WO2018107314A1 - 一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺 - Google Patents

一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺 Download PDF

Info

Publication number
WO2018107314A1
WO2018107314A1 PCT/CN2016/109401 CN2016109401W WO2018107314A1 WO 2018107314 A1 WO2018107314 A1 WO 2018107314A1 CN 2016109401 W CN2016109401 W CN 2016109401W WO 2018107314 A1 WO2018107314 A1 WO 2018107314A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
nitrogen
austenitic stainless
stainless steel
casting
Prior art date
Application number
PCT/CN2016/109401
Other languages
English (en)
French (fr)
Inventor
孙瑞涛
李永栋
Original Assignee
机械科学研究总院青岛分院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 机械科学研究总院青岛分院有限公司 filed Critical 机械科学研究总院青岛分院有限公司
Priority to PCT/CN2016/109401 priority Critical patent/WO2018107314A1/zh
Publication of WO2018107314A1 publication Critical patent/WO2018107314A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the invention relates to the field of steel pipe production, in particular to a process for centrifugally casting high nitrogen austenitic stainless steel pipe under normal pressure.
  • Austenitic stainless steel refers to stainless steel having an austenite structure at normal temperature. When the steel contains about 18% Cr, Ni 8% to 25%, and C about 0.1%, it has a stable austenite structure.
  • Austenitic chromium-nickel stainless steel includes the famous 18Cr-8Ni steel and high Cr-Ni series steel which is added with elements of Cr and Ni and added with elements such as Mo, Cu, Si, Nb and Ti.
  • Austenitic stainless steel is non-magnetic and has high toughness and plasticity, but its strength is low. It is impossible to strengthen it by phase transformation. It can only be strengthened by cold working. If it is added with elements such as S, Ca, Se, Te, it has good Easy machinability.
  • Austenitic stainless steel was introduced in Germany in 1913 and has always played the most important role in stainless steel. Its production and usage account for about 70% of total stainless steel production and consumption. The steel number is also the most. There are more than 40 grades of austenitic stainless steel commonly used in China. The most common one is the 18-8 type.
  • An object of the present invention is to provide a process for centrifugally casting a high nitrogen austenitic stainless steel pipe under normal pressure to solve the problems set forth in the above background art.
  • the present invention provides the following technical solution: a process for centrifugally casting a high nitrogen austenitic stainless steel pipe under normal pressure, the process comprising the following steps:
  • S1 preparing material: selecting a billet of austenitic stainless steel as a raw material, adding it to a melting furnace, and heating to a molten state;
  • nitrogen gas is introduced into the molten steel obtained in the first step, and the amount of nitrogen gas is 1 ton of molten steel to 1 kg of nitrogen gas.
  • the stirring speed is 200-300 rpm. /min, when nitrogen is introduced, excess nitrogen is released to maintain an atmospheric pressure in the melting furnace, and nitrogen is recovered and repeatedly added to the molten steel.
  • the reaction time is 30-50 minutes, and the reaction temperature is controlled to 1800-2000 degrees Celsius.
  • the molten steel of high nitrogen austenitic stainless steel can be obtained;
  • S4 pouring molten steel for steel pipe casting: using a horizontal centrifugal casting machine, setting the parameters of the steel pipe, and then introducing the molten steel obtained in the previous step into the horizontal centrifugal casting machine for centrifugal casting, and controlling the rotation speed of the centrifugal casting machine to 850- 1050 rpm, the centrifugal casting machine is cooled in the process of rotary casting, after centrifugal casting for 20-30 minutes, the steel pipe is initially formed, and the temperature is lowered to 900-1000 degrees Celsius, the air is introduced. Cooling, reduce the temperature of the steel pipe to 600 degrees Celsius within 5 minutes, and then take out the steel pipe to obtain a semi-finished steel pipe;
