WO2018105449A1 - Solar battery - Google Patents

Solar battery Download PDF

Info

Publication number
WO2018105449A1
WO2018105449A1 PCT/JP2017/042657 JP2017042657W WO2018105449A1 WO 2018105449 A1 WO2018105449 A1 WO 2018105449A1 JP 2017042657 W JP2017042657 W JP 2017042657W WO 2018105449 A1 WO2018105449 A1 WO 2018105449A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel body
panel
solar cell
solar
solar cells
Prior art date
Application number
PCT/JP2017/042657
Other languages
French (fr)
Japanese (ja)
Inventor
清茂 児島
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2018105449A1 publication Critical patent/WO2018105449A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell.
  • silicon solar cell using silicon As a typical inorganic solar cell, there is a silicon solar cell using silicon (Si). In general, a silicon-based solar cell often uses a glass substrate. For this reason, silicon-based solar cells have poor flexibility and tend to be heavy.
  • examples of the organic solar cell include a dye sensitizing system composed of titania, a dye and an electrolyte, a low molecular vapor deposition system using an organic pigment, and a polymer coating system using a conductive polymer.
  • Silicon-based solar cells have been difficult to thin in terms of workability such as cutting out from ingots and cutting.
  • an organic solar cell is formed by applying a photoelectric conversion layer or the like on a substrate, so that it has good workability and can be formed into a thin sheet.
  • An object of the present invention is to provide a solar cell that solves the above-described problems, ensures durability and strength, and is lightweight and excellent in design.
  • the solar cell of this invention is a 1 or several photovoltaic cell, the supporting member which supports the said photovoltaic cell, and generated electric power.
  • the solar cell of the present invention includes a solar cell panel having one or a plurality of solar cells, a support member that supports the solar cells, and an electrode unit that collects generated power and outputs the generated power to the outside.
  • the light transmittance of the light transmitting portion excluding the solar battery cell and the electrode portion is 40% or more in the range of 450 nm to 750 nm.
  • the haze ratio of the light transmission part excluding the solar battery cell and the electrode part is 20% or less.
  • the aperture ratio which is the ratio of the light transmission part excluding the solar battery cell and the electrode part, to the entire area of the panel body in plan view is 30% to 75%. It is preferable.
  • the panel body of the present invention includes a solar battery panel having one or a plurality of solar cells, a support member that supports the solar cells, and an electrode unit that collects generated power and outputs it to the outside.
  • the panel main body includes an exterior member, and the ultraviolet ray cut rate of the laminated portion that is transmitted to the solar cells in the panel main body is 95% or more in a range of 380 nm or less.
  • the panel body of the present invention includes a solar battery panel having one or a plurality of solar cells, a support member that supports the solar cells, and an electrode unit that collects generated power and outputs it to the outside.
  • the panel body is formed by stacking a plurality of films, and the number of stacked films is four or more.
  • the panel body has a thickness of 0.3 mm to 3 mm.
  • the present invention provides a solar cell panel having one or more solar cells, a support member that supports the solar cells, and an electrode unit that collects generated power and outputs it to the outside, and an exterior member
  • the panel body has a flexural modulus of 1.5 GPa to 10 GPa.
  • the output characteristic per unit area or unit volume of the panel body is preferably 0.8% to 6.2%.
  • FIG. 1B is a cross-sectional view taken along line AA shown in FIG. 1A. It is a figure which shows an example of the connection in the case of connecting multiple panel main bodies shown in FIG. It is a figure which shows another example of the connection in the case of connecting multiple panel main bodies shown in FIG. It is a figure which shows an example of the usage example of the panel main body shown in FIG. It is a figure which shows another example of the usage example of the panel main body shown in FIG. It is a figure which shows another example of the usage example of the panel main body shown in FIG. It is a figure which shows another example of the usage example of the panel main body shown in FIG. It is a figure which shows another example of the usage example of the panel main body shown in FIG. It is a figure which shows another example of the usage example of the panel main body shown in FIG.
  • FIG. 1A is a top view showing a main configuration of a panel body 15 according to an embodiment of the present invention.
  • 1B is a cross-sectional view taken along line AA shown in FIG. 1A.
  • the thickness direction means a direction perpendicular to the paper surface of a top view such as FIG. 1A.
  • the solar battery panel 10 includes a solar battery cell 11, a support member 12, a current collecting electrode 13, and a lead electrode 14.
  • the panel body 15 includes a solar battery panel 10 including the solar battery cells 11 and the support member 12, an exterior member 17 installed on at least one of the upper and lower surfaces of the solar battery panel 10, and as necessary.
  • a filling member 18 filled between the exterior member 17 and the solar cell panel 10 is included.
  • FIG. 1B shows an example in which exterior members 17 are installed on the upper and lower surfaces of the solar cell panel 10.
  • the exterior member 17 a laminate of a plurality of members can be used.
  • the solar battery cell 11 is a plate-like photoelectric conversion unit.
  • the solar battery cell 11 converts light energy of incident light such as sunlight and room light into electric energy.
  • the plate shape means a shape that is sufficiently larger in the horizontal plane direction perpendicular to the thickness direction than in the thickness direction.
  • the number of solar cells 11 is exemplified as 12 in FIG. 1, it may be one or more.
  • each solar battery cell 11 is mechanically and electrically connected on a horizontal plane by wiring (not shown) in FIG. 1A.
  • the connection of the several photovoltaic cell 11 can be selected as needed, such as series connection, parallel connection, and series-parallel connection.
  • This difference in connection can be appropriately changed depending on the pattern of the transparent conductive film formed on the support member 12, the pattern of the wiring, and other electrodes for electrically connecting the electrodes at predetermined locations. .
  • FIG. 1A although the example with which the photovoltaic cell 11 was arrange
  • An example of the type of solar battery constituting the solar battery cell 11 is an organic solar battery.
  • Organic solar cells include organic thin film systems such as low molecular vapor deposition systems using organic pigments, polymer coating systems using conductive polymers, and coating conversion systems using conversion type semiconductors, titania, dyes and electrolytes. And a dye sensitizing system.
  • the solar battery which comprises the photovoltaic cell 11 can also include the organic-inorganic hybrid solar battery and the solar battery using the perovskite compound.
  • a dye-sensitized solar battery that can be produced on a plastic film or the like, or a solar battery using a perovskite compound is suitable.
  • the solar battery cell 11 usually has a structure in which a functional layer that absorbs light and generates electrons and holes is sandwiched between two electrode substrates. More specifically, the dye-sensitized solar cell generates electricity by absorbing light and generating electrons by the dye adsorbed on the porous titania. Moreover, in the case of a solar cell using a perovskite compound, electrons and holes are generated in the perovskite crystal layer that has absorbed light, and is generated by being transported by the electron transport layer and the hole transport layer, respectively. .
  • Such a configuration of the solar battery cell 11 is well known to those skilled in the art, and since it is not directly related to the present invention, a detailed description thereof will be omitted.
  • Each solar battery cell 11 is formed so that the periphery is surrounded by a support member 12 constituted by a sealing portion for bonding the support substrate and the support member.
  • the current collecting electrode 13 is electrically connected to an electrode (photoelectrode or counter electrode) of the solar cell 11 that is electrically an end in the arrayed solar cell 11.
  • the extraction electrode 14 is drawn out from the current collecting electrode 13 to take out electric power to the outside of the panel body 15 and outputs the generated electric power of each solar battery cell 11 to the outside.
  • the extraction electrode 14 is not particularly limited, and has a conductor formed of a general conductive material. Examples of such a conductor include a conductor formed of a metal material selected from the group consisting of copper, aluminum, nickel, iron, and the like, and an alloy material containing these metal materials. Among these, an electrode using copper as a conductor is preferable.
  • the conductor constituting the extraction electrode 14 is preferably as thin as possible because the step difference from the surroundings is reduced and the sealing performance of the solar battery cell 11 is improved. Furthermore, it is preferable to maintain strength sufficient for use as a lead electrode. Specifically, the thickness of the conductor is preferably 0.001 mm or more and 0.5 mm or less. Further, the lead electrode 14 is made of a conductive wire or the like and may be flexible. In addition, the junction between the extraction electrode 14 and the current collecting electrode 13 can be used as long as it has conductivity and can be fixed. Specifically, a conductive adhesive, solder, an adhesive resin mixed with a conductive filler, and the like can be given.
  • the current collecting electrode 13 and the extraction electrode 14 constitute an electrode portion 16 for collecting the power generated by the solar battery cell 11 and outputting it to the outside.
  • the electrode part 16 may be pulled out to the outside of the panel outer shape. Further, the electrode part 16 may be in the form of being taken out from an opening formed in the surface of the exterior member 17. Depending on the shape, the collecting electrode 13 and the extraction electrode 14 may be integrally formed.
  • the exterior member 17 a material having a function according to the purpose, a material in which a member exhibiting a function is mixed, a member having a functional film formed on the surface, or the like can be used.
  • Specific functions include a barrier function that suppresses the permeation of water vapor and gas, a cut function for cutting a specific wavelength such as ultraviolet rays, an antifouling function for preventing surface contamination, and a surface damage prevention.
  • the exterior member 17 may be a member provided with a plurality of functions for one sheet. Moreover, you may comprise the several exterior member 17 to which each function was provided
  • a transparent optical adhesive (OCA (Optical Clear Adhesive)) film, a highly transparent resin, or the like is used from the viewpoint of ensuring transparency and the like. It is preferable. Moreover, it is preferable to fill the gap between the exterior members 17 in the outer peripheral portion of the solar cell panel 10 with a highly transparent resin or the like as the filling member 18. In addition, in the gap between the exterior members 17, a frame material with high light transmittance can be used together with the filling member 18.
  • the weight of the panel body 15, per unit area in the size of the panel 15 (an area in plan view), is 0.06g / cm 2 ⁇ 0.4g / cm 2. By setting it as such a weight, mounting to various apparatuses and carrying of a user become easy.
  • the size of the panel body 15 is 25 cm 2 to 400 cm 2 , preferably 25 cm 2 to 144 cm 2 . With such a size, the user can easily carry the panel main body 15 in a pocket or bag, and portability is improved.
  • the panel body 15 has a thickness of 0.3 mm to 3 mm, preferably 0.5 mm to 1.5 mm, and more preferably 0.6 mm to 1.2 mm.
  • the volume of the panel body 15 is 0.75cm 3 ⁇ 120cm 3. By setting it as such a volume, the panel main body 15 is not bulky, and even if it combines several sheets, portability is not impaired.
  • the weight of the panel body 15 was measured with a precision balance.
  • the size of the panel body 15 was measured with a stereomicroscope.
  • the thickness of the panel body 15 was measured with a digital indicator manufactured by Mitutoyo Corporation. Further, the volume of the panel body 15 was calculated from the thickness and area of the panel body 15.
  • the parallelism of the light transmitting portion of the panel body 15 is Max. -Min. Is 12 ⁇ m or less, preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less. With such parallelism, the transmitted image is hardly distorted in the light transmitting portion, and the design is improved.
  • the flatness of the panel body 15 is such that Max-Min is 20 ⁇ m or less, preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less. With such flatness, the image reflected on the panel body 15 is hardly distorted, and the design is improved.
  • the number of laminated films (number of laminated films) constituting the panel body 15 is four or more. By setting it as such lamination
  • the parallelism of the panel main body 15 is a measured value obtained by measuring the transparent portion between the solar cells 11 on the panel main body 15 in the vertical direction with respect to the solar cells 11 with a digital indicator manufactured by Mitutoyo Corporation. The difference between the maximum value and the minimum value was calculated. Further, the flatness of the panel body 15 was measured by using a contact-type step meter or a laser step meter to measure the level difference of the surface of the panel body 15 adsorbed on the porous adsorption stage. And it computed as the difference of the maximum value and minimum value of the fluctuation
  • the output characteristics per unit area of the panel body 15 are 0.8% to 6.2%. When it is 0.8% or less, the amount of power generation is small, and application to various uses becomes difficult. On the other hand, if it is intended to be 6.2% or more, it is necessary to reduce the ratio of the opening, which is not preferable because the design is impaired. In order to achieve both design and output characteristics in the present invention, the above range is preferable. However, if the performance is further improved in the future and the same aperture ratio can be maintained, one having higher output characteristics can be used.
  • the output characteristics of the panel body 15 were measured as follows.
  • the extraction electrode 14 drawn out to the outside of the panel body 15 was connected to a source meter (2400 type source meter, manufactured by Keithley).
  • a pseudo solar light source PEC-L11 type, manufactured by Pexel Technologies
  • AM1.5G 100 mWcm-2 (JIS A-8912 class A)
  • the output current was measured while changing the bias voltage under light irradiation of 1 sun, and current-voltage characteristics were obtained.
  • the change of the bias voltage was measured in each of the forward direction and the reverse direction, and the average value was taken as the current-voltage characteristic. From the current-voltage characteristics thus obtained, the output power of the panel body 15 was measured.
  • the light transmittance of the light transmitting portion of the panel body 15 is 40% or more in the range of 450 nm to 750 nm, preferably 50% or more. Further, when a color coat layer is used as the exterior member, the transmittance may decrease to 40% or less in the range of 450 nm to 750 nm because it has absorption at a specific wavelength. However, at least within the wavelength range, at least a part of the light transmitting portion of the panel body 15 needs to have a light transmittance of 40% or more.
  • the light transmittance of the panel body 15 is determined by the members constituting the panel body 15. The higher the light transmittance of the panel body 15 is, the more light can be transmitted.
  • the haze rate of the light transmission part of the panel main body 15 is 20% or less, Preferably it is 10% or less, More preferably, it is 5% or less.
  • the haze ratio of the light transmission part of the panel body 15 is determined by the members constituting the panel body 15. The lower the haze ratio of the light transmission part of the panel body 15 is, the higher the transparency of the light transmission part of the panel body 15 is, and a clear transmission image can be obtained through the light transmission part of the panel body 15.
  • the light transmittance and haze ratio of the light transmitting portion of the panel body 15 were measured with an ultraviolet-visible spectrophotometer.
  • the aperture ratio of the panel body 15 (the ratio of the light transmitting portion to the entire area in a plan view) is 30% to 75%.
  • the opening ratio of the panel body 15 is 75% or more, the power generation amount decreases.
  • the aperture ratio of the panel main body 15 is 30% or less, the ratio of the area through which light is transmitted is reduced, so that the design is impaired, which is not preferable. Therefore, by setting the above range, the feeling of pressure felt by the user is reduced, the amount of transmitted light can be secured, and the output can be secured.
  • the aperture ratio of the panel body 15 was measured with a stereomicroscope.
  • the ultraviolet cut rate of the panel body 15 is 95% or more in the wavelength range of 380 nm or less. As the ultraviolet ray cut rate at the specific wavelength of the panel body 15 is larger, the deterioration of the solar battery cell 11 due to sunlight (ultraviolet light) can be suppressed, and the decrease in the output of the solar battery panel 10 can be suppressed.
  • an ultraviolet ray cutting function may be imparted to any layer of the laminate that is transmitted up to the solar battery cell 11.
  • the water vapor transmission rate of the portion of the solar cell panel 10 in the panel body 15 is 5 ⁇ 10 ⁇ 2 g / m 2 / day or less. Yes, preferably 5 ⁇ 10 ⁇ 3 g / m 2 / day or less, and more preferably 5 ⁇ 10 ⁇ 4 g / m 2 / day or less.
  • the water vapor transmission rate of the panel body 15 is defined by the members constituting the panel body 15 and the thickness of the members. As the water vapor transmission rate of the panel body 15 is smaller, it is possible to suppress moisture permeation into the panel body 15 and to prevent deterioration of the output of the panel body 15 when used outdoors.
  • the ultraviolet cut rate was measured with an ultraviolet-visible spectrophotometer manufactured by Shimadzu Corporation.
  • an ultraviolet-visible spectrophotometer manufactured by Shimadzu Corporation.
  • a sample having the same laminated structure as that from the light receiving surface of the panel body 15 to the substrate on which the photoelectrodes are formed was used.
  • the water vapor transmission rate was measured by the differential pressure method (gas chromatographic method) for the same sample as that for measuring the ultraviolet cut rate.
  • the bending elastic modulus of the panel body 15 is defined by the material constituting the panel body 15 and the layer structure of the panel body 15. The higher the flexural modulus of the panel body 15 is, the stronger the resistance to the stress to the panel body 15 is, and the panel body 15 can be self-supported (there is no distortion even when the panel body 15 is erected).
  • the bending elastic modulus of the panel body 15 was defined as follows.
  • the panel body 15 includes the solar cell panel 10, the exterior member 17 installed on at least one of the upper and lower surfaces of the solar cell panel 10, and, if necessary, between the exterior member 17 and the solar cell panel 10. And a filling member 18 filled therein.
  • the flexural modulus of the panel body 15 was the flexural modulus of these laminates.
  • the outer shape of the panel body 15 is not particularly limited.
  • the outer shape of the panel body 15 may be a shape having a curve such as a circle or an ellipse. Further, the outer shape of the panel body 15 may be a shape having corners such as a rectangle and a square. Further, the outer shape of the panel body 15 may have a shape with chamfered corners.
  • the outer shape of the panel body 15 can be appropriately selected according to the application.
  • the panel body 15 is configured by laminating an exterior member 17 and a filling member 18 therebetween on the upper and lower surfaces of the solar cell panel 10.
  • an upper exterior member and a lower exterior member As an upper exterior member and a lower exterior member, 188 ⁇ m thick PET (polyethylene terephthalate) having a hard coat layer formed on the surface and 25 ⁇ m thick transparent optical adhesive (OCA (Optical Clear Adhesive)) film and 38 ⁇ m thick PET having a barrier layer formed on the surface were used.
  • the solar cell panel 10 having a thickness of 430 ⁇ m was used.
  • the upper exterior member and the lower exterior member were bonded using an OCA film.
  • an ultraviolet curable resin was filled between the upper exterior member and the lower exterior member at the outer periphery of the solar cell panel 10.
  • the bending elastic modulus of the panel body 15 having the above-mentioned configuration generally depends on the material constituting the panel body 15 and the thickness ratio of each layer constituting the panel body 15.
  • the relationship between the flexural modulus (Mo) of the exterior member 17 and the flexural modulus (Mi) of the solar cell panel 10 is Mo ⁇ Mi, and the thickness (To) of the exterior member 17 and the thickness of the solar cell panel 10 are the same. If the relationship with (Ti) is To ⁇ Ti, the bending elastic modulus of the panel body 15 substantially depends on the bending elastic modulus of the exterior member 17.
  • the flexural modulus of the panel body 15 is 1.5 GPa to 10 GPa, preferably 1.8 GPa to 5 GPa, and more preferably 2.0 GPa to 2.5 GPa.
  • the material used for the exterior member 17 and / or the support member 12 is not particularly limited as long as it is a material that gives the panel main body 15 a bending elastic modulus in the above range.
  • materials used for the exterior member 17 and / or the support member 12 are PET (polyethylene terephthalate) resin, PEN (polyethylene naphthalate) resin, acrylic resin, polyimide resin, vinyl chloride resin, cycloolefin resin, silicon. Resin etc. are mentioned.
  • the flexural modulus of the PET resin is 2.0 to 2.4 GPa
  • the flexural modulus of the PEN resin is 2.5 to 3 GPa
  • the flexural modulus of the acrylic resin Is 2.3 GPa
  • the flexural modulus of polyimide resin is 2.4 GPa
  • the flexural modulus of vinyl chloride is 3.4 GPa
  • the flexural modulus of cycloolefin resin is 2.1 GPa. Therefore, for example, when PEN resin is used as the support member of the solar cell panel 10, the panel main body 15 having the bending elastic modulus in the above-described range can be obtained by using the above-described material as the exterior member 17.
  • the bending elastic modulus of the panel body 15 is a jig using a strip test piece as described in JIS K7171 using an Instron 3-point bending tester. It can be installed and measured.
  • a glass substrate having a flexural modulus of 30 to 40 GPa or a silicon substrate having a flexural modulus of 35 to 50 GPa is used as the support member. Therefore, the bending elastic modulus of the panel using the silicon-based solar cell is generally dependent on the glass substrate due to the influence of the thickness, and the bending elastic modulus is higher than the bending elastic modulus of the panel body 15 according to the present embodiment. It will be a thing.
  • the tensile elastic modulus of the PET resin is 3.5 to 5 GPa
  • the tensile elastic modulus of the PEN resin is 3.5 to 6 GPa
  • the tensile elastic modulus of the acrylic resin is 2
  • the tensile elastic modulus of the polyimide resin is 2.1 GPa
  • the tensile elastic modulus of the vinyl chloride resin is 2.3 to 4.1 GPa.
  • Each layer constituting the panel body 15 has a tensile elastic modulus corresponding to the material constituting each layer.
  • the linear expansion coefficient of PET resin 15ppm / ° C, 12ppm / ° C RH
  • the linear expansion coefficient of PEN resin 13ppm /
  • a material having a storage elastic modulus at 25 ° C. of 0.01 to 500 MPa for example, an adhesive layer such as an OCA film, is interposed between the solar cell panel 10 and the exterior member 17. Bending stress and interlaminar shear stress can be relaxed.
  • a bending fatigue tester for example, when measured according to JIS K7118 using an Instron bending fatigue tester, 102 to 1010 times. It is preferable to have a value of the number of repetitions.
  • the size of the panel body 15 is 25 cm 2 ⁇ 400 cm 2, it is preferably 25cm 2 ⁇ 144cm 2.
  • a single panel body 15 of this size may not be able to obtain sufficient power to drive an electrical device. In such a case, it is conceivable that a plurality of panel main bodies 15 are connected, and the generated power of the plurality of panel main bodies 15 is combined and supplied to the electrical equipment.
  • FIG. 2 is a diagram illustrating an example of connection of a plurality of panel main bodies 15.
  • FIG. 2 shows an example in which the panel body 15 is connected to the cable 22 via the connection member 21.
  • the cable 22 includes a collector wire for the positive electrode and the negative electrode, and a jacket made of a weather-resistant insulating material that covers the collector wire.
  • the cable 22 is provided with a connector portion for connecting the current collector and the extraction electrode 14 of the panel body 15.
  • the connecting member 21 supports the panel main body 15 with the cable 22 and the panel main body 15 sandwiched so that the extraction electrode 14 and the current collector of the cable 22 are connected in the connector portion.
  • a connector 23 is provided for mechanically and electrically connecting the cable 22 and the electronic device. By connecting the connector 23 to the electronic device, the generated power of the panel body 15 connected to the cable 22 can be supplied to the electronic device.
  • FIG. 3 is a diagram illustrating another example of the connection of the plurality of panel main bodies 15.
  • FIG. 3 shows an example in which the panel body 15 is connected to a branch wiring 25 that branches off from the main wiring 24 and extends.
  • the main wiring 24 and the branch wiring 25 include a current collector for positive electrode and a negative electrode, and a jacket made of a weather-resistant insulating material that covers the current collector.
  • a connector 26 is provided at the end of the branch wiring 25. The connector 26 fixes the panel main body 15 so that the current collection line of the branch wiring 25 and the lead electrode 14 of the panel main body 15 are connected.
  • a connector 27 for connecting the main wiring 24 and the electronic device is provided at one end of the main wiring 24. By connecting the connector 27 to the electronic device, the generated power of the panel body 15 connected to each branch wiring 25 can be supplied to the electronic device.
  • the panel body 15 is a weight is 0.06g / cm 2 ⁇ 0.4g / cm 2 degree and light weight, the flexural modulus and about 1.5 GPa ⁇ 10 GPa, the sheet Compared with a solar cell module having a shape, it has a high flexural modulus. Therefore, when the panel body 15 is attached to the cable 22 via the connecting member 21 (FIG. 2) and when the panel body 15 is attached to the branch wiring 25 via the connector 26 (FIG. 3), the panel body 15 is easy to handle.
  • the panel body 15 according to the present embodiment is lighter than the silicon-based solar cell, the cable 22 and the main wiring 24 connected to the panel body 15 are easily installed, the degree of freedom in installation is improved, and The design is improved.
  • the cable 22 and the main wiring 24 to which the panel main body 15 is connected for example, it may be hung on a sunny window side.
  • the cable 22 and the main wiring 24 connected to the lightweight panel body 15 are installed by being entangled with a rope of a tent, installed on a bag, installed like a Christmas tree decoration, etc.
  • the panel body 15 can also be installed by utilizing it.
  • Examples of usage of the panel body 15 include various types of charging, such as charging of a storage battery using the power generated by the panel body 15, driving a motor or the like using the power generated by the panel body 15, driving a sensor or semiconductor element using the power generated by the panel body 15. Examples of use are possible.
  • the electric power generated by the panel body 15 is sequentially supplied as the power of the movable part.
  • the movable device may be configured to use a supply source other than the solar cell panel, for example, a dry battery or a rechargeable battery, as a power supply source for driving the movable part, but is driven only by the power generated by the panel body 15. It is preferable to adopt the configuration from the viewpoint of reducing the weight of the entire movable device.
  • a supply source other than the solar cell panel for example, a dry battery or a rechargeable battery
  • the power consumption of the movable device is preferably 2000 mW or less, more preferably 1000 mW or less, and even more preferably 500 mW or less. If the power consumption is higher than this, the size of the panel body 15 mounted on the movable device will increase, the required number will increase, the load on the movable device will increase, and restrictions such as inability to use during cloudy weather will occur, It is not preferable.
  • FIG. 4 is a diagram illustrating an example of a usage example of the panel body 15 according to the present embodiment.
  • FIG. 4 a cable 22 in which a plurality of panel main bodies 15 are connected by connecting members 21 is connected to an electric fan 31 via a connector 23, and the electric fans 31 are driven by the generated power of the plural panel main bodies 15 (of the electric fan 31.
  • An example of driving a motor that rotates a wing) is shown.
  • FIG. 5 is a diagram illustrating another example of the usage example of the panel body 15 according to the present embodiment.
  • the cable 22 in which the panel body 15 is connected by the connecting member 21 is connected to the portable radio 32 via the connector 23, and the portable radio 32 is driven by the generated power of the panel body 15 (the portable radio 32 is configured).
  • the example which drives the semiconductor element which performs is shown.
  • the panel main body 15 may be directly connected to the electric device.
  • the panel body 15 may be incorporated in the electronic device body.
  • the electronic device main body is preferably provided with a mechanism for folding the panel main body 15 or a mechanism for changing the direction of the panel main body 15 so that the necessary number of sheets can be installed.
  • the member at the time of incorporation into the device can be used as a part of the exterior member.
  • FIG. 6 is a diagram illustrating another example of the usage example of the panel body 15 according to the present embodiment.
  • FIG. 6 shows an example in which the panel main body 15 is arranged on the upper part of the robot 34 having a moving mechanism such as a wheel.
  • the robot 34 can be moved without power supply from the outside by driving the motor or the like constituting the moving mechanism of the robot 34 with the generated power of the panel body 15.
  • Various sensor functions and the like can be added to the robot 34 as long as the power supply allows.
  • the generated power can be averaged by moving or rotating only the panel main body 15 within an appropriate range separately from the robot 34. By operating the device with the averaged power, adaptability to the external environment such as sunbeams can be increased.
  • the panel main body 15 according to the present embodiment is characterized by being lighter in weight and superior in incident light dependency as compared with a silicon solar cell. Therefore, the range in which installation is possible is expanded, and it is possible to improve the degree of freedom of design and the design.
  • FIG. 7 is a view showing still another example of the usage example of the panel body 15 according to the present embodiment.
  • FIG. 7 shows an example in which the panel main body 15 is installed on the wings 35 of the electric fan 36 (movable device) having the wings 35 that are movable parts that can move (displace (rotate)).
  • the wings 35 that are movable parts can be operated (displaced) together with the panel main body 15 by the generated power of the panel main body 15.
  • the panel body 15 according to the present embodiment is characterized by being lightweight and difficult to break. Therefore, as shown in FIG. 7, the panel main body 15 is installed on the wing 35 (movable part) of the electric fan 36 (movable device), and the wing 35 is operated together with the panel main body 15 by the generated power of the panel main body 15. Is suitable.
  • the panel body 15 is installed on a wing that is a movable part of a windmill used for wind power generation.
  • the panel body 15 By installing the panel body 15 on the wings of the windmill, in addition to the power generated by wind power generation, power generated by solar power generation can be obtained, and the amount of power generation can be increased.
  • the panel body 15 by installing the panel body 15 on each wing of the rotating windmill, the amount of light applied to each panel body 15 is made uniform by the rotation of the windmill, and the power generation amount of each panel body 15 is made uniform. be able to.
  • the panel main body 15 may be installed in both surfaces of a windmill, or may be installed in the main-body part to which the windmill was connected.
  • FIG. 8 is a diagram showing still another example of the usage example of the panel body 15 according to the present embodiment.
  • a cylindrical member 37 and a panel main body 15 that extends radially from the cylindrical member 37 and is movable (displaceable) along the circumferential direction of the cylindrical member 37 are provided.
  • a movable device 38 is shown.
  • the movable device 38 is installed as an object, for example.
  • a motor that moves the panel main body 15 extending in the radial direction from the member 37 along the circumferential direction of the cylindrical member 37 is arranged inside the cylindrical member 37.
  • the motor may be driven by the power generated by the main body 15.
  • the panel body 15 itself is provided as a movable part, and the panel body 15 itself is moved by the generated power of the panel body 15 so that the wings flutter around the cylindrical member 37. be able to.
  • the panel body 15 according to the present embodiment is lightweight, has a bending elastic modulus that can maintain the shape, and has a feature that it is difficult to break. Therefore, as shown in FIG. 8, it is also suitable for a usage mode in which the movable part is constituted by the panel body 15 itself.
  • a wing part that is a movable part of a windmill used for wind power generation is configured by the panel body 15
  • the panel main body 15 Since the panel main body 15 according to the present embodiment has a higher bending elastic modulus than the sheet-like solar cell module, the shape can be maintained even when wind is received, and the windmill can be rotated by wind power. Also by using the panel main body 15 itself as a windmill wing, it is possible to obtain electric power from solar power generation in addition to electric power from wind power generation, and increase the amount of power generation.
  • each blade of the rotating windmill itself a panel body 15
  • the amount of light applied to each panel body 15 is made uniform by rotating the windmill, and the power generation amount of each panel body 15 is made uniform. be able to.
  • the dye-sensitized solar cell 11 when used, it has a feature that the responsiveness is low, so that it is easy to obtain the effect of equalizing the power generation amount by rotation.
  • the movable part is a fan or a fan of a windmill and has been described using an example that operates regularly.
  • the present invention is not limited to this, and the movable part operates irregularly. May be. Further, it can be installed not only on the movable part but also on the non-movable part.
  • connection method of the panel body 15 is not limited to the method shown in FIGS.
  • the plurality of panel bodies 15 may be connected such that the plurality of panel bodies 15 constitute each surface except the bottom surface of the rectangular parallelepiped.
  • the panel body 15 according to the present embodiment has a higher flexural modulus than the sheet-like solar cell module.
  • the panel body 15 when the panel body 15 is arranged on the side surface of the rectangular parallelepiped (when the panel body 15 is placed upright) or when the panel body 15 is arranged on the upper surface of the rectangular parallelepiped (on the upper side of the panel body 15 arranged on the side surface of the rectangular parallelepiped)
  • the panel body 15 can maintain its shape without bending even when the panel body 15 is disposed so as to be in contact. Therefore, as shown in FIG. 9, it is also possible to arrange a plurality of panel main bodies 15 on a rectangular parallelepiped.
  • FIG. 10 shows an example in which nine panel main bodies 15 are connected in a matrix of 3 rows and 3 columns.
  • the present invention is not limited to this, and an arbitrary number of panel main bodies 15 may be connected. Can do.
  • the panel main body 15 when the panel main body 15 is connected in a matrix form in a plane, the generated power by sunlight can be obtained by pasting it on a window.
  • the solar cell 11 part since the solar cell 11 part does not transmit light, the panel body 15 can function as a curtain or a blind by adjusting the ratio of the solar cell 11 and the support member 12.
  • the joint portion 39 connects the panel body 15 in the row direction and the column direction.
  • the joint portion 39 includes a flexible conductive member (not shown), and mechanically and electrically connects the panel body 15 in the row direction and the column direction.
  • the joint portion 39 includes a conductive member and a non-conductive member for protecting and / or reinforcing the conductive member as necessary.
  • joint portion 39 may be configured by a flexible non-conductive member that connects any adjacent panel body 15 only mechanically and not electrically.
  • the material constituting the nonconductive member is not particularly limited as long as it is highly transparent in the visible light range. Specifically, materials such as PET resin, PEN resin, acrylic resin, polyimide resin, vinyl chloride resin, cycloolefin resin, and silicon resin can be used. Furthermore, since the portion excluding the conductive member is made of only a material having high transparency in the visible light region, the overall transparency can be improved without impairing the transparency of the panel body.
  • the non-conductive member may be composed of a layered structure perpendicular to the panel surface.
  • the physical properties of the layers constituting the nonconductive member may be the same or different.
  • the bending elastic modulus of the joint portion 39 is preferably lower than the bending elastic modulus of the panel body 15. If the thickness of the joint portion 39 is thicker than the thickness of the panel body 15, it is not preferable because bending becomes difficult or the thickness in the folded state is controlled by the thickness of the joint portion rather than the thickness of the panel.
  • the junction part 39 has the thickness of the grade which does not inhibit bending and folding.
  • the haze ratio and light transmittance of the non-conductive member are preferably the same as those of the light transmitting portion of the panel body 15.
  • the difference in refractive index between adjacent layers is preferably small, and is usually 0.5 or less, preferably 0.2 or less, and more preferably 0.1 or less.
  • the thickness of the joint portion 39 is preferably equal to or less than the thickness of the panel body 15. Beyond this, it becomes difficult to bend, and the panel cannot be stacked and stored with the joint 39. Moreover, if the thickness of the joint portion 39 is too small, the strength of the joint portion 39 cannot be maintained.
  • a method for manufacturing a solar cell made of a plastic substrate As a method for manufacturing a solar cell made of a plastic substrate, a method described in Japanese Patent No. 5292549 can be used. In this invention, the solar cell panel 10 and the panel main body 15 were produced as described below.
  • Example 1 Preparation of dye solution> 72 mg of ruthenium complex dye (N719, Solaronics) was placed in a 200 mL volumetric flask. 190 mL of dehydrated ethanol was mixed and stirred. After stoppering the volumetric flask, the mixture was stirred for 60 minutes by vibration with an ultrasonic cleaner. After keeping the solution at room temperature, dehydrated ethanol was added to make a total volume of 200 mL to prepare a dye solution.
  • ruthenium complex dye N719, Solaronics
  • a transparent conductive substrate indium tin oxide (ITO)
  • ITO indium tin oxide
  • a transparent substrate polyethylene naphthalate film, thickness 200 ⁇ m
  • a transparent conductive substrate sheet resistance 13 ohm
  • Sq transparent conductive substrate
  • a conductive silver paste K3105, manufactured by Pernox Co., Ltd.
  • a wiring collecting current and collecting electrode
  • Wiring and current collecting wires (wirings located at both ends in the continuous direction of the wiring, hereinafter collectively referred to as wiring) were produced by heating and drying for 15 minutes in a hot air circulation oven at 150 degrees.
  • the obtained transparent conductive substrate having wiring is set on a coating coater with the wiring formation surface facing upward, and an organic PC-600 solution (manufactured by Matsumoto Fine Chemical) diluted to 1.6% is swept with a wire bar ( 10 mm / sec).
  • the obtained coating film was dried at room temperature for 10 minutes, and then further heated and dried at 150 ° C. for 10 minutes to produce an undercoat layer on the transparent conductive substrate.
  • Laser treatment was performed on the transparent conductive substrate undercoat layer forming surface at intervals corresponding to the photoelectrode cell width to form insulating wires.
  • the protective film which applied the adhesion layer to the polyester film was piled up two steps, and the mask film was obtained.
  • An opening (length: 30 mm, width: 7 mm) for forming a porous semiconductor fine particle layer was punched into the mask film.
  • the processed mask film was bonded to the current collector forming surface of the transparent conductive substrate on which the undercoat layer was formed so that air bubbles would not enter.
  • the first layer of the mask film is intended to prevent adhesion of the dye to unnecessary portions.
  • the second layer of the mask film is intended to prevent adhesion of porous semiconductor fine particles to unnecessary portions.
  • the transparent conductive substrate on which the porous semiconductor fine particle layer (length: 60 mm, width 5 mm) was formed was immersed in the prepared dye solution (40 ° C.), and the dye was adsorbed while gently stirring. After 90 minutes, the dye-adsorbed titanium oxide film was taken out from the dye-adsorption container, washed with ethanol and dried, and the remaining mask film was peeled and removed to produce a photoelectrode.
  • Sekisui Resin micropearl AU particle size 8 ⁇ m
  • a composition was prepared.
  • the surface of the second substrate on which the catalyst layer was formed was fixed on an aluminum adsorption plate using a vacuum pump.
  • the conductive resin composition was applied in a linear manner to a position overlapping the wiring between the photoelectrode cells when facing the first substrate between the catalyst layers by an automatic application robot.
  • a liquid ultraviolet curable sealant as a partition material was applied to the outer peripheral portion of the catalyst layer with the automatic coating robot sandwiching the line.
  • an ultraviolet curable encapsulant was applied to both ends of the second substrate so as to fill the periphery of the two through holes and further to the partition forming portion of the adjacent cell.
  • the electrolyte solution used at this time was an electrolyte solution prepared according to the electrolyte solution formulation 2 described in Japanese Patent No. 5292549. Furthermore, the solar cell panel 10 was produced by attaching the extraction electrode to the current collecting electrode.
  • the flatness is set to Max. By adjusting the degree of vacuum when the substrates of the solar cell panel 10 are bonded and by increasing the thickness of the laminated body constituting the solar cell 11.
  • a panel of 188 ⁇ m PET film and OCA sheet having hard coat layers formed on the upper and lower surfaces of the solar cell panel 10 is pasted through the OCA sheet so that the hard coat layer is the outermost surface of the panel body 15.
  • a main body 15 was produced.
  • Max.-Min. 3 ⁇ m.
  • Example 2 Thereafter, the panel main body 15 was produced according to Example 1. At this time, the flatness of the surface of the solar cell panel 10 is changed by changing the degree of vacuum and the thickness of the laminated body constituting the solar cell 11 in the bonding step when the solar cell panel 10 is manufactured. The panel main body 15 was produced using this. Table 1 shows the results of checking the flatness and the fluctuation of the reflected image.
  • Example 6 The solar cell panel 10 is produced according to Comparative Example 1, and the surface irregularities of the solar cell panel 10 are alleviated by bonding using a liquid optical adhesive instead of the OCA film, and the panel body 15 is produced. did.
  • Example 7 A solar cell panel 10 was produced according to Example 1 except that a spacer was placed at a predetermined position on the bonding surface when the solar cell panel 10 was bonded.
  • a panel body 15 was produced in the same manner as in Example 1 for the produced solar cell panel 10.
  • Example 8 A panel body 15 was produced according to Example 7 except that the thickness and width of the spacer were changed. Table 2 shows the parallelism of the manufactured panel body.
  • the aperture ratio is preferably 30% to 75%.

