WO2018105438A1 - Spinning nozzle - Google Patents

Spinning nozzle Download PDF

Info

Publication number
WO2018105438A1
WO2018105438A1 PCT/JP2017/042544 JP2017042544W WO2018105438A1 WO 2018105438 A1 WO2018105438 A1 WO 2018105438A1 JP 2017042544 W JP2017042544 W JP 2017042544W WO 2018105438 A1 WO2018105438 A1 WO 2018105438A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube wall
spinning nozzle
hollow needle
fine fiber
tip
Prior art date
Application number
PCT/JP2017/042544
Other languages
French (fr)
Japanese (ja)
Inventor
紀之 河原
遠藤 喜重
宗男 水本
Original Assignee
株式会社幹細胞&デバイス研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社幹細胞&デバイス研究所 filed Critical 株式会社幹細胞&デバイス研究所
Priority to JP2018554931A priority Critical patent/JP6944198B2/en
Publication of WO2018105438A1 publication Critical patent/WO2018105438A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/02Spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods

Definitions

  • the present invention relates to a spinning nozzle used in an electrospinning apparatus at the time of producing a fine fiber sheet, a method for producing the same, and a method for producing a fine fiber sheet.
  • a microfiber is a fiber having a micro-order diameter
  • a nanofiber is a fiber having a nano-order diameter.
  • an electrospinning method electrospinning method
  • a high voltage is applied between the spinning nozzle and the collector, and a solution as a raw material of the fine fiber is jetted from the spinning nozzle toward the collector by the Coulomb force, and the fine fiber is accumulated in a sheet form on the collector surface. It is a method.
  • the fine fiber sheet produced in this way includes a non-woven fabric formed by randomly intertwining fine fibers and a type in which fine fibers are aligned in a specific direction.
  • Patent Document 1 discloses an electrospinning apparatus suitable for manufacturing the latter sheet, that is, a highly oriented fine fiber sheet.
  • a Taylor cone is formed by a solution as a raw material for fine fiber, just below the tip opening (spinning port) of the spinning nozzle.
  • the Taylor cone forms a generally inverted cone shape as shown in FIG. 1A.
  • a filamentous solution called a spinning jet protrudes from the tip of the Taylor cone and is pulled toward the collector.
  • FIG. 1A shows the form of a Taylor cone and a spinning jet, which are ideal for producing a highly oriented fine fiber sheet. That is, in order to produce a highly oriented fine fiber sheet, it is desirable that the Taylor cone be formed in a shape that is substantially rotationally symmetric with respect to the center axis of the spinning nozzle. It may be desirable to extend straight toward the collector. On the other hand, in the conventional electrospinning apparatus, for example, as shown in FIG. 1B, the shape of the Taylor cone is often distorted or the direction of the spinning jet is shifted. In addition, as shown in FIG. 1C, a plurality of spinning jets may be formed from one spinning nozzle.
  • the object of the present invention is to stably produce a fine fiber sheet.
  • the spinning nozzle according to the first aspect of the present invention is a spinning nozzle used in an electrospinning apparatus when manufacturing a fine fiber sheet, and includes a hollow needle.
  • the hollow needle has a tube wall that defines a spinning port through which a solution that is a raw material of the fine fiber is injected.
  • the thickness of the tube wall at the tip of the hollow needle is 35 ⁇ m or less.
  • the spinning nozzle according to the second aspect of the present invention is the spinning nozzle according to the first aspect, and the thickness of the tube wall at the tip of the hollow needle is 30 ⁇ m or less.
  • the spinning nozzle according to the third aspect of the present invention is the spinning nozzle according to the second aspect, and the thickness of the tube wall at the tip of the hollow needle is 15 ⁇ m or less.
  • the spinning nozzle according to the fourth aspect of the present invention is the spinning nozzle according to the third aspect, and the thickness of the tube wall at the tip of the hollow needle is 10 ⁇ m or less.
  • the spinning nozzle according to the fifth aspect of the present invention is the spinning nozzle according to any one of the first to fourth aspects, and the outer surface of the tube wall is a metal surface.
  • a spinning nozzle according to a sixth aspect of the present invention is the spinning nozzle according to any one of the first to fifth aspects, wherein a tip surface of the tube wall perpendicular to the central axis direction of the tube wall is non-polished. Surface.
  • a spinning nozzle according to a seventh aspect of the present invention is the spinning nozzle according to any one of the first to sixth aspects, wherein the distal end portion of the tube wall is substantially rotationally symmetric with respect to a central axis of the tube wall. It has a tapered surface of various shapes.
  • the spinning nozzle according to the eighth aspect of the present invention is a spinning nozzle according to any one of the first to seventh aspects, and is a disposable nozzle that is detachable from the main body of the electrospinning apparatus.
  • a spinning nozzle manufacturing method is a spinning nozzle manufacturing method used in an electrospinning apparatus at the time of manufacturing a fine fiber sheet, and includes the following (1) and (2).
  • (1) Prepare a hollow needle.
  • (2) Using a cutting tool whose blade edge forms an inclined surface, the tip of the tube wall of the hollow needle is formed with a tapered surface having a shape that is substantially rotationally symmetric with respect to the central axis of the tube wall. So as to cut.
  • (2) includes the following (2-1) and (2-2).
  • (2-1) The cutting edge of the tube wall is moved so that the cutting edge reaches the position of the inner peripheral surface of the tube wall along the radial direction of the tube wall or a position inside the inner peripheral surface. Move and position relative to the tip.
  • the manufacturing method of the fine fiber sheet which concerns on the 10th viewpoint of this invention contains the following (1) and (2).
  • An electrospinning apparatus comprising a hollow needle having a tube wall defining a spinneret, a collector, and a power source for applying a voltage between the hollow needle and the collector. Preparing an electrospinning apparatus in which the thickness of the tube wall at the tip is 35 ⁇ m or less; (2) Using the electrospinning apparatus, spraying a solution as a raw material of fine fiber from the spinning port toward the collector to form the fine fiber sheet on the collector surface.
  • the method for producing a fine fiber sheet according to the eleventh aspect of the present invention is the method for producing according to the tenth aspect, wherein the fine fiber sheet is an oriented fine fiber sheet.
  • the thickness of the tube wall at the tip of the hollow needle of the spinning nozzle is 35 ⁇ m or less. According to the verification by the present inventors, this configuration can stabilize the form of the Taylor cone and the spinning jet. Therefore, a fine fiber sheet can be manufactured stably.
  • FIG. 1 is a schematic front view of an electrospinning apparatus according to an embodiment of the present invention.
  • the functional block diagram of the electrospinning apparatus of FIG. The side view of the spinning nozzle which concerns on one Embodiment of this invention.
  • FIG. 5 is a side sectional view in which a tip portion of the spinning nozzle of FIG. 4 is enlarged.
  • 1 is a schematic plan view of a cutting apparatus for manufacturing a spinning nozzle according to an embodiment of the present invention. The figure which shows a mode when a blade edge
  • FIG. 2 is a schematic front view of an electrospinning apparatus 1 according to an embodiment of the present invention
  • FIG. 3 is a functional block diagram thereof.
  • the electrospinning apparatus 1 is an apparatus for producing fine fibers using an electrospinning method (electrospinning method) as an operating principle.
  • the fine fiber here is a fiber having a micro-order or nano-order diameter.
  • the electrospinning apparatus 1 includes a housing 2, and includes a spinning nozzle 10, a collector 20, and a power supply 30 in the housing 2.
  • the power source 30 is a power source for applying a high voltage between the spinning nozzle 10 and the collector 20.
  • An openable / closable door 2a is installed in front of the housing 2, and the fine fiber manufacturing space S1 in the housing 2 can be accessed by opening the door 2a.
  • the door 2a is formed at least partially transparent, and in this case, the manufacturing process of the fine fiber can be observed. That is, the state of the Taylor cone and the spinning jet can be confirmed during the production of the fine fiber, and any abnormality can be dealt with immediately.
  • a syringe 3 for containing a solution L ⁇ b> 1 as a raw material for fine fiber is accommodated.
  • the solution L1 that is a raw material of the fine fiber is typically a solution in which a polymer that is a raw material of the fiber is dissolved in a volatile solvent.
  • the syringe 3 is driven by a drive mechanism 4 that is also housed in the housing 2, whereby the solution L ⁇ b> 1 in the syringe 3 is sent to the spinning nozzle 10 via the tube 7.
  • the drive mechanism 4 can be configured as appropriate.
  • the drive mechanism 4 can be configured from a motor that reciprocates the plunger of the syringe 3 with respect to the cylinder.
  • the spinning nozzle 10 is also driven by a driving mechanism 6 accommodated in the housing 2 as shown in FIG. Thereby, the spinning nozzle 10 can reciprocate in the left-right direction.
  • the left and right here are defined based on the state of FIG.
  • the drive mechanism 6 can be configured as appropriate.
  • the drive mechanism 6 can be configured from a slider that supports the spinning nozzle 10, a slide rail that slides the slider, a motor that moves the slider along the slide rail, and the like.
  • the tube 7 mentioned above is comprised from a flexible material so that the influence of such a movement of the spinning nozzle 10 can be absorbed.
  • the spinning nozzle 10 stands up and down, and is fixed to the drive mechanism 6 in such a posture that the spinning port 10a at the tip thereof faces downward.
  • the collector 20 is arrange
  • the collector 20 receives the solution L1 ejected from the spinneret 10a by the Coulomb force on the surface thereof.
  • the collector 20 of this embodiment is a rotary drum type, and is driven by a drive mechanism 5 that is also housed in the housing 2 as shown in FIG.
  • the collector 20 is a cylindrical body and is supported in a posture such that the central axis extends in the left-right direction, and rotates around the central axis when driven by the drive mechanism 5.
  • the drive mechanism 5 can be configured as appropriate.
  • the drive mechanism 5 can be configured from a shaft that passes through the central axis of the collector 20 and a motor that rotates the shaft.
  • An operation unit 8 including operation buttons and a display is installed beside the door 2a in front of the housing 2.
  • the user can start and forcibly stop the spinning operation by operating the operation unit 8, and the horizontal moving speed and moving width of the spinning nozzle 10 during the spinning operation, the rotational speed of the collector 20, and the solution
  • Various control parameters such as the flow rate of L1 can be set.
  • the electrospinning apparatus 1 has a control unit 9 that controls the operation of the electrospinning apparatus 1.
  • the control unit 9 includes a CPU, a ROM, a RAM, a non-volatile storage device, and the like.
  • the CPU reads and executes a program stored in the ROM or the storage device, thereby performing various operations including a spinning operation. Realize.
  • the control unit 9 is connected to the drive mechanisms 4 to 6, the operation unit 8, and the power supply 30, and causes them to execute the operations described above and later.
  • FIG. 4 is a side view of the spinning nozzle alone.
  • the spinning nozzle 10 includes a hollow needle 12 and a base portion 11 that is firmly fixed to the upper end of the hollow needle 12.
  • the hollow needle 12 is made of metal and serves as an electrode for forming an electric field between the spinning nozzle 10 and the collector 20.
  • the other electrode is a collector 20.
  • the spinning nozzle 10 is a disposable nozzle that can be attached to and detached from the main body of the electrospinning apparatus 1.
  • the base portion 11 serves as a connector for connecting the hollow needle 12 to the main body of the electrospinning apparatus 1.