  • S5 Surface anti-corrosion treatment: coating the surface and inner wall of the semi-finished steel pipe obtained in the previous step, and the process is carried out in a nitrogen-filled environment;
  • Cooling The steel pipe coated with the coating in the previous step is cooled by spray water spray, and the cooling spray time is 10-20 minutes to obtain a high nitrogen austenitic stainless steel pipe.
  • the temperature during the heating in the step S1 is 2300-2500 degrees Celsius
  • the internal pressure of the melting furnace is one atmosphere
  • the reaction time is 50-60 minutes.
  • the water mist flow velocity in the step S6 is controlled to be 40-60 km/h, and the water temperature in the sprayer is controlled to be 15-25 degrees Celsius.
  • the anticorrosive treatment may also be performed by using chromium plating.
  • the invention has the advantages that the casting process of the invention is simple, the flow is small, and the pressure is low, which is in accordance with the current social energy conservation and environmental protection theme, and the solution of the invention can Increasing the nitrogen content of the steel pipe and reducing the overflow during the nitrogen casting process can effectively increase the strength of the steel pipe and is suitable for popularization.
  • the invention provides a technical solution: a process for centrifugally casting a high nitrogen austenitic stainless steel pipe under normal pressure, the process comprising the following steps:
  • S1 preparing material: selecting a billet of austenitic stainless steel as a raw material, adding it to a melting furnace, and heating to a molten state;
  • S5 Surface anti-corrosion treatment: coating the surface and inner wall of the semi-finished steel pipe obtained in the previous step, and the process is carried out in a nitrogen-filled environment;
  • Cooling The steel pipe coated with the coating in the previous step is cooled by a spray spray water spray, and the cooling spray time is 12 minutes to obtain a high nitrogen austenitic stainless steel pipe.
  • the temperature at the time of heating in step S1 is 2,300 degrees Celsius, the internal pressure of the melting furnace is one atmosphere, and the reaction time is 50 minutes.
  • the water mist flow rate in step S6 is controlled to 45 km/h, and the water temperature in the sprayer is controlled to 18 degrees Celsius.
  • the anticorrosive treatment may also be performed by means of electroplating.
  • the invention provides a technical solution: a process for centrifugally casting a high nitrogen austenitic stainless steel pipe under normal pressure, the process comprising the following steps:
  • S1 preparing material: selecting a billet of austenitic stainless steel as a raw material, adding it to a melting furnace, and heating to a molten state;
  • N3 Adding nitrogen element: nitrogen gas is introduced into the molten steel obtained in the first step, and the amount of nitrogen gas is 1 ton of molten steel to 1 kg of nitrogen gas. During the process of introducing nitrogen gas, stirring is maintained, and the stirring speed is 280 rpm. When nitrogen is introduced, excess nitrogen is released to maintain an atmospheric pressure in the melting furnace, and nitrogen is recovered and repeatedly added to the molten steel. The reaction time is 40 minutes, the reaction temperature is controlled to 1900 degrees Celsius, and then high nitrogen can be obtained. Austenitic stainless steel molten steel;
  • S4 pouring molten steel for steel pipe casting: using a horizontal centrifugal casting machine, setting the parameters of the steel pipe, and then introducing the molten steel obtained in the previous step into the horizontal centrifugal casting machine for centrifugal casting, and controlling the rotation speed of the centrifugal casting machine to 950 rpm /min, the centrifugal casting machine is cooled in the process of rotary casting, after centrifugal casting for 5 minutes in the centrifugal casting machine, the steel tube is initially formed, and when the temperature drops to 950 ° C, the air is cooled for 5 minutes. Inside, the temperature of the steel pipe is lowered to 600 degrees Celsius, and then the steel pipe is taken out to obtain a semi-finished steel pipe;