Abstract

A solar battery panel 10 relating to the present invention is provided with: one or a plurality of solar battery cells 11; a supporting member 12 that supports the solar battery cells 11; and an electrode section 16 for collecting generated power and outputting the generated power to the outside. A panel main body 15 is provided with the solar battery panel 10 and an exterior member 17, and the flatness of the panel main body 15 meets formula of Max.-Min.=20 μm or less.

Description

太陽電池Solar cell
 本発明は、太陽電池に関する。 The present invention relates to a solar cell.
 近年、光エネルギーを電力に変換する光電変換素子として、太陽電池が注目されている。太陽電池の種類としては、大別して、無機系材料を用いた無機系太陽電池と、有機系材料を用いた有機系太陽電池とが挙げられる(例えば、特許文献1参照)。 In recent years, solar cells have attracted attention as photoelectric conversion elements that convert light energy into electric power. The types of solar cells are roughly classified into inorganic solar cells using inorganic materials and organic solar cells using organic materials (see, for example, Patent Document 1).
 無機系太陽電池の代表的なものとして、シリコン(Si)を用いたシリコン系太陽電池がある。シリコン系太陽電池では一般に、ガラス基板を用いることが多い。そのため、シリコン系太陽電池は柔軟性に乏しく、重量も大きくなる傾向がある。 As a typical inorganic solar cell, there is a silicon solar cell using silicon (Si). In general, a silicon-based solar cell often uses a glass substrate. For this reason, silicon-based solar cells have poor flexibility and tend to be heavy.
 一方、有機系太陽電池としては、チタニア、色素および電解質からなる色素増感系、有機顔料を用いた低分子蒸着系、導電性高分子を用いた高分子塗布系などが挙げられる。シリコン系太陽電池は、インゴットからの切り出し、切断などの加工性の点で薄くすることが困難であった。一方、有機系太陽電池では、基板上に光電変換層などを塗布して形成するため加工性がよく、薄いシート状に形成することが可能である。 On the other hand, examples of the organic solar cell include a dye sensitizing system composed of titania, a dye and an electrolyte, a low molecular vapor deposition system using an organic pigment, and a polymer coating system using a conductive polymer. Silicon-based solar cells have been difficult to thin in terms of workability such as cutting out from ingots and cutting. On the other hand, an organic solar cell is formed by applying a photoelectric conversion layer or the like on a substrate, so that it has good workability and can be formed into a thin sheet.
特開2016-057874号公報JP 2016-057874 A
 通常、シリコン系太陽電池を含む種々の太陽電池では、発電量を増加させる観点より、受光面に対して発電部分を極力増やすため、光を極力通さない構造となる。そのため、シリコン系太陽電池などは通常、光透過性を有さない構造が多い。また、ガラスを基板として使用しているため、重い。そのため、様々な製品への適用を考えた場合、デザイン性および重さの問題から利用が制限される。 Usually, in various solar cells including silicon-based solar cells, a power generation portion is increased as much as possible with respect to the light receiving surface from the viewpoint of increasing the amount of power generation, and therefore, light is not transmitted as much as possible. For this reason, silicon-based solar cells and the like usually have a structure that does not have optical transparency. Moreover, since glass is used as a substrate, it is heavy. Therefore, when application to various products is considered, use is limited due to problems of design and weight.
 一方、シート状の太陽電池では、厚さが薄いため、種々の用途に耐えうる耐久性や強度を確保することが困難である。 On the other hand, since a sheet-like solar cell is thin, it is difficult to ensure durability and strength that can withstand various uses.
 本発明の目的は、上述した課題を解決し、耐久性や強度を確保するとともに、軽量でデザイン性に優れた太陽電池を提供することにある。 An object of the present invention is to provide a solar cell that solves the above-described problems, ensures durability and strength, and is lightweight and excellent in design.
 この発明は、上記課題を有利に解決することを目的とするものであり、本発明の太陽電池は、1または複数の太陽電池セルと、前記太陽電池セルを支持する支持部材と、発電電力を集電し外部に出力するための電極部とを有する太陽電池パネルと、外装部材とを備えたパネル本体であって、前記パネル本体の表面の平面度が、Max.-Min.=20μm以下である。 This invention aims at solving the said subject advantageously, and the solar cell of this invention is a 1 or several photovoltaic cell, the supporting member which supports the said photovoltaic cell, and generated electric power. A panel main body having a solar cell panel having an electrode part for collecting current and outputting to the outside, and an exterior member, wherein the flatness of the surface of the panel main body is Max. -Min. = 20 μm or less.
 また、本発明の太陽電池は、1または複数の太陽電池セルと、前記太陽電池セルを支持する支持部材と、発電電力を集電し外部に出力するための電極部とを有する太陽電池パネルと、外装部材とを備えたパネル本体であって、前記パネル本体の平行度がMax.-Min.=12μm以下である。 Moreover, the solar cell of the present invention includes a solar cell panel having one or a plurality of solar cells, a support member that supports the solar cells, and an electrode unit that collects generated power and outputs the generated power to the outside. A panel body including an exterior member, and the parallelism of the panel body is Max. -Min. = 12 μm or less.
 また、本発明のパネル本体において、前記太陽電池セルおよび前記電極部を除く光透過部分の光透過率は、450nm~750nmの範囲で40%以上であることが好ましい。 In the panel body of the present invention, it is preferable that the light transmittance of the light transmitting portion excluding the solar battery cell and the electrode portion is 40% or more in the range of 450 nm to 750 nm.
 また、本発明のパネル本体において、前記太陽電池セルおよび前記電極部を除く光透過部分のヘイズ率は、20%以下であることが好ましい。 Moreover, in the panel body of the present invention, it is preferable that the haze ratio of the light transmission part excluding the solar battery cell and the electrode part is 20% or less.
 また、本発明のパネル本体において、平面視において、前記パネル本体における全体の面積に対する、前記太陽電池セルおよび前記電極部を除く光透過部分の割合である開口率は、30%~75%であることが好ましい。 In the panel body of the present invention, the aperture ratio, which is the ratio of the light transmission part excluding the solar battery cell and the electrode part, to the entire area of the panel body in plan view is 30% to 75%. It is preferable.
 また、本発明のパネル本体は、1または複数の太陽電池セルと、前記太陽電池セルを支持する支持部材と、発電電力を集電し外部に出力するための電極部とを有する太陽電池パネルと、外装部材とを備えたパネル本体であって、前記パネル本体における太陽電池セルへ透過する積層部紫外線カット率が、380nm以下の範囲で95%以上である。 Further, the panel body of the present invention includes a solar battery panel having one or a plurality of solar cells, a support member that supports the solar cells, and an electrode unit that collects generated power and outputs it to the outside. The panel main body includes an exterior member, and the ultraviolet ray cut rate of the laminated portion that is transmitted to the solar cells in the panel main body is 95% or more in a range of 380 nm or less.
 また、本発明のパネル本体は、1または複数の太陽電池セルと、前記太陽電池セルを支持する支持部材と、発電電力を集電し外部に出力するための電極部とを有する太陽電池パネルと、外装部材とを備えたパネル本体であって、前記パネル本体における太陽電池パネルの部分の受光面および受光面と対向する裏面の水蒸気透過率が、5×10-2g/m2/day以下である。 Further, the panel body of the present invention includes a solar battery panel having one or a plurality of solar cells, a support member that supports the solar cells, and an electrode unit that collects generated power and outputs it to the outside. A panel body provided with an exterior member, wherein the water vapor permeability of the light receiving surface of the solar cell panel portion on the panel body and the back surface facing the light receiving surface is 5 × 10 −2 g / m 2 / day or less. It is.
 また、本発明において、前記パネル本体は、複数のフィルムの積層により構成され、前記フィルムの積層数は、4層以上であることが好ましい。 In the present invention, it is preferable that the panel body is formed by stacking a plurality of films, and the number of stacked films is four or more.
 また、本発明において、前記パネル本体の厚さが、0.3mm~3mmであることが好ましい。 In the present invention, it is preferable that the panel body has a thickness of 0.3 mm to 3 mm.
 また、本発明は、1または複数の太陽電池セルと、前記太陽電池セルを支持する支持部材と、発電電力を集電し外部に出力するための電極部とを有する太陽電池パネルと、外装部材とを備えたパネル本体であって、前記パネル本体の曲げ弾性率が1.5GPa~10GPaである。 In addition, the present invention provides a solar cell panel having one or more solar cells, a support member that supports the solar cells, and an electrode unit that collects generated power and outputs it to the outside, and an exterior member The panel body has a flexural modulus of 1.5 GPa to 10 GPa.
 また、本発明において、前記パネル本体の単位面積または単位体積あたりの出力特性は、0.8%~6.2%であることが好ましい。 In the present invention, the output characteristic per unit area or unit volume of the panel body is preferably 0.8% to 6.2%.
 本発明によれば、耐久性や強度を確保するとともに、軽量でデザイン性に優れた太陽電池を提供することができる。 According to the present invention, it is possible to provide a solar cell that ensures durability and strength and is lightweight and excellent in design.
本発明の一実施形態に係るパネル本体の要部構成を示す上面図である。It is a top view which shows the principal part structure of the panel main body which concerns on one Embodiment of this invention. 図1Aに示すA-A線に沿った断面図である。FIG. 1B is a cross-sectional view taken along line AA shown in FIG. 1A. 図1に示すパネル本体を複数接続する場合の接続の一例を示す図である。It is a figure which shows an example of the connection in the case of connecting multiple panel main bodies shown in FIG. 図1に示すパネル本体を複数接続する場合の接続の他の一例を示す図である。It is a figure which shows another example of the connection in the case of connecting multiple panel main bodies shown in FIG. 図1に示すパネル本体の利用例の一例を示す図である。It is a figure which shows an example of the usage example of the panel main body shown in FIG. 図1に示すパネル本体の利用例の他の一例を示す図である。It is a figure which shows another example of the usage example of the panel main body shown in FIG. 図1に示すパネル本体の利用例の別の一例を示す図である。It is a figure which shows another example of the usage example of the panel main body shown in FIG. 図1に示すパネル本体の利用例のさらに別の一例を示す図である。It is a figure which shows another example of the usage example of the panel main body shown in FIG. 図1に示すパネル本体の利用例のさらに別の一例を示す図である。It is a figure which shows another example of the usage example of the panel main body shown in FIG. 図1に示すパネル本体を複数接続する場合の接続の別の一例を示す図である。It is a figure which shows another example of the connection in the case of connecting multiple panel main bodies shown in FIG. 図1に示すパネル本体を複数接続する場合の接続のさらに別の一例を示す図である。It is a figure which shows another example of the connection in the case of connecting multiple panel main bodies shown in FIG.
 以下、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described.
 図1Aは、本発明の一実施形態に係るパネル本体15の要部構成を示す上面図である。図1Bは、図1Aに示すA-A線に沿った断面図である。なお、以下では、厚み方向とは、図1Aなどの上面図の紙面に垂直な方向を意味するものとする。 FIG. 1A is a top view showing a main configuration of a panel body 15 according to an embodiment of the present invention. 1B is a cross-sectional view taken along line AA shown in FIG. 1A. In the following, the thickness direction means a direction perpendicular to the paper surface of a top view such as FIG. 1A.
 図1Aに示すように、太陽電池パネル10は、太陽電池セル11と、支持部材12と、集電電極13と、引き出し電極14とを備える。パネル本体15は、図1Bに示すように、太陽電池セル11および支持部材12を含む太陽電池パネル10、太陽電池パネル10の上下面の少なくとも一方に設置される外装部材17、および、必要に応じて、外装部材17と太陽電池パネル10との間に充填される充填部材18を含む。なお、図1Bにおいては、太陽電池パネル10の上下両面に外装部材17が設置された例を示している。外装部材17としては、複数の部材を積層したものを用いることもできる。 As shown in FIG. 1A, the solar battery panel 10 includes a solar battery cell 11, a support member 12, a current collecting electrode 13, and a lead electrode 14. As shown in FIG. 1B, the panel body 15 includes a solar battery panel 10 including the solar battery cells 11 and the support member 12, an exterior member 17 installed on at least one of the upper and lower surfaces of the solar battery panel 10, and as necessary. In addition, a filling member 18 filled between the exterior member 17 and the solar cell panel 10 is included. FIG. 1B shows an example in which exterior members 17 are installed on the upper and lower surfaces of the solar cell panel 10. As the exterior member 17, a laminate of a plurality of members can be used.
 太陽電池セル11は、板状の光電変換部である。太陽電池セル11は、太陽光、室内光などの入射光の光エネルギーを電気エネルギーに変換する。板状とは、厚み方向に比べて、厚み方向と垂直な水平面方向に十分大きい形状を意味する。太陽電池セル11の枚数は、図1においては12枚として例示したが、1枚以上であればよい。太陽電池パネル10が複数の太陽電池セル11を有する場合、各太陽電池セル11は、図1Aにおいては不図示の配線により、機械的かつ電気的に水平面上で連結される。また、複数枚の太陽電池セル11の接続は直列接続、並列接続、直並列接続など必要に応じて選択することができる。この接続の違いは支持部材12上に形成されている透明導電膜のパターン、配線のパターン、その他所定の場所の電極間を電気的に接続するための電極等の形成等により適宜変えることができる。なお、図1Aにおいては、太陽電池セル11が行列状に配置された例を示しているが、このような配置に限定されるものではない。 The solar battery cell 11 is a plate-like photoelectric conversion unit. The solar battery cell 11 converts light energy of incident light such as sunlight and room light into electric energy. The plate shape means a shape that is sufficiently larger in the horizontal plane direction perpendicular to the thickness direction than in the thickness direction. Although the number of solar cells 11 is exemplified as 12 in FIG. 1, it may be one or more. When the solar battery panel 10 has a plurality of solar battery cells 11, each solar battery cell 11 is mechanically and electrically connected on a horizontal plane by wiring (not shown) in FIG. 1A. Moreover, the connection of the several photovoltaic cell 11 can be selected as needed, such as series connection, parallel connection, and series-parallel connection. This difference in connection can be appropriately changed depending on the pattern of the transparent conductive film formed on the support member 12, the pattern of the wiring, and other electrodes for electrically connecting the electrodes at predetermined locations. . In addition, in FIG. 1A, although the example with which the photovoltaic cell 11 was arrange | positioned at matrix form is shown, it is not limited to such arrangement | positioning.
 太陽電池セル11を構成する太陽電池の種類としては、有機系太陽電池が挙げられる。有機系太陽電池としては、有機顔料を用いた低分子蒸着系、導電性高分子を用いた高分子塗布系、変換型半導体を用いた塗布変換系などの有機薄膜系、チタニア、色素および電解質から成る色素増感系などが挙げられる。また、太陽電池セル11を構成する太陽電池には、有機無機ハイブリッド太陽電池、ペロブスカイト系化合物を用いた太陽電池も含めることができる。本実施形態に係る太陽電池セル11を構成する太陽電池としては、プラスチックフィルムなどに作製できる色素増感太陽電池やペロブスカイト系化合物を用いた太陽電池が好適である。 An example of the type of solar battery constituting the solar battery cell 11 is an organic solar battery. Organic solar cells include organic thin film systems such as low molecular vapor deposition systems using organic pigments, polymer coating systems using conductive polymers, and coating conversion systems using conversion type semiconductors, titania, dyes and electrolytes. And a dye sensitizing system. Moreover, the solar battery which comprises the photovoltaic cell 11 can also include the organic-inorganic hybrid solar battery and the solar battery using the perovskite compound. As the solar battery constituting the solar battery cell 11 according to this embodiment, a dye-sensitized solar battery that can be produced on a plastic film or the like, or a solar battery using a perovskite compound is suitable.
 太陽電池セル11は、通常、光を吸収し、電子や正孔を発生させる機能層が2つの電極基板により挟まれた構造を有する。より具体的には、色素増感系太陽電池は多孔質のチタニア上に吸着した色素が光を吸収して電子を発生させることで発電している。また、ペロブスカイト系化合物を用いた太陽電池の場合には、光を吸収したペロブスカイト結晶層で電子とホールとが発生し、それぞれ電子輸送層とホール輸送層とにより輸送されることで発電している。このような太陽電池セル11の構成は、当業者によく知られており、また、本発明と直接関係しないので、詳細な説明は省略する。 The solar battery cell 11 usually has a structure in which a functional layer that absorbs light and generates electrons and holes is sandwiched between two electrode substrates. More specifically, the dye-sensitized solar cell generates electricity by absorbing light and generating electrons by the dye adsorbed on the porous titania. Moreover, in the case of a solar cell using a perovskite compound, electrons and holes are generated in the perovskite crystal layer that has absorbed light, and is generated by being transported by the electron transport layer and the hole transport layer, respectively. . Such a configuration of the solar battery cell 11 is well known to those skilled in the art, and since it is not directly related to the present invention, a detailed description thereof will be omitted.
 各太陽電池セル11は支持基板および支持部材間を接着させるための封止部から構成される支持部材12により周囲が囲まれるようにして形成されている。 Each solar battery cell 11 is formed so that the periphery is surrounded by a support member 12 constituted by a sealing portion for bonding the support substrate and the support member.
 集電電極13は、配列された太陽電池セル11の中で電気的に端部となる太陽電池セル11の電極(光電極あるいは対向電極)とそれぞれ電気的に接続されている。 The current collecting electrode 13 is electrically connected to an electrode (photoelectrode or counter electrode) of the solar cell 11 that is electrically an end in the arrayed solar cell 11.
 引き出し電極14は、集電電極13からパネル本体15の外部に電力を取り出すために引き出されており、各太陽電池セル11の発電電力を外部に出力する。引き出し電極14は、特に限定されることなく、一般的な導電性材料により形成された導体を有する。そのような導体としては、銅、アルミニウム、ニッケルおよび鉄などからなる群から選ばれる金属材料およびこれらの金属材料を含む合金材料により形成された導体が挙げられる。中でも、銅を導体とする電極が好ましい。 The extraction electrode 14 is drawn out from the current collecting electrode 13 to take out electric power to the outside of the panel body 15 and outputs the generated electric power of each solar battery cell 11 to the outside. The extraction electrode 14 is not particularly limited, and has a conductor formed of a general conductive material. Examples of such a conductor include a conductor formed of a metal material selected from the group consisting of copper, aluminum, nickel, iron, and the like, and an alloy material containing these metal materials. Among these, an electrode using copper as a conductor is preferable.