  • the internal space of the hollow needle 12 communicates with the tube 7. Therefore, at this time, the solution L1 sent out from the syringe 3 reaches the inner space of the hollow needle 12, passes through here, and reaches the spinning port 10a at the tip. At this time, a Taylor cone is formed below the spinneret 10a due to the surface tension of the solution L1.
  • the hollow needle 12 has a tube wall 121.
  • the spinneret 10a through which the solution L1 is injected is defined by the tube wall 121.
  • the tube wall 121 is a substantially cylindrical body having a central axis A1 extending linearly.
  • FIG. 5 is an enlarged side sectional view of the tip of the hollow needle 12 of FIG.
  • the distal end portion of the tube wall 121 forms a tapered surface 122
  • the tapered surface 122 has a substantially rotationally symmetric shape with respect to the central axis A ⁇ b> 1 of the tube wall 121.
  • the distal end portion of the tube wall 121 is formed in a substantially inverted elliptical cone shape, and has a tapered shape in which the thickness of the tube wall 121 decreases as it goes downward.
  • the distal end surface 123 of the tube wall 121 is included in a plane orthogonal to the central axis A1 of the tube wall 121.
  • the front end surface 123 has an annular shape.
  • a plane including the distal end surface 123 of the tube wall 121 is denoted by reference symbol P1.
  • w1 ⁇ 35 ⁇ m When the thickness of the tube wall 121 at the tip of the hollow needle 12 is w1, w1 ⁇ 35 ⁇ m. Note that w1 ⁇ 30 ⁇ m is preferable, w1 ⁇ 15 ⁇ m is more preferable, and w1 ⁇ 10 ⁇ m is further preferable.
  • R1 and r2 are measured using a digital microscope VHX-5000 manufactured by Keyence Corporation. More specifically, by specifying three points on the outer periphery of the distal end surface 123 on the image obtained by photographing the bottom surface (the surface including the distal end surface 123) of the tube wall 121 from the direction orthogonal to the bottom surface, A circle passing through the point is specified, and the diameter of this circle is r1. Similarly, by specifying three points on the inner periphery of the tip surface 123 on the same image, a circle passing through these three points is specified, and the diameter of this circle is set to r2.
  • the thickness w1 of the tip surface 123 that forms the spinneret 10a is thin. Therefore, the liquid separation from the tip surface 123 of the solution L1 that has passed through the flow path formed in the tube wall 121 is improved. As a result, the shape of the Taylor cone is stabilized, and further, the spinning jet is directed straight and straight toward the collector 20 without being broken into multiple pieces. Therefore, a fine fiber sheet can be manufactured stably, and even an oriented fine fiber sheet can be manufactured stably.
  • the ratio r of the thickness w1 to the inner diameter r2 of the tube wall 121 is preferably r ⁇ 15%, more preferably r ⁇ 10%, more preferably r ⁇ 5%, and r ⁇ 3%. More preferably.
  • the angle ⁇ of the tapered surface 122 with respect to the central axis A1 can be appropriately set within a range of 0 ° ⁇ ⁇ 90 °. However, 10 ° ⁇ ⁇ 80 ° is preferable, 15 ° ⁇ ⁇ 70 ° is more preferable, 20 ° ⁇ ⁇ 60 ° is further preferable, and 25 ° ⁇ ⁇ 50 °. It is more preferable that
  • the size of the inner diameter r2 is appropriately selected according to the diameter of the fine fiber to be manufactured and the material of the fine fiber, and the lower limit is preferably 0.10 mm ⁇ r2, more preferably 0.20 mm ⁇ r2. More preferably, 0.30 mm ⁇ r2.
  • the upper limit is preferably r2 ⁇ 5.0 mm, more preferably r2 ⁇ 3.0 mm, more preferably r2 ⁇ 2.0 mm, more preferably r2 ⁇ 1.0 mm, and more preferably r2 ⁇ 0.60 mm, and more preferably r2 ⁇ 0.50 mm.
  • the diameter of the fine fiber produced by the above spinning nozzle 10 is typically 100 nm to 500 ⁇ m, preferably 100 nm to 10 ⁇ m.
  • the outer surface of the tube wall 121 including the tapered surface 122 and the distal end surface 123 exposes a metal surface.
  • the distal end surface 123 of the tube wall 121 is a non-polished surface.
  • the electrospinning apparatus 1 as described above is prepared. Subsequently, the door 2a is opened, the syringe 3 is accessed, and the syringe 3 is filled with the solution L1 used as the raw material of the fine fiber, and then the door 2a is closed. Thereafter, the operation unit 8 is operated to drive the drive mechanisms 4 to 6 in an appropriate order. As a result, the collector 20 rotates at a predetermined rotational speed, and the solution L1 in the syringe 3 is supplied to the spinning nozzle 10 at a predetermined flow rate. Further, the spinning nozzle 10 reciprocates at a predetermined moving speed within a predetermined moving width in the left-right direction.
  • the spinning operation starts.
  • the solution L1 supplied into the spinning nozzle 10 stays in the vicinity of the spinning port 10a with surface tension and does not drop.
  • a high voltage for example, several kV to 30 kV
  • an electric field is generated using the hollow needle 12 and the collector 20 as electrodes.
  • the droplet of the solution L1 in the spinning nozzle 10 is positively charged and sucked toward the negatively charged collector 20 by the action of Coulomb force.
  • the solution L1 is jetted from the spinning port 10a toward the collector 20, and a spinning jet is formed.
  • the spinning jet is continuously wound around the collector 20.
  • the spinning nozzle 10 reciprocates in the left-right direction, an oriented fine fiber sheet having a predetermined width is formed on the surface of the collector 20.
  • the operation unit 8 is operated to turn off the power supply 30 and stop the driving mechanisms 4 to 6. Thereafter, the door 2 a is opened, and the oriented fine fiber sheet is removed from the collector 20. Thus, an oriented fine fiber sheet is produced.
  • the spinning nozzle 210 has a hollow needle 212 whose tube wall 221 has a constant thickness along the central axis direction, that is, a hollow needle as shown in FIGS. 1A to 1C.
  • the spinning nozzle 210 prepared at this time has the same structure as the spinning nozzle 10 that is finally manufactured, except that the thickness of the tube wall of the hollow needle is constant along the central axis direction.
  • the spinning nozzle 210 has the base portion 11 in addition to the hollow needle 212.
  • the cutting device 50 includes a lathe chuck 51 and a cutting tool 52. Further, the cutting device 50 includes a drive mechanism 53 for rotationally driving the lathe chuck 51, a drive mechanism 54 for positioning the cutting tool 52, and a control unit 55.
  • the control unit 55 can position the cutting tool 52 by rotating the lathe chuck 51 by controlling the drive mechanisms 53 and 54, respectively.
  • the structure of the drive mechanisms 53 and 54 is not specifically limited, It can comprise from a motor and a suitable mechanical element.
  • the drive mechanism 54 is driven manually or by the control unit 55 to position the cutting tool 52 on the side of the tip of the hollow needle 212 of the spinning nozzle 210 fixed to the lathe chuck 51 (FIG. 6). reference).
  • the cutting edge 52 a of the cutting tool 52 forms a slope inclined with respect to the central axis direction of the hollow needle 212. More specifically, the blade edge 52a is inclined so as to approach the hollow needle 212 from the left side toward the right side.
  • the right and left here are based on the state of FIG. 6, the right side is the tip side of the hollow needle 212, and the left side is the root side of the hollow needle 212. At this time, the right end of the blade edge 52a is positioned in the left-right direction at the tip of the hollow needle 212 or on the right side of it.
  • the drive mechanism 53 is driven by the control unit 55 to turn the lathe chuck 51 and the hollow needle 212 fixed thereto.
  • the rotation axis at this time is equal to the central axis of the tube wall 221.
  • the drive mechanism 54 is driven by the control unit 55 to move the cutting edge 52 a of the cutting tool 52 relative to the tip of the tube wall 221.
  • the cutting tool 52 is moved along the radial direction of the tube wall 221 toward the tube wall 221.
  • the cutting tool 52 advances in a direction substantially orthogonal to the central axis of the tube wall 221.
  • the cutting edge 52a reaches the outer surface of the tube wall 221 rotating at high speed, and the tip of the tube wall 221 is cut.
  • the cutting tool 52 is moved further along the radial direction of the tube wall 221.
  • the distal end portion of the tube wall 221 is cut along the slope of the cutting edge 52a, and the tapered surface 122 described above is formed at the distal end portion.
  • the control parameter controlled at this time does not have to be the amount of movement of the cutting edge 52a itself, but is any as long as the relative position with respect to the tube wall 221 reached by the cutting edge 52a can be determined. Also good.
  • the spinning nozzle 10 with w1 ⁇ 10 ⁇ m can be manufactured.
  • w1 ⁇ 10 ⁇ m means that w1 is infinitely close to zero, and substantially corresponds to the case where the distal end surface 123 is not formed on the tube wall 121. Therefore, when w1 ⁇ 10 ⁇ m, the position of the inner peripheral surface of the tube wall 221 along the radial direction of the tube wall 221 at a position C1 in the left-right direction in FIG. The cutting tool 52 is moved until the cutting edge 52a reaches.
  • the position C1 is the position of the distal end surface 223 of the hollow needle 212 before cutting.
  • the tube wall 221 is rotated at a high speed while positioning the blade edge 52a with respect to the distal end portion of the tube wall 221. Thereby, a tapered surface 122 is formed at the distal end portion of the tube wall 221.
  • the fine fiber sheet manufactured as described above can be used for various applications.
  • the fine fiber sheet can be used as a scaffold for various cells.
  • the cardiomyocyte sheet in which the cardiomyocytes are supported on the fine fiber sheet can have excellent maturity and stable functionality, and can be suitably used in transplantation, drug screening, and the like.
  • the spinning nozzle 210 is rotated in order to cut the tip of the spinning nozzle 210 with the cutting tool 52.
  • the cutting tool 52 may be rotated around the central axis of the spinning nozzle 210.
  • the spinning nozzle is not limited to the above-described cutting process, and can be manufactured by any processing method such as plastic processing or grinding.
  • Comparative Example 1 A spinning nozzle (jet needle straight type Black 22G) manufactured by BSA Sakurai Co., Ltd. was prepared and used as Comparative Example 1.
  • the inner diameter was 0.48 mm and the outer diameter was 0.7 mm.
  • the tube wall thickness w1 at the tip of the hollow needle calculated from the nominal size is 110 ⁇ m.
  • One spinning nozzle of Comparative Example 1 was prepared.
  • Comparative example 2 One more spinning nozzle of Comparative Example 1 was prepared, and the tip portion of each tube wall was cut into a tapered shape to obtain Comparative Example 2.
  • the thickness w1 of the tube wall at the tip of the hollow needle was about 40 ⁇ m (38.35 ⁇ m).
  • w1 here was measured by the measuring method mentioned above.
  • Example 1 One more spinning nozzle of Comparative Example 1 was prepared, and the tip of each tube wall was cut into a taper shape to obtain Example 1.
  • the thickness w1 of the tube wall at the tip of the hollow needle was about 30 ⁇ m (29.45 ⁇ m).
  • w1 here was measured by the measuring method mentioned above.
  • Example 2 One more spinning nozzle of Comparative Example 1 was prepared, and the tip of each tube wall was cut into a tapered shape to obtain Example 2.
  • the thickness w1 of the tube wall at the tip of the hollow needle was about 10 ⁇ m (10.95 ⁇ m).
  • w1 here was measured by the measuring method mentioned above.
  • Electrospinning apparatus 10 Spinning nozzle 10a Spinning port 12 Hollow needle 121 Tube wall 122 Tapered surface 123 Tip surface 20 Collector 30 Power supply 52 Cutting tool 52a Cutting edge w1 Thickness of the tube wall at the tip of the hollow needle

Abstract

Provided is a spinning nozzle that is used by an electrospinning device during manufacturing of a fine fiber sheet, whereby a fine fiber sheet can be manufactured stably. The spinning nozzle is provided with a hollow needle. The hollow needle has a tube wall that defines a spinning opening for injecting a liquid forming raw material for fine fiber. The thickness of the tube wall at the tip of the hollow needle is 35 µm or less. This thickness is preferably 30 µm or less, more preferably 15 µm or less, and even more preferably 10 µm or less.