  • S5 Surface anti-corrosion treatment: coating the surface and inner wall of the semi-finished steel pipe obtained in the previous step, and the process is carried out in a nitrogen-filled environment;
  • Cooling The steel pipe coated with the coating in the previous step is cooled by a spray spray water spray, and the cooling spray time is 18 minutes to obtain a high nitrogen austenitic stainless steel pipe.
  • step S1 The temperature at the time of heating in step S1 was 2,400 ° C, the internal pressure of the melting furnace was one atmosphere, and the reaction time was 55 minutes.
  • the water mist flow rate in step S6 is controlled to 45 km/h, and the water temperature in the sprayer is controlled to 20 degrees Celsius.
  • the anticorrosive treatment may also be performed by means of electroplating.
  • the invention provides a technical solution: a process for centrifugally casting a high nitrogen austenitic stainless steel pipe under normal pressure, the process comprising the following steps:
  • S1 preparing material: selecting a billet of austenitic stainless steel as a raw material, adding it to a melting furnace, and heating to a molten state;
  • nitrogen gas is introduced into the molten steel obtained in the first step, and the amount of nitrogen gas is 1 ton of molten steel to 1 kg of nitrogen gas. During the process of introducing nitrogen gas, stirring is maintained, and the stirring speed is 300 rpm. When nitrogen is introduced, excess nitrogen is released to maintain an atmospheric pressure in the melting furnace, and the nitrogen is recovered and repeatedly added to the molten steel. The reaction time is 50 minutes, the reaction temperature is controlled to 2000 degrees Celsius, and then the high temperature can be obtained. Steel of austenitic stainless steel;
  • S4 pouring molten steel for steel pipe casting: using a horizontal centrifugal casting machine, setting the parameters of the steel pipe, and then introducing the molten steel obtained in the previous step into the horizontal centrifugal casting machine for centrifugal casting, and controlling the rotation speed of the centrifugal casting machine to 1050 rpm. /min, in the process of rotary casting, the centrifugal casting machine is cooled, after centrifugal casting for 30 minutes, the steel tube is initially formed, and when the temperature drops to 1000 degrees Celsius, the air is cooled for 5 minutes. Inside, the temperature of the steel pipe is lowered to 600 degrees Celsius, and then the steel pipe is taken out to obtain a semi-finished steel pipe;
  • S5 Surface anti-corrosion treatment: coating the surface and inner wall of the semi-finished steel pipe obtained in the previous step, and the process is carried out in a nitrogen-filled environment;
  • Cooling The steel pipe coated with the coating in the previous step is cooled by spray water spray, and the cooling spray time is 10-20 minutes to obtain a high nitrogen austenitic stainless steel pipe.
  • the temperature at the time of heating in step S1 is 2,500 degrees Celsius, the internal pressure of the melting furnace is one atmosphere, and the reaction time is 60 minutes.
  • the water mist flow rate in step S6 is controlled to be 60 km/h, and the water temperature in the sprayer is controlled to 25 degrees Celsius.
  • the anticorrosive treatment may also be performed by means of electroplating.
  • the solution of the present invention has a much higher nitrogen content than the conventional atmospheric casting scheme, the nitrogen content is increased, the strength of the steel pipe is also increased, and the energy consumption of the solution is relatively low. Therefore, it has a promotion value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺,包括以下步骤:S1:准备材料;S2:添加金属材料;S3:添加氮元素;S4:浇注钢水进行钢管铸造;S5:表面防腐处理;S6:冷却。该铸造工艺简单,流程少,并且在常压下进行,耗能低,且能够提高钢管的含氮量,减少氮气铸造过程中的溢出,能够有效增钢管的强度。