 引き出し電極14を構成する導体は、なるべく厚みが薄い方が周囲との段差が小さくなり、太陽電池セル11の封止性が高まるため好ましい。更には、引き出し電極としての使用に問題ない強度を保つことが好ましい。具体的には、導体の厚みは、0.001mm以上、0.5mm以下であることが好ましい。また、引き出し電極14は、導線などで構成され、フレキシブルであってもよい。また引き出し電極14と集電電極13との間の接合については、導電性を有し固定できるものであれば使用できる。具体的には導電性粘着剤、ハンダ、導電性フィラーを混合した接着樹脂などが挙げられる。 The conductor constituting the extraction electrode 14 is preferably as thin as possible because the step difference from the surroundings is reduced and the sealing performance of the solar battery cell 11 is improved. Furthermore, it is preferable to maintain strength sufficient for use as a lead electrode. Specifically, the thickness of the conductor is preferably 0.001 mm or more and 0.5 mm or less. Further, the lead electrode 14 is made of a conductive wire or the like and may be flexible. In addition, the junction between the extraction electrode 14 and the current collecting electrode 13 can be used as long as it has conductivity and can be fixed. Specifically, a conductive adhesive, solder, an adhesive resin mixed with a conductive filler, and the like can be given.
 集電電極13および引き出し電極14は、太陽電池セル11の発電電力を集電し、外部に出力するための電極部16を構成する。電極部16は、パネル外形の外側に引き出されていてもよい。また、電極部16は、外装部材17の面内に形成された開口部から外部へ取り出される形であってもよい。また形状によっては集電電極13と引き出し電極14とが一体的に形成されてもよい。 The current collecting electrode 13 and the extraction electrode 14 constitute an electrode portion 16 for collecting the power generated by the solar battery cell 11 and outputting it to the outside. The electrode part 16 may be pulled out to the outside of the panel outer shape. Further, the electrode part 16 may be in the form of being taken out from an opening formed in the surface of the exterior member 17. Depending on the shape, the collecting electrode 13 and the extraction electrode 14 may be integrally formed.
 外装部材17は、目的に応じた機能を有する材料、機能を発現する部材を混合した材料、表面に機能性膜を形成した部材などを用いることができる。具体的な機能性としては、水蒸気およびガスの透過を抑制するバリア機能、紫外線など特定波長をカットするためのカット機能、表面の汚れを防止するための防汚機能、表面の傷つきを防止するためのハードコート機能、パネル本体の色彩を変化させるためのカラーコート機能などが挙げられる。また外装部材17は、1枚に対して複数の機能を付与した部材でもよい。また、それぞれの機能が付与された複数枚の外装部材17を重ねて構成してもよい。 As the exterior member 17, a material having a function according to the purpose, a material in which a member exhibiting a function is mixed, a member having a functional film formed on the surface, or the like can be used. Specific functions include a barrier function that suppresses the permeation of water vapor and gas, a cut function for cutting a specific wavelength such as ultraviolet rays, an antifouling function for preventing surface contamination, and a surface damage prevention. Hard coat function, and a color coat function for changing the color of the panel body. Further, the exterior member 17 may be a member provided with a plurality of functions for one sheet. Moreover, you may comprise the several exterior member 17 to which each function was provided | stacked.
 太陽電池パネル10と外装部材17との間に形成する充填部材18としては、透明性等を確保する観点より、透明光学粘着(OCA(Optical Clear Adhesive))フィルム、透明性の高い樹脂などを用いることが好ましい。また太陽電池パネル10の外周部における外装部材17間の隙間に、充填部材18として透明性の高い樹脂などを充填することが好ましい。また外装部材17間の隙間には、充填部材18とともに、光透過性の高い枠材を併用することもできる。 As the filling member 18 formed between the solar cell panel 10 and the exterior member 17, a transparent optical adhesive (OCA (Optical Clear Adhesive)) film, a highly transparent resin, or the like is used from the viewpoint of ensuring transparency and the like. It is preferable. Moreover, it is preferable to fill the gap between the exterior members 17 in the outer peripheral portion of the solar cell panel 10 with a highly transparent resin or the like as the filling member 18. In addition, in the gap between the exterior members 17, a frame material with high light transmittance can be used together with the filling member 18.
 以下では、本実施形態に係るパネル本体15の形状的、物性的特性についてより詳細に説明する。 Hereinafter, the shape and physical properties of the panel body 15 according to the present embodiment will be described in more detail.
 パネル本体15の重さは、パネル本体15のサイズ(平面視の面積)における単位面積当たり、0.06g/cm2~0.4g/cm2である。このような重さとすることで、種々の機器への搭載や、ユーザの持ち運びが容易となる。また、パネル本体15のサイズは、25cm2~400cm2であり、好ましくは25cm2~144cm2である。このようなサイズとすることで、ユーザがパネル本体15をポケットや鞄などに入れて持ち運びが容易となり、携帯性が向上する。また、パネル本体15の厚さは、0.3mm~3mmであり、好ましくは0.5mm~1.5mmであり、更に好ましくは0.6mm~1.2mmである。このような厚さとすることで、パネル本体15を複数枚重ねた場合にも、かさばらず、携帯性が向上する。また、このような厚さとすることで、求められる曲げ弾性率を保つことが可能である。また、パネル本体15の体積は、0.75cm3~120cm3である。このような体積とすることで、パネル本体15がかさばらず、複数枚をまとめたとしても携帯性が損なわれない。 The weight of the panel body 15, per unit area in the size of the panel 15 (an area in plan view), is 0.06g / cm 2 ~ 0.4g / cm 2. By setting it as such a weight, mounting to various apparatuses and carrying of a user become easy. The size of the panel body 15 is 25 cm 2 to 400 cm 2 , preferably 25 cm 2 to 144 cm 2 . With such a size, the user can easily carry the panel main body 15 in a pocket or bag, and portability is improved. The panel body 15 has a thickness of 0.3 mm to 3 mm, preferably 0.5 mm to 1.5 mm, and more preferably 0.6 mm to 1.2 mm. By adopting such a thickness, even when a plurality of panel main bodies 15 are stacked, portability is improved without being bulky. Moreover, it is possible to keep the bending | flexion elastic modulus calculated | required by setting it as such thickness. The volume of the panel body 15 is 0.75cm 3 ~ 120cm 3. By setting it as such a volume, the panel main body 15 is not bulky, and even if it combines several sheets, portability is not impaired.
 パネル本体15の重さは、精密天秤により測定した。また、パネル本体15のサイズは、実体顕微鏡により測定した。また、パネル本体15の厚さは、株式会社ミツトヨ製のデジタルインジケータにより測定した。また、パネル本体15の体積は、パネル本体15の厚さおよび面積から算出した。 The weight of the panel body 15 was measured with a precision balance. The size of the panel body 15 was measured with a stereomicroscope. The thickness of the panel body 15 was measured with a digital indicator manufactured by Mitutoyo Corporation. Further, the volume of the panel body 15 was calculated from the thickness and area of the panel body 15.
 また、パネル本体15の光透過部分(太陽電池セル11および電極部16を除く部分)の平行度は、Max.-Min.が12μm以下であり、好ましくは10μm以下であり、更に好ましくは5μm以下である。このような平行度とすることで、光透過部分において、透過像にゆがみが生じにくく、デザイン性が向上する。また、パネル本体15の平面度は、Max-Minが20μm以下であり、好ましくは10μm以下であり、更に好ましくは5μm以下である。このような平面度とすることで、パネル本体15に映り込む像に歪みが生じにくく、デザイン性が向上する。また、パネル本体15を構成するフィルムの積層数(積層フィルム数)は、4層以上である。このような積層数とすることで、太陽電池パネル10の曲げ耐性を向上させたり、必要となる所定の機能をパネル本体15に容易に付与することができる。 Further, the parallelism of the light transmitting portion of the panel body 15 (portion excluding the solar cell 11 and the electrode portion 16) is Max. -Min. Is 12 μm or less, preferably 10 μm or less, and more preferably 5 μm or less. With such parallelism, the transmitted image is hardly distorted in the light transmitting portion, and the design is improved. Further, the flatness of the panel body 15 is such that Max-Min is 20 μm or less, preferably 10 μm or less, and more preferably 5 μm or less. With such flatness, the image reflected on the panel body 15 is hardly distorted, and the design is improved. Moreover, the number of laminated films (number of laminated films) constituting the panel body 15 is four or more. By setting it as such lamination | stacking number, the bending tolerance of the solar cell panel 10 can be improved, or the predetermined | prescribed function required can be easily provided to the panel main body 15. FIG.
 パネル本体15の平行度は、株式会社ミツトヨ製のデジタルインジケータにより、パネル本体15上の太陽電池セル11間の透明部分を太陽電池セル11に対して垂直方向に0.3mm間隔で測定した測定値の最大値と最小値との差として算出した。また、パネル本体15の平面度は、多孔質吸着ステージに吸着させたパネル本体15の表面の段差を、接触式段差計あるいはレーザー段差計を用いて測定した。そして、同じパターンが繰り返される単位長さ部分(隣り合う太陽電池セル11の中心から中心まで)でのベースラインに対する変動の最大値と最小値との差として算出した。積層フィルム数は、パネル本体15の作製過程で使用したフィルムの枚数をカウントした。 The parallelism of the panel main body 15 is a measured value obtained by measuring the transparent portion between the solar cells 11 on the panel main body 15 in the vertical direction with respect to the solar cells 11 with a digital indicator manufactured by Mitutoyo Corporation. The difference between the maximum value and the minimum value was calculated. Further, the flatness of the panel body 15 was measured by using a contact-type step meter or a laser step meter to measure the level difference of the surface of the panel body 15 adsorbed on the porous adsorption stage. And it computed as the difference of the maximum value and minimum value of the fluctuation | variation with respect to the baseline in the unit length part (from the center of the adjacent photovoltaic cell 11) where the same pattern is repeated. As for the number of laminated films, the number of films used in the manufacturing process of the panel body 15 was counted.
 パネル本体15の単位面積あたりの出力特性は、0.8%~6.2%である。0.8%以下となると発電量が小さく種々の用途への応用が難しくなる。また6.2%以上にしようとすると開口部の割合を減らす必要があり、デザイン性を損ねるため好ましくない。本発明におけるデザイン性と出力特性とを両立させるためには、上記の範囲であることが好ましい。但し今後更なる高性能化が進み、同じ開口率などを維持できる場合はさらに高い出力特性のものを用いることができる。 The output characteristics per unit area of the panel body 15 are 0.8% to 6.2%. When it is 0.8% or less, the amount of power generation is small, and application to various uses becomes difficult. On the other hand, if it is intended to be 6.2% or more, it is necessary to reduce the ratio of the opening, which is not preferable because the design is impaired. In order to achieve both design and output characteristics in the present invention, the above range is preferable. However, if the performance is further improved in the future and the same aperture ratio can be maintained, one having higher output characteristics can be used.
 パネル本体15の出力特性は、次のように測定した。パネル本体15の外側へ引き出された引き出し電極14をソースメータ(2400型ソースメータ、Keithley社製)に接続した。光源としては、150Wキセノンランプ光源装置にAM1.5Gフィルタを装着した擬似太陽光源(PEC-L11型、ペクセル・テクノロジーズ製)を用いた。そして、光源の光量を、1sun(AM1.5G、100mWcm-2(JIS  C  8912のクラスA))に調整して、太陽電池モジュールに対して照射した。太陽電池モジュールについて、1sunの光照射下、バイアス電圧を変化させながら、出力電流を測定し、電流電圧特性を取得した。このとき、バイアス電圧の変化を順方向および逆方向それぞれについて測定し、その平均値を電流電圧特性とした。このようにして得られた電流電圧特性より、パネル本体15の出力電力を測定した。 The output characteristics of the panel body 15 were measured as follows. The extraction electrode 14 drawn out to the outside of the panel body 15 was connected to a source meter (2400 type source meter, manufactured by Keithley). As a light source, a pseudo solar light source (PEC-L11 type, manufactured by Pexel Technologies) in which an AM1.5G filter is attached to a 150 W xenon lamp light source device was used. Then, the amount of light from the light source was adjusted to 1 sun (AM1.5G, 100 mWcm-2 (JIS A-8912 class A)) and irradiated to the solar cell module. With respect to the solar cell module, the output current was measured while changing the bias voltage under light irradiation of 1 sun, and current-voltage characteristics were obtained. At this time, the change of the bias voltage was measured in each of the forward direction and the reverse direction, and the average value was taken as the current-voltage characteristic. From the current-voltage characteristics thus obtained, the output power of the panel body 15 was measured.
 また、パネル本体15の光透過部分の光透過率は、450nm~750nmの範囲で40%以上であり、好ましくは50%以上である。また外装部材としてカラーコート層を用いた場合は、特定波長に吸収を持つため、450nm~750nmの範囲で透過率が40%以下に下がる場合があってもよい。但し少なくとも上記波長範囲内において、パネル本体15の光透過部分の少なくとも一部は光透過率が40%以上となることが必要である。パネル本体15の光透過率は、パネル本体15を構成する部材により決定される。パネル本体15の光透過率が高い程、透過する光量を増加させることができる。また、パネル本体15の光透過部分のヘイズ率は、20%以下であり、好ましくは10%以下であり、更に好ましくは5%以下である。パネル本体15の光透過部分のヘイズ率は、パネル本体15を構成する部材により決定される。パネル本体15の光透過部分のヘイズ率が低い程、パネル本体15の光透過部分の透明度が高くなり、パネル本体15の光透過部分を介して、クリアな透過像が得られるようになる。 Further, the light transmittance of the light transmitting portion of the panel body 15 is 40% or more in the range of 450 nm to 750 nm, preferably 50% or more. Further, when a color coat layer is used as the exterior member, the transmittance may decrease to 40% or less in the range of 450 nm to 750 nm because it has absorption at a specific wavelength. However, at least within the wavelength range, at least a part of the light transmitting portion of the panel body 15 needs to have a light transmittance of 40% or more. The light transmittance of the panel body 15 is determined by the members constituting the panel body 15. The higher the light transmittance of the panel body 15 is, the more light can be transmitted. Moreover, the haze rate of the light transmission part of the panel main body 15 is 20% or less, Preferably it is 10% or less, More preferably, it is 5% or less. The haze ratio of the light transmission part of the panel body 15 is determined by the members constituting the panel body 15. The lower the haze ratio of the light transmission part of the panel body 15 is, the higher the transparency of the light transmission part of the panel body 15 is, and a clear transmission image can be obtained through the light transmission part of the panel body 15.
 パネル本体15の光透過部分の光透過率及びヘイズ率は、紫外可視分光光度計により測定した。 The light transmittance and haze ratio of the light transmitting portion of the panel body 15 were measured with an ultraviolet-visible spectrophotometer.
 また、パネル本体15の開口率(平面視において、全体の面積に対する光透過部分の割合)は、30%~75%である。パネル本体15の開口率が75%以上だと発電量が減少する。また、パネル本体15の開口率が30%以下となると、光が透過する面積の割合が減るためデザイン性が損なわれ、好ましくない。そのため上記範囲にすることで、ユーザが感じる圧迫感が減り、透過する光量も確保でき、また出力も確保することができる。 Further, the aperture ratio of the panel body 15 (the ratio of the light transmitting portion to the entire area in a plan view) is 30% to 75%. When the opening ratio of the panel body 15 is 75% or more, the power generation amount decreases. Moreover, when the aperture ratio of the panel main body 15 is 30% or less, the ratio of the area through which light is transmitted is reduced, so that the design is impaired, which is not preferable. Therefore, by setting the above range, the feeling of pressure felt by the user is reduced, the amount of transmitted light can be secured, and the output can be secured.
 パネル本体15の開口率は、実体顕微鏡により計測した。 The aperture ratio of the panel body 15 was measured with a stereomicroscope.
 また、パネル本体15の紫外線カット率は、380nm以下の波長範囲で95%以上である。パネル本体15の特定波長における紫外線カット率が大きい程、太陽光(紫外光)による太陽電池セル11の劣化を抑制し、太陽電池パネル10の出力の低下を抑制することができる。紫外線カットをするためには、太陽電池セル11までに透過する積層体の何れかの層に、紫外線カット機能を付与すればよい。また、パネル本体15における太陽電池パネル10の部分の水蒸気透過率(パネル本体15の受光面および受光面に対向する裏面の水蒸気透過率)は、5×10-2g/m2/day以下であり、好ましくは5×10-3g/m2/day以下であり、更に好ましくは5×10-4g/m2/day以下である。パネル本体15の水蒸気透過率は、パネル本体15を構成する部材およびその部材の厚さなどにより規定される。パネル本体15の水蒸気透過率が小さい程、屋外などでの使用時に、パネル本体15内部への水分の透過を抑制し、パネル本体15の出力の劣化を抑制することができる。 Further, the ultraviolet cut rate of the panel body 15 is 95% or more in the wavelength range of 380 nm or less. As the ultraviolet ray cut rate at the specific wavelength of the panel body 15 is larger, the deterioration of the solar battery cell 11 due to sunlight (ultraviolet light) can be suppressed, and the decrease in the output of the solar battery panel 10 can be suppressed. In order to cut the ultraviolet rays, an ultraviolet ray cutting function may be imparted to any layer of the laminate that is transmitted up to the solar battery cell 11. Further, the water vapor transmission rate of the portion of the solar cell panel 10 in the panel body 15 (the water vapor transmission rate of the light receiving surface of the panel main body 15 and the back surface facing the light receiving surface) is 5 × 10 −2 g / m 2 / day or less. Yes, preferably 5 × 10 −3 g / m 2 / day or less, and more preferably 5 × 10 −4 g / m 2 / day or less. The water vapor transmission rate of the panel body 15 is defined by the members constituting the panel body 15 and the thickness of the members. As the water vapor transmission rate of the panel body 15 is smaller, it is possible to suppress moisture permeation into the panel body 15 and to prevent deterioration of the output of the panel body 15 when used outdoors.
 紫外線カット率は、株式会社島津製作所製の紫外可視分光光度計により測定した。測定サンプルとしては、パネル本体15の受光面から光電極が形成された基板までと同じ積層構造を有するサンプルを用いた。水蒸気透過率は、紫外線カット率を測定するサンプルと同じものを差圧法(ガスクロマトグラフ法)により測定した。 The ultraviolet cut rate was measured with an ultraviolet-visible spectrophotometer manufactured by Shimadzu Corporation. As the measurement sample, a sample having the same laminated structure as that from the light receiving surface of the panel body 15 to the substrate on which the photoelectrodes are formed was used. The water vapor transmission rate was measured by the differential pressure method (gas chromatographic method) for the same sample as that for measuring the ultraviolet cut rate.
 パネル本体15の曲げ弾性率は、パネル本体15を構成する材料及びパネル本体15の層構成により規定される。パネル本体15の曲げ弾性率が高い程、パネル本体15に対する応力への耐性が強くなり、パネル本体15の自立(パネル本体15を立ててもゆがみが生じない)が可能となる。 The bending elastic modulus of the panel body 15 is defined by the material constituting the panel body 15 and the layer structure of the panel body 15. The higher the flexural modulus of the panel body 15 is, the stronger the resistance to the stress to the panel body 15 is, and the panel body 15 can be self-supported (there is no distortion even when the panel body 15 is erected).