Description

紡糸ノズルSpinning nozzle
 本発明は、ファインファイバーシートの製造時に電界紡糸装置で用いられる紡糸ノズル及びその製造方法、並びにファインファイバーシートの製造方法に関する。 The present invention relates to a spinning nozzle used in an electrospinning apparatus at the time of producing a fine fiber sheet, a method for producing the same, and a method for producing a fine fiber sheet.
 近年、例えば、医療や工学等の様々な分野で、マイクロファイバーやナノファイバー等と呼ばれる微細な繊維(ファインファイバー)が注目されている。一般に、マイクロファイバーとは、マイクロオーダーの直径を有する繊維であり、ナノファイバーとは、ナノオーダーの直径を有する繊維である。このようなファインファイバーを製造する方法の1つとして、エレクトロスピニング法(電界紡糸法)が知られている。これは、紡糸ノズルとコレクタとの間に高電圧を印加し、クーロン力によりファインファイバーの原料となる溶液を紡糸ノズルからコレクタに向かって噴射させ、ファインファイバーをコレクタ表面上にシート状に集積させる方式である。 In recent years, for example, in various fields such as medical care and engineering, fine fibers called fine fibers (nanofibers) have attracted attention. In general, a microfiber is a fiber having a micro-order diameter, and a nanofiber is a fiber having a nano-order diameter. As one of the methods for producing such a fine fiber, an electrospinning method (electrospinning method) is known. In this method, a high voltage is applied between the spinning nozzle and the collector, and a solution as a raw material of the fine fiber is jetted from the spinning nozzle toward the collector by the Coulomb force, and the fine fiber is accumulated in a sheet form on the collector surface. It is a method.
 こうして製造されるファインファイバーシートには、ファインファイバーがランダムに絡み合うことで構成される不織布状のものや、ファインファイバーが特定の方向に整列されるタイプのものがある。特許文献1は、後者のシート、すなわち、配向性の高いファインファイバーシートを製造するのに適した電界紡糸装置を開示している。 The fine fiber sheet produced in this way includes a non-woven fabric formed by randomly intertwining fine fibers and a type in which fine fibers are aligned in a specific direction. Patent Document 1 discloses an electrospinning apparatus suitable for manufacturing the latter sheet, that is, a highly oriented fine fiber sheet.
 ところで、ファインファイバーの製造中、紡糸ノズルの先端開口(紡糸口)の直下には、ファインファイバーの原料となる溶液によりテイラーコーンが形成される。テイラーコーンは、その名のとおり、図1Aに示されるような略逆円錐形状を形成する。また、テイラーコーンの先端からは、紡糸ジェットと呼ばれる糸状の溶液が突出し、コレクタに向けて引っ張られる。 By the way, during the production of fine fiber, a Taylor cone is formed by a solution as a raw material for fine fiber, just below the tip opening (spinning port) of the spinning nozzle. As its name suggests, the Taylor cone forms a generally inverted cone shape as shown in FIG. 1A. Further, a filamentous solution called a spinning jet protrudes from the tip of the Taylor cone and is pulled toward the collector.
特開2008-202168号公報JP 2008-202168 A
 図1Aは、配向性の高いファインファイバーシートを製造するのに理想的な、テイラーコーン及び紡糸ジェットの形態を示している。すなわち、配向性の高いファインファイバーシートを製造するためには、テイラーコーンは、紡糸ノズルの中心軸に対して略回転対称な形状に形成されることが望ましく、紡糸ジェットも、テイラーコーンの先端からコレクタに向かって真っ直ぐ延びていることが望ましいと言える。一方で、従来の電界紡糸装置では、例えば、図1Bに示すように、テイラーコーンの形状が歪んだり、紡糸ジェットの向きがずれたりすることがしばしば起こる。また、図1Cに示すように、1つの紡糸ノズルから複数本の紡糸ジェットが形成される場合もある。そして、このようにテイラーコーン及び紡糸ジェットの形態が大きく乱れると、コレクタ表面に配向性の高いファインファイバーシートを形成することができなくなる。従来の電界紡糸装置では、このような乱れがしばしば起こるため、配向性の高いファインファイバーシートを安定的に製造することが困難であった。また、テイラーコーン及び紡糸ジェットの形態が乱れると、配向性の高いファインファイバーシートに限らず、不織布のようなランダムなタイプのファインファイバーシートであっても、安定的に製造することが難しくなる。 FIG. 1A shows the form of a Taylor cone and a spinning jet, which are ideal for producing a highly oriented fine fiber sheet. That is, in order to produce a highly oriented fine fiber sheet, it is desirable that the Taylor cone be formed in a shape that is substantially rotationally symmetric with respect to the center axis of the spinning nozzle. It may be desirable to extend straight toward the collector. On the other hand, in the conventional electrospinning apparatus, for example, as shown in FIG. 1B, the shape of the Taylor cone is often distorted or the direction of the spinning jet is shifted. In addition, as shown in FIG. 1C, a plurality of spinning jets may be formed from one spinning nozzle. If the forms of the Taylor cone and the spinning jet are greatly disturbed as described above, a fine fiber sheet with high orientation cannot be formed on the collector surface. In the conventional electrospinning apparatus, such a disturbance often occurs, so that it is difficult to stably produce a fine fiber sheet with high orientation. Further, when the forms of the Taylor cone and the spinning jet are disturbed, it is difficult to stably produce even a fine fiber sheet of a random type such as a non-woven fabric as well as a highly oriented fine fiber sheet.
 本発明は、ファインファイバーシートを安定的に製造することを目的とする。 The object of the present invention is to stably produce a fine fiber sheet.
 本発明の第1観点に係る紡糸ノズルは、ファインファイバーシートの製造時に電界紡糸装置で用いられる紡糸ノズルであって、中空針を備える。前記中空針は、ファインファイバーの原料となる溶液が噴射される紡糸口を画定する管壁を有する。前記中空針の先端における前記管壁の厚みは、35μm以下である。 The spinning nozzle according to the first aspect of the present invention is a spinning nozzle used in an electrospinning apparatus when manufacturing a fine fiber sheet, and includes a hollow needle. The hollow needle has a tube wall that defines a spinning port through which a solution that is a raw material of the fine fiber is injected. The thickness of the tube wall at the tip of the hollow needle is 35 μm or less.
 本発明の第2観点に係る紡糸ノズルは、第1観点に係る紡糸ノズルであって、前記中空針の先端における前記管壁の厚みは、30μm以下である。 The spinning nozzle according to the second aspect of the present invention is the spinning nozzle according to the first aspect, and the thickness of the tube wall at the tip of the hollow needle is 30 μm or less.
 本発明の第3観点に係る紡糸ノズルは、第2観点に係る紡糸ノズルであって、前記中空針の先端における前記管壁の厚みは、15μm以下である。 The spinning nozzle according to the third aspect of the present invention is the spinning nozzle according to the second aspect, and the thickness of the tube wall at the tip of the hollow needle is 15 μm or less.
 本発明の第4観点に係る紡糸ノズルは、第3観点に係る紡糸ノズルであって、前記中空針の先端における前記管壁の厚みは、10μm以下である。 The spinning nozzle according to the fourth aspect of the present invention is the spinning nozzle according to the third aspect, and the thickness of the tube wall at the tip of the hollow needle is 10 μm or less.
 本発明の第5観点に係る紡糸ノズルは、第1観点から第4観点のいずれかに係る紡糸ノズルであって、前記管壁の外表面は、金属面である。 The spinning nozzle according to the fifth aspect of the present invention is the spinning nozzle according to any one of the first to fourth aspects, and the outer surface of the tube wall is a metal surface.
 本発明の第6観点に係る紡糸ノズルは、第1観点から第5観点のいずれかに係る紡糸ノズルであって、前記管壁の中心軸方向に直交する前記管壁の先端面は、非研磨面である。 A spinning nozzle according to a sixth aspect of the present invention is the spinning nozzle according to any one of the first to fifth aspects, wherein a tip surface of the tube wall perpendicular to the central axis direction of the tube wall is non-polished. Surface.
 本発明の第7観点に係る紡糸ノズルは、第1観点から第6観点のいずれかに係る紡糸ノズルであって、前記管壁の先端部は、前記管壁の中心軸に対して略回転対称な形状のテーパー面を有する。 A spinning nozzle according to a seventh aspect of the present invention is the spinning nozzle according to any one of the first to sixth aspects, wherein the distal end portion of the tube wall is substantially rotationally symmetric with respect to a central axis of the tube wall. It has a tapered surface of various shapes.
 本発明の第8観点に係る紡糸ノズルは、第1観点から第7観点のいずれかに係る紡糸ノズルであって、前記電界紡糸装置の本体に対し着脱自在なディスポーザブルノズルである。 The spinning nozzle according to the eighth aspect of the present invention is a spinning nozzle according to any one of the first to seventh aspects, and is a disposable nozzle that is detachable from the main body of the electrospinning apparatus.
 本発明の第9観点に係る紡糸ノズルの製造方法は、ファインファイバーシートの製造時に電界紡糸装置で用いられる紡糸ノズルの製造方法であって、以下の(1)及び(2)を含む。
(1)中空針を用意すること。
(2)刃先が斜面を形成する切削工具を用いて、前記中空針の管壁の先端部を、当該先端部が前記管壁の中心軸に対して略回転対称な形状のテーパー面を形成するように切削加工すること。
A spinning nozzle manufacturing method according to a ninth aspect of the present invention is a spinning nozzle manufacturing method used in an electrospinning apparatus at the time of manufacturing a fine fiber sheet, and includes the following (1) and (2).
(1) Prepare a hollow needle.
(2) Using a cutting tool whose blade edge forms an inclined surface, the tip of the tube wall of the hollow needle is formed with a tapered surface having a shape that is substantially rotationally symmetric with respect to the central axis of the tube wall. So as to cut.
 また、(2)は、以下の(2-1)及び(2-2)を含む。
(2-1)前記刃先が、前記管壁の径方向に沿って前記管壁の内周面の位置、又は前記内周面よりも内側の位置に達するように、前記刃先を前記管壁の先端部に対し相対的に移動させて位置決めすること。
(2-2)前記位置決めを行いながら、前記中空針及び前記刃先の少なくとも一方を前記管壁の中心軸周りで回転させることにより、前記刃先で前記管壁の先端部を切削すること。
(2) includes the following (2-1) and (2-2).
(2-1) The cutting edge of the tube wall is moved so that the cutting edge reaches the position of the inner peripheral surface of the tube wall along the radial direction of the tube wall or a position inside the inner peripheral surface. Move and position relative to the tip.
(2-2) Cutting the distal end portion of the tube wall with the blade edge by rotating at least one of the hollow needle and the blade edge around the central axis of the tube wall while performing the positioning.
 本発明の第10観点に係るファインファイバーシートの製造方法は、以下の(1)及び(2)を含む。
(1)紡糸口を画定する管壁を有する中空針と、コレクタと、前記中空針と前記コレクタの間に電圧を印加するための電源とを備えた電界紡糸装置であって、前記中空針の先端における前記管壁の厚みが35μm以下である、電界紡糸装置を用意すること。
(2)前記電界紡糸装置を用いて、前記紡糸口から前記コレクタに向けてファインファイバーの原料となる溶液を噴射し、前記コレクタ表面上に前記ファインファイバーシートを形成すること。
The manufacturing method of the fine fiber sheet which concerns on the 10th viewpoint of this invention contains the following (1) and (2).
(1) An electrospinning apparatus comprising a hollow needle having a tube wall defining a spinneret, a collector, and a power source for applying a voltage between the hollow needle and the collector. Preparing an electrospinning apparatus in which the thickness of the tube wall at the tip is 35 μm or less;
(2) Using the electrospinning apparatus, spraying a solution as a raw material of fine fiber from the spinning port toward the collector to form the fine fiber sheet on the collector surface.
 本発明の第11観点に係るファインファイバーシートの製造方法は、第10観点に係る製造方法であって、前記ファインファイバーシートは、配向性ファインファイバーシートである。 The method for producing a fine fiber sheet according to the eleventh aspect of the present invention is the method for producing according to the tenth aspect, wherein the fine fiber sheet is an oriented fine fiber sheet.