Description

一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺 技术领域
本发明涉及钢管生产领域,具体为一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺。
背景技术
奥氏体不锈钢,是指在常温下具有奥氏体组织的不锈钢。钢中含Cr约18%、Ni 8%~25%、C约0.1%时,具有稳定的奥氏体组织。奥氏体铬镍不锈钢包括著名的18Cr-8Ni钢和在此基础上增加Cr、Ni含量并加入Mo、Cu、Si、Nb、Ti等元素发展起来的高Cr-Ni系列钢。奥氏体不锈钢无磁性而且具有高韧性和塑性,但强度较低,不可能通过相变使之强化,仅能通过冷加工进行强化,如加入S,Ca,Se,Te等元素,则具有良好的易切削性。
奥氏体不锈钢1913年在德国问世,在不锈钢中一直扮演着最重要的角色,其生产量和使用量约占不锈钢总产量及用量的70%。钢号也最多,中国常用奥氏体不锈钢的牌号就有40多个,最常见的就是18-8型。
现有技术中,一般采用高压铸造的方式进行高氮奥氏体不锈钢材料的生产,但是这种方式耗能高,在常压下进行铸造,又存在氮气溢出的情况,造成钢管内部有气泡,并且钢管中的氮含量降低,导致钢管强度降低,影响其使用范围。
发明内容
本发明的目的在于提供一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺,该工艺包括以下步骤:
S1:准备材料:选取奥氏体不锈钢的钢坯作为原料,加入到熔化炉中,进行加热至熔融状态;
S2:添加金属材料:向熔融的钢水中添加金属镍和金属锰,继续进行加热,并且进行搅拌,搅拌转速控制为300-500转/分,反应温度控制为1600-1800摄氏度,反应时间为30-50分钟;
S3:添加氮元素:向上一步骤制得的钢水中通入氮气,通入氮气的量为1吨钢水对1千克氮气,在通入氮气的过程中,保持搅拌,搅拌转速为200-300转/分,通入氮气时,释放多余的氮气,使熔化炉内保持一个大气压,并将氮气回收,反复向钢水中加入,反应时间为30-50分钟,反应温度控制为1800-2000摄氏度,然后即可制得高氮奥氏体不锈钢的钢水;
S4:浇注钢水进行钢管铸造:使用卧式离心铸造机,设定钢管的参数,然后将上一步制得的钢水导入卧式离心铸造机,进行离心铸造,离心铸造机的旋转速度控制为850-1050转/分,在旋转铸造的过程中对离心铸造机进行降温处理,在离心铸造机进行离心铸造20-30分钟之后,待钢管初步成型,且温度降至900-1000摄氏度时,通入空气进行冷却,在5分钟内,使钢管温度降至600摄氏度,然后将钢管取出,制得钢管半成品;
S5:表面防腐处理:在上一步制得的钢管半成品表面和内壁涂布涂料,该过程在充满氮气的环境中实施;
S6:冷却:将上一步涂完涂料的钢管使用喷雾器喷水雾进行冷却,冷却喷雾时间为10-20分钟,即可制得高氮奥氏体不锈钢钢管。
优选的,所述步骤S1中进行加热时的温度为2300-2500摄氏度,熔化炉内部压强为一个大气压,反应时间为50-60分钟。
优选的,所述步骤S2中添加的金属镍的重量为:钢水/金属镍=100/1,添加的金属锰的重量为:钢水/金属锰=100/0.8。
优选的,所述步骤S6中的水雾气流速度控制为40-60km/h,喷雾器中的水温控制为15-25摄氏度。
优选的,所述步骤S5中,还可以采用电镀铬的方式进行防腐处理。
与现有技术相比,本发明的有益效果是:本发明的铸造工艺简单,流程少,并且在常压下进行,因此耗能低,符合当前社会节能环保的主题,并且本发明的方案能够提高钢管的含氮量,减少氮气铸造过程中的溢出,能够有效增钢管的强度,适合推广使用。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
本发明提供一种技术方案:一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺,该工艺包括以下步骤:
S1:准备材料:选取奥氏体不锈钢的钢坯作为原料,加入到熔化炉中,进行加热至熔融状态;
S2:添加金属材料:向熔融的钢水中添加金属镍和金属锰,继续进行加热,并且进行搅拌,搅拌转速控制为350转/分,反应温度控制为1600摄氏度,反应时间为35分钟;
S3:添加氮元素:向上一步骤制得的钢水中通入氮气,通入氮气的量为1吨钢水对1千克氮气,在通入氮气的过程中,保持搅拌,搅拌转速为240转/分,通入氮气时,释放多余的氮气,使熔化炉内保持一个大气压,并将氮气回收,反复向钢水中加入,反应时间为35分钟,反应温度控制为1800摄氏度,然后即可制得高氮奥氏体不锈钢的钢水;
S4:浇注钢水进行钢管铸造:使用卧式离心铸造机,设定钢管的参数,然后将上一步制得的钢水导入卧式离心铸造机,进行离心铸造,离心铸造机的旋转速度控制为1050转/分,在旋转铸造的过程中对离心铸造机进行降温 处理,在离心铸造机进行离心铸造22分钟之后,待钢管初步成型,且温度降至920摄氏度时,通入空气进行冷却,在5分钟内,使钢管温度降至600摄氏度,然后将钢管取出,制得钢管半成品;