 パネル本体15の曲げ弾性率は、以下のようにして規定した。 The bending elastic modulus of the panel body 15 was defined as follows.
 パネル本体15は、前述の通り、太陽電池パネル10と、太陽電池パネル10の上下面の少なくとも一方に設置される外装部材17と、必要に応じて、外装部材17と太陽電池パネル10との間に充填される充填部材18とを含む。パネル本体15の曲げ弾性率は、これらの積層体の曲げ弾性率とした。 As described above, the panel body 15 includes the solar cell panel 10, the exterior member 17 installed on at least one of the upper and lower surfaces of the solar cell panel 10, and, if necessary, between the exterior member 17 and the solar cell panel 10. And a filling member 18 filled therein. The flexural modulus of the panel body 15 was the flexural modulus of these laminates.
 パネル本体15の外形は特に限定されない。パネル本体15の外形は、円形、楕円形等の曲線を有する形状であってもよい。また、パネル本体15の外形は、長方形、正方形等の角部を有する形状であってもよい。また、パネル本体15の外形は、角部が面取りされた形状であってもよい。パネル本体15の外形は、用途に応じた形状を適宜選択することができる。 The outer shape of the panel body 15 is not particularly limited. The outer shape of the panel body 15 may be a shape having a curve such as a circle or an ellipse. Further, the outer shape of the panel body 15 may be a shape having corners such as a rectangle and a square. Further, the outer shape of the panel body 15 may have a shape with chamfered corners. The outer shape of the panel body 15 can be appropriately selected according to the application.
 本実施形態に係るパネル本体15は、太陽電池パネル10の上下面に対して、それぞれ外装部材17及びその間の充填部材18を積層して構成した。 The panel body 15 according to the present embodiment is configured by laminating an exterior member 17 and a filling member 18 therebetween on the upper and lower surfaces of the solar cell panel 10.
 一例として、本実施形態においては、上部外装部材および下部外装部材として、表面にハードコート層が形成された188μmの厚さのPET(ポリエチレンテレフタレート)と、25μmの厚さの透明光学粘着(OCA(Optical Clear Adhesive))フィルムと、表面にバリア層が形成された38μmの厚さのPETとが積層されたものを用いた。また、太陽電池パネル10として、厚さが430μmのものを用いた。上部外装部材と下部外装部材の間はOCAフィルムを用いて接着した。また太陽電池パネル10の外周部で上部外装部材と下部外装部材との間には紫外線硬化樹脂を充填した。 As an example, in this embodiment, as an upper exterior member and a lower exterior member, 188 μm thick PET (polyethylene terephthalate) having a hard coat layer formed on the surface and 25 μm thick transparent optical adhesive (OCA ( Optical Clear Adhesive)) film and 38 μm thick PET having a barrier layer formed on the surface were used. The solar cell panel 10 having a thickness of 430 μm was used. The upper exterior member and the lower exterior member were bonded using an OCA film. In addition, an ultraviolet curable resin was filled between the upper exterior member and the lower exterior member at the outer periphery of the solar cell panel 10.
 上記のような構成のパネル本体15の曲げ弾性率は、パネル本体15を構成する材料とパネル本体15を構成する各層の厚み比率とに概ね依存する。なお、外装部材17の曲げ弾性率(Mo)と太陽電池パネル10の曲げ弾性率(Mi)との関係が、Mo≧Miであり、外装部材17の厚み(To)と太陽電池パネル10の厚み(Ti)との関係がTo≧Tiであるなら、パネル本体15の曲げ弾性率は外装部材17の曲げ弾性率にほぼ依存する。 The bending elastic modulus of the panel body 15 having the above-mentioned configuration generally depends on the material constituting the panel body 15 and the thickness ratio of each layer constituting the panel body 15. The relationship between the flexural modulus (Mo) of the exterior member 17 and the flexural modulus (Mi) of the solar cell panel 10 is Mo ≧ Mi, and the thickness (To) of the exterior member 17 and the thickness of the solar cell panel 10 are the same. If the relationship with (Ti) is To ≧ Ti, the bending elastic modulus of the panel body 15 substantially depends on the bending elastic modulus of the exterior member 17.
 本実施形態に係るパネル本体15の曲げ弾性率は、1.5GPa~10GPa、好ましくは、1.8GPa~5GPa、より好ましくは、2.0GPa~2.5GPaである。このような曲げ弾性率を得るために、外装部材17及び/又は支持部材12に用いる材料としては、パネル本体15に対して上記の範囲の曲げ弾性率を与える材料であれば特に制限されない。外装部材17及び/又は支持部材12に用いる材料としては、具体的には、PET(ポリエチレンテレフタレート)樹脂、PEN(ポリエチレンナフタレート)樹脂、アクリル樹脂、ポリイミド樹脂、塩化ビニール樹脂、シクロオレフィン樹脂、シリコン樹脂などが挙げられる。なお、JIS K7203に準拠した測定方法によると、PET樹脂の曲げ弾性率は2.0~2.4GPaであり、PEN樹脂の曲げ弾性率は2.5~3GPaであり、アクリル樹脂の曲げ弾性率は2.3GPaであり、ポリイミド樹脂の曲げ弾性率は2.4GPaであり、塩化ビニールの曲げ弾性率は3.4GPaであり、シクロオレフィン樹脂の曲げ弾性率は2.1GPaである。したがって、例えば、太陽電池パネル10の支持部材としてPEN樹脂を用いた場合、上述の材料を外装部材17として用いることで、上述した範囲の曲げ弾性率を有するパネル本体15を得ることができる。 The flexural modulus of the panel body 15 according to this embodiment is 1.5 GPa to 10 GPa, preferably 1.8 GPa to 5 GPa, and more preferably 2.0 GPa to 2.5 GPa. In order to obtain such a bending elastic modulus, the material used for the exterior member 17 and / or the support member 12 is not particularly limited as long as it is a material that gives the panel main body 15 a bending elastic modulus in the above range. Specifically, materials used for the exterior member 17 and / or the support member 12 are PET (polyethylene terephthalate) resin, PEN (polyethylene naphthalate) resin, acrylic resin, polyimide resin, vinyl chloride resin, cycloolefin resin, silicon. Resin etc. are mentioned. According to the measurement method based on JIS K7203, the flexural modulus of the PET resin is 2.0 to 2.4 GPa, the flexural modulus of the PEN resin is 2.5 to 3 GPa, and the flexural modulus of the acrylic resin. Is 2.3 GPa, the flexural modulus of polyimide resin is 2.4 GPa, the flexural modulus of vinyl chloride is 3.4 GPa, and the flexural modulus of cycloolefin resin is 2.1 GPa. Therefore, for example, when PEN resin is used as the support member of the solar cell panel 10, the panel main body 15 having the bending elastic modulus in the above-described range can be obtained by using the above-described material as the exterior member 17.
 パネル本体15の曲げ弾性率は、例えば、10cm角の四角形状のパネル本体15の場合、インストロン製の3点曲げ試験機を用いて、JIS K7171に記載のような短冊試験片を用いて冶具に設置して測定することができる。 For example, in the case of a 10 cm square square panel body 15, the bending elastic modulus of the panel body 15 is a jig using a strip test piece as described in JIS K7171 using an Instron 3-point bending tester. It can be installed and measured.
 シリコン系太陽電池を用いる場合、支持部材として曲げ弾性率が30~40GPaであるガラス基板、あるいは、曲げ弾性率が35~50GPaであるシリコン基板が用いられる。そのため、シリコン系太陽電池を用いたパネルの曲げ弾性率は、厚さの影響によりガラス基板に概ね依存することになり、本実施形態に係るパネル本体15の曲げ弾性率よりも曲げ弾性率が高いものとなる。 When a silicon-based solar cell is used, a glass substrate having a flexural modulus of 30 to 40 GPa or a silicon substrate having a flexural modulus of 35 to 50 GPa is used as the support member. Therefore, the bending elastic modulus of the panel using the silicon-based solar cell is generally dependent on the glass substrate due to the influence of the thickness, and the bending elastic modulus is higher than the bending elastic modulus of the panel body 15 according to the present embodiment. It will be a thing.
 なお、ASTM D638に準拠した測定方法によると、PET樹脂の引っ張り弾性率は3.5~5GPaであり、PEN樹脂の引っ張り弾性率は3.5~6GPaであり、アクリル樹脂の引っ張り弾性率は2.1~3.2GPaであり、ポリイミド樹脂の引っ張り弾性率は2.1GPaであり、塩化ビニール樹脂の引っ張り弾性率は2.3~4.1GPaである。パネル本体15を構成する各層は、各層を構成する材料に応じた引っ張り弾性率を有する。 In addition, according to the measurement method based on ASTM D638, the tensile elastic modulus of the PET resin is 3.5 to 5 GPa, the tensile elastic modulus of the PEN resin is 3.5 to 6 GPa, and the tensile elastic modulus of the acrylic resin is 2 The tensile elastic modulus of the polyimide resin is 2.1 GPa, and the tensile elastic modulus of the vinyl chloride resin is 2.3 to 4.1 GPa. Each layer constituting the panel body 15 has a tensile elastic modulus corresponding to the material constituting each layer.
 また、外装部材17としてPET樹脂を用い、支持部材12としてPEN樹脂を用いたた場合、PET樹脂の線膨張率(15ppm/℃,12ppm/℃RH)と、PEN樹脂の線膨張率(13ppm/℃,11ppm/℃RH)との差(線膨張率差)は、5ppm/℃、5ppm/℃RH以内となる。このように線膨張率差の小さい材料を用いてパネル本体15を構成することで、熱膨張率差に基づく破損などが生じる恐れを低減することができる。 When PET resin is used as the exterior member 17 and PEN resin is used as the support member 12, the linear expansion coefficient of PET resin (15ppm / ° C, 12ppm / ° C RH) and the linear expansion coefficient of PEN resin (13ppm / The difference (linear expansion coefficient difference) from 5 ° C. and 11 ppm / ° C. RH) is within 5 ppm / ° C. and 5 ppm / ° C. RH. By configuring the panel body 15 using a material having a small linear expansion coefficient difference as described above, it is possible to reduce the possibility of breakage or the like based on the thermal expansion coefficient difference.
 また、太陽電池パネル10と外装部材17との間に、25℃での貯蔵弾性率が0.01~500MPaの材料、例えば、OCAフィルムなどの粘着剤層を介在させることで、パネル本体15の曲げ応力および層間せん断応力の緩和を図ることができる。本実施形態に係るパネル本体15を曲げ疲労試験機で測定した疲れ試験における疲労耐性としては、例えば、インストロン社製曲げ疲労試験機を用いJIS K7118に準拠して測定した場合、102~1010回の繰り返し回数の値を持つことが好ましい。 In addition, a material having a storage elastic modulus at 25 ° C. of 0.01 to 500 MPa, for example, an adhesive layer such as an OCA film, is interposed between the solar cell panel 10 and the exterior member 17. Bending stress and interlaminar shear stress can be relaxed. As the fatigue resistance in the fatigue test in which the panel body 15 according to the present embodiment is measured with a bending fatigue tester, for example, when measured according to JIS K7118 using an Instron bending fatigue tester, 102 to 1010 times. It is preferable to have a value of the number of repetitions.
 上述したように、携帯性を考慮すると、パネル本体15のサイズは、25cm2~400cm2であり、好ましくは25cm2~144cm2であるである。このサイズのパネル本体15単体では、電気機器を駆動するのに十分な電力を得られないことがある。そのような場合、複数のパネル本体15を接続し、複数のパネル本体15の発電電力を合わせて、電気機器に供給することが考えられる。 As described above, in consideration of portability, the size of the panel body 15 is 25 cm 2 ~ 400 cm 2, it is preferably 25cm 2 ~ 144cm 2. A single panel body 15 of this size may not be able to obtain sufficient power to drive an electrical device. In such a case, it is conceivable that a plurality of panel main bodies 15 are connected, and the generated power of the plurality of panel main bodies 15 is combined and supplied to the electrical equipment.
 以下では、複数のパネル本体15の接続例について説明する。 Hereinafter, a connection example of the plurality of panel bodies 15 will be described.
 図2は、複数のパネル本体15の接続の一例を示す図である。 FIG. 2 is a diagram illustrating an example of connection of a plurality of panel main bodies 15.
 図2においては、パネル本体15が接続部材21を介して、ケーブル22に接続されている例を示している。ケーブル22は、正極用および負極用の集電線と、集電線を被覆する、耐候性の絶縁材料からなる外被とを備えている。ケーブル22には、集電線とパネル本体15の引き出し電極14とを接続するためのコネクタ部が設けられている。接続部材21は、コネクタ部において、引き出し電極14とケーブル22の集電線とが接続するように、ケーブル22およびパネル本体15を挟むようにして、パネル本体15を支持する。 FIG. 2 shows an example in which the panel body 15 is connected to the cable 22 via the connection member 21. The cable 22 includes a collector wire for the positive electrode and the negative electrode, and a jacket made of a weather-resistant insulating material that covers the collector wire. The cable 22 is provided with a connector portion for connecting the current collector and the extraction electrode 14 of the panel body 15. The connecting member 21 supports the panel main body 15 with the cable 22 and the panel main body 15 sandwiched so that the extraction electrode 14 and the current collector of the cable 22 are connected in the connector portion.
 ケーブル22の一端には、ケーブル22と電子機器とを機械的および電気的に接続するためのコネクタ23が設けられている。コネクタ23を電子機器に接続することで、ケーブル22に接続されたパネル本体15の発電電力を電子機器に供給することができる。 At one end of the cable 22, a connector 23 is provided for mechanically and electrically connecting the cable 22 and the electronic device. By connecting the connector 23 to the electronic device, the generated power of the panel body 15 connected to the cable 22 can be supplied to the electronic device.
 図3は、複数のパネル本体15の接続の他の一例を示す図である。 FIG. 3 is a diagram illustrating another example of the connection of the plurality of panel main bodies 15.
 図3においては、主配線24から分岐して延在する枝配線25にパネル本体15が接続されている例を示している。主配線24および枝配線25は、図2に示すケーブル22と同様に、正極用および負極用の集電線と、集電線を被覆する、耐候性の絶縁材料からなる外被とを備えている。枝配線25の端部にはコネクタ26が設けられている。コネクタ26は、枝配線25の集電線とパネル本体15の引き出し電極14とが接続するように、パネル本体15を固定する。 FIG. 3 shows an example in which the panel body 15 is connected to a branch wiring 25 that branches off from the main wiring 24 and extends. Like the cable 22 shown in FIG. 2, the main wiring 24 and the branch wiring 25 include a current collector for positive electrode and a negative electrode, and a jacket made of a weather-resistant insulating material that covers the current collector. A connector 26 is provided at the end of the branch wiring 25. The connector 26 fixes the panel main body 15 so that the current collection line of the branch wiring 25 and the lead electrode 14 of the panel main body 15 are connected.
 主配線24の一端には、主配線24と電子機器とを接続するためのコネクタ27が設けられている。コネクタ27を電子機器に接続することで、各枝配線25に接続されたパネル本体15の発電電力を電子機器に供給することができる。 A connector 27 for connecting the main wiring 24 and the electronic device is provided at one end of the main wiring 24. By connecting the connector 27 to the electronic device, the generated power of the panel body 15 connected to each branch wiring 25 can be supplied to the electronic device.
 上述したように、本実施形態に係るパネル本体15は、重さは0.06g/cm2~0.4g/cm2程度と軽量であり、曲げ弾性率は1.5GPa~10GPa程度と、シート状の太陽電池モジュールと比べて高い曲げ弾性率を有する。そのため、接続部材21を介したケーブル22へのパネル本体15の取り付け時(図2)、および、コネクタ26を介した枝配線25へのパネル本体15の取り付け時(図3)にも、パネル本体15の取扱いが容易である。また、シリコン系太陽電池と比べて、本実施形態に係るパネル本体15は軽量であるため、パネル本体15を接続したケーブル22および主配線24の設置の容易性、設置の自由度の向上、および、デザイン性の向上が図られる。パネル本体15を接続したケーブル22および主配線24の設置例としては、例えば、日当たりのよい窓側に吊るすことがある。また、例えば、テントのロープに絡ませて設置する、カバンなどにひっかけて設置する、クリスマスツリーの飾りのように設置する等、軽量のパネル本体15を接続した紐状のケーブル22および主配線24を活用してパネル本体15を設置することもできる。 As described above, the panel body 15 according to this embodiment is a weight is 0.06g / cm 2 ~ 0.4g / cm 2 degree and light weight, the flexural modulus and about 1.5 GPa ~ 10 GPa, the sheet Compared with a solar cell module having a shape, it has a high flexural modulus. Therefore, when the panel body 15 is attached to the cable 22 via the connecting member 21 (FIG. 2) and when the panel body 15 is attached to the branch wiring 25 via the connector 26 (FIG. 3), the panel body 15 is easy to handle. Further, since the panel body 15 according to the present embodiment is lighter than the silicon-based solar cell, the cable 22 and the main wiring 24 connected to the panel body 15 are easily installed, the degree of freedom in installation is improved, and The design is improved. As an installation example of the cable 22 and the main wiring 24 to which the panel main body 15 is connected, for example, it may be hung on a sunny window side. In addition, for example, the cable 22 and the main wiring 24 connected to the lightweight panel body 15 are installed by being entangled with a rope of a tent, installed on a bag, installed like a Christmas tree decoration, etc. The panel body 15 can also be installed by utilizing it.
 次に、本実施形態に係るパネル本体15の利用例について説明する。パネル本体15の利用例としては、パネル本体15の発電電力による蓄電池の充電、パネル本体15の発電電力によるモータなどの駆動、パネル本体15の発電電力によるセンサー、半導体素子などの駆動など、種々の利用例が考えられる。 Next, a usage example of the panel body 15 according to the present embodiment will be described. Examples of usage of the panel body 15 include various types of charging, such as charging of a storage battery using the power generated by the panel body 15, driving a motor or the like using the power generated by the panel body 15, driving a sensor or semiconductor element using the power generated by the panel body 15. Examples of use are possible.
 パネル本体15により生成された電力は可動部の動力として逐次、供給されることがエネルギー効率の観点から好ましい。 It is preferable from the viewpoint of energy efficiency that the electric power generated by the panel body 15 is sequentially supplied as the power of the movable part.
 なお、可動装置には可動部を駆動する電力の供給源として太陽電池パネル以外の供給源、例えば乾電池、充電池を併用する構成としても構わないが、パネル本体15により生成された電力のみで駆動する構成とすることが可動装置全体の軽量化の観点から好ましい。 The movable device may be configured to use a supply source other than the solar cell panel, for example, a dry battery or a rechargeable battery, as a power supply source for driving the movable part, but is driven only by the power generated by the panel body 15. It is preferable to adopt the configuration from the viewpoint of reducing the weight of the entire movable device.
 可動装置の消費電力は2000mW以下であることが好ましく、1000mW以下であることがより好ましく、500mW以下であることが更に好ましい。消費電力がこれ以上になると可動装置に搭載するパネル本体15のサイズが大きくなったり、必要枚数が多くなったりして可動装置への負荷が大きくなる、曇天時には使用できない等の制約が生じる為、好ましくない。 The power consumption of the movable device is preferably 2000 mW or less, more preferably 1000 mW or less, and even more preferably 500 mW or less. If the power consumption is higher than this, the size of the panel body 15 mounted on the movable device will increase, the required number will increase, the load on the movable device will increase, and restrictions such as inability to use during cloudy weather will occur, It is not preferable.
 図4は、本実施形態に係るパネル本体15の利用例の一例を示す図である。 FIG. 4 is a diagram illustrating an example of a usage example of the panel body 15 according to the present embodiment.