 本発明の以上の観点によれば、紡糸ノズルの中空針の先端における管壁の厚みが、35μm以下である。本発明者らの検証によると、この構成は、テイラーコーン及び紡糸ジェットの形態を安定させることができる。従って、ファインファイバーシートを安定的に製造することができる。 According to the above aspect of the present invention, the thickness of the tube wall at the tip of the hollow needle of the spinning nozzle is 35 μm or less. According to the verification by the present inventors, this configuration can stabilize the form of the Taylor cone and the spinning jet. Therefore, a fine fiber sheet can be manufactured stably.
理想的なテイラーコーン及び紡糸ジェットの形態を示す図。The figure which shows the form of an ideal Taylor cone and a spinning jet. テイラーコーンの形状が歪み、紡糸ジェットの向きがずれた様子を示す図。The figure which shows a mode that the shape of the Taylor cone was distorted and the direction of the spinning jet was shifted. 紡糸ジェットが複数本形成された様子を示す図。The figure which shows a mode that multiple spinning jets were formed. 本発明の一実施形態に係る電界紡糸装置の概略正面図。1 is a schematic front view of an electrospinning apparatus according to an embodiment of the present invention. 図2の電界紡糸装置の機能ブロック図。The functional block diagram of the electrospinning apparatus of FIG. 本発明の一実施形態に係る紡糸ノズルの側面図。The side view of the spinning nozzle which concerns on one Embodiment of this invention. 図4の紡糸ノズルの先端部を拡大した側方断面図。FIG. 5 is a side sectional view in which a tip portion of the spinning nozzle of FIG. 4 is enlarged. 本発明の一実施形態に係る紡糸ノズルを製造するための切削装置の概略平面図。1 is a schematic plan view of a cutting apparatus for manufacturing a spinning nozzle according to an embodiment of the present invention. 図6の切削装置を用いた切削加工時に、刃先が紡糸ノズルの最深部に達したときの様子を示す図。The figure which shows a mode when a blade edge | tip has reached the deepest part of the spinning nozzle at the time of the cutting process using the cutting device of FIG.
 以下、図面を参照しつつ、本発明の一実施形態に係る紡糸ノズル及びその製造方法、並びにファインファイバーシートの製造方法について説明する。 Hereinafter, a spinning nozzle according to an embodiment of the present invention, a method for manufacturing the same, and a method for manufacturing a fine fiber sheet will be described with reference to the drawings.
 <1.電界紡糸装置>
 まず、図2及び図3を参照しつつ、本発明の一実施形態に係る紡糸ノズル10が取り付けられた電界紡糸装置1の全体構成について説明する。図2は、本発明の一実施形態に係る電界紡糸装置1の概略正面図であり、図3は、その機能ブロック図である。
<1. Electrospinning device>
First, the overall configuration of the electrospinning apparatus 1 to which the spinning nozzle 10 according to one embodiment of the present invention is attached will be described with reference to FIGS. FIG. 2 is a schematic front view of an electrospinning apparatus 1 according to an embodiment of the present invention, and FIG. 3 is a functional block diagram thereof.
 電界紡糸装置1は、エレクトロスピング法(電界紡糸法)を動作原理として、ファインファイバーを製造する装置である。なお、ここでいうファインファイバーとは、マイクロオーダー又はナノオーダーの直径を有するファイバーである。図2及び図3に示すように、電界紡糸装置1は、筐体2を有し、筐体2内に紡糸ノズル10とコレクタ20と電源30とを有する。電源30は、紡糸ノズル10とコレクタ20との間に高電圧を印加するための電源である。筐体2の正面には、開閉式のドア2aが設置されており、ドア2aを開くことで、筐体2内のファインファイバーの製造空間S1にアクセスすることができる。なお、ドア2aは、少なくとも部分的に透明に形成されていることが好ましく、この場合、ファインファイバーの製造工程を観察することができる。すなわち、ファインファイバーの製造中にテイラーコーン及び紡糸ジェットの様子を確認することができ、異常があれば直ちに対応することができる。 The electrospinning apparatus 1 is an apparatus for producing fine fibers using an electrospinning method (electrospinning method) as an operating principle. The fine fiber here is a fiber having a micro-order or nano-order diameter. As shown in FIGS. 2 and 3, the electrospinning apparatus 1 includes a housing 2, and includes a spinning nozzle 10, a collector 20, and a power supply 30 in the housing 2. The power source 30 is a power source for applying a high voltage between the spinning nozzle 10 and the collector 20. An openable / closable door 2a is installed in front of the housing 2, and the fine fiber manufacturing space S1 in the housing 2 can be accessed by opening the door 2a. In addition, it is preferable that the door 2a is formed at least partially transparent, and in this case, the manufacturing process of the fine fiber can be observed. That is, the state of the Taylor cone and the spinning jet can be confirmed during the production of the fine fiber, and any abnormality can be dealt with immediately.
 筐体2内には、ファインファイバーの原料となる溶液L1を収容するためのシリンジ3が収容されている。ファインファイバーの原料となる溶液L1とは、典型的には、繊維の素材となるポリマーを揮発性の溶媒に溶解させた溶液である。シリンジ3は、図2に示すとおり、同じく筐体2内に収容されている駆動機構4により駆動され、これにより、シリンジ3内の溶液L1がチューブ7を介して紡糸ノズル10に送液される。駆動機構4は、適宜構成することができるが、例えば、シリンジ3のプランジャーをシリンダに対し往復動させるモーター等から構成することができる。 In the housing 2, a syringe 3 for containing a solution L <b> 1 as a raw material for fine fiber is accommodated. The solution L1 that is a raw material of the fine fiber is typically a solution in which a polymer that is a raw material of the fiber is dissolved in a volatile solvent. As shown in FIG. 2, the syringe 3 is driven by a drive mechanism 4 that is also housed in the housing 2, whereby the solution L <b> 1 in the syringe 3 is sent to the spinning nozzle 10 via the tube 7. . The drive mechanism 4 can be configured as appropriate. For example, the drive mechanism 4 can be configured from a motor that reciprocates the plunger of the syringe 3 with respect to the cylinder.
 紡糸ノズル10も、図2に示すとおり、同じく筐体2内に収容されている駆動機構6により駆動される。これにより、紡糸ノズル10は、左右方向に往復動することができる。なお、ここでいう左右は、図2の状態を基準に定義される。駆動機構6は、適宜構成することができるが、例えば、紡糸ノズル10を支持するスライダーと、これをスライドさせるスライドレールと、スライドレールに沿ってスライダーを移動させるモーター等から構成することができる。なお、前述したチューブ7は、このような紡糸ノズル10の移動の影響を吸収できるよう、可撓性のある材質から構成されることが好ましい。 The spinning nozzle 10 is also driven by a driving mechanism 6 accommodated in the housing 2 as shown in FIG. Thereby, the spinning nozzle 10 can reciprocate in the left-right direction. The left and right here are defined based on the state of FIG. The drive mechanism 6 can be configured as appropriate. For example, the drive mechanism 6 can be configured from a slider that supports the spinning nozzle 10, a slide rail that slides the slider, a motor that moves the slider along the slide rail, and the like. In addition, it is preferable that the tube 7 mentioned above is comprised from a flexible material so that the influence of such a movement of the spinning nozzle 10 can be absorbed.
 紡糸ノズル10は、上下方向に起立し、その先端の紡糸口10aが下方を向くような姿勢で、駆動機構6に固定される。そして、この紡糸ノズル10の紡糸口10aから下方へ一定の距離を開けた位置に、コレクタ20が配置されている。コレクタ20は、その表面上で、クーロン力により紡糸口10aから噴射された溶液L1を受け取る。本実施形態のコレクタ20は、回転ドラム式であり、図2に示すとおり、同じく筐体2内に収容されている駆動機構5により駆動される。コレクタ20は、円柱体であり、中心軸が左右方向に延びるような姿勢で支持されており、駆動機構5により駆動されることにより、中心軸周りを回転する。その結果、紡糸口10aから噴射された紡糸ジェットに含まれるファインファイバーの素材が、コレクタ20の表面上で巻き取られ、ファインファイバーがシート状に集積される。駆動機構5は、適宜構成することができるが、例えば、コレクタ20の中心軸を通るシャフトと、シャフトを回転させるモーター等から構成することができる。 The spinning nozzle 10 stands up and down, and is fixed to the drive mechanism 6 in such a posture that the spinning port 10a at the tip thereof faces downward. And the collector 20 is arrange | positioned in the position which opened the fixed distance from the spinning port 10a of this spinning nozzle 10 below. The collector 20 receives the solution L1 ejected from the spinneret 10a by the Coulomb force on the surface thereof. The collector 20 of this embodiment is a rotary drum type, and is driven by a drive mechanism 5 that is also housed in the housing 2 as shown in FIG. The collector 20 is a cylindrical body and is supported in a posture such that the central axis extends in the left-right direction, and rotates around the central axis when driven by the drive mechanism 5. As a result, the fine fiber material contained in the spinning jet ejected from the spinneret 10a is wound on the surface of the collector 20, and the fine fibers are accumulated in a sheet form. The drive mechanism 5 can be configured as appropriate. For example, the drive mechanism 5 can be configured from a shaft that passes through the central axis of the collector 20 and a motor that rotates the shaft.
 筐体2の正面のドア2aの横には、操作ボタン及びディスプレイから構成される操作ユニット8が設置されている。ユーザは、操作ユニット8を操作することにより、紡糸動作を開始及び強制停止させることができるとともに、紡糸動作時の紡糸ノズル10の左右方向の移動速度及び移動幅、コレクタ20の回転速度、並びに溶液L1の流量等の各種制御パラメータを設定することができる。 An operation unit 8 including operation buttons and a display is installed beside the door 2a in front of the housing 2. The user can start and forcibly stop the spinning operation by operating the operation unit 8, and the horizontal moving speed and moving width of the spinning nozzle 10 during the spinning operation, the rotational speed of the collector 20, and the solution Various control parameters such as the flow rate of L1 can be set.
 図3に示すように、電界紡糸装置1は、電界紡糸装置1の動作を制御する制御ユニット9を有する。制御ユニット9は、CPU、ROM、RAM及び不揮発性の記憶装置等から構成され、CPUがROM又は記憶装置に記憶されているプログラムを読み出して実行することにより、紡糸動作をはじめとする各種動作を実現する。具体的には、制御ユニット9は、駆動機構4~6、操作ユニット8及び電源30に接続されており、これらに上述した及び後述する動作を実行させる。 As shown in FIG. 3, the electrospinning apparatus 1 has a control unit 9 that controls the operation of the electrospinning apparatus 1. The control unit 9 includes a CPU, a ROM, a RAM, a non-volatile storage device, and the like. The CPU reads and executes a program stored in the ROM or the storage device, thereby performing various operations including a spinning operation. Realize. Specifically, the control unit 9 is connected to the drive mechanisms 4 to 6, the operation unit 8, and the power supply 30, and causes them to execute the operations described above and later.
 <1-1.紡糸ノズル>
 次に、図4を参照しつつ、紡糸ノズル10の形状について詳細に説明する。図4は、紡糸ノズル単体の側面図である。
<1-1. Spinning nozzle>
Next, the shape of the spinning nozzle 10 will be described in detail with reference to FIG. FIG. 4 is a side view of the spinning nozzle alone.
 紡糸ノズル10は、図4に示すとおり、中空針12と、中空針12の上端に強固に固定されたベース部11とを有する。中空針12は、金属製であり、紡糸ノズル10とコレクタ20との間に電界を形成するための電極となる。なお、他方の電極は、コレクタ20である。 As illustrated in FIG. 4, the spinning nozzle 10 includes a hollow needle 12 and a base portion 11 that is firmly fixed to the upper end of the hollow needle 12. The hollow needle 12 is made of metal and serves as an electrode for forming an electric field between the spinning nozzle 10 and the collector 20. The other electrode is a collector 20.

