10 2012-01-18 孔伟华 柔性透明导电膜用金属氧化物半导体材料及其制备方法
CN103708812A (zh) * 2013-12-12 2014-04-09 宁夏东方钽业股份有限公司 一种溅射用igzo氧化物靶材的制备方法

Also Published As

Publication number Publication date
CN106756877B (zh) 2019-02-19
CN106756877A (zh) 2017-05-31
US20190153595A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
WO2018107523A1 (zh) C轴结晶igzo薄膜及其制备方法
JP7353446B2 (ja) 半導体装置
US11888071B2 (en) Method for manufacturing semiconductor device
JP6870133B2 (ja) 半導体装置
JP7024009B2 (ja) 半導体装置
KR102616275B1 (ko) 반도체 장치 및 액정 표시 장치
JP2021158382A (ja) 半導体装置
JP2022163021A (ja) 半導体装置
JP2022130595A (ja) 半導体装置
JP6788080B2 (ja) 半導体装置
JP2021082820A (ja) 半導体装置
CN102709160A (zh) 一种低温多晶硅薄膜的制作方法和低温多晶硅薄膜
JP6542961B2 (ja) 半導体装置の作製方法
CN102651399A (zh) 微晶非晶硅复合型薄膜晶体管及其制造方法
CN105220131B (zh) 脉冲气流法制备薄膜晶体管igzo半导体薄膜层的方法
CN104253246B (zh) 低温多晶硅薄膜的制作方法、低温多晶硅薄膜及相关器件
TWI531009B (zh) 氧化物型半導體材料及濺鍍靶
KR20160001346A (ko) 대면적 igzo 박막 형성방법 및 이에 의하여 형성되는 igzo 박막
KR101760665B1 (ko) 산화물 반도체 형성방법 및 이에 의하여 형성되는 산화물 반도체
JP2022058383A (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923842

Country of ref document: EP

Kind code of ref document: A1