 図4においては、複数のパネル本体15が接続部材21により接続されたケーブル22がコネクタ23を介して扇風機31に接続され、複数のパネル本体15の発電電力により扇風機31を駆動する(扇風機31の羽を回転させるモータを駆動する)例を示している。 In FIG. 4, a cable 22 in which a plurality of panel main bodies 15 are connected by connecting members 21 is connected to an electric fan 31 via a connector 23, and the electric fans 31 are driven by the generated power of the plural panel main bodies 15 (of the electric fan 31. An example of driving a motor that rotates a wing) is shown.
 図5は、本実施形態に係るパネル本体15の利用例の他の一例を示す図である。 FIG. 5 is a diagram illustrating another example of the usage example of the panel body 15 according to the present embodiment.
 図5においては、パネル本体15が接続部材21により接続されたケーブル22がコネクタ23を介して携帯ラジオ32に接続され、パネル本体15の発電電力により携帯ラジオ32を駆動する(携帯ラジオ32を構成する半導体素子を駆動する)例を示している。 In FIG. 5, the cable 22 in which the panel body 15 is connected by the connecting member 21 is connected to the portable radio 32 via the connector 23, and the portable radio 32 is driven by the generated power of the panel body 15 (the portable radio 32 is configured). The example which drives the semiconductor element which performs is shown.
 なお、図5においては、パネル本体15と電気機器(携帯ラジオ32)とをケーブル22を介して接続する例を用いて説明しているが、これに限られるものではない。携帯性、デザイン性などを損ねない範囲の枚数のパネル本体15の発電電力で電気機器を駆動することができる場合には、パネル本体15を電気機器に直接接続してもよい。また、パネル本体15を電子機器本体に組み込んでもよい。この時必要な枚数が設置できるよう、電子機器本体に、パネル本体15の内部への折り畳み機構、あるいは、パネル本体15の方向を変えられるような機構が設けられていることが好ましい。またこれ以降で示すように、何かの機器に組み込んで使用する際には、機器への組み込み時の部材を外装部材の一部として利用することも可能である。 In addition, in FIG. 5, although demonstrated using the example which connects the panel main body 15 and an electric equipment (portable radio 32) via the cable 22, it is not restricted to this. When the electric device can be driven by the generated power of the panel main body 15 in a range that does not impair portability and design, the panel main body 15 may be directly connected to the electric device. Further, the panel body 15 may be incorporated in the electronic device body. At this time, the electronic device main body is preferably provided with a mechanism for folding the panel main body 15 or a mechanism for changing the direction of the panel main body 15 so that the necessary number of sheets can be installed. Further, as will be shown later, when incorporated in some device, the member at the time of incorporation into the device can be used as a part of the exterior member.
 図6は、本実施形態に係るパネル本体15の利用例の別の一例を示す図である。 FIG. 6 is a diagram illustrating another example of the usage example of the panel body 15 according to the present embodiment.
 図6においては、車輪などの移動機構を備えたロボット34の上部にパネル本体15を配置した例を示している。図6に示す例では、パネル本体15の発電電力により、ロボット34の移動機構を構成するモータなどを駆動することで、ロボット34を外部からの給電なしに移動させることができる。また供給電力が許容する範囲で、ロボット34内に種々のセンサー機能などを付加することもできる。また、パネル本体15のみを、ロボット34とは別に適当な範囲で移動させたり、回転させたりすることにより、発電電力を平均化することができる。平均化された電力で機器を動作させることで、木漏れ日などの外部環境に対して適応力を高めることができる。 FIG. 6 shows an example in which the panel main body 15 is arranged on the upper part of the robot 34 having a moving mechanism such as a wheel. In the example shown in FIG. 6, the robot 34 can be moved without power supply from the outside by driving the motor or the like constituting the moving mechanism of the robot 34 with the generated power of the panel body 15. Various sensor functions and the like can be added to the robot 34 as long as the power supply allows. Further, the generated power can be averaged by moving or rotating only the panel main body 15 within an appropriate range separately from the robot 34. By operating the device with the averaged power, adaptability to the external environment such as sunbeams can be increased.
 なお、従来から、シリコン系太陽電池を搭載した玩具などがある。しかしながら、本実施形態に係るパネル本体15は、シリコン系太陽電池と比べて、軽量であり、また、入射光依存性に優れているなどの特徴がある。そのため、設置可能な範囲が広がり、設計の自由度の向上、デザイン性の向上などを図ることができる。 Conventionally, there are toys equipped with silicon solar cells. However, the panel main body 15 according to the present embodiment is characterized by being lighter in weight and superior in incident light dependency as compared with a silicon solar cell. Therefore, the range in which installation is possible is expanded, and it is possible to improve the degree of freedom of design and the design.
 図7は、本実施形態に係るパネル本体15の利用例のさらに別の一例を示す図である。 FIG. 7 is a view showing still another example of the usage example of the panel body 15 according to the present embodiment.
 図7においては、動作(変位(回転))可能な可動部である羽35を有する扇風機36(可動装置)の羽35に、パネル本体15を設置した例を示している。図7に示す扇風機36によれば、パネル本体15の発電電力により、可動部である羽35をパネル本体15とともに動作(変位)させることができる。 FIG. 7 shows an example in which the panel main body 15 is installed on the wings 35 of the electric fan 36 (movable device) having the wings 35 that are movable parts that can move (displace (rotate)). According to the electric fan 36 shown in FIG. 7, the wings 35 that are movable parts can be operated (displaced) together with the panel main body 15 by the generated power of the panel main body 15.
 本実施形態に係るパネル本体15は軽量であり、かつ、割れにくいという特徴を有する。そのため、図7のように、パネル本体15を扇風機36(可動装置)の羽35(可動部)に設置し、パネル本体15の発電電力により、羽35をパネル本体15とともに動作させるという利用態様に適している。 The panel body 15 according to the present embodiment is characterized by being lightweight and difficult to break. Therefore, as shown in FIG. 7, the panel main body 15 is installed on the wing 35 (movable part) of the electric fan 36 (movable device), and the wing 35 is operated together with the panel main body 15 by the generated power of the panel main body 15. Is suitable.
 上述したような利用態様としては、図7に示した例の他に、例えば、風力発電に用いられる風車の可動部である羽にパネル本体15を設置する例が考えられる。風車の羽にパネル本体15を設置することで、風力発電による電力に加えて、太陽光発電による電力を得ることができ、発電量の増加を図ることができる。また、回転する風車の各羽にパネル本体15を設置することで、風車が回転することで各パネル本体15に照射される光量が均一化され、各パネル本体15の発電量の均一化を図ることができる。特に、色素増感系の太陽電池セル11を用いた場合、応答が遅いという特徴があるため、回転による発電量の均一化の効果を得やすい。またパネル本体15は風車の両面に設置したり、風車が接続された本体部分に設置されていてもよい。 As an example of the usage mode as described above, for example, an example in which the panel body 15 is installed on a wing that is a movable part of a windmill used for wind power generation is conceivable. By installing the panel body 15 on the wings of the windmill, in addition to the power generated by wind power generation, power generated by solar power generation can be obtained, and the amount of power generation can be increased. Further, by installing the panel body 15 on each wing of the rotating windmill, the amount of light applied to each panel body 15 is made uniform by the rotation of the windmill, and the power generation amount of each panel body 15 is made uniform. be able to. In particular, when the dye-sensitized solar cell 11 is used, the response is slow. Therefore, it is easy to obtain the effect of equalizing the power generation amount by rotation. Moreover, the panel main body 15 may be installed in both surfaces of a windmill, or may be installed in the main-body part to which the windmill was connected.
 図8は、本実施形態に係るパネル本体15の利用例のさらに別の一例を示す図である。 FIG. 8 is a diagram showing still another example of the usage example of the panel body 15 according to the present embodiment.
 図8においては、円筒状の部材37と、円筒状の部材37から径方向に延在し、円筒状の部材37の周方向に沿って可動(変位可能)に設けられたパネル本体15とを備える可動装置38を示している。可動装置38は、例えば、オブジェとして設置されるものである。図8に示す例では、例えば、円筒状の部材37の内部に、部材37から径方向に延在するパネル本体15を円筒状の部材37の周方向に沿って移動させるモータを配置し、パネル本体15の発電電力によりモータを駆動してもよい。図8に示す可動装置38においては、パネル本体15自体が可動部として設けられ、パネル本体15の発電電力により、円筒状の部材37を中心として羽部分が羽ばたくようにパネル本体15自体を移動させることができる。 In FIG. 8, a cylindrical member 37 and a panel main body 15 that extends radially from the cylindrical member 37 and is movable (displaceable) along the circumferential direction of the cylindrical member 37 are provided. A movable device 38 is shown. The movable device 38 is installed as an object, for example. In the example shown in FIG. 8, for example, a motor that moves the panel main body 15 extending in the radial direction from the member 37 along the circumferential direction of the cylindrical member 37 is arranged inside the cylindrical member 37. The motor may be driven by the power generated by the main body 15. In the movable device 38 shown in FIG. 8, the panel body 15 itself is provided as a movable part, and the panel body 15 itself is moved by the generated power of the panel body 15 so that the wings flutter around the cylindrical member 37. be able to.
 本実施形態に係るパネル本体15は軽量であり、かつ、形状を維持できる曲げ弾性率を有し、割れにくいという特徴を有する。そのため、図8のように、パネル本体15自体により可動部を構成するような利用態様にも適している。 The panel body 15 according to the present embodiment is lightweight, has a bending elastic modulus that can maintain the shape, and has a feature that it is difficult to break. Therefore, as shown in FIG. 8, it is also suitable for a usage mode in which the movable part is constituted by the panel body 15 itself.
 上述したような利用態様としては、図8に示した例の他に、例えば、風力発電に用いられる風車の可動部である羽部分をパネル本体15で構成する例が考えられる。本実施形態に係るパネル本体15は、シート状の太陽電池モジュールと比べて曲げ弾性率が高いため、風を受けても形状を維持し、風力により風車を回転させることができる。パネル本体15自体を風車の羽として用いることによっても、風力発電による電力に加えて、太陽光発電による電力を得ることができ、発電量の増加を図ることができる。また、回転する風車の各羽自体をパネル本体15とすることで、風車が回転することで各パネル本体15に照射される光量が均一化され、各パネル本体15の発電量の均一化を図ることができる。特に、色素増感系の太陽電池セル11を用いた場合、応答性が低いという特徴があるため、回転による発電量の均一化の効果を得やすい。 As the above-described usage mode, in addition to the example shown in FIG. 8, for example, an example in which a wing part that is a movable part of a windmill used for wind power generation is configured by the panel body 15 can be considered. Since the panel main body 15 according to the present embodiment has a higher bending elastic modulus than the sheet-like solar cell module, the shape can be maintained even when wind is received, and the windmill can be rotated by wind power. Also by using the panel main body 15 itself as a windmill wing, it is possible to obtain electric power from solar power generation in addition to electric power from wind power generation, and increase the amount of power generation. Further, by making each blade of the rotating windmill itself a panel body 15, the amount of light applied to each panel body 15 is made uniform by rotating the windmill, and the power generation amount of each panel body 15 is made uniform. be able to. In particular, when the dye-sensitized solar cell 11 is used, it has a feature that the responsiveness is low, so that it is easy to obtain the effect of equalizing the power generation amount by rotation.
 なお、上述した各例では、可動部が、扇風機や風車の羽であり、規則的に動作する例を用いて説明したが、これに限られるものではなく、可動部は、不規則に動作してもよい。また、可動部だけでなく、非可動部にも合わせて設置したりすることもできる。 In each of the above-described examples, the movable part is a fan or a fan of a windmill and has been described using an example that operates regularly. However, the present invention is not limited to this, and the movable part operates irregularly. May be. Further, it can be installed not only on the movable part but also on the non-movable part.
 また、パネル本体15の接続方法は、図2,3に示した方法に限られるものではない。例えば、図9に示すように、複数のパネル本体15が直方体の底面を除く各面を構成するように、複数のパネル本体15を接続してもよい。上述したように、本実施形態に係るパネル本体15は、シート状の太陽電池モジュールと比べて曲げ弾性率が高い。そのため、パネル本体15を直方体の側面に配置した場合(パネル本体15を立てて設置した場合)や、パネル本体15を直方体の上面に配置した場合(直方体の側面に配置したパネル本体15の上辺に接するようにパネル本体15を配置した場合)にも、パネル本体15は撓むことなく形状を維持することができる。そのため、図9に示すように、複数のパネル本体15を直方体上に配置することも可能である。 Further, the connection method of the panel body 15 is not limited to the method shown in FIGS. For example, as shown in FIG. 9, the plurality of panel bodies 15 may be connected such that the plurality of panel bodies 15 constitute each surface except the bottom surface of the rectangular parallelepiped. As described above, the panel body 15 according to the present embodiment has a higher flexural modulus than the sheet-like solar cell module. Therefore, when the panel body 15 is arranged on the side surface of the rectangular parallelepiped (when the panel body 15 is placed upright) or when the panel body 15 is arranged on the upper surface of the rectangular parallelepiped (on the upper side of the panel body 15 arranged on the side surface of the rectangular parallelepiped) The panel body 15 can maintain its shape without bending even when the panel body 15 is disposed so as to be in contact. Therefore, as shown in FIG. 9, it is also possible to arrange a plurality of panel main bodies 15 on a rectangular parallelepiped.
 また、図10に示すように、複数のパネル本体15を、接合部39を介して行列状に接続してもよい。図10においては、9枚のパネル本体15が3行3列の行列状に接続されている例を示しているが、これに限られるものではなく、任意の枚数のパネル本体15を接続することができる。このようにパネル本体15を平面的に行列状に接続した場合、窓に貼り付けるなどすることで、太陽光による発電電力を得ることができる。また、パネル本体15は、太陽電池セル11部分は光を透過しないため、太陽電池セル11と支持部材12との割合などを調整することで、カーテンやブラインドなどとしても機能させることができる。 Further, as shown in FIG. 10, a plurality of panel main bodies 15 may be connected in a matrix form via joints 39. FIG. 10 shows an example in which nine panel main bodies 15 are connected in a matrix of 3 rows and 3 columns. However, the present invention is not limited to this, and an arbitrary number of panel main bodies 15 may be connected. Can do. Thus, when the panel main body 15 is connected in a matrix form in a plane, the generated power by sunlight can be obtained by pasting it on a window. Moreover, since the solar cell 11 part does not transmit light, the panel body 15 can function as a curtain or a blind by adjusting the ratio of the solar cell 11 and the support member 12.
 接合部39は、本例ではパネル本体15を行方向及び列方向にそれぞれ接続する。具体的には、接合部39は、可撓性の導電部材(図示せず)を含み、パネル本体15を行方向及び列方向に機械的かつ電気的に連結する。接合部39は、導電部材及び必要に応じて導電部材を保護及び/又は補強するための非導電部材から構成される。 In the present example, the joint portion 39 connects the panel body 15 in the row direction and the column direction. Specifically, the joint portion 39 includes a flexible conductive member (not shown), and mechanically and electrically connects the panel body 15 in the row direction and the column direction. The joint portion 39 includes a conductive member and a non-conductive member for protecting and / or reinforcing the conductive member as necessary.
 なお、接合部39は、任意の隣り合うパネル本体15を、機械的にのみ連結し電気的には連結しない可撓性の非導電部材で構成してもよい。 Note that the joint portion 39 may be configured by a flexible non-conductive member that connects any adjacent panel body 15 only mechanically and not electrically.
 非導電部材を構成する材料は可視光域で透明の高いものであれば特に制限されない。具体的には、PET樹脂、PEN樹脂、アクリル樹脂、ポリイミド樹脂、塩化ビニール樹脂、シクロオレフィン樹脂、シリコン樹脂などの材料を用いることが出来る。更に導電部材を除く部分が可視光域で透明性の高い材料のみで構成することで、パネル本体の透明感を損なうことなく全体として透明感を向上させることができる。 The material constituting the nonconductive member is not particularly limited as long as it is highly transparent in the visible light range. Specifically, materials such as PET resin, PEN resin, acrylic resin, polyimide resin, vinyl chloride resin, cycloolefin resin, and silicon resin can be used. Furthermore, since the portion excluding the conductive member is made of only a material having high transparency in the visible light region, the overall transparency can be improved without impairing the transparency of the panel body.
 非導電部材はパネル面に対して垂直に積層構造を有するもので構成されていてもよい。非導電部材を構成する各層の物性は同じであっても異なってもよい。例えば曲げ弾性率の高い層と柔軟性の高い層とを用いて非導電部材を構成することで、接合部39の可撓性と機械的強度を両立させることが可能となる。このとき、接合部39の曲げ弾性率はパネル本体15の曲げ弾性率よりも低いことが好ましい。接合部39の厚みが、パネル本体15の厚みより厚くなると、折り曲げが困難となったり、折りたたんだ状態の厚みがパネルの厚さよりも接合部の厚みで律速されるため、好ましくない。また薄すぎると強度の確保が難しくなるため、接合部39は、曲げや折り畳みを阻害しない程度の厚みを有することが好ましい。 The non-conductive member may be composed of a layered structure perpendicular to the panel surface. The physical properties of the layers constituting the nonconductive member may be the same or different. For example, by configuring the non-conductive member using a layer having a high flexural modulus and a layer having high flexibility, it is possible to achieve both flexibility and mechanical strength of the joint portion 39. At this time, the bending elastic modulus of the joint portion 39 is preferably lower than the bending elastic modulus of the panel body 15. If the thickness of the joint portion 39 is thicker than the thickness of the panel body 15, it is not preferable because bending becomes difficult or the thickness in the folded state is controlled by the thickness of the joint portion rather than the thickness of the panel. Moreover, since it will become difficult to ensure intensity | strength if it is too thin, it is preferable that the junction part 39 has the thickness of the grade which does not inhibit bending and folding.
 非導電部材のヘイズ率および光透過率はパネル本体15の光透過部と同じであることが好ましい。 The haze ratio and light transmittance of the non-conductive member are preferably the same as those of the light transmitting portion of the panel body 15.
 隣接する層間の屈折率差は小さい事が好ましく、通常0.5以下、好ましくは0.2以下、より好ましくは0.1以下である。屈折率差を小さくすることにより界面反射による色むらを低減させ視認性向上に繋がる。 The difference in refractive index between adjacent layers is preferably small, and is usually 0.5 or less, preferably 0.2 or less, and more preferably 0.1 or less. By reducing the difference in refractive index, color unevenness due to interface reflection is reduced, leading to improved visibility.