 紡糸ノズル10は、電界紡糸装置1の本体に対し着脱自在なディスポーザブルノズルである。ベース部11は、中空針12を電界紡糸装置1の本体に連結するためのコネクタの役割を果たす。紡糸ノズル10が電界紡糸装置1の本体にセットされたとき、言い換えると、電界紡糸装置1の本体側に配置されるコネクタに、これに対応する構造のコネクタであるベース部11が連結されたとき、中空針12の内部空間はチューブ7と連通する。従って、このとき、シリンジ3から送り出された溶液L1は、中空針12の内部空間に達し、ここを通過して先端の紡糸口10aに達する。また、このとき、溶液L1の表面張力により、紡糸口10aの下方にはテイラーコーンが形成される。

The spinning nozzle 10 is a disposable nozzle that can be attached to and detached from the main body of the electrospinning apparatus 1. The base portion 11 serves as a connector for connecting the hollow needle 12 to the main body of the electrospinning apparatus 1. When the spinning nozzle 10 is set on the main body of the electrospinning apparatus 1, in other words, when the base portion 11 which is a connector having a structure corresponding to the connector disposed on the main body side of the electrospinning apparatus 1 is connected. The internal space of the hollow needle 12 communicates with the tube 7. Therefore, at this time, the solution L1 sent out from the syringe 3 reaches the inner space of the hollow needle 12, passes through here, and reaches the spinning port 10a at the tip. At this time, a Taylor cone is formed below the spinneret 10a due to the surface tension of the solution L1.
 図4に示すとおり、中空針12は、管壁121を有する。溶液L1が噴射される紡糸口10aは、この管壁121により画定される。管壁121は、直線状に延びる中心軸A1を有する略円筒体である。 As shown in FIG. 4, the hollow needle 12 has a tube wall 121. The spinneret 10a through which the solution L1 is injected is defined by the tube wall 121. The tube wall 121 is a substantially cylindrical body having a central axis A1 extending linearly.
 図5は、図4の中空針12の先端部を拡大した側方断面図である。同図に示されるように、管壁121の先端部は、テーパー面122を形成しており、このテーパー面122は、管壁121の中心軸A1に対して略回転対称な形状を有する。管壁121の先端部は、略逆楕円錐形状に形成されており、下方に向かう程管壁121の厚みが薄くなる先細りの形状である。管壁121の先端面123は、管壁121の中心軸A1に直交する平面内に含まれる。先端面123は、円環状である。以下では、管壁121の先端面123を含む平面を符号P1で表す。 FIG. 5 is an enlarged side sectional view of the tip of the hollow needle 12 of FIG. As shown in the figure, the distal end portion of the tube wall 121 forms a tapered surface 122, and the tapered surface 122 has a substantially rotationally symmetric shape with respect to the central axis A <b> 1 of the tube wall 121. The distal end portion of the tube wall 121 is formed in a substantially inverted elliptical cone shape, and has a tapered shape in which the thickness of the tube wall 121 decreases as it goes downward. The distal end surface 123 of the tube wall 121 is included in a plane orthogonal to the central axis A1 of the tube wall 121. The front end surface 123 has an annular shape. Hereinafter, a plane including the distal end surface 123 of the tube wall 121 is denoted by reference symbol P1.
 中空針12の先端における管壁121の厚みをw1としたとき、w1≦35μmである。なお、w1≦30μmであることが好ましく、w1≦15μmであることがより好ましく、w1≦10μmであることがさらに好ましい。 When the thickness of the tube wall 121 at the tip of the hollow needle 12 is w1, w1 ≦ 35 μm. Note that w1 ≦ 30 μm is preferable, w1 ≦ 15 μm is more preferable, and w1 ≦ 10 μm is further preferable.
 w1は、以下の測定方法により測定される。すなわち、平面P1内における管壁121の外径r1及び内径r2を測定し、これらの測定値r1,r2からw1=(r1-r2)/2の式に従って、w1が算出される。また、r1,r2は、キーエンス社製のデジタルマイクロスコープVHX-5000を用いて測定される。より具体的には、管壁121の底面(先端面123を含む面)を当該底面に直交する方向から撮影した画像上で、先端面123の外周上の3点を指定することにより、この3点を通る円を特定し、この円の直径をr1とする。同様に、同画像上で、先端面123の内周上の3点を指定することにより、この3点を通る円を特定し、この円の直径をr2とする。 W1 is measured by the following measurement method. That is, the outer diameter r1 and inner diameter r2 of the tube wall 121 in the plane P1 are measured, and w1 is calculated from these measured values r1 and r2 according to the equation w1 = (r1−r2) / 2. R1 and r2 are measured using a digital microscope VHX-5000 manufactured by Keyence Corporation. More specifically, by specifying three points on the outer periphery of the distal end surface 123 on the image obtained by photographing the bottom surface (the surface including the distal end surface 123) of the tube wall 121 from the direction orthogonal to the bottom surface, A circle passing through the point is specified, and the diameter of this circle is r1. Similarly, by specifying three points on the inner periphery of the tip surface 123 on the same image, a circle passing through these three points is specified, and the diameter of this circle is set to r2.
 以上のとおり、本実施形態の中空針12は、紡糸口10aを形成する先端面123の厚みw1が薄い。そのため、管壁121内に形成される流路を通過した溶液L1の、先端面123からの液離れが改善される。その結果、テイラーコーンの形状が安定し、さらには紡糸ジェットも複数本に割れることなく、コレクタ20に向かって真っ直ぐ直線的に方向付けられる。よって、ファインファイバーシートを安定的に製造することができ、特に配向性ファインファイバーシートであっても安定的に製造することができる。 As described above, in the hollow needle 12 of the present embodiment, the thickness w1 of the tip surface 123 that forms the spinneret 10a is thin. Therefore, the liquid separation from the tip surface 123 of the solution L1 that has passed through the flow path formed in the tube wall 121 is improved. As a result, the shape of the Taylor cone is stabilized, and further, the spinning jet is directed straight and straight toward the collector 20 without being broken into multiple pieces. Therefore, a fine fiber sheet can be manufactured stably, and even an oriented fine fiber sheet can be manufactured stably.
 管壁121の内径r2に対する厚みw1の比率rは、r≦15%であることが好ましく、r≦10%であることがより好ましく、r≦5%であることがより好ましく、r≦3%であることがさらに好ましい。 The ratio r of the thickness w1 to the inner diameter r2 of the tube wall 121 is preferably r ≦ 15%, more preferably r ≦ 10%, more preferably r ≦ 5%, and r ≦ 3%. More preferably.
 また、テーパー面122の中心軸A1に対する角度θは、0°<θ<90°の範囲内で適宜設定することができる。しかしながら、10°<θ<80°であることが好ましく、15°<θ<70°であることがより好ましく、20°<θ<60°であることがさらに好ましく、25°<θ<50°であることがより好ましい。 Further, the angle θ of the tapered surface 122 with respect to the central axis A1 can be appropriately set within a range of 0 ° <θ <90 °. However, 10 ° <θ <80 ° is preferable, 15 ° <θ <70 ° is more preferable, 20 ° <θ <60 ° is further preferable, and 25 ° <θ <50 °. It is more preferable that
 内径r2のサイズは、製造しようとするファインファイバーの直径及びファインファイバーの材料に応じて適宜選択されるが、下限については、好ましくは0.10mm≦r2であり、より好ましくは0.20mm≦r2であり、より好ましくは0.30mm≦r2である。上限については、好ましくはr2≦5.0mmであり、より好ましくはr2≦3.0mmであり、より好ましくはr2≦2.0mmであり、より好ましくはr2≦1.0mmであり、より好ましくはr2≦0.60mmであり、より好ましくはr2≦0.50mmである。 The size of the inner diameter r2 is appropriately selected according to the diameter of the fine fiber to be manufactured and the material of the fine fiber, and the lower limit is preferably 0.10 mm ≦ r2, more preferably 0.20 mm ≦ r2. More preferably, 0.30 mm ≦ r2. The upper limit is preferably r2 ≦ 5.0 mm, more preferably r2 ≦ 3.0 mm, more preferably r2 ≦ 2.0 mm, more preferably r2 ≦ 1.0 mm, and more preferably r2 ≦ 0.60 mm, and more preferably r2 ≦ 0.50 mm.
 以上の紡糸ノズル10により製造されるファインファイバーの直径は、典型的には、100nm~500μmであり、好ましくは100nm~10μmである。 The diameter of the fine fiber produced by the above spinning nozzle 10 is typically 100 nm to 500 μm, preferably 100 nm to 10 μm.
 また、本実施形態では、テーパー面122及び先端面123を含む管壁121の外表面は、金属面を露出させている。また、管壁121の先端面123は、非研磨面である。 In this embodiment, the outer surface of the tube wall 121 including the tapered surface 122 and the distal end surface 123 exposes a metal surface. The distal end surface 123 of the tube wall 121 is a non-polished surface.
 <2.ファインファイバーシートの製造方法>
 次に、上述した電界紡糸装置1を用いたファインファイバーシートの製造方法について説明する。ここでは、配向性ファインファイバーシートが製造される場合が例示される。
<2. Manufacturing method of fine fiber sheet>
Next, the manufacturing method of the fine fiber sheet using the electrospinning apparatus 1 described above will be described. Here, the case where an orientation fine fiber sheet is manufactured is illustrated.
 まず、以上のとおりの電界紡糸装置1を用意する。続いて、ドア2aを開けてシリンジ3にアクセスし、シリンジ3内にファインファイバーの原料となる溶液L1を充填した後、ドア2aを閉じる。その後、操作ユニット8を操作して、駆動機構4~6を適当な順番で駆動させる。これにより、コレクタ20が所定の回転速度で回転するとともに、シリンジ3内の溶液L1が所定の流量で紡糸ノズル10に供給される。さらに、紡糸ノズル10が、左右方向の所定の移動幅内を所定の移動速度で往復動する。 First, the electrospinning apparatus 1 as described above is prepared. Subsequently, the door 2a is opened, the syringe 3 is accessed, and the syringe 3 is filled with the solution L1 used as the raw material of the fine fiber, and then the door 2a is closed. Thereafter, the operation unit 8 is operated to drive the drive mechanisms 4 to 6 in an appropriate order. As a result, the collector 20 rotates at a predetermined rotational speed, and the solution L1 in the syringe 3 is supplied to the spinning nozzle 10 at a predetermined flow rate. Further, the spinning nozzle 10 reciprocates at a predetermined moving speed within a predetermined moving width in the left-right direction.