S5:表面防腐处理:在上一步制得的钢管半成品表面和内壁涂布涂料,该过程在充满氮气的环境中实施;
S6:冷却:将上一步涂完涂料的钢管使用喷雾器喷水雾进行冷却,冷却喷雾时间为12分钟,即可制得高氮奥氏体不锈钢钢管。
其中,步骤S1中进行加热时的温度为2300摄氏度,熔化炉内部压强为一个大气压,反应时间为50分钟。步骤S2中添加的金属镍的重量为:钢水/金属镍=100/1,添加的金属锰的重量为:钢水/金属锰=100/0.8。步骤S6中的水雾气流速度控制为45km/h,喷雾器中的水温控制为18摄氏度。步骤S5中,还可以采用电镀铬的方式进行防腐处理。
实施例二
本发明提供一种技术方案:一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺,该工艺包括以下步骤:
S1:准备材料:选取奥氏体不锈钢的钢坯作为原料,加入到熔化炉中,进行加热至熔融状态;
S2:添加金属材料:向熔融的钢水中添加金属镍和金属锰,继续进行加热,并且进行搅拌,搅拌转速控制为380转/分,反应温度控制为1700摄氏度,反应时间为40分钟;
S3:添加氮元素:向上一步骤制得的钢水中通入氮气,通入氮气的量为1吨钢水对1千克氮气,在通入氮气的过程中,保持搅拌,搅拌转速为280转/分,通入氮气时,释放多余的氮气,使熔化炉内保持一个大气压,并将氮气回收,反复向钢水中加入,反应时间为40分钟,反应温度控制为1900摄氏度,然后即可制得高氮奥氏体不锈钢的钢水;
S4:浇注钢水进行钢管铸造:使用卧式离心铸造机,设定钢管的参数,然后将上一步制得的钢水导入卧式离心铸造机,进行离心铸造,离心铸造机的旋转速度控制为950转/分,在旋转铸造的过程中对离心铸造机进行降温处理,在离心铸造机进行离心铸造5分钟之后,待钢管初步成型,且温度降至950摄氏度时,通入空气进行冷却,在5分钟内,使钢管温度降至600摄氏度,然后将钢管取出,制得钢管半成品;
S5:表面防腐处理:在上一步制得的钢管半成品表面和内壁涂布涂料,该过程在充满氮气的环境中实施;
S6:冷却:将上一步涂完涂料的钢管使用喷雾器喷水雾进行冷却,冷却喷雾时间为18分钟,即可制得高氮奥氏体不锈钢钢管。
其中,步骤S1中进行加热时的温度为2400摄氏度,熔化炉内部压强为一个大气压,反应时间为55分钟。步骤S2中添加的金属镍的重量为:钢水/金属镍=100/1,添加的金属锰的重量为:钢水/金属锰=100/0.8。步骤S6中的水雾气流速度控制为45km/h,喷雾器中的水温控制为20摄氏度。步骤S5中,还可以采用电镀铬的方式进行防腐处理。
实施例三
本发明提供一种技术方案:一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺,该工艺包括以下步骤:
S1:准备材料:选取奥氏体不锈钢的钢坯作为原料,加入到熔化炉中,进行加热至熔融状态;
S2:添加金属材料:向熔融的钢水中添加金属镍和金属锰,继续进行加热,并且进行搅拌,搅拌转速控制为500转/分,反应温度控制为1800摄氏度,反应时间为50分钟;
S3:添加氮元素:向上一步骤制得的钢水中通入氮气,通入氮气的量为1吨钢水对1千克氮气,在通入氮气的过程中,保持搅拌,搅拌转速为300转/ 分,通入氮气时,释放多余的氮气,使熔化炉内保持一个大气压,并将氮气回收,反复向钢水中加入,反应时间为50分钟,反应温度控制为2000摄氏度,然后即可制得高氮奥氏体不锈钢的钢水;
S4:浇注钢水进行钢管铸造:使用卧式离心铸造机,设定钢管的参数,然后将上一步制得的钢水导入卧式离心铸造机,进行离心铸造,离心铸造机的旋转速度控制为1050转/分,在旋转铸造的过程中对离心铸造机进行降温处理,在离心铸造机进行离心铸造30分钟之后,待钢管初步成型,且温度降至1000摄氏度时,通入空气进行冷却,在5分钟内,使钢管温度降至600摄氏度,然后将钢管取出,制得钢管半成品;
S5:表面防腐处理:在上一步制得的钢管半成品表面和内壁涂布涂料,该过程在充满氮气的环境中实施;
S6:冷却:将上一步涂完涂料的钢管使用喷雾器喷水雾进行冷却,冷却喷雾时间为10-20分钟,即可制得高氮奥氏体不锈钢钢管。
其中,步骤S1中进行加热时的温度为2500摄氏度,熔化炉内部压强为一个大气压,反应时间为60分钟。步骤S2中添加的金属镍的重量为:钢水/金属镍=100/1,添加的金属锰的重量为:钢水/金属锰=100/0.8。步骤S6中的水雾气流速度控制为60km/h,喷雾器中的水温控制为25摄氏度。步骤S5中,还可以采用电镀铬的方式进行防腐处理。
提高对上述三组实施例和传统铸造方法进行对比试验,测算铸造每吨钢管所消耗的电量、钢管的含氮量以及钢管强度,制得下表:
Figure PCTCN2016109401-appb-000001
从上表可知,本发明的方案在含氮量上较传统的常压铸造方案有很大提高,含氮量提高了,钢管的强度也随之提高,并且本方案的能耗相对较低,因此具有推广价值。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (5)