 接合部39の厚みはパネル本体15の厚み以下であることが好ましい。これ以上となると折り曲げが困難となり、接合部39を有した状態でパネルを重ねて保管することができない。また、接合部39の厚みが小さすぎると、接合部39の強度を維持することが出来ない。 The thickness of the joint portion 39 is preferably equal to or less than the thickness of the panel body 15. Beyond this, it becomes difficult to bend, and the panel cannot be stacked and stored with the joint 39. Moreover, if the thickness of the joint portion 39 is too small, the strength of the joint portion 39 cannot be maintained.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.
 プラスチック基板からなる太陽電池の作製方法としては、特許第5292549号公報等に記載の方法を用いることができる。本発明では以下に記載の通り太陽電池パネル10及びパネル本体15を作製した。 As a method for manufacturing a solar cell made of a plastic substrate, a method described in Japanese Patent No. 5292549 can be used. In this invention, the solar cell panel 10 and the panel main body 15 were produced as described below.
 (実施例1)
<色素溶液の調製>
 ルテニウム錯体色素(N719、ソラロニクス社製)72mgを200mLのメスフラスコに入れた。脱水エタノール190mLを混合し、撹拌した。メスフラスコに栓をしたのち超音波洗浄器による振動により、60分間撹拌した。溶液を常温に保った後、脱水エタノールを加え、全量を200mLとすることで、色素溶液を調製した。
Example 1
<Preparation of dye solution>
72 mg of ruthenium complex dye (N719, Solaronics) was placed in a 200 mL volumetric flask. 190 mL of dehydrated ethanol was mixed and stirred. After stoppering the volumetric flask, the mixture was stirred for 60 minutes by vibration with an ultrasonic cleaner. After keeping the solution at room temperature, dehydrated ethanol was added to make a total volume of 200 mL to prepare a dye solution.
<第1基板の作製>
 第1基材である透明基板(ポリエチレンナフタレートフィルム、厚み200μm)上に光電極用導電層である透明導電層(酸化インジウムスズ(ITO))をコートして、透明導電性基板(シート抵抗13ohm/sq)を得た。この透明導電性基板上に、スクリーン印刷法により配線(集電線及び集電電極)としての導電性銀ペースト(K3105、ペルノックス(株)製)を光電極セル幅に応じた間隔で印刷塗布し、150度の熱風循環型オーブン中で15分間加熱乾燥して配線及び集電線(配線の連続方向両端部に位置する配線、以下これらをまとめて配線とも称する)を作製した。得られた配線を有する透明導電性基板を、配線形成面を上にして塗布コーターにセットし、1.6%に希釈したオルガチックPC-600溶液(マツモトファインケミカル製)をワイヤーバーにより掃引速度(10mm/秒)で塗布した。得られた塗膜を、10分間室温乾燥した後、さらに10分間150℃で加熱乾燥して、透明導電性基板上に下塗り層を作製した。
<Fabrication of first substrate>
A transparent conductive substrate (indium tin oxide (ITO)) as a conductive layer for a photoelectrode is coated on a transparent substrate (polyethylene naphthalate film, thickness 200 μm) as a first base material, and a transparent conductive substrate (sheet resistance 13 ohm) / Sq). On this transparent conductive substrate, a conductive silver paste (K3105, manufactured by Pernox Co., Ltd.) as a wiring (collecting current and collecting electrode) is printed and applied at intervals corresponding to the photoelectrode cell width by screen printing. Wiring and current collecting wires (wirings located at both ends in the continuous direction of the wiring, hereinafter collectively referred to as wiring) were produced by heating and drying for 15 minutes in a hot air circulation oven at 150 degrees. The obtained transparent conductive substrate having wiring is set on a coating coater with the wiring formation surface facing upward, and an organic PC-600 solution (manufactured by Matsumoto Fine Chemical) diluted to 1.6% is swept with a wire bar ( 10 mm / sec). The obtained coating film was dried at room temperature for 10 minutes, and then further heated and dried at 150 ° C. for 10 minutes to produce an undercoat layer on the transparent conductive substrate.
 透明導電性基板の下塗り層形成面に対して、光電極セル幅に応じた間隔でレーザー処理を行い、絶縁線を形成した。 Laser treatment was performed on the transparent conductive substrate undercoat layer forming surface at intervals corresponding to the photoelectrode cell width to form insulating wires.
 そして、ポリエステルフィルムに粘着層を塗工した保護フィルムを2段重ねしてマスクフィルムを得た。そのマスクフィルムに、多孔質半導体微粒子層を形成するための開口部(長さ:30mm、幅7mm)を打ち抜き加工した。加工済みマスクフィルムを、気泡が入らないように、下塗り層を形成した透明導電性基板の集電線形成面に貼合した。なお、マスクフィルムの一層目は色素の不要箇所への付着防止を目的としたものである。また、マスクフィルムの二層目は多孔質半導体微粒子の不要箇所への付着防止を目的としたものである。 And the protective film which applied the adhesion layer to the polyester film was piled up two steps, and the mask film was obtained. An opening (length: 30 mm, width: 7 mm) for forming a porous semiconductor fine particle layer was punched into the mask film. The processed mask film was bonded to the current collector forming surface of the transparent conductive substrate on which the undercoat layer was formed so that air bubbles would not enter. The first layer of the mask film is intended to prevent adhesion of the dye to unnecessary portions. The second layer of the mask film is intended to prevent adhesion of porous semiconductor fine particles to unnecessary portions.
 高圧水銀ランプ(定格ランプ電力  400W)光源をマスク貼合面から10cmの距離に置き、電磁波を1分間照射した後直ちに、酸化チタンペースト(PECC-C01-06、ペクセル・テクノロジーズ(株)製)をベーカー式アプリケータにより塗布した。ペーストを常温で10分間乾燥させた後、マスクフィルムの上側の保護フィルム(NBO-0424 藤森工業製)を剥離除去し、150度の熱風循環式オーブン中でさらに5分間加熱乾燥し、多孔質半導体微粒子層(長さ:60mm、幅5mm)を形成した。 Place a light source of high pressure mercury lamp (rated lamp power) 400W) at a distance of 10cm from the mask bonding surface, and immediately after irradiating with electromagnetic wave for 1 minute, titanium oxide paste (PECC-C01-06, manufactured by Pexel Technologies Co., Ltd.) Application was with a Baker applicator. After the paste is dried at room temperature for 10 minutes, the protective film on the upper side of the mask film (NBO-0424 manufactured by Saitomori Kogyo Co., Ltd.) is peeled off and dried in a hot air circulation oven at 150 ° C. for another 5 minutes. A fine particle layer (length: 60 mm, width 5 mm) was formed.
 その後、多孔質半導体微粒子層(長さ:60mm、幅5mm)を形成した透明導電性基板を、調製した色素溶液(40℃)に浸し、軽く攪拌しながら、色素を吸着させた。90分後、色素吸着済み酸化チタン膜を色素吸着容器から取り出し、エタノールにて洗浄して乾燥させ、残りのマスクフィルムを剥離除去して、光電極を作製した。 Thereafter, the transparent conductive substrate on which the porous semiconductor fine particle layer (length: 60 mm, width 5 mm) was formed was immersed in the prepared dye solution (40 ° C.), and the dye was adsorbed while gently stirring. After 90 minutes, the dye-adsorbed titanium oxide film was taken out from the dye-adsorption container, washed with ethanol and dried, and the remaining mask film was peeled and removed to produce a photoelectrode.
<第2基板の作製>
 第2基材である透明基板(ポリエチレンナフタレートフィルム、厚み200μm)上に、第1基板と同様に準備して、国際公開第2015/190108号の実施例1に準じて対向電極を作製し、第2基板を得た。このとき、上記第1基板と第2基板とを、お互いの導電面を向かい合わせて重ね合せた時、多孔質半導体微粒子層と触媒層とが一致する形状とした。
<Production of second substrate>
On the transparent substrate (polyethylene naphthalate film, thickness 200 μm) which is the second base material, prepared in the same manner as the first substrate, and produced a counter electrode according to Example 1 of International Publication No. 2015/190108, A second substrate was obtained. At this time, when the first substrate and the second substrate were superposed with their conductive surfaces facing each other, the shape of the porous semiconductor fine particle layer and the catalyst layer was made to coincide with each other.
<太陽電池パネル及びパネル本体の作製>
 導電性樹脂組成物として、アクリル系樹脂に対して、積水樹脂製ミクロパールAU(粒子径8μm)を、3質量%になるように添加して、自転公転ミキサーにより均一に混合し、導電性樹脂組成物を作製した。
<Production of solar cell panel and panel body>
As the conductive resin composition, Sekisui Resin micropearl AU (particle size 8 μm) is added to the acrylic resin so as to be 3% by mass, and the mixture is uniformly mixed by a rotating and rotating mixer. A composition was prepared.
 第2基板の触媒層形成面を表面として、アルミ製吸着板上に真空ポンプを使って固定した。次いで触媒層間の、第1基板と対向させたときに光電極セル間の配線と重なる位置に線状に導電性樹脂組成物を、自動塗布ロボットにより塗布した。さらに、その線を挟み触媒層の外周部分に隔壁材料である液状の紫外線硬化型封止剤を、自動塗布ロボットにより塗布した。この時、第2基板の両端部においては、二つの貫通孔の周囲と、更にその隣接するセルの隔壁形成部位まで充填されるように紫外線硬化型封止剤を塗布した。その後、触媒層部分に電解質材料である電解液を所定量塗布し、自動貼り合せ装置を用いて長方形の触媒層と同型の多孔質半導体微粒子層とが向かい合う構造となるように、減圧環境中で重ね合せた。そして、第1基板側からメタルハライドランプにより光照射を行ない、続いて第2基板側から光照射を行った。この時使用した電解液は特許第5292549号公報に記載の電解液処方2に準じて調整した電解液を用いた。更に集電電極に引き出し電極を取り付けることで、太陽電池パネル10を作製した。 The surface of the second substrate on which the catalyst layer was formed was fixed on an aluminum adsorption plate using a vacuum pump. Next, the conductive resin composition was applied in a linear manner to a position overlapping the wiring between the photoelectrode cells when facing the first substrate between the catalyst layers by an automatic application robot. Further, a liquid ultraviolet curable sealant as a partition material was applied to the outer peripheral portion of the catalyst layer with the automatic coating robot sandwiching the line. At this time, an ultraviolet curable encapsulant was applied to both ends of the second substrate so as to fill the periphery of the two through holes and further to the partition forming portion of the adjacent cell. After that, apply a predetermined amount of electrolyte solution as the electrolyte material to the catalyst layer part, and use an automatic laminating device in a reduced pressure environment so that the rectangular catalyst layer and the porous semiconductor fine particle layer of the same type face each other. Superimposed. Then, light irradiation was performed from the first substrate side with a metal halide lamp, and subsequently, light irradiation was performed from the second substrate side. The electrolyte solution used at this time was an electrolyte solution prepared according to the electrolyte solution formulation 2 described in Japanese Patent No. 5292549. Furthermore, the solar cell panel 10 was produced by attaching the extraction electrode to the current collecting electrode.
 太陽電池パネル10の基板の貼り合せ時に真空度の調整、及び太陽電池セル11を構成する積層体の厚さを厚くすることで、平面度がMax.-Min.=4μmの太陽電池パネル10を作製した。その太陽電池パネル10の上下に表面にハードコート層が形成された188μmのPETフィルムおよびOCAシートをハードコート層がパネル本体15の最表面になるようにしてOCAシートを介して貼りつけることによりパネル本体15を作製した。作製したパネル本体15の平面度を所定の方法で測定するとMax.-Min.=3μmであった。この時の表面への映り込み像を確認すると揺らぎが小さく、デザイン性が高いものであることが確認できた。 The flatness is set to Max. By adjusting the degree of vacuum when the substrates of the solar cell panel 10 are bonded and by increasing the thickness of the laminated body constituting the solar cell 11. -Min. = 4 μm solar cell panel 10 was produced. A panel of 188 μm PET film and OCA sheet having hard coat layers formed on the upper and lower surfaces of the solar cell panel 10 is pasted through the OCA sheet so that the hard coat layer is the outermost surface of the panel body 15. A main body 15 was produced. When the flatness of the manufactured panel body 15 is measured by a predetermined method, Max.-Min. = 3 μm. When the image reflected on the surface at this time was confirmed, it was confirmed that the fluctuation was small and the design was high.
 (実施例2~5)
 以降、実施例1に準じて、パネル本体15を作製した。この時太陽電池パネル10作製時の貼り合せ工程における真空度及び太陽電池セル11を構成する積層体の厚さを変化させることで太陽電池パネル10表面の平面度を変化させ、その太陽電池パネル10を用いてパネル本体15を作製した。平面度および映り込み像の揺らぎの確認結果を表1に示す。
(Examples 2 to 5)
Thereafter, the panel main body 15 was produced according to Example 1. At this time, the flatness of the surface of the solar cell panel 10 is changed by changing the degree of vacuum and the thickness of the laminated body constituting the solar cell 11 in the bonding step when the solar cell panel 10 is manufactured. The panel main body 15 was produced using this. Table 1 shows the results of checking the flatness and the fluctuation of the reflected image.
 (比較例1)
 実施例1において、太陽電池パネル10の貼り合せ時の真空度及び太陽電池セル11を構成する積層体の厚さを変化させることで、表面の平面度をMax.-Min.=25μmの太陽電池パネル10を作製した。そして、作製した太陽電池パネル10を用いてパネル本体15を作製した。作製したパネル本体15は平面度がMax.-Min.=23μmであり、映り込み像を確認すると揺らぎが大きく、デザイン的に好ましくないことが確認された。
(Comparative Example 1)
In Example 1, the flatness of the surface was changed to Max. By changing the degree of vacuum at the time of bonding of the solar battery panel 10 and the thickness of the laminated body constituting the solar battery cell 11. -Min. = The solar cell panel 10 of 25 micrometers was produced. And the panel main body 15 was produced using the produced solar cell panel 10. FIG. The produced panel body 15 has a flatness of Max. -Min. = 23 μm, and when the reflected image was confirmed, the fluctuation was large and it was confirmed that the design was not preferable.
 (実施例6)
 比較例1に準じて太陽電池パネル10を作製し、OCAフィルムの代わりに液状の光学接着剤を用いて貼り合せることにより、太陽電池パネル10の表面の凹凸を緩和して、パネル本体15を作製した。作製したパネル本体15表面の平面度はMax.-Min.=14μmであり、映り込み像の揺らぎを確認したところ、小さいことが確認できた。
(Example 6)
The solar cell panel 10 is produced according to Comparative Example 1, and the surface irregularities of the solar cell panel 10 are alleviated by bonding using a liquid optical adhesive instead of the OCA film, and the panel body 15 is produced. did. The flatness of the surface of the manufactured panel body 15 is Max.-Min. = 14 μm, and when the fluctuation of the reflected image was confirmed, it was confirmed to be small.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例7)
 太陽電池パネル10の貼り合せ時の貼り合せ面の所定の位置にスペーサーを設置する以外は、実施例1に準じて太陽電池パネル10を作製した。太陽電池パネル10の透明部分の平行度はMax.-Min.=8μmであった。作製した太陽電池パネル10に対して実施例1と同様にしてパネル本体15を作製した。作製したパネル本体15の平行度はMax.-Min.=6μmであった。作製したパネル本体の透明部分を通して透過像により文字の読取を行い、ゆがみの程度を評価した結果、ゆがみはないことが確認できた。
(Example 7)
A solar cell panel 10 was produced according to Example 1 except that a spacer was placed at a predetermined position on the bonding surface when the solar cell panel 10 was bonded. The parallelism of the transparent part of the solar cell panel 10 is Max. -Min. = 8 μm. A panel body 15 was produced in the same manner as in Example 1 for the produced solar cell panel 10. The parallelism of the manufactured panel body 15 is Max. -Min. = 6 μm. As a result of reading characters with a transmission image through the transparent part of the manufactured panel body and evaluating the degree of distortion, it was confirmed that there was no distortion.
 (実施例8~9)
 スペーサーの厚さ及び幅を変化させる以外は実施例7に準じてパネル本体15を作製した。作製したパネル本体の平行度を表2に示す。
(Examples 8 to 9)
A panel body 15 was produced according to Example 7 except that the thickness and width of the spacer were changed. Table 2 shows the parallelism of the manufactured panel body.
 (比較例2)
 実施例7におけるスペーサー厚さを変更して、平行度が18μmのパネル本体15を作製した。
(Comparative Example 2)
A panel body 15 having a parallelism of 18 μm was produced by changing the spacer thickness in Example 7.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (実施例10~13)
 パネル本体15における太陽電池セル11の幅を変更することにより、開口率が30%、45%、60%、75%の異なるパネル本体15を作製した。作製したパネルを光源の前に設置し、パネル設置前後の照射面の照度の変化率を評価した。
(Examples 10 to 13)
By changing the width of the solar battery cell 11 in the panel body 15, different panel bodies 15 having an aperture ratio of 30%, 45%, 60%, and 75% were produced. The produced panel was installed in front of the light source, and the change rate of the illuminance on the irradiated surface before and after the panel installation was evaluated.
 (比較例3~4)
 パネル本体15における太陽電池セル11の幅を変更することにより、開口率が15%、のパネル本体15を作製した。作製したパネルを光源の前に設置し、パネル設置前後の照射面の照度の変化率を評価した。
(Comparative Examples 3 to 4)
By changing the width of the solar battery cell 11 in the panel body 15, a panel body 15 having an aperture ratio of 15% was produced. The produced panel was installed in front of the light source, and the change rate of the illuminance on the irradiated surface before and after the panel installation was evaluated.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、開口率が大きくなると照度の変化は抑制できるものの、出力特性が低くなる。また開口率が小さくなると透過する光の量が減少するため、デザイン性がこのましくないため、開口率としては30%~75%が好ましい。 As shown in Table 3, when the aperture ratio increases, the change in illuminance can be suppressed, but the output characteristics become low. Further, since the amount of transmitted light decreases as the aperture ratio decreases, the design is not so good. Therefore, the aperture ratio is preferably 30% to 75%.
 本発明を図面および実施形態に基づき説明してきたが、当業者であれば本開示に基づき種々の変形または修正を行うことが容易であることに注意されたい。したがって、これらの変形または修正は本発明の範囲に含まれることに留意されたい。例えば、各ブロックなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数のブロックを1つに組み合わせたり、或いは分割したりすることが可能である。 Although the present invention has been described based on the drawings and embodiments, it should be noted that those skilled in the art can easily make various changes or modifications based on the present disclosure. Therefore, it should be noted that these variations or modifications are included in the scope of the present invention. For example, functions included in each block or the like can be rearranged so that there is no logical contradiction, and a plurality of blocks can be combined into one or divided.
 10  太陽電池パネル
 11  太陽電池セル
 12  支持部材
 13  集電電極
 14  引き出し電極
 15  パネル本体
 16  電極部
 17  外装部材
 18  充填部材
 21  接続部材
 22  ケーブル
 23,26,27  コネクタ
 24  主配線
 25  枝配線
 31  扇風機
 32  携帯ラジオ
 34 ロボット
 35 羽
 36  扇風機
 37  円筒状の部材
 38  可動装置
 39  接合部
DESCRIPTION OF SYMBOLS 10 Solar cell panel 11 Solar cell 12 Support member 13 Current collection electrode 14 Extraction electrode 15 Panel main body 16 Electrode part 17 Exterior member 18 Filling member 21 Connection member 22 Cable 23, 26, 27 Connector 24 Main wiring 25 Branch wiring 31 Fan 32 Portable radio 34 Robot 35 Feather 36 Electric fan 37 Cylindrical member 38 Movable device 39 Joint part