 続いて、電源30をONにすることにより、紡糸動作が開始する。なお、電源30をONにする前の状態においては、紡糸ノズル10内に供給された溶液L1は、紡糸口10a近傍に表面張力で留まり、滴下しない。一方、電源30がONになると、中空針12とコレクタ20との間に高電圧(例えば、数kV~30kV)が印加され、中空針12及びコレクタ20を電極として電界が発生する。これにより、紡糸ノズル10内の溶液L1の液滴がプラスに帯電し、マイナスに帯電しているコレクタ20に向かってクーロン力の作用により吸引される。その結果、溶液L1が紡糸口10aからコレクタ20に向かって噴射され、紡糸ジェットが形成される。紡糸ジェットは、コレクタ20に連続的に巻き取られる。このとき、紡糸ノズル10が左右方向に往復動しているため、コレクタ20の表面上に所定の幅を有する配向性ファインファイバーシートが形成される。 Subsequently, when the power supply 30 is turned on, the spinning operation starts. In the state before the power supply 30 is turned on, the solution L1 supplied into the spinning nozzle 10 stays in the vicinity of the spinning port 10a with surface tension and does not drop. On the other hand, when the power supply 30 is turned on, a high voltage (for example, several kV to 30 kV) is applied between the hollow needle 12 and the collector 20, and an electric field is generated using the hollow needle 12 and the collector 20 as electrodes. As a result, the droplet of the solution L1 in the spinning nozzle 10 is positively charged and sucked toward the negatively charged collector 20 by the action of Coulomb force. As a result, the solution L1 is jetted from the spinning port 10a toward the collector 20, and a spinning jet is formed. The spinning jet is continuously wound around the collector 20. At this time, since the spinning nozzle 10 reciprocates in the left-right direction, an oriented fine fiber sheet having a predetermined width is formed on the surface of the collector 20.
 その後、操作ユニット8を操作して、電源30をOFFにするとともに、駆動機構4~6を停止させる。さらにその後、ドア2aを開いて、コレクタ20から配向性ファインファイバーシートを取り外す。以上により、配向性ファインファイバーシートが製造される。 Thereafter, the operation unit 8 is operated to turn off the power supply 30 and stop the driving mechanisms 4 to 6. Thereafter, the door 2 a is opened, and the oriented fine fiber sheet is removed from the collector 20. Thus, an oriented fine fiber sheet is produced.
 <3.紡糸ノズルの製造方法>
 次に、図6及び図7を参照しつつ、上述した紡糸ノズル10の製造方法について説明する。まず、紡糸ノズル210を用意する。紡糸ノズル210は、管壁221の厚みが中心軸方向に沿って一定の中空針212、すなわち、図1A~図1Cに示すような中空針を有する。本実施形態では、このとき用意される紡糸ノズル210は、中空針の管壁の厚みが中心軸方向に沿って一定である点を除いて、最終的に製造される紡糸ノズル10と同様の構造を有する。従って、紡糸ノズル210は、中空針212に加え、ベース部11を有する。
<3. Manufacturing method of spinning nozzle>
Next, the manufacturing method of the spinning nozzle 10 described above will be described with reference to FIGS. First, the spinning nozzle 210 is prepared. The spinning nozzle 210 has a hollow needle 212 whose tube wall 221 has a constant thickness along the central axis direction, that is, a hollow needle as shown in FIGS. 1A to 1C. In the present embodiment, the spinning nozzle 210 prepared at this time has the same structure as the spinning nozzle 10 that is finally manufactured, except that the thickness of the tube wall of the hollow needle is constant along the central axis direction. Have Accordingly, the spinning nozzle 210 has the base portion 11 in addition to the hollow needle 212.
 続いて、図6に示すような切削装置50を用意する。切削装置50は、旋盤チャック51と、切削工具52とを有する。また、切削装置50は、旋盤チャック51を回転駆動するための駆動機構53と、切削工具52の位置決めを行うための駆動機構54と、制御ユニット55とを有する。制御ユニット55は、駆動機構53,54を制御することにより、それぞれ旋盤チャック51を回転させ、切削工具52の位置決めを行うことができる。駆動機構53,54の構成は特に限定されず、モーターや適当な機械要素から構成することができる。 Subsequently, a cutting device 50 as shown in FIG. 6 is prepared. The cutting device 50 includes a lathe chuck 51 and a cutting tool 52. Further, the cutting device 50 includes a drive mechanism 53 for rotationally driving the lathe chuck 51, a drive mechanism 54 for positioning the cutting tool 52, and a control unit 55. The control unit 55 can position the cutting tool 52 by rotating the lathe chuck 51 by controlling the drive mechanisms 53 and 54, respectively. The structure of the drive mechanisms 53 and 54 is not specifically limited, It can comprise from a motor and a suitable mechanical element.
 次に、旋盤チャック51にワーク、ここでは紡糸ノズル210を固定する。続いて、手動で、或いは制御ユニット55により駆動機構54を駆動させて、旋盤チャック51に固定された紡糸ノズル210の中空針212の先端部の側方に、切削工具52を位置決めする(図6参照)。切削工具52の刃先52aは、中空針212の中心軸方向に対して傾斜した斜面を形成している。より具体的には、刃先52aは、左側から右側に向かうにつれて中空針212に近づくように傾斜している。なお、ここでいう左右は、図6の状態を基準にしており、右側とは中空針212の先端側であり、左側とは中空針212の根本側である。また、このとき、刃先52aの右端は、左右方向に中空針212の先端の位置又はそれよりも右側に位置決めされる。 Next, the work, here, the spinning nozzle 210 is fixed to the lathe chuck 51. Subsequently, the drive mechanism 54 is driven manually or by the control unit 55 to position the cutting tool 52 on the side of the tip of the hollow needle 212 of the spinning nozzle 210 fixed to the lathe chuck 51 (FIG. 6). reference). The cutting edge 52 a of the cutting tool 52 forms a slope inclined with respect to the central axis direction of the hollow needle 212. More specifically, the blade edge 52a is inclined so as to approach the hollow needle 212 from the left side toward the right side. The right and left here are based on the state of FIG. 6, the right side is the tip side of the hollow needle 212, and the left side is the root side of the hollow needle 212. At this time, the right end of the blade edge 52a is positioned in the left-right direction at the tip of the hollow needle 212 or on the right side of it.
 以上の状態で、制御ユニット55により駆動機構53を駆動させて、旋盤チャック51及びこれに固定されている中空針212を旋回させる。このときの回転軸は、管壁221の中心軸に等しい。同時に、制御ユニット55により駆動機構54を駆動させて、切削工具52の刃先52aを管壁221の先端部に対し移動させる。具体的には、切削工具52は、管壁221の径方向に沿って管壁221に向かうように移動させられる。言い換えると、切削工具52は、管壁221の中心軸に略直交する方向に進む。その結果、刃先52aが高速回転している管壁221の外表面に達し、管壁221の先端部が切削加工される。 In the above state, the drive mechanism 53 is driven by the control unit 55 to turn the lathe chuck 51 and the hollow needle 212 fixed thereto. The rotation axis at this time is equal to the central axis of the tube wall 221. At the same time, the drive mechanism 54 is driven by the control unit 55 to move the cutting edge 52 a of the cutting tool 52 relative to the tip of the tube wall 221. Specifically, the cutting tool 52 is moved along the radial direction of the tube wall 221 toward the tube wall 221. In other words, the cutting tool 52 advances in a direction substantially orthogonal to the central axis of the tube wall 221. As a result, the cutting edge 52a reaches the outer surface of the tube wall 221 rotating at high speed, and the tip of the tube wall 221 is cut.
 刃先52aが管壁221の外表面に達した後も、切削工具52は管壁221の径方向に沿ってさらに奥まで移動させられる。その結果、管壁221の先端部が刃先52aの斜面に沿って切削され、当該先端部に上述したテーパー面122が形成される。このとき、制御ユニット55により刃先52aの移動量を制御することにより、最終的に製造される紡糸ノズル10の厚みw1が制御される。勿論、このとき制御される制御パラメータは、刃先52aの移動量そのものでなくてもよく、最終的に刃先52aが達する管壁221に対する相対位置を決定することができる限りどのようなものであってもよい。 Even after the cutting edge 52a reaches the outer surface of the tube wall 221, the cutting tool 52 is moved further along the radial direction of the tube wall 221. As a result, the distal end portion of the tube wall 221 is cut along the slope of the cutting edge 52a, and the tapered surface 122 described above is formed at the distal end portion. At this time, by controlling the movement amount of the blade edge 52a by the control unit 55, the thickness w1 of the spinning nozzle 10 finally manufactured is controlled. Of course, the control parameter controlled at this time does not have to be the amount of movement of the cutting edge 52a itself, but is any as long as the relative position with respect to the tube wall 221 reached by the cutting edge 52a can be determined. Also good.
 最終的に図7に示すような位置まで切削工具52を移動させる場合には、w1≦10μmの紡糸ノズル10を製造することができる。なお、w1≦10μmとは、w1が限りになくゼロに近いことを意味しており、実質的には、管壁121に先端面123が形成されない場合に相当する。従って、w1≦10μmとする場合には、図7中の左右方向の位置C1において、管壁221の径方向に沿って管壁221の内周面の位置、又はこれよりも少し内側の位置に刃先52aが達するまで、切削工具52を移動させる。位置C1は、切削前の中空針212の先端面223の位置である。 Finally, when the cutting tool 52 is moved to a position as shown in FIG. 7, the spinning nozzle 10 with w1 ≦ 10 μm can be manufactured. Note that w1 ≦ 10 μm means that w1 is infinitely close to zero, and substantially corresponds to the case where the distal end surface 123 is not formed on the tube wall 121. Therefore, when w1 ≦ 10 μm, the position of the inner peripheral surface of the tube wall 221 along the radial direction of the tube wall 221 at a position C1 in the left-right direction in FIG. The cutting tool 52 is moved until the cutting edge 52a reaches. The position C1 is the position of the distal end surface 223 of the hollow needle 212 before cutting.