  1. 一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺,其特征在于,该工艺包括以下步骤:
    S1:准备材料:选取奥氏体不锈钢的钢坯作为原料,加入到熔化炉中,进行加热至熔融状态;
    S2:添加金属材料:向熔融的钢水中添加金属镍和金属锰,继续进行加热,并且进行搅拌,搅拌转速控制为300-500转/分,反应温度控制为1600-1800摄氏度,反应时间为30-50分钟;
    S3:添加氮元素:向上一步骤制得的钢水中通入氮气,通入氮气的量为1吨钢水对1千克氮气,在通入氮气的过程中,保持搅拌,搅拌转速为200-300转/分,通入氮气时,释放多余的氮气,使熔化炉内保持一个大气压,并将氮气回收,反复向钢水中加入,反应时间为30-50分钟,反应温度控制为1800-2000摄氏度,然后即可制得高氮奥氏体不锈钢的钢水;
    S4:浇注钢水进行钢管铸造:使用卧式离心铸造机,设定钢管的参数,然后将上一步制得的钢水导入卧式离心铸造机,进行离心铸造,离心铸造机的旋转速度控制为850-1050转/分,在旋转铸造的过程中对离心铸造机进行降温处理,在离心铸造机进行离心铸造20-30分钟之后,待钢管初步成型,且温度降至900-1000摄氏度时,通入空气进行冷却,在5分钟内,使钢管温度降至600摄氏度,然后将钢管取出,制得钢管半成品;
    S5:表面防腐处理:在上一步制得的钢管半成品表面和内壁涂布涂料,该过程在充满氮气的环境中实施;
    S6:冷却:将上一步涂完涂料的钢管使用喷雾器喷水雾进行冷却,冷却喷雾时间为10-20分钟,即可制得高氮奥氏体不锈钢钢管。
  2. 根据权利要求1所述的一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺,其特征在于:所述步骤S1中进行加热时的温度为2300-2500摄氏度,熔化炉内部压强为一个大气压,反应时间为50-60分钟。
  3. 根据权利要求1所述的一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺,其特征在于:所述步骤S2中添加的金属镍的重量为:钢水/金属镍=100/1,添加的金属锰的重量为:钢水/金属锰=100/0.8。
  4. 根据权利要求1所述的一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺,其特征在于:所述步骤S6中的水雾气流速度控制为40-60km/h,喷雾器中的水温控制为15-25摄氏度。
  5. 根据权利要求1所述的一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺,其特征在于:所述步骤S5中,还可以采用电镀铬的方式进行防腐处理。
PCT/CN2016/109401 2016-12-12 2016-12-12 一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺 WO2018107314A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/109401 WO2018107314A1 (zh) 2016-12-12 2016-12-12 一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/109401 WO2018107314A1 (zh) 2016-12-12 2016-12-12 一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺

Publications (1)

Publication Number Publication Date
WO2018107314A1 true WO2018107314A1 (zh) 2018-06-21

Family

ID=62557748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109401 WO2018107314A1 (zh) 2016-12-12 2016-12-12 一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺

Country Status (1)

Country Link
WO (1) WO2018107314A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114367651A (zh) * 2022-01-12 2022-04-19 华北理工大学 一种高氮钢冶炼装置及其冶炼方法
CN114558985A (zh) * 2022-01-25 2022-05-31 繁昌县金科机电科技股份有限公司 一种阀体铸造设备及其铸造工艺
CN115401216A (zh) * 2022-09-21 2022-11-29 华北理工大学 一种合金过配粉体选区激光熔化制备高氮不锈钢的方法
CN115446331A (zh) * 2022-09-21 2022-12-09 华北理工大学 一种纯金属过配粉体选区激光熔化制备高氮不锈钢的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229668A (ja) * 1995-02-24 1996-09-10 Kubota Corp 鋳造用シュート
EP1033191A1 (fr) * 1999-03-04 2000-09-06 Jean-Claude Werquin Cylindre de laminoir composite pour le laminage à chaud ou à froid et son procédé de fabrication
CN102965584A (zh) * 2012-12-17 2013-03-13 山西太钢不锈钢股份有限公司 一种高氮高锰不锈钢及其冶炼方法
CN103540712A (zh) * 2013-11-08 2014-01-29 山西太钢不锈钢股份有限公司 一种低碳高氮不锈钢钢包增氮的方法
CN103924031A (zh) * 2014-04-22 2014-07-16 钢铁研究总院 一种真空感应正压炉冶炼高氮钢的方法
CN104988279A (zh) * 2015-07-22 2015-10-21 内蒙古科技大学 一种氮常压下冶炼高氮不锈钢的方法
CN105108098A (zh) * 2015-09-30 2015-12-02 吉林常春高氮合金研发中心有限公司 常压下离心铸造高氮奥氏体不锈钢钢管的工艺
CN105695886A (zh) * 2016-01-26 2016-06-22 长春实越节能材料有限公司 一种常压冶金两步制造高氮不锈钢钢板的方法
CN106513619A (zh) * 2016-12-02 2017-03-22 机械科学研究总院青岛分院 一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229668A (ja) * 1995-02-24 1996-09-10 Kubota Corp 鋳造用シュート
EP1033191A1 (fr) * 1999-03-04 2000-09-06 Jean-Claude Werquin Cylindre de laminoir composite pour le laminage à chaud ou à froid et son procédé de fabrication
CN102965584A (zh) * 2012-12-17 2013-03-13 山西太钢不锈钢股份有限公司 一种高氮高锰不锈钢及其冶炼方法
CN103540712A (zh) * 2013-11-08 2014-01-29 山西太钢不锈钢股份有限公司 一种低碳高氮不锈钢钢包增氮的方法
CN103924031A (zh) * 2014-04-22 2014-07-16 钢铁研究总院 一种真空感应正压炉冶炼高氮钢的方法
CN104988279A (zh) * 2015-07-22 2015-10-21 内蒙古科技大学 一种氮常压下冶炼高氮不锈钢的方法
CN105108098A (zh) * 2015-09-30 2015-12-02 吉林常春高氮合金研发中心有限公司 常压下离心铸造高氮奥氏体不锈钢钢管的工艺
CN105695886A (zh) * 2016-01-26 2016-06-22 长春实越节能材料有限公司 一种常压冶金两步制造高氮不锈钢钢板的方法
CN106513619A (zh) * 2016-12-02 2017-03-22 机械科学研究总院青岛分院 一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114367651A (zh) * 2022-01-12 2022-04-19 华北理工大学 一种高氮钢冶炼装置及其冶炼方法
CN114367651B (zh) * 2022-01-12 2023-07-21 华北理工大学 一种高氮钢冶炼装置及其冶炼方法
CN114558985A (zh) * 2022-01-25 2022-05-31 繁昌县金科机电科技股份有限公司 一种阀体铸造设备及其铸造工艺
CN115401216A (zh) * 2022-09-21 2022-11-29 华北理工大学 一种合金过配粉体选区激光熔化制备高氮不锈钢的方法
CN115446331A (zh) * 2022-09-21 2022-12-09 华北理工大学 一种纯金属过配粉体选区激光熔化制备高氮不锈钢的方法
CN115401216B (zh) * 2022-09-21 2024-03-05 华北理工大学 一种合金过配粉体选区激光熔化制备高氮不锈钢的方法
CN115446331B (zh) * 2022-09-21 2024-03-05 华北理工大学 一种纯金属过配粉体选区激光熔化制备高氮不锈钢的方法