Claims (13)

  1.  1または複数の太陽電池セルと、前記太陽電池セルを支持する支持部材と、発電電力を集電し外部に出力するための電極部とを有する太陽電池パネルと、外装部材とを備えたパネル本体であって、
     前記パネル本体の平面度が、Max.-Min.=20μm以下であることを特徴とする太陽電池。
    A panel body comprising one or a plurality of solar cells, a support member that supports the solar cells, an electrode unit for collecting generated power and outputting it to the outside, and an exterior member Because
    When the flatness of the panel body is Max. -Min. = 20 μm or less.
  2.  1または複数の太陽電池セルと、前記太陽電池セルを支持する支持部材と、発電電力を集電し外部に出力するための電極部とを有する太陽電池パネルと、外装部材とを備えたパネル本体であって、
     前記パネル本体の平行度がMax.-Min.=12μm以下であることを特徴とする太陽電池。
    A panel body comprising one or a plurality of solar cells, a support member that supports the solar cells, an electrode unit for collecting generated power and outputting it to the outside, and an exterior member Because
    The parallelism of the panel body is Max. -Min. = 12 μm or less.
  3.  前記太陽電池セルおよび前記電極部を除く光透過部分の光透過率は、450nm~750nmの範囲で40%以上であることを特徴とする請求項1または2に記載の太陽電池。 The solar cell according to claim 1 or 2, wherein the light transmittance of a light transmitting portion excluding the solar cell and the electrode portion is 40% or more in a range of 450 nm to 750 nm.
  4.  前記太陽電池セルおよび前記電極部を除く光透過部分のヘイズ率は、20%以下であることを特徴とする請求項1または2に記載の太陽電池。 The solar cell according to claim 1 or 2, wherein a haze ratio of a light transmitting portion excluding the solar cell and the electrode portion is 20% or less.
  5.  平面視において、前記パネル本体における全体の面積に対する、前記太陽電池セルおよび前記電極部を除く光透過部分の割合である開口率は、30%~75%であることを特徴とする請求項1から4のいずれか一項に記載の太陽電池。 The aperture ratio, which is a ratio of a light transmission portion excluding the solar battery cell and the electrode portion, with respect to the entire area of the panel body in a plan view is 30% to 75%. The solar cell according to any one of 4.
  6.  1または複数の太陽電池セルと、前記太陽電池セルを支持する支持部材と、発電電力を集電し外部に出力するための電極部とを有する太陽電池パネルと、外装部材とを備えたパネル本体であって、
     前記パネル本体の紫外線カット率が、380nm以下の範囲で95%以上であることを特徴とする太陽電池。
    A panel body comprising one or a plurality of solar cells, a support member that supports the solar cells, an electrode unit for collecting generated power and outputting it to the outside, and an exterior member Because
    The solar cell, wherein the panel body has an ultraviolet cut rate of 95% or more in a range of 380 nm or less.
  7.  1または複数の太陽電池セルと、前記太陽電池セルを支持する支持部材と、発電電力を集電し外部に出力するための電極部とを有する太陽電池パネルと、外装部材とを備えたパネル本体であって、
     前記パネル本体における太陽電池パネルの部分の受光面および受光面と対向する裏面の水蒸気透過率が、5×10-2g/m2/day以下であることを特徴とする太陽電池。
    A panel body comprising one or a plurality of solar cells, a support member that supports the solar cells, an electrode unit for collecting generated power and outputting it to the outside, and an exterior member Because
    The solar cell, wherein a water vapor transmission rate of a light receiving surface of the solar cell panel portion in the panel body and a back surface facing the light receiving surface is 5 × 10 −2 g / m 2 / day or less.
  8.  前記パネル本体は、複数のフィルムの積層により構成され、
     前記フィルムの積層数は、4層以上であることを特徴とする請求項6または7に記載の太陽電池。
    The panel body is configured by laminating a plurality of films,
    The solar cell according to claim 6 or 7, wherein the number of laminated films is four or more.
  9.  前記パネル本体の厚さが、0.3mm~3mmであることを特徴とする請求項6または7に記載の太陽電池。 The solar cell according to claim 6 or 7, wherein the panel body has a thickness of 0.3 mm to 3 mm.
  10.  1または複数の太陽電池セルと、前記太陽電池セルを支持する支持部材と、発電電力を集電し外部に出力するための電極部とを有する太陽電池パネルと、外装部材とを備えたパネル本体であって、
     前記パネル本体の曲げ弾性率が1.5GPa~10GPaであることを特徴とする太陽電池。
    A panel body comprising one or a plurality of solar cells, a support member that supports the solar cells, an electrode unit for collecting generated power and outputting it to the outside, and an exterior member Because
    A solar cell, wherein the panel body has a flexural modulus of 1.5 GPa to 10 GPa.
  11.  前記パネル本体は、複数のフィルムの積層により構成され、
     前記フィルムの積層数は、4層以上であることを特徴とする請求項10に記載の太陽電池。
    The panel body is configured by laminating a plurality of films,
    The solar cell according to claim 10, wherein the number of laminated films is four or more.
  12.  前記パネル本体の厚さが、0.3mm~3mmであることを特徴とする請求項10に記載の太陽電池。 The solar cell according to claim 10, wherein the panel body has a thickness of 0.3 mm to 3 mm.
  13.  前記パネル本体の単位面積または単位体積あたりの出力特性は、0.8%~6.2%であることを特徴とする請求項1~12に記載の太陽電池。 The solar cell according to any one of claims 1 to 12, wherein an output characteristic per unit area or unit volume of the panel main body is 0.8% to 6.2%.
PCT/JP2017/042657 2016-12-07 2017-11-28 Solar battery WO2018105449A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016237948 2016-12-07
JP2016-237948 2016-12-07