 以上のとおり、刃先52aを管壁221の先端部に対して位置決めしながら、管壁221が高速回転させられる。これにより、管壁221の先端部にテーパー面122が形成される。 As described above, the tube wall 221 is rotated at a high speed while positioning the blade edge 52a with respect to the distal end portion of the tube wall 221. Thereby, a tapered surface 122 is formed at the distal end portion of the tube wall 221.
 <4.用途>
 以上の通り製造されるファインファイバーシートは、様々な用途に使用することができる。例えば、当該ファインファイバーシートを各種細胞のスキャホールドとして使用することができる。具体的には、当該ファインファイバーシートに心筋細胞を担持させた心筋細胞シートは、優れた成熟性と安定した機能性を備えることができ、移植や薬物スクリーニング等において好適に利用することができる。
<4. Application>
The fine fiber sheet manufactured as described above can be used for various applications. For example, the fine fiber sheet can be used as a scaffold for various cells. Specifically, the cardiomyocyte sheet in which the cardiomyocytes are supported on the fine fiber sheet can have excellent maturity and stable functionality, and can be suitably used in transplantation, drug screening, and the like.
 <5.変形例>
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、種々の変更が可能である。例えば、以下の変更が可能である。
<5. Modification>
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, A various change is possible unless it deviates from the meaning. For example, the following changes can be made.
 <5-1>
 上記実施形態では、切削工具52により紡糸ノズル210の先端部を切削するために、紡糸ノズル210を回転させた。しかしながら、紡糸ノズル210を回転させることに代えて又は加えて、切削工具52を紡糸ノズル210の中心軸周りに回転させてもよい。なお、紡糸ノズルは、上述した切削加工に限らず、塑性加工、研削加工等、任意の加工の方法で製造することができる。
<5-1>
In the above embodiment, the spinning nozzle 210 is rotated in order to cut the tip of the spinning nozzle 210 with the cutting tool 52. However, instead of or in addition to rotating the spinning nozzle 210, the cutting tool 52 may be rotated around the central axis of the spinning nozzle 210. The spinning nozzle is not limited to the above-described cutting process, and can be manufactured by any processing method such as plastic processing or grinding.
以下、本発明の実施例について説明する。ただし、本発明は、以下の実施例に限定されない。
 <比較例1>
 株式会社ビーエスエーサクライ製の紡糸ノズル(ジェットニードル ストレートタイプ Black 22G)を用意し、比較例1とした。比較例1の中空針の公称サイズは、内径が0.48mmであり、外径が0.7mmであった。なお、この公称サイズから計算される、中空針の先端における管壁の厚みw1は、110μmである。また、比較例1の紡糸ノズルは、1本用意された。
Examples of the present invention will be described below. However, the present invention is not limited to the following examples.
<Comparative Example 1>
A spinning nozzle (jet needle straight type Black 22G) manufactured by BSA Sakurai Co., Ltd. was prepared and used as Comparative Example 1. As for the nominal size of the hollow needle of Comparative Example 1, the inner diameter was 0.48 mm and the outer diameter was 0.7 mm. The tube wall thickness w1 at the tip of the hollow needle calculated from the nominal size is 110 μm. One spinning nozzle of Comparative Example 1 was prepared.
 <比較例2>
 比較例1の紡糸ノズルをさらに1本用意し、各々の管壁の先端部をテーパー状に切削加工し、比較例2とした。比較例2の紡糸ノズルは、中空針の先端における管壁の厚みw1が約40μm(38.35μm)とされた。なお、ここでいうw1は、上述した測定方法により測定された。
<Comparative example 2>
One more spinning nozzle of Comparative Example 1 was prepared, and the tip portion of each tube wall was cut into a tapered shape to obtain Comparative Example 2. In the spinning nozzle of Comparative Example 2, the thickness w1 of the tube wall at the tip of the hollow needle was about 40 μm (38.35 μm). In addition, w1 here was measured by the measuring method mentioned above.
 <実施例1>
 比較例1の紡糸ノズルをさらに1本用意し、各々の管壁の先端部をテーパー状に切削加工し、実施例1とした。実施例1の紡糸ノズルは、中空針の先端における管壁の厚みw1が約30μm(29.45μm)とされた。なお、ここでいうw1は、上述した測定方法により測定された。
<Example 1>
One more spinning nozzle of Comparative Example 1 was prepared, and the tip of each tube wall was cut into a taper shape to obtain Example 1. In the spinning nozzle of Example 1, the thickness w1 of the tube wall at the tip of the hollow needle was about 30 μm (29.45 μm). In addition, w1 here was measured by the measuring method mentioned above.
 <実施例2>
 比較例1の紡糸ノズルをさらに1本個用意し、各々の管壁の先端部をテーパー状に切削加工し、実施例2とした。実施例2の紡糸ノズルは、中空針の先端における管壁の厚みw1が約10μm(10.95μm)とされた。なお、ここでいうw1は、上述した測定方法により測定された。
<Example 2>
One more spinning nozzle of Comparative Example 1 was prepared, and the tip of each tube wall was cut into a tapered shape to obtain Example 2. In the spinning nozzle of Example 2, the thickness w1 of the tube wall at the tip of the hollow needle was about 10 μm (10.95 μm). In addition, w1 here was measured by the measuring method mentioned above.
 <検証実験>
 比較例1,2及び実施例1,2の紡糸ノズルを株式会社メック製のナノファイバー電界紡糸装置(型番NANON-03)に順番に取り付けて、各々の紡糸ノズルを用いて配向性ファインファイバーシートを製造した。製造条件(温度及び湿度)は、ナノファイバー電界紡糸装置(型番NANON-03)の製造業者の推奨値の中から適当な値を選択した。また、紡糸ノズルとコレクタ間の電圧は20kVとし、シリンジから紡糸ノズルへの溶液の流量は1.0mL/hとした。さらに、ファインファイバーの原料として、PLGA(乳酸・グリコール酸共重合体)を含む溶液が用いられた。
<Verification experiment>
The spinning nozzles of Comparative Examples 1 and 2 and Examples 1 and 2 were sequentially attached to a nanofiber electrospinning apparatus (model number NANON-03) manufactured by MEC Co., Ltd., and an orientation fine fiber sheet was prepared using each spinning nozzle. Manufactured. As manufacturing conditions (temperature and humidity), appropriate values were selected from the recommended values of the manufacturer of the nanofiber electrospinning apparatus (model number NANON-03). The voltage between the spinning nozzle and the collector was 20 kV, and the flow rate of the solution from the syringe to the spinning nozzle was 1.0 mL / h. Furthermore, a solution containing PLGA (lactic acid / glycolic acid copolymer) was used as a raw material for fine fibers.
 そして、比較例1,2及び実施例1,2の紡糸ノズルからそれぞれ製造されたファインファイバーシートをそれぞれ観察した。より具体的には、それぞれのシートから20~30本ずつランダムにファインファイバーを選択し、それらのファインファイバーの直径の平均値、最小値、最大値、最大値-最小値、標準偏差を算出した。結果を、以下の表1に示す。また、比較例1,2及び実施例1,2の紡糸ノズルによる紡糸時のテイラーコーン及び紡糸ジェットの形態を目視により確認したところ、表1に示す結果が得られた。なお、「NG」とは、以下の3つの評価基準が1つでも満たされなかった場合であり、「GOOD」とは、全ての基準をクリアした場合である。
(1)テイラーコーンが、紡糸ノズルの中心軸に対して略回転対称な形状を有していた。
(2)紡糸ジェットが1本のみ形成された。
(3)紡糸ジェットがコレクタに向かって直線状に真っ直ぐ延びていた。
Figure JPOXMLDOC01-appb-T000001
Then, the fine fiber sheets produced from the spinning nozzles of Comparative Examples 1 and 2 and Examples 1 and 2 were observed. More specifically, 20 to 30 fine fibers were randomly selected from each sheet, and the average value, minimum value, maximum value, maximum value-minimum value, and standard deviation of the diameters of the fine fibers were calculated. . The results are shown in Table 1 below. Moreover, when the form of the Taylor cone and the spinning jet at the time of spinning with the spinning nozzles of Comparative Examples 1 and 2 and Examples 1 and 2 was visually confirmed, the results shown in Table 1 were obtained. “NG” is when one of the following three evaluation criteria is not satisfied, and “GOOD” is when all the criteria are cleared.
(1) The Taylor cone had a substantially rotationally symmetric shape with respect to the center axis of the spinning nozzle.
(2) Only one spinning jet was formed.
(3) The spinning jet extended straightly toward the collector.
Figure JPOXMLDOC01-appb-T000001
 以上の結果からは、w1が約30μm程度まで小さくなると、ファインファイバーの径のばらつきが少なくなる(標準偏差が小さくなる)とともに、テイラーコーン及び紡糸ジェットの形態が良好になった。また、w1が約10μm程度まで小さくなると、ファインファイバーの径の最大値と最小値の差異が小さくなった。このことから、w1≦35μmであることが好ましく、w1≦30μmであることがより好ましく、w1≦15μmであることがさらに好ましく、w1≦10μmであることがさらに好ましいことが分かった。 From the above results, when w1 is reduced to about 30 μm, the variation in the diameter of the fine fiber is reduced (standard deviation is reduced), and the shape of the Taylor cone and the spinning jet is improved. Further, when w1 was reduced to about 10 μm, the difference between the maximum value and the minimum value of the fine fiber diameter was reduced. From this, it was found that w1 ≦ 35 μm was preferable, w1 ≦ 30 μm was more preferable, w1 ≦ 15 μm was further preferable, and w1 ≦ 10 μm was further preferable.
1 電界紡糸装置
10 紡糸ノズル
10a 紡糸口
12 中空針
121 管壁
122 テーパー面
123 先端面
20 コレクタ
30 電源
52 切削工具
52a 刃先
w1 中空針の先端における管壁の厚み
DESCRIPTION OF SYMBOLS 1 Electrospinning apparatus 10 Spinning nozzle 10a Spinning port 12 Hollow needle 121 Tube wall 122 Tapered surface 123 Tip surface 20 Collector 30 Power supply 52 Cutting tool 52a Cutting edge w1 Thickness of the tube wall at the tip of the hollow needle

Claims (11)

  1.  ファインファイバーシートの製造時に電界紡糸装置で用いられる紡糸ノズルであって、
     ファインファイバーの原料となる溶液が噴射される紡糸口を画定する管壁を有する中空針
    を備え、
     前記中空針の先端における前記管壁の厚みは、35μm以下である、
    紡糸ノズル。
    A spinning nozzle used in an electrospinning apparatus when manufacturing a fine fiber sheet,
    A hollow needle having a tube wall that defines a spinneret through which a solution as a raw material of fine fiber is injected,
    The tube wall thickness at the tip of the hollow needle is 35 μm or less.
    Spinning nozzle.
  2.  前記中空針の先端における前記管壁の厚みは、30μm以下である、
    請求項1に記載の紡糸ノズル。
    The tube wall thickness at the tip of the hollow needle is 30 μm or less.
    The spinning nozzle according to claim 1.
  3.  前記中空針の先端における前記管壁の厚みは、15μm以下である、
    請求項2に記載の紡糸ノズル。
    The tube wall thickness at the tip of the hollow needle is 15 μm or less.
    The spinning nozzle according to claim 2.
  4.  前記中空針の先端における前記管壁の厚みは、10μm以下である、
    請求項3に記載の紡糸ノズル。
    The thickness of the tube wall at the tip of the hollow needle is 10 μm or less.
    The spinning nozzle according to claim 3.
  5.  前記管壁の外表面は、金属面である、
    請求項1から4のいずれかに記載の紡糸ノズル。
    The outer surface of the tube wall is a metal surface,
    The spinning nozzle according to any one of claims 1 to 4.
  6.  前記管壁の中心軸方向に直交する前記管壁の先端面は、非研磨面である、
    請求項1から5のいずれかに記載の紡糸ノズル。
    The tip surface of the tube wall orthogonal to the central axis direction of the tube wall is a non-polished surface.
    The spinning nozzle according to any one of claims 1 to 5.
  7.  前記管壁の先端部は、前記管壁の中心軸に対して略回転対称な形状のテーパー面を有する、
    請求項1から6のいずれかに記載の紡糸ノズル。
    The distal end portion of the tube wall has a tapered surface having a substantially rotationally symmetric shape with respect to the central axis of the tube wall.
    The spinning nozzle according to any one of claims 1 to 6.
  8.  前記電界紡糸装置の本体に対し着脱自在なディスポーザブルノズルである、
    紡糸ノズル。
    A disposable nozzle that is detachable from the main body of the electrospinning apparatus.
    Spinning nozzle.
  9.  ファインファイバーシートの製造時に電界紡糸装置で用いられる紡糸ノズルの製造方法であって、
     中空針を用意することと、
     刃先が斜面を形成する切削工具を用いて、前記中空針の管壁の先端部を、当該先端部が前記管壁の中心軸に対して略回転対称な形状のテーパー面を形成するように切削加工することと
    を含み、
     前記切削加工することは、
     前記刃先が、前記管壁の径方向に沿って前記管壁の内周面の位置、又は前記内周面よりも内側の位置に達するように、前記刃先を前記管壁の先端部に対し相対的に移動させて位置決めすることと、
     前記位置決めを行いながら、前記中空針及び前記刃先の少なくとも一方を前記管壁の中心軸周りで回転させることにより、前記刃先で前記管壁の先端部を切削することと
    を含む、
    製造方法。
    A method for producing a spinning nozzle used in an electrospinning apparatus when producing a fine fiber sheet,
    Preparing a hollow needle,
    Using a cutting tool in which the cutting edge forms a slope, the tip of the tube wall of the hollow needle is cut so that the tip forms a tapered surface that is substantially rotationally symmetric with respect to the central axis of the tube wall. Processing,
    The cutting process is
    Relative to the tip of the tube wall, the blade edge reaches the position of the inner peripheral surface of the tube wall or the position inside the inner peripheral surface along the radial direction of the tube wall. Moving and positioning,
    Cutting the tip of the tube wall with the blade edge by rotating at least one of the hollow needle and the blade edge around the central axis of the tube wall while performing the positioning,
    Production method.
  10.  ファインファイバーシートの製造方法であって、
     紡糸口を画定する管壁を有する中空針と、コレクタと、前記中空針と前記コレクタの間に電圧を印加するための電源とを備えた電界紡糸装置であって、前記中空針の先端における前記管壁の厚みが35μm以下である、電界紡糸装置を用意することと、
     前記電界紡糸装置を用いて、前記紡糸口から前記コレクタに向けてファインファイバーの原料となる溶液を噴射し、前記コレクタ表面上に前記ファインファイバーシートを形成することと
    を含む、
    製造方法。
    A method of manufacturing a fine fiber sheet,
    An electrospinning apparatus comprising a hollow needle having a tube wall defining a spinneret, a collector, and a power source for applying a voltage between the hollow needle and the collector, wherein Providing an electrospinning apparatus having a tube wall thickness of 35 μm or less;
    Using the electrospinning device, spraying a solution as a raw material of fine fiber from the spinning port toward the collector, and forming the fine fiber sheet on the collector surface,
    Production method.
  11.  前記ファインファイバーシートは、配向性ファインファイバーシートである、
    請求項10に記載の製造方法。
    The fine fiber sheet is an oriented fine fiber sheet,
    The manufacturing method according to claim 10.
PCT/JP2017/042544 2016-12-08 2017-11-28 Spinning nozzle WO2018105438A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018554931A JP6944198B2 (en) 2016-12-08 2017-11-28 Spinning nozzle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-238634 2016-12-08
JP2016238634 2016-12-08

Publications (1)

Publication Number Publication Date
WO2018105438A1 true WO2018105438A1 (en) 2018-06-14

Family

ID=62492232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042544 WO2018105438A1 (en) 2016-12-08 2017-11-28 Spinning nozzle

Country Status (2)

Country Link
JP (1) JP6944198B2 (en)
WO (1) WO2018105438A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021038493A (en) * 2019-09-05 2021-03-11 株式会社東芝 Electrospinning head and electrospinning device
JP7462984B2 (en) 2019-12-05 2024-04-08 ジョン-ス パク, Nozzle block equipped with nozzle clogging prevention means and electrospinning device equipped with the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534828A (en) * 2002-08-16 2005-11-17 サンシン クリエーション カンパニーリミテッド Nanofiber manufacturing apparatus using electrospinning method and spinning nozzle pack employed in the same
JP2008174853A (en) * 2007-01-16 2008-07-31 Matsushita Electric Ind Co Ltd Nozzle for producing polymer fiber and polymer fiber production apparatus using the nozzle
WO2011030506A1 (en) * 2009-09-09 2011-03-17 パナソニック株式会社 Nanofiber manufacturing device and nanofiber manufacturing method
JP2012167409A (en) * 2011-02-15 2012-09-06 Toptec Co Ltd Electrospinning device and apparatus for producing nanofiber
WO2015105162A1 (en) * 2014-01-08 2015-07-16 ニプロ株式会社 Hollow needle and production method for hollow needle
US9138932B2 (en) * 2012-02-29 2015-09-22 GM Global Technology Operations LLC Electrode-separator integral segment for a lithium ion battery
JP2016053230A (en) * 2014-09-04 2016-04-14 富士フイルム株式会社 Electro-spinning nozzle, and method and apparatus for producing nanofiber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534828A (en) * 2002-08-16 2005-11-17 サンシン クリエーション カンパニーリミテッド Nanofiber manufacturing apparatus using electrospinning method and spinning nozzle pack employed in the same
JP2008174853A (en) * 2007-01-16 2008-07-31 Matsushita Electric Ind Co Ltd Nozzle for producing polymer fiber and polymer fiber production apparatus using the nozzle
WO2011030506A1 (en) * 2009-09-09 2011-03-17 パナソニック株式会社 Nanofiber manufacturing device and nanofiber manufacturing method
JP2012167409A (en) * 2011-02-15 2012-09-06 Toptec Co Ltd Electrospinning device and apparatus for producing nanofiber
US9138932B2 (en) * 2012-02-29 2015-09-22 GM Global Technology Operations LLC Electrode-separator integral segment for a lithium ion battery
WO2015105162A1 (en) * 2014-01-08 2015-07-16 ニプロ株式会社 Hollow needle and production method for hollow needle
JP2016053230A (en) * 2014-09-04 2016-04-14 富士フイルム株式会社 Electro-spinning nozzle, and method and apparatus for producing nanofiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021038493A (en) * 2019-09-05 2021-03-11 株式会社東芝 Electrospinning head and electrospinning device
JP7374672B2 (en) 2019-09-05 2023-11-07 株式会社東芝 Electrospinning head and electrospinning device
JP7462984B2 (en) 2019-12-05 2024-04-08 ジョン-ス パク, Nozzle block equipped with nozzle clogging prevention means and electrospinning device equipped with the same

Also Published As

Publication number Publication date
JPWO2018105438A1 (en) 2019-10-24
JP6944198B2 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
Ding et al. Electrospinning: nanofabrication and applications
Long et al. Electrospinning: the setup and procedure
Li et al. Developments of advanced electrospinning techniques: A critical review
DE112008001408T5 (en) Nanofiber spinning process and device
US20050104258A1 (en) Patterned electrospinning
JP5627024B2 (en) Electrostatic spinning assembly
DE112007002799T5 (en) Method and device for producing nanofibers and a polymer fleece
WO2018105438A1 (en) Spinning nozzle
JP6205330B2 (en) Electrospinning nozzle, nanofiber manufacturing apparatus and method
JP4922144B2 (en) Nanofiber compounding method and apparatus
CN205347635U (en) Supplementary reciprocating type electrostatic spinning device of induction type screw thread guide arm
Valipouri Production scale up of nanofibers: a review
CN108330550B (en) Non-nozzle type electrostatic spinning device and using method thereof
JP5782594B1 (en) Nanofiber forming spray nozzle head and nanofiber manufacturing apparatus comprising nanofiber forming spray nozzle head
WO2016013052A1 (en) Method for producing nanofibres made from polymer material
JP2014047440A (en) Electrospinning apparatus
JP2016023399A (en) Ejection nozzle head for forming nanofibers and manufacturing apparatus of nanofibers provided with ejection nozzle head for forming nanofibers
JP5656297B2 (en) Centrifugal spinning apparatus and centrifugal spinning method
CN108642574B (en) Device and method for preparing submicron fiber membrane with batch composite three-dimensional structure
KR20050041198A (en) A nozzle for electrostatic spinning and a producing method of nano-fiber using the same
KR20210154392A (en) An apparatus for manufacturing nanofiber filaments and a method for making nanofiber filaments using the same
JP6322688B1 (en) Nozzle head and electrospinning apparatus
JP2009280923A (en) Method and device for doubling nanofiber
JP4904083B2 (en) Apparatus for producing polymer compound fiber structure by electrospinning method
KR102633454B1 (en) An apparatus for manufacturing nanofiber filaments and a method for making nanofiber filaments using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877623

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018554931

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877623

Country of ref document: EP

Kind code of ref document: A1