Similar Documents

Publication Publication Date Title
CN106513619B (zh) 一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺
WO2018107314A1 (zh) 一种常压下离心铸造高氮奥氏体不锈钢钢管的工艺
JP6574307B2 (ja) 高強靭性継目無鋼管及びその製造方法
CN109440009A (zh) 一种tmcp态船舶voc储罐用低温钢板及制造方法
CN103320711B (zh) 无缝钢管及其制造方法
CN102534418A (zh) 一种油套管用马氏体不锈钢及其制造方法
CN106552910A (zh) 一种降低风电中碳钢连铸圆坯碳偏析的连铸工艺
CN104275230B (zh) 一种高硬度涂层耐磨球
CN103882346B (zh) R4级系泊链用钢及其制备方法
CN107523748A (zh) 超低温环境用高锰钢板及其生产方法
CN104480381B (zh) 一种水冷金属型离心球墨铸铁管的工业制备方法
CN108796391B (zh) 一种具有优良塑韧性和抗鳞爆性的搪玻璃用钢及其制造方法
CN109576467B (zh) 提高含Nb低合金高强钢通卷性能均匀性的控制方法
CN109504899A (zh) 一种塑料模具钢及其制备方法
CN102994907A (zh) 一种止回阀阀体铸造方法
CN104120356A (zh) 一种管式换热器用铁素体不锈钢及其制造方法
WO2017050227A1 (zh) 一种高强韧性无缝钢管及其制造方法
CN106834971A (zh) 一种耐腐蚀抗裂耐磨钢球
CN109290367A (zh) 一种耐腐蚀冷镦钢的轧制方法
CN106319333B (zh) 一种高强度钢钒氮微合金化的冶炼方法
CN108914005B (zh) 一种屈服强度>460MPa的低温韧性优异的特厚耐腐蚀钢板及其生产方法
CN110273101A (zh) 一种h级抽油杆及其制备方法
CN104451274A (zh) 一种铝合金的制备方法
CN108486503B (zh) 一种高碳马氏体不锈钢薄带的连铸近终成形制备方法
CN104862614A (zh) 一种x60n正火管线钢及其生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923821

Country of ref document: EP

Kind code of ref document: A1