Publications (1)

Publication Number Publication Date
WO2018105449A1 true WO2018105449A1 (en) 2018-06-14

Family

ID=62491086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042657 WO2018105449A1 (en) 2016-12-07 2017-11-28 Solar battery

Country Status (2)

Country Link
TW (1) TW201834259A (en)
WO (1) WO2018105449A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060709A (en) * 1999-08-19 2001-03-06 Sanyo Electric Co Ltd Solar cell module and manufacture thereof
JP2008111322A (en) * 2006-10-31 2008-05-15 Kubota Matsushitadenko Exterior Works Ltd Building board with solar cell
JP2010021502A (en) * 2008-07-14 2010-01-28 Mitsubishi Chemicals Corp Solar cell panel for blind, and vertical blind
WO2012128244A1 (en) * 2011-03-24 2012-09-27 シャープ株式会社 Plant factory and solar cell system
JP2013040091A (en) * 2011-07-15 2013-02-28 Nippon Sheet Glass Co Ltd Glass plate including light incidence surface having light scattering function and reflection control function
JP2013115294A (en) * 2011-11-30 2013-06-10 Kyocera Corp Solar cell panel
US20140166080A1 (en) * 2012-12-17 2014-06-19 Aleksandar Aleksov Photovoltaic window
JP2014130927A (en) * 2012-12-28 2014-07-10 Mitsubishi Chemicals Corp Organic solar cell element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060709A (en) * 1999-08-19 2001-03-06 Sanyo Electric Co Ltd Solar cell module and manufacture thereof
JP2008111322A (en) * 2006-10-31 2008-05-15 Kubota Matsushitadenko Exterior Works Ltd Building board with solar cell
JP2010021502A (en) * 2008-07-14 2010-01-28 Mitsubishi Chemicals Corp Solar cell panel for blind, and vertical blind
WO2012128244A1 (en) * 2011-03-24 2012-09-27 シャープ株式会社 Plant factory and solar cell system
JP2013040091A (en) * 2011-07-15 2013-02-28 Nippon Sheet Glass Co Ltd Glass plate including light incidence surface having light scattering function and reflection control function
JP2013115294A (en) * 2011-11-30 2013-06-10 Kyocera Corp Solar cell panel
US20140166080A1 (en) * 2012-12-17 2014-06-19 Aleksandar Aleksov Photovoltaic window
JP2014130927A (en) * 2012-12-28 2014-07-10 Mitsubishi Chemicals Corp Organic solar cell element

Also Published As

Publication number Publication date
TW201834259A (en) 2018-09-16

Similar Documents

Publication Publication Date Title
JP3618802B2 (en) Solar cell module
CN101911306B (en) Photoluminescent backing sheet for photovoltaic modules
KR102360087B1 (en) Color film applied solar module and manufacturing method thereof
WO2013146414A1 (en) Back contact solar cell module
TWM368189U (en) Power saving intelligent board having solar cells
JP4848666B2 (en) Oxide semiconductor electrode transfer material, dye-sensitized solar cell substrate, dye-sensitized solar cell, and methods for producing the same
JP2012186310A (en) Photovoltaic power generation film
JP2006282970A (en) Laminated film for dye-sensitized solar cell and electrode for the dye-sensitized solar cell using the same
WO2019145927A1 (en) Solar panel arrangement
JP4277639B2 (en) Photoelectric conversion element module
JP5128118B2 (en) Wet solar cell and manufacturing method thereof
CN204760395U (en) Flexible solar panel module and fixing structure thereof
JP2018098818A (en) Movable device
JP5084170B2 (en) Method for producing transparent electrode substrate for dye-sensitized solar cell
JP2009217970A (en) Laminate for oxide semiconductor electrode, oxide semiconductor electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
EP3824488B1 (en) A dye-sensitized solar cell unit, a photovoltaic charger including the dye-sensitized solar cell unit and a method for producing the solar cell unit
JP2014236212A (en) Installation method of photovoltaic power generation film, photovoltaic power generation film built-in member, and photovoltaic power generation film
WO2018105449A1 (en) Solar battery
JP5364999B2 (en) Laminate for oxide semiconductor electrode, oxide semiconductor electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP2006278702A (en) Solar cell module and its manufacturing process
JP6201317B2 (en) Dye-sensitized photoelectric conversion element and dye-sensitized solar cell
JP2013076281A (en) Roll screen device
JP2013076293A (en) Roll screen device
JP6017752B2 (en) Glass scattering prevention power generation film
JP6927791B2 (en) Solar cells and methods for manufacturing solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP